
HAL Id: tel-02972373
https://theses.hal.science/tel-02972373

Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Preuves de protocoles cryptographiques : méthodes
symboliques et attaquants puissants

Charlie Jacomme

To cite this version:
Charlie Jacomme. Preuves de protocoles cryptographiques : méthodes symboliques et attaquants puis-
sants. Cryptographie et sécurité [cs.CR]. Université Paris-Saclay, 2020. Français. �NNT : 2020UP-
ASG005�. �tel-02972373�

https://theses.hal.science/tel-02972373
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T
2
0
2
0
U
PA

S
G
0
0
5

Proofs of Security Protocols
Symbolic Methods and Powerful Attackers

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580 Sciences et technologies de l’information
et de la communication (STIC)

Spécialité de doctorat : Informatique
Unité de recherche : Université Paris-Saclay, ENS Paris-Saclay, CNRS, LSV

Référent : ENS Paris-Saclay

Thèse présentée et soutenue à Gif-sur-Yvette le 16 Octobre 2020, par

Charlie JACOMME

Composition du jury:

Sylvie BOLDO Présidente
Directrice de recherche, Inria Saclay
Matteo MAFFEI Rapporteur & Examinateur
Professeur, Technische Universität Wien
Bogdan WARINSCHI Rapporteur & Examinateur
Professeur, University of Bristol
Bruno BLANCHET Examinateur
Directeur de recherche, Inria Paris
Sandrine BLAZY Examinatrice
Professeure, Université de Rennes 1

Hubert COMON Directeur
Professeur, ENS Paris-Saclay
Steve KREMER Co-directeur
Directeur de recherche, Inria Nancy

Abstract

The use of communication protocols has become pervasive at all levels of our society. Yet,
their uses come with risks, either about the security of the system or the privacy of the user.
To mitigate those risks, we must provide the protocols with strong security guarantees: we
need formal, extensive, modular and machine-checked proofs. However, such proofs are
very difficult to obtain in practice. In this Thesis, we strive to ease this process in the case
of cryptographic protocols and powerful attackers. The four main contributions of this
Thesis, all based on symbolic methods, are

1. a methodology for extensive analyses via a case study of multi-factor authentication;
2. composition results to allow modular proofs of complex protocols in the computa-

tional model;
3. symbolic methods for deciding basic proof steps in computational proofs, formulated

as problems on probabilistic programs;
4. a prototype of a mechanized prover in the Computationally Complete Symbolic At-

tacker model.

i

Résumé

L’utilisation des protocoles de communication est omniprésente dans notre société, mais
leur utilisation comporte des risques de sécurité ou d’atteinte à la vie privée. Pour réduire
ces risques, il faut exiger de solides garanties, i.e. des preuves formelles, approfondies,
modulaires et vérifiées par ordinateur. Toutefois, de telles preuves sont très difficiles à
obtenir. Nous essayons dans cette thèse de faciliter ce processus dans le cas des protocoles
cryptographiques et d’attaquants puissants. Nos contributions principales sont

1. une méthodologie d’analyse approfondies dans le cas de l’authentification multi-
facteurs;

2. des résultats de composition permettant des preuves modulaires de protocoles com-
plexes dans le modèle calculatoire;

3. l’automatisation d’étapes élémentaires de preuves calculatoires via des méthodes
symboliques appliquées à des programmes probabilistes;

4. un prototype d’assistant de preuve dans le modèle de l’attaquant symbolique calcu-
latoirement complet.

iii

Contents

Abstract i

Résumé iii

Publications xi

1 Introduction 1
1.1 Cryptographic Primitives, Security Properties and Protocols 3
1.2 Formal Proofs . 5
1.3 Our Contributions . 8

2 Formal Models for Protocols 13
2.1 Generic Syntax and Semantics for Protocols 13

2.1.1 Syntax . 14
2.1.2 Parameterized Semantics . 16
2.1.3 Reachability Properties . 19

2.2 Symbolic Semantics . 20
2.2.1 Interpretation of Terms . 20
2.2.2 Attacker Capabilities . 21
2.2.3 Symbolic Indistinguishability . 21

2.3 Computational Semantics . 22
2.3.1 Semantics of Terms and Attackers 22
2.3.2 Computational Indistinguishability 23

2.4 The BC Logic . 26
2.4.1 From Protocols to Terms . 26
2.4.2 A Logic over Terms . 28

I Extensive 33

3 A Symbolic Model for Multi-Factor Authentication 35
3.1 Introduction . 35

3.1.1 Our Contributions . 36
3.1.2 Related Work . 37

3.2 Multi-factor Authentication Protocols . 37
3.2.1 Google 2-step . 37
3.2.2 FIDO’s Universal 2nd Factor - U2F 39
3.2.3 Disabling the Second Factor on Trusted Devices 40
3.2.4 Token Binding . 40

3.3 Threat Model . 41
3.3.1 Malware Based Scenarios . 41
3.3.2 Fingerprint Spoofing . 43

v

Contents

3.3.3 Human Errors . 43
3.3.4 Threat Scenarios Considered . 43

3.4 The Formal Model . 44
3.4.1 Extension of the Process Calculus with Secret Channels 44
3.4.2 Modelling TLS Communications . 46
3.4.3 Modelling Threat Models . 47

4 An Extensive Analysis 49
4.1 Introduction . 49

4.1.1 Our Contributions . 50
4.1.2 Related Work . 50

4.2 Analysis and Comparison . 51
4.2.1 Properties and Methodology . 51
4.2.2 Google 2-step: Verification Code and One-Tap 53
4.2.3 Additional Display . 54
4.2.4 Conclusion Regarding Google 2-step 56
4.2.5 FIDO U2F . 56
4.2.6 Token Binding . 57
4.2.7 A g2DTdis Extension : g2DText . 57
4.2.8 g2DText Analysis . 59

4.3 Validating Attacks in Practice . 60
4.3.1 Session Confusion on g2V . 60
4.3.2 Session Confusion on g2OT . 61
4.3.3 Phishing Attack on Google 2-step . 62
4.3.4 Action Confusion and Mixing on Google 2-step and U2F 64
4.3.5 USB Attack on U2F . 65

4.4 Unlinkability . 66
4.4.1 On Privacy . 66
4.4.2 Formal Analysis . 66
4.4.3 Attack against Key Generation . 67
4.4.4 U2F with Counters . 68
4.4.5 An Attack Based on Global Counters 68
4.4.6 Combining Both Attacks . 68
4.4.7 Improvements . 69

4.5 Google 2-step vs U2F . 69
4.5.1 Practical Considerations . 69
4.5.2 Final Comparison . 70

II Modular 73

5 A Composition Framework in the Computational Model 75
5.1 Introduction . 75

5.1.1 Our Contributions . 76
5.1.2 Related Work . 76

5.2 Protocols and Indistinguishability . 78
5.2.1 Stateless Oracle Machines . 79

5.3 Simulatability . 81
5.3.1 Protocol Simulation . 82
5.3.2 Generic Oracles for Tagged Protocols 92

vi

Contents

5.4 Main Composition Theorems . 94
5.4.1 Composition without State Passing 94
5.4.2 Composition with State Passing . 97
5.4.3 Unbounded Replication . 100

5.5 Unbounded Sequential Replication . 101
5.6 Application to Key Exchanges . 102

5.6.1 Our Model of Key Exchange . 102
5.6.2 Proofs of Composed Key Exchange Security 103

5.7 Basic Diffie-Hellman Key Exchange . 105
5.8 Extension to Key Confirmations . 107

5.8.1 Proofs with Key Confirmations . 108
5.9 Application to SSH . 109

5.9.1 The SSH Protocol . 110
5.9.2 Security of SSH . 111
5.9.3 SSH with Forwarding Agent . 112

6 The Framework in the BC Logic 115
6.1 Introduction . 115

6.1.1 Our Contributions . 116
6.1.2 Related Work . 116

6.2 Oracles in the BC Logic . 116
6.2.1 Syntax and Semantics . 116
6.2.2 Oracle Soundness . 117

6.3 Computational Soundness . 120
6.4 Extension to the Model for Unbounded Replication 122

III Automated 127

7 Probabilistic Language and Problems 129
7.1 Introduction . 129

7.1.1 Our Contributions . 131
7.1.2 Related Work . 132

7.2 Probabilistic Programming Language . 133
7.2.1 Syntax and Informal Semantics . 134
7.2.2 A Core Language . 135
7.2.3 Semantics . 136

7.3 Decision Problems and Universal Variants 138
7.4 First Results . 139

7.4.1 Links between Problems . 140
7.4.2 Semantic Characterization of Equivalence 142

8 Complexity and Decidability 145
8.1 Introduction . 145

8.1.1 Our Contributions . 146
8.1.2 Related Work . 148

8.2 Complexity in the Finite Case . 149
8.2.1 Conditional Equivalence . 149
8.2.2 Independence . 151
8.2.3 Majority . 152

vii

Contents

8.3 The Universal Case . 153
8.3.1 General Remarks . 153
8.3.2 From Arithmetic Programs without Inputs to LRS 156
8.3.3 Decidability of Universal Equivalence 158

8.4 Program Indistinguishability . 161
8.5 Undecidability with Loops . 164

9 In Practice 167
9.1 Introduction . 167

9.1.1 Our Contributions . 168
9.1.2 Related Work . 169

9.2 Symbolic Characterization . 169
9.2.1 Symbolic Abstraction . 170
9.2.2 Symbolic Characterization . 172

9.3 Symbolic Methods for Probabilistic Programs 173
9.3.1 Using Deduction to Check Uniformity 173
9.3.2 Deduction Constraints and Unification for Program Equivalence . . . 174
9.3.3 Static Equivalence and Non Equivalence 177

9.4 Extending Symbolic Results . 178
9.4.1 Deciding Deducibility for Diffie-Hellman Theories 179
9.4.2 Fields and Commutative Rings . 179
9.4.3 From One-Step Deduction Constraints to Originated and Monotone

Constraints. 182
9.5 Deriving Heuristics . 183

9.5.1 Soundness and Completeness . 183
9.5.2 Boolean Algebras: the Linear Case 184
9.5.3 Boolean Algebras: the General Case 184
9.5.4 Extension to More Complex Algebras 185
9.5.5 Interference Witnesses . 186
9.5.6 Sampling from Multiple Distributions 186

9.6 Applications . 186
9.6.1 Implementation of a Library . 186
9.6.2 Integration in MaskVerif . 187
9.6.3 Integration in EasyCrypt . 188

IV A New Hope 191

10 An Interactive Prover for Indistinguishability Proofs 193
10.1 Introduction . 193

10.1.1 Our Contributions . 194
10.1.2 Related Work . 194

10.2 Overview . 196
10.3 A Meta-Logic for Reachability and Equivalence 197

10.3.1 The Meta-Logic . 197
10.3.2 Reachability Rules . 202
10.3.3 Indistinguishability Rules . 204

10.4 Implementation and Case-Studies . 205
10.4.1 The Tool . 205
10.4.2 Case-Studies . 206

viii

Contents

Conclusion and Future Work 209

Bibliography 213

A Appendix of Part I 229
A.1 Global Results for MFA . 230

B Appendix of Part II 235
B.1 Formal Corollary for Key Exchange . 236
B.2 Formal Corollary for Key Confirmations . 237
B.3 Proofs of Chapter 5 . 239

B.3.1 Oracle Simulation . 239
B.3.2 Autocomposition Results . 241

C Appendix of Part III 257
C.1 Proof of Chapter 7 . 258
C.2 Proofs of Chapter 8 . 261
C.3 Proofs of Section 9.4.1 . 270

C.3.1 Saturation into the Target Group . 270
C.3.2 Reduction to Polynomials . 270

ix

Publications

Some ideas have appeared previously in the following publications. Remark that our
participation w.r.t. [BFG+18] is focused in the Section 4 of this paper.

[BFG+18] Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie Ja-
comme, and Elaine Shi. Symbolic proofs for lattice-based cryptography.
In Michael Backes and XiaoFeng Wang, editors, Proceedings of the 25th
ACM Conference on Computer and Communications Security (CCS’18),
pages 538–555, Toronto, Canada. ACM Press, October 2018. url: https:
//dl.acm.org/citation.cfm?doid=3243734.3243825.

[BGJ+19] Gilles Barthe, Benjamin Grégoire, Charlie Jacomme, Steve Kremer, and
Pierre-Yves Strub. Symbolic methods in computational cryptography
proofs. In Stéphanie Delaune and Limin Jia, editors, Proceedings of the 31st
IEEE Computer Security Foundations Symposium (CSF’19), pages 136–
151, Hoboken, NJ, USA. IEEE Computer Society Press, July 2019. doi:
10.1109/CSF.2019.00017. url: https://hal.inria.fr/hal-02117794.

[BJK20] Gilles Barthe, Charlie Jacomme, and Steve Kremer. Universal equiva-
lence and majority on probabilistic programs over finite fields. In Naoki
Kobayashi, editor, Proceedings of the 35th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS’20), Saarbrücken. ACM, July 2020.
To appear.

[CJS20] Hubert Comon, Charlie Jacomme, and Guillaume Scerri. Oracle simula-
tion: a technique for protocol composition with long term shared secrets.
In Jonathan Katz and Giovanni Vigna, editors, Proceedings of the 27st
ACM Conference on Computer and Communications Security (CCS’20),
Orlando, USA. ACM Press, November 2020. To appear.

[JK18] Charlie Jacomme and Steve Kremer. An extensive formal analysis of multi-
factor authentication protocols. In Steve Chong and Stéphanie Delaune,
editors, Proceedings of the 31st IEEE Computer Security Foundations Sym-
posium (CSF’18), pages 1–15, Oxford, UK. IEEE Computer Society Press,
July 2018. doi: 10.1109/CSF.2018.00008. url: https://ieeexplore.
ieee.org/document/8429292/.

We also rely on the following work under submission:

[BDK+20] David Baelde, Stéphanie Delaune, Adrien Koutsos, Charlie Jacomme, and
Moreau Solène. An interactive prover for protocol verification in the compu-
tational model, 2020. url: https://github.com/squirrel-submission-
sp21/squirrel-prover. Under submission.

xi

https://dl.acm.org/citation.cfm?doid=3243734.3243825
https://dl.acm.org/citation.cfm?doid=3243734.3243825
https://doi.org/10.1109/CSF.2019.00017
https://hal.inria.fr/hal-02117794
https://doi.org/10.1109/CSF.2018.00008
https://ieeexplore.ieee.org/document/8429292/
https://ieeexplore.ieee.org/document/8429292/
https://github.com/squirrel-submission-sp21/squirrel-prover
https://github.com/squirrel-submission-sp21/squirrel-prover

1 Introduction
If you can’t give me poetry, can’t
you give me poetical science?

(Ada Lovelace)

Communication technologies have brought a huge shift in our society, and now play a central
part in our everyday lives. We now rely on internet and instant communications to manage
our bank accounts, our daily communications, our health data, . . . Those technologies come with
many advantages, but they come at a price. Each technological device that we connect to, if it
is ill-designed, may yet become another mean of control, surveillance and discrimination. Major
companies have built their empire over their user’s data, selling it to the highest bidder and using
it to adapt our news feed, to tailor the advertisement we receive and to discriminate over our
ability to obtain a job, a loan for a house, a health insurance, or a credit card. Depicted in
Orwell ’s “1984” or Damasio’s “Les Furtifs” (among many others), theorized by Foucault [Fou75]
and Deleuze [Del92], an absence of Privacy may lead to catastrophic consequences.

As such, we expect this technology to come with guarantees. Can I have the guarantee that my
privacy is not violated by using an application, on my cellphone, e.g., a COVID tracking app? Can
I be sure that no one can steal the credentials I use to login on my bank account? Can I trust
e-voting systems? Can I hope that the communications with my close ones are secure? Currently,
the answer to all those question is no. But, all those questions deserve a better answer. And even
if it is impossible to provide a perfect solution that comes with strong guarantees, we must strive
towards the best possible solution.

Unfortunately, it is difficult to provide guarantees about communication technologies: they are
systems that involve communications between multiple entities and rely on many different layers.
In such systems, flaws may come from many different places:

I the protocol itself, i.e., the exact ordering of messages and operations followed by the devices
to send and receive messages, may be ill-designed;

I the cryptographic primitives, i.e., the mathematical constructs used to encrypt messages,
may be too weak;

I the implementation, i.e., the code meant to execute the protocol, could be flawed or contain
bugs;

I the operating system, i.e., the environment running the code, might be compromised;
I the hardware, i.e., what is physically running the code; might have back-doors or bugs;
I and finally, the users themselves may simply perform the wrong actions.

Providing guarantees at all those levels is a necessity, but also an overwhelming challenge. In this
Thesis, we focus on the protocols and their design. If those are flawed, the rest of the chain is
broken.

A major question is:

I what sort of guarantees can we obtain about protocols?

We would like to claim that no attacker can ever break the protocol, assuming that the rest of the
chain is secure. But what sort of claim is trustworthy? History has shown many times over that
designing protocols is a difficult task: many protocols considered or even “proved” secure at one

1

1 Introduction

point have later on been attacked. Thus, it has become widely accepted that for a protocol to be
deemed secure, a formal proof of its security should be provided. A big question remains:

I against what kind of attacker do we perform a proof of security?

If we do not consider attackers with sufficient power, the proof may be useless. If we give too much
power to the attacker, it will always be able to break the security of the protocol.

Ideally, we thus want to obtain formal proofs of security for the strongest possible attacker. Ac-
cordingly, we claim that proofs should be:

I formal - we must have a high level of confidence in its correctness;
I extensive - the proof should try to consider attackers as strong as possible, looking at all

possible threat models and configurations of the protocol.

This kind of proof allows to derive the exact assumptions under which the protocol is secure. It
is then possible to formally verify if the implementation and the rest of the chain do satisfy those
assumptions.

However, performing such proofs is a difficult challenge that has attracted a lot of attention over
the past decades. In this Thesis, we strive to make this process easier. To this end, we focus on
the following goals.

I mechanized - proofs should be performed in a mechanized prover, thus allowing for a high
level of trust in the proof.

I modular - proofs of compound protocols (complex protocols involving multiple components)
should be obtained from proofs of their components. Otherwise, proving compound protocols
can be an overwhelming challenge w.r.t. the size of the proof. Furthermore, a small change
in a component of the protocol, which happens often during the standardisation process,
would imply to redo the full proof.

I automated - proofs should be made easier through automation, removing the most te-
dious steps for the user. Ideally, proofs in a mechanized prover should follow the high-level
intuition.

Outline We strive to ease the process of performing formal and extensive proofs by relying on a
mechanized prover that allows to perform formal and modular proofs. Keeping in mind the four
paradigms, we

I provide in Chapter 2 the formal models we will use to perform security proofs;
I show what an extensive and completely automated analysis may look like in Part I;
I develop a composition framework to enable for modular proofs in Part II;
I study the automation of some basic proof steps in Part III;
I and finally provide a mechanized prover in Part IV.

How to read This Thesis can be read at multiple levels, with some content highlighted in
dedicated environments:

I each Chapter contains at its beginning a brief Chapter Summary, along with dedicated
Related Work, Future Work and Limitations when relevant;

I each Section begins with a slightly more detailed Section Summary ;
I in each Section, the most Technical details, not necessary to the general understanding, are

isolated;
I finally, proofs that are mostly technical and do not leverage interesting concepts have been

pushed in Appendices.

Reading the proofs can always be omitted, and all cross-references can be followed by clicking
on them. We tried to write this Thesis in a gender neutral way, notably through the use of the

2

1.1 Cryptographic Primitives, Security Properties and Protocols

singular they. Sentences such as “The attacker cannot know with which protocol among two they
are interacting” will thus appear.

1.1 Cryptographic Primitives, Security Properties and
Protocols

Before providing a general state of the art of formal protocol verification, we briefly introduce the
central notions of cryptography.

Security properties Different use cases lead to many different expectations in term of security.
For illustration purposes, let us consider the case of a user that wishes to consult their bank account
online, by connecting from their computer to a website. First, only this specific user should be
able to access and operate over the bank account. The server (hosting the website) should then
make sure that it is indeed the identified user that is accessing the website. In such cases, we say
that a server must authenticate the user. Furthermore, we also expect that nobody apart from the
user should be able to learn any information about the bank account. In this case, we expect the
confidentiality of the exchanged messages between the user’s computer and the server.

Those two properties, authentication and confidentiality, are typical examples of reachability prop-
erties. Those properties specify that some bad state should never occur, for instance that the
wrong user never accesses the bank account, or that nobody can ever learn the balance of their
account.

More complex properties involves the notion of privacy. For instance, we may expect that nobody
can identify a user that logged in over the website of a specific bank, and nobody should be able to
learn in which bank a given user has an account. To this end, the exchanges between the computer
and the server should preserve the anonymity of the user. In such a case, we expect that nobody
can know if it is the given user or another one that is performing the login. A stronger version of
this property expects that it is even impossible to know whether two consecutive logins are from
the same user or from two distinct users; this property is called unlinkability.

Those properties fall into the class of indistinguishability properties. They ask that nobody can
distinguish between two given scenarios. Anonymity is generally formalized as: none can distin-
guish whether a distinguished user, or another user performs the login. Unlinkability is formalized
by saying that the scenario in which the same user logs in multiple times is indistinguishable from
the scenario where many different users log in.

To provide such security properties, we must have means to hide the content of a message to
unauthorized parties, and to certify that a given message was produced by a given party. This is
the purpose of the cryptographic primitives.

Cryptographic primitives They constitute the building blocks of cryptography. They are func-
tions that allow to hide or authenticate a message (among more complex functionalities). The
most classical cryptographic primitives are divided in four categories.

I A symmetric encryption is defined by two functions enc and dec. The encryption should
intuitively guarantee that for any message m and bitstring sk, enc(m, sk), called the cypher-
text, returns a message that does not leak any information about m, unless one knows sk.
Computing dec(enc(m, sk), sk) should return m. sk is called the secret key.1

1This primitive, and the following ones, always come with a key generation algorithm, used to derive fresh

3

1 Introduction

I An asymmetric encryption is defined by three functions enc, dec and pk. It is such that
knowing pk(sk) is enough to compute cyphertexts with enc(m, pk(sk)). They do not leak
any information about m, unless somebody knows sk, in which case they may obtain m
by computing dec(enc(m, pk(sk)), sk). pk(sk) is the public key associated to sk, which,
together, form a key pair.

I A keyed hash function is defined by a single function h, such that h(m, sk) does not leak
any information about m. A hash function is meant to provide a short certificate about
a message, and thus h(m, sk) should be concise compared to m. It is thus non invertible,
contrary to encryption.

I A signature scheme is defined by two functions sign and verify. It is used to authenticate
a message. Knowing sk should be the only way to compute sign(m, sk), called a signature.
Then, anybody knowing the corresponding public key can verify if a given input x is indeed
a valid signature, i.e., verify(x,m, pk(sk)) returns true if and only if x is equal to the value
returned by sign(m, sk).

Given those building blocks, we must specify how each party is going to use them, and exactly
what is the sequence of messages that the parties are going to exchange. This list of instructions
is called a protocol, and even with secure primitives, protocols can often be insecure.

Protocols They are a sequence of instructions, that specifies at each step exactly which op-
erations a party should perform. We may consider a very simple protocol between two parties,
where

1. a party A samples a fresh random value nr;
2. sends the message enc(〈A,nr〉, pk(skB)) to a party B;
3. B decrypts the message using its secret key skB .

If B is the only one that knows the secret key skB and if the asymmetric encryption behaves as
expected, this protocol ensures the secrecy of the random value nr. However, remark that B has
no way of knowing that the message it received does come from A, as anybody could compute a
valid cyphertext containing the public identity of A and that B could decrypt. Thus, this protocol
does not provide any authentication.

We can modify the protocol as follows:

1. a party A samples a fresh random value nr;
2. sends the pair of message 〈enc(nr, pk(skB)), sign(enc(nr, pk(skB)), skA〉 to a party B;
3. B receives the pair 〈x1, x2〉, checks that verify(x2, x1, pk(skA)) returns true, and then de-

crypts the message x1 using its secret key skB .

If skA is only known to A, and skB only known to B, this protocol ensures the authentication of
A, as B is sure once it verified the signature that the message it received was computed by A. Of
course, this holds only if the signature behaves as expected. Remark however that in this protocol
A does not have any way to be sure that B did indeed receive its message. Further, B could accept
multiple times the same message, while A only sent it once. B would need to store all the randoms
nr he received, in order to avoid this.

We show with this example that to obtain some precise security properties, the design of a pro-
tocol based on some cryptographic primitives is a complex operation. This example raises many
questions, among them,

I What does it mean for a cryptographic primitive to “behave as expected”? Indeed, how can
we specify that a symmetric encryption correctly performs its expected duty.

I How can we be sure that the protocol satisfies some given security property? Even a protocol
based on secure cryptographic primitives can be ill-designed, and be insecure. It appears

random secret keys, that may rely on some random seeds. Further, the primitives must be randomized
to be able to provide a satisfactory level of security.

4

1.2 Formal Proofs

difficult to prove that nobody can break the security property, as we cannot know in advance
all the capabilities that an attacker may have.

I What does it mean that “nobody” should be able to break the security? If we consider
confidentiality, there is always the possibility to simply guess the secret value, and thus
break the security of the protocol, even though this is very unlikely to happen. We actually
need to consider a restricted class of attackers, with reasonable computational capabilities,
but at least as strong as attackers may be in practice.

1.2 Formal Proofs

To answer the previous questions, the notion of provable security was introduced in the 80’s, where
precise definitions of security and mathematical proofs of security were formalized. Two main
paradigms have been considered to show the security of protocols.

I The first one was introduced in the seminal paper of Goldwasser and Micali [GM84]. This
is the computational model, where a construction is secure if any arbitrary computationally
bounded adversary can only break the security with a very small probability. In this model,
security proofs often rely on the assumption that some problem is computationally hard.

I The second one is the symbolic model. It considers an attacker introduced by Dolev and
Yao [DY81], that has full control over the network, has no restriction on the computation
power in term of time and memory, but can only perform a fixed set of operations over the
intercepted messages. In this model, the cryptographic primitives are often assumed to be
perfect.

Computational model Adversaries are any arbitrary probabilistic polynomial time Turing Ma-
chines and messages are sequences of bitstrings. In this model, we reason over the probabilities
that a given message is sent over the network. Many of the proofs in this model take the form
of reductionist arguments in computational complexity, similar to the one used in undecidability
or hardness proofs. The security of a construction is always proven secure under a computational
assumption, that specifies that some mathematical problem is difficult. This model thus provides
strong guarantees, as long as the security of a construction relies on a computational problem
widely considered to be difficult, e.g., that nobody can solve for several decades.

In reductionist arguments, both the security goals (e.g., indistinguishability properties) and the
computational assumptions are modelled as probabilistic experiments where a challenger interacts
with an adversary; such experiments come with a winning condition, which captures the situation
where an adversary has broken the security property. In the simple case, only one assumption
is involved. The reductionist argument is then given by a method for transforming an adversary
A against the cryptographic construction under consideration into an adversary B against the
computational assumption, and a proof that pB ≤ f(pA), where pB denotes the probability of B
winning the experiment (against the assumption), pA denotes the probability of A winning the
experiment (against the construction), and f is a function such that f(x) is “small” whenever x is
“small”. This rigorous approach is a pillar of modern cryptography, and arguably one of the keys to
its success. However, reductionist proofs are becoming increasingly complex, as a consequence of
new application scenarios (requiring more complex constructions) and theoretical advances in the
field (yielding stronger but more complex constructions). Remark that cryptographic proofs tend
to be more complex that classical complexity reductions, due to the complexity of the constructions,
the importance of probabilities and the variety of assumptions.

The game-playing technique of Shoup [Sho04] is a popular methodology for proving security of
cryptographic constructions. This technique decomposes reductionist arguments into elementary
steps that can be justified individually with relative ease. In the simple case above, involving

5

1 Introduction

a single computational assumption, the technique involves defining a sequence of probabilistic
experiments (which are called games in this setting), such that the first experiment captures the
security of the construction, and the last experiment captures the security assumption. In addition,
the technique requires proving for all steps that pAi+1

≤ fi(pAi), where Ai is an adversary and pAi
is his winning probability in the i-th experiment. One then concludes by applying transitivity of
inequality. The game-playing technique is helpful to tame the complexity of reductionist arguments.
However, it remains difficult to build and verify game-playing proofs of complex constructions.

The code-based game-playing technique by Bellare and Rogoway [BR06] is a common variant
of the game-playing technique where experiments are modelled as probabilistic programs. This
approach has been instrumental in the mechanization of reductionist arguments using tools based
on program verification [Hal05; Bla06; BGZ09; BGH+11]. These tools have been used for verifying
many representative examples of cryptographic constructions. However, they remain difficult to
use by cryptographers, because automation is limited and expertise in program verification is
required.

Symbolic model Messages are syntactic constructs built over functions symbols, constants and
variables, i.e., terms built over a signature. They are equipped with an equational theory, that
captures all the possible equality between the terms. Compared to the computational model,
enc(nr, pk(skB)) would not be used to represent a bitstring; it only has a syntactic meaning.
However, the equational theory specifies that dec(enc(nr, pk(skB)), skB) is equal to nr. Random
samplings are denoted by dedicated constants, e.g., nr, called names. Attackers can perform any
operation over the network, but are only given a fixed set of capabilities to manipulate messages,
accordingly to the equationnal theory. It implies that, with the previous rule for decryption, the
asymmetric encryption is perfect. Notably, if an attacker has enc(nr, pk(skB)), skB), they may
obtain nr by also having skB and computing enc(nr, pk(skB)), skB). Conversely, this implies that
if skB is not known to the attacker, nr is secret. Remark that by adding equations to the theory,
the attacker capabilities could be increased.

Proofs in this model are often performed by saturation of the attacker knowledge. As the attacker
has a fixed set of capabilities, one can try to explore all its possible sequences of actions. If
no attack is found, the protocol is secure. This process can however be very difficult, and even
undecidable, notably in the case of protocols with an unbounded number of sessions. In essence,
the more complex is the application scenario and the stronger is the attacker, the more difficult is
the proof process.

The applied pi-calculus, introduced by Abadi and Fournet [AF01]2, is based on the Dolev-Yao
attacker and models protocols using a basic programming language for distributed communicating
systems: the applied pi calculus extends the pi-calculus [Mil99] by allowing to exchange terms
rather than just names. It is one of the most widely used techniques to reason about protocols
in the symbolic model. Another popular representation includes Multi-Set Rewriting rules, where
protocols are modelled using atomic reduction rules, used to specify how the protocol may at each
step evolve and possibly change the attacker knowledge.

Thanks to this formalization, proofs can be automated by leveraging term rewriting techniques
such as unification. Several tools [Bla16; SMC+12; CKR18a] have demonstrated their usefulness
and have been used on complex application scenarios.

Comparison A traditional way of comparing the two models is to say that the computational
model specifies negatively the adversary while the symbolic model specifies it positively. In the first
one, we only say what the attacker cannot do, while in the second one we specify each capability of

2See [ABF17] for an up to date presentation of the model.

6

1.2 Formal Proofs

the attacker. Consequently, if we forget in the symbolic model to give attackers a specific capability
that they may have in the real world, we may miss attacks. We thus say that the symbolic model
is not sound w.r.t. the computational one: a proof may exist in the first one, while an attacks may
exist in the second. The symbolic model is however complete w.r.t. the computational model, as
an attack in the symbolic model is also an attack in the computational model.

However, this distinction between the symbolic and the computational model has been blurred in
recent years. Notably, some attackers capabilities have been defined negatively even in the symbolic
model, see e.g., [BRS16; JCC+19]. The capabilities that are defined negatively are however based
on the logical execution of the protocol, and not on the implementation of the messages.

In this Thesis, we follow the idea that we can split the possible attacks and protocol flaws into two
distinct categories.

I We may consider high-level flaws: these are logical flaws that exploit ways to combine
capabilities provided by the protocol to produce an attack. They often rely on specific
ordering of actions, and we can reason over them in an abstract way. The security of a
protocol against such flaws may rely on an axiom specifying, for instance in the case of a
signature, that whenever a message appears to be an honest signature with a secret key, the
message must have been signed previously in the protocol. This axiom can be expressed both
in the computational and the symbolic model, and corresponds to a high level capability of
the attacker. It is however difficult to discover all possible logical flaws. Indeed, we may
need to assume that the attacker can gain control over some part of the equipment of a user,
or that an option of the protocol might be enabled and break the security.

I We may consider low-level flaws, that exploit flaws in the implementation of some primitives,
the actual length of the messages, or some probabilistic arguments. For instance, a protocol
might not be secure if the implementation of the pair construct (used to build tuples) can be
confused with a name (used to model a single random sampling) (see [Sce15] for a concrete
example of this flaw). Or a protocol might not be secure if, depending on some conditional,
it encrypts two messages of distinct length. To avoid as much as possible those flaws, it
is necessary to only define negatively the capabilities of the attacker, based on realistic
assumptions. Only then do we have that all the assumptions about the implementation are
explicit, and it may become possible to verify the implementation.

Those two levels of attacks involve distinct reasoning techniques, that may respectively be seen as
high-level reasoning, that involves logical reasoning about the protocol, and low-level reasoning,
that involves a detailed and sometimes probabilistic reasoning about some specific messages. The
symbolic model, with its high-level of automation, is ideal to show that a protocol does not have any
high-level flaw. Remark though that studying this for attackers as strong as possible (w.r.t. high-
level flaws) is still a challenge, due to the complexity of the scenarios involved. Furthermore, proofs
in the symbolic model are limited, as it is impossible to guarantee that all low-level flaws have
been taken into account. The computational model allows to find both high and low-level flaws. It
is however more difficult to reason in it about the high-level flaws, as the logical reasoning is more
cumbersome due to the high level of details. Furthermore, it lacks the automation of the symbolic
model, and some low-level proof steps are tedious to perform by hand.

Initiated by Abadi Rogaway [AR00] and pursued by many, (see e.g., [CKW10] for a survey of
the field), the computational soundness approach tries to derive assumptions under which results
obtained in the symbolic models can be transposed to the computational model. It allowed to
obtain great insights into both models. However, computational soundness requires both much
stronger assumptions on the primitives, as every symbolic proof should yield a computational proof
under those assumptions, and a richer symbolic model, which makes the proofs more difficult.

The BC logic A new approach has been introduced in the recent years by Bana and
Comon [BC12; BC14a]. It tries to get the best of both worlds, performing proofs of security

7

1 Introduction

in a first-order logic designed so that the proofs are computationally sound. As it allows to work
in a first-order logic, we can reason about high-level flaws in a symbolic way, close to the intuition.
Furthermore, it allows to abstract away the details that are not required to prove the security, thus
simplifying the reasoning. Finally, as it is computationally sound by construction, it ensures that
we derive all the assumptions required to prevent any flaw, both high and low level.

This model has been successfully used to perform several case-studies of real life protocols [SR16;
CK17; BCE18; Kou19c], and bears great promises. Two Thesis have studied decision procedures
for this model, where Scerri [Sce15] studied the case of reachability properties and developed
a mechanized prover for this case, and Koutsos [Kou19b] provided a decision procedure for the
indistinguishability logic, when restricted to a specific set of axioms. However, due to its relative
youth, it suffers the comparison with the symbolic and computational models on several points.

I It does not have any composition result that enables modular proofs, while many composition
frameworks exist for the other two models.

I It only allows for proofs of protocols with a bounded number of sessions. This means that we
can prove that for any fixed number of sessions, no attacker can break the security. However,
if the attacker is first allowed to choose the number of sessions, which we call an unbounded
number of sessions, they might be able to break the security. This can be an important
point, when real life protocols are used millions of time everyday.

I It does not have any mechanized prover for indistinguishability properties.

Remark that the BC logic is sometimes called the Computationally Complete Symbolic Attacker
(CCSA) model in the literature. We denote it by the BC logic, from its author names, both for
concision and because in the way we use it, it is neither a complete nor a symbolic attacker, but
rather a symbolic proof technique valid against computational attackers.

1.3 Our Contributions

Let us now outline how our contributions fit in this general state of the art3, by detailing each
of the four Parts of our Thesis. In all four Parts, we attempt to make the process of proving
security protocols easier by leveraging symbolic methods, to enable formal and mechanized proofs
of protocols against attackers as powerful as possible.

Part I - Extensive We consider an application scenario that involves a complex combination of
parties and equipment (computer, phone, server, USB token), called Multi-Factor Authentication
(MFA). Due to the number of parties, there are many possible threat scenarios and an extensive
analysis implies to look at several thousands of threat models. However, this class of protocols
does not tend to rely heavily on cryptographic primitives, and most flaws appear to be high-level
flaws. MFA is thus a typical application where the symbolic model is perfectly suited to perform
a security analysis: it allows to detect most potential flaws and is highly automated.

In this first Part, we provide a symbolic threat model suited for the study of MFA protocols against
attackers as powerful as possible, by giving the attacker extensive compromising capabilities. This
contribution shows how, even in the symbolic model, we may still consider a wide range of powerful
attackers. We use the Proverif [BCA+10] tool, an automated prover in the symbolic model, to
study the security of multiple protocols (variants of Google 2-step and FIDO’s U2F) against such
attackers.

This extensive analysis has a direct practical interest, as it is a novel study of real life protocols
that are widely used. It is however also interesting to note that this study highlights the strengths

3In each Chapter we provide a more detailed and dedicated Related Work Section.

8

1.3 Our Contributions

and limitations of the symbolic model. Thanks to its automation, we were able to analyse over
6000 distinct scenarios. Such a study is completely out of reach of the computational model or
the BC logic. However, the analysis is limited by the precision of the symbolic model. This is
why we strive in the remainder of this Thesis to simplify how computational guarantees can be
obtained.

Part II - Modular In this part, we provide a composition framework suitable both for the
computational and the BC logic. It allows to decompose proofs of protocols into smaller proofs,
either for sequential and parallel composition, with or without shared state and long term shared
secrets. It notably allows to reduce the security of an unbounded number of sessions to the security
of a single one.

While we did not dwell on this point in our state of the art (it is developed in a dedicated related
work), this is an interesting contribution for the computational model, as it was still difficult to
handle composition for protocols that share long-term secrets.

The main contribution of this part is however the fact that we can use the framework in the BC
logic, as it removes two of its main drawbacks:

I the BC logic is now equipped with a composition framework, so that it is easier to use it to
study compound protocols;

I the BC logic is not anymore restricted to the study of a bounded number of sessions, but can
be used through the composition framework to derive the security of an unbounded number
of sessions.

To hint at its applicability, we use our framework to show how one may reduce the security of
a signed Diffie-Hellman key exchange (ISO 9798-3 [Iso]) and of the SSH [YL] protocol to smaller
single session proofs.

Part III - Automation Automation in the computational model is a challenge. Notably, for
protocols that rely heavily on group or bitstring operations, it is necessary to reason about the
probability distributions of the messages to prove the security of the protocol. This low-level
reasoning can be tedious, and may be necessary in both the computational and the BC logic.

In this part, we study relational properties over probabilistic programs. The properties can be used
as low-level proof steps either in the computational model or the BC logic. For several properties,
we provide a complexity analysis and/or obtain their decidability. As we show that many of the
problems are essentially non tractable, we derive efficient heuristics, based on widely used symbolic
methods. Surprisingly, we leverage the completeness of the symbolic methods to prove equality of
distributions and thus obtain computational guarantees.

Those heuristics have been implemented as a library that was integrated in two mecha-
nized cryptographic provers in the computational model, EasyCrypt [BGH+11; BDG+13] and
MaskVerif [BBD+15], improving their automation. It has not been integrated in the BC logic,
but may become of interest if the model is used to study the security of advanced cryptographic
primitives or pairing-based protocols.

Part IV - A mechanized prover In this final part, we provide a mechanized prover for the
BC logic, called the Squirrel prover. We do not delve too much into the theoretical details, but
rather provide a high level overview of the tool. On top of the BC logic, we build a meta-logic that
allows to reason on multiple execution traces of the protocol in an abstract way. The tool allows
to reason symbolically on the protocols, with proofs close to the intuition, and abstract away the
most cumbersome details of the low-level implementation, while providing clear assumptions about

9

1 Introduction

it. A strength of the tool is that it supports both reachability and indistinguishability properties,
and reachability properties can be used to simplify indistinguishability proofs.

We use the Squirrel prover to verify the security of protocols involving multiple cryptographic
primitives (encryption, hash, signature, xor, Diffie-Hellman exponentiation), and this for multiple
security properties (unlinkability, anonymity, strong secrecy). We also use Squirrel to perform
the proofs obtained by applying our composition framework to the SSH protocol in Part II.

In a nutshell In Part I, we provide a practical study, pushing the symbolic model to its limits
by considering attackers as powerful as possible. We then focus in the the rest of the Thesis on
simplifying the process of deriving computational guarantees about a protocol.

In this respect, our main contribution is the development in Part II of a composition framework
simplifying proofs in the computational and the BC logic, notably allowing for security proofs of
an unbounded number of sessions in the BC logic. We build on this contribution in Part IV, by
providing a mechanized prover for the BC logic that allows to obtain for the first time a mechanized
proof for an unbounded number of sessions of a protocol through the BC logic.

Our final contribution, in Part III, is a mostly theoretical study of the automation of low-level proof
steps, that could be leveraged in game based or BC proofs. We hint at its usability in the compu-
tational model through an implementation integrated in the tools EasyCrypt and MaskVerif,
but further work is required to use it meaningfully in the context of the tool of Part IV.

External Repositories

I The models and scripts used to generate systematically all threat models for the MFA case-
study can be found at [Mfa].

I The Solveq library, performing some Gröbner basis computations and verifying probabilistic
properties, can be found at [Seq].

I The Squirrel Prover can be found at [Squ], with the sources and the case-studies.

Dependencies and concepts Not all Chapters heavily depend on one another, and they some-
times use very distinct ideas and concepts. The most important dependencies for each Chapter
are given bellow, so that readers may peruse this work more easily.

I Part I only relies on the symbolic model introduced in Chapter 2. It is a formal analysis of
real life multi-factor authentication protocols, and contains a very practical part.

• Chapter 3 introduces Multi-Factor Authentication protocols, and defines a modular
threat model in the symbolic model of Chapter 2.

• Chapter 4 performs an extensive, completely automated case study by leveraging the
modular threat model of Chapter 3.

I Part II involves an understanding of the computational model and its proof techniques.
• Chapter 5 builds on the computational model introduced in Chapter 2. It depends on

probabilistic arguments, and reasons about indistinguishability through cryptographic
reductions.

• Chapter 6 is in the framework of Chapter 5 cast into the BC logic presented in Chap-
ter 2.

I Part III studies probabilistic programs, independently from the protocol models. It relies
heavily on probability reasoning and algebraic tools.

• Chapter 7 introduces the setting of probabilistic programs and the multiple problems
that we consider.

10

1.3 Our Contributions

• Chapter 8 studies the complexity and decidability of the problems introduced in Chap-
ter 7. It involves complexity classes from the counting hierarchy, and leverages mathe-
matical background about the Local Zeta function and Linear Recurrence Sequences.

• Chapter 9 tries to derive efficient heuristics for the problems of Chapter 7. It relies
heavily on some classical symbolic proof techniques, and leverages Gröbner Basis and
the notion of primal algebra.

I Part IV gives an overview of a novel mechanized prover that relies on the BC logic of
Chapter 2. For concision, it does not delve into the theory of the tool, but tries to carry the
main intuition. It lightly depends on Chapter 6 to perform some case-study in a modular
way.

Independent Results Going away from the global picture, this Thesis contains some results
that may be of interest outside its context and sometimes outside of the context of cryptography,
with:

I a comparison between Google 2-step and U2F as multi-factor authentication protocols (Sec-
tion 4.5);

I an extension of the BC logic to attackers with access to oracles, allowing for simpler expres-
sions of some axioms (Section 6.2);

I the decidability of universal equivalence of probabilistic programs over finite fields (Sec-
tion 8.3);

I the decidability of deducibility over field, rings and Diffie-Hellman exponentiation (Sec-
tion 9.4.1);

I a technique to decide if a function is a bijection trough deducibility (Section 9.3).

11

2 Formal Models for Protocols
Reife des Mannes: das heißt den
Ernst wiedergefunden haben, den
man als Kind hatte, beim Spiel

(Friedrich Nietzsche - Zitate)

Multiple models with distinct syntax and meanings have been used to express protocols and security
properties. In this Thesis, we work in

I the symbolic model, more precisely the applied pi-calculus, based on the Dolev-Yao attacker;
I the computational model, that is game based and consider an arbitrary Probabilistic Poly-

nomial Time attacker;
I the BC logic, based on labelled transition systems and a first-order logic.

For the sake of coherence, we choose to present here a unified syntax to express protocols and
messages, and an abstract execution model parameterized by the definition of an attacker and by
the message interpretation. Instantiating those parameters yields either symbolic or computational
semantics. The BC logic is then introduced, showing how it allows to derive proofs of security
valid in the computational semantics, while working with a first-order logic.

We remark that in multiple aspects, our syntax and semantics diverge from the classical ones of
the computational and symbolic models. Some of the differences are due to the unified point of
view, and others are design choices required by later results.

 Chapter Summary

We provide a syntax for protocols, along with an execution model parameterized by an at-
tacker definition. It is instantiated with different attackers, providing a single syntax, and both
symbolic and computational semantics. We finally present the BC logic, which is sound with
respect to our computational semantics.

2.1 Generic Syntax and Semantics for Protocols

To provide unified semantics between the multiple models, we draw the syntax and semantics of
terms from the BC logic.1. We use symbols from an alphabet of names, to represent the random
samplings. The same symbol used twice represents the same (shared) randomness. Those names
can be seen as pointers to a specific randomness, where all the randomness has been sampled
upfront at the beginning of the protocol. This idea stems from the BC logic [BC14a], from which
we re-use exactly the same term semantics.

1This is also required to enable composition with long term shared secrets, where we must be able to
specify precisely the shared randomness between protocols

13

2 Formal Models for Protocols

Terms

t ::= n name
| n~i indexed name
| x variable
| f(t1, . . . , tn) function of arity n

Figure 2.1: Terms

2.1.1 Syntax

Figure 2.1 presents the syntax of terms, used to model messages. Messages can be obtained
by applying functions to randomly sampled values or variables (constants can be modelled with
function symbols of arity 0).

Random samplings are modelled by names, and variables model possible inputs of the protocol.
We denote by N the set of names, X the set of variables and Σ the set of function symbols.
T (Σ,X ,N) then denotes the set of terms.

ü Technical Details

We allow for a single kind of sampling, but some protocols may require to sample booleans,
finite field elements, bitstrings, . . .While it is possible to type names and function symbols, this
would increase the complexity of the presentation. However, we do not lose generality, as even
with untyped terms, explicit constructors can be used to model types.

A key addition to the BC logic is that some names can be indexed by sequences of integers or
index variables in a set I. This is necessary so that we may later on consider the replication of
protocols. When a replicated protocol depends on a name ni for some variable i, the first copy
(session) of the protocol uses n1, the second n2, Intuitively, names without index models
randomness shared by all sessions of the protocol. Variables are used to model the attacker inputs,
and function symbols allows to model the cryptographic computations. Names in N are only
names with index, or indexed with only integers and no index variable. They represent the names
that can be interpreted, while the other names must have their index variables bounds before they
can be given an interpretation.

ü Technical Details

Formally, each symbol name in N come with an arity, for any name of arity k, n~i for a sequence
~i of l integers and l − k variables is a name of arity l − k in N . In particular, ni1,...,ik with
i1, . . . , ik ∈ Nk is a name of arity 0 in N . Only names with arity 0 can be interpreted as
bitstrings. When the arity is greater than one, the names depends on some variables that needs
to be instantiated before one can provide its interpretation.

Elementary protocols The syntax for elementary protocols, which models a thread running
on a computer, is depicted in Figure 2.2. For communications, channels are taken out of a set of
constants C that are known to the attacker. in(c, x) denotes an input, binding the variable x to the
received value, and out(c, t) denotes the output of the term t over the channel c. As channels are
constants known by the attacker, all communications are public. An extension with secret channels

14

2.1 Generic Syntax and Semantics for Protocols

Elementary Protocols

Pel ::= in(c, x).Pel input
| out(c, t).Pel output
| let x = t in Pel variable binding
| if t1 = t2 then Pel else Pel conditionals
| 0
| ⊥

Figure 2.2: Elementary Protocol

Protocols

P ::= Pel
| Pel;P sequential composition
| P‖P ′ parallel composition
| ‖i≤NP parallel replication
| ‖iP unbounded replication
| P

?i≤N
el sequential replication

| P ?iel unbounded sequential replication

Figure 2.3: Protocol Algebra

is made in Section 3.4 for the symbolic case. The let construct allows for variable bindings in a
process, and if then else enables conditional branchings. 0 is a successfully terminated thread
and ⊥ is an aborted thread.

Example 2.1. We use the function symbol enc to model a probabilistic symmetric encryption.
Consider the elementary protocol

P := in(c, x).out(c, enc(x, r, sk)).in(c, y).out(c, enc(y, r′, sk)).0

This elementary protocol just encrypts twice an input with a secret key sk.

Protocols The Protocol Calculus is presented in Figure 2.3. P ;Qmodels sequential composition,
and P‖Q the parallel one. In a sequential composition, 0;P reduces to P , while ⊥;P reduces to
⊥. In most cases, to increase readability we will omit 0. Looking ahead, we make the distinction
between elementary protocols and protocols so that our algebra can be seen as a composition
algebra, geared toward the design of a composition framework in the computational model. Remark
that this distinction is not made in the classical applied pi-calculus, and that the composition
operator is not usually provided.

Example 2.2. We use dec to denote the decryption function associated to enc, and let Q :=
in(c, x).out(c, dec(x, sk)). Q provides a one time decryption oracle to the attacker. P ;Q models
the protocol where P must be executed before Q, and P‖Q the protocol where they can be
executed in any order. In both cases, Q could be used to decrypt one of the messages encrypted
by P . However, in Q;P , Q must be executed before P and cannot be used to decrypt a message
produced by P .

If a protocol P depends on some name indexed by i, given an explicit integer k, P{i 7→ k} denotes
P in which all names ni are replaced by nk. Then, ‖i≤NP with an explicit integer N corresponds
to N parallel copies of P , with the index i instantiated with 1, . . . , N . ‖i denotes a replication

15

2 Formal Models for Protocols

where the attacker can choose the number of copies, i.e instantiating N himself. ?i and ?i≤N are
similar, but of sequential replication. N (P) is further split into the local names Nl(P), the set
of names indexed by variables, and the global names Ng(P), the names without index, which are
shared between all copies of the protocol. In a protocol, all names appearing with index variables
must be such that the index variable is under the scope of a binder (‖i, ‖i≤N , ?i , ?i≤N).

We allow terms in a protocol to depend on some free variables and, in this case, we denote by
P (x1, . . . , xn) a protocol that depends on the free variables x1, . . . , xn. P (t1, . . . , tn) denotes the
protocol obtained when instantiating each xi by the term ti. We denote by C(P) the set of channels
appearing in a protocol, and N (P) the set of (indexed) names.

ü Technical Details

Compared to the classical applied pi-calculus, we do not have a new construct used to bind
fresh names. In our case, names are explicit pointers to a value, which may be shared between
protocols: if P and Q are two protocols using the same name n, in P‖Q, both protocols will
use the same name n. This behaviour is distinct from the behaviour of (new n.P)‖(new n.Q),
where P and Q both use a distinct name. We are able to replace the binding of fresh names
through the use of indexed names, which allows to replicate protocols an unbounded number
of time. This modelling of names is similar to the BC logic. It is a key point that allows us to
cast our composition framework in the BC logic.

Notice also that sequential composition can only contain elementary protocols on the left side.
Allowing protocols of the form ((P1‖P2);Q) would model a behaviour similar to the phases of
Proverif, that are difficult to handle in a composition framework.

Example 2.3. Given a randomized encryption function enc, we let P (x1, x2) be the protocol
in(c, x).out(c, enc(x, x1, x2)). Given names sk, r representing respectively a secret key and a ran-
dom seed, E := ‖iP (ri, sk) is then the protocol providing an encryption oracle for the key sk.

An encryption oracle for five distinct secret keys is expressed with ‖i‖j≤5P (rj,i, skj).

2.1.2 Parameterized Semantics

 Section Summary

The semantics are close to one of the classical semantics of the applied pi-calculus, but param-
eterized by:

I a domain D for messages interpretation, equipped with an equality =D;
I an interpretation of terms [[t]]σ : T (Σ,X ,N) 7→ D, with σ : X 7→ D, where T (Σ,X ,N) is

the set of terms and σ is a substitution containing the binding of variables of a protocol;
I an attacker A, from D∗ 7→ (C ×D)∪ (I ×N), where given a sequence of messages in D∗

(D∗ is the Kleene star, denoting all sequences of elements in the given set), the attacker
must either provide an input to the protocol on a channel in C with a message in D, or
choose the number of replications of an index in I. No assumptions are made about the
attacker, except that it receives and provides values of the correct type. It is instantiated
later on by attackers with limited computational power.

Let D be a domain for message interpretation (which must be equipped with an equality relation
=D). A (global) state of a protocol consists in a frame ϕ, which is a sequence of messages in
D modelling the current attacker knowledge, and a finite multiset of pairs (P, σ), where P is a
protocol and σ is a local binding of variables.

16

2.1 Generic Syntax and Semantics for Protocols

Intuitively, the frame contains the sequence of messages output by the protocol. Each of the
components of the multi-set is the current state of a running thread. We write such global states
ϕ, (P1, σ1)‖ · · · ‖(Pn, σn), where we assume commutativity and associativity of the operator ‖.

The transition relation between global states is parameterized by an interpretation of terms and
an attacker. For any t ∈ T (Σ,X ,N), we denote by [[t]]σ ∈ D an interpretation of t, if all the
variables in t are bound by σ. We denote by A a function D∗ 7→ (C ×D) ∪ (I ×N), modelling an
attacker. The attacker chooses which of the threads is going to move and computes, given ϕ, the
input to that thread. These inputs are specified either as a channel along with an input message
(C ×D), or with an index and an integer (I ×N) when he must choose the number of replications
of a protocol. Given a value in C × D or I × N, we denote by π1 and π2 the first and second
projection.

We give the rules describing the Structural Operational Semantics of the elementary protocols
in Figure 2.4. The semantics of elementary protocols assumes that, after an attacker input, the
protocol progresses as far as possible until it terminates or has to wait for another input. Formally,
we define a relation −→ that does not depend on the attacker. Out adds to the current frame
(which intuitively models the attacker knowledge) the interpretation of the output made by the
protocol, given the current assignment of variables. Let stores in the local assignment of the
variables the interpretation of the new binding. If and Else reduces the protocol according to the
intuitive execution of a conditional branching.

The first four rules of Figure 2.4 defines a reduction relation −→ , that trivially terminates and

has a normal form. We write !−→ for the reduction of a global state to its normal form w.r.t.
−→ . It corresponds to reducing as much as possible the global state without any action of the
attacker. We can then define the transition relation −→

A
between configurations, which depends

on the attacker A. We will write ∗−→
A

for its reflexive transitive closure. −→
A

can reduce protocols

if !−→ can, accordingly to Red. To perform an input with In, the attacker must produce a value
(c,m) in C ×D, such that c corresponds to the channel of some enabled input. m is then bound
to the given variable.

Figure 2.5 presents the rules corresponding to the sequential composition, whose composition
semantics are straightforward: in P ;Q, P has to be executed first. Seq models the fact that P
can be executed in P ;Q, and SeqFail and SeqSucc capture the fact that Q is executed only if
P succeeded and reduced to 0. In case of success, Q inherits the bindings of P . For unbounded
sequential replication, SeqRep simply unfold the given number of copies, and the attacker can
choose with SeqStar the number of times the protocol will be replicated by providing the index in
I to be instantiated with the given integer. Here, we add to the frame some constant cst, denoting
any fixed constant of D known to the attacker, so that the attacker knows that this action was
performed.

Finally, Figure 2.6 presents the rule for parallel composition. ParNull and ParFail allow to
remove terminated processes from the configuration. ParC pushes a parallel process in the config-
uration. ParRep and ParStar behave similarly to the operators for the sequential replication.

ü Technical Details

The semantics can be non deterministic because of parallel composition, for instance if two
parallel processes expect an input on the same channel. Symbolic semantics will be non deter-
ministic, but to provide computational semantics, we will have to consider a restricted class of
processes for which the semantics are deterministic (Definition 2.8).

17

2 Formal Models for Protocols

Elementary protocols

Out
ϕ, (out(c, s).P, σ) −→ ϕ] {[[s]]σ}, (P, σ)

Let
ϕ, (let x = t in P, σ) −→ ϕ, (P, σ] {x 7→ [[t]]σ})

If
ϕ, (if s = t then P elseQ, σ) −→ ϕ, (P, σ)

if [[s]]σ =D [[t]]σ

Else
ϕ, (if s = t then P elseQ, σ) −→ ϕ, (Q, σ)

if [[s]]σ 6=D [[t]]σ

In
ϕ, (P, σ] {x 7→ π2(A(ϕ))}) !−→ ϕ′, (P ′, σ′)

ϕ, (in (c, x).P, σ) −→
A

ϕ′, (P ′, σ′)
if π1(A(ϕ)) = c Red

ϕ, (P, σ)
!−→ ϕ′, (P ′, σ′)

ϕ, (P, σ) −→
A

ϕ′, (P ′, σ′)

Figure 2.4: Operational Semantics of Elementary Protocols

Sequential Composition

Seq
ϕ, (P, σ) −→ ϕ′, (P ′, σ′)

ϕ, (P ;Q, σ) −→ ϕ′, (P ′;Q, σ′)
SeqSucc

ϕ, (0;Q, σ) −→ ϕ, (Q, σ)

SeqFail
ϕ, (⊥;Q, σ) −→ ϕ, (⊥, σ)

SeqRep
ϕ, (P ?i≤N , σ) −→ ϕ, (P{i 7→ 1}; . . . ;P{i 7→ N}, σ)

SeqStar
ϕ, (P ?i , σ) −→

A
ϕ] cst, (P ?i≤π2(A(ϕ)) , σ)

if π1(A(ϕ)) = i

Figure 2.5: Operational Semantics of Sequential Composition

18

2.1 Generic Syntax and Semantics for Protocols

Parallel Composition

ParNull
ϕ, (0, σ)‖E −→ ϕ,E

ParFail
ϕ, (⊥, σ)‖E −→ ϕ,E

ParC
ϕ, (P, σ) −→ ϕ′, E′

ϕ, (P, σ)‖E −→ ϕ′, E′‖E
Par

ϕ, (P‖Q, σ) −→
A

ϕ, (P, σ)‖(Q, σ)

ParRep
ϕ, (‖i≤NP, σ) −→ ϕ, (P{i 7→ 1}‖ · · · ‖P{i 7→ N}, σ)

ParStar
ϕ, (‖iP, σ) −→

A
ϕ] cst, (‖i≤π2(A(ϕ))P, σ)

if π1(A(ϕ)) = i

Figure 2.6: Operational Semantics of Parallel Composition

2.1.3 Reachability Properties

Reachability properties characterize properties that are true on every possible executions of the
protocol. For instance, we can specify that some value will always be secret, or that some event
is always preceded by another one. To formalize the notion of events, we extend the syntax with
the construction event e(t1, . . . , tk), where t1, . . . , tk is a sequence of terms and e a fresh symbol,
with the associated reduction rule ϕ, (event e(t1, . . . , tk).P, σ) −→ ϕ, (P, σ).

Definition 2.1. Given a reduction sequence A1 −→
A

. . . −→
A

Al, with s1, . . . , sk ∈ T (Σ,X ,N)

we say that the event e(s1, . . . , sk) occurs at position i with substitution σ′ if Ai =
ϕ, (event e(t1, . . . , tk).P, σ)‖E such that for all 1 ≤ j ≤ k, [[tj]]

σ = [[sj]]
σ′ . Given a pro-

tocol P , we say that e(s1, . . . , sk) is unreachable if for any attacker A and all reductions
∅, (P, ∅) ∗−→

A
ϕ, (P ′, σ), e(s1, . . . , sk) does not occur at any position.

We will later on be interested in verifying authentication properties. We model them, following
[Bla09], as correspondence properties of the form

e1(t1, . . . , tn) =⇒ e2(u1, . . . , ul)

Such a property holds, if in each execution, every occurrence of an instance of e1(t1, . . . , tn) is
preceded by the corresponding instance of e2(u1, . . . , um). This property typically represents au-
thentication between two entities, where a server must only accept a connection if a user initiated
it.

We denote by dom(σ) the domain of a substitution σ, and say that two substitutions σ, σ′ are
compatible if for all x ∈ dom(σ) ∩ dom(σ), xσ = xσ′.

Definition 2.2. The property e1(t1, . . . , tn) =⇒ e2(u1, . . . , um) is verified by a protocol P if
for all symbolic attacker A and all reductions ∅, (P, ∅) −→

A
A1 −→

A
. . . −→

A
Ak, if e1(t1, . . . , tn)

occurs at position i with substitution σ, then there exists j such that e2(u1, . . . , um) occurs at
position j with substitution σ′, where σ, σ′ are compatible.

19

2 Formal Models for Protocols

ü Technical Details

Contrary to the intuition, the previous definition does not explicitly require j to be smaller
than i. Indeed, it is actually implied by the definition: if there are only reductions where e2

occurs after e1, as we quantify over all reductions, we can consider the prefix of the reduction
that ends with e1, which does not satisfy the property.

We may actually expect a stronger property, where the event can be matched with a single other
one. For such properties, we use injective correspondence properties

e1(t1, . . . , tn) =⇒inj e2(u1, . . . , um)

that require that each occurrence of e1 is matched by a different preceding occurrence of
e2.

Definition 2.3. The property e1(t1, . . . , tn) =⇒inj e2(u1, . . . , um) is verified by a protocol P
if for all symbolic attacker A and all reductions ∅, (P, ∅) −→

A
A1 −→

A
. . . −→

A
Ak, there exists

an injective function f over the integers, such that if e1(t1, . . . , tn) occurs at position i with
substitution σ, e2(u1, . . . , um) occurs at position f(i) with substitution σ′, where σ, σ′ are
compatible.

2.2 Symbolic Semantics

 Section Summary

In the symbolic model, terms are simply interpreted as terms, with equality modulo an equa-
tional theory modeling properties of cryptographic constructions. The attacker is any function
producing ground terms through function applications over its knowledge.

2.2.1 Interpretation of Terms

In the Dolev-Yao model, the cryptographic primitives are assumed to be perfect. Terms are
interpreted modulo an equational theory modelling the primitives.

An equational theory E is a set of equations u = v where u, v ∈ T (Σ,X ,N). The equivalence
relation =E is defined by the equalities of E closed by reflexivity, transitivity, substitutions of
variables by terms and application of function symbols, i.e the smallest equivalence relation such
that

I uφ =E vφ for any u, v ∈ T (Σ,X ,N) and substitution φ;
I u1 = v1, . . . , uk = vk ⇒ f(u1, . . . , uk) = f(v1, . . . , vk) for any f ∈ Σ of arity n.

Example 2.4. With x, y, z ∈ X , we define the equational theory E that associates to the function
symbols enc, dec the equation dec(enc(x, y, z), z) = x. Then, for any ground term (without
variables) t, random r and secret key sk, we have dec(enc(t, r, sk), sk) =E x

Given E, we instantiate the previous parameters such that D is T (Σ,N) (the set of ground terms)
equipped with the equality relation =E , and [[t]]σ = tσ. Compared to Proverif, we do not define
a notion of constructors and destructors symbols, that allow to model function symbols whose
reduction may fail on some inputs.

20

2.2 Symbolic Semantics

2.2.2 Attacker Capabilities

The attacker will only be able to produce terms according to the equational theory and its knowl-
edge. To this end, we introduce the classical definition of deducibility.

Definition 2.4. Let E be an equationnal theory and t1, . . . , tk, s ∈ T (Σ,X ,N). We say that
s is deducible modulo E from t1, . . . , tk, denoted t1, . . . , tk `E s if and only if:

∃R ∈ T (Σ, (x1, . . . , xk), ∅). Rσ =E s

where x1, . . . xn are variables disjoint from X and σ = {x1 7→ t1, . . . , xk 7→ tk}.

Intuitively, the term R models the computation of the adversary, and the variables xi are used as
handles to refer to the corresponding terms ti.

Example 2.5. With the equational theory E of Example 2.4, we have that sk, enc(m, r, sk) `E m
thanks to the term R(x1, x2) := dec(x2, x1). However, we have enc(m, r, sk) 6`E m

Notice that when performing a deduction, the attacker is not allowed to use the names modelling
the secret random samplings of the protocol. We assume that Σ contains an infinite set of constants,
to allow the attacker access to an unbounded number of values. When clear from the context, we
omit E.

Given an equational theory, a symbolic attacker A is then a function D∗ 7→ (C×D)∪(I×N), which
given a list of ground terms t1, . . . , tk either gives back an index and and integer (for replication)
or a term s along with a channel, such that t1, . . . , tk `E s.

2.2.3 Symbolic Indistinguishability

Indistinguishability captures the fact that no attacker can decide with which protocol among two
they interact. We first define static equivalence, which specifies when two sequences of terms cannot
be distinguished by an attacker.

Definition 2.5. Two sequences t11, . . . , t1k, and t
2
1, . . . , t

2
k of terms in T (Σ,X ,N) are statically

equivalent in E, written t11, . . . , t1k ∼E t21, . . . , t
2
k iff

∀u1, u2 ∈ T (Σ, (x1, . . . , xk)).
u1σ

1 =E u2σ
1

⇔
u1σ

2 =E u2σ
2

where x1, . . . xn are variables disjoint from V and σi = {x1 7→ ti1, . . . , xk 7→ tik}.

Intuitively, two sequences of terms are statically equivalent if the set of equations between terms
are the same on both sequences.

Example 2.6. With the equational theory E of Example 2.4, we have that encryption is statically
equivalent to a name when the attacker does not have the secret key, i.e., enc(m, r, sk),m ∼E n,m.
However, sk, enc(m, r, sk),m 6∼E sk, n,m, as the relation dec(x2, x1) = x3 is true on the left side
but not on the right side.

We then define trace equivalence to hold for two protocols if they have for any attacker the same
set of possible reductions, and the produced frames are always statically equivalent.

21

2 Formal Models for Protocols

Definition 2.6. Two protocols P,Q are trace equivalent if, for any symbolic attacker A, the
reductions ∅, (P, ∅) ∗−→

A
ϕP , EP and ∅, (Q, ∅) ∗−→

A
ϕQ, EQ have the same length and ϕP ∼E ϕQ.

ü Technical Details

We use in Chapter 4 Proverif to prove results about symbolic indistinguishability. Remark
that Proverif actually proves a stronger relation which implies in particular trace equivalence.

2.3 Computational Semantics

 Section Summary

In the computational model, terms are interpreted as bitstrings. Function symbols and names
are interpreted through PTTMs taking as input an infinite random tape and a security param-
eter. The attacker is any PTTM with an infinite random tape.

2.3.1 Semantics of Terms and Attackers

We interpret terms as elements of a set of bitstrings. In the computational model, security is
parameterized by the length of the randomly sampled values, called the security parameter. Thus,
the interpretation of terms must depend on some security parameter. We must moreover provide
a consistent way to interpret names, such that given a security parameter, all names correspond
to random sampling of the correct length, and the same name returns the same value. To provide
such an interpretation, and in the spirit of the BC logic, we interpret terms through deterministic
Polynomial Time Turing Machines (PTTM for short) that are parameterized by an infinite random
tape and a security parameter. Providing the same random tape to all PTTMs allows to obtain a
consistent interpretation of names.

Messages are thus interpreted through deterministic PTTMs, parameterized by:

I ρs, a random tape for secret names (e.g. secret keys);
I 1η, the security parameter.

We then leverage the notion of a functional modelMf , a library implementing the function symbols
and names that are used in the protocol: for each function symbol f (encryption, signature,...),
Af is a PTTM, which we view as a deterministic machine with an infinite random tape and taking
as input the security parameter. The functional model also contains a PTTM An for each n ∈ N ,
which will extract from the random tape a bitstring of length η. We give η in unary to the PTTMs
as they are expected to be polynomial time w.r.t. η in the computational model.

Definition 2.7. A functional model Mf is a set of PTTMs, one for each name and symbol
function, such that:

1. if n ∈ N , n is associated to the machine An that on input (1η, ρs) extracts a word of
length η from the tape ρs. Different names extract disjoint parts of the random tape.

2. if f ∈ Σ is of arity n, f is associated to a machine Af which, on input 1η, expects n more
bitstrings, and does not use ρs. Intuitively, the functions are completely deterministic,
and if randomness is required, it should be given explicitly as an argument to the function
symbol.

22

2.3 Computational Semantics

Given an assignment σ of variables to bitstrings, the random tape ρs, a security parameter η ∈ N
and a functional modelMf , the (evaluation of the) interpretation of a term t is inductively defined
as follows:

I [[n]]η,σMf ,ρs
:= An(1η, ρs) if n ∈ N

I [[x]]η,σMf ,ρs
= (xσ) if x ∈ X

I [[f(u)]]η,σMf ,ρs
= Af (1η, [[u]]η,σMf ,ρs

) if f ∈ Σ

Given a functional model Mf , a security parameter η and an infinite random tape ρs, we thus
fix D as {0, 1}∗, the set of bitstrings equipped with syntactic equality, and [[t]]σ = [[t]]η,σMf ,ρs

. The
attacker is then any PTTM, parameterized by an infinite random tape ρr and a security parameter
1η.

2.3.2 Computational Indistinguishability

 Section Summary

We define protocol oracles that reflect the behaviour of the abstract semantics. Given two
protocol oracles, indistinguishability corresponds to any attacker having access to either of the
two oracles, deciding with at most negligible probability with which they interact with.

In the classical game-based semantics of the computational model, the interactions between an
attacker and a protocol are described using a game, i.e., a list of execution instructions and queries
to the attacker. Rather than taking this point of view, we consider the equivalent idea of using
oracles given to Turing Machines to model the interactions between the protocol and the attacker.
Oracles are more suited for the design of a composition framework. For instance, giving access to
two protocol oracles to the attacker is equivalent to giving access to the oracle realizing the parallel
composition of the protocols.

However, providing a protocol as an oracle is possible only for a subclass of protocols, that we call
action determinate ([BDH15]). The idea is that the behaviour of the oracle should be deterministic,
i.e., completely defined by the action of the attacker. In particular, no two inputs on the same
channel should be possible at any given time.

Definition 2.8. A protocol is action determinate if ∅, (P, ∅) cannot be reduced w.r.t. !−→ ,

and for any attacker A there exists a unique reduction ∅, (P, ∅) ∗−→
A

.

ü Technical Details

This notion of action determinate is not equivalent to the one of [BDH15], but implies it. As
we have assumed that internal reduction of processes are always performed as much as possible,
we only have to consider input channels to obtain a usable notion of determinism. We choose
this version for its simplicity, which still provides a satisfactory level of expressiveness. One of
the restrictions implied by the definition is that a protocol cannot start by an output, e.g. all
outputs must be preceded by an input (which can be a trivial one).

We instantiate a protocol with an oracle, taking as input the next input computed by the attacker,
along with the history of all the previous queries. Looking forward, all definitions and Lemmas
below will be extended to support an extra stateless oracle in Section 5.2. In this first defini-
tion, protocol oracles can be arbitrary functions, and in particular do not have any computational

23

2 Formal Models for Protocols

restrictions. We provide later the construction of the protocol oracle corresponding to a proto-
col given in our syntax. Protocol oracles based on actual protocols will by construction run in
polynomial time.
Definition 2.9 (Protocol Oracle). A Polynomial Time Oracle Machine (PTOM) is a Turing
machine AOP equipped with:

I an input/working/output tape (as usual; it is read/write);
I a read-only random tape ρr (attacker’s coins);
I a protocol oracle read-only random tape ρs (not accessible by the Turing Machine);
I a protocol oracle input tape;
I a protocol oracle history tape θ;
I a protocol oracle output tape.

A protocol oracle OP is a function that takes as input a tuple (w, θ), and is parameterized by
a security parameter η and a secret random tape ρs. Besides the usual moves of a multiple
tape Turing machine (that respect the read/write constraints above), the machine may call the
oracle, in which case there is a single move from the current configuration to a configuration,
in which only the protocol oracle output tape and protocol oracle history tape are modified
(and the control state):

I the content of the oracle output tape is set to OP ((w, θ), ρs, η) where w is the content of
the oracle input tape, θ the content of the oracle history tape, and ρs the protocol oracle
read-only random tape.

I the history tape is updated by appending the content of the oracle input tape.

Such PTOMs can be written with all the parameters explicit, e.g. as AOP (ρs,η)(ρr, ρs), or by
omitting some parameters when they are implicit from the context. In general, protocols are
stateful, and a way to store this state is required. Rather than providing an explicit notion of
state, we choose to store in an history tape the list of all previous inputs. The protocol can
then, based on its previous inputs, recompute the corresponding state. This modelling does not
correspond the real life behaviour of protocols in term of running time, but allows for a simpler
expression of the oracles. Given a protocol P and a functional modelMf , the protocol oracle OP
is such that given a query m with history h the oracle replies what would be the output of P , given
the successive inputs h,m. It also appends the query m to the history tape.
Definition 2.10. Given an action determinate protocol P , a functional modelMf , a security
parameter η ∈ N and a random tape ρs, OP is the protocol oracle, which, given ρs and a
history θ = {o1, ..., on} ∈ ({0, 1}∗)n, on a query m:

I recomputes the control state q of the protocol using the history tape;
I set φ := {x1 7→ o1, . . . , xn 7→ on, xn+1 7→ m};
I selects the (only) executable input transition of P (defined by action determinism);
I outputs the corresponding output and appends it to the history tape.

An oracle may implement multiple parallel protocols: the oracle O〈P1,...,Pn〉 first checks which Pi
is queried (there is at most one such i, by action determinism) and then replies as OPi .
Definition 2.11. For any protocols P1, . . . , Pn such that ∀1 ≤ i < j ≤ n. C(Pi) ∩ C(Pj) = ∅,
we define the oracle < OP1

, . . . ,OPn > (ρs, θ) which on input query:

I checks if its input is of the form query := (channel,mess);
I computes i such that channel ∈ C(Pi), and reject if there is no such i;
I computes the projection θi of its history θ such that θi = {(channel,mess) ∈ θ|channel ∈
C(Pi)};

I return the value of OPi(ρs, θi)(mess).

We will often write AOP1
,...OPn (ω, ρr) for A<OP1

,...OPn>(ω, ρr). This finally allows us to introduce
the classical notion of computational indistinguishability.

24

2.3 Computational Semantics

Definition 2.12. Given a functional model Mf and protocols P,Q, we write P ∼= Q if for
every PTOM A, the attacker’s advantage AdvP

∼=Q equal to

|Pρs,ρr{AOP (ρs)(ρr, 1
η) = 1}

−Pρs,ρr{AOQ(ρr, 1
η) = 1}|

is negligible in η.

This definition quantifies universally over all polynomial-time attackers. In practice, we assume
that no attacker can break a specific cryptographic primitives, and perform an indistinguishability
proof under this assumption. Some protocols are however unconditionally indistinguishable.

AS an example, we consider the unforgeability axioms for signatures, called the EUF-CMA axiom
[GMR88]. We informally use the classical game based description to match the classical definitions
of the axiom.

Definition 2.13. A signature scheme (Sign,Vrfy) is EUF-CMA secure for an interpretation
of keys Ask if, for any PTTM A, the game described in Figure 2.7 returns true with probability
(over ρr, ρs) negligible in η.

For a fixed signing algorithm Sign and a fixed secret key sk, the attacker is given access to an
oracle that performs signatures. The attacker wins the game if they can provide a message that
corresponds to a valid signature for Vrfy, and such that it was not queried to the signing oracle.
This means that the attacker can compute the forgery of a signature, without having access to the
secret key.

Game EUF-CMAΣ,A
sk (η, ρr, ρs):

List← []
(pk, sk)← ([[pk]]ρs , [[sk]]ρs)
(m, σ)← ASign(pk, η, ρr)
Return Vrfy(pk,m, σ) ∧m 6∈ List

Oracle Sign(m):
List← (m : List)
σ ← Sign(sk,m)
Return σ

Figure 2.7: Game for Unforgeability (EUF-CMA)

Example 2.7. For two names n and m, we have that out(c, n) ∼= out(c,m). Intuitively, with-
out any further information, no attacker can distinguish two random samplings. if we have
a boolean function f over names, and an extra name b, we also have out(c, n) ∼= if f(b) =
true then out(c, n) else out(c,m). Without further assumptions and contrary to the symbolic
model, we do not have out(c, enc(m, r, sk)).out(c,m) ∼= out(c, n).out(c,m).

ü Technical Details

Notice that this definition extends to multiple protocol oracles. It relies on the fact that indis-
tinguishability of an oracle enabling protocols in parallel corresponds to the indistinguishability
of the multiple oracles in parallel. In other term, the oracle implementing the behaviour of
multiple oracle in parallel behaves the same as the oracle implementing the parallel of our
calculus.

Lemma 2.1. For protocols P,Q,A,B, and a list Ol of protocol oracles,

|Pρs,ρr{AOl,OA‖P (ρs)(ρr, 1
η) = 1}

−Pρs,ρr{AOl,OB‖Q(ρs)(ρr, 1
η) = 1}| =

|Pρs,ρr{AOl,OA(ρs),OP (ρs)(ρr, 1
η) = 1}

−Pρs,ρr{AOl,OB(ρs),OQ(ρs)(ρr, 1
η) = 1}|

25

2 Formal Models for Protocols

We do not provide a proof of this Lemma, as we will prove a stronger version when tackling
composition in Section 5.2.

2.4 The BC Logic

 Section Summary

In the BC logic, the knowledge of the attacker obtained during the execution of a protocol is
completely modelled in terms, using uninterpreted function symbols to model attacker compu-
tations. Then, reasoning about those terms in a first-order logic whose models are PTTMs, we
can obtain proofs of computational indistinguishability.

We present a proof technique based on the BC logic that can be used to perform proofs of com-
putational indistinguishability for bounded protocols. Given a protocol, we start by considering
abstract executions where the scheduling is fixed, but the attacker messages are left unspecified
through uninterpreted function symbols. Then, for each scheduling we obtain a frame, which is
simply a sequence of terms. Introducing a logic with a predicate for indistinguishability, we are
able to reason over such terms soundly w.r.t. computational indistinguishability. Remark that
this proof technique is only valid for bounded protocols, as we need to enumerate their set of
possible execution flow. We also choose a more restricted approach compared to the BC logic: we
can only prove indistinguishability for protocols that share the same set of execution flows. It is
indeed challenging to perform indistinguishability proofs for protocols without the same execution
flow. We perform this restriction in order to design the first mechanized approach to the BC logic
in Part IV.

2.4.1 From Protocols to Terms

Attacker function symbols For any execution of the protocol, the attacker knowledge is mod-
elled using the frame. In the previous models, given an attacker, this frame was completely defined,
either as a sequence of bitstrings (the computational model) or of ground terms (the symbolic
model). Here, we want to reason about frames in an abstract way, proving indistinguishability for
all attackers. Thus, rather than asking for explicit computations from the attacker, we will create
a sequence of terms depending on uninterpreted function symbols, which will be interpreted later
on an arbitrary PTTM. We assume from now on that we have a set of function symbols G, used
to represent the attacker’s computations.

Example 2.8. The terms representing the attacker interactions with the protocol P of Example 2.1
are:

enc(g0(), r, sk), enc(g1(enc(g0(), k, r)), r′, sk)

where g0, g1 ∈ G. The first attacker input g0() is computed without any prior knowledge, while
the second attacker input g1(enc(g0(), r, sk)) depends on the first output of the protocol.

Notice from the previous example the recursive behaviour: to model a frame φn = t1, . . . , tn, the
function modelling the attacker’s computation gi in ti is given the previous frame φi−1 as argument.
We build iteratively a sequence of messages depending on abstract function symbols, giving as
argument to those function the sequence up to this point. It is then possible to give one PTTM
meant to interpret each function symbol, and if they are all parameterized by a shared random
tape, each PTTM can completely recompute the state of the previous PTTMs before performing
a new computation. Thus, this modelling is equivalent to having a single PTTM computing in
sequence all the inputs of the frame and maintaining its internal state: we are essentially cutting a

26

2.4 The BC Logic

PTTM into many smaller ones, each performing all the computations of the main one up to some
message.

Those uninterpreted function symbols allow to model a frame for a given scheduling of the com-
munications, i.e., a sequence of input channels. If the protocols are finite, e.g., do not contain
unbounded replication, it is possible to produce a frame for each possible scheduling. Thus, given
a protocol, one can produce a set of frames that models all possible executions of the protocol.

Conditional branchings To correctly model the protocols, one last difficulty remains: condi-
tional branchings. Indeed, given a scheduling, an input on some channel may produce distinct
terms based on some conditions on the input. In order to have a single frame corresponding to
a scheduling, the idea is then to push the conditionals in the terms. Thus, in addition to the
if_ then_else_ of the protocol syntax, we now extend the syntax of terms so that we may write
in them conditionals. In other terms, we do not see conditional branchings as part of the protocol
control flow, but only as part of the messages that are produced. To this end, we now assume that
Σ always contain the following function symbols:

I constants true and false;
I a symbol ite of arity three;
I a unary symbol

.¬;
I binary symbols .

=,
.
∧,

.
∨, .→.

All those function symbols are assumed to have a fixed interpretation in all functional model. This
means that there semantics always correspond to the one of propositional logic.

For simplicity, we will write if b then t else s for ite(b, t, s), but bear in mind that it is not anymore
a construct of protocols, but a function symbol that will be interpreted in the natural way in all
functional models. If omitted, the else branch will contain cst.

Example 2.9. We define a protocol that allows to obtain the encryption of an input message x,
if for some function symbol f , f(x) is equal to some constant true. We do not give any precise
meaning to f , it could for instance check that the first byte of x is equal to 1.

in(c, x); if f(x) = true then out(c, enc(x, r, sk)) else out(c, fail)

Based on the previous discussion, one can see this protocol as the following equivalent protocol:

in(c, x);out(c, if f(x) = true then enc(x, r, sk) else fail)

And the corresponding frame is:

if f(g0())
.
= true then enc(g0(), r, sk) else fail)

We now use our execution model to build such frames. Similarly to the symbolic model, we
interpret terms as terms, but adding attacker function symbols. D is T (Σ,N), [[t]]σ = tσ, and
attackers are function such that A(φn) = (c, gn(φn)) or A(φn) = (i, n). Notice that as outlined
previously, the execution only depends on the scheduling of the attacker as the computed inputs
are abstracted away. We call such an attacker a scheduler, completely defined by a sequence of
values in C ∪ (I × N). Because the inputs of the attacker given to the protocol are of the form
gn(φn), the In rule will construct frames that are of the previously demonstrated form. Then, the
sequence of values in C∪(I×N) can be seen as specifying a possible execution flow of the protocol,
where the scheduling is fixed, but not the computations of the attacker.

27

2 Formal Models for Protocols

Definition 2.14. A protocol that is action determinate, finite, and without conditional branch-
ings is called simple. Given a simple protocol P , a scheduler A and its corresponding sequence
τ of n values in C ∪ (I × N), we call τ an observable trace of P if P can be reduced according
to this scheduling, i.e., there exists a final configuration (P1, σ1)‖ . . . ‖(Pk, σk) such that:

∅, (P, ∅) −→
A

. . . , −→
A

φn, (P1, σ1)‖ . . . ‖(Pk, σk)

We denote by φτP the corresponding frame φn, called a concrete trace of P .

Recall that considering that a protocol is without conditional branchings is not a restriction, as
we express the conditional in the terms. A formal translation from protocols to protocols without
conditional branching is straightforward.

ü Technical Details

Given a protocol, we produce a sequence of terms modelling the corresponding frame for each
scheduling. Thus, we can model all behaviours of the protocol in a finite set of term sequences.
In the first paper of the BC logic for indistinguishability ([BC14a]), all the behaviours of the
protocol were captured in a single term, by using a technique called folding. The idea is to push
the scheduling in the terms, using conditionals over additional uninterpreted function symbols.
This produces a large term that can be difficult to read, and manipulate in proofs. Moreover,
most proofs in the BC logic start by performing a case study on all possible values of the
symbols modeling the scheduling, thus yielding our set of frames. For those reasons, we choose
to avoid this folding step, and directly produce a frame for each observable trace. However, we
cannot anymore reason about protocols that do not have the same set of observable traces.

 Section Summary

Given a simple protocol (a deterministic and finite protocol where all conditionals are modelled
in the messages using a dedicated function symbol), one can produce for each scheduling a
frame modelling all the possible attacker knowledge that can be obtained for this scheduling.

2.4.2 A Logic over Terms

Now that we can extract from a protocol the sequences of terms that model all possible executions
of the protocol, we provide a logic allowing to reason over such sequences, and most notably to
prove computational indistinguishability of two protocols by reasoning on their concrete traces in
a first order logic. We thus define semantics of terms for this logic. Those semantics should not
be confused with the previously provided semantics: in the BC logic we only use the calculus to
define the concrete traces of a protocol without interpreting the terms; the semantics of terms of
the BC logic corresponds to the semantics of a first order logic.

Semantics of terms

Definition 2.15. A computational model M is an extension of a functional modelMf , which
provides an additional PTTM Ag for each symbol g ∈ G, that takes as input an infinite random
tape ρr, a security parameter 1η and a sequence of bitstrings.

We define the interpretation of extended terms as, given M, η, σ (which is now a mapping
from variables to ground terms), ρs and ρr:

28

2.4 The BC Logic

I [[n]]η,σM,ρs,ρr
:= An(1η, ρs) if n ∈ N

I [[x]]η,σM,ρs,ρr
= [[xσ]]η,σM,ρs,ρr

if x ∈ X
I [[f(u)]]η,σM,ρs,ρr

= Af ([[u]]η,σM,ρs,ρr
) if f ∈ Σ

I [[g(u)]]η,σM,ρs,ρr
= Ag([[u]]η,σM,ρs,ρr

, ρr, 1
η) if g ∈ G

The attacker is basically given the interpretation of its different inputs, but also the security
parameter and its own randomness. Notice that all PTTMs interpreting the attacker’s function
symbols are given the same random tape as parameter, thus modelling accurately the behaviour
previously defined, where a single attacker against a protocol can be seen as a set of attackers,
each recomputing all the previous interactions.

ü Technical Details

We defined a notion of computational model which is not directly a valid model for a first order
logic. Indeed, in a logic, all terms are of the same sort and must be interpreted over the same
domain, but here we have PTTMs that do not have the same parameters. The actual domain of
interpretation of terms (for the logic) is the set of PTTMs taking as input a security parameter
1η, two random tapes ρs and ρr and possibly a sequence of bitstrings. In our case, we further
restrict the PTTMS so that for instance, An that interpret the name n does not access ρr (the
attacker’s randomness), and we simply write An(1η, ρs) instead of An(1η, ρr, ρs). Furthermore,
we only give the interpretation in the case of a σ that maps variables to ground terms, while
for the first order logic it can be any mapping from variables to the domain of interpretation
of terms.

We can easily derive a valid notion of models for a first-order logic from our definition of
computational models. Our definition is sufficient to give the intuition of the interpretation
of terms in the case where η is given. It is also sufficient to give the interpretation of the
indistinguishability predicate in all our use case, as in practice we only construct formulas
without free variables.

Interpretation of formulas Atomic formulas of the logic are built using a set of predicate
symbols ∼n of arity 2n. Given terms t1, . . . , tn, s1, . . . , sn, the predicate ∼n (t1, . . . , tn, s1, . . . , sn)
will be interpreted as computational indistinguishability between the two sequences of terms. We
use infix notation, and always omit n as it is clear from the context, thus denoting the previous
equivalence by t1, . . . , tn ∼ s1, . . . , sn. The first order formulas are then built using the usual logical
connectives ∨,∧,>,⊥,⇒,∃,∀,¬.

Definition 2.16. Given a computational modelM, two sequences of ground terms t, u, and
an assignment σ of the free variables of t, u to ground terms, t ∼ u is satisfied by M and σ,
denoted byM, σ |= t ∼ u, if, for every polynomial time oracle Turing machine A,

|Pρs,ρr{A([[t]]σ,ηM,ρs,ρr
, ρr, 1

η) = 1}
−Pρs,ρr{A([[u]]σ,ηM,ρs,ρr

, ρr, 1
η) = 1}|

is negligible in η. Here, ρs and ρr are drawn according to a distribution such that every
finite prefix is uniformly sampled. (PTIME computable distributions have to be made explicit
through function symbols). If M, σ |= t ∼ u holds for all σ, we write M |= t ∼ u. The
satisfaction relation is extended to full first-order logic as usual.

Example 2.10. Considering again the two first indistinguishability of Example 2.7, out(c, n) ∼=
out(c,m) is expressed as the formula n ∼ m, and out(c, n) ∼= if f(b) then out(c, n) else out(c,m)
as the formula n ∼ if f(b) then n elsem. Proving the validity of those formulas requires axioms
and logical deduction rules.

29

2 Formal Models for Protocols

The random tape given to the adversary machine (modeling the distinguisher) is identical to the
one used for the interpretation of terms, and thus to the one given to the other attacker machines
in the terms. Then, the distinguisher and the attackers computing the protocol inputs can once
again be seen as modelling a single PTTM. This links our notion of satisfiability with computational
indistinguishability, where the computational attacker that distinguishes and computes the inputs
of the protocol is split into multiple PTTMs, one for each message and one for the final output.

Axioms and logical rules We outline some of the axioms used to derive the validity of formulas
in the BC logic. A more extensive presentation of the rules allowing to reason in this logic is
postponed to Part IV. In this part, we only provide intuition about why those axioms can indeed
be used in the BC logic to derive computational indistinguishability.

A first example corresponds to the fact that any term is indistinguishable to the same term where
all occurrences of a name are replaced by a fresh name. Essentially, we can perform α-renaming
on terms. This correctly models the fact that names are only pointers to random samplings, and
they are interchangeable.

Example 2.11. The (recursive) set of formulas corresponding to the α-renaming axiom is given
by the set of formulas t ∼ t{n 7→ n′} for each term t ∈ T (Σ,N), each name n ∈ N , and any name
n′ that does not appear in t.

A widely used technique is that if two sequences of terms are indistinguishable, then applying any
deterministic function to the sequences yields two indistinguishable terms.

Example 2.12. The (recursive) set of formulas corresponding to the function application axiom
is given by the set of formulas t1, . . . , tn ∼ t′1, . . . , t

′
n ⇒ f(t1, . . . , tn) ∼ f(t′1, . . . , t

′
n) for any terms

t1, . . . , tn, t
′
1, . . . , t

′
n ∈ T (Σ,N) and function symbol f ∈ Σ.

Finally, we present a more complex example, based on the EUF-CMA axiom of Definition 2.13.
We can transpose this axiom in the BC logic, saying that any term that is a valid signature, must
in fact be equal to the signature of a message appearing in the term. We use the function symbols
sign,pk and checksign, where intuitively checksign(x, pk(sk)) should only be equal to true if x
is equal to a message of the form sign(x, sk). We denote by St(t) the set of sub-terms of t, which
is defined completely syntactically.

Definition 2.17. Given a name sk, we define the axiom scheme EUF-CMAsk as, for any
term t such that sk is only in key position:

if (checksign(t, pk(sk))) then
.∨
sign(x,sk)∈St(t) (t

.
= sign(x, sk))

else >
∼ >

By saying that the formula on the left hand-side is indistinguishable from true, we say that the
formula is true with overwhelming probability.

Example 2.13. Let us consider the term g(sign(m, sk)), where g models some computation of
the attacker. The only signature appearing as a sub-term of g(sign(m, sk)) is sign(m, sk). Thus,
with the EUF-CMA axiom, we could conclude that

if (checksign(g(sign(m, sk)), pk(sk))) then
(g(sign(m, sk))

.
= sign(m, sk))

else >
∼ >

Thus, in any protocol (seen as a term) where this message is verified as a valid signature, we could
use the fact that it is equal with overwhelming probability to sign(m, sk).

30

2.4 The BC Logic

Computational Soundness Given a functional modelMf , we can consider all possible attack-
ers by considering all computational modelsM that extendMf by providing interpretations for
the attacker’s function symbols. We denote this relation by M ⊃ Mf , which is formally defined
as set inclusion. Given simple protocols P,Q and a functional model Mf , if the protocols have
the same set of observable trace, we can try to prove the indistinguishability of each concrete trace
in the logic. By requiring that the protocols share the same set of observable traces, we design a
proof technique restricted to a subclass of protocols. As we consider simple protocols in this part,
this is in fact not a restriction, as we expect that conditionals are in the terms, and protocols that
do not have the same set of observable traces are naturally distinguishable.

Lemma 2.2. Given two simple protocols P,Q with the same set T of observable traces, random
tapes ρr, ρs and a functional modelMf , we have:

∀τ ∈ T, ∀M ⊃Mf . M |= φτP ∼ φτQ

⇒

P ∼= Q

Sketch of Proof. We do not provide the proof, that will be performed in Section 5.2 in a more
general setting. As we only consider finite protocols the set of observable traces is also finite.
While it is of exponential size w.r.t. the protocol, the size is fixed w.r.t. the security parameter,
which allows us to perform the proof. Thus, if there exists a distinguisher for P and Q, its
advantage must be non negligible for at least one abstract trace. For this given abstract trace, we
can construct a model that negates the desired formula by splitting the distinguisher into multiple
attackers. �

This Lemma does not provides us with a usable proof technique, as it is not possible in practice
to make a proof for each computational model. However, as we are in a first order logic, if one
can find a set of axioms that are satisfied by all computational models, a proof under such axioms
implies that the formula is satisfied by all computational models. We write Ax |= φ if the set of
formulas Ax and the formula ¬φ are inconsistent. We want to consider axioms that hold for a
family of computational models, for instance allM⊃Mf given a functional modelMf .

Definition 2.18. Given a family of computational models F , a set of first order formulas A
is sound (w.r.t. F) if, for every ψ ∈ A, everyM∈ F ,M |= ψ.

We can finally perform a proof of indistinguishability using such axioms.

Theorem 2.1. Given two simple protocols P,Q with the same set of observable traces T , a set
of axioms A and a functional modelMf , if we assume that:

I A is sound w.r.t. F = {M ⊃Mf};
I for all τ ∈ T , A |= φτP ∼ φτQ

Then P ∼= Q.

The proof will be performed in Section 5.2 in a more general setting. In practice, we can for instance
assume that all PTTMs satisfy the classical EUF-CMA axiom), and then prove that the first-order
formulas of Definition 2.17 define a sound BC version of the EUF-CMA axiom. Performing proofs
under such an axiom yields indistinguishability assuming the classical EUF-CMA axiom.

31

Part I

Extensive
In which we try to demonstrate how one may carry out a so called

extensive analysis of a protocol

33

3 A Symbolic Model for Multi-Factor
Authentication

If you are asked for the password,
type in “password”.

(Ockham’s Razor)

3.1 Introduction

To provide strong guarantees about the security of a protocol, we should consider all combinations
of attacker capabilities. Ideally, an extensive analysis should provide for each possible threat model
either an effective attack against the protocol or a security proof. To achieve this level of precision
requires highly automated tool: it can nowadays only be performed in the Symbolic model.

In this chapter, we provide an example of a detailed and modular threat model that can be leveraged
to perform an extensive analysis in the symbolic model. We focus on authentication properties,
a major concern: users need to authenticate to an increasing number of electronic services in
everyday life, such as email and bank accounts, agendas, e-commerce sites, etc. Authentication
generally requires a user to present an authenticator, that is ‘ ‘something the claimant possesses and
controls (typically a cryptographic module or password) that is used to authenticate the claimant’s
identity” [GGF17]. Authenticators are often classified according to their authentication factor :

I what you know, e.g., a password, or a pin code;
I what you have, e.g., an access card or physical token;
I what you are, e.g., a biometric measurement.

Although these different mechanisms exist, passwords are still by far the most widely used mecha-
nism, despite the fact that many problems with passwords were already identified in the late ’70s
when they were mainly used to grant login into a computer [MT79]. Since then, things have be-
come worse: many people choose the same weak passwords for many purposes, and large password
databases have been leaked. Studies have shown that the requirement to add special characters
does not solve these problems, and the latest recommendations by NIST [GFN+17] even discourage
this practice.

To palliate password weaknesses, multi-factor authentication protocols combine several authenti-
cation factors. Typically, instead of using only a login and password, the user proves possession of
an additional device, such as there mobile phone or a dedicated authentication token. Two popular
protocols are Google 2-step [G2s] (which actually regroups several mechanisms) and FIDO’s U2F
[Fid] (the version implemented by Yubico for their Security Keys), which is supported by many
websites, including Google, Facebook, and GitHub. In (one version of) Google 2-step, the user
receives a verification code on their phone that they must copy onto their computer, while FIDO’s
U2F requires the use of a specific USB token that must be plugged into the computer.

Multi-factor authentication (MFA) protocols thus provide complex situations where multiple agents
are involved, and with protocols leveraging mechanisms that are very different in nature. To
study such protocols, we provide a detailed threat model, trying to capture all possible levels of
compromise of the multiple agents. We then explain how one can at a high level model each

35

3 A Symbolic Model for Multi-Factor Authentication

component of the threat model in the symbolic model presented previously, after extending it to
support communications over secret channels.

 Chapter Summary

Multi-factor authentication strengthens authentication mechanisms by adding to passwords
additional proofs of identity. They constitute complex protocols involving multiple agents.
We present a detailed and modular threat model for those protocols. It takes into account
communication through TLS channels in an abstract way, yet modelling interesting details such
as session identifiers and TLS sessions with compromised agents. Moreover, we consider different
levels of malwares in a systematic way by representing a system as a set of interfaces with access
rights. Additionally, we allow the adversary to perform phishing and spoof fingerprints, and
consider scenarios where a careless user does not perform expected checks. We formalize this
model in the applied pi calculus, defining a formal and modular threat model.

3.1.1 Our Contributions

In classical protocol analysis, the attacker is supposed to control the communication network.
However, the protocols we study in this part make extensive use of TLS communications and are
supposed to provide security even if some devices are infected by malware.

We therefore propose a novel, detailed threat model for multi-factor authentication protocols which
takes into account many additional threats.

I Compromised passwords: our basic assumption is that the user’s password has been com-
promised. Otherwise multi-factor authentication would not be required.

I Network control: we define a high-level model of TLS channels that guarantees confidentiality
and authentication of messages and additionally ensures, through inclusion of session ids,
that messages of different TLS sessions cannot be mixed. Nevertheless, we allow the attacker
to delay or block messages. Our model also contains a notion of fingerprint that is used in
some protocols to identify machines, and we may give the adversary the power to spoof such
fingerprints.

I Compromised platforms: we give a structured and fine-grained model for malwares. We take
an abstract view of a system as a set of input and output interfaces, on which an adversary
may have read or write access, depending on the particular malware.

I Human aspects: we take into account that most of these protocols require some interaction
with the human user. We model that humans may not correctly perform these steps. More-
over, we model that a human may be a victim of phishing, or pharming, and hence willing
to connect to and enter their credentials on a malicious website.

I “Trust this computer mechanism”: to increase usability, several websites, including Google
and Facebook, offer the possibility to trust a given machine, so that the use of a second
factor becomes unnecessary on these machines. We add this trust mechanism to our model.

We completely formalize these threat scenarios in the applied pi calculus.

a Limitations

We do not generalize the modelling to the computational semantics, but restrict our analysis to
the symbolic semantics. Indeed, for the high-level model of TLS, we need dynamic secret chan-
nels (secret channels that can become public), which would significantly increase the complexity
of the computational semantics. Moreover, as we need to perform an efficient and automated
analysis given the number of scenarios, the computational model is ill suited for this purpose
at the moment.

36

3.2 Multi-factor Authentication Protocols

3.1.2 Related Work

Bonneau et al. [BHO+12] propose a detailed framework to classify and compare web authentication
protocols. They use it for an extensive analysis and compare many solutions for authentication.
While the scope of their work is much broader, taking into account more protocols, as well as
usability issues, our security analysis of a more specific set of protocols is more fine-grained in
terms of malware and corruption scenarios. Basin and Cremers [BC14b] formalizes the notion of a
protocol-security hierarchy, which provides for multiple adversaries the strengths and weaknesses
of each protocol. Adversaries are defined in a modular way, combining multiple notions of key and
state compromise. Our methodology is similar as we identify the largest threat scenarios that a
protocol can tolerate through a modular combination of attacker capabilities.

Basin et al. [BRS16] studied how human errors could decrease security. Their model is more
evolved than ours on this aspect. However, we consider more elaborate malwares and also check
for a stronger authentication property: an attack where both a honest user and an attacker try to
log into the honest user’s account but only the attacker succeeds is not captured in [BRS16], as
they simply check that every successful login was proceeded by an attempt from the corresponding
user to login. As a side remark, notice that [BRS16] blurs the line between the Symbolic and
Computational models, defining negatively what the human (which is a second attacker) cannot do.
In the same vein, [BRS15] studies minimal topologies to establish secure channels between humans
and servers. Their goal is to establish a secure channel, while we consider entity authentication.
They consider authentic and confidential channels, which we extend by being more fine grained.

3.2 Multi-factor Authentication Protocols

 Section Summary

Google 2-step relies on a cellphone as a second factor: it either sends a confirmation code via
SMS, or asks for confirmation by touching the screen.FIDO’s U2F provides a small USB token
that can perform signatures after a button press. The signature can be performed over the
authentication material and checked by the server.

3.2.1 Google 2-step

To improve security of user logins, Google proposes a two factor authentication mechanism called
Google 2-step [G2s]. If enabled, a user may use there phone to confirm the login. On their website
Google recalls several reasons why password-only authentication is not sufficient and states that
‘ ‘2-Step Verification can help keep bad guys out, even if they have your password”. Google 2-step
proposes several variants. Google’s mechanisms are not documented, and were reverse engineered.
Thus, some distance between our presentation and real life implementation may exist. The default
mechanism sends to the user, by SMS, a verification code to be entered into there computer. An
alternative is the “One-Tap” version, where the user simply presses a Yes button in a pop-up on
there phone. The second version avoids to copy a code and is expected to improve the usability of
the mechanism. This raises an interesting question about the trade-off between security and ease
of use. We also present a more recent version of “One-Tap” that we dubbed “Double-Tap”.

As Google does not provide any detailed specification of the different authentication mechanisms,
the following presentations are based on reverse engineering. As the protocols are simple and do
not contain complex cryptographic operations, the reverse engineering is rather straightforward,
based on the operations visible by the user and behavioral tests. Notice though that we may
have omitted some checks performed by the server, based on some information that is not entered

37

3 A Symbolic Model for Multi-Factor Authentication

user Computer Mobile Server

login, pwd
login, pwd

new code

code
code

code
code

Figure 3.1: g2V Protocol

user Computer Mobile Server

login, pwd
login, pwd

new token

token
yes or no?

yes
token

Figure 3.2: g2OT Protocol

by the user, such as the timing of the login. As we validated the attacks found systematically
in a laboratory environment, our protocol models appear to be precise enough. All experiences
presented in this Part were performed in January and February 2018.

Google 2-step with verification codes - g2V In Figure 3.1 we depict the different steps of
the protocol. All communications between the user’s computer and the server are protected by
TLS. The three main steps of the protocol are:

1. the user enters their login and password into their computer, which forwards the information
to the server;

2. upon receiving login and password, the server checks them. In case of success, the server
generates a fresh 6 digits code, and sends an SMS of the form "G-****** is your Google
verification code" to the user’s mobile phone;

3. the user then copies the code to their computer, which sends it to the server. If the correct
code is received login is granted.

When the password is compromised, the security of the protocol only relies on the code sent on
the SMS channel. Thus, if the attacker can intercept the code produced in step (2) before it is
received by the server, the attacker could use the code to validate their own session and break the
security. This could be done for instance by intercepting the SMS, compromising the phone with
a malware, or through a key-logger on the user’s computer.

Google 2-step with One-Tap - g2OT In Figure 3.2 we present the One-Tap version of Google
2-step, the main steps being:

1. the user enters their login and password into their computer, which forwards the information
to the server;

2. the server then creates a fresh random token that is sent to the user’s mobile phone. Unlike
in the previous version, the communication between the server and the phone is over a TLS
channel rather than by SMS;

3. the phone displays a pop-up to the user who can then confirm the action or abort it, by
choosing “Yes” or “No” respectively;

4. in case of confirmation the phone returns the token and login is granted.

Note that in its most basic version, the user only answers a yes/no question. Google announced
in February 2017 [tea17] that the pop-up would also contain in the future a fingerprint of the
computer, including information such as IP address, location and computer model. However this
new version has yet to be implemented on some of the smartphones we used for tests. In the
following we will analyse both versions, with (g2OTfpr) and without (g2OT) the fingerprint.
Remark that in steps (2) to (4), the authentication token is never sent to the computer. This is
an important difference with the previous version, disabling attacks based on compromising the

38

3.2 Multi-factor Authentication Protocols

user Computer Mobile Server

Successful g2OTfpr login

new number

number
number

number
number

Figure 3.3: g2DTfpr Protocol

user Token Computer Server

login, pwd
login, pwd

new chall

chall

chall, origin, sid
press?

press
signature

signature

Figure 3.4: U2F Protocol

computer, e.g., a key-logger. The independence of the second factor with respect to the computer
then improves the security. Adding a fingerprint to the screen additionally improves the security,
as it allows the user to perform a suspicious login from an unknown location.

Google 2-step with Double-Tap - g2DTfpr The issue with One-Tap compared to the code
version is that the user is likely to simply press “Yes” without reading any displayed information.
To mitigate this issue, Google sometimes uses a version which we call Double-Tap. We were not
able to find a public documentation of this variant, but we saw it at work in practice. The first
step is the One-Tap protocol previously presented, with the display of the fingerprint. It is then
followed by a second step, where a two digit number is displayed on the user’s computer screen,
and the same number is displayed on the user phone along with two other random numbers. The
user is then asked to select on their phone the number displayed on their computer. This selection
mechanism mimics the behaviour of a verification code displayed on the computer and that the
user should enter on their phone, but with the benefits of greater simplicity and ease of use. If
we abstract the selection mechanism used to simplify the user experience and simply consider that
the user is entering the data on their phone, the protocol outline is shown in Figure 3.3.

3.2.2 FIDO’s Universal 2nd Factor - U2F

FIDO is an alliance which aims at providing standards for secure authentication. They propose
many solutions under the U2F, FIDO and FIDO2 [FID18; BLVGB+17] (also known as the WebAu-
thn) standards. We only study partially the Universal 2nd Factor (U2F) protocol [Fid], focusing
on the version using a USB token as the second factor. More precisely, we study the implementa-
tion of the standard performed by the Yubico company, producing the Yubikey token. The U2F
protocol relies on a token able to securely generate and store secret and public keys, and perform
cryptographic operations using these keys. Moreover, the token has a button that a user must
press to confirm a transaction. To enable second-factor authentication for a website, the token
generates a key pair1 and the public key is registered on the server. This operation is similar to
the registration of a phone as a second factor in the case of a Google account. We must assume
that this step was performed securely by the user at a time where their password was secure, and
ideally at the time of the creation of the account. Else, no security may come from the second
factor. Once the registration has been performed, the token can then be used for authenticating;
the steps of the authentication protocol are presented in Figure 3.4, and can be explained as:

1In the case of the Yubikey token, the key is generated by hashing a fresh random with a fixed secret
stored in the token.

39

3 A Symbolic Model for Multi-Factor Authentication

1. the computer forwards the user’s login and password to the server;
2. the server generates a challenge which is sent to the user’s computer;
3. upon reception, the browser generates a payload containing the URL of the server, the

challenge and the identifier of the current TLS session to be signed by the token;
4. the user confirms the transaction by pressing the token button;
5. the token signs the payload, and the signature is forwarded to the server for verification.

Compared to g2OT and g2DTfpr, the second factor and the user’s computer are not independent,
which may lead to attacks base on malware on the computer. However, thanks to the signature
of the payload, the signature sent back to the server is strongly linked to the current session, and
session confusion is significantly harder. Moreover, as the signature includes the URL seen by the
user, this may counter phishing attacks.

3.2.3 Disabling the Second Factor on Trusted Devices

When designing an authentication protocol, as also emphasized in [BHO+12], a key require-
ment should be usability. On a user’s main computer, used on a daily basis, it may not
be necessary to use a second factor: for instance, using a second factor each time a user
pops there emails on there main laptop would be very cumbersome. This is why sev-
eral providers, including Google and Facebook, propose to trust specific computers and dis-
able the second factor authentication on these particular machines. This is done by check-
ing a “Trust this computer” option when initiating a two-factor authenticated login on a
given machine. Technically, the computer will be identified by a cookie and its fingerprint.

user Device Computer Server

Successful trusted Multi Factor login

new cookienew sk

cookie

pk(sk)

Registration

login, pass

login, pass, cookie

check cookie

sign(TLSsid, sk)

sign

check sign

TokenBinding

Figure 3.5: TokenBinding

A fingerprint typically includes information about the user’s IP
address, inferred location, OS or browser version, etc. As those
elements will obviously change over time, in practice, a distance
between fingerprints is evaluated, and if the fingerprint is too
far from the expected one, the second factor authentication will
be required. To the best of our knowledge, this feature is not
documented and the full mechanism has not been studied pre-
viously even though it may lead to security issues. To capture
such security issues we will include the “Trust this computer”
mechanism in our analysis.

3.2.4 Token Binding

While cookies are a common mechanism widely used to remem-
ber a computer after a successful login, a new protocol called
TokenBinding [PNB+18] is under development. Its usage is
recommended by the FIDO standards, but providers are free
to use it or not. After a successful login, a public key may be
bound to the user account, and the corresponding secret key
will be used to sign the session identifier of the following TLS
sessions. It may be seen as a partial U2F where the keys are
directly stored on the computer. We describe the protocol in
Figure 3.5. If a computer has been successfully authenticated,
the registration part of TokenBinding may be enabled and
the computer may generate a new secret key, and simply send
the corresponding public key to the server.

In parallel, the server may send a classical cookie to the computer. For later logins, the server will
ask for the cookie but also for the signature of the TLS session identifier by the registered public

40

3.3 Threat Model

key. We remark that the cookie and the signature may actually be sent at the same time, and
TokenBinding thus does not require more communications than classical cookie authentication
after the registration.

3.3 Threat Model

In order to conduct an in depth analysis of MFA protocols, we consider different threat models,
types of attacks and corresponding attacker capabilities. We will consider a Dolev-Yao attacker
[DY81] that controls any compromised parts and, classically, the network. However, many of the
protocols we study use channels protected by TLS. The attacker may block a message, even if they
cannot read or write on such channels. Moreover, as we are studying multi-factor authentication
protocols, in order to assess additional protection offered by these protocols, we are interested
in the case where the user’s password has been compromised. Therefore, the most basic threat
scenario we consider is the one where the attacker has (partial) control over the network, and
knows the users’ passwords.

There are however several ways the attacker can gain more power. Our aim is to present a detailed
threat model, reflecting different attacker levels that may have more or less control over the user’s
computer, the network, or even over the user itself. Those levels aim at capturing the attacker
capabilities that are necessary for a given attack.

 Section Summary

We define a fine-grained threat model. The attacker may gain read/write or read-only access
over all the communication channels of the user platform (USB, display, network, HDD). The
user’s phone may be compromised, the human may be subject to phishing or not perform some
checks such as comparing two values, and the fingerprint of the platform might be spoofed.

3.3.1 Malware Based Scenarios

The first range of scenarios covers malwares that give an attacker control over parts of a user’s
device, also known as Man In The Machine attacks.

Systems as interfaces To give a principled model of malwares and what parts of a system the
malware may control, we take an abstract view of a system as a set of interfaces on which the
system receives inputs and sends outputs. Some interfaces may only be used for inputs, while other
interfaces may be used for outputs, or both. For example the keyboard is an input interface, the
display is an output interface, and the network is an input and output interface. Compromise of
part of the system can then be formalized by giving an attacker read or write access to a given
interface. On a secure system, the attacker has neither read nor write access on any interface.
Conversely, on a fully compromised system the attacker has read-write access on all interfaces.

In RW

In RO

Out RW

Out RO

NA

Figure 3.6: Access Lattice

More formally we consider that for each interface the attacker
may have no access (NA), read-only access (RO), write-only
access (WO), or read-write access (RW). We may specify many
different levels of malware by specifying for every interface
two access levels, one for inputs and one for outputs on the
interface. Obviously, for a given interface not all combinations

41

3 A Symbolic Model for Multi-Factor Authentication

need to be considered: a read-write access will yield a stronger
threat model than read-only access, write-only or no access.
We consider for each interface five levels, that can be organized
as the lattice depicted in Figure 3.6.

ü Technical Details

We suppose in this work that it is harder to control the outputs of an interface than its inputs:
therefore a given access level to the outputs implies the same access level on the interface inputs.
Although not a limitation of our model, this choice is motivated by practical considerations.
Running for instance a key-logger does not require specific rights, because the keyboard data
is completely unprotected in the OS. FIDO devices are identified by the OS as a keyboard (at
least on Linux systems). However, reading data sent by an application to a USB device, i.e.,
having read access on the USB interface’s output, may require to corrupt the driver (or in the
case of Linux enable the “USBmon” module) which requires specific privileges. Similarly, we
suppose that having write access implies having read access.

Malware on a computer For a computer, we will consider four interfaces:

I the USB interface, capturing for instance the keyboard, or a U2F USB key, with all possible
types of access;

I the display, the computer screen, with only output interfaces;
I the TLS interface, capturing the network communications, but by always assuming that the

attacker has the same level of control over inputs and outputs;
I the hard drive interface, capturing control of the storage of the computer, with all possible

types of access.

We can succinctly describe a malware on a computer by giving for each interface the attacker’s
rights for both inputs and outputs of this interface. We use the notation Minterf

in:acc1,out:acc2, where
interf might be TLS, USB, hdd or dis, and acc1 and acc2 might be RO or RW, to denote that the
attacker has rights acc1 on the inputs, respectively rights acc2 on the outputs, of interface interf.

By convention, if we do not specify any access level, it means that the attacker has no access. A
key-logger is for instance denoted withMUSB

in:RO. If the access level is the same both for the inputs
and the outputs, as we always assume for TLS, we may write MTLS

io:RW , thus capturing the fact
that the attacker may have full control over the user browser, or that they might have exploited a
TLS vulnerability.

Remark that we give a very high-level threat model for TLS, only considering read and write
accesses. While this subsumes all possible capabilities, this does not reflect precisely the capabilities
that an attacker may gain through XSS or CSRF attacks. However, such attacks tend to be linked
to the actual implementation of the web server or of the browser, rather than being protocol specific.
Furthermore, capturing such attacks requires a very fine grained model of the web infrastructure,
such as the one presented by Fett et al. [FKS14]. Such a fine grained model would break the
automation of our analysis, which was already at the limit of Proverif’s capabilities (minor
changes to the model lead to non termination of Proverif).

Malware on a phone For a mobile phone, the type of interface may depend on the protocols,
with for instance SMS inputs or TLS inputs. To simplify, we will consider a phone to have only
one input and one output interface. We thus only consider a generic device interface called dev,
with all possible access levels. Mdev

in:RO then corresponds for instance to the attacker having broken
the SMS encryption, or to some malware on the phone listening to inputs.

42

3.3 Threat Model

3.3.2 Fingerprint Spoofing

Whenever a user browses the Internet, the user provides information about him or herself, called
their fingerprint. Those elements will be very useful later on for additional checks in our protocols,
and as we mentioned Google is adding this kind of details to their One-Tap protocol. However, in
some cases the attacker might be able to obtain the same fingerprint as a given user. While some
elements, such as the OS version, are rather easy to spoof, it is more complicated to spoof the IP
address and inferred location. It is nevertheless possible if an attacker either completely controls
the network the user connects on, or is connected to the same WiFi, or works in the same office.

3.3.3 Human Errors

The attacker may also exploit vulnerabilities that rely on the user not or wrongly performing some
actions, or preferring to ignore security warnings. The assumption that users may not behave in
the expected way seems reasonable given that most users are not trained in computer security, and
their goal is generally to access a service rather than performing security related actions.

Phishing In our model, we capture that users may be victims of phishing attempts, i.e., willing to
authenticate on a malicious website. For instance, an untrained, naive user may be willing to click
on a link in an email which redirects to a fake web site. While a phishing attack through an e-mail
may not fool a trained user, even a more experienced user may be victim to more sophisticated
attacks, for instance if they connect to an attacker WiFi hotspot which asks to login to a website
in order to obtain free Wii. Therefore, when we consider the phishing threat scenario we allow the
attacker to choose with whom the user will initiate the protocol. We consider phishing as one of
the simplest attacks to mount, and protocols should effectively protect users against it.

However, even though we consider that users might be victim of phishing, we suppose that they
are careful enough to avoid it when performing the most sensitive operations: these operations
include the registration of the U2F key, and logging for the first time on a computer they wish to
trust later on. Indeed, if we were to allow phishing to be performed during those steps, no security
guarantees could ever be achieved as the use of a second factor authentication requires a trusted
setup.

No compare A protocol may submit to the user a fingerprint and expect the user to continue
the protocol only if the fingerprint corresponds to their own. When given a fingerprint and a
confirmation button, some users may confirm without reading the displayed information. Thus,
when considering the no compare scenario, we assume that the user does not compare any value
given to him and always answers yes.

3.3.4 Threat Scenarios Considered

In our analysis we consider all the possible combinations of the previously presented scenarios.
This yields a fine-grained threat model that allows for a detailed comparison of the different
protocols, and to identify the strengths and weaknesses of each protocol, by showing which threats
are mitigated by which mechanisms.

By considering those possibilities, we capture many real life scenarios. For instance, when a user
connects to a WiFi hotspot in a hotel or train station, the WiFi might be controlled by the

43

3 A Symbolic Model for Multi-Factor Authentication

attacker, making the fingerprint spoofing and phishing scenarios realistic, because the attacker can
have full control over the network, and thus use the provided IP address or redirect a user to a
fake website.

If we try to connect on some untrusted computer, for instance the computer of a coworker, it may
contain a rather basic malware, for instance a key-logger (MUSB

in:RO). However, if we connect on
a computer shared by many people at some place, for instance at a cybercafe, there could be a
very strong malware controlling the display of the computer (Mdis

out:RW) or controlling any TLS
connection on this computer (MTLS

io:RW). Moreover, the network in this unknown place might also
be compromised, and we may have some other scenarios combined with the malware, such as
phishing (PH) or fingerprint spoofing (FS).

Our different scenarios provide different levels of granularity going from no attacker power at all
to complete control over both the network and the platform. Our threat model abstracts away
from how the attacker gained this power. Thus, the scenarios we consider will contain at some
point all the possible attacks, without the need to specify how they may be performed. Note that
we distinguish access to the RAM of the computer and access to the hard drive. For instance,
a TLS session key will only be stored in RAM and a cookie will be stored on the hard drive. A
side channel attack such as Meltdown [LSG+18] or Spectre [KGG+18] may allow the attacker to
read the RAM of the user computer. In the protocols studied in this Part, all values stored in
the RAM are received over one of the channels and not generated by the computer. Thus, in our
examples the RAM read only access is equivalent to giving read-only access to all the interfaces of
the computer (MUSB

io:RO MTLS
io:RO Mdis

io:RO Mhdd
io:RO). Another threat scenario is pharming, where the

attacker can “lie” about the URL that is displayed to the user. This may happen either because
of a malware that edits the hosts file (on a UNIX system), or by performing DNS ID Spoofing or
DNS Cache Poisoning. All of these scenarios are simply captured asMTLS

io:RW .

3.4 The Formal Model

For our formal analysis, we model protocols in the applied pi-calculus presented in Section 2.1. As
required by the modelling of TLS, We first extend the semantics with support for secret channels,
and then provide a detailed threat model.

ü Technical Details

In the next chapter, we use the Proverif tool, which has a slightly different syntax and
semantics. The precise semantics used by Proverif can be found in [Bla16]. We use our
calculus for the sake of coherence with the multiple parts of the Thesis, and the gap between
the semantics should not impact our analysis. The main syntactic difference, when comparing
the example given here and the Proverif files of the case study ([Mfa]), is the presence of
types.

3.4.1 Extension of the Process Calculus with Secret Channels

To allow for a high level modelling of the behaviour of TLS, we extend the pi-calculus with secret
channels. Rather than sampling channels in the fix set C of constants, we allow channel identifiers
to be arbitrary terms in T (Σ,X ,N), where all variables must be bound in protocols. This implies
that channels can be dynamically created. This extension is dedicated to the symbolic model,
where we can thus assume that we have access to the deducibility relation `E (Definition 2.4). We

44

3.4 The Formal Model

Server=̂
in(a, x);
if x = 〈login, pass〉 then

out(sms, codei);
in(a, xcode);
if xcode = codei then

event Login(login).

Platform=̂
in(kb, xm1);
out(a, xm1);
in(kb, xm2);
out(a, xm2).

User=̂
event Initiate(login);
out(kb, 〈login, pass〉);
in(phone, xcode);
out(kb, xcode).

Mobile=̂
in(sms, xcode);
out(phone, xcode).

‖i(Server‖Platform‖Mobile‖User)

Figure 3.7: Google 2-step Toy Example

replace the rule Out of Figure 2.4 by the two following rules:

Out
ϕ, (out(t, s).P, σ) −→ ϕ] {[[s]]σ}, (P, σ)

if ϕ `E [[t]]σ

Sync
ϕ, (in(tP , x).P, σP)‖(out(tQ, s).Q, σQ) −→ ϕ, (P, σ′P)‖(Q, σQ)

if

[[tP]]σP =E [[tQ]]σQ

ϕ 6`E [[tP]]σP

σ′P = σP] {x 7→ [[s]]σQ}

The rule Out only applies if the attacker can deduce the identifier of the channel, once it has
been interpreted w.r.t. to the local binding variables of the process. Sync allows an input and
an output on the same channel to be reduced in a synchronous way, without leaking anything to
the attacker. It can only be executed if the term of the channel cannot be deduced, and if the
communications are on the same channel.

We provide an example of a process in Figure 3.7. a is a constant known to the attacker, modelling
an insecure Internet communication. All other string identifiers are names: sms models the sms
channel, kb the keyboard between the user and the platform and phone the screen of the mobile.
A user process User wants to authenticate to some server Server . To do so, the user sends their
login and password pass to their platform which are then forwarded to the server. The Server
generates a fresh codei for each session which sent to the user’s Mobile. The code is then forwarded
to the user, and back to the server through the platform.

Considering this example, we model the correspondence property (Definition 2.2) that any accepted
login was actually initiated by the user

Login(x) =⇒ Initiate(x)

This property is satisfied here, thanks to the sms channel which is private. In this case, the
property is even injective.

45

3 A Symbolic Model for Multi-Factor Authentication

3.4.2 Modelling TLS Communications

Most web protocols rely on TLS to ensure the secrecy of the data exchanged between a client
and a server. In order to formally analyse online authentication protocols, we thus need to model
TLS sessions and corresponding attacker capabilities. A possibility would of course be to precisely
model the actual TLS protocol and use this model in our protocol analysis. This would however
yield an extremely complex model, which would be difficult to analyse. A more detailed model of
TLS would mostly be of interest for the analysis of TLS itself, rather than the protocol that make
use of it. Therefore, for this Part, we opt to model TLS at a higher level of abstraction. In essence
we model that TLS provides

I confidentiality of the communications between the client and the server, unless one of them
has been compromised by the adversary;

I a session identifier that links all messages of a given session, avoiding mixing messages
between different sessions.

To model this in the applied pi calculus, we use what is called private function symbols. Terms
can be built using those symbols, but they are not available to the attacker for the deduction.

ü Technical Details 1

Private function symbols are built-ins of Proverif. We may encode them formally in our
model by defining the syntactic sugar TLS(x, y) 7→ TLS(x, y, nf), where TLS a function symbol
of arity 3 and nf is a secret name, that is completely fresh for the protocols.

We then model TLS as follows:

I we define a private function TLS(id,id) where id is a user defined type of identities, and
use the channel TLS(c,s) for communications between client c and server s;

I we define a TLS manager process that given as inputs two identities id1 and id2 outputs on
a public channel the channel name TLS(id1, id2), if either id1 or id2 are compromised;

I we generate a fresh name of type sid for each TLS connection and use it as a session
identifier, concatenating it to each message, and checking equality of this identifier at each
reception in a same session.

However, even if the communication is protected by TLS, we suppose that the adversary can block
or delay communications. As communications over private channels are synchronous we rewrite
each process of the form out(TLS(c, s),M).P into a process out(TLS(c, s),M)|P . This ensures that
the communications on TLS channels are indeed asynchronous. We provide the new elements of
our previous toy example in Figure 3.8. We use pattern matching to bind the variable on inputs,
e.g., in(c, (x, y)) is a shortcut for testing if the input is a pair, and assigning the projection to the
variables. If the input received does not follow the pattern, the thread goes into a failure state.

The TLS manager essentially allows the attacker to have a valid TLS session as long as the
communication is not between the honest user and the server. This means that, even though
we consider a single honest user, the attacker can perform all actions corresponding to sessions
involving other users. Hence, in our model we consider a single honest user in parallel with an
arbitrary number of corrupted users. As the corrupted user may behave honestly, considering a
single honest user is not a limitation. Note however, that we assume that there are no interactions
between the user’s computer and phone and the equipment of other users.

46

3.4 The Formal Model

Platform=̂
in(kb, 〈xlogin, xpass, xidS〉);
out(TLS(idP, xidS), 〈xlogin, xpass〉;

‖ in(kb, xcode);
out(TLS(idP, xidS), xcode).

TLSmanager =̂
in(a, 〈xidc, xids〉);
if not(xidc = idP)‖not(xids = idS) then

out(a, TLS(xidc, xids)).

Server=̂
in(a, xid);
in(TLS(xid, idS), 〈x〉);
if x = 〈login, pass〉 then

out(sms, codei);
in(TLS(xid, idS), xcode);
if xcode = codei then

event Login(login).

User=̂
event Initiate(login);
out(kb, 〈login, pass, idS〉);
in(phone, xcode);
out(kb, xcode).

‖i(Server‖Platform‖TLSmanager‖Mobile‖User)

Figure 3.8: Google 2-step Toy Example with TLS

3.4.3 Modelling Threat Models

We will now present how we model the different scenarios discussed in Section 3.3 in the applied
pi calculus.

Malware As discussed in Section 3.3.1, we view a system as a set of interfaces. By default,
these interfaces are defined as private channels. Let a be a public channel (i.e., a constant).
A malware providing read-only access to an interface ch is modelled by rewriting processes of
the form in(ch, x).P into processes of the form in(ch, x).out(a, x).P , respectively out(ch,M).P
into out(a,M).out(ch,M).P , depending on whether inputs or outputs are compromised. Read-
write access is simply modelled by revealing the channel name ch, which gives full control over
this channel to the adversary. We provide in Figure 3.9 an example where the input received
on the keyboard channel kb is forwarded to the attacker. The modified part of the process is
highlighted .

Fingerprint and spoofing When browsing, one may extract information about a user’s location,
computer, browser and OS version, etc. This fingerprint may be used as an additional factor for
identification, and can also be transmitted to a user for verification of its accuracy. We model
this fingerprint by adding a function fpr(id) which takes an identity and returns its corresponding
fingerprint. Given that all network communications are performed over a TLS channel TLS(c, s)
the server s can simply extract the fingerprint fpr(c). However, in some cases we want to give
the attacker the possibility to spoof the fingerprint, e.g., if the attacker controls the user’s local
network. In these cases we declare an additional function spooffpr(x) and the equation

fpr(spooffpr(fpr(c))) = fpr(c)

which provides the attacker with an identity whose fingerprint is identical to fpr(c), and allows
the attacker to initiate a communication on a channel TLS(spooffpr(fpr(c)), s).

47

3 A Symbolic Model for Multi-Factor Authentication

Platform=̂
in(kb, 〈xlogin, xpass, xidS〉);
out(a, 〈xlogin, xpass, xidS〉);
out(TLS(idP, ids), 〈xlogin, xpass);
· · ·

Figure 3.9: Key-logger

User=̂
event Initiate(login);
out(kb, 〈login, pass, idS〉);
in(phone, 〈xcode, xfingerprint 〉);
if xfingerprint = fpr(idP) then
out(a, xcode).

Figure 3.10: Fingerprint
User=̂
event Initiate(login);

in(a, xid);

if xid = idS then
out(kb, 〈login, pass, xid〉);
in(phone, 〈xcode, xfingerprint〉);
if xfingerprint = fpr(idP) then
out(kb, xcode).

Figure 3.11: Phishing

We show in Figure 3.10 an example where the User also receives from their phone the fingerprint
of the platform seen by the server, and checks that the fingerprint does match the fingerprint of
their platform.

Human errors - No compare Our model contains dedicated processes that represent the
expected actions of a human, e.g., initiating a login by typing on the keyboard, or copying a
received code through the display interface of their computer or phone. A user is also assumed to
perform checks, such as verifying the correctness of a fingerprint or comparing two random values,
one displayed on the computer and one on the phone. In the No Compare scenario we suppose
that a human does not perform these checks and simply remove them. The corresponding process
is obtained from Figure 3.10, by simply removing the highlighted conditional “if xfingerprint =
fpr(idP) then ”.

Human errors - Phishing In our model of TLS we simply represent a URL by the server identity
idS, provided by the human user, as it was shown in Figure 3.8. This initiates a communication
between the user’s computer, with identifier idC, and the server over the channel TLS(idC, idS).
This models that the server URL is provided by the user and may be the one of a malicious server,
which their machine is then connecting to. We let the adversary provide the server identity xid to
the user in order to model a basic phishing mechanism. We distinguish two cases: a trained user
will check that xid = idS, where idS is the correct server, while an untrained user will omit this
check and connect to the malicious server. The updated User process is provided in Figure 3.11,
where we highlight the line to be removed under phishing.

48

4 An Extensive Analysis

Les rêves, ça ne se compare pas.

(Le roi Arthur - Kaamelott)

4.1 Introduction

We want to have a detailed and modular threat models, so that we may consider attackers as
powerful as possible. We defined such a model in the previous Chapter, yet, once a detailed threat
model has been defined, performing the corresponding analysis on concrete examples is challenging.
Given a protocol, one needs to explore all combinations of attacker capabilities, which can yield
thousands of distinct analyses to perform. We perform such an analysis on the MFA protocols
presented in the previous chapter, thanks to the highly automated tool Proverif [BCA+10].

The analysis of multiple protocols designed to provide the same guarantees allows to obtain a high
level understanding of the weaknesses and strengths of each protocol. Also, the precise security
guarantee provided by a given mechanism in a more complex security protocol can be clearly
identified. Such results can be used to help system designers to choose the protocol that best suits
their needs, given their specifications.

We perform the extensive analysis by ranging over all possible combinations of attacker capabili-
ties (but without exploring the scenarios already subsumed), and exploring multiple versions of a
protocol. However, remark that we only consider authentication properties. To perform a truly ex-
tensive analysis, one would need to consider all the possibly interesting security properties provided
by a given protocol. This can be of importance in contexts where we expect a protocol to provide
multiple properties. E-voting protocols can for instance be considered, where many properties can
be expected. In the context of authentication protocols, one may want to consider privacy proper-
ties such as unlinkability. We briefly address this subject on the FIDO’s U2F protocol, where the
specific setting only yield one interesting scenario.

 Chapter Summary

We use the Proverif tool to systematically and automatically analyse several versions of
Google 2-step and U2F in an extensive way, considering all possible threat combinations and
analysing over 6000 (incomparable) scenarios. The resulting protocols comparison highlights
strengths and weaknesses of the different mechanisms, and allows us to propose some simple
variants, adding actions to the displayed information or linking the URL to the payload, which
improves security. We also study unlinkability of FIDO’s U2F protocol. Using our formalism,
we rediscover two previously reported attacks. While these attacks have been considered non
critical we argue that both attacks can be combined into a more dangerous one. Finally,
we validate our models and findings by demonstrating the feasibility of several attacks, in
laboratory conditions. We conclude with a final comparison between FIDO’s U2F and Google
2-step approaches.

49

4 An Extensive Analysis

4.1.1 Our Contributions

We analyse several variants of the Google 2-step and FIDO’s U2F protocols in a detailed threat
model. The analysis is completely automated, using scripts to generate systematically all combi-
nations of threat scenarios for each of the protocols and using the Proverif tool for automated
protocol analysis. Even though we eliminate threat scenarios as soon as results are implied by
weaker scenarios, the analysis required over 6 000 calls to Proverif, yet finishes in only a few
minutes. Our analysis results in a detailed comparison of the protocols which highlights their
respective weaknesses and strengths. It allows us to suggest several small modifications of the
existing protocols which are easy to implement, yet improve their security in several threat sce-
narios. In particular, the existing mechanisms do not authenticate the action that is performed,
e.g., a simple login may be substituted by a login enabling the “trust this computer” mechanism,
or a password reset. Adding some additional information to the display may thwart such attacks
in many of our threat scenarios. We propose the variant g2DTdis of the previously introduced
g2Vfpr protocol, where such information is displayed. We also propose a new variant of Google
2-step building on ideas from FIDO’s U2F protocol.

To validate our model and analysis we verify that the weaknesses we found can indeed be put
into practice. We report on our experiments with the google mail server and a FIDO USB token,
implementing FIDO’s U2F protocol. Even though our experiments are performed in a laboratory
environment they confirm the relevance of our models and analyses.

In addition to authentication, we also study unlinkability. The FIDO’s U2F specification claims
that it should not be possible to link two accounts that use the same second factor token. Modelling
unlinkability in the applied pi calculus, we are able to find two attacks. Both attacks we found
appeared to be known. However, we argue that they may be combined into a more relevant one.

a Limitations

Our analysis is performed in the symbolic model, and thus lacks the precision of the computa-
tional model. Moreover, the analysis on unlinkability is performed for a single threat model.

Essentially, we are limited by the current state of the art of automated analysis both in the
symbolic and computational models. Notably, while we may want to perform analysis for other
properties or other protocols (involving more complex primitives), we believe that we may have
reached the limits of Proverif. Indeed, small changes to the modelling for the authentication
study causes non termination of the analysis.

4.1.2 Related Work

Regarding the practical extensive analysis, many studies were performed by generating multiple
protocols or multiple scenarios systematically. We only mention three of the most recent work fol-
lowing this idea, based on distinct provers. [CGT18] studies with Proverif three distinct security
properties of a single e-voting protocol, given a fixed threat model, but with a protocol parame-
terized by an integer n and instantiating the parameter with multiple values. Each scenario was
produced from a single file in a systematic way. Still in the e-voting protocol area, [CDD+17] pro-
vides machine checked proofs of privacy related properties using EasyCrypt for several hundred
variants of an e-voting protocol. [GHS+20] studies the Noise framework by analysing many differ-
ent protocols of the framework and systematically deriving the maximal threat model supported
by each of the protocol using the Tamarin prover.

Concerning MFA, other attempts to automatically analyse MFA protocols were made, including

50

4.2 Analysis and Comparison

for instance the analysis of FIDO’s U2F [PRW17], the Yubikey One Time Password [KK16; KS13],
the analysis of MFA combined with Single sign-on with SATMC [SCR+18] and the Secure Call
Authorization protocols [ACZ13]. However, those analyses do not study resistance to malware, nor
do they capture precisely TLS channel behaviour or fingerprints.

? Future Work

As a direction for future work, it would be interesting to perform an in depth analysis of
U2F [FID18] and FIDO2 [BLVGB+17], also known as WebAuthn, standards, using our fully
mechanized approach.

As another direction, we consider the use of enclaves in trusted execution environments: such
environments could provide execution certification and a way to enable secure login on a com-
pletely untrusted computer, if the computer is equipped with a trusted module. One could
then use a phone as a U2F token assuming that we also have an efficient way to establish a
channel between the computer and the phone in order to pass the payload. The U2F keys
could be stored on the phone, and the next natural step would be to merge g2DTdis and U2F
by performing a U2F on the phone in parallel of the g2DTdis. The user would only see the
g2DTdis part, which would even be simplified without the double tap, because thanks to the
channel between the phone and the computer, there would not be any need to ask the user to
select the correct random. g2DTdis combined with for instance the storage of the keys using a
trusted execution environment, such as TrustZone would then palliate the issue of keys being
revealed due to malware on the phone.

4.2 Analysis and Comparison

 Section Summary

We use the formal framework presented in Chapter 3 to analyse several MFA protocols, focusing
on authentication properties. The analysis is completely automated using the Proverif tool,
along with a script which generate all possible combinations of attacker capabilities from a
single modelling file. All scripts and source files used for these analyses are available at [Mfa].
The results are summarized in tables (systematically produced from the analysis), allowing to
compare the respective guarantees provided by distinct protocols, depending on the considered
scenario.

4.2.1 Properties and Methodology

Properties We focus on authentication properties and consider that a user may perform 3 dif-
ferent actions:

I an untrusted login: the user performs a login on an untrusted computer, i.e., without selecting
the “trust this computer” option, using second-factor authentication;

I a trusted login: the user performs an initial login on a trusted computer, and selects the
“trust this computer” option, using second-factor authentication;

I a cookie login: the user performs a login on previously trusted computer, using their password
but no second factor, and identifying through a cookie and fingerprint.

For each of these actions we check that whenever a login happens, the corresponding login was
requested by the user. We therefore define three pairs of events

(initx(id), acceptx(id)) x ∈ {u, t, c}

51

4 An Extensive Analysis

The initx(id) events are added to the process modelling the human user, in order to capture
the user’s intention to perform the login action. The acceptx(id) events are added to the server
process. The three properties are then modelled as three injective correspondence properties:

acceptx(id) =⇒inj initx(id) x ∈ {u, t, c}

When the three properties hold, we have that every login of some kind accepted by the server for
a given computer matches exactly one login of the same kind initiated by the user on the same
computer.

Methodology For every protocol, we model the three different types of login, and then check
using Proverif whether each security property holds for all possible (combinations of) threat
scenarios presented in Section 3.3. As we consider trusted and untrusted login, we provide the user
with two platforms: a trusted platform on which the user will try to perform trusted logins, and an
untrusted platform for untrusted logins. We will thus extend the notation for malwares presented
in 3.3.1 by prefixing the interface with t if the interface belongs to the trusted computer, and u
if it belongs to the untrusted computer. For instance,Mu−usb

in:RO corresponds to a key-logger on the
untrusted computer. A scenario is described by a list of considered threats that may contain

I phishing (PH);
I fingerprint spoofing (FS);
I no comparisons by the user (NC);
I the malwares that may be present on the trusted and untrusted platform.

For instance, “PH FS Mt−usb
io:RW ” denotes the scenario where the attacker can perform phishing,

fingerprint spoofing, and has read-write access to the inputs and outputs of USB devices of the
trusted computer. “NC Mu−tls

io:RW M
u−usb
io:RW M

u−dis
io:RW ” models a human that does not perform com-

parisons and an attacker that has read-write access to the inputs and outputs of the TLS, USB
and display interfaces of the untrusted device.

We use a script to generate the files corresponding to all scenarios for each protocol and launch
the Proverif tool on the generated files. In total we generated 6 172 scenarios that are analysed
by Proverif in 8 minutes on a computing server with twelve Intel(R) Xeon(R) CPU X5650 @
2.67GHz and 50Go of RAM. We note that we do not generate threat scenarios whenever properties
are already falsified for a weaker attacker (considering less threats or weaker malware). The script
generates automatically the result tables, displaying only results for minimal threat scenarios that
provide attacks, and maximal threat scenarios for which properties are guaranteed. In the following
Sections we present partial tables with results for particular protocols. Full results for all protocols
are given in Tables A.1 and A.2 in Appendix.

The result tables use the following notations:

I results are displayed as a triple u t c where u, t, c are each 7 (violated) or 3 (satisfied) for the
given threat scenario; each letter in the set {u, t, c} gives the status of the authentication
property for untrusted login, trusted login and cookie login respectively;

I 6 and 4 are shortcuts for 777 and 333;
I signs are greyed when they are implied by other results, i.e., the attack existed for a weaker

threat model, or the property is satisfied for a stronger adversary;
I we sometimes use blue, circled symbols to emphasize differences when comparing protocols.

Even if Proverif can sometimes return false attacks, we remark that any 7 corresponds to an
actual attack where Proverif was able to reconstruct the attack trace.

52

4.2 Analysis and Comparison

Threat Scenarios g2V g2OT g2OTfpr

4 6 4

PH 6 6 4

NC 4 6 6

FS 333 6 6

Mt−hdd
in:RO 333 6 4

Mdev
in:RO 6 6 4

Mt−dis
io:RO 4 6 4

Mt−tls
io:RO 6 6 4

Mt−usb
in:RO 6 6 4

Mdev
in:RW 6 6 6

Mt−tls
io:RW 6 6 737

FS Mt−hdd
in:RO 337 6 6

Mu−hdd
in:RO 4 6 4

Mu−dis
io:RO 4 6 4

Mu−tls
io:RO 6 6 4

Mu−usb
in:RO 6 6 4

Mu−tls
io:RW 6 6 377

Mu−usb
in:RW 6 6 373

Table 4.1: Analysis of the Basic Google 2-step Protocols

Threat Scenarios g2DTfpr

NC 4

FS 4

NC Mt−tls
io:RO 4

NC Mt−usb
in:RO 4

FS Mt−usb
in:RO 4

NC Mu−tls
io:RO 4

NC Mu−usb
in:RO 4

FS Mu−tls
io:RO 4

FS Mu−usb
in:RO 4

Table 4.2: Analysis of the
Google 2-step
Double-Tap

4.2.2 Google 2-step: Verification Code and One-Tap

In this Section we report on the analysis of the currently available Google 2-step protocols: the
verification code (g2V, described in Section 3.2.1), the One-Tap (g2OT, described in Section 3.2.1)
with and without fingerprint, and the Double-Tap (g2DTfpr, described in Section 3.2.1). The
results are summarized in Tables 4.1 and 4.2.

g2V In the g2V protocol the user must copy a code received on their phone to their computer
to validate the login. We first show that g2V is indeed secure when only the password of the user
was revealed to the attacker: as long as the attacker cannot obtain the code, the protocol remains
secure. If the attacker obtains the code, either using a key-logger (Mt−usb

in:RO), or by reading the
SMS interface (Mdev

in:RO), or any other read access to an interface on which the code is transmitted,
the attacker can use this code to validate their own session. Looking at Table 4.1, it may seem
surprising that a malware on a trusted platform may compromise an untrusted login. This is due
to the fact that a code of a trusted session may be used to validate an untrusted session and
vice-versa. Moreover, if the attacker can access the hard disk drive (Mt−hdd

in:ro), they may steal the
cookie that allows to login without a second factor, and then perform a login if they can also spoof
the platform fingerprint (FS).

We have tested on the Google website that a code generated for a login request can indeed be
used (once) for any other login, demonstrating that such attacks are indeed feasible. Interestingly,
this also shows that in the actual implementation, the verification code is not linked to the TLS
session. Not linking codes to sessions is actually useful as it allows to print in advance a set of
codes, e.g., if no SMS access is available. Moreover, we note that linking the code to a session does
not actually improve security in our model, as the code of the attacker session will also be sent to
the user’s phone and could then be recovered. In practice, if the code is linked, an attack can be
produced only if the attacker’s code is received first, i.e., if the attacker can login just before or
after the user.

We remark that the results for g2V are also valid for another protocol, Google Authenticator . On
this protocol the phone and the server share a secret key, and use it to derive a one time password
(OTP) from the current time. In all the scenarios where the SMS channel is secure, g2V can be

53

4 An Extensive Analysis

seen as a modelling of Google Authenticator where the OTP is a random value “magically” shared
by the phone and the server.

g2OT In the g2OT protocol a user simply confirms the login by pressing a yes/no button on
their phone. We first consider the version that does not display the fingerprint, and which is
still in use. Our automated analysis reports a vulnerability even if only the password has been
stolen. In this protocol, the client is informed when a second, concurrent login is requested and
the client aborts. However, if the attacker can block, or delay network messages, a race condition
can be exploited to have the client tap yes and confirm the attacker’s login. We have been able to
reproduce this attack in practice and describe it in more detail in Section 4.3. While the attack
is in our most basic threat model, it nevertheless requires that the attacker can detect a login
attempt from the user, and can block network messages (as supposed in the Dolev-Yao model).

g2OTfpr We provide in the third column of Table 4.1 the analysis of g2OTfpr. To highlight the
benefits of the fingerprint, we color additionally satisfied properties in blue. In many read only
scenarios (Mt−tls

io:RO, M
t−usb
in:RO,M

u−tls
io:RO, M

u−usb
in:RO), and even in case of a phishing attempt, the user

sees the attacker’s fingerprint on there phone and does not confirm. However, if the user does not
check the values (NC) or if the attacker can spoof the fingerprint (FS), g2OTfpr simply degrades
to g2OT and becomes insecure. Some attacks may be performed on the cookie login, for instance
for scenarios Mt−tls

io:RW or Mt−usb
io:RW , as the attacker may initiate a login from the user’s computer

without the user having any knowledge of it, and then use it as a kind of proxy.

Because of the verification code, in scenarios FS or NC, g2V provides better guarantees than
g2OTfpr. It is however interesting to note that g2OTfpr resists to read only access on the device
as there is no code to be leaked to the attacker. One may argue that an SMS channel provides
less confidentiality than a TLS channel, i.e., the read-access on the SMS channel may be easier
to obtain in practice. Indeed, SMS communications between the cellphone and the relay can be
made with weaker encryption (A5/0 and A5/2) than TLS, and the SMS message will anyway be
sent over TLS between the relay and the provider’s servers. While this argument is in favour of
g2OTfpr, one may also argue that g2V has better resistance to user inattention, as a user needs
to actively copy a code.

g2DTfpr To palliate the weakness of g2OT compared to g2V, Google proposes g2DTfpr where
a comparison through a second tap is required. The additional security provided by the second
tap is displayed in Table 4.2, where we highlight in blue the differences between g2OTfpr and
g2DTfpr. The attacker must be able to have their code displayed and selected on the user’s device
in order to successfully login. Therefore, FS or NC scenarios with some additional read only access,
are secure. Interestingly, in the NC scenario, we are now as secure as g2V, while having greater
usability. We note that we are still not secure in the PH FS scenario. This means that an attacker
controlling the user’s network or some WiFi hotspot could mount an attack against g2DTfpr.

4.2.3 Additional Display

In this Section, we propose and analyse small modifications of the previously presented protocols.
Given the benefits discussed in Section 3.2.1, we first add a fingerprint to g2V.

In Google 2-step some attacks occur because the attacker is able to replace a trusted login by an
untrusted one, e.g., under Mu−usb

in:RW . If this happens, the attacker can obtain a session cookie for
their own computer and perform additional undetected logins later on. A user might expect that

54

4.2 Analysis and Comparison

Threat Scenarios g2Vfpr g2Vdis g2OTdis g2DTdis

PH 4 4 4 4

PH FS 6 733 6 733

PH FS Mt−hdd
in:RO 6 737 6 737

PH FS Mt−tls
io:RO 6 6 6 73-

PH FS Mt−usb
in:RO 6 6 6 733

PH FS Mt−dis
io:RW 6 733 6 6

PH FS Mt−usb
in:RO M

t−hdd
in:RO 6 6 6 737

PH FS Mt−dis
io:RW M

t−hdd
in:RO 6 737 6 6

Mt−tls
io:RO 4 4 333 4

Mt−usb
in:RO 4 4 4 4

Mt−tls
io:RW 737 337 337 337

FS Mt−tls
io:RO 6 377 6 33-

FS Mt−usb
in:RO 6 377 6 333

FS Mt−dis
io:RW 333 333 6 377

FS Mt−usb
in:RO M

t−hdd
in:RO 6 377 6 337

FS Mt−tls
io:RW 6 377 6 377

FS Mt−usb
in:RW 6 377 6 377

FS Mt−dis
io:RW M

t−hdd
in:RO 337 337 6 377

FS Mt−dis
io:RW M

t−tls
io:RO 6 377 6 377

FS Mt−usb
in:RO M

t−dis
io:RW 6 377 6 377

Mu−tls
io:RO 4 4 333 4

Mu−usb
in:RO 4 4 333 4

Mu−tls
io:RW 377 4 333 333

Mu−usb
in:RW 373 4 333 333

FS Mu−tls
io:RO 6 733 6 4

FS Mu−usb
in:RO 6 733 6 4

FS Mu−dis
io:RW 4 4 6 733

FS Mu−tls
io:RW 6 733 6 733

FS Mu−usb
in:RW 6 733 6 733

FS Mu−dis
io:RW M

u−tls
io:RO 6 733 6 733

FS Mu−usb
in:RO M

u−dis
io:RW 6 733 6 733

Table 4.3: Google 2-step Protocols with Additional Display

by using a second factor, they should be able to securely login once on an untrusted computer and
be assured that no additional login will be possible.

We now study a variant of each of the protocols where the user’s action (trusted or untrusted
login) is added to the display. This addition may create some harmless “attacks” where the attacker
replaces a trusted login with an untrusted login. However, such attacks indicate that an attacker
may change the type of action, such as password reset, or disabling second-factor authentication.

We call g2Vfpr the protocol version that additionally displays the fingerprint, and g2Vdis,
g2OTdis and g2DTdis the versions that additionally display the action, and provide in Table 4.3
the results of our analysis. To highlight the benefits of our modifications, we color additionally
satisfied properties in blue, when considering g2V and g2Vfpr, g2Vfpr and g2Vdis, g2OTfpr

and g2OTdis and g2DTfpr and g2DTdis.

It appears that adding the action - and the fingerprint in the g2V case - performs as expected:
the protocols become secure in all the scenarios where the only possible attack was a mixing of
actions.

55

4 An Extensive Analysis

Threat Scenarios g2Vdis g2DTdis

PH FS Mt−tls
io:RO 6 73-

PH FS Mt−usb
in:RO 6 733

PH FS Mt−dis
io:RW 733 6

PH FS Mt−usb
in:RO M

t−hdd
in:RO 6 737

PH FS Mt−dis
io:RW M

t−hdd
in:RO 737 6

Mdev
in:RO 6 4

NC Mt−tls
io:RO 6 4

NC Mt−usb
in:RO 6 4

NC Mt−dis
io:RW 4 6

FS Mt−tls
io:RO 377 33-

FS Mt−usb
in:RO 377 333

FS NC Mt−tls
io:RO 6 33-

FS Mt−dis
io:RW 333 377

FS Mt−usb
in:RO M

t−hdd
in:RO 377 337

FS NC Mt−usb
in:RO M

t−hdd
in:RO 6 337

FS Mt−dis
io:RW M

t−hdd
in:RO 337 377

FS NC Mt−dis
io:RW M

t−hdd
in:RO 337 6

NC Mu−tls
io:RO 6 4

NC Mu−usb
in:RO 6 4

NC Mu−dis
io:RW 4 6

FS Mu−tls
io:RO 733 333

FS Mu−usb
in:RO 733 333

FS Mu−dis
io:RW 333 733

Table 4.4: Comparison of Google 2-step with Code or
Tap

Threat Scenarios U2F
4

PH 4

FS 333

Mdev
in:RO - - -

Mt−hdd
in:RO 333

Mt−dis
io:RO 4

Mt−tls
io:RO 333

Mt−usb
in:RO 4

Mdev
io:RO 6

Mdev
in:RW 6

Mt−tls
io:RW 6

Mt−usb
io:RW 6

FS Mt−hdd
in:RO 337

FS Mt−tls
io:RO 337

Mu−hdd
in:RO 4

Mu−dis
io:RO 4

Mu−tls
io:RO 4

Mu−usb
in:RO 333

Mu−tls
io:RW 6

Mu−usb
in:RW 373

Mu−usb
io:RW 777

Table 4.5: U2F Results

4.2.4 Conclusion Regarding Google 2-step

Currently, Google proposes g2V, g2OT, g2OTfpr and g2DTfpr. Adding the type of login being
performed (trusted or untrusted) to the display would provide additional security guarantees.

Among the studied mechanisms, g2Vdis and g2DTdis provide the best security guarantees in our
model, having each advantages and disadvantages. In Table 4.4, we provide a comparison between
these two mechanisms. We observe that g2Vdis performs better than g2DTdis only in scenarios
where we haveMt−dis

io:RW , which may be considered as a powerful malware.

g2DTdis provides better guarantees in many simpler threat scenarios, with for instance read-only
access to the phone. As the code is sent back to the server from the phone rather than the
computer, this mechanism is more resilient to malware on the computer. Moreover, the code is
sent through a TLS channel rather than via SMS, which may arguably provide better security.

Finally, even though Google 2-step may significantly improve security, phishing attacks combined
with fingerprint spoofing are difficult to prevent. This seems to be inherent to the kind of protocol,
where the security is only enforced through the 2nd factor. As we will see in the next section the
FIDO U2F protocol may provide better guarantees for these threat scenarios.

4.2.5 FIDO U2F

FIDO’s U2F adds cryptographic capabilities to the mechanism through its registration mechanism.
As explained previously, the URL of the server the user is trying to authenticate to is included in

56

4.2 Analysis and Comparison

the query made to the FIDO USB token, and also in the signature returned by the token. The
server will then only grant login if the signature contains their own URL.

We present the results of our formal analysis in Table 4.5. U2F is secure under many threat
scenarios, including some that combine phishing and fingerprint spoofing. However, an attack is
found when the computer runs malware that controls the USB interface of the trusted computer
(Mt−usb

io:RW). Indeed, the malware can then communicate with the U2F token, and thus send a
request generated for an attacker session. Also, if the attacker can control the TLS interface
(Mt−tls

io:RW orMu−tls
io:RW), they may change the intended action and replace an untrusted login with

a trusted one. As a consequence, a login on an untrusted computer with U2F may enable future
attacker logins on this computer. This contradicts claims that Yubikeys (an implementation of
U2F token) guarantee protection against "phishing, session hijacking, man-in-the-middle, and
malware attacks." While the claim indeed holds for the first threats, malware attacks are still
possible. Moreover, one might expect an external hardware token to allow users to securely log
on an untrusted computer. However, this enables an attacker to submit their own request to the
user’s token. Even though a user has to press the token button to accept each request, as noted
previously, a malware controlling the TLS connection will allow several attacker logins for one user
press due to the “trust this computer” mechanism.

U2F may lead to another problem that is out of the scope of our analysis: a Yubikey does not
have any way to provide feedback for a successful press. When the computer submits two requests
in a row to the token and the user just presses once, the user may believe that the press failed, and
press once more. This is reminiscent of the problem identified during the analysis of the One-Tap
mechanism: success and failure of the second factor should not be silent.

To summarize, one might expect U2F to protect against malware, as it is based on a secure
hardware token providing cryptographic capabilities. Thus, even if U2F does provide a better
security than most existing solutions, it does not uphold this promise completely. However, the
U2F mechanism providing protection against phishing is very interesting. What appears to be
lacking from U2F is some feedback capabilities, i.e., a screen, to notify failures, successes, and
maybe information such as the fingerprint of the computer.

4.2.6 Token Binding

We previously studied the security of the protocols combined with the “trust this computer” mech-
anism where a cookie is used to authenticate a computer on the long term. We provide in Table 4.6
the results of the formal analysis of TokenBinding combined with U2F and g2DTdis, and high-
light in blue the security gained with respect to the classical cookie version. It provides protection
against a read only access to the TLS interface, because it is not any more sufficient to steal the
cookie. We do not gain protection against control of the computer memory, as the secret key is
stored the same way as the cookie. The attacker needs to be able to access the private key of the
user which was generated on their platform but never sent over the network.

4.2.7 A g2DTdis Extension : g2DText

Core idea We propose an extension of g2DTdis based on ideas from U2F. Our goal is to provide
a protocol which will have the same user experience as g2DTdis, but will provide a stronger
protection against phishing by using the second factor to confirm the origin and the TLS session
id.

To protect against phishing, the URL seen by the user must be authenticated. This requires

57

4 An Extensive Analysis

Threat Scenarios U2F U2Ftb g2DTdis g2DTdis
tb

PH FS Mt−tls
io:RO 337 333 73- 733

PH FS NC Mt−tls
io:RO 337 333 6 6

PH FS Mt−dis
io:RW M

t−tls
io:RO 337 333 6 6

PH FS Mt−usb
in:RW M

t−tls
io:RO 337 333 6 6

FS Mt−tls
io:RO 337 333 33- 333

FS Mt−dis
io:RW M

t−tls
io:RO 337 333 377 377

FS NC Mt−dis
io:RW M

t−tls
io:RO 337 333 6 6

FS Mt−usb
in:RW M

t−tls
io:RO 337 333 377 377

FS NC Mt−usb
in:RW M

t−tls
io:RO 337 333 6 6

Table 4.6: Results for the TokenBinding Extension

user Computer Mobile Server

Successful g2OTfpr login

sh(sid, URL)

sh(sid, URL)
sh(sid, URL)

check sid, URL

Figure 4.1: g2DText Outline

an external intervention. For instance, in U2F the browser extracts the URL and sends it to the
token. With a phone serving as a second factor, we may mimic this behavior by having the browser
transmit the URL to the phone through some secure channel. The phone can then transmit the
URL to the server on an independent channel, allowing the server to check that the URL seen by
the user corresponds to their own URL. This however requires an efficient way to transmit data
from the computer to the phone, ideally without any particular setup. NFC like technologies may
provide a promising means for such a channel. Without this channel the selection mechanism of
g2DTdis may be used: to verify that a user has seen some data on their computer the phone
displays the data among other random data, and asks the user to select the correct one.

Of course, an efficient and easy to deploy channel would be preferable to the selection mechanism.
Yet, the selection mechanism of g2DTdis allows for a protocol with the same user experience,
rather easy to deploy, but with greater security.

Extension description The extension is similar to g2DTdis, except that the server does not
send a freshly generated digit to the computer. The user’s browser extracts the URL and the TLS
session identifier and produces a short hash of those values that is displayed in a pop-up outside
the web page. The server computes the same hash and sends it to the phone. The phone displays
the hash among two other random values. If the user selects the correct value, the phone confirms
the login to the server.

Intuitively, instead of using a signature to transmit securely the URL and the TLS session identifier,
the protocol relies on a confirmation on the user’s phone. The outline of the protocol is displayed
in Figure 4.1.

Currently, g2DTdis uses only a 2-digit integer. Hence, an attacker has probability 1/100 to guess
the integer, which is much higher than usually accepted. If in g2DText we were to use 2 digit hash

58

4.2 Analysis and Comparison

Threat Scenarios g2DTdis g2DText

PH NC 6 4

PH FS 733 333

PH FS Mt−hdd
in:RO 737 33-

PH FS Mt−tls
io:RO 73- 337

PH FS NC Mt−hdd
in:RO 6 33-

PH FS NC Mt−tls
io:RO 6 337

PH FS Mt−hdd
in:RW 737 337

PH FS Mt−dis
io:RW 6 377

PH FS NC Mt−hdd
in:RW 6 337

PH FS Mt−tls
io:RW 6 337

PH FS Mt−usb
in:RW 6 4

PH FS Mt−usb
in:RW M

t−hdd
in:RO 6 337

PH FS Mt−usb
in:RW M

t−tls
io:RO 6 337

NC Mt−tls
io:RW 777 337

NC Mt−usb
in:RW 6 4

FS Mt−tls
io:RW 377 337

FS Mt−usb
in:RW 377 333

FS Mt−usb
in:RW M

t−hdd
in:RO 377 337

FS Mt−usb
in:RW M

t−tls
io:RO 377 337

FS NC Mt−usb
in:RW M

t−hdd
in:RO 6 337

FS NC Mt−usb
in:RW M

t−tls
io:RO 6 337

NC Mu−tls
io:RW 6 4

NC Mu−usb
in:RW 6 373

NC Mu−usb
in:RW M

u−tls
io:RW 6 377

FS Mu−tls
io:RW 733 333

FS Mu−usb
in:RW 733 333

Table 4.7: Comparison between g2DTdis and
g2DText

Threat Scenarios U2F g2DText

Mdev
in:RO - - - 4

Mdev
io:RO 6 4

Mt−tls
io:RW 6 337

NC Mt−dis
io:RW 4 6

Mt−usb
io:RW 6 4

FS Mt−dis
io:RW 333 377

FS Mt−dis
io:RW M

t−hdd
in:RO 337 377

FS Mt−dis
io:RW M

t−tls
io:RO 337 377

FS NC Mt−dis
io:RW M

t−hdd
in:RO 337 6

FS NC Mt−dis
io:RW M

t−tls
io:RO 337 6

FS Mt−dis
io:RW M

t−tls
io:RW 6 377

FS Mt−usb
io:RW M

t−hdd
in:RO 6 337

FS Mt−usb
io:RW M

t−tls
io:RO 6 337

FS Mt−usb
io:RW M

t−dis
io:RW 6 377

Mu−tls
io:RW 6 4

NC Mu−dis
io:RW 4 6

Mu−usb
in:RW 373 333

NC Mu−usb
in:RW M

u−dis
io:RW 373 6

Mu−usb
io:RW 777 4

NC Mu−usb
in:RW M

u−tls
io:RW 6 377

NC Mu−usb
io:RW 6 373

FS Mu−dis
io:RW 333 733

FS Mu−dis
io:RW M

u−tls
io:RW 6 733

FS Mu−usb
in:RW M

u−dis
io:RW 373 733

FS Mu−usb
io:RW M

u−dis
io:RW 6 733

Table 4.8: Comparison between U2F and
g2DText

values, an attacker could easily find collisions. To maintain usability and improve the security by
transmitting more information, it might be worth exploring different mechanisms, such as using
images or visual hashes. The only conditions are that the domain should be large, and a human
should be able to instantly pick the correct value out of the three proposals.

4.2.8 g2DText Analysis

We provide in Table 4.7 the advantages of g2DText when compared to g2DTdis, where we high-
light the newly secure cases in blue. We ensure higher security guarantees in some common
scenarios such as phishing combined with a distracted user who does not compare values. This
means that g2DText can be used to effectively protect untrained people against phishing. More-
over, it is also secure in the case of phishing and fingerprint spoofing. Hence, the protocol provides
secure login even when connecting on an untrusted network. The comparison between U2F and
g2DText is displayed in Table 4.8, where we highlight differences in blue. We do not display the
device malware scenarios, that are not relevant for U2F, but in which case it naturally provides
better security. To summarize, U2F is more secure against an attacker who can manipulate the
display of the computer, or of course the phone itself. g2DText is more secure against an attacker
who can manipulate the USB ports of the computer or the network. It is difficult to say which
protocol provides the best security as it depends on more practical considerations, that we discuss
in the Section 4.5.1.

59

4 An Extensive Analysis

4.3 Validating Attacks in Practice

 Section Summary

We provide below a more practical description of a few selected types of attacks and weaknesses.
Demonstrating that these attacks can be put in practice, albeit in laboratory conditions, val-
idates our protocol and attacker models. Some of these attacks were found with Proverif,
while others were discovered during the reverse engineering of the protocols. We do not claim
novelty of those attacks, which are not particularly complex. We provide for each type of
attacks

I the outline of the required steps of the attacks,
I high level comments about the severity of the attacks and an understanding of how they

work and why they are possible;
I a description of how the attack was validated in a lab environment, that explains how

exactly those attacks might be performed, by whom and what are the required capabili-
ties.

Each attack was reproduced in a laboratory setting with laptops and an internet connection,
using a dedicated Google account for the g2OT attacks, and the first version of the “Security
Keys series by Yubico” along with an open source APIa for the FIDO attacks. Remark that
some of the following weaknesses might also be combined into stronger attacks.
ahttps://github.com/Yubico/libu2f-server

4.3.1 Session Confusion on g2V

Outline

The different steps of the attack are as follows:

1. The user enters their email and password, initiating a user session;
2. the browser informs the user that a code will be received on their phone;
3. the attacker enters the user’s login and password on another computer, initiating an attacker

session;
4. the attacker intercepts the code intended for the user session;
5. the attacker uses the code of the user session to validate the attacker session.

Comments

The fact that the code generated to validate the user session can be used to validate the attacker
session may be surprising. It implies that the attacker does not need to intercept the code intended
for their own session, but can use the code of any user session. This is an important observation:
if the attacker uses for instance a key-logger, the code that the user enters on their computer is
the first one received, which is most likely the code for the first session, i.e., the user session. If
the codes were linked to the sessions on the server side, the code entered on their computer by
the user would be useless to the attacker. We also remark that, as previously mentioned, the SMS
channel might not provide a high level of security, at least compared to TLS. Hence, it might be
possible for an attacker to obtain the verification code through a weakness of the SMS channel.
This weakness does not directly lead to a severe attack but it may facilitate performing some of
the following attacks.

60

4.3 Validating Attacks in Practice

Attack Validation

We created a fresh Google account and enabled the second factor authentication by associating a
previously unregistered phone. Using two distinct computers, we initiated a first login attempt on
the first one and received a first code. We then initiated a second session on the second computer
and received a second code. The second code was then used to validate the first session, and
conversely. This confirms that the code sent is not linked to a specific login attempt.

4.3.2 Session Confusion on g2OT

Outline

The different steps of the attack are as follows:

1. the user enters their password and email, initiating a user session;
2. the browser displays a request to confirm the request on their phone;
3. the attacker detects that the user contacted the server. After the first reply from the server

the attacker blocks all further messages;
4. the attacker enters the user’s login and password on another computer, initiating an attacker

session;
5. depending on the timing, two things may then happen:

I the user presses yes, nothing happens on their screen, and the attacker is logged in;
I or the user presses yes, nothing happens on their screen, but another yes/no pops up

on their phone. If the user presses yes once more, the attacker is logged in.

Comments

A robust implementation should reject any kind of simultaneous login from different sessions, or
at least display it clearly on the phone, as it is done in the browser. We believe it to be plausible
that users, after having pressed yes on their phone without a successful login, would press yes a
second time. This attacks relies inherently on a lack of feedback given to the user, and a lack of
a strong link between the computer that starts the session and the phone that validates it. This
attack is concerning because of its simplicity. Google is implementing g2OTfpr, but g2OT is still
deployed on older mobile phones. It might be advisable to disable g2OT entirely.

Attack Validation

This attack was easy to reproduce in practice as it does not involve any complex manipulation.
Using again a dedicated Google account, we

1. initiated two sessions for the same user on two distinct computers,
2. disconnected one computer from the network to reflect that the attacker blocks the network,

and
3. validated the session of the other computer on the phone.

Sometimes we had to confirm twice on the phone to validate the malicious session, and sometimes
only once. In a basic version of this attack, which does not require to block the network, an
attacker observing the target user could initiate a session just a few moments after the user, and
be logged in when the target validates on their phone. The target would see an error of the type
"Something went wrong" on their computer and might retry to login. However, the error message

61

4 An Extensive Analysis

may appear before the user validates, as it appears as soon as a simultaneous login attempt is
made. Thus, the more evolved version of this attack implies to block the Internet connection of
the target computer after the user started their login. In our experiment, we simply temporarily
disabled in step (2) the WiFi connection of the computer to disconnect the computer from the
network. This effectively models an attacker that has the control over the network. Indeed, if the
attacker controls the network, the attacker can detect all connections to the server IP address,
and block all but the first connections through a firewall rule (although we did not implement the
experiment detecting automatically the connection).

4.3.3 Phishing Attack on Google 2-step

Outline

The different steps of the attack are as follows:

1. the attacker directs the user to some malicious web page;
2. the attacker initiates a login attempt with the server, and the malicious web page simply for-

wards every information and query from the login attempt to the user through the malicious
web page.

Comments

In [BHO+12], g2V was deemed secure with respect to phishing because they only considered
passive phishing, where the attacker cannot for instance forward the query of the verification code
to the user. We believe that it is necessary to consider active phishing as it is a reasonable capability
nowadays. This kind of attack can be performed on a large scale without targeting a specific user.
We argue that second factor authentication should efficiently protect against phishing, and even
phishing combined with fingerprint spoofing, which are likely scenarios under which a user may
wish to perform a secure login. Ideally, a second factor should even provide protection against this
attack for a completely untrained human only following basic instructions.

Attack Validation

The core of this phishing attack is a man-in-the-middle attack. Interestingly, the interception can
be completely invisible for the user. In our different examples, we will consider a user who wishes
to login on google.com. Several user behaviors may be problematic when dealing with phishing:

I the user follows any untrusted link close enough to the authentic one, e.g. google-
security.com;

I the user ignores an HTTPS warning;
I the user does not check that the protocol is HTTPS, but accepts HTTP.

We believe that most untrained users may be victims of the first two, and that even trained users do
not always check that they are protected by HTTPS before providing their credentials. Depending
on the attacker capabilities, many different kinds of phishing attacks might be performed, some of
them difficult to avoid even for experienced users.

The most basic phishing attack is to get the user to click on a malicious link which is close to
the official one. It can be performed for instance through a mail which invites the user to login

62

4.3 Validating Attacks in Practice

on google-security.com to solve some security issue. Here, the attacker may have obtained a valid
certificate for the malicious domain, and the user will see a valid HTTPS connection.

Suppose we connect to a malicious WiFi Network. Different kinds of attacks can be performed.
First, the malicious network may act as a free WiFi Hotspot network which requires third party
authentication. Changing the DNS, for instance to contain the line "google.com IN A 192.168.0.1",
the google.com domain will be redirected to an IP address controlled by the attacker. This may or
may not raise an HTTPS error depending on the state of the cache of the user’s browser. More
precisely, as most websites, http://google.com contains a 301 redirect code to https://google.com.
This redirection is cached by the browser according to the headers, which contain "Cache-Control:
max-age=2592000". This means that the 301 redirect from HTTP to HTTPS is cached by the
user browser for 2592000 seconds, i.e., 30 days. If the cache is still valid when the user connects to
google.com, their browser remembers the 301 and connects to https://google.com. As the attacker
cannot provide a valid TLS certificate the user sees an HTTPS warning, that the user may choose
to ignore. If the cache has expired, which happens once every month, the user connects through
HTTP to the malicious server, and believes to be on google.com without any warning displayed.
If the user does not check for HTTPS, the phishing attempt succeeds.

To confirm this behavior, we forced the DNS client of a Linux machine to resolve the url
“google.com” to a local IP address (editing the /etc/hosts files). Then, when trying to connect
to “http://google.com” in a completely fresh browser session, a local dummy page was displayed
without any warning. In a browser session that was used previously to visit the honest Google
website in the past 30 days, we obtained the HTTPS warning as the browser remembered the 301
redirect code.

We can design an even stronger attack, by setting up the WiFi network as a network which requires
authentication through a captive portal. This is a feature classically supported by most access
points, which can be provided with an URL or an IP address to which all users who try to login
should be redirected. When performing an actual test for instance on Firefox, the browser detects
that we are on a network which requires authentication, and proposes in a pop-up to redirect us to
the captive portal. Even a trained user is likely to follow the link to have an Internet connection.
The attacker can then redirect the user to a link of their choice: the attacker may redirect the user
to https://google-security.com with a valid HTTPS certificate, or redirect through basic HTTP to
a subdomain of google.com that does not exist, for instance api.login.google.com, and reconfigure
the DNS as previously. As the subdomain does not exist, the attacker is ensured that the user’s
browser does not have any cached 301 redirection for this site. The user then connects to the
attacker server via HTTP on a seemingly legitimate URL. Using a DNS redirection such that all
websites are resolved to the captive portal (this is a classical implementations of the captive portal
for WiFi hotspots), we were able to redirect the user to an arbitrary page, containing any arbitrary
link, notably to a fake google page. The fake page corresponding to http://api.login.google.com was
successfully displayed without warning. To complete the attack with https://google-security.com,
we would need to register a TLS certificate for this domain. This could have be done for instance
using the “Let’s encrypt” certification system, although we did not perform this registration.

Some attacks could be avoided or at least complicated through the use of DNSSEC (which en-
forces a signature validation system for DNS requests) or HSTS (which declares that some website
should only be accessed through HTTPS), but this is not supported by most websites, including
google.com.

The phishing attacks can be made perfect (the user sees google.com under HTTPS but is connected
to the attacker server) if the attacker can install a malicious HTTPS certificate on the user
computer. On a computer running a Debian Linux distribution with libnss3-tools installed, this
was achieved through the command certutil -d sql:$ HOME/.pki/nssdb -A -t TC -n "mitm" -i
malicious_cert.pem. We then successfully reproduced a valid HTTPS connection over a malicious

63

4 An Extensive Analysis

server by using the mitmproxy tool on Linux that allows to intercept all connections and mimic
the behavior of a man-in-the-middle.

4.3.4 Action Confusion and Mixing on Google 2-step and U2F

Outline

The different steps of the attack are as follows:

1. the user initiates an untrusted login;
2. the attacker transforms the untrusted login into a trusted one;
3. the attacker uses the acquired cookie to perform other logins;

or

1. the user initiates an untrusted login;
2. the attacker initiates a trusted login;
3. the attacker uses the multi-factor actions made for the untrusted login to validate their

session.

Comments

Using multi-factor authentication, a user may expect that after a successful login, once the user has
disconnected from the computer, even an attacker with full control over the malicious computer
should not be able to perform other logins. If the attacker can obtain a cookie through transforming
an untrusted login into a trusted login, this property is violated. Note that this change may be
completely invisible to the user, and hence the user may not check the list of trusted devices in
the preferences of their account.

The core of this attack is an action confusion, where an intended action, the untrusted login,
is transformed into another action, a trusted login. Another instance of action confusion occurs
when a verification code intended for a login attempt is used by the attacker to reset the user’s
password. Note that every SMS from Google has the same content, independent of the action type.
We recommend the SMS or the display of the second factor to provide the user with the intended
action that is currently being validated. Untrusted login, Trusted login, Password Reset and
deactivation of Multi-factor authentication are sensitive actions that should require multi-factor
authentication and not be confusable.

This is particularly complicated for U2F, which does not provide the user with feedback through
the second factor.

Attacker Validation

We were able to perform several sequences of actions that can lead to action confusion.

First, after a successful second factor login, multi factor parameters of the account can be accessed
by only retyping the password. Hence, the second factor protection can be disabled. Although an
e-mail is sent to notify the user about this change, as the attacker is already logged in, the attacker
can simply delete the e-mail. Once the second factor protection is disabled, the attacker can login

64

4.3 Validating Attacks in Practice

from any untrusted computer. This is not per se an action confusion, but we note that a code
intended for a login also allows an attacker to change the authentication settings of the user.

Second, many browser extensions, e.g., Greasemonkey or TamperMonkey, allow the behavior of
specific pages to be changed. On the Google login page, we were able thanks to a five line JavaScript
code to hide the "I trust this computer" check-box by adding the attribute style="visibility:hidden;"
to its “div”. As the box is checked by default, we were able to perform a login with a second factor
enabled where the box was invisible. The platform then became trusted, and we were able to
perform a second login where only the password was required, and the second factor was not
asked.

Third, we recall that a login validation and a password reset action yield the same SMS. By
initiating simultaneously a login attempt and a password reset, we receive two similar SMS. An
attacker may thus initiate a password reset while the user is trying to log into their account. The
user will receive the code for the password reset, that the attacker may intercept, e.g., using a key-
logger, and change the user’s password. We reproduced those attacks using a dedicated Google
account and a phone as a second factor.

4.3.5 USB Attack on U2F

Outline

The different steps of the attack are as follows:

1. the user initiates a login;
2. the attacker initiates another login;
3. the attacker sends to the token the payload corresponding to their session;
4. the attacker sends to the token the payload corresponding to the user session;
5. the user presses once the button of the token;
6. the attacker get backs the signed data, and completes their login;
7. after the first press, the token keeps blinking without any change;
8. the user presses again, and validates their session.

Comments

This weakness is inherent to the fact that the U2F factor does not provide feedback to the user.
Therefore, the user is unable to know which action is actually validated when pressing the token
button. Moreover, when submitted two queries in a row, the token will simply keep blinking after
the first press. Given that at least some tokens have touch buttons (and not a press button) the
user may have the impression that the press was unsuccessful.

The weakness is also related to the fact that U2F does not have an independent communication
channel with the server, and cannot provide any security when plugged into a malicious computer.
We believe however that providing a secure one time only login on a malicious computer is a
reasonable user expectation.

65

4 An Extensive Analysis

Attack Validation

We performed our tests on the Yubikey U2F FIDO security key, which is equipped with a touch
button. Using an open source API1, we were able to submit two simultaneous signature requests to
the token, in a similar way that the requests are submitted by the browser. The token then started
blinking as usual, expecting a user touch to confirm the signature. After touching once the button,
it kept blinking as if the press were unsuccessful. Pressing once again, we received both signatures
through the API. Hence, we could implement a malware that would detect an honest request and
would submit a second request at the same time. Then, the user may press once, believe that the
press was not registered and thus press once again, thus validating without their consent for the
two requests. This problem could be avoided by forbidding two simultaneous requests, and simply
dropping any request as long as the current one is not validated.

4.4 Unlinkability

 Section Summary

We analyse unlinkability of the U2F protocol, but not of Google 2-step as it is directly linked
to Google and the cellphone. The formal analysis allows to rediscover two known attacks.
However, we remark that these two attacks can actually be combined into a more severe attack.

4.4.1 On Privacy

So far, our analysis did not cover privacy considerations. As we assumed that the attacker knew
the user password, we also assumed that they knew the user’s identity. Google 2-step does not
provide privacy guarantees as users provide their phone number to the server. However, U2F is
advertised as enforcing privacy: it can be read on Yubiko’s website that by using a fresh key pair
for every account "Example.com cannot know whether User1 and User2 shares the same device."
2. The FIDO alliance also backs up some claims about the unlinkability of U2F by advertising
"No linkability between services or accounts" 3.

We analysed unlinkability in the U2F registration and authentication protocols and were able to
observe two weaknesses. We noted that, independently, both weaknesses were already acknowl-
edged in the FIDO specification, although deemed either not critical or too costly to fix. We will
describe the two attacks on privacy, and argue that, when combined, their impact may be higher.
We propose several possible fixes to be considered.

4.4.2 Formal Analysis

Unlinkability captures the fact that a server should not be able to tell if two users share the same
device or not. Proverif supports verification of indistinguishability properties, modelled as an
observational equivalence between processes. Observational equivalence expresses the fact that the
attacker cannot know with which of the two process they are interacting with.

1https://github.com/Yubico/libu2f-server
2https://developers.yubico.com/U2F/Protocol_details/Overview.html, section 3
3https://fidoalliance.org/about/what-is-fido/

66

https://developers.yubico.com/U2F/Protocol_details/Overview.html
https://fidoalliance.org/about/what-is-fido/

4.4 Unlinkability

Treg=̂
let fsk = smac((rnd, ski), sk) in
let handle = (mac((tsk, URL), ski), rnd, pk(fsk)) in
out(USB, handle).

Tauth=̂
in(USB, (handle));
let fsk = smac((rnd, ski), ski) in
if handle = (mac((tsk, URL), sk), rnd, pk(fsk)) then

out(USB, sign((URL, challenge), fsk)).

Figure 4.2: U2F Token Modelling

A U2F token may generate a fresh key for every new registration. We model here the key generation
process of the Yubikey 4, which follows FIDO’s U2F ’s guidelines. It has been designed so that the
device does not need any writable memory. To register to a new server, the U2F token proceeds
as follows, where sk is the token’s global secret key, and mac denotes a MAC function:

I generate a fresh random rnd;
I compute the fresh secret key fsk := mac((rnd, sk), sk);
I compute the corresponding public key fpk;
I compute the key handle, which is the triple mac(fsk, sk), rnd, fpk;
I output the key handle.

Including the random rnd in the key handle allows the token to recompute the secret key; the
MAC guarantees the authenticity of the secret key, i.e., it ensures that the secret key was indeed
issued by the token.

When receiving a login request the server replies by sending a challenge together with the key
handle. The token responds with a signature on the challenge and the URL. The model of the U2F
token, with one process for the registration and another for authentication, is given in Figure 4.2.

The process parameters are the token’s secret key ski, used to derive new keys, and the server’s
URL. The input of the authentication process is given by the attacker, modeling a malicious
server. tsk is the new secret key registered on the server side through the corresponding public
key pk(tsk) and the key handle. Given these processes, we can express our security property as

‖i(Treg‖Tauth) ∼= ‖j(‖i≤1(Treg‖Tauth))

where ' denotes observational equivalence. Observational equivalence models the attacker’s in-
ability to distinguish the left-hand and the right-hand processes [ABF17]. The above property
expresses the fact the server, identified by URL, cannot know if it is interacting with a single
token, as in the left hand-side, or with multiple different tokens, as on the right-hand side.

4.4.3 Attack against Key Generation

The FIDO overview 5 documents an attack where a server may check if two users share a same
token, i.e., if two accounts do in fact correspond the same person. Using the above modelling,
Proverif allows us to capture this attack. Considering two accounts on the server, one with login
log1 and key handle kh1, and the other log2 and kh2, the server may

4https://developers.yubico.com/U2F/Protocol_details/Key_generation.html
5https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.
2-ps-20170411.pdf

67

https://developers.yubico.com/U2F/Protocol_details/Key_generation.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf

4 An Extensive Analysis

I receive a login attempt from log1, and answer with kh2
• if both kh1 and kh2 were generated by the same token, the token will accept kh2 and

provide the corresponding signature;
• else, it will fail;

I if the server receives a signature, it links log1 and log2, and, otherwise, differentiates them.

This attack in itself may not be critical, as the server must target two particular users that it
wishes to distinguish.

4.4.4 U2F with Counters

The U2F protocol uses global counters that are incremented at every signature made by the token
with the counter value included in the signature. These counters tracking the number of signatures
issued by the token allow to detect device cloning or key leakage: if a server observes two login
attempts with inconsistent counter values, they may have been produced by two different tokens,
i.e., the original token and a clone.

Related privacy considerations are briefly mentioned in FIDO’s U2F webauthn standard6. They
mention the risk that a global counter for all key pairs can produce correlation attacks. Indeed,
even an honest but curious server may check that the login sequences, ordered by timestamp, made
by two of its users form a strictly increasing sequence of counter values. If this is verified for a large
number of values, the two accounts are likely to share the same device. Providers sharing their
information may also allow this attack. Using separate counters for each key pair would avoid this
attack, yet this increases the device cost, and Yubikeys currently use a single counter.

4.4.5 An Attack Based on Global Counters

We integrated the use of counters in our formal model. We use private channels to “store” the
current value of a counter, and model integers by a zero constant zero and a successor function
s(). Proverif finds an attack which corresponds to the basis of the correlation attack. Consider
two accounts, with respective logins log1 and log2, with no previous login attempt. The server
may:

I receive a first login request for the login log1, and obtain the corresponding token’s counter
value, which is 0;

I receive a first login request for the ling log2, and obtain the corresponding token’s counter
value, which is either 0 or 1;

I If the value is 1, they share the same token, else they do not.

If log1 and log2 share the same token, its counter is increased by both logins, which is not the case
when different tokens are used.

We also modeled the version where tokens maintain different counters for each key pair instead of
a global one. Proverif proves that in this case the U2F tokens are indeed unlinkable.

4.4.6 Combining Both Attacks

We note that the two previous attacks might be combined. While the first attack is “visible”, i.e.,
the fact that the server replies with a wrong key handle is observable, the second attack is not

6https://www.w3.org/TR/webauthn/#sign-counter

68

https://www.w3.org/TR/webauthn/#sign-counter

4.5 Google 2-step vs U2F

observable, but does not allow to link users with certainty. A server that does not wish to be
detected while misbehaving, often modelled by a honest-but-curious server, is unlikely to perform
the first attack. However, combining the attacks, a server may try to link together accounts
probabilistically using their counters, and then confirm its suspicions using the first attack. This
scenario is currently possible on Yubikey’s implementation.

4.4.7 Improvements

In the attack against the key generation, the root cause is that the key pair is not strongly linked
to the corresponding account. For instance, if the user login was also to be included in the MAC
provided in the key handle, the token could detect a mismatch and provide an error. This requires
that the browser is capable of forwarding the login name to the token, it must therefore be able to
extract the login of the user from the login page. This might be possible through an authentication
API that the login page must follow, and might be included for instance in the webauthn API.

The attack based on counters can be avoided by using a different counter for each key pair.
This however requires more costly tokens. Counters could also be completely removed, losing the
possibility to detect cloning. We note that cloning can only be detected; it does not prevent an
attacker from performing a login. Typically an attacker having cloned a device may use a very
large counter. This counter is likely to be consistent, i.e., larger, than the counter on the original
token. In that case cloning will only be detected when the honest user performs a login after the
attacker. Hence, the use of one or no counters is a question of priority of whether one favors privacy
or clone detection.

4.5 Google 2-step vs U2F

 Section Summary

We provide a final comparison of the Google 2-step and U2F approaches to MFA. We first
look at some practical considerations that are outside the scope of our threat model, and then
conclude based on both our analysis and those practical considerations. The comparison does
not say which approach is the best, but provides insight on the key points to look at if one
desires to choose between the two solutions in a given scenario.

4.5.1 Practical Considerations

As mentioned previously, there are some interesting aspects that are outside of the scope of our
threat models and formal analysis. We therefore discuss below some additional thoughts and
findings.

Independence of the Second Factor

When trying to log into an account from a compromised computer, we observed that the U2F token
might be used by the attacker if the attacker controls the channel used for communication with the
second factor. Therefore, the U2F approach cannot provide strong protection against malwares
on the user computer. The risk is mitigated by the fact that the attacker may only perform
a single action authenticated by the second factor, but if this action can be used to deactivate

69

4 An Extensive Analysis

the second factor, or reset the user password, the user account may be completely compromised
by this single action. The approach of Google 2-step provides a second communication channel
that is independent from the computer, and may enable security even on a completely untrusted
computer.

On the Need for Feedback

An advantage of the phone over the U2F token is the feedback provided to the user. In particular,
on FIDO’s U2F , two consecutive button presses may remain unnoticed. On the phone, a success or
failure confirmation after pressing the button is easily provided. Moreover, the phone can be used
to produce improved versions of U2F, where the display is enriched with additional information,
as we did for g2DTdis. We note that FIDO proposes the “secure transaction" mechanism, which
specifies that second factors might use a display. However, the message content is not included in
the standardization.

Storing the Keys on a Dedicated Secure Token

An advantage of the U2F token is that, even if a computer is compromised, the number of attacker
logins is limited by the number of times the button is pressed. This is due to the fact that keys
are stored on a token and not completely compromised. If keys are stored on a computer or a
smartphone, a malware may extract them. As discussed previously, U2F does not provide perfect
security either. Although keys are more difficult to compromise, one should be careful about how
the token is used to ensure that no unwanted computer becomes trusted, or that a user does not
press the button twice in a row. A solution to mitigate key leakage for computers or smartphones
could be to consider an Isolated Execution Environment, such as Intel SGX, ARM TrustZone or a
Trusted Platform Module.

Carrying Additional Authenticators

An important aspect of multi-factor protocols is of course usability. From that point of view, the
need to buy and carry an additional token may be cumbersome. Nowadays, more and more people
possess and constantly carry their phone, making it a natural choice for a second factor.

Disabling the Second Factor

On some websites, for instance GitHub, disabling the second factor (and then changing the pass-
word) does not require the use of the second factor, once a login was performed. It seems advisable
to require a second factor authentication to disable the mechanism.

4.5.2 Final Comparison

It is difficult to compare the two approaches which are quite different. We try to provide a brief
summary of the main advantages of both (we consider here U2F with a dedicated USB token):

I Google 2-step provides an independent channel of communication with the server, and feed-
back through the display;

70

4.5 Google 2-step vs U2F

I Google 2-step may be compromised by malware on the phone;
I U2F provides privacy (if implemented correctly);
I U2F may suffer from key leakage or device cloning;
I U2F requires an additional device;
I U2F does not provide enough feedback.

If we consider U2F where the phone is used as the dedicated token to store the keys and perform
the cryptographic operations, U2F may provide enough feedback to the user (fingerprint, trusted
login attempt,. . .) and would not require carrying another device. We would however potentially
lose the privacy, the key storage would need to be completely secured and isolated, it could be a
victim of malware, and we need a convenient mechanism to set up a channel between a phone and
a computer.

Against both versions of U2F, Google 2-step provides better security against some critical scenarios
(connection to a dishonest network or on a corrupted computer). Yet, Google 2-step is currently
unable to provide unlinkability.

71

Part II

Modular
In which we try to bring some modularity to our proofs

73

5 A Composition Framework in the
Computational Model

One essential object is to choose
that arrangement which shall
tend to reduce to a minimum the
time necessary for completing the
calculation.

(Ada Lovelace)

5.1 Introduction

Our goal is to strive for formal and mechanized proofs of complex protocols, against attackers
as powerful as possible. In the previous Part, we exposed what an extensive analysis can look
like. It was performed in the symbolic model, and for a class of protocols that does not involve
complex primitives. Performing such an analysis for more complex protocols, e.g., an e-voting
protocol, or in the computational model is currently out of reach. To tackle complex protocols in
the computational model, we must find ways to simplify the proofs. To this end, we consider in
this Part security proofs of composed protocols, where the proof of the protocol is derived from
multiple simpler proofs.

We consider the security property P‖R ∼= Q‖R. It is well known that when R does not share any
secrets, i.e., any randomness with P and Q, we have that P ∼= Q implies that P‖R ∼= Q‖R. In
this case, the idea is that the attacker can actually simulate R by sampling itself the values of the
names used only by R, and produce messages that have exactly the same distribution as the one
produced by R. In essence, R does not provide any useful information to try to break P ∼= Q.
Thus, when trying to (de-)compose security properties, the main difficulty comes from the fact
that different protocols may share some secrets. For instance, R could provide a decryption oracle
for a secret key appearing in P and Q, thus breaking the security of P . In practice, situations arise
where we want to split a protocol into components that share some secrets.

This is typically the case for multiple sessions of the same protocol, or for key exchange protocols,
which result in establishing a shared secret that will be later used in another protocol. Protocols
may also share long term secrets, for instance the same signing key may be used for various authen-
tication purposes. Another example is the SSH protocol with the forwarding agent feature [YL],
which we will consider later. The forwarding feature allows to obtain, through previously estab-
lished secure SSH connections, signatures of fresh material required to establish new connections.
It raises a difficulty, as signatures with a long term secret key are sent over a channel established
using the same long term secret key.

When decomposing the security of a composed protocol into the security of its components, we
would like to break a complex proof into simpler proofs, while staying in the same proof framework.
This is also a difficulty since the attacker on a protocol component might use the other components:
we need a proof with respect to a stronger attacker. In [BDF+18], such a strong attacker can be
simulated by a standard one, because there is no shared long term secret.

75

5 A Composition Framework in the Computational Model

 Chapter Summary

We design a method that allows to decompose a security property of a compound protocol into
security properties of its components. This works for parallel composition, but also sequential
composition and replication: we designed a reduction from the security of multiples copies
of a protocol to a security property of a single copy. Our method works even if the various
components share secrets and (in case of sequential composition) when a state is passed to the
other component.

We illustrate our composition results showing how to split the security of any (multi-session
with shared long term secret) composed key exchange into smaller proofs. Actual proofs of
protocols are delayed to Part IV, where the proofs are mechanized.

We generalize the application to key exchanges performing key confirmations, i.e., using the
derived key in the key exchange (as in TLS). The generalization is simple, which is a clue of
the usability of our framework.

5.1.1 Our Contributions

We provide a composition framework that reduces the security of a compound protocols to the
security of its components. We allow both state passing and shared long term secrets. The
framework relies on the definitions of protocols and the computational semantics of Figure 2.3 (its
protocol algebra was designed in order to provide a suitable composition algebra for our framework).
Our main composition Theorems are generic: the classical game based setting can be used to prove
the sub-goals, or the BC logic, as it will be shown in Chapter 6.

The starting idea is simple: if we wish to prove the security of a composed protocol P‖Q, it is
sufficient to prove the security of P against an attacker that may simulate Q, maybe with the help
of an oracle. If n are the secrets shared by P and Q, this simulation has to be independent of the
distribution of n. This is actually an idea that is similar to the key-independence of [BFS+13].

Therefore, we first introduce the notion of O-simulation, in which an oracle O holds the shared
secrets: if Q is O-simulatable and P is secure against an attacker that has access to O, then P‖Q
is secure. Intuitively, O defines an interface through which the secrets can be used (e.g., obtaining
signatures of only well tagged messages). O simulatable protocols conform to this interface.

We extend this basic block to arbitrary parallel and sequential compositions, as well as replication
of an unbounded number of copies of the same protocol. In the latter case, the security of a
single copy of P against an attacker that has access to an oracle allowing to simulate the other
copies, requires to distinguish the various copies of a same protocol. In the universal composability
framework, this kind of properties is ensured using explicit session identifiers. We rather follow a
line, similar to [KR17], in which the session identifiers are implicit.

5.1.2 Related Work

The security of composed protocols has been widely studied in the last two decades. For in-
stance, Universal Composability (UC) and simulation based reductions [Can00; CR03; BPW07;
HS15; BDH+08; CKK+19] and other game-based composition methods [Mau11; BFS+13; Bla18;
BDF+18] address this issue. While the former proceed in a more bottom-up manner (from se-
cure components in any environment, construct secure complex protocols), the latter proceed in

76

5.1 Introduction

a more top-down way: from the desired security of a complex protocol, derive sufficient security
properties of its components. Such “top-down” proofs design allows more flexibility: the security
requirements for a component can be weaker in a given environment than in an arbitrary envi-
ronment. The counterpart is the lack of “universality”: the security of a component is suitable for
some environments only.

We follow here the “top-down” approach. While we aim at designing a general methodology, our
target is the management of formal security proofs in the BC logic [BC14a]. We do not review
here the composition results in the symbolic model, as we are directly in the computational model.
As far as we know, the existing composition results that follow the “top-down” approach cannot be
used in situations where there is both a “state passing”, as in key exchange protocols, and shared
long term secrets. For instance, in the framework of [BDF+18], the same public key cannot be
used by several protocols, a key point for reducing security of multiple sessions to security of one
session.

We introduce the composition problem through a process algebra: protocols are either building
blocks (defined, e.g., with a transition system) or composed using parallel and sequential compo-
sition, and replication. This prevents from committing to any particular programming language,
while keeping a clean operational semantics. This approach is also advocated in [BDF+18], which
follows a similar approach. Other works on composition (e.g., [Mau11; BDH+08]) rely on specific
execution models.

Our starting idea, to prove a component w.r.t. a stronger attacker that has access to the context,
is not new. This is the basis of many works, including [BFW+11; BFS+13; Bla18; BDF+18].
The main difference, that we wish to emphasize, is that these works do not support long term
shared secrets, used in different components. Notably, the oracles of [BDF+18] are only used to
decompose protocols with state passing. Our notion of simulatability allows sharing long term
secret by granting the attacker access to oracles that depend on the secrets (for instance, signing
oracles). It also allows a symmetric treatment for proofs of a protocol and proofs of its context.

For several specific problems, typically key exchanges, there are composition results allowing
to prove independently the key exchange protocol and the protocol that uses the exchanged
key [BFW+11; BFS+13; Bla18; FG14; KR17]. In such examples, the difficulty also comes from the
shared secret, especially when there is a key confirmation step. In that case, the derived key is used
for an integrity check, which is part of the key exchange. Then the property of the key exchange:
“the key is indistinguishable from a random” does not hold after the key confirmation and thus
cannot be used in the security proof of the protocol that uses this exchanged key. In [BFS+13], the
authors define the notion of key independent reduction, where, if an attacker can break a protocol
for some key distribution, they can break the primitive for the same distribution of the key. This is
related to our notion of simulatability, as interactions with shared secrets are captured by an oracle
for fixed values of the key, and thus attacks on the protocol for a fixed distribution are naturally
translated into attacks against the primitive for the same distribution. Key exchanges with key
confirmation are therefore a simple application of our composition results. Along the same line,
[FG14] extends [BFW+11] to multi staged key exchanges, where multiple keys might be derived
during the protocol. While we do not directly tackle this in our work, our framework could be
used for this case.

The authors of [Bla18] also provide results allowing for the study of key renewal protocols (which
we capture with the sequential replication Theorem), and has the advantage to be in a mechanized
framework, while we only cast our results in a mechanizable framework. It does not however
consider key confirmations.

The UC framework initiated by [Can00] and continued in [CKK+19; HS15; BPW07] is a popular
way of tackling composition. As explained above, this follows a “bottom-up” approach, in which
protocols must be secure in any context, which often yields very strong security properties, some of

77

5 A Composition Framework in the Computational Model

which are not met in real life protocols. Moreover, to handle multiple sessions of a protocol using a
shared secret, joint-state theorems are required. This requires a tagging mechanism with a distinct
session identifier (sid) for each session. Relaxing this condition, the use of implicit session identifiers
was established in [KT11] for the UC framework, ideas continued in [KR17] for Diffie-Hellman key
exchanges, where they notably provide a proof of the ISO 9798-3 [Iso] protocol.

We do not consider a composition that is universal: it depends on the context. This allows us
to relax the security properties regarding the protocol, and thus prove the compositional security
of some protocols that cannot be proved secure in the UC sense. We also rely on implicit sids
to prove the security of multiple sessions. Some limitations of the UC framework are discussed
in [BFW+11, Appendix A].

In [BDH+08], the authors also address the flexibility of UC (or reactive simulatability) showing how
to circumvent some of its limitations. The so-called “predicates” are used to restrict the order and
contents of messages from environment and define a conditional composability. Assuming a joint-
state conditional composability theorem, secret sharing between the environment and the protocol
might be handled by restricting the accepted messages to the expected use of the shared secrets.
However, the framework does not cover how to prove the required properties of (an instance of)
the environment.

Protocol Composition Logic is a formal framework [DMP03] designed for proving, in a “Dolev-Yao
model”, the security of protocols in a compositional way. Its computational semantics is very far
from the usual game-based semantics, and thus the guarantees it provides [DDM+05] are unclear.
Some limitations of PCL are detailed in [Cre08].

Summing up, our work is strongly linked to previous composition results and captures analogues of
the following notions in our formalism: implicit disjointness of local session identifiers [KT11], single
session games [BFW+11], key-independent reductions [BFS+13] and the classical proof technique
based on pushing part of a protocol in an attacker, as recently formalized in [BDF+18]. We build
on all these works and additionally allow sharing long term secrets, thanks to a new notion of O-
simulatability. This fits with the BC model: the formal proofs of composed protocols are broken
into formal proofs of components. All these features are illustrated by a proof of SSH with (a
modified) forwarding agent.

? Future Work

The framework could be used to consider more complex protocols, such as for multi-party com-
putation protocols. While we chose to use later on the BC logic to perform cases studies lever-
aging our framework, it could also be used to help proving complex protocols in EasyCrypt
[BGH+11] for example, as security w.r.t. an attacker accessing an oracle can be formalized in
this tool.

5.2 Protocols and Indistinguishability

 Section Summary

Classical indistinguishability specifies that an attacker interacting with either oracle O1 or O2,
both oracles modelling protocols, cannot know with which of the two oracles they are interacting.
We extend the definitions of Section 2.3.1 by giving the attacker access to a stateless oracle O to
increase their capabilities. Classical indistinguishability is implied by the O-indistinguishability,
for any given oracle O.

78

5.2 Protocols and Indistinguishability

5.2.1 Stateless Oracle Machines

For reasons that have been explained in the introduction, we wish to extend the semantics of
protocols and their indistinguishability (Chapter 2) to attackers that have access to an additional
stateless oracle. At this stage, we need stateless oracles in order to be compositional. Let us
explain this. Assume we wish to prove a property of R in the context P‖Q‖R. The idea would be
to prove R, interacting with an attacker that simulates P‖Q. This attacker is itself a composition
of an attacker that simulates P and an attacker that simulates Q. The protocols P , Q, R share
primitives and secrets, hence the simulation of P,Q requires access to an oracle that holds the
secrets. If such an oracle were to be stateful, we could not always build a simulator for P‖Q
from simulators of P,Q respectively, since oracle replies while simulating Q could depend on oracle
queries made while simulating P , for instance.

We now refer to stateless oracles as simply oracles, that should not be confounded with protocol
oracles (Definition 2.9) that are stateful through their history tape. The oracles depend on a
security parameter η (that will not always be explicit), (secret) random values and also draw
additional coins: as a typical example, a (symmetric key) encryption oracle will depend on the key
k and use a random number r to compute enc(m, r, k) from its query m. Therefore, the oracles
can be seen as deterministic functions that take two random tapes as inputs: ρs for the secret
values and ρO for the oracle coins.

Formally, oracles take as input tuples (m, r, s) where m is a finite sequence of bitstrings, r is a
handle for a random value and s is a handle for a secret value. r and s are respectively used
to extract the appropriate parts of ρO, ρs respectively, in a deterministic way: the randomness
extracted from ρO is uniquely determined by m, r, s and the extractions for different values do not
overlap.

In what follows, we only consider oracles that are consistent with a given functional model Mf .
Such oracles only access ρs through some specific names. This set of names is called the support
of the oracle.

Example 5.1. An encryption oracle for the key k (corresponding to the handle “1”), succes-
sively queried with (m, 1, 1), (m′, 2, 1), (m, 3, 1), (m, 1, 1), (m′, 2, 2), . . . will produce respectively
the outputs enc(m, r1, k), enc(m′, r2, k), enc(m, r3, k), enc(m, r1, k), ⊥,. . . Here r1, r2, r3 are non-
overlapping parts of ρO (each of length η). The support of this oracle is {k}.

ü Technical Details

The formal definition of stateless oracles is a bit involved, notably to formally specify the
randomness extraction. This construction is required to ensure the determinism of the oracles.
Determinism is required to build a single simulator for two parallel protocols from the individual
simulators for the two protocols.

For instance, for an oracle performing randomized encryption, rather than always encrypting
with a fresh nonce, this system allows multiple attackers to obtain an encryption of a message
with the same random.

79

5 A Composition Framework in the Computational Model

Definition 5.1 ((Stateless) Oracle). An oracle O is a triple of functions that have the
following inputs

I a sequence of bitstrings w ∈ ({0, 1}∗)n and two bitstrings r, s: the query, consisting of
an input query w, an input tag r, an input key s;

I a random tape ρs for the (secret) random values;
I the security parameter η;
I a random tape ρO for the oracle’s coins.

The first function assigns to each w, s, r an integer n(w, s, r) ∈ N and is assumed injective.
n(w, s, r) is used to extract a substring e1(n(w, s, r), η, ρO) from ρO, which is uniquely de-
termined by the input. We assume that the length of the substring extracted by e1 only
depends on η, and substrings extracted with e1 are disjoint for different values of n.

The second function e2 assigns to each s a sequence p(s) of natural numbers, that are used
to extract secret values from ρs: e2(s, η, ρs) is a sequence of bitstrings. It is also assumed to
be injective.

The third function takes η, w, r, s, e1(n(w, s, r), η, ρO), e2(s, η, ρs) as input and returns a
result (a bitstring) or a failure message.

Example 5.2. Expanding upon Example 5.1, the encryption oracle is given by the triple of
functions (e1, e2, e3) such that:

I e1(n(w, s, r), η, ρO) extracts the substring r at position range [n(w, s, r)× η, (n(w, s, r) +
1)× η] from ρO.

I e2(s, η, ρs) =

{
[[k]]ηρs if s = 1

0 else
I e3(η, w, r, s, e1(n(w, s, r), η, ρO), e2(s, η, ρs)) = [[enc(y, r, x)]]η{y 7→w,r 7→r,x 7→e2(s,η,ρs)

Given η, and a sequence of bitstrings m, we call r1 the sequence of bitstrings at position range
[n(m, 1, 1)×η, (n(m, 1, 1)+1)×η] from ρO. Then, on input (m, 1, 1), e1(n(m, 1, 1), η, ρO) = r1,
e2(1, η, ρs) = [[k]]ηρs and the oracle returns e3(η,m, 1, 1, r1, [[k]]ηρs) = [[enc(y, r, k)]]ηy 7→m,r 7→r1 .

We now replace the previous Definition 2.9 of PTOMs by adding tapes and access to the ora-
cle.

Definition 5.2 (Protocol Oracle). A Polynomial Time Oracle Machine (PTOM) is a Turing
machine denoted by AO,OP and equipped with:

I an input/working/output tape (as usual; it is read/write);
I a read-only random tape ρr (attacker’s coins);
I an oracle input tape ρO;
I an oracle output tape, which is read-only.
I a protocol oracle and oracle read-only random tape ρs (not accessible by the Turing

Machine);
I a protocol oracle input tape;
I a protocol oracle history tape θ;
I a protocol oracle output tape.

Note that once the oracle’s random tape is fixed, we ensure that all our oracles are deterministic.

As previously, we distinguish between the inputs that the machine can access and the inputs that
can be accessed by the oracle only; we use the notation AO(ρs,ρO),OP (ρs)(ω, ρr) for a PTOM with
access to the oracle O and the protocol oracle OP . We will often omit to specify the oracles

80

5.3 Simulatability

argument, and simply write:
AO,OP (ω, ρr)

Similarly to protocol oracles, these definitions extend to multiple oracles 〈O1, . . . ,On〉, prefixing
the query with an index in {1, . . . , n}. We will often write AO1,...Ok(ω, ρr) for A<O1,...Ok>(ω, ρr).
We may finally consider multiple oracles that combine protocols oracles and stateless oracles.
A〈O1,...,Om〉,〈OP1

,...,OPn〉 is also written AO1,...,Om,OP1
,...,OPn .

We can then extend Definition 2.12 to the new PTOMs.
Definition 5.3. Given a functional model Mf , an oracle O and protocols P,Q, we write
P ∼=O Q if for every PTOM AO, the attacker’s advantage AdvP

∼=OQ equals to

|Pρs,ρr{AO,OP (ρs)(ρr, 1
η) = 1} − Pρs,ρr{AO,OQ1

(ρs)(ρr, 1
η) = 1}|

is negligible in η.

Remark that by giving an oracle to the distinguisher, we strictly increase its power. Thus, we
trivially have that for any protocols P,Q and oracle O, P ∼=O Q⇒ P ∼= Q.

ü Technical Details

Once again, the new definition actually depends on the matching between the oracles modelling
parallel protocols and the actual behaviour of parallel protocols.

Lemma 5.1. For protocols P,Q,A,B, an oracle O and a list Ol of protocol oracles,

|Pρs,ρr{AO,Ol,OA‖P (ρs)(ρr, 1
η) = 1}

−Pρs,ρr{AO,Ol,OB‖Q(ρs)(ρr, 1
η) = 1}| =

|Pρs,ρr{AO,Ol,OA(ρs),OP (ρs)(ρr, 1
η) = 1}

−Pρs,ρr{AO,Ol,OB(ρs),OQ(ρs)(ρr, 1
η) = 1}|

Proof. For protocols P,Q such that C(P) ∩ C(Q) = ∅, for any message m, random tape ρs and
history tape θ, we have by definition of the semantic of ‖ and the definition of the parallel
oracles:

OP‖Q(ρs, θ)(m) =< OP ,OQ > (ρs, θ)(m)

The desired result then immediately follows. �

5.3 Simulatability

 Section Summary

We define a notion of “perfect” simulation, where a protocol depends on some secrets that the
attacker can only access through an oracle, and an attacker must be able to produce exactly
the same message as the protocol. This means that an attacker, given access O but not to a
set of secrets n, can completely simulate the protocol P (using O to have a partial access to
the secrets), i.e., produce exactly the same distribution of message.

Formally, given a set of names n, an oracle O and a protocol P . We say that νn.P is O-
simulatable, if there exists a PTOMAO such that for any attacker BO, the sequences of messages
produced by BO,OP has exactly the same probability distribution as the on produced by BO
interacting with AO instead of OP .

81

5 A Composition Framework in the Computational Model

Assume that Q ∼=O R and νn.P is O-simulatable, where n contains the secrets shared by P,Q
and R. Any distinguisher against Q ∼=O R can also produce any message that would produce
P in this context, and can therefore be transformed into a distinguisher against Q‖P ∼=O R‖P .
In other terms, Q ∼=O R and νn.P is O-simulatable implies that Q‖P ∼= R‖P .

5.3.1 Protocol Simulation

The goal in the rest of the Chapter is to use this notion of simulatability to obtain composability
results. Suppose one wants to prove P‖Q ∼= P‖R, knowing that Q ∼=O R and P is O-simulatable.
The way to obtain a distinguisher for Q ∼=O R from one on P‖Q ∼= P‖R is to “push” the (simulated
version) of P within the distinguisher. A protocol P is then simulatable if there exists a simulator
AO that can be “pushed “ in any distinguisher D. We formalize this construction below, where a
protocol is simulatable if and only if any distinguisher D behaves in the same way if the protocol
oracle OP is replaced by its simulator AO. We define formally D[AO]O the replacement of OP in
DO,OP .
Definition 5.4. Given an oracle O, a functional model Mf , a protocol P , PTOMs
DO,OP (ρrD , 1

η) and AO(· · · , 1η), we define D[AO]O(ρr, 1
η) as the PTOM that:

1. Splits its random tape ρr into ρr1 , ρr2
2. Simulates DO,OP (ρr2 , 1

η) by replacing every call to OP with a computation of AO: each
time D enters a state corresponding to a call to OP , D[AO] appends the query m to a
history θ (initially empty), executes the subroutine AO(ρs,ρO)(ρr1 , θ, 1

η) and behaves as
if the result of the subroutine was the oracle reply.

3. Prefixes each random handle of an oracle call of D with 0 and random handle of an oracle
call of A with 1.

4. Outputs the final result of D.

D[AO]O must simulate AO and D so that they do not share randomness. To this end, D[AO]O

first splits its random tape ρr into ρr1 (playing the role of ρO) and ρr2 (playing the role of ρD).
The oracle queries are prefixed by distinct handles for the same reason. DO,OP has access to the
shared secrets via both O and OP , while D[AO]O only has access to them through the oracle O .
Remark that if AO and DO,OP has a run-time polynomially bounded, so does D[AO]O.

To define the central notion of O-simulatability, the distribution produced by any distinguisher
interacting with the simulator must be the same as the distribution produced when it is interacting
with the protocol. However, as we are considering a set of shared secrets n that might be used
by other protocols, we need to ensure this equality of distributions for any fixed concrete value v
of the shared secrets. Then, even if given access to other protocols using the shared secrets, no
adversary may distinguish the protocol from its simulated version.

Definition 5.5. Given an oracle O with support n, a functional modelMf , a protocol P , a
sequence of names n, then, νn.P is O-simulatable if and only if there exists a PTOM AOP such
that for every PTOM DO,OP , for every η, every v ∈ ({0, 1}η)|n|, c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP (ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O(ρr, 1
η) = c | [[n]]ηρs = v}

Note that our definition of simulatability is a very strong one as it requires a perfect equality of
distributions, as opposed to computational indistinguishability. This is intuitively what we want:
O-simulation expresses that P only uses the secrets in n as O does. This notion is not intended
to capture any security property.

82

5.3 Simulatability

In practice, let us consider the security property P‖Q ∼= P‖Q′, where P is simulatable by AOP . The
idea of the later composition result is that an attacker D that distinguishes between DO,OP ,OQ and
DO,OP ,OQ′ can be turned into an attacker that distinguishes between D[AOP]O,OQ and D[AOP]O,OQ′ .
Notice that here, Q and P may share some secrets, and their distributions are not independent.
The intuition is that Q is fixing a specific value for the shared name between P and Q, and P then
needs to be simulatable for this fixed value. This is why the notion of simulatability asks that a
protocol is simulatable for any fixed value of a set of secret names. The formalization of this proof
technique is given by the following Proposition.

Proposition 5.1. Given an oracle O with support n, a functional model Mf , protocols P,Q
such that N (P)∩N (Q) ⊆ n, then, for any PTOM AOP , νn.P is O-simulatable with AOP if and
only if for every PTOM DO,OP ,OQ , for every η, every v ∈ ({0, 1}η)|n|, c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

It then implies that:

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c} = Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1

η) = c}

While this Definition intuitively captures the proof technique used to allow composition, it does
not provide insight about how to prove the simulatability. Another equivalent definition states that
a protocol is simulatable if there exists a simulator that can produce exactly the same distribution
of messages as the protocol interacting with any attacker. We formalize in the following Technical
Details this second Definition, and prove that the two Definitions are equivalent, which also yields
the proof of Proposition 5.1.

ü Technical Details

For this second Definition of simulation to be realizable, we need to ensure that simulator’s
oracle calls and attacker’s oracle calls use a disjoint set of random coins for the oracle random-
ness. We thus assume, w.l.o.g., that the random handles r of simulator’s queries are prefixed
by 1. This ensures that, as long as adversaries only make oracle calls prefixed by 0 (this can
be assumed w.l.o.g. since it only constrains the part of the oracle’s random tape where the
randomness is drawn) the oracle randomness used by the simulator is not used by the adversary.
We provide later in Example 5.4 a complete example illustrating both simulation and the need
of the prefix and a formal definition of prefixed models.

83

5 A Composition Framework in the Computational Model

Definition 5.6. Given a functional model Mf , a sequence of names n, an oracle O and
a protocol P , we say that νn.P is O-simulatable if the support of O is n and there is a
PTOM AO (using random handles prefixed by 0) such that, for every c ∈ {0, 1}?, for every
v ∈ ({0, 1}η)|n|, for every m ≥ 1, for every PTOM BO (using random handles prefixed by
1),

Pρs,ρr1 ,ρr2 ,ρO{A
O(ρs,ρO)(ρr1 , θ

1
m, 1

η) = c | [[n]]ηρs = v}
= Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ

2
m) = c | [[n]]ηρs = v}

where
φ2
k+1 = φ2

k,OP (ρs, θ
2
k)

φ1
k+1 = φ1

k,AO(ρs,ρO)(ρr1 , θ
1
k, η)

θik+1 = θik,BO(ρs,ρO)(ρr2 , η, φ
i
k+1)

for 0 ≤ k < m and φ0 = ∅, θ0 = BO(ρs,ρO)(ρr2 , η, ∅).

The machine AO can be seen as the simulator, while B is an adversary that computes the
inputs: the definition states that there is a simulator, independently of the adversary. We
asks for equality of distributions, between the sequence of messages θ2, corresponding to the
interactions of BO with OP , and the sequence of messages θ1, corresponding to the interactions
of BO with AO.

Note that our definition of simulatability is a very strong one as it requires a perfect equality
of distributions, as opposed to computational indistinguishability. This is intuitively what we
want: O-simulation expresses that P only uses the shared secrets as O does. This notion is not
intended to capture any security property.

The two definitions are indeed equivalent. To prove this, a first technical Lemma is required.
It shows that O-simulation, whose definition implies the identical distributions of two messages
produced either by the simulator or by the oracle, implies the equality of distributions of
message sequences produced by either the oracle or the simulator. It is proved essentially via
an induction on the length of the sequence of messages. For any sequence of names n and
parameter η, we denote Dη

n = {[[n]]ηρs |ρs ∈ {0, 1}
ω} the set of possible interpretations of n. We

reuse the notations of Definition 5.6.

Lemma 5.2. Given a functional modelMf , a sequence of names n, an oracle O with support
n and a protocol P , that is O-simulatable with AO, we have, for every x, y, c, r2, rB ∈ {0, 1}?,
every v ∈ Dη

n, for every m ≥ 1, for every PTOM BO (using tags prefixed by 1):

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m = x, φ2

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

where we split ρO into ρAO] ρBO such that O called by B only accesses ρBO and O called by A
only accesses ρAO (which is possible thanks to the distinct prefixes).

We now prove that Definition 5.6 implies Definition 5.4, i.e that the simulatability implies that
we can replace a protocol oracle by its simulator.

84

5.3 Simulatability

Lemma 5.3. Given an oracle O (with support n), a functional model Mf , a sequence of
names n , P,Q protocols, such that νn.P is O-simulatable in the sense of Definition 5.6 with
AOP and N (P)∩N (Q) ⊆ n then, for every PTOM DO,OP ,OQ (prefixed by 1), every η, every
v ∈ Dη

n and every c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

The idea is to use the definition of O-simulatability, using a PTOM BO that behaves exactly
as D when it computes the next oracle queries from the previous answers. The difficulty is
that D may call the oracle OQ, while B has no access to this oracle. We know however that
shared names are included in n, whose sampling can be fixed at once (thanks to the definition
of O-simulation). The other randomness in Q can be drawn by B from ρr, without changing
the distribution of OQ’s replies.

Proof. Fix η and the interpretation [[n]]ηρs = v.

Given D, we let Dm be the machine that behaves as D, however halting after m calls to OP
(or when D halts if this occurs before the mth call) and returning the last query to OP .

We have that Dm first executes Dm−1, then performs the oracle call OP (ρs, θm−1), getting
um−1 and performs the computation of the next oracle call vm (if D makes another oracle call),
updates the history θm := (v1, . . . , vm) and returns vm if there is one or the output of D oth-
erwise. Dm[AOP] first executes Dm−1[AOP], then performs the computation AOP (Mf , ρr1 , θ

′
m−1)

of u′m, computes the next oracle call v′m (if one is performed), updates θ′m := (v′1, . . . , v
′
m) and

outputs either vm of the output of D.

We wish to use the definition of O-simulation in order to conclude. However, we cannot directly
use the O-simulation, as D has access to an extra oracle OQ.

Part 1
We first prove that, assuming AOP is a simulator of OP :

Pρs,ρr,ρO{DO,OP (ρr, 1
η) = c} = Pρs,ρr,ρO{D[AOP]O(ρr, 1

η) = c}

This is a straightforward consequence of Lemma 5.2. Writing respectively p1
1(c) =

Pρs,ρr,ρO{DO,OP (ρr, 1
η) = c} and p2

1(c) = Pρs,ρr,ρO{D[AOP]O(ρr, 1
η) = c}, Using ρr1 , ρr2 as

in Definition 5.4, we have

p1
1(c) =

∑
rB,r2

Pρs,ρr,ρO{DO,OP (ρr, 1
η) = c | ([[n]]ηρs , ρ

B
O, ρr2) = (v, rB, r2)}

×Pρs,ρr,ρO{([[n]]ηρs , ρ
B
O, ρr2) = (v, rB, r2)}

p2
1(c) =

∑
rB,r2

Pρs,ρr,ρO{D[AOP]O(ρr, 1
η) = c| ([[n]]ηρs , ρ

B
O, ρr2) = (v, rB, r2)}

×Pρs,ρr,ρO{[[n]]ηρs = v, ρBO = rB, ρr2 = r2}

We let

p1
2(rB, r2, v̄, c) = Pρs,ρr,ρO{DO,OP (ρr, 1

η) = c| ([[n]]ηρs , ρ
B
O, ρr2) = (v, rB, r2)}

85

5 A Composition Framework in the Computational Model

and

p2
2(rB, r2, v̄, c) = Pρs,ρr,ρO{D[AOP]O(ρr, 1

η) = c| ([[n]]ηρs , ρ
B
O, ρr2) = (v, rB, r2)}

We use Definition 5.6 with BO(ρr2 , η, φ) as the machine that simulates Dm for m = |φ| and
using φ instead of querying the oracle. Let us define φim, θim for i = 1, 2 as in Definition 5.6.
Note that with the definition of D, B uses prefixes for oracle calls, disjoint from those used in
AP , hence randomness used for oracle calls in A and B are disjoint. Let vim be the last message
of θim. By definition of D and B we have v1

m = vm and v2
m = v′m. Choosing m such that D

makes less than m oracle calls, we have

pi2(rB, r2, v̄, c) =
∑
x̄ s.t. xm=c,ȳ Pρs,ρr1 ,ρr2 ,ρO{θ

i
m = x, φim = y| ([[n]]ηρs , ρ

B
O, ρr2) = (v, rB, r2)}.

Lemma 5.2 yields for all rB, r2, c that p2
2(rB, r2, c) = p1

2(rB, r2, c), which concludes part 1.

Part 2
We now prove that:

∀D. Pρs,ρr,ρO{DO,OP (ρr, 1
η) = c} = Pρs,ρr,ρO{D[AOP]O(ρr, 1

η) = c}
⇒

∀D. Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c} = Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1

η) = c}
(1)

We are thus going to show that, with the interpretation of n fixed, we can simulate OQ in some
D′ by sampling in ρr instead of ρs. However, both computations of OP and OQ depend on ρs.
This is where we need the assumptions that n contains the shared secrets between P and Q,
as well as the splitting of ρr.

For any machine MO,OQ , we let [M]On be the machine that executes M, simulating OQ for
a fixed value v of n. The machine samples the names appearing in Q and not in n and hard
codes the interpretation of n.

More precisely, we write OQ(ρs, θ) := OQ((ρs0 , ρs1 , ρs2), θ) where ρs0 is used for the sampling
of n, ρs1 for the sampling of other names in Q, and ρs2 for the reminder.

Then [M]On (ρr, 1
η) is the machine that:

I Splits ρr into two infinite and disjoints ρsQ, ρrM and initializes an extra tape θ to zero.
I SimulatesM(ρrM , 1

η) but every timeM calls OQ with input u, the machine adds u to
θ, and produces the output of OQ((v, ρrQ, 0), θ).

Such a machine runs in deterministic polynomial time (w.r.t. η). For any machineMO,OQ,OP ,
we similarly define [M]O,OPn . Now, we have that, for any c, by letting, for any X and U ,
Pc,vX (U) := PX{U = c | [[n]]ηρs = v}:

Pc,vρs,ρr,ρO (DO,OP (ρs0 ,ρs1 ,ρs2),OQ(ρs0 ,ρs1 ,ρs2)(ρr, 1
η))

=1 Pc,vρs,ρr,ρO (DO,OP (ρs0 ,ρs1 ,ρs2),OQ(ρs0 ,ρs1 ,0)(ρr, 1
η))

=2 Pc,vρs1 ,ρs2 ,ρr,ρO (DO,OP (ρs0 ,0,ρs2),OQ(ρs0 ,ρs1 ,0)(ρr, 1
η))

=3 Pc,vρs1 ,ρs2 ,ρr,ρO (DO,OP (v,0,ρs2),OQ(v,ρs1 ,0)(ρr, 1
η))

=4 Pc,vρsQ,ρs,ρrD,ρO (DO,OP (v,0,ρs),OQ(v,ρsQ,0)(ρr, 1
η))

=5 Pc,vρs,ρr,ρO ([D]
O,OP (ρs)
n (ρr, 1

η)) (ii)

Since

1. OQ does not access ρs2

86

5.3 Simulatability

2. OP does not access ρs1
3. We are sampling under the assumption that [[n]]ηρs = v, i.e., ρs0 is equal to v.
4. Renaming of tapes
5. By construction

And we also have similarly that, for any c:

Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{[D[AOP]]Ov (ρr, 1
η) = c | [[n]]ηρs = v} (iii)

By applying the left-handside of (1) to [D]
O,OP (ρs)
n (ρr, 1

η) and [D[AOP]j]
O
v (ρr, 1

η), and using
(ii) and (iii), we can conclude by transitivity. We conclude the proof of the lemma by putting
Part 1 and Part 2 together.

�

We now prove the converse direction.

Lemma 5.4. Given an oracle O with support n, a functional model Mf , protocols P,Q
such that N (P)∩N (Q) ⊂ n, if there is a PTOM AOP such that, for every PTOM DO,OP ,OQ ,
for every η, every v ∈ Dη

n and every c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

then νn.P is O-simulatable.

Proof. Let B be a PTOM, η, an interpretation v ∈ Dη
n and m ∈ N , we must prove that the

output distribution of B will be the same whether it interacts m-th time with AOP or OP . We
define D as follows. For i := 0 to m−1, D computes wi := B(α1, . . . , αi). Then D calls OP with
wi and let αi+1 be the reply. D finally outputs αm. We denote by w′i and α′i the corresponding
values for D[AOP]O,OQ

Let us denote
φ2
k+1 = φ2

k,OP (ρs, θ
2
k)

φ1
k+1 = φ1

k,AO(ρs,ρO)(Mf , ρr1 , θ
1
k, η)

θik+1 = θik,BO(ρs,ρO)(Mf , ρr2 , η, φ
i
k)

for 0 ≤ k < m and φ0 = θ0 = ∅.

We have by construction of D for any c:

Pρs,ρr1 ,ρr2 ,ρO{wm = c | [[n]]ηρs = v} = Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2
m) = c | [[n]]ηρs = v}

and
Pρs,ρr1 ,ρr2 ,ρO{w

′
m = c | [[n]]ηρs = v} = Pρs,ρr1 ,ρr2 ,ρO{A

O(ρs,ρO)(Mf , ρr1 , θ
1
m, η) = c | [[n]]ηρs = v}

The hypothesis gives us that :

Pρs,ρr1 ,ρr2 ,ρO{wm = c | [[n]]ηρs = v} = Pρs,ρr1 ,ρr2 ,ρO{w
′
m = c | [[n]]ηρs = v}

87

5 A Composition Framework in the Computational Model

So we conclude that:

Pρs,ρr1 ,ρr2 ,ρO{A
O(ρs,ρO)(Mf , ρr1 , θ

1
m, η) = c | [[n]]ηρs = v}

= Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2
m) = c | [[n]]ηρs = v}

�

We can finally conclude, as Lemmas 5.3 and 5.4 directly yields that Definition 5.6 is equivalent
to Definition 5.6 simply by taking Q as the empty protocol.

Example 5.3. We fix first Mf (in an arbitrary way). We consider the following handshake
protocol, in which n, r, k, r′ are names:

A := in (cA, x0).out(cA, enc(n, r, k)). in (cA, x).
if dec(x, k) = 〈n, 1〉 then out(cA, ok)

‖ B := in (cB , y).out(cB , enc(〈dec(y, k), 1〉 , r′, k))

We consider the oracle Oenc,dec
k that, when receiving 〈t,m〉 as input, answers enc(m, ro, k) if t =

"enc", and dec(m, l) if t = "dec" (the oracle actually also expects an handle for the secret key and
a tag to specify where to sample ro). We can easily prove that νk.A is Oenc,dec

k -simulatable, as the
attacker can sample an arbitrary n′, use the oracle to compute enc(n′, ro, k) (which has the same
distribution as enc(n′, r, k) for any fixed value of k) with the request 〈"enc", n〉, and dec(x, k) with
the request 〈"dec", x〉.

Intuitively, the shared secret k is only used in A in ways that are directly simulatable with the
oracle, and A is thus O-simulatable.

Thanks to the more intuitive Definition of simulatability (cf. Definition 5.6 for details), proving
simulatability is in practice a syntactic verification. With Oenc,dec

k from the previous example, νk.P
is O-simulatable for any P where all occurrences of k occurs at key position, and all encryptions
use fresh randoms.

ü Technical Details

Let us explain why the previous examples illustrate the need for prefixed models.

Example 5.4. We take a more formal view on Example 5.3.

Let O be the encryption-decryption oracle: it expects an input 〈"dec",m〉 or 〈"enc",m〉, a key
s = 1 (only one encryption key is considered), an input tag t and a security parameter η and
returns

I enc(m, r, k) if the query is prefixed by "enc", k is the secret value extracted from ρs
corresponding to the key 1, r is drawn from ρO and associated with the tag t (via e1).

I dec(m, k) if the query is prefixed by "dec", k is the secret value extracted from ρs
corresponding to the key 1

I an error message otherwise (either the primitives fail or the query does not have the
expected format).

The goal is to show that νk.A is O-simulatable. (So, here, B is useless, and we let P be A).

OP is then defined as follows (according to the Section 2.3.2):

88

5.3 Simulatability

I On input w1, with an empty history, it outputs [[enc(n, r, k)]]ηρs and writes w1 on the
history tape.

I On input w2 with a non empty history tape, it outputs ok if [[dec(x, k)]]η,x7→w2
ρs = [[〈n, 1〉]]ηρs

and an error otherwise.

The machine AO(ρr1 , θ, η) is then defined as follows:

I If θ = {m1}
1. A draws α (for the value of n) from ρr1 and draws t from ρr1

2. calls O with (〈"enc", α〉 , 1, t) and gets back the bitstring [[enc(n, r, z)]]
η,z 7→[[k]]ηρs
ρr1 ,ρO

.
The interpretation of k is indeed fixed at once since it belongs to the “shared”
names bounded by ν.

3. outputs [[enc(x, r, z)]]
η,x7→α,z 7→[[k]]ηρs
ρr1

I If θ = (m1,m2),
1. calls O with (〈"dec",m2〉 , 1,−) and gets back the bitstring w =

[[dec(y, z)]]y 7→m2,z 7→[[k]]ηρs or an error message.
2. checks whether w = [[〈n, 1〉]]ηρr1 . If it is the case, then outputs ok.

Now, consider an arbitrary PTOM BO.

I φ1
1 = [[enc(n, x, k)]]η,x7→s1ρr1

where s1 is the randomness used by O when queried with [[t]]ρr1
(note: we will see that it does matter to be very precise here; we cannot simply claim
that the value of x is just a randomness drawn by O).

I φ2
1 = [[enc(n, r, k)]]ηρs

I θ1
i = wi, an arbitrary bitstring, computed by BO using the oracle O, φ1

i and the random
tape ρr2 .

I φ1
2 = φ1

1, ok if
[[dec(y, z)]]y 7→w1,z 7→[[k]]ηρs = [[〈n, 1〉]]ηρr1 and an error
otherwise

I φ2
2 = φ2

1, ok if [[dec(x, k)]]η,x7→w2
ρs = [[〈n, 1〉]]ηρs and an error otherwise

A O-simulates νk.P iff, for every v = [[k]]ρs ,

Pρs,ρr1,ρr2 ,ρO{[[dec(y, z)]]y 7→w1,z 7→v = [[〈n, 1〉]]ηρr1 }
= Pρs,ρr1 ,ρr2,ρO{[[dec(x, k)]]η,x7→w2

ρs = [[〈n, 1〉]]ηρs}

First, the distributions of φ1
1 and φ2

1 are identical. φ1
1 depends on ρr1 and ρO, while φ2

1 depends
on ρs only. The distributions of φ1

1, [[〈n, 1〉]]ρr1 and φ2
1, [[〈n, 1〉]]ρs are also identical.

Now the distributions w1 = BO(φ1
1, ρr2), [[〈n, 1〉]]ρr1 and w2 = BO(φ1

2, ρr2), [[〈n, 1〉]]ρs are equal if
the randomness used by B are disjoint from the random coins used in φ1

1, φ
2
1. This is why there

is an assumption that ρr1 and ρr2 are disjoint and why it should be the case that the random
coins used in the oracle queries of B are distinct from the ones used in the oracle queries of A.
This can be ensured by the disjointness of tags used by A and B respectively.

With these assumptions, we get the identity of the distributions of dec(w1, v), [[〈n, 1〉]]ρs and
dec(w2, v), [[〈n, 1〉]]ρs , hence the desired result.

Without these assumptions (for instance non-disjointness of tags used by B, A), B can query
O with a random input and a random tag, say n′, t′. As above, we let s1 be the random value
drawn by O corresponding to the tag t′. Then P{[[n]]ρs = n′ ∧ [[r]]ρs = s1} = 1

22η while

P{[[n]]ρr1 = n′ ∧ [[r]]ρr1 = s1} = 1
2η P{[[t]]ρr1 = [[t′]]ρr2 ∨ ([[t]]ρr1 6= [[t′]]ρr2 ∧ [[r]]ρr1 = [[r′]]ρO)}

= 1
2η × (1

2η + 2η−1
2η ×

1
2η)

= 1
22η (2− 1

2η)

89

5 A Composition Framework in the Computational Model

In other words, the collision is more likely to occur since it can result from either a collision in
the tags or a collision in the randomness corresponding to different tags.

As demonstrated in the previous example, it is necessary to assume that oracle randomness used
by the simulator queries and the attacker queries are disjoint. The simplest way of ensuring
this is to force all tags of oracle calls to be prefixed. We show here that this assumption can
be made without loss of generality.

Definition 5.7. Given a PTOM AO and a constant c. We define AOpref−c as a copy of
A, except that all calls to the oracle of the form w, r, s are replaced with calls of the form
w, c · r, s, where the · denotes the concatenation of bitstrings.

The following lemma shows that we can, w.l.o.g., consider models, in which the tags are prefixed.

Lemma 5.5. For any non-empty constant c and any PTOM AO, we haves

Pρs,ρr,ρO{AO(ρs,ρO)(ρr, 1
η) = 1} = Pρs,ρr,ρO{A

O(ρs,ρO)
pref−c (ρr, 1

η) = 1}

Proof. We fix a constant c, for any oracle O (with functions n, e1, e2), we define Opref−c (with
mapping function n′, e′1, e′2) the copy of O such that:

n′(w, s, r) = n(w, s, c|r)

n is injective by definition, so n′ is injective too. For any v ∈ {0, 1}η, as all extractions of e1

are unique for each value of n and their length only depends on η, we have for any w, r, s

PρO{e1(n(w, s, r), η, ρO) = v} = PρO{e′1(n′(w, s, r), η, ρO) = v}

This implies that for any input, O and Opref−c will produce the same output distribution. So
AO and AOpref−c will produce the same distributions for any input. We conclude by remarking
that AOpref−c and AOpref−c behaves the same by construction. �

An immediate consequence of this Lemma is that for all indistinguishability results, we can,
w.l.o.g., constrain attackers to only use prefixed oracle calls.

In particular it implies equivalence between indistinguishability in a computational model and
indistinguishability for prefixed distinguishers in the prefixed computational model.

Thanks to the previous Definitions, simulatability is stable under composition operators. This is
an important feature of the notion of simulatability, as it allows to reduce the simulation of large
processes to the simulation of simpler processes.

Theorem 5.1. Given an oracle O, protocols P,Q, and n = N (P) ∩N (Q), if

I νn.P is O-simulatable
I νn.Q is O-simulatable

Then νn.P‖Q and νn.P ;Q are O-simulatable.

90

5.3 Simulatability

Proof. Let D be an arbitrary PTOM. By Lemma 5.3, there is a machine AOP s.t.

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP]O,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

Applying once more the Lemma 5.3, there is a machine AOQ s. t., for every c ∈ {0, 1}?,

Pρs,ρr,ρO{DO,OP ,OQ(ρr, 1
η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{D[AOP][AOQ]O(ρr, 1
η) = c | [[n]]ηρs = v}

We define AOP‖Q(Mf , ρr1 , θ, 1
η,m) as the machine that behaves as AOP (Mf , ρr1,P , θP , 1

η,m) (resp.
AOQ(Mf , ρr1,Q, θQ,m)) if m is a message supposed to be handled by P (resp. by Q) (use of action
determinism) Then the result is appended to θP (resp. θQ). This assumes (this is an invariant)
that θ can be split into θP and θQ.

We note that D[AOP][AOQ]O = D[AOP‖Q]O. Then we use Lemma 5.4 to conclude. �

ü Technical Details

Alternative notions of simulatability We discuss here some variation on our notion of
simulatability. First, let us note that our notion of simulatability assumes that models are
prefixed. As demonstrated previously this is necessary in order to get an achievable notion of
simulatability. We will therefore not consider models that are not prefixed. We may consider
variants of simulatability, depending on the order of the quantifiers and sharing of randomness
between simulator and distinguisher. We define simulatability as the existence of a simulator
that works for all distinguishers. In other words our ordering of quantifier is:

∃AO(ρr1)∀D(ρr2)

In a prefixed model, we believe that switching the quantifiers lead to the same notion:

∃AO(ρr1)∀D(ρr2)⇔ ∀D(ρr2)∃AO(ρr1)

We provide no proof, but the intuition is that there exists a “universal” distinguisher, namely the
PTOM D, which performs any possible queries with uniform probability. Now, considering any
other distinguisher D′, as the simulator AO for D has to provide the exact same distribution as
the protocol for each query of D, as D performs all possible queries (with very small probability),
AO will also be a correct simulator for D′.

Another alternative is to allow the simulator and the distinguisher to share the same ran-
domness. Then, ∃AO(ρr)∀D(ρr) seems to provide an unachievable definition. Indeed, if the
simulator is not allowed to use private randomness while the protocol is, the simulator cannot
mimic the probabilistic behavior of the protocol.

The last possibility however seems to offer an alternative definition for simulatability:

∀D(ρr)∃AO(ρr)

This seems to be a weaker definition than ours as the choices of the simulator can depend on
the ones of the distinguisher. It may simplify (slightly) the proofs for the main theorem, but
it would create issues for the unbounded replication as it would break uniformity of reductions
(since the runtime of the simulator may now depend on the environment it is running in).

91

5 A Composition Framework in the Computational Model

5.3.2 Generic Oracles for Tagged Protocols

 Section Summary

In order for our definition of simulatability to be useful, the design of oracles is a key point.
They need to be:

1. generic/simple, yet powerful enough so that protocols can be easily shown to be simulat-
able,

2. restrictive enough so that proving protocols in the presence of oracles is doable.

We provide here with examples of such oracles, namely generic tagged oracles for signature,
that will be parameterized by arbitrary functions, together with security properties that are
still true in the presence of tagged oracles.

In practice, protocols that use some shared secrets use tags, for instance string prefixes, to ensure
that messages meant for one of the protocol cannot be confused with messages meant for the other
one. These tags can ensure what is called “domain separation” of the two protocols, ensuring that
the messages obtained from one cannot interfere with the security of the second protocol. These
tags can be explicit, for instance by adding a fixed constant to the messages, or implicit, where
each message of a protocol depend on some fresh randomness that can be used to define some kind
of session identifier.

We define generic oracles for decryption and signatures, parameterized by an abstract tagging
function T and a secret key sk, that allow to perform a cryptographic operation with the key sk,
on any message m satisfying T (m). T can then simply check the presence of a prefix, or realize
some implicit tagging, checking that the message depends on the randomness used by a specific
session.

After defining those generic oracles, we define generic axioms, parameterized by T , that allow to
perform proofs against attackers with access to the oracle. The generic axiom for signatures (or
any other primitive) are implied by the classical cryptographic axioms.

We see tagging as a boolean function T computable in polynomial time over the interpretation of
messages. For instance, if the messages of protocol P are all prefixed with the identifier idP , T is
expressed as T (m) := ∃x.m = 〈idP , x〉. In a real life protocol, idP could for instance contain the
name and version of the protocol.

Intuitively tagged oracles produce the signature of any properly tagged message and allow to
simulate P .

With these oracles, an immediate consequence of the composition Theorems found in Section 5.4 is
the classical result that if two protocols tag their messages differently, they can be safely composed
[ACD12]. Note that as our tag checking function is an arbitrary boolean function: tagging can be
implicit, as illustrated in our applications in Section 5.6.

As an example, we provide two oracles, one for encryption and one for signing, that allow to
simulate any protocol that only produces messages that are well tagged for T .

Definition 5.8. Given a name sk and a tagging function T , we define the generic signing

92

5.3 Simulatability

oracle OsignT,sk and the generic decryption oracle OdecT,sk as follows:

Osign
T,sk(m) := if T (m) then

output(sign(m, sk))
Odec
T,sk(m) := if T (dec(m, sk)) then

output(dec(m, sk))

Any well-tagged protocol according to T , i.e., a protocol that only decrypts or signs well tagged
messages, will be simulatable using the previous oracles. Hence we meet the goal 1 stated at the
beginning of this section, as this can be checked syntactically on a protocol. We provide, as an
example, the conditions for a tagged signature.

Example 5.5. Any protocol P whose signatures are all of the form if T (t) then sign(t, sk) for
some term t (that does not use sk) is immediately νsk.P Osign

T,sk-simulatable. Indeed, informally, all
internal values of the protocol except sk can be picked by the simulator from its own randomness,
while all terms using sk can be obtained by calls to the tagged signing oracle, as all signed terms in
P are correctly tagged. Let us emphasize that the simulation holds for any specific value of sk, as
the distribution of outputs is the same, whether it is the simulator that draws the internal names
of P , except sk, or P itself.

As we need to perform cryptographic proofs in the presence of oracles, it is useful to define security
properties that cannot be broken by attackers with access to these oracles (without having to
consider the specific calls made to these oracles). The games defining these properties slightly differ
from the classical security games. Consider the example of signatures and the usual EUF-CMA
game. If the attacker is, in addition, equipped with an oracle O that signs tagged messages, they
immediately win the EUF-CMA game, “forging” a signature by a simple call to O. We thus define
a tagged unforgeability game (EUF-CMAT,sk), derived from the EUF-CMA game presented in
Definition 2.13, where the adversary wins the game only if they are able to produce the signature
of a message that is not tagged.

Definition 5.9. A signature scheme (Sign,Vrfy) is EUF-CMAT,sk secure for oracle O and
interpretation of keys Ask if, for any PTOM A, the game described in Figure 5.1 returns true
with probability (over ρr, ρs, ρO) negligible in η.

Game EUF-CMAΣ,A
T,sk(η, ρr, ρs, ρO):

List← []
(pk, sk)← ([[pk]]ρs , [[sk]]ρs)

(m, σ)← AO(ρs,ρO),Sign(pk, η, ρr)
Return ¬T (m) ∧ Vrfy(pk,m, σ) ∧m 6∈ List

Oracle Sign(m):
List← (m : List)
σ ← Sign(sk,m)
Return σ

Figure 5.1: Game for Tagged Unforgeability (EUF-CMAT,sk)

The main goal of the previous definition is to allow us to prove protocols in the presence of oracles
(hence composed with simulated ones), reaching the goal 2 stated at the beginning of the section.

More precisely, one can, for instance, simply design a classical game based proof, reducing the
security of the protocol to the security of the EUF-CMAT,sk game rather than the classical
EUF-CMA game. This reasoning is valid as EUF-CMA implies EUF-CMAT,sk even in the
presence of the corresponding oracle.

Proposition 5.2. If a signature scheme (Sign,Vrfy) is EUF-CMA secure for keys given by
Ask, then (Sign,Vrfy) is EUF-CMAT,sk secure for the oracle Osign

T,sk and the interpretation of
keys Ask.

93

5 A Composition Framework in the Computational Model

Remark that the base assumptions made about the cryptographic primitives are classical ones,
and thus the final proof of the composed protocol only depends on some classical cryptographic
hypotheses.

5.4 Main Composition Theorems

 Section Summary

We distinguish between two complementary cases. First, Theorem 5.2 covers protocols com-
posed in a way where they do not share states besides the shared secrets (e.g., parallel com-
position of different protocols using the same master secret key). Second, Theorem 5.4 covers
protocols passing states from one to the other (e.g., a key exchange passing an ephemeral key
to a secure channel protocol). We finally extend these composition results to self-composition,
i.e., proving the security of multiple sessions from the security of a single one or the security of
a protocol lopping on itself, for instance a key renewal protocol.

5.4.1 Composition without State Passing

Essentially, if two protocols P,Q are indistinguishable, they are still indistinguishable when running
in any simulatable context. The context must be simulatable for any fixed values of the shared
names of P,Q and the context. The context can contain parallel or sequential composition as
illustrated by the following example.

Example 5.6. Let P,Q,R, S be protocols and O an oracle. Let n = N (P‖Q) ∩ N (R‖S). If
P ∼=O Q and νn.R‖S is O-simulatable, then some applications of Theorem 5.2 can yield

1. P‖R ∼=O Q‖R
2. R;P ∼=O R;Q
3. (R;P)‖S ∼=O (R;Q)‖S

We generalize the previous example to any simulatable context and to n protocols. For any integer
n, we denote by C[_1, . . . ,_n] a context, i.e., a protocol built using the syntax of Figure 2.3 and
distinct symbols _i, viewed as elementary processes. C[P1, . . . , Pn] is the protocol in which each
hole _i is replaced with Pi.

Example 5.7. In the three examples of Example 5.6, in order to apply the next theorem, we
respectively use as contexts

I C[_1] := _1‖R
I C[_1] := R;_1

I C[_1] := (R;_1)‖S.

In this first Theorem, no values (e.g., ephemeral keys) are passed from the context to the protocols.
In particular, the protocols do not have free variables which may be bound by the context.

Theorem 5.2. Given a functional model Mf and an oracle O, let P1, . . . , Pn, Q1, . . . , Qn
be protocols and C[_1, . . . ,_n] be a context such that all their channels are disjoint, 0 some
constant, n a sequence of names and c1, . . . , cn fresh channel names. If

1. N (C) ∩N (P1, . . . , Pn, Q1, . . . , Qn) ⊆ n
2. νn.C[out(c1, 0), . . . ,out(cn, 0)] is O-simulatable
3. P1‖ . . . ‖Pn ∼=O Q1‖ . . . ‖Qn

94

5.4 Main Composition Theorems

Then
C[P1, . . . , Pn] ∼=O C[Q1, . . . , Qn]

Specificallya, there exists a polynomial pS (independent of C) such that, if pC is the polynomial
bound on the runtime of the simulator for C, we have,

AdvC[P1,...,Pn]∼=OC[Q1,...,Qn](t)

≤ AdvP1‖...‖Pn∼=OQ1‖...‖Qn
(
pS
(
t, n, |C|, pC(t)

))
aWe provide, in this Theorem and the following ones, explicit advantages, as our constructions do
not directly allow for unbounded replication. This will later be used to ensure that the advantage
of the adversary only grows polynomially with respect to the number of sessions.

Note that the bound we obtain for the reduction is polynomial in the running time of the context.
We denote by C the protocol C in which each _i is replaced with out(ci, 0).0, where ci is a channel
name and 0 is a public value. Intuitively, C abstracts out the components Pi, only revealing which
Pi is running at any time. The intuition behind the proof of the Theorem is then as follows. First,
we show that C‖P1‖ . . . ‖Pn ∼=O C‖Q1‖ . . . ‖Qn implies C[P1, . . . , Pn] ∼=O C[Q1, . . . , Qn]. This is
done by a reduction, where we mainly have to handle the scheduling, which is possible thanks to
the information leaked by C, and the action determinism of the protocols. In a sense, this means
that indistinguishability for protocols in parallel implies indistinguishability for any scheduling
of those protocols. Secondly, by simulating C thanks to Proposition 5.1, the two hypothesis of
the Theorem imply C‖P1‖ . . . ‖Pn ∼=O C‖Q1‖ . . . ‖Qn. The second part is where our notion of
simulatability comes into play, and where it is essential to deal carefully with the shared secrets.

For our latter results, we must actually generalize slightly this Theorem. A use case is for instance
when we want to prove that P‖Q ∼= P‖P implies that if b then P else Q ∼= P for some boolean
condition b. In this case, we actually need to rename the channels used by P and Q in the second
protocol, so that both P and Q uses the same channels. We thus introduce a renaming on channels
σ that allows us to compose components in an arbitrary way.

ü Technical Details

The generalized version of the Theorem is as follows.

Theorem 5.3. Let C[_1, . . . ,_n] be a context. Let P1, . . . , Pn, Q1, . . . , Qn be protocols,
and let σ : C(P1, . . . , Pn) 7→ C such that C‖P1‖ . . . ‖Pn, C‖Q1‖ . . . ‖Qn, C[P1σ, . . . , Pnσ],
C[Q1σ, . . . , Qnσ] are protocols. Given a functional modelMf , an oracle O, if

1. n ⊇ N (C) ∩N (P1, . . . , Pn, Q1, . . . , Qn)
2. νn.C is O-simulatable
3. P1‖ . . . ‖Pn ∼=O Q1‖ . . . ‖Qn

Then
C[P1σ, . . . , Pnσ] ∼=O C[Q1σ, . . . , Qnσ]

Specifically, there exists a polynomial pS (independent of C) such that, if pC is the polynomial
bound on the runtime of the simulator for C, we have,

AdvC[P1σ,...,Pnσ]∼=OC[Q1σ,...,Qnσ](t) ≤ AdvP1‖...‖Pn∼=OQ1‖...‖Qn
(
pS
(
t, n, |C|, |σ|, pC(t)

))

Proof. Let A be an attacker against

C[P1σ, . . . , Pnσ] ∼=O C[Q1σ, . . . , Qnσ].

95

5 A Composition Framework in the Computational Model

In the scheduling part, we first build an attacker against

C‖P1‖ . . . ‖Pn ∼=O C‖Q1‖ . . . ‖Qn.

We then remove the context C through the O-simulatability.

Scheduling part Let us construct BO,OC ,OR1
,...,ORn with either for every i, Ri = Pi, or,

for every i, Ri = Qi. BO,OC ,OR1
,...,ORn initially sets variables c1, . . . , cn to 0 (intuitively, ci

records which processes have been triggered) and sets x to the empty list. It then simulates
AO,OC[R1σ,...,Rnσ] but, each interaction with OC[R1σ,...,Rnσ] and the corresponding request (c,m)
is replaced with:

I if there exist i such that ci = 1 and c ∈ C(Riσ) then
• query ORi with (cσ−1,m)
• if ORi returns ⊥, then, if contexts C1 and C2 are such that C[_1, . . . ,_n] =
C1[_i;C2], it adds to x the channels C(C2). (This corresponds to the semantics
of sequential composition: an error message disables the continuation).

• else the answer (c′,m′) is changed (c′σ,m′) (and the simulation goes on)
I else if c ∈ C(C) and c /∈ x then

• query OC with (c,m)
• if OC answers > on channel γi, set ci = 1
• else continue with the reply of OC

This new attacker is basically simply handling the scheduling of the protocols, using the signals
raised in the context to synchronize everything. The condition that there exists i such that ci =
1 and c ∈ C(Ri) is always satisfied by a unique i, otherwise C[P1σ, . . . , Pnσ] or C[Q1σ, . . . , Qnσ]
would not be well formed.

The execution time of B then only depends on the number of channels in C, the size of the
channel substitution σ, the number of protocols n in addition to the cost of simulating A. Hence
if t is the runtime of A, there exists pS1

such that the runtime of B is bounded (uniformly in
C, P1, . . . , Pn, Q1, . . . Qn) by pS1(n, t, |C|, |σ|):

Adv
C[P1,...,Pn]∼=C[Q1,...,Qn]

AO (t) ≤ Adv
P1‖...‖Pn∼=Q1‖...‖Qn
BO,OC

(pS1(t, n, |C|, |σ|))

Simulatability Now, with the fact that νn.C is O-simulatable, we have a simulator AO
C

such
that, thanks to Lemma 5.3, B[AO

C
]O,OR behaves exactly as BO,OC ,OR . We have, for pC the

polynomial bound on the runtime of AC , by Definition 5.4,

Adv
P1‖...‖Pn∼=Q1‖...‖Qn
BO,OC

(t) ≤ Adv
P1‖...‖Pn∼=Q1‖...‖Qn
B[AO

C
]O

(q(pC(t) + t))

and finally,

Adv
C[P1σ,...,Pnσ]∼=C[Q1σ,...,Qnσ]

AO (t)

≤ Adv
P1‖...‖Pn∼=Q1‖...‖Qn
B[AO

C
]O

(q(pC ◦ pS1
(n, t, |C|, |σ|) + pS1

(n, t, |C|, |σ|)))

�

Given a protocol P and a context C, for Theorem 5.2 to be used, we need an oracle such that:

1. the context C is simulatable with the oracle O,

96

5.4 Main Composition Theorems

2. the protocol P is secure even for an attacker with access to O (P ∼=O Q).

Our goal is to find an oracle that is generic enough to allow for a simple proof of indistinguishability
of P andQ under the oracle, but still allows to simulate C. Notably, if we take as oracle the protocol
oracle corresponding to the context itself, we can trivially apply Theorem 5.2 but proving P ∼=O Q
amounts to proving C[P] ∼= C[Q].

Application to tagged protocols We consider two versions of SSH, calling them SSH2

and SSH1, assuming that all messages are prefixed respectively with the strings “SSHv2.0” and
“SSHv1.0”. Both versions are using the same long term secret key sk for signatures. We assume
that both versions check the string prefix.

To prove the security of SSH2 running in the context of SSH1, we can use Theorem 5.2. If we
denote by I the idealized version of SSH2, the desired conclusion is SSH2‖SSH1

∼= I‖SSH1.
Letting C[_1] = _1‖SSH1, it is then sufficient to find an oracle O such that:

1. νsk.SSH1 is O-simulatable (the simulatability of C directly follows),
2. SSH2

∼=O I

If we define the tagging function TSSH1
that checks the prefix, SSH1 is trivially Osign

TSSH1
,sk-

simulatable (see Definition 5.8) as SSH1 does enforce the tagging checks. We thus let O be
Osign
TSSH1

,sk.

Assuming that sign verifies the classical EUF-CMA axiom, by Proposition 5.2, it also verifies the
tagged version EUF-CMATSSH1

,sk. To conclude, it is then sufficient to prove that SSH2
∼=O I

with a reduction to EUF-CMATSSH1
,sk.

Application to encrypt and sign For performances considerations, keys are sometimes used
both for signing and encryption, for instance in the EMV protocol. In [PSS+11], an encryption
scheme is proven to be secure even in the presence of a signing oracle using the same key. Our
Theorem formalizes the underlying intuition, i.e. if a protocol can be proven secure while using
this encryption scheme, it will be secure in any context where signatures with the same key are
also performed.

5.4.2 Composition with State Passing

In some cases, a context passes a sequence of terms to another protocol. If the sequence of terms
is indistinguishable from another one, we would like the two experiments, with either sequences of
terms, to be indistinguishable.

Example 5.8. Let us consider once again the protocol P (x1, x2) := in(c, x).out(c, enc(x, x1, x2))
of Example 2.3. We assume that we have a function kdf, which, given a random input, generates
a suitable key for the encryption scheme. Let a random name seed and let C[_1] := let sk =
kdf(seed) in _1. C[‖iP (ri, sk)] provides an access to an encryption oracle for the key generated in
C:

C[‖iP (ri, sk)] :=
let sk = kdf(seed) in
‖i(in(c, x).out(c, enc(x, ri, sk)))

97

5 A Composition Framework in the Computational Model

A classical example is a key exchange, used to establish a secure channel. The situation is dual
with respect to the previous theorem: contexts must be indistinguishable and the continuation
must be simulatable.

Theorem 5.4. Let C,C ′ be n-ary contexts such that each hole is terminal. Let P1(x), . . . , Pn(x)
be parameterized protocols, such that channel sets are pairwise disjoint. Given a functional
modelMf , an oracle O , n ⊇ N (C) ∩N (P1, . . . , Pn), t1, . . . , tn, t′1, . . . , t′n sequences of terms,
C̃ := C[out(c1, t1), . . . ,out(cn, tn)] and C̃ ′ := C ′[out(c1, t′1), . . . ,out(cn, t′n)]. If
C̃‖in(c1, x).P1(x)‖ . . . ‖in(cn, x).Pn(x) is a protocol and:

1. C̃ ∼=O C̃ ′
2. νn.in(c1, x).P1(x)‖ . . . ‖in(cn, x).Pn(x) is O-simulatable

then C[P1(t1), . . . , Pn(tn)] ∼=O C ′[P1(t′1), . . . , Pn(t′n)]

Specifically, there exists a polynomial pS (independent of P1, . . . , Pn) such that if pO is the
polynomial bound on the runtime of the simulator for P := in(c1, x).P1(x)‖ . . . ‖in(cn, x).Pn(x),
we have,

Adv C[P1(t1),...,Pn(tn)]∼=OC[P1(t′1),...,Pn(t′n)](t) ≤ AdvC̃
∼=OC̃′

(
pS
(
t, n, |P |, pP (t)

))

C̃ is the context, in which all the bound values (for instance the key derived by a key exchange)
are outputted on distinct channels. C̃ ′ corresponds to the idealized version. We can pass those
bound values to another protocol P , if this protocol P can be simulated for any possible value of
the bound values.

Proof. The proof is very similar to Theorem 5.2.

Let us assume that we have an attacker such that

Adv
(
A
O,O

C[P1(t1),...,Pn(tn)]?C[P1(t′1),...,Pn(t′n)]

)
= ε0

We denote C1 = C[out(c1, t1), . . . ,out(cn, tn)], C2 = C[out(c1, t′1), . . . ,out(cn, t′n)], P ′1 =
in(1, x).P1(x), . . . , P ′n = in(n, x).Pn(x). We first construct an attacker against:

C1‖P ′1‖ . . . ‖P ′n ∼= C2‖P ′1‖ . . . ‖P ′n

Let us consider BO,OD,OP ′1 ,...,OP ′n which simulates A
O,O

C[P1(t1),...,Pn(tn)]?C[P1(t′1),...,Pn(t′n)] but, af-
ter setting some variables d1, . . . , dn to 0 and some list x to the empty list, for every call to
OC[P1(t1),...,Pn(tn)]?C[P1(t′1),...,Pn(t′n)] of the form (c,m):

I if there exist i such that di = 1 and c ∈ C(P ′i) then
• query OP ′i with (cσ−1,m)

• if OP ′i terminates set ci = 0 and if it returns ⊥, then, with C and C ′′ such that
C[_1, . . . ,_n] = C[_i;C

′′] it adds to x the channels C(C ′′)
• else it forwards the answer (c′,m′) as (c′σ,m′)

I else if c ∈ C(C1) and c /∈ x then
• queries OD with (c,m)
• if OD answers with some ti on channel i

∗ set di = 1
∗ sends (i, ti) to OP ′i and forwards the answer

• else forwards the answer of OD

98

5.4 Main Composition Theorems

With this construction, we do have

Adv
(
BO,OC1?C2

,OP ′1 ,...,OP ′n
)

= ε0

Using Lemma 5.1, we get a distinguisher B′ such that:

Adv
(
B′O,OC1?C2

,OP ′1‖...‖P ′n
)

= ε0

Now, with the fact that νn.P ′1‖ . . . ‖P ′n is O simulatable, we have a simulator AOP ′1‖...‖P ′n such that

thanks to Proposition 5.1, B′[AOP ′1‖...‖P ′n]O,OD behaves exactly as BO,OP ′1‖...‖P ′n ,OD .

We finally have Adv
(
B′[AOP ′1‖...‖P ′n]O,OC1?C2

)
= ε0.

The bound on the advantage is derived similarly to Theorem 5.2.

�

When we do so, we only assume that they are all distinct. The following example shows how
Theorems 5.2 and 5.4 can be used to derive the security of one session of a key exchange composed
with a protocol.

Example 5.9. Let us consider a key exchange I‖R where xI (resp. xR) is the key derived by the
initiator I (resp. the responder R) in case of success. We denote by KE[_1,_2] := I;_1‖R;_2

the composition of the key exchange with two continuations; the binding of xI (resp. xR) is passed
to the protocol in sequence. Consider possible continuations P I(xI), PR(xR) that use the derived
keys and ideal continuations (whatever “ideal” is) QI(xI), QR(xR). We sketch here how to prove
KE[P I(xI), PR(xR)] ∼= KE[QI(xI), QR(xR)] (i.e., the security of the channel established by the
key exchange). This will be generalized to multi-sessions in Section 5.6. We use both Theorems 5.2
and 5.4.

Assume, with a fresh name k, that:

1. Oke is an oracle allowing to simulate the key exchange
2. OP,Q allows to simulate in(cI , x).P I(x)‖in(cR, x).PR(x) and

in(cI , x).QI(x)‖in(cR, x).QR(x)
3. P I(k)‖PR(k) ∼=Oke QI(k)‖QR(k)
4. KE[out(cI , xI),out(cR, xR)] ∼=OP,Q KE[out(cI , k),out(cR, k)]

Hypothesis 3 captures the security of the channel when executed with an ideal key, and Hypothesis
4 captures the security of the key exchange. Both indistinguishability are for an attacker that can
simulate the other part of the protocol.

Using Theorem 5.2 with Hypothesis 1 and 3 yields

KE[P I(k), PR(k)] ∼= KE[QI(k), QR(k)]

Hypothesis 2 and 4 yield, with two applications of Theorem 5.4, one for P and one for Q, that
KE[P I(xI), PR(xR)] ∼= KE[P I(k), PR(k)] and KE[QI(xI), QR(xR)] ∼= KE[QI(k), QR(k)]. Tran-
sitivity allows us to conclude that the key exchange followed by the channel using the produced
key is indistinguishable from the key exchange followed by the ideal secure channel:

KE[P I(xI), PR(xR)] ∼= KE[QI(xI), QR(xR)]

99

5 A Composition Framework in the Computational Model

In Theorem 5.4, the simulatability of

νn.in(cP , k);P (k)‖in(cQ, k);Q(k)

may be a requirement too strong in some applications. This issue will be raised when we consider
the forwarding agent of the SSH protocol, as detailed in Section 5.9.3, but we can avoid it in this
specific case. For more complex applications, it might be interesting in the future to consider a
weaker version of function applications where the produced key k always satisfies a condition H(k).
We could then design an oracle O so that for all names satisfying condition H(k) we would have
that P (k)‖Q(k) is O-simulatable.

5.4.3 Unbounded Replication

An important feature of a compositional framework is the ability to derive the security of a multi
session protocol from the analysis of a single session. To refer to multiple sessions of a protocol, we
consider that each session uses some fresh randomness that we see as a local session identifier.

The main idea behind the Theorem is that the oracle will depend on a sequence of names of
arbitrary length. This sequence of names represents the list of honest randomness sampled by each
party of the protocol, and the oracle enables simulatability of those parties.

We provide bellow the Proposition that allows to put in parallel any number of replications of
simulatable protocols.

Proposition 5.3. Let Or be an oracle parameterized by a sequence of names s, and O an
oracle. Let p be a sequence of names, P (x), R1

i (x, y), . . . , Rki (x, y) and Q(x) be protocols,
such that Nl(R1

i , . . . , R
k
i) is disjoint of the oracle support. If we have, for sequences of names

lsid
1
, . . . , lsid

k
, with s = {lsidji}1≤j≤k,i∈N :

1. ∀i, j ∈ N, νp, lsidji .R
j
i (p, lsid

j

i) is Or-simulatable.
2. P (p) ∼=Or Q(p)
3. s is disjoint of the support of O.

Then, for any integers N1, . . . , Nk:

P (p)‖i≤N1(R1
i (p, lsid

1

i)‖ . . . ‖i≤NkRki (p, lsid
k

i)
∼=O,Or Q(p)‖i≤N1R1

i (p, lsid
1

i)‖ . . . ‖i≤NkRki (p, lsid
k

i)

Specifically, there exists a polynomial pS (independent of all Rj) such that if pRj is the poly-
nomial bound on the runtime of the simulator for Rj, we have,

AdvP (p)‖i≤N1 (R1
i (p,lsid

1
i)‖...‖

i≤NkRki (p,lsid
k
i)∼=OQ(p)‖i≤N1R1

i (p,lsid
1
i)‖...‖

i≤NkRki (p,lsid
k
i)(t)

≤ AdvP (p)∼=O,OrQ(p)
(
pS
(
t,N1, |R1|, . . . , Nk, |Rk|, pR1(t), . . . , pRk(t)

))

ü Technical Details

In the previous proposition and following applications, we talk about sequences of names of the
form s = {lsidji}1≤j≤k,i∈N. This does not have any practical meaning and is only a shortcut.
In practice, we must have that the previous hypotheses hold for any polynomial p and any
sequence s = {lsidji}1≤j≤k,1≤i≤p(η). We will precisely define this in Section 6.4.

100

5.5 Unbounded Sequential Replication

Applying the previous Proposition with P and Q as R1 and R2, we can obtain the Theorem for
the unbounded replication of a protocol, where the number of sessions depends on the security
parameter.

Theorem 5.5. Let Or, O be oracles both parameterized by a sequence of names s. Let p
be a sequence of names, Pi(x, y) and Qi(x, y) be parameterized protocols, such that Nl(P,Q)

is disjoint of the oracles support. If we have, for sequences of names lsid
P
, lsid

Q
, with s =

{lsidPi , lsid
Q

i }i∈N:

1. ∀ i ≥ 1, νp, lsid
P

i .Pi(p, lsid
P

i) is Or-simulatable.
2. ∀ i ≥ 1, νp, lsid

Q

i .Qi(p, lsid
Q

i) is Or-simulatable.
3. s is disjoint of the support of O.
4. P0(p, lsid

P

0) ∼=Or,O Q0(p, lsid
Q

0)

then,
||iPi(p, lsid

P

i) ∼=O ||iQi(p, lsid
Q

i)

To prove this result, we use the explicit advantages that can be derived from our composition
Theorems, which increases polynomially with respect to the number of sessions, and apply a
classical hybrid argument to conclude.

In our applications (Section 5.6), the main idea is to first use Theorem 5.5 to reduce the multi-
session security of a key exchange or a communication channel to a single session, and then use
Theorems 5.2 and 5.4 to combine the multiple key exchanges and the multiple channels.

Remark, that in practice, to express the security properties of the protocols, we need to allow the
protocols to use a predicate T (x) whose interpretation may depend on the list of honest randomness
sampled by each party of the protocol. For instance, this predicate may be used to check whether
a value received by a party corresponds to a randomness sent by another party, and we would have
T (x) := x ∈ s. The two previous Theorems are in fact also valid in such cases, and we will use
such notations in the application to key exchanges, but we delay to Chapter 6 the formalization of
such predicates.

5.5 Unbounded Sequential Replication

We replicate a sequential composition where at each occurrence, a value produced by the protocol
is transmitted to the next occurrence. This corresponds to the security of a protocol looping on
itself, as it is the case for some key renewal protocols.

Such protocols depend on an original key, and are thus parameterized process of the form P (x).
As they renew the key stored in the variable x, they rebind x to some new value and thus contain
a construct of the form let x = _ in .

Proposition 5.4. Let O be an oracle, two parameterized processes P (x), Q(x), a set of names
n = Ng(P,Q) and fresh names k0, l. We assume that Nl(P,Q) is disjoint of the support of O.
If:

I νn.in(cP , x);P (x)‖in(cQ, x);Q(x) is O-simulatable, and
I P (k0);out(cP , x)‖Q(k0);out(cQ, x) ∼=O P (k0);out(cP , l)‖Q(k0);out(cQ, l)

101

5 A Composition Framework in the Computational Model

then, for any N,

P (k0);P (x);N ;out(cP , x)‖Q(k0);Q(x);N ;out(cQ, x)
∼=O P (k0);P (x);N ;out(cP , l)‖Q(k0);Q(x);N ;out(cQ, l)

The main idea behind the proof is to perform as many function applications (Theorem 5.4) as
needed, one for each replication of the protocol. Remark that compared to the previous replication,
where we considered multiple sessions of the protocol and thus a notion of local session identifier was
required, here we consider a single session looping on itself, and we do not need those identifiers.

5.6 Application to Key Exchanges

 Section Summary

Although our framework is not specifically tailored to key exchanges or any specific property,
we choose to focus here on this application. We outline how our theorems may be used to prove
the security of a protocol using a key derived by a key exchange in a compositional way. (Let
us recall that the key exchange and the protocol using the derived key may share long term
secrets).

5.6.1 Our Model of Key Exchange

In order to obtain injective agreement, key exchanges usually use fresh randomness for each session
as local session identifiers. For instance in the case of a Diffie-Hellman key exchange, the group
shares may be seen as local session identifiers.

As in Example 5.9, KE is a key exchange with possible continuations. In addition, we consider
multiple copies of KE, indexed by i, and local session identifiers lsid for each copy:

KEi[_1,_2] := I(lsidIi , id
I);_1‖R(lsidRi , id

R);_2

Here, id captures the identities of the parties and lsid captures the randomness that will be used
by I and R to derive their respective local session identifiers. In the key exchange, I binds xI to
the key that it computes, xIlsid to the value of lsid received from the other party and xIid to the
received identity. Symmetrically, R binds the variables xR, xRlsid and xRid.

If we denote by P Ii (xI)‖PRi (xR) the continuation (e.g., a record protocol based on the derived
secret key), KEi[P Ii (xI), PRi (xR)] is the composition of a session of the key exchange with the
protocol where the values of xI , xR (computed keys) are passed respectively to P Ii (xI) or PRi (xR).
With Q an idealized version of P (however it is defined), the security of the composed protocol is
expressed as follows:

‖iKEi[P Ii (xI), PRi (xR)] ∼= ‖iKEi[QIi (xI), QRi (xR)]

Intuitively, from the adversary point of view, P is equivalent to its idealized version, even if the
key is derived from the key exchange as opposed to magically shared.

Equivalently, the security of the composed protocol can be proved if we have that the advantage
against the following indistinguishability is polynomial in N (and of course negligible).

‖i≤NKEi[P Ii (xI), PRi (xR)] ∼= ‖i≤NKEi[QIi (xI), QRi (xR)]

A Corollary formalizing the following discussion can be found in Appendix B.1.

102

5.6 Application to Key Exchanges

5.6.2 Proofs of Composed Key Exchange Security

Following the same applications of Theorems 5.2 and 5.4 as in Example 5.9, we decompose the
proof of the previous indistinguishability goals into the following goals:

1. find an oracle OP,Q to simulate multiple sessions of P or Q,
2. design an oracle Oke to simulate multiple sessions of KE
3. complete a security proof under Oke for multiple sessions of the protocol using fresh keys,
4. complete a security proof under OP,Q for multiple sessions of the key exchange.

We further reduce the security of the protocol to smaller proofs of single sessions of the various
components of the protocols under well chosen oracles. The following paragraphs successively
investigate how to simplify the goals (1),(2),(3),(4) above. For simplicity, we only consider here
the case of two fixed honest identities.

In the following, we provide the conditions S-1,S-2,P-1,P-2,P-3,P-4,K-1,K-2,K-3 that must be sat-
isfied, so that we can prove

‖iKEi[P Ii (xI), PRi (xR)] ∼= ‖iKEi[QIi (xI), QRi (xR)]

using our framework and the decomposition of Example 5.9. Corollary B.2, that formalizes the
following discussion and generalizes it to non fixed identities, can be found in Appendix B.1.

We denote p = {idI , idR} and assume that they are the only shared names between KE,P and
Q and are the only names shared by two distinct copies Pi, Pj (resp. Qi, Qj). We also denote by
s = {lsidIi , lsidRi }i∈N the set of all copies of the local session identifiers.

Protocol simulatability For the simulation of the protocol, there must exists an oracle OP,Q
such that

S-1 νp.in(cI , x
I).P Ii (xI)‖in(cR, x

R).PRi (xR) is OP,Q-simulatable

Indeed, if this condition is fulfilled (and a similar one replacing P with Q), then, thanks to The-
orem 5.1, νp.‖i(in(cI , x

I).P Ii (xI)‖in(cR, x
R).PRi (xR)) is OP,Q-simulatable (and similarly for Q).

This meets the condition (2) of Theorem 5.4.

Key exchange simulatability For the simulation of the key exchange context, we need N (with
N polynomial in the security parameter) copies of KE and, in each of them, the initiator (resp.
the responder) may communicate with N possible responders (resp. initiators). We therefore use
Theorem 5.2 with a context C with 2N2 holes. C is the parallel composition of N contexts and,
as above, we use Theorem 5.1 to get the condition (1) of Theorem 5.2. Let KE′i be1

KEi[if
1≤j≤N

xIlsid = lsidRj then out(cI , 〈i, j〉) else ⊥,

if
1≤j≤N

xRlsid = lsidIj then out(cR, 〈i, j〉) else ⊥]

C is then ‖i≤NKE′i and C can be inferred by replacing each out(〈i, j〉) with a hole. We output
〈i, j〉 so that we know that the full scheduling is simulatable. Then, the condition to be met by
the key exchange is that

S-2 νp.KE′i is Oke-simulatable

We then get, thanks to Theorem 5.1 the condition (1) of Theorem 5.2.

1we denote if
1≤j≤N

ci then ai else a′ := if c1 then a1 else if c2 · · · then an else a′

103

5 A Composition Framework in the Computational Model

Security of the protocol Our goal is ‖iPi(ki) ∼=Oke ‖iQi(ki). Based on Theorem 5.5, we only
need an oracle Or so that:

P-1) ∀ i ≥ 1, νp, ki.P0(ki) is Or-simulatable,
P-2) ∀ i ≥ 1, νp, ki.Q0(ki) is Or-simulatable,
P-3) s is disjoint of the support of Oke,
P-4) P0(k0) ∼=Or,Oke Q0(k0).

We use the fresh names ki to model fresh magically shared keys, and use them as local sids
for Theorem 5.5. The intuition is similar to the notion of Single session game of [BFW+11], where
the considered protocols are such that we can derive the security of multiple sessions from one
session. For instance, if the key is used to establish a secure channel, revealing the other keys does
not break the security of one session, but allows to simulate the other sessions.

Security of the key exchange The security of the key exchange is more complicated to define,
in the sense that it cannot simply be written with a classical replication. The partnering of sessions
is not performed beforehand, so we must consider all possibilities. We may express the security
of a key exchange by testing the real-or-random for each possible session key. We denote ki,j the
fresh name corresponding to the ideal key that will be produced by the i-th copy of the initiator
believing to be partnered with the j-th copy of the responder. The security of the key exchange is
captured through the following indistinguishability:

‖i≤NKEi[out(xI),out(xR)] ∼=OP,Q
‖i≤N KEi[if

1≤j≤N
xIlsid = lsidRj then out(ki,j) else ⊥,

if
1≤j≤N

(xRlsid = lsidIj) then out(kj,i) else ⊥]

where the advantage of the attacker is polynomial in N . Remark that we sometimes omit channels,
when they only need to be distinct.

Using a classical cryptographic hybrid argument (detailed in Proposition B.2), we reduce the
security of multiple sessions to the security of one session in parallel of multiple corrupted sessions;
the security of each step of the hybrid game is derived from Equation (5.1) using Theorem 5.4. It
is expressed, with stateXi = 〈xX , lsidXi , xXlsid〉, as

‖i≤NKEi[out(〈stateIi 〉),out(〈stateRi 〉)] ∼=OP,Q
‖i≤N−1KEi[out(〈stateIi 〉),out(〈stateRi 〉)]
‖ KEN [if xIlsid = lsidRN then out(〈k, lsidIN , xIlsid〉)

else if xIlsid /∈ {lsidRi }1≤i≤N−1 then ⊥,
else out(〈stateIi 〉),
if xRlsid = lsidIN then out(〈k, lsidRN , xRlsid〉)
else if xRlsid /∈ {lsidIi }1≤i≤N−1 then ⊥,
else out(〈stateRi 〉)]

(5.1)

The previous equivalence expresses that when we look at N sessions that all output their full state
upon completion, the particular matching of the parties in KEN has a key that is real or random
if they are indeed partnered together, and if they are not partnered together, they must be talking
to another agent from the other KEi. We may see the other sessions as corrupted sessions, as they
leak their states upon completion.

We further reduce the problem to proving the security of a single session even when there is an
oracle simulating corrupted sessions. To this end, we need to reveal the dishonest local session’s
identifiers to the attacker, but also to allow him to perform the required cryptographic operations,
e.g. signatures using the identities.

We define, for X ∈ {I,R}, sX as the set of copies of the local session identifiers of I or R, except a
distinguished one (indexed 0 below) and s = sI ∪ sR. To obtain the security of multiple sessions of

104

5.7 Basic Diffie-Hellman Key Exchange

the key exchange, we use Proposition 5.3.2. To this end, we would need to design an oracle Or, such
that the following assumptions are satisfied, where OP,Q corresponds to O of Proposition 5.3:

K-1) ∀1 ≤ i ≤ N, νlsidIi , idI , lsidRi , idR.
KEi[out(xI),out(xR)]‖out(〈lsidRi , lsidIi 〉) is Or simulatable.

K-2) KE0[out(〈xI , lsidI0, xIlsid〉),
out(〈xR, lsidR0 , xRlsid〉)]

∼=Or,OP,Q KE0[if xIlsid = lsidR0 then out(〈k, lsidI0, xIlsid〉)
else if xIlsid /∈ sR then ⊥
else out(〈xI , lsidI0, xIlsid〉),
if xRlsid = lsidI0 then out(〈k, lsidR0 , xRlsid〉)
else if xRlsid /∈ sI then ⊥
else out(〈xR, lsidR0 , xRlsid〉)]

K-3) s is disjoint of the support of OP,Q.

Intuitively, if the initiator believes to be talking to the honest responder, then it outputs the ideal
key, and if it is not talking to any simulated corrupted party, it raises a bad event.

Note that while the structure of the proof does not fundamentally change from other proofs of
key exchanges, e.g. [BFW+11], each step of the proof becomes straightforward thanks to our
composition results. Our proofs are also more flexible, as shown by the extension to key exchanges
with key confirmation in Section 5.8.

5.7 Basic Diffie-Hellman Key Exchange

 Section Summary

We outline here the application of our framework to the ISO 9798-3 protocol, a variant of the
Diffie-Hellman key exchange. It is proven UC composable in [KR17]. We use our result to
extend the security proof to a context with shared long term secrets (which was not the case in
the UC proof). We present the protocol in Figure 5.2, and show how to instantiate the required
values and oracles to perform the proof presented in Section 5.6.2. The formal proofs (using
the BC model [BC14a] and our tool) are provided in Part IV.

Our decomposition and subsequent proofs show that the DDH key exchange can be used to
securely derive a secret key for any protocol that does not rely on the long term secret used in
the key exchange. Our proof is also modular, in the sense that it could be adapted to provide
also the security when the continuation protocol uses the long term shared secret as well.

A high level view of the protocol is given in Figure 5.2, and it is formally expressed in our algebra
in Figure 5.3, where _I and _R denote the possible continuations at the end of each party. We
use pattern matching in the inputs to simplify the notations, where for instance in(c, 〈m,x〉) with
m some constant only accepts inputs whose first projection is m, and then bind the variable x
to the second projection. If the inputs are not of the given form, the protocols goes to an error
branch.

Our goal is to apply the decomposition of Section 5.6.2, for some abstract continuations P and Q
that are supposed to used the derived key. We need to find suitable identities and local session
identifiers so that the Conditions from the decomposition of Section 5.6.2 are fulfilled. As we do
not specify P and Q, we only discuss the conditions relative to the security of the key exchange,
e.g., K-1,K-2 and K-3. Remark that those conditions are sufficient to derive a notion similar to the
classical security of a key exchange, as for any P and Q that do not share long term shared secrets

2We also use Theorem 5.1 to get the simulatability of N sessions in parallel from the simulatability of
each session.

105

5 A Composition Framework in the Computational Model

Initiator
skI , ai

Receiver
skR, bi

pk(skI), g
ai

pk(skR), gbi , sign((gai , gbi , pk(skI)), skR)

sign((gbi , gai , pk(skR)), skI)

Figure 5.2: ISO 9798-3 Diffie Hellman Key Exchange

‖i (
Ii :=

out(〈pk(skI), g
ai〉)

in(〈xpk, xB, xm〉).
if verify(xm, xpk) = 〈gai , xB, pk(skI)〉 then

out(sign(〈xB, gai , xpk〉, skI))
let kI = xaiB in
_I

‖
Ri :=

in(〈xpk, xA〉).
out(〈pk(skR), gbi , sign(〈xA, gbi , xpk〉, skR)〉)
in(xm).
if verify(xm, xpk) = 〈gbi , xA, pk(skR)〉 then

let kR = xbiA in
_R

)

Figure 5.3: ISO 9798-3 Diffie Hellman Key Exchange in the Pi Calculus (omitted channels)

with the key exchange. The other conditions are trivial to derive or only rely on the security of
the continuation when using an ideal key.

The identity of each party is its long term secret key, and thus, we use skI and skR as idI and
idR. Each session of the key exchange instantiates a fresh Diffie-Hellman share, that can be seen
as a local session identifier. We thus use gai and gbi as lsidIi and lsidRi . These values can also be
used as implicit tagging since any signed message either depends on ai or bi.

With those choices, we need to find a tagging function T that will provide a tagged oracle OT
such that the Conditions K of Section 5.6.2 are satisfied. Those Conditions, reformulated with the
current notations and with OT standing for Or, are expressed as follow:

K-1) ∀1 ≤ i ≤ N, νai, skI , bi, skR.
Ii[out(kI)]‖Ri[out(kR)]‖out(〈gai , gbi〉) is OT -simulatable.

K-2) I0 [out(〈kI , ga0 , xB〉)]
‖R0 [out(〈kR, gb0 , xA〉)]

∼=OT ,OP,Q

I0

 if xB = gb0 then out(〈xa0B , ga0 , xB〉)
else if xB /∈ {gbi}i≥1 then ⊥
else out(〈kI , ga0 , xB〉)

‖R0

 if xA = ga0 then out(〈xb0A , gb0 , xA〉)
else if xA /∈ {gai}i≥1 then ⊥
else out(〈kR, ga0 , xB〉)

K-3) {gai , gbi}i≥1 is disjoint of the support of OP,Q.

106

5.8 Extension to Key Confirmations

K-2 either corresponds to a matching conversation (i.e., all messages received by one were sent
by the other) between the sessions with sids ga0 , gb0 , in which case the output is (twice) an ideal
key k, or else it is a matching conversation with a simulated session, in which case it outputs
the computed keys. It is neither of those cases, it should not happen, and we raise a bad event
(denoted ⊥). The proof of the K-2 is thus a real-or-random proof of a honestly produced key.
We do not provide the proof of K-2 in this part, as it will be performed in the mechanized prover
of Part IV.

We must define an implicit tagging that allows to both have the simulatability and the indistin-
guishability. Remark that first, we extend the tagging function T of Definition 5.8 so that it may
depend on a second argument of arbitrary length, yielding T (m, s), the corresponding signing or-
acle being denoted Osign

T,sk,s. This is required so that the implicit tagging may depend on all the
possible local session identifiers. The exact definition of this extension is given in Section 6.4.

We define the implicit tagging functions T I and TR as

T I(m, {gai , gbi}i≥1) := ∃s ∈ {ai}i≥1,∃m1,m2.m = (m1, g
s,m2)

TR(m, {gai , gbi}i≥1) := ∃s ∈ {bi}i≥1,∃m1,m2.m = (m1, g
s,m2)

This tagging function will suit our needs, as all messages signed by the two parties follow this
pattern. Moreover, in the protocol, the value sent in the first message should match gai in the last
message. Therefore, when the protocol of Figure 5.2 is successfully completed, we can prove that
if xB 6= gb0 , then xB ∈ {gbi |i ≥ 1}, i.e., TR(xB , {gai , gbi}i≥1) is true (and similarly for R).

Let s = {gai , gbi}i≥1, we finally define OT = Osign
T I ,skI ,s

,Osign
TR,skR,s

,Os, where Os simply reveals the
elements in s, we do obtain the simulatability of multiple sessions of the key exchange (Hypothesis
1).

To adapt this proof to a concrete example, the security proof of K-2 would be performed under
an oracle OP,Q that allows to simulate the continuation (Condition P-1 of Section 5.6.2). The
continuation should then be proven secure when using an ideal key (Conditions P of Section 5.6.2).
In some cases, this step is trivial. Indeed, let us consider a record protocol L := LI(xI)‖LR(xR),
that exchanges encrypted messages using the exchanged key, and does not share any long term
secret, i.e., does not use the signing keys of the key exchange. Without any shared secret, we do
not need any oracle to simulate in(k);LI(k)‖in(k);LR(k), so we can choose a trivial OP,Q that
does nothing.

5.8 Extension to Key Confirmations

 Section Summary

We present how our compositional framework can be used to prove the security of a key ex-
change, in which the key is derived in a first part of the protocol and then used (key confirmation)
in the second part. Compared to [BFS+13], our method allows in addition sharing of long term
secrets.

Consider a key exchange I(lsidIi , id
I)‖R(lsidRi , id

R). We further split I and R into Ii :=
I0
i (lsidIi , id

I); I1
i (xI) and Ri := R0

i (lsid
R
i , id

r);R1
i (x

R), where I0
i and R0

i correspond to the key
exchange up to, but not including, the first use of the secret key (xI or xR), and I1

i and R1
i are the

remaining parts of the protocol. The intuition behind the proof of security is that at the end of I0
i

and R0
i , i.e. just before the key confirmation, either the sessions are partnered together and the

107

5 A Composition Framework in the Computational Model

derived key satisfies the real-or-random, or they are not, which means that the key confirmation
performed by I1

i and R1
i will fail. We denote

KEi[_1,_2] := I0
i (lsidIi , id

I); I1
i (xI);_1‖R

0
i (lsid

R
i , id

R);R1
i (x

R);_2

and
KE0

i [_1,_2] := I0
i (lsidIi , id

I);_1|R
0
i (lsid

R
j , id

R);_2

We proceed as in Section 5.6, outlining how we may split the security proof into smaller proofs
using our framework, using the same composition Theorems at each step. We thus provide the
necessary Conditions S-1,S-2,P-1,K-1,K-2,K-3 so that, for some continuation P Ii (xI)‖PRi (xR) and
its idealized version Q,

‖iKEi[P Ii (xI), PRi (xR)] ∼= ‖iKEi[QIi (xI), QRi (xR)]

A formal Corollary can be found in Appendix B.2.

5.8.1 Proofs with Key Confirmations

Key exchange and protocol simulatability We modify slightly the conditions S-1 and S-2
of Section 5.6.2 to reflect the fact that we now consider the key confirmation to be part of the
continuation:

S-1) νp.in(x).I1(x);P I(x), in(x).R1(x);PR(x), in(x).I1(x);QI(x),
in(x).R1(x);QR(x) are OP,Q simulatable.

S-2) νp. ‖i≤N I0
i (lsidIi , id

I); if
1≤i≤N

xIlsid = lsidRj then

out(〈i, j〉)
else I1

i (xI);⊥
‖i≤N R0

i (lsid
R
i , id

R); if
1≤i≤N

xRlsid = lsidIj then

out(〈i, j〉)
else R1

i (x
R);⊥

is Oke-simulatable.

Security of the protocol Compared to Section 5.6.2, the continuation must be secure even in
the presence of the messages produced during the key confirmation:

P-1) ‖i≤NI1
i (xI);P Ii (xI)‖R1

i (x
R);PRi (xR) ∼=Or,Ok ‖i≤NI1

i (xI);QIi (x
I)‖R1

i (x
R);QRi (xR)

We could once again split this goal into a single session proof using Theorem 5.5. We remark
that to prove the security of the single session, we can further reduce the proof by using an oracle
that may simulate I1 and R1, as the security of P should not depend on the messages of the key
confirmation.

Security of the key exchange We proceed in a similar way as in Section 5.6.2 and we use the
same notations. The following Conditions are then suitable:

K-1) ∀i ≤ N, νlsidIi , idI , lsidRi , idR.
KE0

i [out(xI),out(xR)]‖out(〈lsidRi , lsidIi 〉) is OT -simulatable
K-2) s is disjoint of the support of OP,Q.

108

5.9 Application to SSH

Platform
skP , ai

Server 1
skS , bi, ci

Server 2
skT , di

gai

let sid = hash(〈gai , gbi , gaibi〉)

let k=gaibigbi , pk(skS), sign(sid, skS)

enc(sign(sid, skP), k)

Successful login of the user on Server 1
gci

let sid2 = hash(〈gci , gdi , gcidi〉)

let k2 = gcidi

gdi , pk(skT), sign(sid2, skT)enc(sid2, k)

enc(sign(〈sid2, “forwarded”〉, skP), k) enc(sign(〈sid2, “forwarded”〉, skP), k2)

Figure 5.4: SSH with Forwarding Agent

K-3) KE0
0 [if xIlsid /∈ sR then I1

0 (xI)
else out(〈xI , lsidI0, xIlsid〉),
if xRlsid /∈ sI then R1

0(xR)
else out(〈xR, lsidR0 , xRlsid〉)]

∼=OKE ,OP,Q KE0
0 [if xIlsid = lsidR0 then out(〈k, lsidI0, xIlsid〉)

else if xIlsid /∈ sR then I1
0 (xI);out(⊥)

else out(〈xI , lsidI0, xIlsid〉),
if xRlsid = lsidI0 then out(〈k, lsidR0 , xRlsid〉)
else if xRlsid /∈ sI then R1

0(xR);out(⊥)
else out(〈xR, lsidR0 , xRlsid〉)]

The indistinguishability expresses that, if the two singled out parties are partnered, i.e., xIlsid =
lsidR0 or xRlsid = lsidI0 , then we test the real-or-random of the key. Else, it specifies that a party
must always be partnered with some honest session, i.e., that xXlsid /∈ sY will never occur. To this
end, on one side, when xXlsid /∈ sY we run the key confirmation, and on the other side we run the
key confirmation followed in case of success by a bad event. Finally, when two honest parties are
partnered, but are not the singled out parties, they leak their states.

5.9 Application to SSH

 Section Summary

SSH [YL] is a protocol that allows users to login onto a server from a remote platform. It is
widely used in the version where signatures are used for authentication. An interesting feature
is forwarding agent: once a user u is logged on a server S, they may, from S, perform another
login on another server T . As S does not have access to the signing key of u, it forwards a
signature request to u’s platform using the secure SSH channel between u and S. This represents
a challenge for compositional proofs: we compose a first key exchange with another one, the
second one using a signature key already used in the first.

We provide the decomposition of the security proof of SSH composed with one (modified)
forwarding agent. We use multiple times in sequence our composition Theorems, that allow us to
further simplify the required indistinguishability proofs. The corresponding indistinguishability
proofs are performed in Part IV.

There is a known weakness in this protocol: any privileged user on S can use the agents of any
other user as a signing oracle. Thus, in order to be able to prove the security of the protocol,

109

5 A Composition Framework in the Computational Model

Pi :=
out(gai);
in(〈xB, pk(skS), sign〉)
let k = xaiB in
let sid = hash(〈gai , xB, k〉) in
if verify(sign, pk(skS)) = sid then

out(enc(sign(sid, skP), k));
_P .

Si :=
in(xA);

let k = xbiA in
let sid = hash(〈xA, gbi , k〉) in
out(〈gbi , pk(skS), sign(sid, skS)〉)
in(enc(xsign, k))
if verify(xsign, pk(skP)) = sid then
_S .

SSH := ‖i(Pi[0]‖Si[0])

Figure 5.5: Basic SSH Key Exchange

we only consider the case where there is no such privileged user. Figure 5.4 presents an example
of a login followed by a login using the forwarding agent. For simplicity, we abstract away some
messages that are not relevant to the security of the protocol.

In the current specification of the forwarding agent, it is impossible for a server to know if the
received signature was completed locally by the user’s platform, or remotely through the forwarding
agent. As the two behaviors are different in term of trust assumptions, we claim that they should
be distinguishable by a server. For instance, a server should be able to reject signatures performed
by a forwarded agent, because intermediate servers are not trusted. To this end, we assume that
the signatures performed by the agent are (possibly implicitly) tagged in a way that distinguishes
between their use in different parts of the protocol. This assumption also allows for domain
separation between the two key exchanges, and thus simplifies the proof.

We consider a scenario in which there is an unbounded number of sessions of SSH, each with one
(modified) forwarding agent, used to provide a secure channel for a protocol P . Thanks to multiple
applications of Theorems 5.2 and 5.4, we are able to break the proof of this SSH scenario into small
ones, that are very close to the proof of a simple Diffie-Hellman key exchange. This assumes the
decisional Diffie-Hellman (DDH) hypothesis for the group, EUF-CMA for the signature scheme
and that the encryption must ensure integrity of the cyphertexts (this last assumption is only
required for the forwarded key exchange, where a signature is performed over an encrypted channel).
P also has to satisfy the conditions of Section 5.8.1. In particular, it must be secure w.r.t. an
attacker that has access to a hash that includes the exchanged secret key, since SSH produces such
a hash. Note that the scenario includes multiple sessions, but only one forwarding. The extension
would require an induction to prove in our framework the security for any number of chained
forwardings.

5.9.1 The SSH Protocol

The basic SSH key exchange is presented in Figure 5.5, with possible continuations at the end
denoted by _P and _S. In this Section, we use a strong notion of pattern matching, where for
instance in(enc(xsign, k)) is a syntactic sugar for in(x); let xsign = dec(x, k) in _.

As it is always the case for key exchanges that contain a key confirmation, the indistinguishability
of the derived key is not preserved through the protocol. The difficulty of SSH is moreover that
once a user has established a secure connection to a server, they can from this server establish
a secure connection to another server, while using the secure channel previously established to
obtain the user credentials. We provide in Figure 5.6 a model of the SSH with forwarding of agent

110

5.9 Application to SSH

PDistanti(oldk) :=
out(gai);
in(〈xB, pk(skS), sign〉)
let k = xaiB in
let sid = hash(〈gai , xB, kP 〉) in
if verify(sign, pk(skS)) = sid then

out(enc(sid, oldk))
in(enc(sign, oldk))
out(enc(sign, k))
_PD.

ForwardAgent(k) :=
in(enc(sid, k))
out(enc(sign(〈sid, “fwd”〉, skP), k))

SForwardi :=
in(xA);

let k = xbiA in
let sid = hash(〈xA, gbi , k〉) in
out(〈gbi , pk(skS), sign(sid, skS)〉)
in(enc(sign, k))
if verify(sign, pk(skP)) = 〈sid, “fwd”〉 then

_SF

SSHForward := ‖i(Pi[ForwardAgent(k)]‖SForwardi‖Si[PDistanti(k)])

Figure 5.6: SSH Key Exchange with Forwarding Agent

(reusing the definitions of P and S from Figure 5.5). After a session of P terminates successfully,
a ForwardAgent is started on the computer. It can receive on the secret channel a signing request
and perform the signature of it. In parallel, after the completion of a session of S, a distant
session of P that runs on the same machine as S can be initiated by PDistant. It will request on
the previously established secret channel the signature of the corresponding sid. Finally, as the
forwarding can be chained multiple time, at the end of a successful PDistant, a ForwardServer
is set up. It accepts to receive a signing request on the new secret channel of PDistant, forwards
the request on the old secret channel, gets the signature and finally forwards it.

The forwarding agent implies a difficult composition problem: we sequentially compose a basic
SSH exchange with a second one that uses the derived key and the same long term secret keys.
Thus, to be able to prove the security of SSH with forwarding agent, we must be able to handle
key confirmations and composition with shared long term secrets.

5.9.2 Security of SSH

We show how to prove the Conditions of Section 5.8 to the basic SSH protocol (without forwarding
agent). We provide in Figure 5.7 the decomposition for key exchanges with key confirmation
corresponding to the SSH protocol. We directly specify that P and S may only relate to each
other by hard-coding the expected public keys in them. This is the classical behaviour of SSH
where a user wants to login on a specific server, and the public key of the user was registered
previously on the server.

For some abstract continuation RP (x)‖RS(x) and its idealized version QP (x)‖QS(x), our goal
would be to prove that

P 0
i ;P 1

i (xB , k)[RP (k)]‖S0
i ;S1

i (sid, k)[RS(k)] ∼= P 0
i ;P 1

i (xB , k)[QP (k)]‖S0
i ;S1

i (sid, k)[QS(k)]

111

5 A Composition Framework in the Computational Model

P 0
i :=
out(gai);
in(xB)
let k = xaiB in
0.

P 1
i (xB, k) :=
in(〈pk(skS), sign〉)

let sid = hash(〈ga, xB, k〉) in
if verify(sign, pk(skS)) = sid then

out(enc(sign(sid, skP), k))
_P.

S0
i :=
in(xA);

let k = xbiA in
let sid = hash(〈xA, gbi , k〉) in

out(gbi)
S1
i (sid, k) :=

out(〈pk(skS), gbi , sign(sid, skS)〉)
in(enc(sign, k))
if verify(sign, pk(skP)) = sid then
_S.

Figure 5.7: Divided SSH Key Exchange

Without specifying the continuation, a first step toward the security of the basic SSH key exchange
is to obtain Conditions K-1 and K-3 of Section 5.8. Recall that if a key exchange satisfies those
Conditions, it can be seen as a secure key exchange in the classical sense as it can be composed
with any continuation that do not share any long term secrets. The proofs only need to ne adapted
when it is not the case.

The behaviour of the protocol is very similar to the signed DDH key exchange (Figure 5.2) pre-
viously studied. We can once again see the DH shares {ai, bi}i∈N as local session identifiers that
can be used to pair sessions. For each session and each party, the messages signed by this party
always depend strongly on the DH share. We can thus make all SSH sessions simulatable with the
following tagging functions and corresponding signing oracles.

TP (m, s) := ∃s ∈ {ai}i∈N,∃m1,m = hash(gs,m1,m
s
1)

TS(m, s) := ∃s ∈ {bi}i∈N,∃m1,m = hash(m1, g
s,ms

1)

We have that the set of axioms Ax = EUF-CMATP ,skP ,s ∧ EUF-CMATS ,skS ,s is
Osign
TP ,F,skP ,s

,Osign
TS ,F,skQ,s

,Oai,bi sound thanks to Proposition 6.1. We use those axioms to per-
form the proof of K-3, where the tagging essentially implies the authentication property. However,
the proof must be slightly stronger, when we consider that the continuations P,Q are instantiated
with a second round of SSH with a forwarding agent that uses the same long term secrets.

5.9.3 SSH with Forwarding Agent

For concision, we write FA for ForwardAgent, SF for SForward, and PD for PDistant.
Let us consider an abstract continuation protocol, satisfying a security property of the form
RP (k)‖RS(k) ∼= QP (k)‖QS(k) where k denotes a fresh name modelling an ideal key produced
by a key exchange.

We once again assume that the agents are only willing to communicate with the honest identities,
i.e., pk(skS) and pk(skP) are predefined in the processes. The goal is to prove the following
equivalence.

‖i (Pi[FA(k)]
‖Si[PD(k);RP (kPD)]
‖SF [RS(kSF)])

∼= ‖i (Pi[FA(k)]
‖Si[PD(k);QP (kPD)]
‖SF [QS(kSF)])

112

5.9 Application to SSH

It corresponds to the fact that we should have RP (k)‖RS(k) ∼= QP (k)‖QS(k), even if the ideal
key k is replaced for each party by a key derived by a SSH key exchange (PD and SF) using an
forwarding agent (FA) based on a previous SSH key exchange (P and S).

We apply twice the decomposition of Section 5.8, once to show the security of the first key exchange
(as done in the previous paragraph), and that we can thus prove the security of the second key
exchange using an ideal key derived instead of the one derive by the first exchange. The second
application is then used to prove the security of this second key exchange.

First application The fist application is performed with the following Conditions (corresponding
to the one of Section 5.8), which allow to derive the desired conclusion.
K-3):

P 0
0 ; if xB /∈ s then

P 1
0 (xB , k);out(k)

else out(k, ga0 , xB)
‖S0

0 ; if xA /∈ s then
S1
i (xA, k);out(k)

else out(k, gb0 , xA)

∼=OPS ,Oforward

P 0
0 ; if xB = gb0 then

out(k, ga0 , xB)
else if xB /∈ s then
P 1(xB , k); bad

else out(k, gb0 , xA)
‖S0

0 ; if xA = ga0 then
out(k, gb0 , xA)

else if xB /∈ s then
S1

0(xA, k); bad
else out(k, gb0 , xA)

P-1):

‖iP 1
i (k)[FA(k)]‖S1

i (k)[PD(k);RP]‖SF [RS] ∼=OKE1
‖iP 1

i (k)[FA(k)]‖S1
i (k)[PD(k);QP]‖SF [QS]

We use the following oracles:

I OPS allows to simulate (K-1) the other honest sessions of P and S, it corresponds to
Osign
TP ,F,skS ,s

,Osign
TS ,F,skP ,s

,Oai,bi of Section 5.9.2.
I Oforward allows to simulate (S-1) the continuation, i.e., protocols of the form

in(k);P 1(k)[FA(k)]‖in(k);S1(k)[PD(k);RP]‖SF [RQ]
I OKE1

allows to simulate (S-2) ‖i(Pi‖Si) (it is identical to OPS).

All simulations are performed under νskS , skP . To define Oforward , we need to settle an issue.
Indeed, for hypothesis S-1, we need to provide an oracle that can simulate sessions of the forwarding
protocols. However, in order to get the simulatability of in(k).FA(skP , k), one must give a generic
signing oracles to the attacker, which would obviously make the protocol insecure. Based on the
assumption that the forwarded sessions perform signatures tagged with “fwd ′′ (as shown below),
we can however provide a signing oracle for such messages only. It allows for the simulatability
of the forwarding agent and of the forwarded client and server. More specifically, recall the the
forwarding agent is of the form:

FA(skP , k) :=
in(enc(sid, k));
out(enc(sign(〈sid, “fwd”〉, skP), k))

We may obtain its simulatability with the following tagging function:

Tfor (m, s) := ∃m1. m = 〈m1, “fwd”〉

113

5 A Composition Framework in the Computational Model

Then, Oforward is simply Osign
Tfor ,F,skP ,s

,Osign
Tfor ,F,skS ,s

,Oa′i,b′i . We prove Condition K-3 under the
corresponding EUF-CMA axioms in Part IV.

Second application We further simplify Condition P-1 of the previous paragraph with a second
application of the decomposition of Section 5.8. We now denote s′ = {a′i, b′i}i∈N. PDi and SFi
are split into PD0

i , PD
1
i and SF 0

i , SF
1
i similarly to the split of Figure 5.7 before and after the key

confirmation. The tagging functions used are only slight variations of the tagging functions for the
first SSH key exchange:

T ′P (m, s′) := ∃i,∃X,m = 〈hash(ga
′
i , X,Xa′i), “fwd”〉

T ′S(m, s′) := ∃i,∃X,m = 〈hash(X, gb
′
i , Xb′i), “fwd”〉

We then need to prove the Conditions:

K-3):
P 1

0 (k);FA(k)‖S1
0(k);PD0

0(k); if xB /∈ s′ then
PD1

0(xB , k); out(k)

else out(k, ga
′
0 , xB)

‖SF 0
0 ; if xA /∈ s′ then

SF 1
0 (xA, k); out(k)

else out(k, gb
′
0 , xA)

∼=OKE1
,OkFPS ,ORQ

P 1
0 (k);FA(k)‖S1

0(k);PD0
0; if xB = gb

′
0 then

out(k, ga
′
0 , xB)

else if xB /∈ s′ then
PD1

0(xB , k); bad

else out(k, gb
′
0 , xA)

‖SF 0
0 ; if xA = ga

′
0 then

out(k, gb
′
0 , xA)

else if xB /∈ s′ then
SF 1

0 (xA, k); bad

else out(k, gb
′
0 , xA)

Note that k is a fresh name that could be considered as a long term secret, i.e., in p.

And P-1):

‖iPD1
i (k
′);RP (k′)‖SF 1

0 (k′);RS(k′) ∼=OKE1
,OFPS ‖iPD1

i (k
′);QP (k′)‖SF 1

i (k′);QS(k′)

With the oracles:

I OkFPS allows to simulate (K-1) the other honest sessions of PD and SF , it corresponds to
Osign
T ′P ,skS ,s

,Osign
T ′S ,skP ,s

,Oa′i,b′i of Section 5.9.2.
I ORQ allows to simulate (S-1) the continuation, i.e., protocols of the form

in(k);PD1(k);RP (k)‖in(k);SF 1(k);RQ(k)

We once again prove Condition K-3 under the corresponding EUF-CMA axioms in Part IV.
Remark that to ensure that the forwarding agent only signs the sid sent by PD, it is required that
the encryption scheme is an authenticated encryption scheme.

114

6 The Framework in the BC Logic

Nul n’est jamais assez fort pour
ce calcul.

(Troisième théorème
d’incomplétude)

6.1 Introduction

Our framework allows to split the indistinguishability proof of a compound protocol into the indis-
tinguishability proof of its components. The core idea is that instead of proving indistinguishability
against PTTM attackers, we give some extra power to the attackers by giving them access to an
oracle. A protocol secure against such attackers is secure in any context that the attacker can
simulate thanks to the oracle. The composition framework does not depend on any particular
technique to prove the hypothesis of its Theorem. We outlined how one can define axioms that
are sound even for attackers with access to some oracle. Those axioms could be used to derive
the compositional security of a protocol, for instance using the classical game hopping technique
to perform proofs under those axioms. Keeping in mind the necessity for proofs to be formal and
machine-checked, EasyCrypt could be adapted to perform such proofs.

As we believe that the BC logic bears promises of automation and ease of use (in the specific case
of protocols), we rather focus on this specific model, and show in this Chapter how it can be used
in the context of the composition framework. As we actually designed our framework with the BC
logic in mind, the BC logic is easily extended to support attackers with oracles, and similarly for
its axiomatic system.

Using the composition framework in the BC logic yields an interesting side result: we can for
the first time derive proofs of security for an unbounded number of sessions from a proof in BC.
Indeed, as BC models protocols as terms in a first-order logic, there is no simple way to model
protocols with an unbounded number of sessions. Moreover, as the advantage of the adversary
is not explicit, even when performing proofs by induction over the number of sessions, we cannot
derive the security of an unbounded number of sessions.

 Chapter Summary

In the composition framework of Chapter 5, protocols are proved secure against attackers with
access to an oracle. Protocols secure under an oracle are then also secure in any simulatable
context, i.e., any context that an attacker can simulate using the oracle. To perform such
proofs, we use axioms that hold even for attackers with access to a given oracle.

In this Chapter, we extend the BC logic so that it supports such oracles. The BC logic then
allows for further simplification of our framework, as its axiomatic system is easily adapted to
the new cryptographic assumptions. This opens the way to mechanized proofs, and also allow
for the first time to derive the security of an unbounded number of sessions of a protocol from
a proof in BC. We present in Part IV a tool dedicated to the BC logic, and use it to showcase
applications of our framework.

115

6 The Framework in the BC Logic

6.1.1 Our Contributions

We extend the BC logic so that it can capture attackers with access to oracles. Our composition
framework can then be used side by side with the BC logic, aiming at providing formal and
modular security proofs. As the BC logic is a first-order logic, it is amenable to mechanization,
thus paving the way for mechanized modular proofs of security. We will provide such mechanization
in Part IV.

In a second step, we also extend the BC logic so that one can use predicates depending on infinite
sequences of names, as it is required by the key exchange application to be able to test, for instance
given a variable x and an indexed name ai, if x ∈ {ai}i∈N.

Moreover, as our reductions from one session to multiple sessions are uniform, we may now complete
proofs in the BC logic for a number of sessions that is parameterized by the security parameter.
This was a limitation (and left as an open issue) in all previous BC works, as it was either only
possible to

I perform a proof for a bounded number of sessions,
I or via an induction derive a proof for each number of sessions, but it does not depend on

the security parameter.

6.1.2 Related Work

To the best of our knowledge, efforts towards the formal verification of protocols through both com-
position results and machine checked proofs are very nascent. Blanchet [Bla18] provides multiple
composition theorems, and the CryptoVerif tool was used to prove the required proofs. It was
used to prove the security of TLS. The composition theorems are dedicated to key exchanges. An
attempt at casting the UC model in EasyCrypt was performed by Canetti et al. [CSV19]. The
application are restricted to very basic toy protocols. The constructive cryptography paradigm
has been formalized in the CryptHOL by Lochbihler et al. [LSB+19].

6.2 Oracles in the BC Logic

 Section Summary

We extend the semantics of the BC logic so that it now refers to attackers that can have access
to an extra oracle O. We then lift the notion of soundness for the axioms to support oracles,
defining the notion of O-soundness.

6.2.1 Syntax and Semantics

We introduced the BC logic in Section 2.4. We here generalize the Definition and Propositions of
this Section to handle attackers with access to oracles. While the functional model stays as is, the
computational model must now also depend on some oracle that is given to the attacker, and the
corresponding random oracle tape. Definition 2.15 now becomes as follows.

Definition 6.1. A computational model M is an extension of a functional modelMf , which
provides an oracle O, and an additional PTOM AOg for each symbol g ∈ G, that takes as input
an infinite random tape ρr, a security parameter 1η and a sequence of bitstrings.

116

6.2 Oracles in the BC Logic

We define the interpretation of extended terms as, givenM, η, σ, ρs , ρO and ρr:

I [[n]]η,σM,ρs,ρr,ρO
:= An(1η, ρs) if n ∈ N

I [[x]]η,σM,ρs,ρr,ρO
= [[xσ]]η,σM,ρs,ρr,ρO

if x ∈ X
I [[f(u)]]η,σM,ρs,ρr,ρO

= Af (1η, [[u]]η,σM,ρs,ρr,ρO
) if f ∈ Σ

I [[g(u)]]η,σM,ρs,ρr,ρO
= AO(ρs,ρO)

g ([[u]]η,σM,ρs,ρr,ρO
, ρr, 1

η) if g ∈ G

We also adapt Definition 2.16 of the interpretation of ∼.

Definition 6.2. Given a computational model M, including an oracle O, two sequences of
terms t, u, and an assignment σ of the free variables of t, u to ground terms, we haveM, σ |=O
t ∼ u if, for every polynomial time oracle Turing machine AO,

|Pρs,ρr,ρO{AO(ρs,ρO)([[t]]σ,ηρs;ρr;ρO , ρr, 1
η) = 1}

−Pρs,ρr,ρO{AO(ρs,ρO)([[u]]σ,ηρs;ρr;ρO , ρr, 1
η) = 1}|

is negligible in η. Here, ρs, ρr, ρO are drawn according to a distribution such that every finite
prefix is uniformly sampled.

6.2.2 Oracle Soundness

To perform proofs in the logic, we need to design axioms that are sound w.r.t. an attacker that
has access to O; we say that the axiom is O-sound in this case. They should be easy to verify for
actual libraries, yet powerful enough for the proofs that we intend to complete. The purpose of
this Section is to provide such axioms. We first extend the notion of soundness to oracles.

Definition 6.3. Given a family of computational models F using oracle O, a set of first order
formulas A is O-sound (w.r.t. F) if, for every ψ ∈ A, everyM∈ F ,M |=O ψ.

With such a definition, if A is O-sound (w.r.t. F) and A |= φ (where φ is a closed formula), then,
for everyM∈ F ,M |=O φ.

Example 6.1 (Function application). For any O, F , function f , terms t1, . . . , tn, u1, . . . , un

t1, . . . , tn ∼ u1, . . . , un =⇒ f(t1, . . . , tn) ∼ f(u1, . . . , un)

is O sound.

Example 6.2. Given a single key encryption oracle O for key k, the formula

enc(0, r, k) ∼ enc(1, r, k)

is

I not sound (nor O-sound) in general,
I sound but not O-sound for non randomized SPRP encryption,
I O-sound for IND-CPA encryption.

Note that the axioms that are designed in [BC14a] cannot be borrowed directly. For instance,
n ∼ n′, where n, n′ are names, is a standard axiom: two randomly generated numbers of the same
length cannot be distinguished. However, if either n or n′ is in the support of O, some information
on their interpretation can be leaked by the oracle. The axiom n ∼ n′ is sound, but not O-sound.
We have to modify this axioms as follows:

117

6 The Framework in the BC Logic

Lemma 6.1. For any oracle O with support n, the axiom ∀k, k′ /∈ n, k ∼ k′ is O-sound.

Proof. We are given a functional model, and oracle O with support n, and two names k, k′ not in
the support. We are also given AO which is a distinguisher over k ∼ k′. We define a PTTM A′
which on input (m, ρr, 1

η):

I Splits ρr into three distinct infinite tapes ρso, ρra, ρro.
I Simulates AO(ρso,ρro)(m, ρra, 1

η).

Let us a prove that A′ is a distinguisher over k ∼ k′, which contradicts the unconditional soundness
of this axiom when there is no oracle.

We denote by πk(ρs, η) the tapes where every bit of ρs which does not correspond to a name of k
is set to 0, and similarly πkc(ρs, η) where all bits for k are set to 0. We then have for any PTOM
AO:

Pρs,ρr,ρO{AO(ρs,ρO)([[k]]σ,ηρs , ρr, 1
η) = 1}

=1 Pρs,ρr,ρO{AO(πk(ρs,η),ρO)([[n]]σ,ηπkc (ρs,η), ρr, 1
η) = 1}

=2 Pρs1,ρs2,ρr,ρO{AO(ρs1,ρO)([[n]]σ,ηρs2 , ρr, 1
η) = 1}

=3 Pρso,ρs,ρra,ρro{AO(ρso,ρro)([[k]]σ,ηρs , ρra, 1
η) = 1}

=4 Pρs,ρr{A′([[k]]σ,ηρs , ρr, 1
η) = 1}

1. Thanks to the definition of support, the oracle answers the same on πk(ρs, η) and ρs;
2. we split ρs in two, to replace independent tapes πk(ρs, η) and πkc(ρs, η);
3. we rename random tapes;
4. by construction of A′.

This shows that A′ has the same advantage as AO against k ∼ k′, which concludes the proof. �

Other axioms in [BC14a] can be extended without problem. For instance the transitivity of ∼ or
the function application axiom:

Lemma 6.2. For any O, f ∈ F , terms t1, . . . , tn, u1, . . . , un

t1, . . . , tn ∼ u1, . . . , un =⇒ f(t1, . . . , tn) ∼ f(u1, . . . , un)

is O sound.

In general, what we have is that any axiom independent from the oracle support is sound.

Lemma 6.3. For any O, and terms t, s, such that all names in t, s do not appear in supp(O),
we have that t ∼ s is sound if and only if t ∼ s is O-sound.

This allows us to derive, given an oracle and a recursive set of axiom, the set of axioms which is
sound w.r.t. an oracle.

For instance, the general DDH axiom is, for any names a, b, c, ga, gb, gab ∼ ga, gb, gc. If we denote
by s the support of some oracle, the O-sound DDH version is simply the set of formulas DDHs

for all name a, b, c /∈ s, ga, gb, gab ∼ ga, gb, gc. Here, the notation gx corresponds to g(n)r(x), where
g is the function which extracts a group generator and r the function which evaluates names into
exponents. We may consider that we have two interpretations of those function such that DDH
holds.

118

6.2 Oracles in the BC Logic

EUF-CMA We define a BC version of the tagged EUF-CMA axiom. It is a direct adaptation
of the BC EUF-CMA axiom (Definition 2.17) to match the behaviour of the tagged EUF-CMA
axiom (Figure 5.1).

Definition 6.4. Given a name sk and a function symbol T , we define the generic axiom scheme
EUF-CMAT,sk as, for any term t such that sk is only in key position:

if (checksign(t, pk(sk)))
then T (getmess(t))

.∨
sign(x,sk)∈St(t) (t

.
= sign(x, sk))

else >

∼ >

The tagged signing oracles is defined as previously, only adding the extra argument to the tagging
function.

Definition 6.5. Given a name sk and a function T , we define the generic signing oracle OsignT,sk

as follows:

Osign
T,sk(m) := if T (m) then output(sign(m, sk)))

Proposition 6.1. For any computational model in which the interpretation of sign is
EUF-CMA, any name sk, and any boolean function T , EUF-CMAT,sk is Osign

T,sk-sound.

Proof. Let us assume that soundness is violated. We then have a term t and a computational
model such that t does not satisfy EUF-CMAT,sk. It means that the formula on the left hand
side holds. As in t the secret key sk only occurs in key positions, we can simulate t by sampling
all names, performing applications of function symbols, and sometimes calling the oracle Osign

sk to
obtain a signature. t may also depend on attacker function symbols that have access to an oracle
Osign
T,sk. Thus, we can build a PTOM AO

sign
T,sk,O

sign
sk that produces exactly the same distribution of t

for any fixed value of sk.

Let BO
sign
sk be the PTOM which:

I simulates AO
sign
T,sk , by sampling all names itself, except sk;

I for every call made by A to Osign
T,sk with input m, B checks that T (M) holds, and if it is the

case query the signing oracle to get the signature, else fails.

The probability distribution of BO
sign
sk is exactly the same as AO

sign
T,sk,O

sign
sk , so BO

sign
sk also produces

an output o which violates the EUF-CMAT,sk axiom. We thus have that o is a valid signature,
and is either not well tagged or does not correspond to a sub-term of t.

As all calls to Osign
sk made by B either correspond to a well tagged message or to a sub term of t,

we know that o does not correspond to a signature produced by the signing oracle. BO
sign
sk is thus

an attacker which given access to a signing oracle can produce a signature for a message not signed
by the oracle, i.e., an attacker which can win the EUF-CMA axiom. �

119

6 The Framework in the BC Logic

6.3 Computational Soundness

 Section Summary

We prove the computational soundness of the logic extended with oracles. It means that the
extension of the BC logic still allows to derive computational guarantees, and is thus suited for
our composition framework from Chapter 5.

We first prove the fact that the logic indeed allows to perform proofs of indistinguishability. In-
tuitively, if there exists a distinguisher in the computational model, the distinguisher wins with
overwhelming probability on a specific trace. Indeed, as there is a finite number of traces, the
advantage cannot be negligible over all of them. Then, given a specific trace, we can cut the
distinguisher into multiple pieces, in order to construct a computational model which contradicts
the BC indistinguishability of the frames corresponding to this trace.

Lemma 6.4. Given two simple protocols P,Q with the same set T of observable traces, random
tapes ρr, ρs, and oracle O and a functional modelMf , we have:

∀τ ∈ T, ∀M ⊃Mf . M |=O φτP ∼ φτQ
⇒

P ∼=O Q

Proof. Let us proceed by contradiction. We are given a distinguisher BO against P ∼=O Q. We
thus have,

AdvP
∼=Q
BO = |Pρs,ρr,ρO{BO,OP (ρr, 1

η) = 1} − Pρs,ρr,ρO{BO,OQ(ρr, 1
η) = 1}|

is non negligible. We must find τ andM such thatM 6|=O φτP ∼ φτQ

Find a trace τ We split this probability, by conditioning over the observable trace (Defini-
tion 2.14) is executed by B. We denote by Eτ the event “τ is the scheduling produced by B”.

By dichotomy, we have

AdvP
∼=Q
BO = |Pρs,ρr,ρO{BO,OP (ρr, 1

η) = 1}Pρs,ρr,ρO{BO,OQ(ρr, 1
η) = 1}|

=
∑
τ∈T Pρs,ρr,ρO{Eτ}×
|Pρs,ρr,ρO{BO,OP (ρr, 1

η) = 1 | Eτ} − Pρs,ρr,ρO{BO,OQ(ρr, 1
η) = 1 | Eτ}|

We of course have that for any τ , Pρs,ρr,ρO{Eτ} ≤ 1. We thus obtained the following upper-bound.

AdvP
∼=Q
BO ≤

∑
τ∈T |Pρs,ρr,ρO{BO,OP (ρr, 1

η) = 1 | Eτ} − Pρs,ρr,ρO{BO,OQ(ρr, 1
η) = 1 | Eτ}|

As the advantage is overwhelming, so is the sum. Recall that as P and Q are simple, they are
finite, and in particular T is simple. Now, we classically have that a finite sum is overwhelm-
ing if and only if one of its element is overwhelming. Thus, there exists a trace τ such that
|Pρs,ρr,ρO{BO,OP (ρr, 1

η) = 1 | Eτ} − Pρs,ρr,ρO{BO,OQ(ρr, 1
η) = 1 | Eτ}| is overwhelming.

Build the model M Let us consider this τ of length n given. We denote by m0, . . . ,mn the
consecutive calls of B to the oracle, once the scheduling is removed. Consider now the PTOM AOgk ,
that, on input b1, . . . , bk, η, ρr, executes the same code as B, but

I replaces the ith call to the oracle OP (resp. OQ), i ≤ k, using bi instead of the oracle reply;

120

6.3 Computational Soundness

I if the scheduling of B does not follow τ , stop and return some arbitrary fixed value.

The result of AOgk is then what B would have queried at the k + 1 oracle call, if B is currently
following trace τ . By their direct definition, φτP = t1, . . . , tn is the sequence of terms produced by
the protocol, i.e., the protocol oracle, when interacting with B. Thus, in the computational model
M given by the Agk , we have that given ρr, ρs, ρO, for any η and k (less or equal to the length of
τ , if B follows τ , then AOgk([[t1]]ηM,ρs,ρr,ρO

, . . . , [[tk]]ηM,ρs,ρr,ρO
) = mk.

Thus, we have that whenever we condition over event Eτ , B and Agn distinguish with the same
probability, i.e.,

|Pρs,ρr,ρO{AOgn([[φτP]]σ,ηM,ρs,ρr,ρO
, ρr, 1

η) = 1 | Eτ} − Pρs,ρr,ρO{A([[φτQ]]σ,ηM,ρs,ρr,ρO
, ρr, 1

η) = 1 | Eτ}|
= |Pρs,ρr,ρO{BO,OP (ρr, 1

η) = 1 | Eτ} − Pρs,ρr,ρO{BO,OQ(ρr, 1
η) = 1 | Eτ}|

Thus, both of these terms are overwhelming, and we have that

|Pρs,ρr,ρO{AOgn([[φτP]]σ,ηM,ρs,ρr,ρO
, ρr, 1

η) = 1} − Pρs,ρr,ρO{A([[φτQ]]σ,ηM,ρs,ρr,ρO
, ρr, 1

η) = 1}|

is also overwhelming. In other terms, M is a computational model such that M 6|=O φτP ∼ φτQ,
which concludes the proof. �

ü Technical Details

Notice that compared to [BC14a], we do not prove the completeness at this step. This is for
concision, but we do not actually lose much. Indeed, we lose completeness later on, as we will
often use axioms that are not complete. We focus here on proof finding, rather than attack
finding. Remark nonetheless that trying to perform a BC proof often allows to identify missing
axioms, as it is completely formal, and thus potential attacks.

We finally have a computational soundness result. We write with the classical notation Ax |= φ if
the set of formulas Ax and the formula ¬φ are inconsistent, i.e., if no model can satisfy both of
them at the same time.

Theorem 6.1. Given P,Q two protocols, O an oracle, A a set of axioms, Mf a functional
model we assume that:

I A is O-sound w.r.t. F = {M ⊃Mf};
I for all τ ∈ T , A |= φτP ∼ φτQ.

Then P ∼=O Q.

Proof. Let us assume that we have a distinguisher for P ∼=O Q, but that A is O-sound.

By Lemma 6.4 we have a computational modelM⊃Mf and a trace τ such thatM |=O φτP 6∼ φτQ.
As A is O-sound, we also have M |=O A, and this contradicts the fact that the formulas are
inconsistent, i.e., that A |= φτP ∼ φτQ. �

We reduce computational indistinguishability to an inconsistency proof on the one hand and a
soundness proof of the axioms on the other hand.

121

6 The Framework in the BC Logic

6.4 Extension to the Model for Unbounded Replication

 Section Summary

Recall that for unbounded replications, we used notations such as x /∈ s, for infinite sequences
of names s. While the previous extension is enough to handle our composition results, we need
for our applications to key exchanges to be able to express formally those predicates. To this
end, for any name n of arity l, we give a formal interpretation to n, that intuitively models the
sequence of names n1,...,1, . . . , nr1,...,rl of length polynomial in the security parameter.

We define the syntax and provide variations of the axioms that can be used to reason in this
context. We then provide the concrete semantics so that these axioms are sound as technical
details.

ü Technical Details

We provide a way to support infinite sequences in the BC logic, but note that our composition
framework does not always require infinite sequences. When considering basic key exchanges,
it is enough to use cofinite sequences. Basically, if the property

KE0[if xIlsid = lsidR0 then out(k) else out(xI0), if xRlsid = lsidI0 then out(k) else out(xR0)]

holds even when the attacker can simulate corrupted sessions, it is enough to derive the security
of multiple sessions. It is interesting, as this property does not rely on infinite sequences.

To understand this, let us briefly consider a basic unsigned Diffie Hellman key exchange. It
must of course not verify the previous property. The exchange shares are ga0 , gb0 . To break the
previous property, we can give as a share to I the correct gb0 , I will then produce depending
on the side k or ga0b0 . If we provide R with ga0 × ga0 , R does not believe to be paired with I
and it then always output as key g2a0b0 . One can then easily distinguish if the output of R is
the square of the output of I.

Basically, this stems from the fact that always outputting the actual key leaks information to
the attacker when agents are not paired together.

For key exchanges with key confirmation, we wish to test the real or random before we have any
authentication (as the authentication may come from the key confirmation). So if we always
leak the key of the agent, the property will not be verified. However, we do need to leak the key
to enable to go from one session to multiple sessions (to give the attacker enough information
for the simulatability). The idea is then, as expressed in the previous Theorems, to only leak
the key when two “honest” parties are paired together. Else, we execute the key confirmation,
which should fail. Here, we have an explicit need to be able to test which sessions are honest,
whether they are corrupted or not, and this for an unbounded number of sessions. Hence the
need for a test based on infinite sequences.

Syntax Recall that names are defined with an arity (Figure 2.1), where a name n of index arity
l can be indexed by l integers, yielding a distinct copy of the name for each indexes. Moreover,
in a protocol, the index variables occurring in names must all be bound through a parallel or a
sequential binder, and thus once we consider the term corresponding to the protocol in the BC
logic, all names appear without index variables.

122

6.4 Extension to the Model for Unbounded Replication

For any name n of index arity l, the syntax of terms in the BC logic only contained all the copies
nk1,...,kl for k1, . . . , kl ∈ N as symbols of arity 0 (a constants of the term algebra). For each name
n, we add to the syntax of terms the symbol seqn of arity 0. We also provide a function symbol ∈
using infix notation, so that t ∈ seqn is now in the syntax.

Axioms The classical α-renaming axiom still holds, but all copies of a name are renamed at
once. Thus, for any sequences of terms t, and any names n, n′ of index arity l such that n′ does
not occur in t, we have:

(1) t ∼ t{seqn 7→ seqn′} ∪ {nk1,...,kl 7→ n′k1,...,kl | k1, . . . , kl ∈ N}

Furthermore, we also provide axioms that allow to reason about the membership predicate, defined
as:

(2) nk1,...,kl ∈ seqn ∼ true for any name n and all k1, . . . , kl ∈ N;
(3) n′k1,...,kl ∈ seqn ∼ false for any name n′ distinct of n and all k1, . . . , kl ∈ N.

Remark that as ∈ is a boolean function symbol, it is in contradiction with its negation and we
trivially have that that for any term t and name n,

t ∈ seqn ∧ t /∈ seqn ∼ false

This is actually what is used in our proofs of indistinguishability, as tagged oracles in our appli-
cations provide messages m such that we have f(m) ∈ seqn for some function f , and the security
property raises bad if f(m) /∈ seqn.

ü Technical Details

Semantics The idea is that seqn should model all sequences seqn = {n1, . . . , np(η)} for any
polynomial p. Then, if an indistinguishability holds for all such sequences for all polynomials,
it also holds when the polynomial is bigger than the running time of the distinguisher, and the
sequence then models an infinite sequence. To model this, the interpretation of a term t may
now depend on some polynomial p with one indeterminate and with positive integer coefficients
given to the PTTMs, and the interpretation is denoted [[t]]η,σM,p,ρs,ρr,ρO

.

The indistinguishability predicate ∼ is now interpreted as indistinguishability for all distin-
guishers and all polynomials p. Definition 6.2 now becomes:
Definition 6.6. Given a computational model M, including an oracle O, two sequences
of terms t, u, and an assignment σ of the free variables of t, u to ground terms, we have
M, σ |=O t ∼ u if, for any strictly increasing polynomial p and every polynomial time oracle
Turing machine AO,

|Pρs,ρr,ρO{AO(p,ρs,ρO)([[t]]σ,ηM,p,ρs;ρr;ρO
, ρr, 1

η) = 1}
−Pρs,ρr,ρO{AO(p,ρs,ρO)([[u]]σ,ηM,p,ρs;ρr;ρO

, ρr, 1
η) = 1}|

is negligible in η. Here, ρs, ρr, ρO are drawn according to a distribution such that every finite
prefix is uniformly sampled.

So, we can now assume that the interpretation of terms may depend on a polynomial p. We
previously assumed for a name ni, that the functional model was providing a distinct Turing
Machine for each copy of the name, i.e., a machine Ank for each k ∈ N. However, to build a
machine that can interpret seqn, all the copies of the name must be extracted in a uniform way,

123

6 The Framework in the BC Logic

so that it is possible to collect all of them in polynomial time. To this end, we now consider that
a functional model provides, for each name ni of index arity l, a Turing Machine An that takes
as input the security parameter, the random tape ρS and l integers, and returns a sequence of
bitstrings of length η extracted from ρs. Then, the interpretation of the name nk1,...,kl , with
k1, . . . , kl ∈ N is, givenM, η, σ, ρs , ρO and ρr.

[[nk1,...,kl]]
η,σ
M,p,ρs,ρr,ρO

:= An(1η, ρs, k1, . . . , kl)

The set of all the An should use distinct parts of the random tape ρs, and each An should return
distinct parts of the tape for each sequence of integers given as integers. This can be done for
instance if ρs is seen as a folding of random tapes ρs,n in a single tape, such that each An only
accesses bits corresponds to ρs,n through the inverse folding (this essentially corresponding to
bijective mappings from Nk to N). Then, for each sequence of integers k1, . . . , kl, An extracts
from ρs,n a unique sequence of bits by computing a bijection f from Nl to N, and extracting
the bitstrings of length η at position η × f(k1, . . . , kl).

Using this new interpretation for names, we now define the semantics of seqn, for any name n
of index arity l, as, givenM (that now contains a polynomial p), η, σ, ρs, ρO and ρr,

[[seqn]]η,σM,p,ρs,ρr,ρO
:= Aseqn(1η, p, ρs)

where Aseqn is the machine that:

I contains l nested loops over the l variables c1, . . . , cl all ranging from 1 to p(η);
I at each iteration, simulate An(1η, ρs, c1, . . . , cl) and appends its result to the output tape.

Remark that given a modelM, and thus the machine An, we completely fix the machine Aseqn .
Essentially, Aseqn will produce the sequence of bitstring corresponding to the interpretation of
n1,...,1, . . . , np(η),...,p(η).

The BC axioms presented previously are still sound in this semantics. Essentially, this is
because when the axiom scheme does not depend on any seqn, all the occurrences of seqn in
terms satisfying the guards of the scheme can be simulated by an attacker who samples p(η)
randoms.

Lemma 6.5. For any computational model in which the interpretation of sign is
EUF-CMA, any name sk, EUF-CMAT,sk is Osign

T,sk-sound even for terms that may depend
on some seqn.

Proof. We have a term t, a computational model and a polynomial p such that the interpretation
of t where all sequences seqn are of length p(η) contradicts the EUF-CMAT,sk axiom.

The proof is exactly the same as Proposition 6.1, as we can once again from t build a Turing
Machine that samples all names but sk (and may thus sample p(η) names for each sequence),
and is then able to simulate all operations of t. �

This means that we can safely consider a version of EUF-CMAT,sk where for instance T (x) is
of the form x ∈ seqn and still have the soundness of the axiom. Remark that this proof would
hold similarly for other cryptographic axioms.

We however have to prove the soundness of the axioms that are specific to seq.

124

6.4 Extension to the Model for Unbounded Replication

Proposition 6.2. Axioms (1),(2) and (3) are sound in all models where the interpretation
of ∈ is given by the machine A∈(1η, x1, x2) that checks if x1 is a bitstring of length η and
returns true if and only if x1 is a sub-string of x2 starting at a position which is a multiple
of η.

Proof.

1. The alpha-renaming axiom is sound, unconditionally. This is similar to the classical
BC logic alpha-renaming axiom, which holds as all randomness for a given name (of any
arity) are completely independent and uniform. Replacing all occurrences of a name by a
another fresh one thus yields exactly the same distribution. In essence, we replace in the
interpretation of t all occurrences of An and Aseqn by An′ and Aseqn′ . As the machines for
n′ did not occur previously in the interpretation of t, we indeed have that the machines
of n and of n′ produce the same independent distribution for the interpretation of t.

2. Given nk1,...,kl and seqn, we have for any polynomial p strictly increasing that for η large
enough, ki ≤ p(η) for 1 ≤ i ≤ l. Thus, for η large enough, the interpretation of seqn
contains the result of An(1η, ρs, k1, . . . , kl) (simulated by Aseqn), and A∈ always output
true. The advantage of any attacker then becomes 0 which is negligible.

3. The probability of collision between two sequences of bitstrings of length η is 1
2η . For

any polynomial p, as seqn is a uniform sampling of length p(η) × η, and n′k1,...,kl is an
independent uniform sampling of length η, the probability that n′k1,...,kl occurs in seqn
at a position which is a multiple of η is the probability 1 − (1 − 1

2η)p(η). Thus, A∈ will
answer true with only a negligible probability.

�

As the interpretation A∈ given in the previous proposition corresponds to the interpretation
required in the application to key exchanges (Section 5.6), we can indeed use those axioms in
proofs of key exchange security.

125

Part III

Automated
In which we look at low level automation

127

7 Probabilistic Language and Problems

The new always happens against
the overwhelming odds of
statistical laws and their
probability, which for all practical,
everyday purposes amounts to
certainty; the new therefore
always appears in the guise of a
miracle.

(Hannah Arendt)

7.1 Introduction

In Part II, and later in Part IV, we focus on simplifying the logical reasoning about protocols and
the applications of cryptographic axioms. However, some protocols do not rely on cryptographic
primitives, but rather on some properties of finite fields, groups and multi-linear maps, boolean
operators, . . . Proving the security of such protocols requires a systematic reasoning about the
probability distributions of the messages produced by the protocol.

In this Part, we focus on this low-level reasoning by trying to derive automatically properties
about the distribution of messages in a protocol. This automation could then be used to transform
a low-level reasoning into a single proof step at the logical level. We study four probabilistic
questions, equivalence and up-to-bad, classical properties that can be used in the security proof of
a protocol, and non-interference and differential privacy, that are not directly related to protocols
but are close to the two previous properties and are naturally studied together. Those properties
can informally be described as follows:

I equivalence - it asks that the distributions of two messages are equal. If two messages follow
the same distribution, one can be replaced by the other in a cryptographic proof.

I non interference - the security of a system may depend on the fact that a message does
not leak any information about a secret. The system should then produce outputs with
the same distribution, when running with two distinct secrets. This can also be seen as
an independence property, where the output distribution should be independent from the
secret.

I up-to-bad - given a system, we may need to verify that the probability of an event corre-
sponding to a security breach is small, for instance that the secret is leaked with only a very
small probability.

I differential privacy - it quantifies the privacy of a system: roughly, an algorithm is differ-
entially private if when its inputs are close, its outputs are close. Intuitively, it means that
the algorithm does not depend strongly on small changes over its input. If the input is a
collection of private date about users, it means that the algorithm does not depend strongly
on the information of a specific user.

Many cryptographic systems are based on probabilistic arithmetic circuit (circuits that encode
operations over finite fields), or on small probabilistic programs that operate over booleans or
bitstrings. To have a foundational approach, we translate the four previous questions into two
relational properties between simple probabilistic programs, i.e., programs that operates over a
domain D, and given a set of inputs in D, can perform some random samplings over D, some

129

7 Probabilistic Language and Problems

operations (e.g., and, xor, addition, multiplication, conditional branchings), and finally return a
tuple of values in D.

Given a probabilistic program P that expects m inputs and produces n outputs, an input ~i ∈ Dm

and a possible output ~o ∈ Dn, we denote by [P]
~i
D (~o) the probability that the output of P is equal

to ~o when P takes as input ~i. In this Part, the two relational properties between probabilistic
programs that we consider are:

I D-equivalence (denoted by P1 ≈D P2) requires that P1 and P2 define the same distributions,
i.e., for every input ~i ∈ Dm and possible output ~o ∈ Dn

k ,

[P1]
~i
D (~o) = [P2]

~i
D (~o)

I D-majority requires that for a fixed r ∈ Q, and for every input ~i ∈ Dm and output ~o ∈ Dn,
we have

[P1]
~i
D (~o) ≤ r · [P2]

~i
D (~o)

D-0-majority (denoted by P1 ≺rD P2) is a variant of majority, where we only consider the
output b = 0n, rather than quantifying over all outputs.

The relationships between the previous security questions and our the two relational properties
can be explained informally as follows:

I probabilistic non-interference: for simplicity, assume that P has two inputs x (secret) and y
(public), and a single (public) output. For every x, let Px be the unique program such that
Px(y) = P (x, y). Then P is non-interfering iff for every x1 and x2, the two programs Px1 and
Px2 are equivalent.

I up-to-bad: given a program P and an event E, we can produce a program P ′ such that the
probability of the program being equal to zero is the probability of E in P . Then, we can bound
the probability of E in P with 0-majority over P ′.

I differential privacy: for simplicity consider the case where the domain is F2, i.e., the booleans.
For every program P with n inputs, define the residual programs Pi,0 and Pi,1 obtained by fixing
the i-th output to 0 and 1 respectively. Then the program P is log(r)-differentially private iff
for every i, Pi,0 and Pi,1 (and Pi,1 and Pi,0) satisfy r-majority.

Equivalence and majority can then be used to reason about security problems, for instance to
prove that two boolean programs are equivalent. However, in many cases, recall that security
systems are parameterized by a security parameter η, and we must prove that the system is
secure asymptotically w.r.t. η. From the point of view of the computational indistinguishability
from Section 2.3.2, let c be a channel identifier and s, t terms over an arbitrary signature. When
we reason about the indistinguishability property out(c, s) ∼= out(c, t), we look at all possible
interpretations of s and t for all possible η. If s and t are bitstrings, η may correspond to the
length of the bitstring. If they model elements of a finite field, the η may correspond to the size
of the finite field. This introduces a new problem: to use the fact that two terms have the same
distribution in an indistinguishability proof, we must actually prove that the two terms have the
same distribution for all possible η.

We thus define, based on the previous relational properties, two universal variant, that we call
universal equivalence and universal majority. In this setting, programs do not depend on a single
interpretation domain D, but can depend on a family of interpretation {Dk}k∈N. For the case of
finite fields, we would for instance consider the family of interpretations {Fqk}k∈N, e.g., the family
of all extensions of a finite field. Formally, the universal variants are defined as follows, given a
family {Dk}k∈N :

I D∞-equivalence requires the property to hold on all domains of the family, i.e.,

P1 ≈D∞ P2 iff ∀k. P1 ≈Dk P2

130

7.1 Introduction

I D∞-0-majority requires the property to hold on all extensions of a field, i.e.,

P1 ≺rD∞ P2 iff ∀k. P1 ≺rDk P2

Remark that the universal case is not a trivial extension of the fixed case. The following two
programs, whose execution is parameterized by the domain and expressed using uniform sampling
from the domain (x $←− D) and a return instruction (return), illustrate the difference between
equivalence and universal equivalence.

Example 7.1.
P1 = x

$←− D; return (x2 + x) P2 = return 0

are 2- but not 22-equivalent, and hence not 2∞-equivalent. Indeed, when instantiating D with F2,
the left hand side program simply evaluates to zero, which is not the case with F4. On the other
hand, the programs

Q1 = x
$←− D; return (x) Q2 = x

$←− D; return (x+ 1)

are Fq∞ -equivalent for any prime power q as both programs define the uniform distribution, what-
ever finite field is used for the interpretation of D. These examples also illustrate the difference
with the well-studied polynomial identity testing (PIT) problem, as the first two programs are
2-equivalent, while PIT does not consider x2 + x and 0 to be equal on F2, nor would Q1 and Q2

be considered identical.

In this Part, we investigate both theoretical and practical aspects of the fixed and the universal
case, first studying the complexity and decidability of the probabilistic problems, and then trying
to derive heuristics usable in practice.

 Chapter Summary

We introduce syntax and semantics for probabilistic programs parameterized by an interpreta-
tion domain D. Our programming languages cover programs that arise in different application
domains, primarily security and privacy, but potentially also in machine learning and algorith-
mic fairness.

Based on the probabilistic semantics, we formally define multiple relational properties that have
direct applications in cryptography: they can be seen as low level proof steps inside protocol
security proofs. Each of these properties is lifted to its universal version, where the property
must hold on all elements of a family of interpretations, e.g., the family of bitstrings of all
length.

As preliminaries to the next two Chapters, we study the links between those properties, showing
that independence and equivalence are inter-reducible, and that in the case of equivalence one
can consider programs without inputs, and only study the sub case where we ask if a program
follows the uniform distribution. We finally introduce a generic semantic characterization of
equivalence.

7.1.1 Our Contributions

We set the foundations for the study of the complexity and decidability of multiple relational
properties. For their practical study through heuristics, we will leverage classical symbolic meth-
ods such as deducibility. To this end, after introducing the programming language, we formally

131

7 Probabilistic Language and Problems

define its semantics and each of the properties. Like many other probabilistic programming lan-
guages, our language supports sampling from distributions, and conditioning distributions on an
event1. Sampling is interpreted using the uniform distribution over sets defined by assertions, and
branching and conditioning are relative to assertions.

The semantics are parameterized by the signature used to build terms and the interpretation
domain. Although we will often consider in practice programs over finite fields, working over an
abstract domain allows to derive more general results.

In this parameterized setting, we show under which conditions equivalence and independence are
inter-reducible. We further reduce equivalence to equivalence over programs without inputs, and
then to deciding if a program follows the uniform distribution. Those links provide insights and first
intuitions about the nature of problems we are considering. We give a summary of the reductions
in Figure 7.2.

We conclude by providing a semantic characterization of equivalence: two programs are equivalent
if and only if there exists a bijective mapping between their random samplings such that they
become equal point by point.

a Limitations

Our probabilistic language does not support loops. We show in Chapter 8 that the addition of
loops makes universal equivalence undecidable in the case of finite fields.

Moreover, our programs cannot perform samplings from non uniform distributions. This is
because most of our results rely on a link between the probability of some event and counting
the number of samplings such that the event happens. This limitation is slightly mitigated,
as some non uniform distribution can be constructed using multiple uniform variables and
dedicated function symbols.

7.1.2 Related Work

There are many works regarding semantics of probabilistic languages. In this Chapter, we rely on
the formalism of [BGV18a], notably to handle the conditioning.

Fixed equivalence There is a vast amount of literature on proving equivalence of probabilistic
programs. We only review the most relevant work here.

Murawski and Ouaknine [MO05] prove decidability of equivalence of second-order terms in proba-
bilistic ALGOL. Their proof is based on a fully abstract game semantics and a connection between
program equivalence and equivalence of probabilistic automata.

Legay et al [LMO+08] prove decidability of equivalence for a probabilistic programming language
over finite sets. Their language supports sampling from non-uniform distributions, loops, procedure
calls, and open code, but not conditioning. They show that program equivalence can be reduced
to language equivalence for probabilistic automata, which can be decided in polynomial time.

1Conditionings over an event is classical construct of probabilistic languages, that allows to condition the
distribution of the output over some event. It corresponds to only considering the distribution of the
outputs over the execution that satisfy the event.

132

7.2 Probabilistic Programming Language

Barthe et al [BGZ09] develop a relational program logic for probabilistic programs without condi-
tioning. Their logic has been used extensively for proving program equivalence, with applications
in provable security and side-channel analysis.

Universal equivalence Without formalizing the question as a general problem, the case of linear
programs (boolean programs with only XOR operations) is studied in [BDK+10]. The authors pro-
pose a decision procedure for universal equivalence based on the classic XOR-lemma [CGH+85].

The case of linear programs with random oracles is considered in [CR16]. The authors give a poly-
nomial time decision procedure for computational indistinguishability of two inputless programs.
Their proof is based on linear algebra.

Majority problems The closest related work develops methods for proving differential privacy
or for quantifying information flow.

Frederikson and Jha [FJ14] develop an abstract decision procedure for satisfiability modulo count-
ing, and then use a concrete instantiation of their procedure for checking representative examples
from multi-party computation.

Barthe et al [BCJ+19] show decidability of ε-differential privacy for a restricted class of programs.
They allow loops and sampling from Laplace distributions, but impose several other constraints on
programs. An important aspect of their work is that programs are parameterized by ε > 0, so their
decision procedure establishes ε-differential privacy for all values of ε. Technically, their decision
procedure relies on the decidability of a fragment of the reals with exponentials by McCallum and
Weispfenning [MW12].

Strongly linked to probabilistic non-interference, masking is a countermeasure based on secret
sharing used to protect arithmetic programs against differential power analysis. There exist generic
masking compilers that take as input an arithmetic program P and output a masked program Pk,
where the masking order k is a parameter corresponding to the desired level of protection. The
parameterized program Pk uses for loops; however, for every fixed value of k, one can unroll
loops in Pk to obtain a program in our language. Over the last few years, there has been an
active line of work to prove masking automatically using type systems, relational logics and model
counting [KR19]. All these works target verification for a fixed k. It would be interesting to obtain
decidability results for the parameterized verification problem. However the interpretation of Pk is
over a fixed field F, for all values of k. Therefore, the problem has a distinct flavour from ours.

7.2 Probabilistic Programming Language

 Section Summary

We define a probabilistic programming language, based on terms built over a signature Σ
equipped with an interpretation, called a Σ-algebra D. We first give a general surface language,
and then consider a simpler core language. We define for this core language deterministic and
probabilistic semantics.

Recall that a signature Σ is an indexed set of function symbols with their arity. Given a set X of
variables, the set TΣ(X) of terms is defined inductively as previously (see Figure 7.1).

133

7 Probabilistic Language and Problems

t ::= x variables
| f(t1, . . . , tn) function of arity n

b ::= boolean conditions
| t1 = t2 atomic formula
| b1 ∧ b2 and
| b1 ∨ b2 or
| ¬b not

e ::= program expressions
| x := t assignment

| r1, . . . , rm
$←− {X ∈ Dm | b} sampling

| observe b observe
| e1; e2 sequential composition
| if b then e1 else e2 conditional branching
| return (t1, . . . , tn) return of arity n

Figure 7.1: Program Syntax

Definition 7.1. A Σ-algebra D for the signature Σ is given by a set D and the interpretation
of Σ, which consists of a total function fD : Dn 7→ D for each f ∈ Σ of arity n.

For any ground term t, tD corresponds to the interpretation of t defined inductively by
f(t1, . . . , tn) = fD(tD1 , . . . , t

D
n) for f ∈ Σ of arity n.

We will always consider that Σ contains a constant 0, and that D provides a corresponding value
also denoted by 02. For a given interpretation domain D and a signature Σ, there is often a single
natural Σ-algebra. In such cases, we denote D by simply D.

For instance, we often use ΣFq = {+,×} ∪ Fq and instantiate D with Fq. Remark that this is the
simplest model of a finite field, where we directly integrate all the constants of the field as function
symbols of the signature, rather than providing a minimal generating set of constants. We denote
by Fq the (unique) finite field with q elements, where q = pk for some integer k and a prime p.
The Σ-algebra Fq (also denoted Fq) corresponding to Fq, instantiates multiplication and addition
with the corresponding field operations. Given a polynomial P ∈ Fq[x1, . . . , xm] and X ∈ Fmqk , we
denote by P (X) the evaluation of P given X in Fqk .

7.2.1 Syntax and Informal Semantics

We consider a probabilistic programming language with sampling from subsets and conditionings,
as well as a more pure, yet equi-expressive, core language that can encode all previous constructs
and define its formal semantics.

We define in Figure 7.1 the syntax for probabilistic programs without loops nor recursion. Programs
are parameterized by an abstract Σ-algebra D, that can be instantiated by a Σ-algebra D. The
expressions of our programs provide constructs for assigning a term t to a variable (x := t), as well
as for randomly sampling values. The expression r1, . . . , rm

$←− {X ∈ Dm | b} uniformly samples

2This avoids the corner case of empty algebras.

134

7.2 Probabilistic Programming Language

m values from the set of m-tuples of values in D such that the condition b holds, and assigns them
to variables r1, . . . , rm. For example, r $←− {x ∈ D | 0 = 0} (which we often simply write r $←− D)
uniformly samples a random element in D, while r1, r2

$←− {x1, x2 ∈ D2 | ¬(x1 = 0)} samples two
random variables, ensuring that the first one is not 0. In the case of finite fields, note that the use
of polynomial conditions allows to express any rational distribution over the base field Fq, i.e., any
distribution that assigns rational probabilities.

The construct observe b allows to condition the continuation by b: if b evaluates to false the
program fails; the semantics of a program is the conditional distribution where b holds. Expressions
also allow classical constructs for sequential composition, conditional branching and returning a
result.

Given two disjoint sets of variables I and R, we denote by PΣ(I,R) the set of well-formed programs,
where a program P is well-formed if:

I variables in R are sampled only once;
I variables in R only appear in the program after they have been sampled;
I each branch of P ends with a return instruction that returns the same number n of elements;

n is then called the arity of the program and denoted by |P |.

I is the set of free variables of the programs, that corresponds to input variables. We will often
omit the Σ, when it is explicit from the context.

Example 7.2. Consider the following simple program over finite fields

inv(i) ::= if i = 0 then return 0 else r $←− D; observe r × i = 1; return r

When D is instantiated by a finite field, this program defines a probabilistic algorithm for computing
the inverse of a field element i. If i is 0, by convention the algorithm returns 0. Otherwise,
the algorithm uniformly samples an element r. The observe instruction checks whether r is the
inverse of i. If this is the case we return r, otherwise the program fails. As we will see below,
our semantics normalizes the probability distribution to only account for non-failing executions.
Hence, this algorithm will return the inverse of any positive i with probability 1. This is obviously
not a practical procedure for computing an inverse, but we use it to illustrate the semantics of
conditioning. Equivalently, this program can be written by directly conditioning the sample

inv′(i) ::= if i = 0 then return 0 else r $←− {x ∈ D | x× i = 1}; return r

7.2.2 A Core Language

While the above introduced syntax is convenient for writing programs, we introduce a more pure,
core language that is actually equally expressive and ease the technical developments. To define
this core language, we add an explicit failure instruction ⊥, similarly to [BGV18b]. It allows us to
get rid of conditioning in random samples and observe instructions. Looking ahead, and denoting
by [P]D the semantics of the program P in D, we will have that[

r1, . . . , rm
$←− {X ∈ Dm | b}; e

]
D

=
[
r1, . . . , rm

$←− Dm; if b then e else ⊥
]
D

and
[observe b; e]D = [if b then e else ⊥]D

Without loss of generality, we can inline deterministic assignments, and use code motion to perform
all samplings eagerly. In other terms, we assume that all random samplings are performed upfront

135

7 Probabilistic Language and Problems

at the beginning of the program. Therefore we can simply consider that each variable in R is
implicitly uniformly sampled in D. Programs are then tuples of simplified expressions (e1, . . . , en)
defined as follows.

e ::= simplified expressions
| P term
| ⊥ failure
| if b then e1 else e2 conditional branching

We suppose that all nested tuples are flattened and write (P,Q) to denote the program which simply
concatenates the outputs of P and Q. When clear from the context, we may also simply write
~0 instead of the all zero tuple (0, . . . , 0). We denote by P (I,R) the set of functional programs,
that are simply tuples of terms. In the case of finite fields, functional programs are arithmetic
programs. Remark that functional programs cannot fail.

ü Technical Details

One may note that the translation from the surface language to the core language is not polyno-
mial in general. Indeed, constructs of the form (if b then x := t1 else x := t2;P), i.e., sequential
composition after a conditional, implies to propagate the branching over the assignment to all
branches of P , and doubles the number of conditional branchings of P . All complexity results
will be given for the size of the program given in the core language. Remark that in a functional
style version of the surface language, where we replace x := t by let x = t in and removed
sequential composition, the translation would however be polynomial. Similarly, for the class
of programs without sequential composition after conditional branchings, the translation is also
polynomial.

7.2.3 Semantics

We now define the semantics of our core language. The precise translation from the high level
syntax previously presented and our core language is standard and omitted.

Deterministic semantics. We first define a deterministic semantics where all random samplings
have already been defined.

For a set X of variables, with t ∈ T (Σ,X) and ~v ∈ D|X|, t(~v) denotes the evaluation of t in D,
where X is then seen as an ordered tuple of variables. We choose to use the classical notation for
polynomial functions, as we will often reason about finite fields. Variables in t are evaluated with
the value given by ~v, and each function symbol f is evaluated with fD.

We also denote by b(~v) the evaluation of a boolean test, where all terms are evaluated according to
~v. For a program e ∈ P(I,R) and ~v ∈ D|I∪R|, we define the evaluation of e, denoted [[e]]~vD, which
is a value in D|P | × {⊥}:

[[t]]~vD = t(~v) where t ∈ T (Σ, I]R)
[[⊥]]~vD = ⊥

[[if b then e1 else e2]]~vD =

{
[[e1]]~vD if b(~v) holds on D
[[e2]]~vD if b(~v) does not hold on D

[[(e1, . . . , en)]]~vD =

{
⊥ if [[ei]]

~v
D = ⊥ for some i

([[e1]]~vD, . . . , [[en]]~vD) else

136

7.2 Probabilistic Programming Language

Intuitively, the set of executions corresponding to non failure executions represent the set of possible
executions of the program. We next define probabilistic semantics by sampling uniformly the
valuations of the random variables while conditioning on the fact that the program does not fail.

Remark that we explained everything for clarity, but we essentially reuse the semantics for terms
of Chapter 2, that was denoted by [[t]]σ for some substitution σ over the free variables of t. As it is
now an important parameter, we make the domain of interpretation D explicit, and for concision,
we denote [[t]]~x7→~v by [[t]]~vD.

Probabilistic semantics. For any n, we denote by Distr(Dn) the set of distributions over Dn.
For a program P ∈ P(I,R) with |P | = n, and |I| = m, we define its semantics, denoted by [P]

~i
D

to be the distribution of the output corresponding to the inputs ~i. We assume that programs in
P ∈ P(I,R) do not fail all the time, i.e., for any possible input and any program its probability of
failure is strictly less than 1. For program P and input ~i ∈ Dm, we set

[P]
~i
D : ~o 7→

P
~r

$←−D|R|{[[P]]
~i,~r
D = ~o}

P
~r

$←−D|R|{[[P]]
~i,~r
D 6= ⊥}

Note that the normalization by conditioning on non-failing programs is well defined as we supposed
that programs do not always fail.

Example 7.3. Over PF2
({x}, {u, v, w}), let3

I P1 = x+ v
I P2 = xv
I P3 = uv + vw + wu

P1 is the uniform distribution for any input x. In other terms, we have that [P1]
0
F2

(0) = 1
2 =

[P1]
1
F2

(0). However, P2 is always equal to zero when x is null, i.e., [P2]
0
F2

(0) = 1. When, x is one,
P2 simply follows the uniform distribution and [P2]

1
F2

(0) = 1
2 .

[[P3]] only depends on the random variables. We can easily compute its distribution by writing the
truth table of the program:

u 0 0 0 0 1 1 1 1

v 0 0 1 1 0 0 1 1

w 0 1 0 1 0 1 0 1

P3 0 0 0 1 0 1 1 1

We see that [[P3]]F2 is actually the uniform distribution and we have that [P3]F2
(0) = 1

2 .

3We denote x× v by xv.

137

7 Probabilistic Language and Problems

7.3 Decision Problems and Universal Variants

 Section Summary

We introduce formally several decision problems on probabilistic programs:

I D-equivalence, P ≈D Q: two programs must produce the same distribution over all
inputs;

I D-0-majority, P ≺rD Q: the probability that P equals to 0 divided by the probability
that Q equals 0 is bounded by the rational r;

I D-independence, ⊥YD (P1, . . . , Pn): the distributions of the n programs must be indepen-
dent.

We introduce their respective universal variants, where for instance universal equivalence for a
family of algebra {Dk}k∈N asks that the Dk-equivalence hold for all k. We often reason over
the family of all extensions of a finite field, i.e., {Fqk}k∈N. Each of those properties is associated
with a decision problem.

Equivalence D-equivalence requires equality of distributions between the outputs of two pro-
grams for all possible inputs. Notably, two equivalent programs are indistinguishable by any at-
tacker, and a program equivalent to the uniform distribution does not leak any information about
its inputs to the attacker.
Definition 7.2. Two programs P1 and P2 are D-equivalent, denoted by P1 ≈D P2, if P1 and
P2 define the same distributions over all inputs, i.e., for every input ~i ∈ Dm : [P1]

~i
D = [P2]

~i
D.

Example 7.4. Continuing Example 7.3, we have that u+x ≈F2
u ≈F2

uv+vw+wu, but ux 6≈F2
u.

Majority D-majority bounds the quotient of the distributions of two programs by a rational.
Our results focus on the case where we compare the two distributions on a single point. It can
be used to decide vanilla (i.e. not approximate) ε-differential privacy, that quantifies the privacy
leaked by some mechanism.
Definition 7.3. D-majority between two programs P1, P2 requires that for a fixed r ∈ Q, and
for every input ~i ∈ Dm and output ~o ∈ Dn, we have

[P1]
~i
D (~o) ≤ r · [P2]

~i
D (~o)

D-0-majority, denoted by P ≺rD Q, is the variant where we only consider the output ~o = 0n,
rather than quantifying over all output.

We only provide a notation of D-0-majority, as our results for the general majority are very limited.
Notably, D-majority in the case of r = 1 is the same as equivalence, and D-majority is in fact
harder than equivalence.

Example 7.5. Over PF2({x}, {u, v, w}), we have that [u+ x]
1
F2

(0) = [ux]
1
F2

(0), but [u+ x]
0
F2

(0) =
1
2 and [ux]

0
F2

(0) = 1. Thus, we have that ux ≺2
F2
u+x. This means that the probability that ux is

equal to zero, is always at most twice as big as the probability that u+ x equals zero. The closer
to 1 the coefficient r is, the closer the two distributions are.

Independence A distribution is independent from a given variable if the distribution is the same
for any fixed value of the variable. It implies that the distribution of one of the programs does not
provide any information about the distribution of the other one. This can for instance be used to
bound the advantage of an attacker.

138

7.4 First Results

Definition 7.4 (D-conditional independence). Let P1, . . . , Pn ∈ P(I,R). Given Y ⊂ R, we
say that P1, . . . , Pn are independent conditioned by Y , denoted by ⊥YD (P1, . . . , Pn), if:

∀~i ∈ D|I|. ∀~i′ ∈ D|Y |. [(P1, . . . , Pn)]
~i,~i′

D = ([P1]
~i,~i′

D , . . . , [Pn]
~i,~i′

D)

We write ⊥D (P1, . . . , Pn) for ⊥∅D (P1, . . . , Pn), which simply denotes independence of the pro-
grams.

Example 7.6. In particular, considering boolean programs in PF2({i1, i2}, {r}), we have that
⊥F2

(i1(i2 + r), i2), which means that i1(i2 + r) leaks no information about i2. However, 6⊥F2

(i1(i2 + r), i1).

Universal variants Given a fixed signature, one can provide distinct interpretations. For in-
stance, given the signature associated to finite fields, for a given q, D can be instantiated by any
Fqk . In cryptographic proofs, the power of the finite field is often a parameter that can be instan-
tiated by any value. To leverage the equivalence between two programs in a cryptographic proof,
we need to have the equivalence of the two programs for all possible Fqk . We define a variant of
all our probabilistic relations, where the relation must hold over a family of Σ-algebras.

Definition 7.5. Let {Dk}k∈N be a family Σ-algebra. For any relation RD in {≈D,≺rD,⊥YD},
we define the corresponding universal relation, denoted by RD∞ , to hold if for all k, RDk holds.

In the case of finite fields, when Dk = Fqk , we denote D∞ by Fq∞ .

When we consider a finite interpretation D, all problems previously introduced are decidable in
the non universal case: it is always possible to compute the distributions by enumerating all
possibilities. For the universal case, decidability is however not trivial anymore. Remark that, for
some programs, universal equivalence can be easily obtained.

Example 7.7. We have that u + x ≈F
qk
u for any k, as adding a random variable to any fixed

input always produces the uniform distribution. Thus, we have that u+ x ≈Fq∞ u.

Decision problems We define the corresponding decision problems, for k ∈ N ∪ {∞} (I,R are
also always part of the input):

Dk-equivalence
input: P,Q ∈ P(I,R)
question: P ≈Dk Q?

Dk-majority
input: P,Q ∈ P(I,R), r ∈ Q
question: P ≺rDk Q?

Dk-conditional independence
input: P ∈ P(I,R), Y ⊂ R
question: ⊥YDk P?

7.4 First Results

 Section Summary

We provide reductions between some of our problems, studying the links between equivalence
and independence, and simpler version of equivalence. Finally, we provide a characterization
of equivalence, that can be used to prove equivalence by providing an explicit bijection. In the
following two chapters, those results will be used to derive the complexity or decidability of the
associated decision problems, or provide multiple approaches to tackle the same problem.

139

7 Probabilistic Language and Problems

7.4.1 Links between Problems

We now study several links between our problem. All omitted proofs can be found in Appendix C.1.
We provide in Figure 7.2 a summary of the reductions provided in this Section.

For technical reasons, our later work requires that we introduce a slight generalization of equiv-
alence, conditional equivalence, that allows for a simpler reasoning. D-conditional equivalence is
a generalization of equivalence, where we require that the distributions of the programs are equal
when conditioned by some other program being equal to zero.

Definition 7.6 (D-conditional equivalence). Let P1, Q1 ∈ P(I,R) and P2, Q2 ∈ P (I,R) with
|P1| = |Q1| = n. We write P1 | P2 ≈D Q1 | Q2, if:

∀~i ∈ D|I|. ∀~o ∈ Dn. [(P1, P2)]
~i
D (~o,~0) = [(Q1, Q2)]

~i
D (~o,~0)

The universal version D∞-conditional equivalence is defined similarly to D∞-equivalence, and the
associated decision problem is for k ∈ N ∪ {∞}:

Dk-conditional equivalence
input: P1, Q1 ∈ P(I,R), P2, Q2 ∈ P (I,R)
question: P1 | P2 ≈Dk Q1 | Q2?

Note that conditional equivalence is a direct generalization of equivalence, as for P,Q ∈ P(I,R)
and k ∈ N ∪ {∞}, P ≈Dk Q if and only if P | 0 ≈Dk Q | 0.

An interesting feature of equivalence is that inputs do not make the problem harder, as we can
encode inputs using randoms that are concatenated to the output of the programs.

Lemma 7.1. Let P1, Q1 ∈ P(I,R), P2, Q2 ∈ P (I,R). When σ : I → RI is the substitution
that replaces each variable in I by a fresh random variable in RI , we have:

P1 | P2 ≈Dk Q1 | Q2 ⇔ (P1σ,RI) | P2σ ≈Dk (Q1σ,RI) | Q2σ

Sketch of Proof. We replace all input variables in I by fresh random variables in RI . As we
concatenate the “inputs” variables RI to the outputs of both programs, whenever we consider the
probability that one program is equal to some value, this value conditions the value of the “inputs”.
Asking that the probability of the two programs is equal on all given points then asks for each
point, that given the value of the “inputs” variables fixed by the point, the probabilities are equal.
This is the expected behaviour of equivalence for inputs. �

Next, we see that conditional independence is in fact as easy as non-conditional independence.

Lemma 7.2. Let P1, . . . , Pn be programs over P(I,R), and Y ⊂ R.

⊥YDk (P1, . . . , Pn)⇔⊥Dk (P1σ, . . . , Pnσ)

where σ : Y → IY is the substitution that replaces each variable in Y by a fresh input variable
in IY .

140

7.4 First Results

Sketch of Proof. Conditioning over the random variables Y is similar to only considering the dis-
tributions of the two programs for any fixed given value of the variables in Y . This corresponds to
seeing Y as inputs variables. �

To reduce independence to equivalence, the idea is that if n programs (as a tuple) are equivalent
to a copy of the n programs where they all sample independently their randomness, they are
independent. This translates into the following Lemma.

Lemma 7.3. Let P1, . . . , Pn be programs over P(I, {r1, . . . , rm})

⊥Dk (P1, . . . , Pn)⇔ (P1, . . . , Pn) ≈Dk (P1σ1, . . . , Pnσn)

where σi is the substitution that to any rj associates a fresh random variable rij.

We now provide a Lemma which states that a program P follows the uniform distribution if and
only if it can be used to hide the value of some secret s. This follows the intuition that in the
boolean case, any secret xored with the uniform distribution yields the uniform distribution. To
provide the general version, we ask that Dk contains a symbol with a property similar to the
xor.

Definition 7.7. A function f : D2
k 7→ Dk is right invertible if there exists f−1 such that for

any x, y, we have f(f−1(x, y), y) = x, i.e. for any y, x 7→ f(x, y) is a bijection.

In any algebra with such a function, uniformity can be reduced to independence.

Lemma 7.4. Let Dk be a Σ-algebra that contains a binary symbol + such that +Dk is right
invertible. Let P = (p1, . . . , pk) be a program in P(I,R) with {r1, . . . , rk} ⊆ R and x1, . . . , xk
fresh input variables. We have that

P ≈Dk r1, . . . , rk ⇔⊥Dk ((p1 + x1, . . . , pk + xk), (x1, . . . , xk))

Finally, we show that equivalence reduces to deciding the equivalence to a uniform distribution.
However, we only do so for linear programs, i.e., programs in P (I,R).

Lemma 7.5. Assume that Dk is at least of size two, and contains a right invertible symbol +.
There exists T (P1, P2, Q1, Q2) such that for any P1, Q1, P2, Q2 ∈ P (I,R) with r ∈ R,

P1|P2 ≈Dk Q1|Q2 ⇔ T (P1, P2, Q1, Q2) ≈Dk r

Sketch of Proof. We only show the simpler case of Boolean algebras, i.e., the case where Dk = F2,
and linear programs returning a single value. Let

T = (if r = 1 then P else 1−Q)

We show that
P ≈F2 Q iff T ≈F2 r

where r is a fresh random variable. We fix a valuation ~i ∈ F|P |2 . By disjunction on the possible
values of r, we have that

[T]
~i
F2

(0) =
1

2
[P]

~i
F2

(0) +
1

2
[Q]

~i
F2

(1) =
1

2
+

[P]
~i
F2

(0)− [Q]
~i
F2

(0)

2
.

It follows that: T ≈F2 r ⇔ ∀~i. [T]
~i
F2

(0) = 1
2 ⇔ ∀~i. [P]

~i
F2

(0) = [Q]
~i
F2

(0)⇔ P ≈Dk Q �

141

7 Probabilistic Language and Problems

⊥YD (P1, . . . , Pn)

P ≈D Q

P ≈D r1, . . . , rk

P ≈D Q over P(∅, R)

P ≈D r1, . . . , rk over P(∅, R)

Lemma 7.3

+D right-invertible, Lemma 7.4

Lemma 7.1

P,Q ∈ P (I,R), Lemma 7.5

Lemma 7.1

Lemma 7.3: ⊥D (P1, . . . , Pn)⇔ (P1, . . . , Pn) ≈D (P1σ1, . . . , Pnσn)
Lemma 7.4: if +D is right-invertible,

P ≈D r1, . . . , rk ⇔⊥D ((p1 + x1, . . . , pk + xk), (x1, . . . , xk))
Lemma 7.5: if +D is right-invertible and D is not a singleton,

P1|P2 ≈D Q1|Q2 ⇔ T (P1, P2, Q1, Q2) ≈D (r)
Lemma 7.1: P ≈D Q⇔ (Pσ,RI) ≈D (Qσ,RI)

Figure 7.2: Summary of Reductions

7.4.2 Semantic Characterization of Equivalence

For any set S, we denote by bijS the set of bijections over S. We characterize the equivalence of
two programs through the existence of a bijection over their random sampling, so that they verify
point-wise equality.

Proposition 7.1. Let P,Q ∈ P(I,R).

P ≈Dk Q ⇔ ∀~i ∈ D
|I|
k ,∀~o ∈ D|P |k .

∣∣∣{~r ∈ D|R|k |[[P]]
~i,~r
Dk

= ~o}
∣∣∣ =

∣∣∣{~r ∈ D|R|k |[[Q]]
~i,~r
Dk

= ~o}
∣∣∣

⇔ ∃f ∈ bijD
|R|
k ,∀~i ∈ Dk. [[P]]

~i,~r
Dk

= [[Q]]
~i,f(~r)
Dk

Sketch of Proof. The programs are equivalent if their distributions are equal. It means that for
each possible output value, the set of random samplings such that the two programs return this
value have the same size. If they have the same size, it means that a bijective mapping can be
built between those two sets. Doing this for all outputs produces a bijection f over the sampling
space, such that if P is equal to c when sampling values ~r, Q is equal to c when sampling values
f(~r). Remark that all the previous implications are in fact equivalence. �

Providing a bijection can be a very concise way to prove equivalence, as providing the truth table
is not always convenient. Remark that however, proving the existence of a bijection, or the fact
that a given function is a bijection, can be difficult.

Example 7.8. We consider sets of input variables I = {x} and random variables R = {u, v, w}.
Using Proposition 7.1 we can prove that x+ v ≈F2

v using the bijection f : v 7→ x+ v (we may see
f as a function over the terms, rather than the valuations) which satisfies x+ v = f(v).

142

7.4 First Results

Consider now the equivalence P3 ≈F2
u where P3 = uv + vw + wu. We define the function

f(r, s, t) :=

(1, 0, 0) if (r, s, t) = (0, 1, 1)

(0, 1, 1) if (r, s, t) = (1, 0, 0)

(r, s, t) otherwise

where a valuation is denoted by a tuple of values. Obviously, f is a bijection and with the following
truth table, shows that f verifies ∀~r ∈ F3

2, [[uv + vw + wu]]~rF2
= [[u]]

f(~r)
F2

u 0 0 0 0 1 1 1 1

v 0 0 1 1 0 0 1 1

w 0 1 0 1 0 1 0 1

P3 0 0 0 1 0 1 1 1

fu 0 0 0 1 0 1 1 1

where fu denotes the projection of f(u, v, w) on the first component. Intuitively, fu simply swaps
the fourth and the fifth colons of the truth table, in order to produce the distribution of P3.

Relying on Proposition 7.1 we now introduce a characterization of uniformity based on the notion
of R-bijection. Intuitively, a program is R-bijective if for any fixed value of its inputs, the output
produced by the program can be seen as a bijection over its random variables. For P ∈ P(I,R),
it is possible if and only if |P | = |R|, i.e., the number of outputs returned by the program is equal
to its number of random samplings.

Definition 7.8. Given D, P ∈ P(I,R) is R-bijective if and only if

∀~i ∈ D|I|. ~r 7→ [[P]]
~i,~r
D ∈ bijR

Example 7.9. We have that x+u ∈ PF2
({x}, {u}) is {u}-bijective as for any~i ∈ F2, ~r 7→ [[u+x]]

~i,~r
F2

is a bijection, with itself as inverse.

Corollary 7.1. If P ∈ P(I,R) with |P | = |R| and R = {r1, . . . , rk}, then

P ≈D r1, . . . , rk ⇔ P is R-bijective

Proof. We prove both directions separately.
(⇒) Let r = (r1, . . . , rk) We must prove that ∀~i ∈ D|X|. ~r 7→ [[P]]

~i,~r
D is bijective. Using Proposi-

tion 7.1, we have
∀~i ∈ D|I|. ∃f ∈ bijR. ∀~r ∈ D|R|. [[P]]

~i,~r
D = [[r]]

~i,f(~r)
D

As f is a bijection, ~r 7→ [[r]]
~i,f(~r)
D is bijective, and as [[P]]

~i,~r
D = [[r]]

~i,f(~r)
D , so is ~r 7→ [[P]]

~i,~r
D .

(⇐) The proof of this direction is similar: for each~i ∈ D|X|, ~r 7→ [[P]]
~i,~r
D is the bijection that allows

us to apply Proposition 7.1. �

Note that for uniformity to imply R-bijectivity the condition that |R| = |P | is necessary.

Example 7.10. As seen before, x+u ≈F2 u (Example 7.8), and x+u is {u}-bijective (Example 7.9).
Note that |R| = |P | is important here, as for instance uv + vw+wu is not {u, v, w}-bijective, and
|uv + vw + wu|, the arity of the program that returns uv + vw + wu, is equal to 1, and not to
|{u, v, w}|, but we do have that uv + vw + wu ≈F2

u.

143

8 Complexity and Decidability

Independence is happiness.

(Susan B. Anthony)

8.1 Introduction

Driven by the security applications, we focus on programs that operate over finite fields, i.e., the
case where D = Fq. In this Chapter, we perform a theoretical study of the previous problems,
equivalence, majority and independence, both in the finite and the universal case.

In the finite case, the decidability is trivial, but the complexity study allows to derive the exact
complexity of the aforementioned problems. It notably provides some insights about whether there
exist or not efficient algorithms to solve the given problems. As we place the problems in non trivial
complexity classes (above NP and bellow PSPACE), it hints at the fact that there does not exist
any efficient algorithm to decide for instance probabilistic non-interference, even in the boolean
case.

In the universal case, the family of interpretations considered is {Fqk}k∈N. The integer k can then
be seen as the security parameter used for computational indistinguishability. Even before asking
whether an efficient algorithm exists for the universal equivalence problem in this setting, one must
settle the question of decidability for the universal variants of the problems. In the equivalence
case we answer this question positively, and provide insights about the majority problem. This
is done through a general reduction from our problems to problems over simple Linear Recur-
rence Sequences. Thanks to this reduction, we also provide some first insights about approximate
equivalence, corresponding to the notion of program indistinguishability. Remark that universal
equivalence of two programs implies that they are perfectly indistinguishable by any attacker,
without any assumptions on its computational power. They are thus indistinguishable by any
polynomial time attacker, i.e., computationally indistinguishable.

 Chapter Summary

In the case of probabilistic programs over finite fields, we study the complexity and decidability
of equivalence, majority and independence problems both in the finite and universal case. We
derive non trivial complexity for the finite case, suggesting that efficient algorithms do not
exist. We show decidability of universal equivalence, and devise a general way to draw links
between the universal probabilistic problems and widely studied problems on linear recurrence
sequences. This yields decidability of independence, and majority over a single point. We also
define and provide some insights about program indistinguishability, proving that it is decidable
for programs always returning 0 or 1.

145

8 Complexity and Decidability

8.1.1 Our Contributions

The first contribution of this Chapter is a systematic study of the complexity of the aforementioned
problems in the fixed setting. Some background about the complexity classes discussed in the
following is given Page 147. We prove that the Fqk -equivalence problem is coNPC=P-complete
for any fixed k. We also study the special case of linear programs, i.e., without multiplication,
conditional nor conditioning, for which the problem can be decided in polynomial time. For the
majority problem, we consider two settings: programs with and without inputs. We show that the
k-majority problem for inputless programs is PP-complete, whereas the k-majority for arbitrary
programs is coNPPP-complete—thus the second problem is strictly harder than the first, unless
PH ⊂ PP1. The proofs are given by reductions of MAJSAT and E−MAJSAT respectively. These
results complement recent work on the complexity of checking differential privacy for arithmetic
circuits [GNP19], see Related Work below.

The second, and main contribution, is the study of universal equivalence, Fq∞ -equivalence for short,
and universal (0-)majority, Fq∞ -(0-)majority for short. First, we show that the Fq∞-equivalence
problem is in 2-EXP and coNPC=P-hard.

Our proof is based on local zeta Riemann functions, a powerful tool from algebraic geometry, that
characterizes the number of zeros of a tuple of polynomials in all extensions of a finite field. Lauder
and Wan [LW06] notably propose an algorithm to compute such functions, whose complexity is
however exponential. Interestingly, this local zeta function also provides us with a way to reduce
our problems to problems over Linear Recurrence Sequences (LRS)2: properties of the local zeta
function imply that the sequence of number of zeros of a tuple of polynomials over each extension
of a finite field is a LRS.

Based on this result, our proof proceeds in two steps. First, we give a reduction for arithmetic
programs (no conditionals, nor conditioning) from universal equivalence to checking that some
specific local zeta Riemann functions are always null, or equivalently that two LRS are equal. Then,
we reduce the general case to programs without conditioning, and programs without conditioning
to arithmetic programs. To justify the use of the local zeta Riemman functions, we also provide
counterexamples why simpler methods fail or only provide sufficient conditions. Our decidability
result significantly generalizes prior work on universal equivalence [BDK+10], which considers the
case of linear programs, see Related Work below. In the special case of arithmetic programs, i.e.,
programs without conditionals nor conditioning, equivalence can be decided in EXP-time, rather
than 2-EXP.

Second, we give an exponential reduction from the universal 0-majority problem to the positivity
problem for Linear Recurrence Sequences (LRS), which given a LRS, asks whether it is always
positive. Despite its apparent simplicity, the positivity problem remains open. Decidability has
been obtained independently by Mignotte et al [MST84] and by Vereshchagin [Ver85] for LRS
of order ≤ 4 and later by Ouaknine and Worrell [OW14a] for LRS with order ≤ 5. Moreover,
Ouaknine and Worrell prove in the same paper that deciding positivity for LRS of order 6 would
allow to solve long standing open problems in Diophantine approximation. In the general case, the
best known lower bound for the positivity problem is NP-hardness [OW12].

Unfortunately, the order of the linear recurrence sequence is related to the degree of the local
zeta Riemann function, and thus decidability results for small orders do not apply. This suggests
that the problem may not have an efficient solution. We remark that the LRS obtained from the
majority problem is simple, and we can thus decide a close problem, which is ultimate positivity
(is the LRS always positive after some point), that was proven decidable in [OW14b]. Using the

1As PH ⊂ coNPPP, PP = coNPPP would imply PH ⊂ PP which is commonly believed to be false.
2An LRS is a sequence of integers satisfying a recurrence relation.

146

8.1 Introduction

3 Complexity Background - The counting hierarchy

Exact counting The exact counting complexity class, denoted by C=P, is the set of
decision problems solvable by a NP Turing Machine whose number of accepting paths is
equal to the number of rejecting paths. halfSAT is the natural C=P-complete problem,
defined as follows.

halfSAT

input: CNF boolean formula φ
question: Is φ true for exactly half of its valuations?

coNPC=P is the set of decision problems whose complement can be solved by a NP
Turing Machine with access to an oracle deciding problems in C=P. The canonical
coNPC=P problem is (using results from [Tor88, Sec. 4] and [LGM98]):

A−halfSAT
input: CNF boolean formula φ(X,Y)
question: For all valuations of X, is φ(X,Y) true for exactly
half of the valuations of Y ?

Majority counting The complexity class PP is the set of languages accepted by a prob-
abilistic polynomial-time Turing Machine with an error probability of less than 1/2 for
each instance, i.e., a word in the language is accepted with probability at least 1/2, and
a word not in the language is accepted with probability less than 1/2. Alternatively, one
can define PP as the set of languages accepted by a non-deterministic Turing Machine
where the acceptance condition is that a majority of paths are accepting. Notably, PP
contains both NP and coNP, as well as C=P. Also, PP is closed under finite intersection.
A natural PP-complete problem is MAJSAT, the set of boolean formulae true for at
least half of their valuations:

MAJSAT

input: CNF boolean formula φ
question: Is φ true for at least half of its valuations?

coNPPP is the class of problems whose complement is decided by a non deterministic
polynomial time Turing Machine with access to an oracle deciding problems in PP. The
classical NPPP problem is E−MAJSAT [LGM98] :

E−MAJSAT

input: CNF boolean formula φ(X,Y)
question: Is there a valuation of X such that, φ(X,Y) is true for at least half
of the valuations of Y ?

Its complement, A−MINSAT is then the classical coNPPP problem.

147

8 Complexity and Decidability

x-(conditional)-{equivalence, independence, uniformity}

linear arithmetic general

x = Fqk PTIME coNPC=P-complete coNPC=P-complete

x = Fq∞ PTIME EXP coNPC=P-hard 2-EXP coNPC=P-hard

Figure 8.1: Summary of Results Related to Equivalence

Fqk -0-majority Fqk -majority Fq∞-0-majority Fq∞-majority

without inputs PP-complete coNPPP-complete
PP-hard

≤EXP POSITIVITY

with inputs coNPPP-complete
?

coNPPP-hard

Figure 8.2: Summary of Results Related to Majority

results from [Kie76], we observe that the reduction extends to a more general form of universal
majority problem.

We obtain lower complexity bounds by reducing the finite case to the universal case. It remains
an interesting open question whether the universal case is strictly harder than the finite case.

As side contributions, we provide some first tentative attempts for verifying program indistin-
guishability, that can be seen as an approximate universal equivalence. We define and prove the
decidability of the LRS negligibility problem, but leave the question of program indistinguishability
open. We however obtain the decidability of program indistinguishability for programs that only
return 0 or 1. Finally, we also prove that enriching the programming language with loops makes
the universal equivalence problem undecidable over finite fields.

Figures 8.1 and 8.2 summarize our results for the equivalence and majority problems.

a Limitations

The algorithm derived for the decidability of the universal equivalence has an exponential
running time, and cannot be considered efficient. Furthermore, the complexity results in the
universal case are not tight. Finally, the reduction to the positivity problem for majority is also
exponential, and we thus cannot transpose the coNPPP lower bound for universal majority to
the positivity problem.

8.1.2 Related Work

Universal equivalence Compared to [BDK+10], that propose a decision procedure for uni-
versal equivalence in the linear case, we give an alternative decision procedure and analyze its
complexity.

148

8.2 Complexity in the Finite Case

Majority problems To the best of our knowledge, the universal majority question is novel. For
the fixed case, the closest related work develops methods for proving differential privacy or for
quantifying information flow.

Gaboardi, Nissim and Purser [GNP19] study the complexity of verifying pure and approximate
(ε, δ)-differential privacy for arithmetic programs, as well as approximations of the parameters ε
and δ. The parameter δ quantifies the approximation and δ = 0 corresponds to the pure case. Our
majority problem can be seen as a subcase of differential privacy, where r corresponds to ε, and
δ = 0. In particular, the complexity class they obtain for pure differential privacy coincides with
the complexity of our 0-majority problem, even when restricted to the case r = 1. This means
that the ε parameter does not essentially contribute to the complexity of the verification problem.
Also, while they consider arithmetic programs, we consider the more general case of programs with
conditioning.

Chistikov, Murawski and Purser [CMP19] also study the complexity of approximating differential
privacy, but in the case of Markov Chains.

Theory of fields A celebrated result by Ax [Ax68] shows that the theory of finite fields is
decidable. In a recent development based on Ax’s result, Johnson [Joh16] proves decidability of
the theory of rings extended with quantifiers µnkx. P , stating that the number of x such that P
holds is equal to k modulo n. Although closely related, these results do not immediately apply to
the problem of equivalence.

? Future Work

We leave several questions of interest open:

I the exact complexity of universal equivalence is open. It is even unknown whether the
universal problem strictly harder than the non-universal one;

I the decidability of universal majority is open. The decidability of POSITIVITY would
yield decidability of universal 0-majority and equivalently, undecidability of universal
majority would also solve negatively the POSITIVITY problem;

I the decidability of program indistinguishability is open, for programs that do not return
a boolean. It asks if the statistical distance between the distributions of two programs is
negligible in k. This would have direct applications in provable security.

8.2 Complexity in the Finite Case

 Section Summary

We start by studying the complexity of several problems over a given finite field. In this
case, all problems are decidable by explicitly computing the distributions of the programs. We
however provide precise complexity results and show that these problems have complexities in
the counting hierarchy [Tor91].

8.2.1 Conditional Equivalence

To reason about equivalence, we focus on Fqk -conditional equivalence, and we proceed in four steps,
showing that:

149

8 Complexity and Decidability

1. without loss of generality, we can consider programs without inputs; (Lemma 7.1)
2. verifying if the conditioned distributions of two inputless programs coincide on some given

value is in C=P; (Lemma 8.1)
3. verifying if the conditioned distribution of inputless programs coincide on all values is in

coNPC=P; (Corollary 8.1)
4. and finally, even equivalence for programs over F2 is coNPC=P-hard. (Lemma 8.2)

This allow us to conclude that Fqk -equivalence and Fqk -conditional equivalence are both coNPC=P-
complete.

In the finite case, equivalence is very close to comparing and counting the number of solutions
of polynomial systems. We remark that Z-equivalence is undecidable: this is a consequence of
Hilbert’s 10th problem, as a polynomial over randomly sampled variables will be equivalent to zero
if and only if it does not have any solutions.

Complexity results for conditional equivalence Conditional equivalence is a direct general-
ization of equivalence. We thus trivially have, for any k ∈ N ∪ {∞}, that Fqk -equivalence reduces
in polynomial time to Fqk -conditional equivalence.

As we can without loss of generality ignore the inputs (see Lemma 7.1), we study the complexity
of deciding equality of distributions of two inputless programs on a specific value. To this end, we
build a polynomial time Turing Machine that accepts half of the time if and only if the programs
given as input have the same probability to be equal to some given value. Essentially, it is based
on the fact that over F2,

if r = 0 then P else (Q+ 1) ≈F2
r ⇔ P ≈F2

Q

.

Lemma 8.1. Let P1, Q1 ∈ PFq (∅, R) and P2, Q2 ∈ PFq (∅, R) with |P1| = |Q1| = n. For any
~o ∈ Fnqk , we can decide in C=P if:

[(P1, P2)]F
qk

(~o,0) = [Q1, Q2]F
qk

(~o,0)

Proof. As a shortcut, for P ∈ Pq(∅, R) (a program without inputs) and ~o ∈ F|P |
qk
×{⊥}, we denote

by P̃~o, the probability that P evaluates to ~o. Let P1, Q1 ∈ Pq(∅, R), P2, Q2 ∈ Pq(∅, R) with
|P1| = |Q1| = n. For any c ∈ Fnq , let us consider the probabilistic polynomial time Turing Machine
M which, on input P1, P2, Q1, Q2, ~o, is defined by:

x
$←− {0, 1};~r $←− F|R|q ; ~r′

$←− F|R|q ;
if x = 0 then

if ¬(P1(~r) = ~o ∧ P2(~r) = 0 ∧Q1(~r′) 6= ⊥) then
ACCEPT

else REJECT
else

if(Q1(~r) = ~o ∧Q2(~r) = 0 ∧ P1(~r′) 6= ⊥) then
ACCEPT

else REJECT

Let P = (P1, P2) and Q = (Q1, Q2). The probability that M accepts is, by case disjunction on the
value of x:

1
2 (1− P̃ (~o,0)(1− Q̃1

⊥
)) + 1

2 (Q̃(~o,0)(1− P̃1
⊥

)) = 1
2 + Q̃(~o,0)(1−P̃1

⊥
)−P̃ (~o,0)(1−Q̃1

⊥
)

2

150

8.2 Complexity in the Finite Case

And thus:

[P]F
qk

(~o,0) = [Q]F
qk

(~o,0) ⇔
P
~r

$←−F|R|q
{[[P]]

~i,~r
F
qk

=(~o,0)}

P
~r

$←−F|R|q
{[[P]]

~i,~r
F
qk
6=⊥}

=

P
~r

$←−FRq

{[[Q]]
~i,~r
F
qk

=(c,0)}

P
~r

$←−FRq

{[[Q]]
~i,~r
F
qk
6=⊥}

⇔ P̃ (~o,0)

1−P̃1
⊥ = Q̃(~o,0)

1−Q̃1
⊥

⇔ Q̃(~o,0)(1− P̃1
⊥

)− P̃ (~o,0)(1− Q̃1
⊥

) = 0
⇔M accepts exactly half of the time

As we consider that the size of a polynomial is the size of the corresponding formula, polynomials
can be evaluated in polynomial time. Thus, the previous Turing Machine does run in polynomial
time.

�

As C=P is closed under finite intersection [Tor88], we can decide in C=P if two distributions over a
set of fixed size are equal, by testing the equality over all possible values. When we only consider
inputless programs of fixed arity, the set of values to test is constant, and the equivalence problem
is in C=P (see Corollary C.1 for details). However, when we extend to inputs, or to programs of
variable arity, we need to be able to check for all possible value if the distribution are equal over
this element. (Note that our encoding that allows to only consider inputless programs increases
the arity.) Checking all possible values is typically in coNP. We thus obtain that:
Corollary 8.1. For any k ∈ N, Fqk -equivalence and Fqk -conditional equivalence are in
coNPC=P.

To conclude completeness for both Fqk -equivalence and Fqk -conditional equivalence, it is sufficient
to show the hardness of F2-equivalence, which we do by reducing A−halfSAT. We simply transform
a CNF boolean formula into a polynomial over F2. This is a purely technical operation (see
Lemma C.1).

Lemma 8.2. F2-equivalence is coNPC=P-hard.

Proof. Given a CNF formula φ(I,R) over two sets of variables and (∨,∧) we set P = φ′ ∈ PF2
(I,R)

obtained according to Lemma C.1. Given a fresh random variable r:

P (I,R) ≈F2 r ⇔ for all valuations of I, φ is true for half of the valuations of R
⇔ φ(I,R) ∈ A−halfSAT

�

8.2.2 Independence

The results for Fqk -conditional equivalence naturally translate to the independence problem: are the
distributions of multiple programs independent? We show here that equivalence and (conditional)
independence have the same complexity. Conditional independence (Definition 7.4) asks if for
any fixed value of some variables Y , the programs are independent, i.e., if the product of their
distributions is equal to the distribution of their product.

Using Lemmas 7.2 and 7.3, we obtain the same complexity as equivalence.

151

8 Complexity and Decidability

Corollary 8.2. Fqk -conditional independence is in coNPC=P.

We now show the hardness of conditional independence. The key idea comes from Lemma 7.4:
for any program P and fresh random r, we have that ⊥∅F2

(P + r, r) if and only if P follows the
uniform distribution. Intuitively, P perfectly masks the dependence in r only if it is a uniform
value. Thus, we reduced uniformity to independence, and as we previously reduced A−halfSAT to
uniformity, we conclude.

Theorem 8.1. Fqk -conditional independence is coNPC=P-complete.

8.2.3 Majority

The goal of this Section is to show that the majority problem is coNPPP-complete. To this end,
we study the complexity of Fqk -0-majority, showing:

I PP-completeness for inputless programs;
I coNPPP-completeness in general.

The proof in both cases uses similar ideas as for equivalence. Note that we actually use the same
Turing Machine for the Membership. As both complexity classes are closed under finite intersection,
it yields the complexity of Fqk -majority, which can be decided using Fqk times Fqk -0-majority.

Complexity results for the majority problem To obtain the complexity of Fqk -0-majority
over inputless programs, we notice that the Turing Machine we used to obtain the complexity of
the equivalence problem are easily adapted for our purpose. Indeed, it accepted half of the time if
the two distributions were equal on a single value, but it actually accepts with probability greater
than half only if the value of the first distribution is greater than the second one on the given
point.

The only difficulty is that we are comparing with a rational. We thus briefly show how one can
assume without loss of generality that r = 1 (in which case we omit r from the notation). The
idea is, given r, s ∈ N, that P ≺

r
s

F
qk
Q ⇔ (P, Tr) ≺F

qk
(Q,Ts), if Tj is a program that is equal to

zero with probability 1
j .

ü Technical Details

Depending on the value of j, the program Tj is more or less concise. For instance, for j = ql,
the program

x1, . . . , xl
$←− Dl; if x1 = 0 ∧ . . . ∧ xl = 0 then return 0 else return 1

is equal to zero with probability 1
ql
. However, more complex integers may require precise

encoding using an exponential number of conditionals, and we must thus consider that r, s is
given in input as two integers written in unary. Remark that in practice, it is natural to use
particular rationals such as 1

ql
, for which there is no exponential blow up.

Lemma 8.3. For any k ∈ N, Fqk -0-majority reduces in polynomial time to Fqk -0-majority
with r = 1.

The proof showing that Fqk -0-majority is in PP is similar to proving that testing if two distributions
are equal over a point is in C=P.

152

8.3 The Universal Case

Lemma 8.4. For any k ∈ N, Fqk -0-majority restricted to inputless programs is in PP.

We prove PP-completeness by deriving the hardness from MAJSAT, with a proof similar to the one
of Lemma 8.2.

Lemma 8.5. F2-0-majority is PP-hard (even for inputless programs).

Finally, as PP is closed under finite intersection, we also get that Fqk -majority is PP-complete.

Let us now turn to the general version, for programs with inputs. By using some fresh inputs
variables, let us remark that one can easily reduce Fqk -majority to Fqk -0-majority. Indeed, for
P,Q ∈ PFq (I,R) and c ∈ F|P |q , with a fresh x ∈ I:

∀~i ∈ F|I|
qk
. [P]

~i
F
qk

(c) ≤ r [Q]
~i
F
qk

(c)⇔ (P − x) ≺rF
qk

(Q− x)

We show that Fqk -majority is coNPPP complete, and thus is most likely3 harder than its version
without inputs. The membership and hardness proofs are similar to the equivalence problem when
going from C=P to coNPC=P.

Lemma 8.6. Fqk -majority is coNPPP complete.

8.3 The Universal Case

 Section Summary

We first give some general insights on universal equivalence showing important differences with
the case of a fixed field. We then derive a general way to study the universal properties by
reducing them to Linear Recurrence Sequences problems. This allows us to provide our main
decidability result for universal equivalence, first for arithmetic programs, then arithmetic pro-
grams enriched with conditionals, and finally for general programs. We continue by studying
two other problems in the universal case, that follow easily from the reduction to LRS: in-
dependence and 0-majority. For independence and equivalence, the universal problem is in
2-EXP.

8.3.1 General Remarks

In this Section we try to provide some insights on the difficulty of deciding F∞q -equivalence. First
of all, we note that equivalence and universal equivalence do not coincide.

Example 8.1. The program x2 + x (with x a random variable) and the program 0 are equivalent
over F2 (they are then both equal to zero), but not over F4.

In the case of a given finite field, equivalence can be characterized by the existence of a bijection,
see for instance [BGJ+19]. We denote by bijF

m
q the set of bijections over Fmq . Any element σ ∈ bijF

m
q

can be expressed as a tuple of polynomials (see e.g., [Nip90]), and can be applied as a substitution.

3As PH ⊂ coNPPP, PP = coNPPP would imply PH ⊂ PP which is commonly believed to be false.

153

8 Complexity and Decidability

The characterization can then be stated as follows, where we denote by =Fq equality between
polynomials modulo the rule of the field (i.e., Xq = X).

P ≈Fq Q⇔ ∃σ ∈ bijF
m
q , P =Fq Qσ

However, there are universally equivalent programs such that there does not exist a uniform σ
suitable for all extensions.

Example 8.2. Consider P = xy + yx + zx where all variables are randomly sampled. With
σ : (x, y, z) 7→ (x, y + x, z + x), we get that P ≈F2∞ x2 + yz. Now, x 7→ x2 is a bijection over all
F2k , so we also have P ≈F2∞ x+ yz and finally P ≈F2∞ x.

But here, a bijection between x2 + yz and x must use the inverse of x2 whose expression depends
on the size of the field. Thus, there isn’t a universal polynomial σ which is a bijection such that
on all F2k , P =F

2k
Q ◦ σ.

Nevertheless, we can note that for linear programs this characterization allows us to show that
Fq-equivalence and Fq∞ -equivalence are equivalent. Intuitively, the bijection allowing to obtain
the equality between two linear programs is also a bijection valid for all extensions of the finite
field, as the bijection is linear, and is thus a witness of equivalence over all extensions. For linear
programs, there exists a polynomial time decision procedure for equivalence, and hence for universal
equivalence.
Lemma 8.7. Fq∞-equivalence restricted to linear programs is in PTIME.

Moreover, building on results from [Mau01] on Tame automorphisms, we can use the above charac-
terization to design a sufficient condition which implies universal equivalence for general programs.
Even though not complete this sufficient condition may be useful to verify universal equivalence
more efficiently in practice.

A Sufficient Condition

In the univariate case, our notion is also strongly linked to exceptional polynomials, permutation
polynomials over Fq[x] that are permutations over infinitely many Fqk [x].

A univariate polynomial that is uniform is then an exceptional polynomial of Fq[x]. They have
been fully characterized [MP13, p237]. The multivariate case appears unsolved, but an efficient
algorithm for this case would provide new insights about our problems.

With the characterization through bijections of Proposition 7.1, we can however easily obtain the
following condition, for any function σ:

σ ∈
⋂
k

bij
Fm
qk ⇒ P ≈Fq∞ Pσ

Notably, any linear bijection in bijF
m
q is also in

⋂
k bij

Fm
qk . Leveraging some mathematical results

classifying the bijections over Fmqk , we can also provide some insights about functions that are
bijections over all extensions of a finite field.

ü Technical Details

We derive two Lemmas that provide an easy way to generate bijections that are bijections over
all extensions of a finite field, and can thus serve as a witness for a universal equivalence.

154

8.3 The Universal Case

We first use Theorem 3.2 of [Mau01] to classify what are the bijections over Fmqk . For a finite
field F, bijF

n

denotes the set of bijections over Fn; and E(T (F, n)) denotes the set of bijections
obtained through

I permutations: (x1, . . . , xn) 7→ (xπ(1), . . . , xπ(n))),
I scalar multiplications: for any a ∈ F∗, (x1, . . . , xn) 7→ (ax1, . . . , xn)),
I and linear transformations: for any P ∈ F[x2, . . . , xn],

(x1, . . . , xn) 7→ (x1 + P (x2, . . . , xn), . . . , xn)

E(T (F, n)) is called the set of the tame automorphisms.

Theorem 8.2 (2.3 of [Mau01]). We have:

I if n = 1, and F = F2 or F3, then E(T (F, n)) = bijF
n

,
I if n ≥ 2 and F 6= F2m for m > 1 , E(T (F, n)) = bijF

n

,
I else, E(T (F, n)) 6= bijF

n

.

This allows us to obtain that:

Lemma 8.8. For any prime p > 2, integers k ≥ 1 and n > 1, for any function f :

f ∈ bij
Fn
pk ⇒ ∀k′ > k.f ∈ bij

Fn
pk
′

Proof. Let f ∈ bijFpk . With Theorem 8.2, we have that for all prime p not equal to 2:

E(T (Fpk , n)) = bij
Fn
pk

Thus, f can be written as a composition of substitutions, scalar multiplications and linear
transformations. All those operations are directly bijections over any Fnpk , we thus conclude:

∀k′ > k.f ∈ bij
Fn
pk
′

�

The case p = 2 must be handled differently:

Lemma 8.9. For any k > 1 and n > 1, for any function f :

f ∈ bijF
n

22(2k+1) ⇒ ∀k′ > 2(2k + 1).f ∈ bij
Fn
2k
′

Proof. For any m, we denote by F(T (F2m , n)) the set generated by E(T (F2m , n)) and the
permutation σ = (X1, . . . , Xn) 7→ (X2

1 , . . . , Xn). It is shown in [LN83, p. 351] that xn is a
bijection in Fq if n and q − 1 are coprime. We have that for any k, 2 and 2k − 1 are coprime,
and then, we have F(T (F22(2k+1) , n)) = bijF22(2k+1)

Let us fix k and let f ∈ bijF22(2k+1) .

155

8 Complexity and Decidability

Thus, f can be written as a composition of substitutions, scalar multiplications, linear trans-
formations and σ. Recall that σ is a bijection over all Fn2k , and the others trivially are. We
thus conclude:

∀k′ > 2(2k + 1).f ∈ bij
Fn
2k
′

�

8.3.2 From Arithmetic Programs without Inputs to LRS

We first consider the case of arithmetic programs without inputs, P,Q ∈ PFq (∅, R). In this sub-
case, P and Q are simply tuples of polynomials over a finite field. Thanks to the properties of
the local zeta Riemann functions, we are able to link the distributions of P and Q to some simple
Linear Recurrence Sequences (LRS). We may then leverage results on LRS to reason about our
problems.

Local zeta Riemann functions We recall the definition and relevant properties of local zeta
Riemann functions. For a tuple P of polynomials P1, . . . , Pm ∈ Fq[X1, . . . , Xn], the local zeta
Riemann function over T is the formal series

Z(P, T) = exp

(∑
k∈N∗

|Nk(P)|
k

T k

)

where Nk(P) = {~x ∈ Fnqk |
∧

1≤i≤m Pi(~x) = 0}.

Remark that given P ∈ PFq (∅, R),

[P]F
qk

(0) =
|Nk(P)|
qk×|R|

Weil’s conjecture [Wei49] states several fundamental properties of local zeta Riemann functions
over algebraic varieties. Dwork [Dwo60] proves part of Weil’s conjecture stating that the local zeta
Riemann functions over algebraic varieties is a rational function with integer coefficients—recall
that Z(T) is a rational function iff there exist polynomials R(T) and S(T) such that Z(T) =
R(T)/S(T). Bombieri [Bom66] shows that the sum of the degrees of R and S is upper bounded
by 4(d + 9)n+1, where d is the total degree of (P1, . . . , Pm). It follows that the values of Nk for
k ≤ 4(d + 9)n+1 suffice for computing Z; since these values can be computed by brute force, this
yields an algorithm for computing Z.

We will by abuse of notations write Z(P) instead of Z(P, T) for the local zeta function of P . Z(P)
completely characterizes the number of times P is equal to zero on all the different extensions. For
instance, Z(P) = Z(Q) allows us to conclude that P and Q always evaluate to zero for the same
number of valuations, and this over any Fqk . A classical algorithm to compute Z is provided in
[LW06].

ü Technical Details

Weil’s conjecture actually only applies to non-singular projective varieties. However, as outlined
by [LW06], Dwork’s proof can be used to obtain the stronger result of the rationality of the
local zeta function for any algebraic variety.

156

8.3 The Universal Case

Linear recurrence sequences We recall that the Linear Recurrence Sequence (LRS) denoted
by 〈uk〉 is an infinite sequence of reals u1, u2, . . . such that there exist real constants a1, . . . , an
such that for all k ≥ 0,

uk+n = a1uk+n−1 + · · ·+ anuk

The order of a LRS 〈uk〉 is the smallest positive n such that the equation above holds. The
recurrence relation can be associated to a polynomial, called the characteristic polynomial. We
then say that a LRS is simple if its characteristic polynomial does not have any repeated roots. As
outlined in [OW14b], a LRS of order n is notably simple if there exist algebraic constants γ1, . . . , γn
and non-zero real algebraic constants c1,, cn such that, for all k ≥ 0:

uk =
∑

1≤i≤n

ciγ
k
i

Remark that given two simple LRS of order n, it is enough to test the equality of the first n terms
to obtain equality of the two LRS. Some other problems related to our study are:

I the positivity problem: for all k ∈ N, does it holds that uk ≥ 0? It is only known to be
decidable for LRS of order 5, and of order 9 in the case of simple LRS.

I the ultimate positivity problem: does there exists K such that for all k > K, uk ≥ 0? It is
decidable for simple LRS but its decidability in the general case is open.

From programs to LRS Summing up the results from Dwork, Bombieri and Deligne, [CL06]
allows us to characterize 〈Nk(P)〉 as a simple LRS. Given a tuple P of m polynomials in n variables
with maximal degree a, there exist integers a1, a2 such that a1 + a2 ≤ (4a+ 9)n+m and algebraic
numbers α1, . . . , αa1 , β1, . . . , βa2 such that for any k ≥ 1:

Nk(P) =

a2∑
j=1

βkj −
a1∑
j=1

αkj

Furthermore, we know that there exist integers sαj , s
β
j between 0 and 2KP (KP is a constant that

depends on the dimension of the variety of P) such that |αj | = qs
α
j /2 and |βj | = qs

β
j /2.

We thus have that 〈Nk(P)〉 is a simple LRS. Remark that given P , computing the LRS corre-
sponding to Nk(P) or computing Z(P) is equivalent (recall that Z(P) is the formal power series
corresponding to the LRS 〈Nk(P)〉, and the reductions given in this Chapter are thus exponential.
Based on the previous discussions, we obtain the following Corollary:

Corollary 8.3. Let P1, . . . , Pk ∈ PFq (∅, R), any linear combination of the {Nk(Pi)}1≤i≤k is a
LRS. So is any linear combination of the {[Pi]F

qk
(0)}1≤i≤k.

LRS, which have been widely studied, provide a uniform way to reason about our relational prop-
erties:

I try to encode the relational property as a property of some linear combinations of
{[Pi]F

qk
(0)}1≤i≤k;

I reasoning about the corresponding properties of the simple LRS.

This directly implies that, given P,Q ∈ PFq (∅, R), one can decide if:

I ∃K, ∀k > K. [P]F
qk
≥ 0. This is because ultimate positivity is decidable for simple

LRS [OW14b]. This implies decidability of a variant of the qk-0-majority, that we may
call ultimate qk-0-majority: ∃K, ∀k > K. [P]F

qk
≥ [Q]F

qk
.

157

8 Complexity and Decidability

I ∀k ≥ 0. [P]F
qk

(0) = [Q]F
qk

(0). This is because we can decide if two LRS are equal. Remark
that this is only a reformulation of testing if Z(P) = Z(Q). Hence, testing if two programs
have the same probability to return 0 over all finite fields is decidable.

Furthermore, for arithmetic programs without inputs, we have reduced Fq∞-0-majority to the
positivity problem for LRS, as the question is if for all k, [P]F

qk
− [Q]F

qk
≥ 0 where the left hand

side is a LRS.

8.3.3 Decidability of Universal Equivalence

We show decidability of Fq∞-equivalence, leveraging tools from algebraic geometry, showing
that4:

1. Fq∞ -conditional equivalence is decidable for arithmetic programs; (Lemma 8.10)
2. it is also decidable for programs with conditionals; (Lemma 8.11)
3. it is finally decidable for programs with conditioning, e.g., failures. (Lemma 8.12)

Notice that, given two programs P and Q, the local zeta function directly allows us to conclude if
they are equal to some value with the same probability for all extensions of the base field. Moreover,
thanks to [Kie76], the computability of the local zeta function can be extended from counting the
number of points such that P = 0 for a tuple of polynomials, to counting the number of points
such that φ holds, where φ is an arbitrary first order formula over finite fields.

Corollary 8.4. Let φ and ψ be two first order formulae built over atoms of the form P = 0
with P ∈ Fq[X], and with free variables F ⊂ X. One can decide if for all k ∈ N:∣∣∣~f ∈ F|F |

qk
| φ(~f) = 1

∣∣∣ =
∣∣∣~f ∈ F|F |

qk
| ψ(~f) = 1

∣∣∣
Thus, for any two events that can be expressed as a first order formula over a finite field one can
verify if they happen with the same probability over all extensions of the base field. Remark that
this cannot be used to decide universal equivalence, as equivalence cannot be expressed by a first
order formula.

We first show that Fq∞ -equivalence is decidable for arithmetic programs, i.e. programs without
conditionals or conditioning. The difficulty is to make it so that we check equality of the distribu-
tions over all possible outputs, and not over the output 0. To this end, we express the distributions
as vectors, and show how to encode the two-norm of the distances between the distributions.

Given an enumeration 1 ≤ j ≤ qkn of the elements cj of Fnqk , for any programs P1, P2 ∈ PFq (∅, R)

where |P1| = n, we denote by
−−−→
P1, P2

k = ([P1, P2]F
qk

(~c1,~0), . . . , [P1, P2]F
qk

(~cqkn ,~0)), that com-
pletely characterizes the distribution of P1 conditioned by P2 = 0. Notice that when |R| = m, we
have:

qkm
−−−→
P1, P2

k = (Nk(P1 + ~c1, P2), . . . , Nk(P1 + ~cqkn , P2))

The core of the reduction to LRS is that the squared norm-two of
−−−→
P1, P2

k −
−−−−→
Q1, Q2

k is a LRS. As
we have that

P1 | P2 ≈Fq∞ Q1 | Q2 ⇔ ∀k ∈ N. ‖
−−−→
P1, P2

k −
−−−−→
Q1, Q2

k‖22 = 0

This allows us to directly conclude decidability, as we can decide if the corresponding LRS is always
zero.

4The following reductions do not hold for equivalence, it is the reason why we considered conditional
equivalence. It works as equivalence trivially reduces to conditional equivalence.

158

8.3 The Universal Case

Lemma 8.10. Let P1, P2, Q1, Q2 in PF
qk

(∅, R). We have that ‖
−−−→
P1, P2

k −
−−−−→
Q1, Q2

k‖22 is a LRS.

Proof. Using the classical inner product ~x · ~y =
∑
i xiyi, for any k and programs U, V, U ′, H ′ ∈

PF
qk
∅, R, we have, when σ is a mapping from variables in R to fresh variables in R′ and |R| = m:

Nk((U − V σ,U ′, V ′)) =
∣∣∣{X,X ′ ∈ Fmqk | U(X) = V (X ′) ∧ (U ′(X), V ′(X)) = 0

}∣∣∣
=
∑
c∈Fn

qk

∣∣∣X ∈ Fmqk | U(X) = c ∧ U ′(X) = 0
∣∣∣

×
∣∣∣X ∈ Fmqk | V (X) = c ∧ V ′(X) = 0

∣∣∣
=
∑
i q
km ×

−−−→
U,U ′ki × qkm ×

−−−→
V, V ′ki

=
−−−→
U,U ′k ·

−−−→
V, V ′k

So now,

Nk(P1 − P1σ, P2, P2σ)− 2Nk(P1 −Q1σ, P2, Q2σ) +Nk(Q1 −Q1σ,Q1, Q1σ)

= q2km × (
−−−→
P1, P2

k ·
−−−→
P1, P2

k − 2
−−−→
P1, P2

k ·
−−−−→
Q1, Q2

k +
−−−−→
Q1, Q2

k ·
−−−−→
Q1, Q2

k)

In other terms:

Nk(P1 − P1σ, P2, P2σ)− 2Nk(P1 −Q1σ, P2, Q2σ) +Nk(Q1 −Q1σ,Q1, Q1σ)

= q2km × ‖
−−−→
P1, P2

k −
−−−−→
Q1, Q2

k‖22

Corollary 8.3 finally allows us to conclude. �

We can now conclude decidability of Fq∞ -equivalence for arithmetic programs, as we can decide if
the corresponding LRS is always zero. Computing the LRS is in fact equivalent to computing the
associated local zeta functions, and thus check if the following is equal to 0:

Z(P1 − P1σ, P2, P2σ)− 2Z(P1 −Q1σ, P2, Q2σ) + Z(Q1 −Q1σ,Q1, Q1σ)

Using the complexity for the computation of the local zeta function provided by [LW06, Corollary
2] we obtain the following corollary.

Corollary 8.5. Fq∞-conditional equivalence and Fq∞-equivalence restricted to arithmetic pro-
grams are in EXP.

Removing the conditionals We now wish to remove conditionals, in order to reduce equivalence
for programs with conditional to arithmetic programs (which are simply tuples of polynomials).
To remove the conditionals, the first idea is to use a classical encoding in finite fields:[

if B 6= 0 then P t1 else P
f
1

]
F
qk

=
[
P f1 +Bq

k−1(P t1 − P
f
1)
]
F
qk

This works nicely as Bq
k−1 is equal to 0 if B = 0, else to 1. However, for the universal case, we need

to have an encoding which does not depend on the size of the field, i.e., it must be independent of
k. The key idea is that for any variable t and polynomial B:

(B(Bt− 1) = 0 ∧ t(Bt− 1) = 0) ⇔ t = Bq
k−2

159

8 Complexity and Decidability

And thus, we can for instance write, for any program Q and output ~o:[
if B 6= 0 then P t1 else P

f
1

]
F
qk

(~o) = [Q]F
qk

(~o)

⇔
[
P f1 +Bq

k−1(P t1 − P
f
1)
]
F
qk

(~o) = [Q]F
qk

(~o)

⇔
[
P f1 +Bt(P t1 − P

f
1), (B(Bt− 1), t(Bt− 1))

]
F
qk

(~o,0) = [Q]F
qk

(~o)

An induction on the number of conditionals yields our second lemma.

Lemma 8.11. For any k ∈ N∪ {∞}, Fqk -conditional equivalence restricted to programs with-
out failures reduces in exponential time to Fqk -conditional equivalence restricted to arithmetic
programs.

Removing failures Recall that failures define the probabilistic semantics through normalization.
For instance, for a program (if b = 0 then P1 else ⊥, P2) where P1 and P2 do not fail and b is a
polynomial, for any ~o, we have:

[(if b = 0 then P1 else ⊥, P2)]F
qk

(~o,0) = P{P1=~o∧P2=0∧b=0}
P{¬(b=0)}

Handling this division by itself would be difficult if we wanted to compute the distribution. How-
ever, in our setting, we are comparing the equality of two distributions, so we can simply multiply
on both side by the denominator, and try to express once again all factors as an instance of con-
ditional equivalence. We will be able to push in conditional equivalence some probabilities, as
[P]F

qk
(~o)× P{b = 0} = [P, b]F

qk
(~o, 0) when all variables in b do not appear in P .

As an illustration of how to remove the failures, with some program Q, we have:

if b = 0 then P1 else ⊥ | P2 ≈F
qk
Q | 0 ⇔ ∀~o. [(if b then P1 else ⊥, P2)]F

qk
(~o,0) = [Q]F

qk
(~o)

⇔ ∀~o.P{P1 = ~o ∧ P2 = 0 ∧ b = 0} = P{¬(b = 0)} [Q]F
qk

(~o,0)

⇔ ∀~o. [P1, P2, b]F
qk

(~o,0) = P{¬(b = 0)} [Q]F
qk

(~o)

To reduce to an instance of conditional equivalence, the issue is that we need to express as an
equality the disequality b 6= 0. With some fresh variable t, multiplying by P{¬(b = 0)} or condi-
tioning on tb − 1 = 0 is equivalent, as b has an inverse if and only if it is different from zero. We
can thus have:

if b = 0 then P1 else ⊥ | P2 ≈F
qk
Q | 0 ⇔ ∀~o. [P1, P2, b]F

qk
(~o,0) = P{¬(b = 0)} [Q]F

qk
(~o)

⇔ ∀~o. [P1, P2, b]F
qk

(~o,0) = [Q, tb− 1]F
qk

(~o, 0)

⇔ P1 | P2, b ≈F
qk
Q | tb− 1

Universal equivalence Using those techniques, we obtain:

Lemma 8.12. For any k ∈ N ∪ {∞}, Fqk -conditional equivalence reduces to Fqk -conditional
equivalence restricted to programs without failures in exponential time.

The previous Lemmas allows us to conclude.

160

8.4 Program Indistinguishability

Theorem 8.3. Fq∞-equivalence and Fq∞-conditional equivalence are in 2-EXP.

Independence Using once again Lemmas 7.2 and 7.3, we obtain the same complexity results for
the independence problem.

Corollary 8.6. Fq∞-conditional independence is in 2-EXP.

Moreover, we can also extend the lower bound obtained for q-equivalence.

Lemma 8.13. Fq-equivalence reduces in polynomial time to Fq∞-equivalence.

Universal zero-majority without inputs For arithmetic programs, we have reduced
Fq∞ -0-majority to the positivity problem for LRS. The generalization to general programs
with conditionings and branchings is similar to the reductions for universal equivalence. We thus
obtain the following result.

Theorem 8.4. Fq∞-0-majority for inputless programs reduces in exponential time to the pos-
itivity problem for simple LRS.

The reduction can also be applied with the generalization of [Kie76], and thus, for any two events
about programs over finite fields, one can, given an oracle for the positivity problem, decide if the
probability of the first event is greater than the second one for all extensions of the base field.

We also remark that similarly to Fq∞ -equivalence, the complexity of the problem strongly comes
from the presence of multiplications. Indeed, in the linear case, majority implies equivalence and
we obtain the following.

Lemma 8.14. Fq∞-0-majority restricted to linear programs is in PTIME.

Similarly to the equivalence case, we can derive some hardness from the non universal case, but
we do not obtain any completeness result.

Lemma 8.15. F2∞-0-majority is PP-hard.

Compared to equivalence, we do not have a way to reduce majority or 0-majority programs without
inputs. Thus, we are not able to generalize the reduction to the positivity problem for those cases.

8.4 Program Indistinguishability

 Section Summary

To reason about computational indistinguishability of programs, we study and define program
indistinguishability and the LRS negligibility problem. We make some first steps towards the
decidability of program indistinguishability by proving the decidability of the LRS negligibility
problem, but leave the decidability of program indistinguishability open, except for binary
programs, that only return a boolean. In the special case of binary programs, we show the
decidability of program indistinguishability, using the same reduction to LRS as for the case of
universal equivalence.

161

8 Complexity and Decidability

A variant of equivalence that is of interest for security proofs is indistinguishability. Intuitively,
it means that the statistical distance between two programs is negligible w.r.t. some security
parameter.

Definition 8.1. We say that two programs P,Q are indistinguishable, denoted by P ∼ Q, if
for all d ∈ N there exists Kd such that:

∀k > Kd.
∑
~o∈Fn

qk

| [P]F
qk

(~o)− [Q]F
qk

(~o)| ≤ 1

kd

Or equivalently:

P ∼ Q⇔ ∀k > Kd. ‖~P k − ~Qk‖1 ≤
1

kd

Indistinguishability of programs is of course implied by equivalence, but the converse is not true.
Consider for instance the program that always outputs 0, P := return 0, and the program Q :=

x
$←− D, if x = 0 then return 1 else else 0.

This is very close to the definition of computational indistinguishability. A widely known fact
(see e.g. [Gol05]) is that the negligibility of the statistical distance implies the computational
indistinguishability of the two programs: no attacker can guess with which of two programs they
interact. In other terms, abusively denoting programs as protocols outputting some value, we have
P ∼ Q⇒ P ∼= Q.

We provide some first insight about the program indistinguishability problem by showing that the
corresponding LRS problem is decidable (this relies heavily on the techniques of [OW14b] and on
some of its notations, that we do not recall here). The decidability for LRS implies that if one
can find a way to express ‖~P k − ~Qk‖1 as a LRS, program indistinguishability is decidable. The
reduction would also work if any polynomial over ‖~P k− ~Qk‖1 can be seen as a LRS, as any function
is negligible if and only if any polynomial in this function is negligible.

ü Technical Details

Classically, a positive function f : k 7→ f(k) is negligible if:

∀d,∃Kd,∀k > Kd. f(k) ≤ 1

kd

Notably, for any x < 1, k 7→ xk is negligible.

Definition 8.2. A simple integer LRS 〈uk〉 is negligible if:

∀d, ∃Kd,∀k > Kd. |uk| ≤
1

kd

Theorem 8.5. Let M be the maximal modulus of the roots of a simple integer LRS 〈uk〉.
〈uk〉 is negligible if and only if M < 1.

Proof. We perform a case study on the maximal modulus of the roots, after removing the case
of degenerate LRS.

162

8.4 Program Indistinguishability

Degenerate LRS First, remark that for any M , 〈uk〉 is negligible if and only if for all d
between 0 and M − 1, 〈ukM+d〉 is negligible. Indeed, if any of the sub-LRS is non negligible,
the LRS is also non negligible. If all the sub-LRS are negligible, so is the LRS.

From now on, we only consider non degenerate LRS.

General form of non degenerate LRS There exist integers a1, a2 and algebraic numbers
α1, . . . , αa1 , β1, . . . , βa2 such that for any k ≥ 1:

uk =

a2∑
j=1

βkj −
a1∑
j=1

αkj

Maximal module M < 1 We have by triangle inequality that ∀k. |uk| ≤ (a1 + a2)Mk. If m
is smaller than one, k 7→ (a1 + a2)Mk is a negligible function, and thus the LRS is negligible.

Maximal module M ≥ 1 We will use Braverman’s Lemma [Bra06], and therefore assume
that the LRS is not always zero (else it is trivially negligible).

Let M be the maximum module of Λ = {αi, βj}. We consider Λmax = {x ∈ Λ||x| = M}.

Assume that M /∈ Λ. This means that 〈uk〉 has no dominant real root. Then, we can write∑a2
j=1 β

k
j −

∑a1
j=1 α

k
j as

∑
x∈Λmax

xk + rk, where rk = o(Mk). Applying Braverman’s Lemma to∑
x∈Λmax

xk

Mk , we get c such that infinitely often, |
∑
x∈Λmax

xk

Mk | goes above c and below −c.
Finally, there exists some ε such that infinitely often |

∑a2
j=1 β

k
j −

∑a1
j=1 α

k
j | ≤ (−c+ ε)Mk and

|
∑a2
j=1 β

k
j −

∑a1
j=1 α

k
j | >= (c− ε)Mk. As M ≥ 1, we have that there exists an infinite number

of k such that |uk| ≥ (c − ε). Then, infinitely often, |uk| is bigger than a constant, and hence
non-negligible.

Assume that M ∈ Λ. We denote by cα = {1 ≤ i ≤ a1 | αi = M} and cβ = {1 ≤ i ≤ aβ | βi =
M}. Then, with c = cα − cβ , we consider vk = uk − c ×M . If vk has no dominant real root,
we can apply Braverman’s Lemma to vk. Then, infinitely often vk > 0 and vk < 0, and thus
infinitely often uk − c ×M > 0 and uk − c ×M < 0, i.e., uk > c ×M and uk < −c ×M . No
matter whether c is positive or negative, we have that |uk| > |c×M | and 〈uk〉 is not negligible.

�

We are only able to show that the negligibility of ‖~P k− ~Qk‖22 is decidable, as thanks to Lemma 8.10
it is a simple LRS. This provides a necessary condition and a weak sufficient condition for P ∼ Q,
as for any k:

‖~P k − ~Qk‖2 ≤ ‖~P k − ~Qk‖1 ≤ qkm/2‖~P k − ~Qk‖2

Notice however that if we consider programs that always return either 0 or 1, we have that
‖~P k − ~Qk‖1 = ‖~P k − ~Qk‖22. This observation allows to obtain the following corollary, combin-
ing Lemma 8.10 and the fact that the negligibility of a simple LRS is decidable.

Corollary 8.7. Program indistinguishability restricted to programs that always output either
0 or 1 is decidable.

163

8 Complexity and Decidability

Unfortunately, we leave the decidability in the general case as an open question.

8.5 Undecidability with Loops

 Section Summary

We prove undecidability of universal equivalence for programs with loops over finite fields. This
is done by reduction from the halting problems of two counter machines.

Assuming the same guards b as in the conditionals (Figure 7.1), we add the while b do c construct
to our language. The associated semantics is natural and not detailed (note that we also extend the
semantics of variables to be used in loops). The semantics of a program that does not terminate
is given a specific value ⊥∗. Then, the uniform equivalence problem of this enriched language is
undecidable. We reduce the halting problem for two counter Minsky Machines.

A Minsky Machine, or counter machine, is a 3 tuple (C,L, I) where

I C = {c1, . . . , cl} is a set of counters;
I L = {l1, . . . , lm} is an ordered set of labels;
I and I = {i1, . . . , im} is an ordered set of instructions.

For each instruction ij , lj is the associated label, used for jumps. Instructions are of the form:

i := incr(ck); JUMP(lj)
| decr(ck); JUMP(lj)
| if ck = 0 then JUMP(ls) else JUMP(lt)
| HALT

A configuration of the machine is given as a couple (n1, . . . , nl), i where (n1, . . . , nl) ∈ Nl and i ∈ I.
Intuitively, the configuration gives explicitly a value for all the counters of the machine, and stores
in a dedicated register the current instruction to be executed. The one step reduction of a machine
M is denoted by →M , defined by:

(n1, . . . , nl), (incr(ck); JUMP(lj))→M (n1, . . . , nk + 1, . . . , nl), ij
(n1, . . . , nl), (decr(ck); JUMP(lj))→M (n1, . . . , nk − 1, . . . , nl), ij (when nk > 0)
(n1, . . . , nl), (if ck = 0 then JUMP(ls) else JUMP(lt))→M (n1, . . . , nl), is (when nk = 0)
(n1, . . . , nl), (if ck = 0 then JUMP(ls) else JUMP(lt))→M (n1, . . . , nl), it (when nk 6= 0)

We denote by →∗M its transitive closure.

The halting problem for two counter machines is undecidable, i.e., given a machine M and an
initial configuration C, r, one cannot decide if there exists a value C ′ of the counters such that
C, r →∗M C ′,HALT.

Theorem 8.6. Fq∞-equivalence is undecidable for programs with loops.

Proof. Let M = (C, r, L, I) be a two counter machine where C = ({c1, c2}, L = {l1, . . . , lm} and
I = {i1, . . . , im}, and an initial configuration (n1, n2), is.

We build a program over Fq which emulates the counter machine execution, and which will be
such that it never terminates in all interpretations if and only if M does not terminate. Then, the

164

8.5 Undecidability with Loops

program will be universally equivalent to a program which never halts if and only if M does not
terminate, which is the expected reduction.

We choose q to be the smallest prime number bigger than m, and we assume, without loss of
generality, that the only halt instruction of M is l1. We can then emulate r with a single variable,
where the macro JUMP(li) is simply r := i.

If we denote by [i] the encoding of an instruction i defined later, the core of the program is then:

r := s
while r 6= 1 do
if r = 2 then

[i2]
. . .
if r = m then

[im]

We now provide encodings for each instruction. We first define a dummy non halting program
Loop := while 0 = 0 do t $←− D (the sampling of t is an alias for no operation).

To model the counters, we sample a pair of variables x1, x2
$←− {D | x1x2 = 1}, and a counter

of value n is represented by xn1 . In this representation incrementing the counter corresponds to
multiplication by x1, and decrementing is achieved by multiplication with x2 (the inverse of x1).

Assuming that we are given some variables x1, x2 and c1, c2, we define a function [i] such that:

[incr(ck); JUMP(lj)] = ck := ck × x1; if ck = 1 then Loop else r := j
[decr(ck); JUMP(lj)] = if ck = 1 then Loop else ck := ck × x1; r := j
[if ck = 0 then JUMP(ls) else JUMP(lt)] = if ck = 0 then r := s else r := t

The final program P is then:
x1, x2

$←− {x1x2 = 1}
c1 := xn1

1 ; c2 := xn2
1 ; r := s

while r 6= 1 do
if r = 2 then

[i2]
. . .
if r = m then

[im]
return 0

To conclude the proof, we now prove that

P ≈Fq∞ Loop⇔ M does not halt on input (n1, n2), is

It is clear that without an overflow, i.e., when the multiplicative group generated by x1 is big
enough to avoid the case ck = 1 in the encodings of incr, P perfectly simulates the behaviour of
M , and terminates if and only if M terminates.

Let us assume that M does not halt on input (n1, n2), is. Given an interpretation Fqk , and a
sampled value x1, x2, we have counters that can evolve in the cyclic multiplicative group generated

165

8 Complexity and Decidability

by x1, of some size qk
′
. For any such k′, either the simulation of M will create an overflow

(increasing a counter over k′), and then P does not terminate. Else, there is a loop of instructions
in M , which will be perfectly mimicked by P , which then does not terminate. Thus, for any
interpretation and any random samplings, P does not terminate, and then P ≈Fq∞ Loop.

Let us assume that M does halt on this input. We have an upper bound K on the values of
the counter during the execution. Thus, there exists some k such that qk > K, and there exists
a random sampling of x1 such that its generated multiplicative group is of size qk. Then, the
execution of P simulating P will not overflow, and P will terminate, going out of the while loop
and returning 0. This execution is then a witness that P 6≈F

qk
Loop, and thus P 6≈Fq∞ Loop

�

166

9 In Practice
I never expect men to give us
liberty. No, women, we are not
worth it until we take it.

(Voltairine de Cleyre)

9.1 Introduction

We previously defined relational properties between probabilistic programs that can be used to
perform elementary proof steps in the computational model. We studied the complexity and
decidability of such problems, and notably obtained the decidability of universal equivalence. The
complexity of the decision procedure is however exponential.

As we have shown that no efficient property is likely to exist we will design heuristics to ease the
process of proving security protocols. To be used in practice, we claim that heuristics should be
principled: they must have clear theoretical foundations, so that we understand how we may use
them and what are their limitations. Following those guidelines, tools based on such heuristics
should be easy to use, extend and maintain.

To provide such heuristics, our approach is to leverage widely studied techniques from symbolic
cryptography. We can through symbolic reasoning abstract away all probabilities, and simplify
some of the properties of finite fields, for instance abstracting them by commutative rings of a given
characteristic. Our approach is modular, defining first a symbolic characterization of equivalence,
that is then used to link the equivalence and independence problem to deducibility and static
equivalence.

Motivated by those new links, we also extend the state of the art of deducibility and static equiva-
lence for groups, finite fields and ring theories. We then put in practice our heuristics, by developing
a library integrated into two mechanized cryptographic provers, EasyCrypt [BGH+11; BDG+13]
and MaskVerif [BBD+15].

 Chapter Summary

In this Chapter, we focus on deriving principled and automated proof methods for universal
equivalence and independence that can be used in cryptographic proofs. To decide these prob-
lems, our approach is to leverage in a modular way existing techniques from symbolic cryptog-
raphy. This methodology completely abstracts away probabilities and provides syntactic rather
than semantic reasoning techniques.

We then extend the decision procedures for some of the techniques from symbolic cryptography,
and implement our heuristics in a library. The library is integrated in two cryptographic provers,
improving their automation.

167

9 In Practice

9.1.1 Our Contributions

Based on the semantic characterization of equivalence through bijections (Proposition 7.1), we give
a sound and complete syntactic characterization of equivalence. The characterization is based on
the notion of primal algebra used previously for proving decidability of unification in the theory
of finite fields [Nip90]. The syntactic characterization replaces the existence of a bijection by the
existence of a term satisfying specific syntactic properties.

We then leverage (and sometimes extend) methods from symbolic cryptography, including de-
ducibility, deduction constraints and static equivalence, to check the syntactic characterization of
our properties.

Our abstract framework allows us to derive sound and complete algorithms, as well as heuristics
that may be only sound or only complete. Given the high complexity, or lack of decision proce-
dures, such heuristics are of particular interest in practice. Previously mentioned tools for proof
mechanization do use some heuristics, but they often lack theoretical foundations, leading to a
misunderstanding regarding the precision and limitations. Our results clarify these questions for
the heuristics we propose.

In particular, in the case of finite fields of a fixed size we obtain sound and complete algorithms.
Even though we showed that this problem has high computational complexity, our algorithms
appear to be more efficient in practice than the straightforward ones. While the case of finite fields
of a fixed size is already useful in some cases, cryptographic proofs

I are often performed for an abstract size of the finite field (universal equivalence),
I may require complex combinations of function symbols, where non interpreted function

symbols may capture attacker actions (such as in the BC logic).

Thanks to our framework, we can however derive the soundness and/or completeness of many
different heuristics for this universal settings. For instance, to prove program equivalence over F2n

for all n, it follows from our results that it is sound to prove their equivalence over a commutative
ring of characteristic 2.

To leverage our results, we prove the decidability of deducibility in the theory of the Diffie-Hellman
exponentiation, based on decision procedures for rings and finite fields. The decision procedures
are based on techniques from Gröbner bases. This is a contribution of independent interest, as
it can also be leveraged to automate the application of the Decisional Diffie-Hellman assump-
tion or generalized to reason about matrices and the Learning With Error assumption [BGS15;
BFG+18].

We demonstrate the usefulness of our approach in practice through the implementation of a library
that we interfaced with two existing tools: EasyCrypt [BGH+11], and MaskVerif [BBD+15].
We do not implement all heuristics or decision procedures discussed in this Thesis, but the ones
implemented are sufficient to improve the existing tools. The source codes of the library and
modified tools are available online: [Seq; Ecs; Mvs]. We consider examples in the area of masking,
which provide challenging examples of probabilistic information flow. In particular, unlike the
original MaskVerif tool, our extension allows for insightful feedback as it may provide attack
witnesses when proofs fail. Furthermore, the integration of our approach into the EasyCrypt
proof assistant improves automation.

168

9.2 Symbolic Characterization

9.1.2 Related Work

Our work explores the relationship between probabilistic and symbolic approaches to cryptography.
The probabilistic approach focuses on computational or information-theoretic notions of security,
which are modelled using probabilistic experiments. The symbolic approach uses methods from
universal algebra, automated reasoning and logic to model and reason about security. Both models
have been used extensively in the literature, and there is active research to develop formal methods
and tools for proving security in these models.

The connection between these two approaches was first established by Abadi and Rogaway [AR02],
who prove computational soundness of symbolic security proofs for symmetric key encryption:
under specific assumptions, protocols that are secure in the symbolic model are also secure in the
computational model. Their seminal work triggered a long series of results for other cryptographic
constructions [CKW10]. The difficulty in computational soundness results stems from the fact
that the soundness of a security proof requires that every possible behaviour of a computational
adversary is captured by a symbolic adversary. In our work, we exploit soundness of symbolic
attacks: every symbolic attack (e.g., an attacker deduction) corresponds to a computational attack.
This form of soundness is generally obtained by construction, as every symbolic term induces
a probabilistic algorithm. This connection originates from the work of Barthe et al [BCG+13]
on automatically verifying and synthesizing RSA-based public-key encryption and was further
extended in [BGS15] and [BFG+18] to deal with pairing-based and lattice-based cryptography.

Our work is also closely related to approaches to reason about equivalence and simulatability
of probabilistic programs. Barthe et al [BDK+10] show decidability of equality for probabilistic
programs (without conditionals or oracle calls) over fixed-length bitstrings. Jutla and Roy [JR10]
show decidability of simulatability for programs (with conditionals but no oracle calls) over finite-
length bitstrings.

Applications of symbolic methods to masking were considered by Barthe et al in [BBD+15;
BBD+16], who develop specialized logics to prove different notions of (threshold) non-
interference.

Previous work for deducibility in the Diffie-Hellman exponentiation theory only provide partial
solutions: for instance, Chevalier et al [CKR+03] only consider products in the exponents, whereas
Dougherty and Guttman [DG14] only consider polynomials with maximum degree of 1 (linear
expressions).

9.2 Symbolic Characterization

 Section Summary

To leverage existing methods from symbolic cryptography, which abstracts probabilities away
and only consider syntactic constructs, we need to be able to reason in terms of syntax rather
than semantics on our different problems. In this Section, we identify precisely what are the
properties required from our algebras to be able to reason only on the syntax, yielding the
notion of effective algebra.

An effective algebra is a primal algebra [Nip90], where the syntax is powerful enough to ex-
press all possible functions, equipped with sound and faithful equational theories, that models
perfectly the equality of the algebra. Using those effective algebras, we are able to translate
the semantic characterization of Proposition 7.1 into a purely syntactic characterization, as the

169

9 In Practice

existence of a bijection is replaced by the existence of a term that models a bijection. We say
that such a term is R-bijective.

9.2.1 Symbolic Abstraction

We introduce a framework to completely axiomatize Σ-algebras: in some cases the term algebra
equipped with an equational theory E gives a fully abstract representation of the Σ-algebra. Recall
that we often assimilated the domain D over which we interpret function symbols in Σ, with the
Σ-algebra D that provides the actual interpretation of the function symbols. We shall not make
the same confusion in the remainder of the chapter, as it may now become misleading.

Primal Algebra A central notion of this Section is primality of an algebra in [Nip90]. In the
following Definition, recall that tD corresponds to the interpretation of the term t w.r.t. D (Defi-
nition 7.1).
Definition 9.1. D is said to be primal if and only if

∀n. ∀f : Dn 7→ D. ∃t ∈ T (Σ, (x1, ..., xn)). f = tD

Primality expresses that for any function over the interpretation domain, there exists a term whose
interpretation is equal to the function. Intuitively, it means that the syntax is expressive enough
to capture all possible operations.

Term algebra for Fq We consider a variant of the term algebra we used up to now for finite
fields, in order to have a primal representation of finite fields. Let P be an irreducible polynomial
over Fp[α] of degree k. The Fpk -algebra is defined by the signature

ΣF
pk

= {0, 1, α,+, ∗}

and their usual mathematical interpretation with Fpk seen as Fp[α]/(P (α)). Nipkow [Nip90] has
shown that the ΣF

pk
-algebra Fpk is a primal algebra:

Proposition 9.1 ([Nip90]). Fpk is a primal algebra.

The main idea underlying the proof relies on the encoding of conditionals of the form if x =
i then t1 else t2. We already presented such an encoding for Fpk in Section 7.4.1. This allows
for a basic encoding of any function as

if x = 0 then f(0) else . . . if x = i then f(i) else . . .

As we are working on finite sets, this encoding completely captures a function. In the case of
booleans (q = 2), we basically write down the truth table of the function in a term.

Term algebra for Fmq It is interesting to note that Fmq can be made primal. We write tuples
directly as sequences of elements, for example we denote 000 by (0, 0, 0), or 03. The Fmq -algebra is
then defined by the signature

ΣFmq = {0m, (0k10m−1−k)0≤k≤m−1, (0kα0m−1−k)0≤k≤m−1,+, ∗}

and their mathematical interpretations, where we extend multiplication and addition to tuples
component by component. This is similar to the classical notation for xor on bitstrings.

Defined this way, we still have primality for those algebras:

170

9.2 Symbolic Characterization

Proposition 9.2. Fmq is a primal algebra.

Proof. We see f as a function (Fmq)k 7→ Fmq denoted f(x1, ..., xk) = f1(x1, . . . , xk)...fn(x1, . . . , xk).
For 1 ≤ i ≤ k we may also decompose xi as x1

i ...x
m
i and see each fi as a function (Fq)km 7→ Fq

Then, by primality of Fq (Proposition 9.1), there exists ti ∈ T (ΣFq , x
j
i) such that fi = t

Fq
i . We

define t′i as ti where we replace:

I 0 with 0m
I 1 with 0i−110m−i−1

I α with 0i−1α0m−i−1

I xil with 0i−110m−i−1 × xl (= 0i−1x
i
l0m−i−1).

We observe that t
′Fmq
i = (0i−1(ti)

Fq0m−i−1) and we may have f = t
Fmq with t =

∑
i t
′
i. �

Equational theories To fully abstract our algebras, we need to be able to capture equalities
between terms. We achieve this using equational theories. Recall that an equational theory E is a
set of equalities {ti = ui}i where ti, ui ∈ T (Σ, V) for some set of variables V . E induces a relation
=E on terms defined as the smallest equivalence relation that contains equalities in E and that is
closed under substitutions of variables by terms, and application of function symbols.

Definition 9.2. An equational theory E is said to be sound (⇐) and faithful (⇒) with respect
to D if and only if

∀t1, t2 ∈ T (Σ). tD1 = tD2 ⇔ t1 =E t2

When E is both sound and faithful we may use = for =E , as the equality over the domain then
corresponds exactly to the equality w.r.t. the equational theory.

The equational theory EFq We consider the equational theory EFq parameterized by n and
P such that q = pn, and P is an irreducible polynomial P ∈ Fp[α] of degree n. Denoting by P (α)
the term corresponding to this polynomial, we define EFq as follows.

x+ 0 = x x ∗ 0 = 0
x ∗ 1 = x x+ · · ·+ x = 0 (p times)

x+ y = y + x x ∗ · · · ∗ x = 1 (q-1 times)
x ∗ y = y ∗ x x ∗ (y + z) = x ∗ y + x ∗ z

x+ (y + z) = (x+ y) + z x ∗ (y ∗ z) = (x ∗ y) ∗ z
P (α) = 0

Proposition 9.3. EFq is sound and faithful with respect to Fq.

Proof. We consider the classical representation of Fq as Fp[α]/(P). The Euclidian division by P (α)
provides a normal form for any element in Fq.

Soundness: By definition of a field, every equation in EFq holds for all field elements. Soundness is
thus immediate.

Faithfulness: Let t1, t2 be two ground terms such that tD1 = tD2 . There exists a polynomial T ∈
Fp[α]/(P) such that tD1 = T = tD2 . We can see t1 and t2 as polynomials over Fp[α]. Using the
equations capturing associativity, commutativity and distributivity, a polynomial can be written
in the developed form, and then using the Euclidian division,with i ∈ {1, 2} under the form ti =E

171

9 In Practice

QiPi +Ri with deg(Ri) < deg(P) . As P (α) =E 0, both polynomials reduce to ti =E Qi ∗ 0 +Ri
, which by with x ∗ 0 =E 0 reduces to ti =E 0 +Ri, which finally reduces to ti =E Ri. Now, with
the correctness of E, we have that ti =E T , which by transitivity implies Ri = T . We thus have
t1 =E R1 =E T =E R2 =E t2, which concludes the proof. �

Effective algebra We can finally define the new general class of algebras we will be able to
reason about.

Definition 9.3. (D,Σ, E) is called an effective algebra if D is a finite primal term algebra over
Σ, and E is sound and faithful with respect to D.

We consider the example where D is a finite field, denoted Fmq , where q is an explicit value, and
m is a parameter. We may for instance study programs manipulating bitstrings of length m using
Fm2

An example of an effective algebra is, for an explicit q, (Fq,ΣFq , EFq). From this algebra corre-
sponding to finite fields, we could also obtain an effective algebra (Zp,ΣZp , EZp) for commutative
rings of characteristic p by removing some equations from EFq .

We remark that effective algebras provide in the following work equivalences between probabilistic
programs and symbolic methods. Yet, if the equational theory is sound but not not faithful, or
if the algebra is not primal, we lose completeness of our reductions, but we still keep sound proof
techniques. This is what is used to derive, from complete algorithms in the finite case, sound
algorithms in the universal case.

9.2.2 Symbolic Characterization

We provide here an extension of Proposition 7.1 based on effective algebras. This is the abstraction
that allows us to reason only at a syntactic level. Notice that we cast Definition 7.8 of programs
that are R-bijective to terms, simply by considering the definition over straight line programs.
Intuitively, if we have an effective algebra, we simply replace the existence of a bijection by the
existence of a term that models a bijection. We show in the next Section, how we will be able to
check if a term is a bijection using symbolic methods.

Lemma 9.1. Let (D,Σ, E) be an effective algebra and P,Q ∈ PΣ(I,R)

P ≈D Q ⇔ ∃T ∈ T (Σ, X ∪R)|R|.
T R-bijective ∧ P =E Q{T 7→ R}

Moreover, if E is sound, but not faithful, then the implication from right to left (⇐) still holds.

172

9.3 Symbolic Methods for Probabilistic Programs

Proof.
P ≈D Q ⇔ (Cor 7.1)

∀~i ∈ D|I|. ∃f~i ∈ bijR. ∀~r ∈ D|R|. [[P]]
~i∪~r
D = [[Q]]

~i∪f~i(~r)
D

⇔ (we set point by point fso that ∀~i, ~r, f(~i, ~r) = f~i(~r)

∃f s.t.∀~i, (~r 7→ f(~i, ~r)) bijection.∀(~i, ~r) ∈ D|I∪R|.
[[P]]

~i∪~r
D = [[Q]]

f(~i∪~r)
D

⇔ (D is primal)
∃T ∈ T (Σ, I ∪R), T R-bijective. ∀~s ∈ D|I∪R|.

[[P]]~sD = [[Q{T 7→ R}]]f(~s)
D

⇔
∃T ∈ T (Σ, I ∪R). T R-bijective, PD = Q{T 7→ R}D
⇔ (E is sound and faithfull)
∃T ∈ T (Σ, I ∪R). T R-bijective, P =E Q{T 7→ R}

�

Example 9.1. Consider again uv + vw + uw ≈F2
u from Example 7.8. A valid witness of this

equivalence is
t(u, v, w) = (uv + wu+ vw, u+ v, u+ w)

To show that t = (t1, t2, t3) is indeed a valid witness, we show that t is R-bijective, which we
do by exhibiting the inverse. We have t2t3 = uv + uw + wv + u = t1 + u. Thus, we have
t2t3 + t1 = u. Then, t2 + t2t3 + t1 = v and t3 + t2t3 + t1 = w. Finally, if we set g(x1, x2, x3) :=
(x2x3+x1, x2+x2x3+x1, x3+x2x3+x1), we find that g(t(u, v, w)) = (u, v, w)), i.e. t is a bijection1.

9.3 Symbolic Methods for Probabilistic Programs

 Section Summary

Using the previous syntactic characterization of equivalence, we now leverage several classical
symbolic cryptography techniques to reason about our relational problems:

I deduction is used to check R-bijectivity, and thus uniformity;
I deduction constraints are used to decide equivalence;
I static equivalence provides a negative criterion for equivalence.

Remark that most links are established for linear programs, but recall that in the case of finite
fields, conditionals can be encoded using field operations, and in general conditionals can always
be seen as part of the syntax of terms, rather than the syntax of programs.

9.3.1 Using Deduction to Check Uniformity

We show that, on effective algebras, deduction can be used to decide uniformity. When the equa-
tional theory is sound (which is generally straightforward), but not necessarily complete, deduction
can still be used as a proof technique, as in that case our encoding still implies uniformity.

Example 9.2. Consider Σ⊕ = {0,+} and the equational theory E⊕ defined as the subset of EFq
with q = 2 defined over Σ⊕. We have that

u+ v + w, v + w `E⊕ u

1Actually, we show that t has a left inverse g, which implies that t is injective. For a function over a finite
set, injective implies bijective, so we conclude that t is a bijection.

173

9 In Practice

witnessed by the term R = x1 + x2. However,

u+ v + w, v + w 6`E⊕ u+ w.

The intuition behind the following Proposition is given through Corollary 7.1 that links uniformity
and bijectivity. As a bijective function is a function which given its outputs allows to recompute
its inputs, it can be checked if a function is bijective using deduction.

Proposition 9.4. Let (D,Σ, E) be an effective algebra and P ∈ PΣ(I,R) with R =
{r1, . . . , rk}. We have that

P ≈D r1, . . . , rk ⇔ ∀ri ∈ R. P, I `E ri

Moreover, if E is sound, but not faithful, the implication from right to left (⇐) still holds.

Proof. We have:
P ≈D r1, . . . , rk ⇔1 ∃t ∈ T (Σ, I ∪R).t R-bijective ∧ P =E t

⇔2 ∃t ∈ T (Σ, I ∪R).t R-bijective ∧ PD = tD

⇔3 ∃c : D|I|+|R| 7→ D|R|. ∀~i. ~r 7→ c([[I]]
~i
D, [[R]]~rD) ∈ bijD

|R|
∧ c([[I, P]]

~i∪~r
D) = [[R]]~rD

⇔4 ∀r ∈ R. ∃cr : D|I|+|R| 7→ D|R|.

∀~i.(~r 7→ (cr1([[I]]
~i
D, [[R]]~rD), . . . , crk([[I]]

~i
D, [[R]]~rD))) ∈ bijD

|R|
∧ cr([[I, P]]

~i∪~r
D) = [[r]]~rD

⇔5 ∀r ∈ R. ∃cr ∈ T (Σ, I ∪R).(cr1 , .., crk) R-bijective ∧ cr(I, P (I,R)) =E r
⇔6 ∀r ∈ R. ∃cr ∈ T (Σ, I ∪R). cr(I, P (I,R)) =E r
⇔7 ∀r ∈ R. P (I,R), I `E r

We detail below each equivalence.
⇔1 By Lemma 9.1.
⇔2 By the soundness and faithfulness of E.
⇔3 t is R-bijective, so for any~i ∈ D|I| and z ∈ D|R|, we may take c~i(z) = t−1([[I]]

~i
D, z) and we may

then define c([[I]]
~i
D, z) = c~i(z) which is a bijection for any ~i. We are basically taking the inverse of

t with respect to R.
⇔4 By splitting c over the k dimensions.
⇔5 By primality, soundness and faithfulness.
⇔6 We detail the difficult part:

∀r ∈ R,∃cr ∈ T (Σ, I ∪R), cr(I, P (I,R)) =E r
⇒ (cr1 , .., crk) R-bijective

For any ~i, ~r 7→ [[P]]
~i∪~r
D has a left inverse which is ~r 7→ [[C]]

~i∪~r
D . ~r 7→ [[P]]

~i∪~r
D is a function over a finite

set, so if it has a left inverse, it is injective, which in a finite settings means that it is bijective
(pigeon hole principle). Moreover, if a bijective function has both a right inverse and a left inverse,
they are equals. Indeed, if f as for left inverse g (g ◦ f = id) and for right inverse h (f ◦ h = id),
then g(x) = g(f ◦ h(x)) = g ◦ f(h(x)) = h(x). Thus, ∀~i, ~r 7→ [[C]]

~i∪~r
D is the inverse of ~r 7→ [[P]]

~i∪~r
D ,

and is in particular a bijection.

�

9.3.2 Deduction Constraints and Unification for Program Equivalence

In this Section we show how deduction constraint as used in symbolic cryptography [MS01] and
(equational) unification can be used to verify program equivalence. Deduction constraints gener-

174

9.3 Symbolic Methods for Probabilistic Programs

alize deduction from ground terms to terms that contain variables that have to be instantiated by
the attacker.

In the following, we denote by vars(t) the set of variables of a term t, and by dom(σ) the domain
of a substitution, i.e., the set of variables that are replaced by the substitution.

Definition 9.4. Let Σ be a signature equipped with E, and X a set of variables. A deduction
constraint is an expression T `?

E u where T ⊆ T (Σ,X) is a set of terms and u ∈ T (Σ,X) a
term.

A deduction constraint system is either ⊥ or a conjunction of deduction constraints of the
form:

T1 `?
E u1 ∧ . . . Tn `?

E un

where T1, . . . , Tn are finite set of terms, u1, . . . , un are terms.

A substitution σ with dom(σ) = X is a solution over variables X of a deduction constraint
system if and only if ∀i. Tiσ `E uiσ.

A deduction constraint system may satisfy additional properties:

I monotonicity: ∅ ⊆ T1 ⊆ . . . ⊆ Tn
I origination: ∀i. vars(Ti) ⊆ vars(u1, . . . , ui−1)
I one-turn: ∀i, j. Ti = Tj ∧ vars(ui) = ∅

Monotonicity and origination are classical notions that are naturally satisfied in the context of
security protocols and exploited in decision procedures: monotonicity ensures that the attacker
knowledge (the Tis) only grows, and origination ensures that any variable appearing in the attacker
knowledge has been instantiated in a previous constraint.

The one-turn property is novel: it requires that the attacker knowledge is invariant and that all
variables actually appear in the attacker knowledge. We show in Section 9.4 that extending the
signature with a homomorphic function symbol allows to transform a one-turn constraint system
into a constraint system that satisfies origination and monotonicity while preserving solutions.

Unification [Kni89] is the problem that, given two terms, asks to find a substitution which makes
the terms equal in the equational theory. For any terms u, v, we denote by mguΣ,E,X (u, v) the set
of most general unifiers of u and v over Σ, equational theory E and variables X . A set of unifiers
is a most general set of unifiers if for any unifier σ, there exists a most general unifier µ, such that
σ is an instance of µ, i.e., there exists a substitution θ such that σ =E µθ.

We now reduce program equivalence to unification and solving of one-turn deducibility constraint
systems. For any set of variables X , we denote by X 0 a set of corresponding function symbols of
arity 0, one for each element of X .

Lemma 9.2. Let (D,Σ, E) be an effective algebra and P ∈ P (I,R). Let R′ be a set of variables
such that |R′| = |R| and R′ ∩R = ∅, and let Q ∈ P (I,R′). We have that

P ≈D Q ⇔ ∃σ ∈ mguΣ∪I0∪R0,E,R′(P,Q).

(
∧
r∈R(I,R′)σ `? r) has a solution over R′

Moreover, if E is only sound, but not faithful, the implication from right to left (⇐) still holds.

Proof. ⇐ We have a unifier of the form σ := {r′i 7→ ti(I,R,R
′)} and a solution to the deduction

constraints σ~r := {r′i 7→ ui(I,R)}, we set T = R′σσ~r. First, σσ~r is an instance of the mgu, thus we

175

9 In Practice

have P =E Q{R′ 7→ T}. Secondly, we have that ∀r ∈ R, I, T ` r, thus thanks to Proposition 9.4
and Corollary 7.1, we have that T is R-bijective. We conclude thanks to Lemma 9.1.

⇒ Using Lemma 9.1, we have T R-bijective such that p =E Q{R′ 7→ T}. We have T = (t1, ..., tk)
(with k = |R|), and then φ := {r′i 7→ ti} is a valid unifier.

Thus the most general unifier exists ([Nip90] shows that unification in a primal algebra is unitary,
so the existence of a unifier implies the existence of the mgu). Let us call the mgu σ. We then
have σ~r such that φ = σ ◦ σ~r. By Proposition 9.4, we have ∀r ∈ R, T, I |= r, and as T = Rσσ~r,
this means that σ~r is a solution to our deduction constraints.

�

Note that in some cases, the most general unifier may not contain any fresh variables. Then the
constraint solving problem is simply a deduction problem. For instance, by restricting equivalence
to uniformity, the unifier becomes trivial and we obtain the following corollary:

Corollary 9.1. Let (D,Σ, E) be an effective algebra and P1, . . . , Pm ∈ P (I,R) all of arity 1,
where R = {r1, . . . , rn} and m < n. Let R′ be a disjoint set of variables such that |R′| = n.
We have that

P1, . . . , Pm
≈D

r1, . . . , rm

⇔
∃Pm+1, . . . , Pn ∈ P (I,R) of arity 1.

∀r ∈ R. (P1, . . . , Pn, I) ` r

Moreover, if E is sound, but not faithful, then the implication from right to left (⇐) still holds.

ü Technical Details

We remark that our notions are closely related to permutation polynomials, defined as follows
[MP13]:

Definition 9.5. A polynomial f ∈ F[x] is a permutation polynomial if the function f : c 7→
f(c) induces a permutation over F.

Thanks to Corollary 7.1 we have a direct link between permutation polynomials and programs
P ∈ P (∅, {r}) over only one random variable r. We can then solve uniformity for those programs
in polynomial time with [Kay05], deciding whether a univariate polynomial is a permutation
polynomial in PTIME .

However, the one variable case is very limited for our applications and we need to consider
multivariate permutation polynomials.

Definition 9.6. A polynomial f ∈ F[x1, . . . , xn] is a permutation polynomial in n variables
over F if the equation f(x1, . . . , xn) = α has exactly qn−1 solutions in F for each α ∈ F .

This directly corresponds to the fact that f is uniform when sampling x1, . . . , xn at random,
as any point α has the same probability of being reached.

It is extended to the multiple polynomial case with the definition of an orthogonal sys-
tem:

176

9.3 Symbolic Methods for Probabilistic Programs

Definition 9.7. A set of polynomials fi ∈ F[x1, . . . , xn] , 1 ≤ i ≤ r, forms an orthogonal
system in n variables over F if the system of equations fi(x1, . . . , xn) = αi ,1 ≤ i ≤ r, has
exactly qn−r solutions in F for each (α1, . . . , αr) ∈ Fr .

Recall that in the case of finite fields, we mentioned in Section 8.3.1 that to the notion of
exceptional polynomials, polynomials that are permutation polynomials over infinitely many
extensions of a base finite field, is linked to universal equivalence.

In the finite case, Corollary 9.1 is actually the reformulation of a well known mathematical
result.

Theorem 9.1 ([Nie71]). For every orthogonal system f1, . . . , fm ∈ F[x1, . . . , xn], 1 ≤ m ≤
n, over F and every r, 1 ≤ r ≤ n −m, there exist fm+1, . . . , fm+r ∈ F[x1, . . . , xn] so that
f1, . . . , fm+r forms an orthogonal system in m variables over F.

We formalize the link between uniformity and orthogonal systems with the following Theorem.

Theorem 9.2. Program equivalence over finite fields reduces in polynomial time to deciding
if a set of polynomials is an orthogonal system.

Proof. Using Lemma 7.1, we reduce program equivalence over a finite field to program equiv-
alence without input variables, which we reduce to uniformity without input variables using
Lemma 7.5, which we reduce to bijection testing of polynomials over random variables us-
ing Corollary 7.1, which directly reduces to deciding if a set of polynomials is an orthogonal
system. �

However, deciding efficiently if a set of polynomials is an orthogonal system, is to the best of
our knowledge, still an open problem. This is a question of great interest for our problems.
Remark that we have derived in the previous Chapter a non trivial class for this question.

9.3.3 Static Equivalence and Non Equivalence

The notion of static equivalence was introduced in [AF01] and its decidability has been first studied
in [AC06]. Static equivalence expresses the inability of an adversary to distinguish two sequences of
messages. We formally defined it in Definition 2.5 in order to define symbolic indistinguishability.

Example 9.3. Consider again the signature Σ⊕ and the equational theory E⊕ corresponding to
linear boolean expressions introduced in Example 9.2. We have that

u⊕ v, v ⊕ w, u⊕ w 6∼E⊕ u, v, w

as the relation x1 + x2 = x3 holds on the left hand side but not on the right hand side. However,

u⊕ v, v ⊕ w,w′ ∼E⊕ u, v, w

This notion has similarities to program equivalence. We show that indeed program equivalence
implies static equivalence, and hence static non-equivalence may be used to show that two programs
are not equivalent.

177

9 In Practice

ACUNh Fqn
⋃

∆

⋃
T

⋃
R

σ P [GNW00] EXP [Nip90] 3[KR94] ? 3[KR94] 7Hilbert 10th

` P [Del06] EXP 3[ACD07] P ? EXP
`? P [DKP12] ? 3[CR10] ? ? ?
∼ P [DKP12] EXP 3[ACD07] ? ? EXP

Legend:
I ACUNh Associative Commutative Unity

Nilpotent with an homomorphism. (xor and
h())

I
⋃

∆ decidability for the disjoint union of de-
cidable theory

I
⋃

decidability for the union of decidable the-
ory

I
⋃
T decidability for the disjoint union of

typed decidable theory
I R A commutative ring of infinite size.
I q must be an explicit value in the problem
I n may be a variable
I 3 problem decidable (P,EXP complexity)
I new result

Figure 9.1: Survey of Symbolic Methods Decidability

Proposition 9.5. Let D be a finite primal algebra over Σ with a sound equational theory E,
and P,Q ∈ P (I,R). We have that

P 6∼E Q ⇒ P 6≈D Q

Proof. Without loss of generality (by symmetry between P and Q), we have that

∃R1, R2. R1(P) =E R2(P)∧
R1(Q) 6=E R2(Q)

Now let us assume by contradiction that P and Q have a unifier σ such that Pσ =E Qσ.
From Lemma 9.2, we can choose that only P depends on variables R′ and have σ that do not
affect Q, and thus Q = Qσ = Pσ. Then, combined with R1(P) =E R2(P), we obtain that
R1(Pσ) =E R2(Pσ) and thus R1(Q) =E R2(Q), which contradicts R1(Q) 6=E R2(Q). �

Example 9.4. The converse does not hold. Consider the boolean algebra F2 and let u and v be
random variables. We have that uv ∼EF2

u, but uv 6≈F2 u, as uv and v do not follow the same
distribution.

9.4 Extending Symbolic Results

 Section Summary

We presented previously how several symbolic methods could be used to reason about prob-
abilistic programs. We provide a few useful extensions to existing symbolic results, and a
summary of the relevant state of the art is given in Figure 9.1.

As a main extension, we provide decision procedures for deducibility for the theory of Diffie-
Hellman exponentiation, its extension to bilinear groups, and for the theory of fields. The
decision procedures for Diffie-Hellman exponentiation are based on techniques from Gröbner
bases. While its purpose is geared toward our previous links, it is an independent contribution
on its own. As a side contribution, we show how to encode one-turn deduction constraints into
more classical deduction constraints.

178

9.4 Extending Symbolic Results

9.4.1 Deciding Deducibility for Diffie-Hellman Theories

Diffie-Hellman exponentiation is a standard theory that is used in key exchange protocols based
on group assumptions. It is also used, in its bilinear and multilinear version, in the AutoG&P
tool for proving security of pairing-based cryptography. In this setting, the adversary (also often
called attacker in the symbolic setting) can multiply groups elements between them, i.e., perform
addition in the field, and can elevate a group element to any power they can deduce in the field.

The standard form of deducibility problems that arises in this context is defined as follows: let Y
be a set of names sampled in Fq, g some group generator, E the equational theory capturing field
and groups operations, some set X ⊂ Y , f1, ...fk, h ∈ Fq[Y] be a set of polynomials over the names,
and Γ be a coherent set of axioms of the forms f 6= 0 for some polynomial f . The deducibility
problem is then:

Γ |= X, gf1 , ..., gfk `E gh

Proposition 9.6. Deducibility for Diffie-Hellman exponentiation is decidable.

The algorithm that supports the proof of the proposition proceeds by reducing an input deducibility
problem to an equivalent membership problem of the saturation of some Fq[X]-module in Fq[Y],
and by using an extension for modules [Eis13] of Buchberger’s algorithm [Buc76] to solve the
membership problem.

The reduction to the membership problem proceeds as follows: first, we reduce deducibility to
solving a system of polynomial equations. We then use the notion of saturation for submodules and
prove that solving the system of polynomial equations corresponding to the deducibility problem is
equivalent to checking whether the polynomial h is a member of the saturation of some submodule
M . The latter problem can be checked using Gröbner basis computations.

9.4.2 Fields and Commutative Rings

Another problem of interest is deducibility in a field rather than a group. It arises if we want
for instance to prove the uniformity of a program over a finite field through Proposition 9.4. The
deducibility problem can then be defined as follows: let Y be a set of names sampled in Fq, where
q is not explicitly known and the field is thus seen as a commutative ring, E the equational theory
capturing field operations, f1, ...fk, h ∈ Fq[Y] be a set of polynomials over the names, and Γ be a
coherent set of axioms. The deducibility problem is then:

Γ |= f1, ..., fk `E h

We emphasize that this problem is in fact not an instance of the problem for Diffie-Hellman
exponentiation. In the previous problem, if we look at field elements, the adversary could compute
any polynomial in Fq[X] but they may now compute any polynomial in Fq[f1, ..., fk], the subalgebra
generated by the known polynomials.

Decidability is obtained thanks to [SS88], where they solve the subalgebra membership problem
using methods based on classical Gröbner basis.
Proposition 9.7. Deducibility for commutative rings is decidable.

As the size of the field is often abstracted in the security proofs, we can soundly consider that we
have a finite field of infinite size that we may abstract as a commutative ring. We provide a slight
extension to make it complete when q, the size of the field, is explicitly known. We would like to
capture the fact that in F, we have xq = x for all the elements. We use techniques coming from
boolean Gröbner Basis to solve our problem, which we simply extend to any q.

179

9 In Practice

Theorem 9.3. Deduction in Fq for a given q is decidable.

Proof. With x1, . . . , xn the set of variables in the deduction problem, we use the previous reduction
to compute the Gröbner basis GB of the module corresponding to the attacker knowledge in the
abstract commutative ring Z[x1, .., xn]. Then, we may compute the module in Zq[x1, .., xn], by
computing the Gröbner basis of GB ∪ (xqi − xi)1≤i≤n, and then removing the (xqi − xi)1≤i≤n �

After a slight technical generalization, we use the combination result of [ACD07] to combine the
result for deducibility Fq with the theory of tuples and projections of length m.

ü Technical Details

Deducibility for union of typed equational theory [ACD07] provides the results of combi-
nation for classical equational theories. We show how we can soundly encode a typed equational
theory into an untyped one to use their result.
Definition 9.8. We consider a set of types T . A T -typed signature Σ consists of a finite
set of functions symbols each with an arity and a type : f/n : t1 × ... × tn → s. X
is an infinite set of variables, containing infinitely many variable of each type. For any
t ∈ T (Σ,X), we define in the classical sense that t is well-typed, denoted by t1WT , and
we can then have τ : T (Σ,X) → T which gives the type of a term. (Σ,X , E) is a T -
typed equational theory if the equations in E are built over T (Σ,X) and are well typed:
∀(t1, t2) ∈ E, t1WT ∧ t2WT ∧ τ(t1) = τ(t2)

In this setting, equality is only defined on well-typed instances.

Definition 9.9. Given (Σ,X , E) a T -typed equational theory, we define its untyped instance
(Σt, Et, φ) with :

I Σt = Σ ∪ {t/1|t ∈ T}
I ∀f/n ∈ Σ, h(f(x1, ..., xn)) := s(f(t1(h(x1)), ..., tn(h(xn)))) if τ(f) = t1 × ...× tn → s
I ∀x ∈ X , h(x) := τ(x)(h(x))
I ∀x, g(x) := x[tn ← t,∀t ∈ T]
I φ := g ◦ h
I Et := {(t1, t2)φ|(t1, t2) ∈ E}

In the following, we use the deducibility based on inference system (classically known to be
equivalent to our previous definition), as shown bellow:

[ax]
M1, . . . ,Mn `E M

M ∈ {M1, . . . ,Mn}

[fa]
ψ `E M1 . . . ψ `E Ml

ψ `E f(M1, ...,Ml)
f ∈ Σ [eq]

ψ `E M

ψ `E M ′
M =E M ′

Lemma 9.3. Let (Σ,X , E) be a T -typed equational theory and its untyped instance
(Σt, Et, φ). For any σ WT substitution on X and t ∈ T (Σ,X) WT :

tσφ =Et tφσφ

180

9.4 Extending Symbolic Results

Proof. We have that t[x1, ..., xn]σφ = t[x1σ, ..., xnσ]φ = tφ[x1σφ, ..., xnσφ] and tφσφ =
tφ[τ(x1)(x1), ..., τ(xn)(xn)]σφ = tφ[τ(x1)(x1)σφ, ..., τ(xn)(xn)σφ]. We conclude by proving
that τ(xi)(xi)σφ = xiσφ. As σ is well-typed, τ(xiσ) = τ(xi), and we have that xiσ =
f(y1, ..., yk) with f : t1 × ... × tn → τ(xi)) ∈ Σ. Thus xiσφ = τ(xi)(f(t1(y1φ), ..., tk(ykφ))) =
g(τ(xi)(τ(xi)(f(t1(y1φ), ..., tk(ykφ))))) = τ(xi)(xiσφ) = τ(xi)(xi)σφ .

Thus xiσφ = τ(xi)(xiσφ). �

Lemma 9.4. (Σ,X , E) a T -typed equational theory and its untyped instance (Σt, Et, φ), we
have for all t, u ∈ T (Σ,X) WT:

t =E u⇔ tφ =Et uφ

Proof. We proceed by induction on the length of the reduction. ⇒We prove t =E u⇒ tφ =Et

uφ
We have the first rule t → u′ =E u of the form (t1, t2) ∈ E. So there exists a position p in t
and a substitution σ s.t. tp = t1σ and u′ = t[t2σ]p. We can apply φ to those equalities, which
yields p′ s.t, (tφ)p′ = t1σφ and u′φ = tφ[t2σφ]p′ . (tφ)p′ = t1φσφ and u′φ = tφ[t2φσφ]p′ i.e.,
tφ =Et u

′φ. We conclude by induction.

⇐ We prove tφ =Et uφ⇒ t =E u .
We have (t1φ, t2φ) ∈ Et,p position in tφ and σ substitution s.t tφp = t1φσ and u′ = tφ[t2φσ]p.
tφp = t1φσ, so σ = σ′φ, and this substitution yields t =E u′, where we can conclude by
induction. �

We finally have the following results.

Proposition 9.8. Let (Σ,X , E) be a T -typed equational theory and its untyped instance
(Σt, Et, φ). Let ψ = M1, . . . ,Mn be a WT frame and t a WT term.

ψ `E t⇔ ψφ `Et tφ

Proof. We prove by induction on the size of the proofs that ψ `E t⇔ ψφ `Et tφ. If the proof
is of size one, t belongs to the frame ([ax]), and this is stable by substitution.
Let us assume that the result is true for any proofs smaller than some n > 1.
⇒ We consider the last rule of the proof of ψ `E t.

I
[fa]

ψ `E M1 . . . ψ `E Ml

ψ `E f(M1, ...,Ml)
f ∈ Σ

with t = f(M1, ...,Ml). By induction hypothesis,
we have proofs of ψφ `Et Miφ, and because tφ = s(f(t1(M1φ), ..., tn(Mnφ)), we conclude
by multiple [fa] application.

I
[eq]

ψ `E M

ψ `E M ′
M =E M ′

, we have by induction a proof ofMφ, and we do haveMφ =Et

M ′φ by Lemma 9.4.

⇐ We consider the last rule of the proof of ψφ `Et tφ.

I
[eq]

ψφ `Et M
ψφ `Et tφ

M =Et tφ . We can find t′ such thatM = t′φ, and we can then conclude
by induction.

181

9 In Practice

I
[fa]

φψ `Et M1

φψ `Et s(M1)
f ∈ Σt with tψ = s(M1) and s ∈ T (if the proof ends with a [fa]

application, it must be with a typing function). Here, M1 cannot be written as some t′ψ,
so we cannot conclude by induction, and we must consider the last rule of the proof of
φψ `Et M1. Its premises will be writable under the form tiψ, and we can then conclude
by induction hypothesis.

�

This Theorem allows us to transform a typed theory into a classical theory, and then use the
result of [ACD07] to combine it with other theories.

9.4.3 From One-Step Deduction Constraints to Originated and Monotone
Constraints.

The one-step property we introduced has not been studied previously. We thus want to reduce it to
more classical deduction constraints in order to leverage existing results. We note that a decision
procedure was developed for deduction constraints without origination or monotonicity [ACR+17],
but they cover encryption theories, rather than the algebraic theory we are interested in.

Definition 9.10. Given an equational theory E, a symbol function h is homomorphic if

∀n ≥ 1. ∀f ∈ Σn. ∀x1, . . . , xn ∈ X .
h(f(x1, . . . , xn)) = f(h(x1), . . . , h(xn))

Definition 9.11. Signatures may contain private function symbol. Then, deducibility under
private function symbols P is defined as, given an equational theory E over Σ, t1, . . . , tk ∈
T (Σ,X) and (x1, . . . , xk) disjoint variables, t1, . . . , tk `E s if and only if:

∃C(x1, . . . , xk) ∈ T (Σ \ P, (x1, . . . , xk)). C(t1, . . . , tn) =E s

Lemma 9.5. We are given a theory (E,Σ), and a one-step deduction constraint which can be
written as T `? u1, . . . , T `? un , with T = (t1, . . . , tk) ∈ T (Σ,X) and u1, . . . , un ∈ T (Σ). If
we extend (E,Σ) with a disjoint private homomorphic symbol function h/1, yielding (E′,Σ′),
then:

T `? u1, . . . , T `? un has a solution
⇔ V `? t1, . . . , V `? tk, (V, h(t1), . . . , h(tk)) `? h(u1),

. . . , (V, h(t1), . . . , h(tk)) `? h(un) has a solution

Moreover, the new deduction constraint system is monotonic and originated.

Proof. ⇒ If we have an assignment σ and, for some term u, a context C such that
C(t1, . . . , tk)σ =E′ u, we have a context such that C(h(t1), . . . , h(tn))σ =E′ h(u) by homomor-
phism. Moreover, V ` t1σ is always satisfied for any σ.
⇐ By the stability of the reductions in a rewriting system by any substitution applied to the
names (not appearing in the rewriting system), we have that for some set of constants C ⊂ Σ0

not appearing in E, given u(Σ0 ⊂ C,C) ∈ T ((Σ≥1), V) such that there exists u′ ∈ T (((Σ) \ C),
u→∗E u′, then we have for any set of terms T of the same size as C, u(Σ0 ⊂ C, T))→E u′, i.e we
can replace constants not appearing in the final term by anything.

We have an assignment σ and for some term u, a context C ∈ T (Σ, ((xiv)i∈N, x1, . . . , xk)) such that
C(V, h(t1), . . . , h(tk))σ =E′ h(u). C does not contain the symbol h, as it is private. By applying

182

9.5 Deriving Heuristics

the rule that pushes down the h as much as possible both in C and h(u), we get C ′(V, h(V))→E

u(h(V))), indeed, pushing down as much as possible the h does not block the application of any
rule in E on C, and we can push h back at the top at end of the reduction. By using, the previous
result, we can then have for any set of terms T known by the attacker C ′(T, h(V))→E u(h(V))),
and then by going back to C, we get C(T, h(t1), . . . , h(tk))σ =E′ h(u) which concludes the proofs.

�

9.5 Deriving Heuristics

 Section Summary

We can use our framework to derive multiple ways to solve a specific problem, providing prin-
cipled algorithms that are sound and/or complete. In this Section, we illustrate how such
algorithms might be obtained either for general algebras or more precisely for boolean algebras.
We focus mostly on the case of boolean algebras, which is of particular interest for cryptogra-
phy. Nevertheless, procedures for more general settings can be obtained, such as the bilinear
setting.

Regarding boolean algebras, a first interesting subcase is uniformity in the linear case, where only
the xor is used. It was previously explored and shown useful in [BDK+10]. Using our work we are
able to derive more general results, going beyond linearity and uniformity.

In the general case of boolean algebras (xor and conjunction), we develop several heuristics. As
deciding equivalence for a given finite field Fq is at least coNPC=P-hard (most likely strictly above
NP and coNP, unless the polynomial hierarchy collapses; we refer the reader to Section 8.2 for
our results on computational complexity) developing more efficient heuristics is particularly im-
portant.

Our techniques rely on well established symbolic methods, and novel extensions of these techniques
(detailed previously in Section 9.4). A summary of related, existing results is given in Figure 9.1.

9.5.1 Soundness and Completeness

A first important consideration is that when given an algebra and an instance of a problem, we
might be unable to solve it using a sound and faithful equational theory, i.e., a theory that matches
exactly the algebra. However, our previous results from Section 9.3 allow us to either add equations
and maintain completeness, or remove equations maintaining soundness.

Example 9.5. Let r be a random variable and x an input variable.

I u+ x is uniformly distributed for any Fq, as we can prove that it is uniformly distributed in
a ring theory, which is a sound theory for any Fq;

I u× x is never uniform for any F2n , as we can prove that it is not uniform in EF2
, which is a

faithful theory for F2n ;
I uv + vw + wu is uniform over F2 but not F4, while EF2

is faithful for F4;
I u×u is not uniform over a ring, but is over F2, while a ring theory is sound (but not faithful)

for F2.

183

9 In Practice

9.5.2 Boolean Algebras: the Linear Case

Consider programs only built on booleans and the xor operator, i.e., without conjunction, which
corresponds to an Associative Commutative Unit Nilpotent (ACUN) theory. Uniformity and in-
dependence can be decided by program equivalence (see Figure 7.2). Program equivalence can be
decided using unification and solving one-turn deduction constraint systems thanks to Lemma 9.2.
Unification is solvable in polynomial time for ACUN theories [GNW00]. Solving one-turn deduc-
tion constraints for the ACUN theory can be reduced to solving classical deduction constraints for
the ACUNh theory where h is a private symbol (Lemma 9.5 of Section 9.4).

Solving deduction constraint in ACUNh is decidable in polynomial time [DKP12]. Note
that [DKP12] does not claim to handle private symbols, but they compute a basis of all possi-
ble solutions, and there exists a solution with h being private if only if we can find one in the basis
that does not use h. The general decision procedures consist of two steps: first a unification, and
then the resolution of a linear system over a polynomial ring using Gaussian elimination.

The authors of [BDK+10] solved uniformity in the linear case using Gaussian elimination. Our
decision procedures are essentially the same as for uniformity. However we extend the procedures
to independence and program equivalence by adding the unification step, and also add support for
the non linear case.

9.5.3 Boolean Algebras: the General Case

Consider programs over a general boolean algebra, i.e., including xor and conjunction operators.
This setting is unlikely to admit an efficient procedure for solving program equivalence. We there-
fore use our framework to derive several heuristics.

Example 9.6. Going back to Example 7.8, let P = uv + vw + vu. We cannot directly show that
P ≈F2 u. However, if we extend P into a program of size 3, we may decide that

(uv + vw + uv, u+ w, u+ v) ≈F2 (u, v, w)

using deduction in finite fields (cf Section 9.4).

Example 9.7. Let u, v, w be three random variables. We can show using deduction in a commu-
tative ring [BFG+18] that:

(u, v + uw,w − uw − v) ≈F2
u, v, w

Indeed, u, v + uw,w − uw − v ` u, v, w by computing:

r, s, t 7→ r, s− rt− rs, s+ t

We now consider several heuristics that may be used in this context.

Unification Lemma 9.2 may yield a deduction constraint system with a trivial solution R′ 7→ R
that can be checked with deduction. This provides an efficient heuristic for program equivalence.

Example 9.8. Let u be a random variable, x, s, s′ three input variables, P = x(u + s) and
Q = x(u+ s′). We have that x(u+ s) ≈F2 x(u+ s′), by Lemma 9.2 with the unifier u′ 7→ u+ s′+ s
on x(u+ s) =E x(u′ + s′) which is trivially bijective when seen as a function on u.

184

9.5 Deriving Heuristics

Derandomization Given a program, all of its randomness may not be needed to satisfy a given
property (this is a trivial consequence of Proposition 7.1). We may for instance prove that a
program is uniform even when we replace some of its random variables by input variables. This
reduces the domain of the bijection needed to prove uniformity, and may simplify the proof. The
same derandomization technique can be applied to equivalence or independence.

Example 9.9. Let u, v be random and xv, s be input variables. We may solve ⊥F2 (P, v(u+ s))s
by replacing v with the input variable xv and prove ⊥F2

(s, xv(u+ s)), which follows directly from
Example 9.8 and Lemma 7.3.

Solving uniformity through independence Lemma 7.4 may be used to prove uniformity
through independence. This may be useful as it may simplify the deducibility constraints obtained
by Lemma 9.2.

Example 9.10. Consider again P = uv + vw + vu. Applying Lemma 9.2 directly we obtain the
deducibility constraint

uv + vw + vu, v′, w′ `? u, v, w

which admits no obvious solution. Let s, s′ be two input variables. Applying Lemma 7.4, uniformity
of P is equivalent to ⊥F2

(s, uv + vw + vu+ s), which in turn (Lemma 7.3) holds if and only if

uv + vw + vu+ s ≈F2 u
′v′ + v′w′ + v′u′ + s′

By setting s to s+ s′, this is directly equivalent to

uv + vw + vu+ s ≈F2
u′v′ + v′w′ + v′u′

On this equivalence, Lemma 9.2 provides a unifier u′, v′, w′ 7→ u + s, v + s, w + s for which the
deducibility constraint has a trivial solution.

Brute forcing the witnesses space We know that we can reduce each of the problems we
study to testing uniformity of fully random programs, using the encoding given in Figure 7.2. Let
P ∈ P (I,R) with |P | = m where R = {r1, . . . , rn}. Using Proposition 9.4, uniformity is equivalent
to the existence of a program α ∈ P (I,R) with |α| = n−m such that P, α is uniform, which can
be verified using deducibility by Proposition 9.4. Such an α exists if and only if p is uniform.

This yields a sound and complete procedure. However, the procedure has an exponential running
time, as we need to search over all possible polynomials. This technique is nevertheless of interest
when combined with approximations of the algebra, because the witness found might be valid only
using a subset of the equations over the algebra.

9.5.4 Extension to More Complex Algebras

In [ACD07] the question of deducibility or static equivalence for the union of disjoint theories is
reduced to the deducibility or the static equivalence in each theory. We extend their result for
deducibility to typed equational theory in Section 9.4. By Proposition 9.4, we reduce uniformity
to deducibility. Thus, we may use our results on algebras that are the union of disjoint algebras.

We may for instance consider programs over both boolean linear expressions and group expo-
nentiation with linear maps. Indeed, deducibility for boolean linear expressions is decidable in
polynomial time [Del06], and deducibility in the bilinear setting was studied in [BFG+18] (which
we extend to the case where the finite field is of explicit size in Section 9.4).

185

9 In Practice

We may also consider a combination of any theory extended with free function symbols. The free
function symbols might for instance represent arbitrary code, e.g., attacker actions in cryptographic
games.

9.5.5 Interference Witnesses

Non-static equivalence allows to find witnesses of non equivalence, and thus non independence, and
finally of non interference. The idea is that given P = (P1, . . . , Pk) ∈ P (I,R), every relation of the
form C1[P1, . . . , Pn] = C2[I ′] where I ′ ⊂ I and C1, C2 are contexts is a witness that 6⊥ {P, I ′}.

The techniques for deciding static equivalence based on Gröbner Basis (Section 9.4.1) provide an
algorithm that computes the set of relations satisfied between multiple polynomials. Based on this
work, we develop an algorithm that, given a program, returns a set of variables that do not verify
non interference, and witnesses to verify the leakage. This is done by computing the set of all
relations over the program and the secrets, keeping those that are actual witnesses, and simply
outputting the set of all secrets leaked according to the witnesses.

9.5.6 Sampling from Multiple Distributions

We considered that programs were only performing random sampling over a single distribution,
the uniform distribution over some algebra. In practice, we often sample random variables over
multiple distributions or domains. Our results, and notably Proposition 7.1, can be extended to
this case, for instance by considering programs built over P (I,R1, . . . , Rn) and exhibiting bijections
over each Ri to prove program equivalence.

9.6 Applications

 Section Summary

We provide in this Section applications of our techniques, describing how we developed a li-
brary based on some of our results and integrated it into two cryptographic tools, Easy-
Crypt [BGH+11; BDG+13], and MaskVerif [BBD+15]. The use of EasyCrypt is slightly
enhanced by simplifying a tactic, and MaskVerif is now able to provide an interference witness
in some cases where it fails to prove the non-interference. The implementations are available
online [Seq; Ecs; Mvs].

9.6.1 Implementation of a Library

We implemented parts of our framework as an OCaml library [Seq]. Given that our main focus is
automation of cryptographic proofs, the library provides procedures to handle programs over finite
fields. We implemented Gröbner basis techniques developed previously for deciding deducibility in
rings (Section 9.4.1). This allows for rings of both characteristic 0 and 2 to:

I compute the inverse of a function over multiple variables,
I compute the set of relations between elements.

With those building blocks and based on the practical considerations of the previous Section, we
thus provide algorithms that can either be sound or complete (Section 9.5.1) to:

186

9.6 Applications

I decide uniformity through deducibility (Proposition 9.4);
I heuristically prove uniformity through derandomization (Section 9.5.3);
I provide a witness of interference through static non-equivalence (Section 9.5.5);
I provide a witness of non-interference through uniformity (Lemma 7.4).

In particular our building blocks for rings of characteristic 0 and 2, yield a sound heuristic to show
uniformity through derandomization and deducibility for any finite field F2n . We may also use
static non-equivalence to provide a witness of interference which is valid for any finite field F2n .

9.6.2 Integration in MaskVerif

MaskVerif is a tool developed to formally verify masking schemes, i.e., counter measure against
differential power analysis attacks.

MaskVerif allows to check security properties like n-probing security, non-interference (NI) and
strong non-interference (SNI). Those notions are strongly related to probabilistic non-interference.
All properties require that for any n-tuple of sub-expressions P used in the program the following
base property is satisfied: there exists a subset I ′ of the input I, such that for all ~i, ~i′ ∈ F|I|2

where ~i and ~i′ coincides over variables in I ′, we have that [P]
~i
D = [P]

~i′

D. Furthermore, there is a
cardinality constraint on I but this is independent of the property and not relevant here. If we
have an algorithm to check the base property for a single tuple, there exists an algorithm that
verifies the three properties.

MaskVerif provides a very efficient procedure to check the base property. However it is incom-
plete and, in case of failure, does not provide a witness of interference. We propose here a new
method that limits incompleteness and, importantly, provides a witness of interference.

We use two functionalities of our library. A witness of interference can be obtained when checking
static non-equivalence and a witness of non-interference can be obtained by showing uniformity
which allows to prove that a given tuple verifies the base property. Those two procedures are sound
but not complete, yielding results for all finite fields F2n .

Combining both procedures, we obtain an efficient algorithm. We first compute a set of secrets that
are leaked from the tuple. If this set of secrets is already larger than the expected size of I, we have
a proof that the tuple depends on too many inputs. Otherwise, we try to prove that the remainder
of the tuple, the part for which we did not find any obvious secret leakage, is actually independent
of the remaining secrets by proving that it is uniform. This last step is still incomplete.

The modification of MaskVerif is minor: we first try the original heuristic and if it fails we call
the new heuristic based on our library. This change does not affect efficiency when the original
heuristic succeeds but allows to prove new examples, such as proving that the masked multiplication
proposed in [CS18] is NI and SNI. The key point for this example is to prove independence of tuples
of the form:

x1y1 + (x1(y0 + r) + (x1 + 1)r)

where r0 and r1 are the random variables.

A major advantage is that we can now provide witnesses of interference, ensuring that a proof
failure is not a false negative. For instance, when analysing a masked implementation of an AND
gate, among the 3,784 tuples to check, there is a tuple (t1, t2, t3) of the form

((a1b1 + r1) + a1b0 + a0b1 + r0, r0, r1)

A simple witness of interference that we obtain is then the equation t1+t2+t3 = a1b1+a1b0+a0b1.

187

9 In Practice

Our procedure does output a witness demonstrating that the masked implementation of the Verilog
implementation of the AES Sbox as designed in [GMK17] is not NI at order 1.

9.6.3 Integration in EasyCrypt

EasyCrypt [BGZ09; BGH+11] is a mechanized prover that allows to perform proofs of cryp-
tographic protocols and primitives in the computational model. It is based on the code-based
game-playing technique [BR06], and notably provides a set of tactics to reason about probabilistic
distributions.

The rnd rule In cryptographic games, one may replace an expression by another expression
as long as both expressions range over the same distribution. E.g., if an expression is uniformly
distributed, one may replace it by a variable that is sampled at random.

In EasyCrypt, this is done via the proof tactic rnd. It allows to replace an expression of the form
f(x) by x if f is invertible - i.e., if one can give an effective expression for f−1. For instance, we
may replace x⊕ y by x because ⊕ is an involution, i.e., (x⊕ y)⊕ y = x.

Listing 9.1 presents actual examples of the rnd tactic, where the bijection inverse is specified by
hand.

> examples/elgamal.ec
rnd (fun z, z + log (if b then m1 else m0){2})

(fun z, z - log (if b then m1 else m0){2}).

> examples/cramer-shoup/cramer_shoup.ec
rnd (fun x2 ⇒ (x2 + G2.v * G1.y2)

* (G1.w * (G1.u' - G1.u))
+ G1.u * (G1.x + G2.v * G1.y)){2}

(fun r ⇒ (r - G1.u * (G1.x + G2.v * G1.y))
/ (G1.w * (G1.u' - G1.u))
- G2.v * G1.y2){2}.

> examples/incomplete/oaep/OAEP.eca
rnd (fun x ⇒ x + pad (if b then m0 else m1){2})

(fun x ⇒ x - pad (if b then m0 else m1){2}).

Listing 9.1: Examples of the EasyCrypt rnd tactic

Using our library, it has been possible to enhance the rnd tactic by making the bijection inverse
expressions optional. In that case, EasyCrypt tries to automatically compute the inverse. Our
library is powerful enough to remove all the explicit inverse expressions in every occurrence of the
rnd tactic in the EasyCrypt standard libraries and examples.

Simultaneous rnd rules Based on the fact that we can actually compute inverses for tuples,
we developed an EasyCrypt tactic which allows to reduce the distance between cryptographic
pen and paper proofs and EasyCrypt proofs. It appears that in this field of applications, the
hypothesis of Proposition 9.4 about the number of outputs of the program equal to the number of
its random variables is not a restriction.

As an example, let us consider the Cramer-Shoup encryption scheme of Figure 9.2. We consider a
goal that appears in the EasyCrypt proof of the Cramer-Shoup encryption scheme, at the point
where one has to apply the DDH assumption. We present in Figure 9.3 the pseudo-code of the
goal, i.e., the two games and the (simplified) post-condition for these games. For readability, we

188

9.6 Applications

x, x1, x2, y1, y2, z1, z2
$←− Fq;

sk := (gx, x1, x2, y1, y2, z1, z2);
pk := (gx, gx1+xx2 , gy1+xy2 , gz1+xz2);
return sk

Figure 9.2: Key Generation in Cramer-Shoup Encryption (abstracted and simplified)

Left game:

x
$←− Fq \ {0}

y, z
$←− Fq

gx, gy, gz ← gx, gy, gz

x1, x2, y1, y2, z1, z2
$←− Fq

g_, a, a_← gx, gy, gz

k
$←− dk

e← gx1 ∗ g_x2

f ← gy1 ∗ g_y2

h← gz1 ∗ g_z2

pk ← (k, g, g_, e, f, h)
sk ← (k, g, g_, x1, x2, y1, y2, z1, z2)

Right game:

w
$←− Fq \ {0}

u, x0
$←− Fq

g_←= gw

k
$←− dk

x, x2
$←− Fq

x1, e← x− w ∗ x2, g
x

y, y2
$←− Fq

y1, f ← y − w ∗ y2, g
y

z, z2
$←− Fq

z1 ← z − w ∗ z2

Post-condition:
(k, g, g_, x1, x2, y1, y2, z1, z2) ' (k, g, g_, x1, x2, y1, y2, z1, z2))

Figure 9.3: (Abstracted) EasyCrypt Goal for Cramer-Shoup

omit the variable prefixes and suffixes used by EasyCrypt, and simply write w for G1.w2. We
also omit some variables assignments that do not affect the post condition.

This goal amounts to prove that the secret keys provided by the actual game or the simulator are
the same. We directly used our previous notations to capture this goal. If we expend some variable
bindings, we obtain the following goal:

(k, g, gx, x1, x2, y1, y2, z1, z2)
'

(k, g, gw, x− w ∗ x2, x2, y − w ∗ y2, y2, z − w ∗ z2, z2)

We can then conclude by proving that the following map:

(k, g, x, x1, x2, y1, y2, z1, z2) 7→
(k, g, w, x− w ∗ x2, x2, y − w ∗ y2, y2, z − w ∗ z2, z2)

is a bijection - for example, the inverse of x1 7→ x− w ∗ x2 being r 7→ r + w ∗ x2.

Currently, performing this part of the proof in EasyCrypt requires a mixture of code motion,
code inlining and multiple applications of the rnd rules, as shown in Listing 9.2.

swap{1} 16 -9; wp; swap -1; swap -1.
rnd (fun z ⇒ z + G1.w{2} * G1.z2{2})

(fun z ⇒ z - G1.w{2} * G1.z2{2}).
rnd.

189

9 In Practice

wp; swap -1.
rnd (fun z ⇒ z + G1.w{2} * G1.y2{2})

(fun z ⇒ z - G1.w{2} * G1.y2{2}).
rnd.
wp; swap -1.
rnd (fun z ⇒ z + G1.w{2} * G1.x2{2})

(fun z ⇒ z - G1.w{2} * G1.x2{2}).
rnd; wp; rnd; wp.

Listing 9.2: EasyCrypt Proof Script

Using our techniques, we were able to replace it with a single line tactic, using the new tactic
rndmatch.

rndmatch (k, g, x, x_1, x_2, y_1, y_2, z_1, z_2)
(G.k, G.g, G.w, G.x - G.w * G.x2, G.x2, G.y - G.w * G.y2, G.y2, G.z - G.w * G, z2, G.z2))

The underlying idea is that a user should only specify the variables on the left which they wish
to map to expressions on the right. The tactic handles the necessary code motions and inlinings
into the game until it produces a tuple at the end, after which the tactic automatically solves the
equivalence using the enhanced rnd tactic:

rnd (fun (v1, v2, v3, v4, v5, v6, v7, v8, v9) ⇒
(v1, v3, v3, v4 - v3 * v5, v5, v6 - v3 * v7, v7, v8 - v2 * v9, v9).

190

Part IV

A New Hope
In which we introduce the Squirrel prover

191

10 An Interactive Prover for
Indistinguishability Proofs

Girls are capable of doing
everything men are capable of
doing. Sometimes they have more
imagination than men.

(Katherine Johnson)

10.1 Introduction

We have shown how to simplify computational proofs by decomposing them into smaller proofs
(Part II), and how to improve automation of low-level proof steps (Part III). Yet, high-level rea-
soning on protocols is still difficult in the computational model. To ease this kind of reasoning and
provide a mechanized prover, we consider several points:

I It is often easier to use symbolic reasoning, based on simple logical deduction rules, rather
than complex cryptographic reductions.

I We consider that backward search is often a reasoning more intuitive for users: to prove that
a bad state may never be reached, we assume that we are in this bad state, look at what
must have happened previously and derive from this a contradiction.

I Many properties do not require to look explicitly at all execution traces of the protocol: the
security proof for an execution trace often subsumes the proof for many other traces.

I Indistinguishability proofs often require to prove that a bad state is never reached. This kind
of proofs can be simplified if it is proved that the bad state cannot occur in a dedicated reach-
ability prover, and if this reachability property is then leveraged in an indistinguishability
prover to simplify the final proof.

The BC logic is a promising approach, as it allows to derive computational guarantees through
purely symbolic reasoning. Furthermore, it is modular in term of axioms: to add a new primitive,
it is only required to prove a new axiom independently from the others. It also allows for simpler
reasoning by abstracting unnecessary details. In the symbolic model, reasoning about the xor
implies to define complex equationnal theories and use heavy term rewriting techniques. In the
BC logic, to add the xor operator, we can simply add a function symbol of arity two, without the
full equational theory, and only add the axioms required for the security proofs. Typically, it holds
that n⊕ t is indistinguishable from n for any name n that does not occur in the term t. This axiom
is often the only one required to prove the security of xor-based protocols.

Keeping in mind the previous points, we design, based on the BC logic, a meta-logic that allows
for abstract reasoning about the traces. We provide the implementation of a tool, the Squirrel
Prover (sources available at [Squ]), used to perform multiple case-studies, some among them relying
on our composition framework. In this Thesis, we do not formally define the complete theory of
the meta-logic, but rather try to give a flavour of the theory (the complete theory is also provided
at [Squ]). We also highlight how the tool was easily adapted to support our composition result,
and provide some examples in the user syntax of Squirrel.

193

10 An Interactive Prover for Indistinguishability Proofs

 Chapter Summary

In this Chapter, we develop a framework and an interactive prover allowing to perform security
proofs at the symbolic level while obtaining guarantees at the computational level. To achieve
this, we develop a meta-logic as well as a proof system for deriving security properties. We
implement our approach within a new interactive prover, the Squirrel Prover, taking as input
protocols specified in the applied pi-calculus.

We perform a number of case studies covering a variety of primitives (hashes, encryption, sig-
natures, Diffie-Hellman exponentiation) and security properties (authentication, strong secrecy,
unlinkability). By using both the Squirrel prover and the composition framework of Part II,
we provide the first security proofs of real life protocols based on the BC logic that are both
mechanized and valid for an unbounded number of sessions of a protocol.

10.1.1 Our Contributions

We use the BC logic as a building block to design a meta-logic that allows to reason about
security properties by manipulating abstract traces and performing backward reasoning. Notably,
it allows to reason by induction over the number of sessions of a protocol in a completely abstract
way, and for instance prove indistinguishability by only considering abstract traces that terminate
by each possible atomic action of the protocol. The meta-logic encompasses both a reachability
and an indistinguishability sequent calculus, where reachability properties can be leveraged in
indistinguishability proofs.

We implemented this approach in the Squirrel prover. The tool supports a variety of crypto-
graphic primitives, among which hash, encryption, signature, Diffie-Hellman exponentiation and
xor. It was used to prove authentication, strong secrecy and unlinkability for a variety of RFID
protocols. Those case studies are performed for an arbitrary but fixed number of sessions, meaning
that for each number of session there exists a security proofs, but the number of session does not
depend on the security parameter.

We also perform the proof of SSH for an unbounded number of sessions, that can depend on the
security parameter, by performing the sub-proofs obtained by the application of our composition
framework (Part II). Remark that the tool was easily adapted to support the composition result,
which argues in favour of our approach in Parts II and IV.

a Limitations

We do not provide concrete security, where an explicit bound is given on the attacker’s advan-
tage. Also, we do not support proofs for an unbounded number of sessions without using the
composition result.

10.1.2 Related Work

There exists a wide variety of provers that provide computational guarantees, most, if not all of
them based on game-hopping techniques. We refer the interested reader to [BBB+19] for a detailed
comparison of existing tools, and only highlight here two of the most successful ones.

EasyCrypt [BGH+11; BDG+13] is an interactive prover supporting game-hopping techniques
through a probabilistic relational Hoare logic. It is a high-order logic that requires expertise

194

10.1 Introduction

in program verification, while we consider a first-order logic dedicated to protocol verification.
CryptoVerif [Bla07] is both an automated and interactive prover that provides proofs as game
sequences. It can complete many proofs completely automatically, which is out of reach of our tool
for the time being.

The various approaches can be compared on several criteria; we mention a few to highlight differ-
ences between our tool and existing ones.

Like CryptoVerif, our protocol specifications are given in the applied pi-calculus, which is well
suited for this purpose. Yet, unlike CryptoVerif and EasyCrypt, we only provide asymptotic
security bounds. However, our approach hides from the user all quantitative aspects such as
probabilities and the security parameter and, on the surface, our tool is as simple as symbolic
verification frameworks.

As we shall see, our proof methodology differs significantly from the game-hopping technique used
e.g. in CryptoVerif. Game transformations, e.g. replacing all calls to some oracle by calls to
another oracle, are global while our approach is more local: for example, our unforgeability rule
states that if, at some instant T of the protocol, the attacker returns a hash of a message with
a key that he does not know, then this hash must originate from an honest message sent at an
instant T ′ ≤ T . We argue that our local approach is often simpler, as it allows to reason about a
protocol “message by message”, and not as a single block.

Furthermore, we rely on a simple first-order logic formalism. This enable us to use techniques
from proof theory, such as rewriting proof techniques or cut eliminations. It is also amenable to
automatization by leveraging widely used first-order automatization, and a non trivial fragment of
the BC logic has already been proven decidable [Kou19a].

Finally, rather than comparing to all other tools, we now discuss how we fit in the taxonomy
of [BBB+19], that provides a detailed presentation of computer-aided cryptography. Their taxon-
omy captures all the tools that provide computational guarantees. They consider several criteria,
divided in four categories: accuracy (A) of modeling/analysis, scope (S) of modeling/analysis, trust
(T), and usability (U). The criterions and how we fit in them are as follows.

I Automation (U) - we do not provide standalone automation, but the reasoning about message
equality is automated;

I Composition (U) - we support the composition framework of Part III;
I Concrete Security (A) - we only provide asymptotic security;
I Game hopping (U) - this category is difficult to consider in our case, as we are not per-say

in the game-based model. Remark though that the logic supports some of the classical game
hopping techniques;

I Unary Reasoning (U) - we support this kind of reasoning in the reachability prover;
I Link to implementation (T) - we do not provide any link with an implementation;
I Trusted computing base (T) - self code base, in OCaml;
I Specification Language (U) - a pi-calculus.

? Future Work

The BC logic, and thus our tool, could be extended to provide concrete security bounds. It
would be interesting to improve the automation. For instance, the automated reasoning for
equality over messages is currently handled by our own algorithms, while it could be integrated
using SMT-based techniques. Finally, the BC logic and the tool could be extended to perform
proofs by induction that are directly valid for an unbounded number of sessions, without going
through the composition result.

195

10 An Interactive Prover for Indistinguishability Proofs

10.2 Overview

 Section Summary

We first give an overview of our framework and tool. The Squirrel prover and our case studies
can be found in [Squ].

Let us consider a toy example, where an initiator I authenticates a Diffie-Hellman share to a
responder R:

I → R : 〈ga, sign(ga, sk)〉

This protocol can be written in the Squirrel syntax as depicted in Listing 10.1.
signature sign,verify,pk

abstract ok : message
abstract error : message
name sk : message
name a : index→ message

channel c

process I(i :index) =
out(c, 〈 ga[i], sign(ga[i], sk)〉)

process R(i :index) =
in(c,x);
if verify(snd(x), pk(sk)) = fst(x) then

out(c,ok)
else

out(c,error)

system !i R(i) | !i I(i).

Listing 10.1: DH share authentication in Squirrel (user syntax)

The signature keyword is a built-in used to declare three functions which model a signature scheme
that satisfies EUF-CMA1. a is a name indexed to instantiate a unique share for each session, ga[i]

is used to denote Diffie-Hellman exponentiation, and fst,snd denote the first and second projection
of the pair.

We now describe informally how to instantiate our framework to analyze this protocol. In our
framework, we see protocols as set of actions, each action consisting of an execution condition
and an output, which may depend on the input of the action and inputs of previous actions. The
condition and output of an action A are terms, built notably over the macro input@A which is
used to refer to the input given to the action by the attacker. In practice, our tool performs this
instantiation automatically from the applied pi-calculus specification. The previous protocol is
given by three actions.

I I[i] is the (unique) action performed by the ith session of the initiator process I. Its execution
condition is true, and its output is 〈ga[i], sign(ga[i], sk)〉.

I R1[i] represents the action of a responder session i, the then branch of the process R, that
received as input a pair whose second projection is a valid signature of its first projection.
Its condition is

verify(snd(input@R1[i]), pk(sk)) = fst(input@R1[i])

and its output is the constant ok.
1Remark that we use here a variant of the signature scheme, where instead of a checksign function
symbol, there is a verify function symbol such that verify(m, pk(sk)) = m′ is true if and only if m is
equal to sign(m′, sk).

196

10.3 A Meta-Logic for Reachability and Equivalence

I R2[i] represents the action of a responder session i, the else branch of the process R, when
there is no valid signature. Its execution condition is the negation of the one of R1[i], and
its output is the constant error.

A well authentication for the previous protocol is expressed in the user syntax Listing 10.2.
goal authentication :
forall (i :index), cond@R1[i] ⇒ (exists (j :index), I(j) < R1(i)

&& fst(input@R1(i)) = fst(output@I(j))
&& snd(input@R1(i)) = snd(output@I(j))).

Listing 10.2: Simple property in Squirrel (user syntax)

Here cond@R1[i] is a macro which stands for the executability condition of action R1[i], where the
responder checks that there is a valid signature.

Our authentication goal expresses that, whenever this condition holds, there must be some session j
of the initiator that has been executed before R1[i]. Moreover, the output of the initiator’s action
coincides with the input of the responder’s action.

This authentication goal can be proved in our tool using a succession of four tactics:
simpl. expand cond@R1(i). euf M0. exists i1.

Each tactic can be explained at a high level as follows:

I simpl introduce the variables i and the assumption cond@R1[i]. So that we can refer to this
assumption, it is automatically given the label M0, as it is the first hypothesis over Messages.

I expand cond@R1(i) expands this macro into its meaning, i.e.

verify(snd(input@R1[i]), pk(sk)) = fst(input@R[i])

I euf M0 applies the EUF-CMA assumption: the condition states that snd(input@R1[i]) is a
valid signature of fst(input@R1[i]), thus the term fst(input@R1[i]) must be equal to a message
that has previously been honestly signed. Therefore we deduce that there exists an initiator’s
session i1 occurring before the action R1[i], such that its output was forwarded to R1[i].

I exists i1 instantiates the existential quantification over j by i1, which concludes the proof.

10.3 A Meta-Logic for Reachability and Equivalence

 Section Summary

We design a meta-logic that contains terms referring to an execution of a protocol, and for
instance refers to the value of the output performed by the protocol at some point in time. To
this end, we see protocols as set actions (an action is given by an execution condition and an
output) that can be triggered by an attacker to produce execution traces. Then, we introduce
macros, which for an abstract trace allows to talk about the output, the input or the condition
corresponding to a point in the trace.

We finally introduce two sequent calculi in this meta-logic, one for reachability and one for
indistinguishability. BC axioms are naturally translated in the calculi, and we obtain the rules
corresponding to a variety of cryptographic axioms.

10.3.1 The Meta-Logic

Our meta-logic is an extension of the BC logic, meaning that any formula and proof of the BC
logic could be expressed in our meta-logic. The meta-logic does not increase the expressivity of

197

10 An Interactive Prover for Indistinguishability Proofs

Timestamps

T ::= τ timestamp variable
| a[~i] indexed action name
| init minimal element of a trace
| pred(T) predecessor

Meta-terms

t ::= n name
| n[~i] indexed name
| x term variable
| f(t1, . . . , tn) function of arity n
| m@T macro with m ∈ {input, output, frame}
| if φ then t1 else t2 conditional branching

Atoms

A := t = t′ atomic proposition over messages
| T = T ′ | T ≤ T ′ | cond@T | exec@T atomic proposition over timestamps
| i = i′ atomic proposition over indices

Meta-formulas

φ ::= A | true | false | φ ∧ φ′ | φ ∨ φ′ | φ⇒ φ′ | ¬φ | ∀i.φ | ∃i.φ | ∀τ.φ | ∃τ.φ

Figure 10.1: Syntax of the Meta-Logic

the BC logic: we cannot for instance derive computational guarantees that the BC logic could
not. Rather, our framework formalizes an abstract reasoning about the number of sessions or the
interleavings of a protocol. Notably, it is possible to derive a proof in the BC logic for any number
of sessions of a protocol from a single proof in the meta-logic.

Syntax We extend the terms so that they can refer to protocol executions. Recall that we used
terms to represent the bitstrings manipulated and communicated by the protocols, and used index
variables to instantiate multiple copies of the same name. We now build a meta-logic over

I timestamps, that represent time points in an execution trace of a protocol;
I meta-terms, terms extended with macros;
I meta-formulas to express conditions over the meta-terms.

As meta-terms contain a conditional branching over meta-formulas, meta-terms and meta-formulas
are mutually inductive. We still use indices to instantiate multiple copies. The complete syntax is
given in Figure 10.1.

To refer to point in a trace, we use timestamps. We consider that we have a set of action names
A, that each refer to a possible atomic action of a protocol, and each action name can also be
indexed. Timestamps are then either an explicit action, which will refer to the time point at which
this action occurs, a timestamp variable, or the init constant, which is used to refer to the first
time point of a trace. We also define a predecessor function pred over the timestamps, to refer to
the previous action in a trace.

198

10.3 A Meta-Logic for Reachability and Equivalence

With those timestamps, denoted by T , we are then able to refer to elements of the actions performed
at some point. The message macros input@T and output@T refer to the input and output messages
of the action executed at time T and the boolean macro cond@T encodes the execution condition
of the action at T . Finally, the boolean macro exec@T encodes the conjunction of all execution
conditions up until time T , exec@T intuitively corresponds to exec@pred(T) ∧ cond@T , where
exec@init = true.

The message macro frame@T refers to the attacker’s knowledge at time T , where they can learn
if an action is executable, and if it is indeed executable, they learn the corresponding output.
Then, by reusing the ternary function symbol if _ then _ else _ (not to be confused with the
construct of the protocols) to encode conditionals in terms, we may see frame@T as the triple
〈frame@pred(T), exec@T, if exec@T then output@T else 0〉, where 0 is a default value that we set
for the else branch. By defining the frame in this way, for each action triggered by the attacker,
they get the value of the condition and the value of the output if the action can be executed, else
they get the value 0.

The meta-formulas are quantified over variables of type index and timestamp, and contain basic
logical combinations. This syntax allows to express a variety of first-order formulas for reachability
properties.

Example 10.1. Let us assume that we have two action names a[i] and b[i]. The following formula
is used to specify that whenever the condition of an a[i] is true, it means that some b[j] occurred
previously, and the output produced by b[j] was forwarded as input to a[i]:

∀i : index. cond@a[i]⇔ ∃j : index. b[j] < a[i] ∧ input@a[i] = output@b[j]

This formula typically express a (non injective) well-authentication property, and could be verified
by a protocol that uses a signature.

The meta-logic will allow us to prove that a meta formula is true with overwhelming probability
for all possible execution traces of a protocol. Remark that if the meta-formula of Example 10.1,
holds, it means that the two meta-formulas that are equivalent have exactly the same probability
distributions for all execution traces of a protocol. One could then replace one by another without
changing the protocol.

The meta-logic will also support boolean formulas built over indistinguishability atoms of the
form u ∼ v for sequences of meta-terms or meta-formulas, where macros on the two sides will be
interpreted with two distinct protocols. Intuitively, the formula frame@τ ∼ frame@τ will be true
if two protocols, the one used to interpret the frame on the left and the one for the frame on the
right, are in fact indistinguishable.

ü Technical Details

This notion of frame is meant to capture the sequence of message φτP of Definition 2.14, and thus
match our previous notion of equivalence. Remark though that to exactly match the definition
of φτP , we would have to define frame@T as 〈frame@pred(T), if exec@T then output@T else 0〉.
Here, we add exec@T to the frame, because we want the attacker to know if an action can be
executed or not.

Let us consider a simple example, to illustrate the issue. We simply consider two protocols,

I P = in(c, x).if x <> 0 then out(c,0)
I Q = in(c, x).if true then out(c,0)

Intuitively, we expect those two protocols to be distinguishable, as the action of P is not always
executed, depending on the input, while the one of Q is always executed. If we define the frame

199

10 An Interactive Prover for Indistinguishability Proofs

without exec, then for instance for P (where we denote its only action P), there are two possible
frames:

I the frame with the constant 0, corresponding to the beginning of the protocol, before the
attacker gave any input to P ;

I the frame obtained after the attacker input, which is equal to

(if exec@P then output@P else 0)

As output@P = 0, this last frame is actually equal to 0. The behaviour is similar for Q, and
thus, if we do not put the execution condition in the frame, P and Q are indistinguishable. If
we add the condition, the frame of P will contain the value of input@P <> 0, while the frame
of Q will contain true, and an attacker can then distinguish those two values.

Remark that this issue stems from the fact that we build the frame using 0 in the else branch,
while 0 can also be produced by the protocol.

This issue was not raised in Definition 2.14 because we only considered simple protocols, where
the conditional branchings appearing in φτP are part of the protocol specification (the user must
then be careful about the modeling). In the case of the tool, as the conditional are built by the
tool, we wanted to provide a precise notion of indistinguishability based on the user input.

Actions and Protocols An action is given by a[i1, . . . , ik].(o, φ), where a is the action name,
i1, . . . , ik a sequence of index variables, o a meta-term corresponding to the output of the action
and φ its executability condition.

A protocols is then a couple (PA,≤P), where PA is a set of actions and ≤P a partial order ≤P
over PA (a protocol is then a poset). The partial orders indicates which actions must be executed
before other ones. An action may in its condition and output refer to the inputs of previous actions
(w.r.t. ≤P)

Example 10.2. For illustration purposes, we consider the following protocol P made of two actions

1. a[i].(true, ok); and
2. b[i].(true, 〈input@a[i], input@b[i]〉)
3. c[j].(input@c[j] = ok, ok)

with a[i] ≤P b[i]. Intuitively, this corresponds to a protocol that first inputs a message, emits ok;
and then inputs another message before outputting the pair of the two messages it has received.
Because of the ordering, the condition and the output of c[j] is not allowed to depend on a macro
of a or b.

In the pi-calculus of Chapter 2, this protocol would be written as

‖i(in(c, x);out(x, ok); in(c, y);out(c, 〈x, y〉))‖j(in(d, x); if x = ok then out(d, ok))

We may note that b(i) is allowed to refer to input@a[i] since we have specified that a[i] ≤P b[i].

A trace of a protocol P is any sequence of actions a[l1, . . . , lk] ∈ PA, where the index variables have
been instantiated by concrete values over the integers, which is valid w.r.t. the ordering ≤P and
where an instance of an action does not occur twice.

Example 10.3. With the protocol of Example 10.2, for a single session of i numbered by index
1, and no session for j, there are two possible traces: the trace with a single action a[1], and the
trace with the two actions a[1].b[1]. As soon as we consider multiple sessions, many interleavings
become possible, as long as they comply with the ordering.

200

10.3 A Meta-Logic for Reachability and Equivalence

Remark that in this Part, we have changed the definition of protocols, in order to build a logic
over them. The translation is straightforward and implemented in the tool. We do not provide its
details here for concision.

Semantics Given a protocol P , we now define the interpretation of meta-terms and meta-
formulas. Intuitively, in addition to the computational models M of the BC logic (Section 2.4),
models of our meta-logic are also built over a trace model T . It consists of a (finite) trace of the
protocol, and thus provides an interpretation domain DT for the timestamp variables, which is
the set of actions appearing in the trace, and an interpretation domain DI for the index variables,
which is the set of indexes appearing in the actions of the trace.

Given a protocol P and one of its trace models T , we can interpret all meta-terms and meta-
formulas as classical terms of the BC logic (recall that we have in the terms of the BC logic
boolean connectives

.
∧,

.
∨, . . . as function symbols with a fixed interpretation). We denote this

interpretation by (φ)TP , but only provide here an idea of the translation, where for instance:

(∀τ : timestamp. φ)TP :=

.∧
T∈DT

(φ)
T {τ 7→T}
P

Intuitively, φ holds for all timestamps of the trace model T if the conjunction of the interpretations
of φ where T interprets τ by all possible values is true. The translation is similar for other
quantifiers, (∃ translates to

∨
), and other Boolean operations are translated with the corresponding

connective. Input macros are interpreted using a dedicated attacker function symbol g from the
BC logic:

(input@T)TP := g((frame@pred(T))TP)

Other macros simply correspond to the interpretation of the meta-term corresponding to the action
at the given timestamp.

Given a protocol P , a computational model M and a trace model T , we say that φ holds
w.r.t.M, T , denoted byM, T |=P φ, if

M |= (φ)TP ∼ true

in the BC logic. A formula is P -valid if it holds for all computational models and all trace models
of P . If a formula is P -valid, it means that it is true with overwhelming probability on all traces
of P .

We also define the semantics of indistinguishability formulas. Given two protocols P1, P2 that have
the same set of trace models, a computational modelM and a trace model T of the protocols, and
two sequences of meta-terms u, v, we say that u ∼ v holds w.r.t. M, T , denoted byM, T |=P1,P2

u ∼ v, if
M |= (u)TP1

∼ (v)TP2

u ∼ v is then (P1, P2)-valid if it holds for all trace models of P1, P2.

Example 10.4. If frame@τ ∼ frame@τ is (P1, P2) valid, it implies that for all their traces (the
two protocols must have the same set of traces, but can differ in their common actions), and for all
points in the trace, the sequence of messages up to this point produced by P1 is indistinguishable
to the one of P2. In other terms, it implies that P1 and P2 are computationally indistinguishable.

201

10 An Interactive Prover for Indistinguishability Proofs

ü Technical Details

Expecting that the two protocols have the same set of traces can be a restriction to verify
indistinguishability. Indeed, consider the two following protocols, where bool is a function
which extracts the first bit of a bitstring:

I in(c, x).if bool(x) then out(c, n1) else out(c, n2)
I in(c, x).out(c, n1)

Those two protocols are indistinguishable, as both of them always return a fresh random name,
independently from their input. Yet, with our translation, the first one is expressed with two
actions, and the second one with a single action: they cannot then be indistinguishable in our
framework. However, and in the spirit of simple protocols of Section 2.4, the first protocol could
be rewritten by pushing the conditional in the output:

in(c, x).out(c, if bool(x) then n1 else n2)

Then, in our framework, the two protocols do become indistinguishable.

10.3.2 Reachability Rules

With a fixed protocol P , we now provide a sequent calculus that allows to prove the validity of
formulas.

Definition 10.1. Let P be a protocol. A sequent Γ `P φ is composed of a set of meta-formulas
Γ and a meta-formula φ.

The sequent Γ `P φ is valid if and only if Γ⇒ φ is P -valid.

Basic rules For concision, we do not provide all the rules of the sequent calculus. We notably
designed the calculus so that all the rules of the standard first-order sequent calculus are valid.
We provide in Figure 10.2 some of the rules dedicated to the security proofs of protocol.

The first three rules allow to conclude by deriving a contradiction from the set of hypothesis. With
overwhelming probability, two names are not equal. Thus, if in a sequent we have as hypothesis
that two distinct names are equal, we can derive false with rule NameIndep. A variant of the rule
would specify that if n[~i] = n[~j], then we can conclude that ~i = ~j.

If we have as hypothesis a trace constraint b[~i] ≤ a[~j] that contradicts the ordering ≤P of the
protocol, we can conclude with ActDep. ActEq states that two distinct actions cannot occur at
the same timestamp. Finally, Exec states that if exec@τ is an hypothesis for some timestamp, we
have the condition execution of all the smaller timestamps.

These four rules are sound, which means that they can safely be used to derive true statements. All
the rules of our sequent calculus, along with their soundness proofs, are available in the technical
report [Squ].

Advanced rules The rules presented previously are unconditionally sound: they hold without
any computational hardness assumption. For each computational assumption, we can derive a
dedicated rule. Let us recall the axiom scheme EUF-CMAsk (Definition 2.17) which, for any term

202

10.3 A Meta-Logic for Reachability and Equivalence

NameIndep
n 6= m

Γ, n[~i] = m[~j] `P φ

ActDep
a[~j] <P b[~i]

Γ, b[~i] ≤ a[~j] `P φ

ActEq
a 6= b

Γ, a[~i] = b[~j] `P φ

Exec
Γ,∀τ ′ ≤ τ.cond@τ ′ `P φ

Γ, exec@τ `P φ

Figure 10.2: Some Rules of our Sequent Calculus for Reachability

t such that sk is only in key position, corresponds to:

if (checksign(t, pk(sk))) then
.∨
sign(x,sk)∈St(t) (t

.
= sign(x, sk))

else >
∼ >

This naturally translates into a rule of the form:

Γ,
∨

sign(x,sk)∈Ssk(t) t = sign(x, sk) `P φ
Γ, checksign(t, pk(sk)) = true `P φ

when SSCsk(t)

Where we must define SSCsk(t) and Ssk(t) such that,

I if the Syntactic Side-Condition SSCsk(t) holds, then all translations of t satisfy the side-
condition of the BC axiom, i.e., sk only appears in key position;

I the translation in any trace model of the Set of meta-terms Ssk(t) contains all signatures
over sk of the translation of t.

While we do not provide the cumbersome details, it is straightforward to define SSCsk(t) and
Ssk(t) by iterating over the terms and the possible values of the macros in a term, by exploring
the possible corresponding actions. For instance, if t contains a macro input@τ , we must check
that all possible outputs of the protocol satisfy the side condition, as they might have occurred
before τ and be used by the attacker to build a new term that could contradict the syntactic side
condition.

Our sequent calculus also contains rules derived, for instance from the collision resistance of a hash
function, or from the EUF-CMA axiom corresponding to an hash function.

Extension for the composition result As our composition result only relies on new axioms
for the BC logic, we can easily integrate them in our sequent calculus by deriving a rule from a
new axiom. Recall that the EUF-CMAT,sk axiom (Definition 6.4), is expressed for any boolean
function T and term t where sk is only used in key position, as:

if (checksign(t, pk(sk)))
then T (getmess(t))

.∨
sign(x,sk)∈St(t) (t

.
= sign(x, sk))

else >

∼ >

As EUF-CMAT,sk is very close to the classical EUF-CMA axiom, it is adapted similarly in our
sequent calculus, with a rule of the form:

Γ,
∨

sign(x,sk)∈Ssk(t) t = sign(x, sk) ∨ T (getmess(t)) `P φ
Γ, checksign(t, pk(sk)) = true `P φ

when SSCsk(t)

203

10 An Interactive Prover for Indistinguishability Proofs

It is interesting to note that this is the only extension required to our tool in order to be able to
perform proofs based on our composition framework Part II.

10.3.3 Indistinguishability Rules

We now define a sequent calculus dedicated to proving indistinguishability properties.

Definition 10.2. Let P1, P2 be protocols with the same set of traces. An equivalence sequent
Γ `P1,P2

~u ∼ ~v comprises a set of hypotheses Γ and a goal ~u ∼ ~v, where Γ and ~u ∼ ~v are all
equivalence formulas of the meta-logic.

The sequent Γ `P1,P2 ~u ∼ ~v is valid if for all T ,M, σ such that T ,M, σ |=P1,P2 ψ for all ψ ∈ Γ,
we have that T ,M, σ |=P1,P2 ~u ∼ ~v.

The main technique used to reason in this calculus is to prove indistinguishability by induction, as
for two protocols P1, P2 with the same set of traces, they are indistinguishable, in the sense that
frame@τ ∼ frame@τ is (P1, P2)-valid, if and only if

frame@pred(τ) ∼ frame@pred(τ) `P1,P2
frame@τ ∼ frame@τ

Remark that we can omit the base case, as it is always trivial (frame@init = 0).

To reason about such sequents, once again, all classical sequent calculus rules apply, and we do
not present them. Other rules are instantaneous consequences of the properties of ∼, based on
transitivity, reflexivity and symmetry:

Sym
Γ `P2,P1

~u ∼ ~v
Γ `P1,P2 ~v ∼ ~u

Refl

Γ `P1,P2
~t ∼ ~t

~t is macro-free

Trans
Γ `P1,P2 ~u ∼ ~t Γ `P2,P3

~t ∼ ~v
Γ `P1,P3

~u ∼ ~v
P1, P2, P3 have the same set of traces

Some of the most powerful rules are the ones that combine both sequent calculi:

Equiv
Γ `P1 t1 = t2 Γ `P2 t1 = t2 Γ `P1,P2 ~u[t1/t2] ∼ ~v[t1/t2]

Γ `P1,P2
~u ∼ ~v

EQuiv’
φ `P1 φ⇔ ψ φ `P2 φ⇔ ψ Γ `P1,P2 ~u[φ/ψ] ∼ ~v[φ/ψ]

Γ `P1,P2
~u ∼ ~v

If-reach
φ `P1 false φ `P2 false

Γ `P1,P2
if φ then u ∼ if φ then v

The rule Equiv allows to replace in an indistinguishability goal a term by another one, as long
as we can prove in the reachability calculus that the two terms are equal with overwhelming
probability. EQuiv’ is the corresponding rule but for formulas. EQuiv’ can typically be used to

204

10.4 Implementation and Case-Studies

replace an execution condition of an action by the well-authentication property that is equivalent
to it (cf. Example 10.1).

Finally, more advanced rules can be defined by adapting the rules from the BC logic. Our sequent
sequent calculus notably contains rules for encryption from the IND-CCA1 and ENCKP axioms
(adapted from [BC14a]), rules for hash function with the PRF axiom and for xor operations
([Kou19c]) and finally for DDH ([BCE+19]).

10.4 Implementation and Case-Studies

 Section Summary

We implemented the meta-logic in a tool, the Squirrel prover, available at [Squ]. The tool
is a computer-aided protocol prover. Its input language is a dialect of the applied pi-calculus,
as depicted in Listing 10.1, and allows to prove formulas of the meta-logic for a specified
protocol. We used it to perform a number of case studies, proving different kind of properties
(authentication, secrecy, anonymity, unlinkability) under multiple cryptographic assumptions
(IND-CCA, EUF-CMA, PRF, DDH), for a variety of protocols (RFID based, SSH, private
authentication). We only outline here some details about its usage, and the integration of the
composition result.

10.4.1 The Tool

The core of the prover is an implementation of the two sequent calculi for reachability and indis-
tinguishability. Protocols are specified in a pi-calculus and a straight-forward algorithm allows to
obtain from this specification the list of corresponding actions.

Once the protocol is specified, the user has to write a reachability or indistinguishability goal
expressing the desired security property. This goal is the starting step from which rules of our
sequent calculus (tactics in the tool) will successively be applied until completing the proof. Thus,
proving a security property for a protocol using our tool consists in writing the script describing
the order in which tactics are applied.

A simplification tactic, which is the result of a combination of tactics, is applied at each step
of the proofs. The reasoning over equalities and disequalities of terms is automated, allowing to
automatically derive contradictions.

The tool supports user-defined axioms, and previous proofs can be re-used. Notably, the reach-
ability calculus can be used in an indistinguishability proof. For instance, if we prove that the
condition of a conditional branching is always false, we can remove the corresponding branch.
From our experience, these interactions between the two calculi ease the proof process.

All axioms and assumptions used in a proof must be explicitly provided. For instance, it may be
necessary to specify that a pair cannot be confused with a name. Our tool then allows to derive
the exact assumptions that the implementation should verify. Only axioms that are part of the
first order logic formula without ∼ can be defined in the user syntax.

A strength of the tool is that it is symbolic and still computationally sound. In particular, to
support the XOR theory, which is challenging in the symbolic model, we simply add a tactic that
captures the cryptographic assumptions of the XOR function which are necessary to prove the
security of protocols. Notably, there is no need to provide a full support of the XOR equational

205

10 An Interactive Prover for Indistinguishability Proofs

Protocol LoC Assumptions Security properties
Basic Hash [BCH10] 100 PRF,EUF-CMA Authentication & Unlinkability
Hash Lock [JW09] 130 PRF,EUF-CMA Authentication & Unlinkability
LAK (with pairs) [HBD19] 250 PRF,EUF-CMA Authentication & Unlinkability
MW [MW04] 300 PRF,EUF-CMA,XOR Authentication & Unlinkability
Feldhofer [FDW04] 250 IND-CCA1,EUF-CMA Authentication & Unlinkability
Private Authentication [BC14a] 60 IND-CCA1,EUF-CMA,ENC-KP Anonymity
Signed DDH [Iso, ISO 9798-3] 150 EUF-CMA,DDH Authentication & Strong Secrecy

Additional case studies, using the composition framework from Part II
Signed DDH [Iso, ISO 9798-3] 200 EUF-CMA,DDH Authentication & Strong Secrecy
SSH (with forwarding agent) [YL] 750 EUF-CMA,DDH Authentication & Strong Secrecy

Table 10.1: Case Studies

theory, or to be able to perform equational unification. Another strength of the tool is its mod-
ularity: extending the tool with new cryptographic primitives does not impact the core of the
tool. It only requires to add new tactics and prove their soundness. Currently, the tool supports
PRF,EUF-CMA (both for signatures and hashes), IND-CCA1,ENC-KP,DDH and XOR.

10.4.2 Case-Studies

To illustrate the variety of examples, all the case studies that can be found in the Squirrel
repository [Squ] are summarized in Table 10.1.

For each protocol, we provide the number of Lines of Codes (LoC) required for the specification and
the proofs, the cryptographic assumptions used, and the security properties studied. Interestingly,
most proofs follow the intuition of the pen-and-paper proofs, while some low-level reasoning is
successfully abstracted away or automated. To our knowledge, those protocols have not been
previously proved secure using a computationally sound mechanized prover.

We only discuss here the application to the DDH based protocols, that were already discussed
in Part II. The other case studies are presented in more details in the repository [Squ].

DDH based protocols We first performed a proof of strong secrecy of the shared key for the
signed DDH protocol [Iso, ISO 9798-3]. This proof was performed for an arbitrary but fixed
number of sessions, where the number of sessions does not depend on the security parameter.
We first performed a proof of the authentication property, which is a direct consequence of the
EUF-CMA axiom. Then, when we look at the strong-secrecy of the key, where in the honest case
we can easily use the DDH axiom to conclude, and we can prove that the event that leaks the key
cannot happen thanks to the authentication property.

We also present two additional case studies for the signed DDH protocol [Iso, ISO 9798-3] and
the SSH protocol [YL], where proofs are performed through the use of the composition framework
of Part II. We outlined how to decompose a proof for those protocols into single session proofs,
which consist in slightly modifying the hash function by giving more capacities to the attacker by
providing them access to oracles.

For instance, we allow to define a signature that follows the EUF-CMAT1,sk1 axiom, the
EUF-CMAT2,sk2 axiom for two specific keys sk1, sk2 and the EUF-CMAsk axiom for all other
keys, with the syntax described in Listing 10.3.

signature sign,checksign,pk with oracle
forall (m:message,k:message)

(k = sk1 ⇒ T1(m)) && (k = sk2 ⇒ T2(m))

Listing 10.3: Declaration of a signature following the EUF-CMAT,sk axiom

206

10.4 Implementation and Case-Studies

The tagged EUF-CMA axioms defined in Section 5.7 to prove the security of the ISO 9798-3
protocol can then be declared in Squirrel as:

signature sign,checksign,pk with oracle
forall (m:message,k:message)

(k = skI ⇒ exists (i:index, x1:message, x2:message) m=<x1,g^a[i]〉,x2〉)
&&

(k = skR ⇒ exists (i:index, x1:message, x2:message) m=<x1,g^b[i]〉,x2〉)

Listing 10.4: Declaration of the signature for the ISO 9798-3 protocol

With our tool and the previous axioms, we were able to mechanize those proofs. Compared to the
other case studies, those two hold for an unbounded number of sessions that may depend on the
security parameter, and not just for an arbitrary but fixed number of sessions. Those are the first
security proofs through the BC logic that are mechanized and valid for an unbounded number of
sessions.

207

Conclusion and Future Work
Un dernier calcul et on s’en va.

(Proverbe ancestral)

In this work, by leveraging symbolic methods in various ways, we strived to help derive formal
guarantees about protocols while considering attackers as powerful as possible. To this end, we

1. defined a methodology for the extensive analysis in the symbolic model of Multi-Factor
authentication protocols, a complex application scenario, and we used the Proverif tool
to carry out a case study over widely deployed protocols;

2. developed a composition framework both for the computational and the BC logic; it notably
adds to the BC logic the support for security proofs of protocols with an unbounded number
of sessions;

3. studied the automation of low-level proof steps about probabilistic distributions taking a
foundational perspective, providing decidability and complexity results, and showing how to
use symbolic methods to derive efficient heuristics;

4. implemented an interactive prover built over the BC logic, supporting both reachability and
indistinguishability properties.

We believe that after pushing the symbolic model to its limits in (1), considering over 6000 scenarios
to illustrate how the symbolic model can handle powerful attackers, we have made it easier in
(2,3,4) to derive computational guarantees, stronger than the symbolic ones, by reasoning in a
logical framework. We helped perform such proofs by simplifying both the probabilistic (3) and
the logical reasoning (2,4) about protocols. In doing so, some important limitations of the BC
logic were lifted, first by providing a composition framework (2) that reduces the size of the proofs
and allow for proofs valid for an unbounded number of sessions, and second by building over it an
interactive prover (4) that allows to reason in an abstract way about all the possible executions of
a protocol.

Future Work

As we already gave for each Chapter some dedicated future work, we only consider here a high level
point of view. We have made progress regarding symbolic analysis of protocols with computational
guarantees, trying to consider attackers as strong as possible. Our long term goal is to be able to
perform such analysis for:

1. more complex protocols, e.g., e-voting protocols, or advanced cryptographic primitives,
e.g., Multi-Party Computation;

2. more complex security properties, e.g., post-compromise security or forward secrecy for key
exchange protocols, or privacy-related properties such as unlinkability.

Modular The framework that we designed is general. We applied it to the specific case of key
exchanges, but it may be applied in a variety of other contexts, and extended if need be. It would
be interesting to see if our framework can be used in the case where it is not the number of sessions
but the number of parties that can be unbounded. This is notably the case for e-voting protocols.

209

10 An Interactive Prover for Indistinguishability Proofs

Further, the framework could be leveraged to simplify the proof of a variety of other properties,
such as the ones mentioned previously.

Automation The Squirrel prover only provides a very basic level of automation. While it is
already sufficient to perform real life case-studies, it may become capital to improve its automation
to tackle more complex case studies. As mentioned previously, proof steps can be either seen as
high-level reasoning, the logical level where probabilities have been abstracted, or as low-level rea-
soning about message lengths or probability distributions. The techniques required for automating
those two levels are very different:

1. high-level reasoning - [Kou19a] provides a decidability result for a fragment of the BC logic.
Building on this and classical first-order logic automation techniques, it would be interesting
to try to automate the application of the logical rules of our tool.

2. low-level reasoning - as for instance advanced cryptographic primitives often rely on proba-
bilistic reasoning, it could be interesting to integrate our results from Part III in the Squir-
rel prover.

Collaboration between tools We believe that the Squirrel prover bears great promises for
the analysis of security protocols. However, we do not claim that our tool is or will ever be the
best to handle everything. Notably, we cannot hope to achieve the level of efficiency or automation
of symbolic tools, such as Proverif [BCA+10], Tamarin [MSC+13] or DeepSec [CKR18b].
Further, we do not aim to compete with EasyCrypt [BGH+11; BDG+13] when it comes to the
analysis of cryptographic primitives, nor will we compete with MaskVerif [BBD+15] for the
automatic verification of non interference properties.

Those are only some examples among many others. Each tool has its particular strengths and
limitations, and each tool should be used for what it does best. In this spirit, we argue that it is
important to build bridges between the tools. Notably, we aim to develop a framework that would
enable from a single input file, to export protocol models for multiple tools, then using distinct
tools for distinct proofs of security over the same protocol model. It would also be interesting to
develop stronger interactions, where in the Squirrel prover, it would be possible to discharge a
proof goal to EasyCrypt, or even to a symbolic tool when it is to verify a positive reachability
property, e.g., an attack or an executability witness.

Finally, the variety of tools highlights the need for a foundational approach to security. Problems
should not be studied with a single tool in mind: they should be studied from a general perspective,
so that a single result can be used to improve multiple tools. We have followed this idea in Part II,
with a composition framework that is used in Squirrel but could also be used in EasyCrypt.
Conversely, Part III yields results that are used in EasyCrypt but could be integrated in Squir-
rel. Further, as Part III builds on symbolic methods, it could also yield interesting byproducts
for symbolic tools. In the future, we shall then

I continue to leverage symbolic methods to tackle security related questions with a founda-
tional perspective, thus allowing to improve multiple tools at once;

I in parallel build bridges between the multiple tools, so that the analysis of security protocols
can benefit from the strengths of each tool.

Beyond formal guarantees We strongly believe that the right to privacy is instrumental in
shaping a free society. We have made some small steps in this direction, trying to help derive
guarantees about privacy. Of course, we only looked at a small part of the chain, and much
more work is required before we can derive global formal guarantees about the hardware, the
implementation, the protocol design,. . .

210

10.4 Implementation and Case-Studies

But, looking even further away, and despite how it may appear in this work, we would like to
emphasize that formal guarantees are not the only important point. We have seldom talked about
one of the main link in the chain: human beings. It is not enough that protocols with strong
guarantees exist: they must also be used in practice, by citizens, companies or states. If people
don’t believe that the right to privacy is essential, this won’t happen. Security experts have a
role to play in this, notably by informing people about privacy risks. Among other examples, this
role has been highlighted with the recent debate about COVID tracking apps and popularization
articles written by security experts (see e.g., [BCV+20] for an example in French). Also, many
computer scientists have advocated for a long time that teaching computer sciences at a young age
is important, notably w.r.t. privacy notions. They have for instance submitted reports to governing
bodies, or more concretely set up popularization workshops in schools. We will participate in such
endeavours in the future.

To conclude, we believe that our future work is two fold. First, aim to provide the best formal
guarantees possible about the systems used in our everyday lives. Second, and maybe even more
importantly, defend the right to privacy in our society.

211

Bibliography

[ABF17] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calcu-
lus: mobile values, new names, and secure communication. Journal of the
ACM, 65(1):1:1–1:41, October 2017.

[AC06] Martín Abadi and Véronique Cortier. Deciding knowledge in security pro-
tocols under equational theories. Theor. Comput. Sci., 367(1-2):2–32, 2006.

[ACD07] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Combining
algorithms for deciding knowledge in security protocols. In Franck Wolter,
editor, Proceedings of the 6th International Symposium on Frontiers of
Combining Systems (FroCoS’07), volume 4720 of Lecture Notes in Artificial
Intelligence, pages 103–117, Liverpool, UK. Springer, September 2007. doi:
10.1007/978-3-540-74621-8_7.

[ACD12] M. Arapinis, V. Cheval, and S. Delaune. Verifying Privacy-Type Properties
in a Modular Way. In 2012 IEEE 25th Computer Security Foundations
Symposium, pages 95–109, June 2012. doi: 10.1109/CSF.2012.16.

[ACR+17] Tigran Avanesov, Yannick Chevalier, Michael Rusinowitch, and Mathieu
Turuani. Satisfiability of general intruder constraints with and without a
set constructor. Journal of Symbolic Computation, 80:27–61, 2017.

[ACZ13] Alessandro Armando, Roberto Carbone, and Luca Zanetti. Formal mod-
eling and automatic security analysis of two-factor and two-channel au-
thentication protocols. In Network and System Security: 7th International
Conference, NSS 2013, Madrid, Spain, June 3-4, 2013. Proceedings. Javier
Lopez, Xinyi Huang, and Ravi Sandhu, editors. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2013, pages 728–734. isbn: 978-3-642-38631-2. doi:
10.1007/978-3-642-38631-2_63. url: https://doi.org/10.1007/978-
3-642-38631-2_63.

[AF01] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In 28th ACM SIGPLAN-SIGACT symposium on Princi-
ples of Programming Languages, POPL 2001, pages 104–115, New York.
ACM, 2001.

[AR00] Martín Abadi and Phillip Rogaway. Reconciling Two Views of Cryptog-
raphy (The Computational Soundness of Formal Encryption). In Proceed-
ings of the International Conference IFIP on Theoretical Computer Science,
Exploring New Frontiers of Theoretical Informatics, TCS ’00, pages 3–22,
Berlin, Heidelberg. Springer-Verlag, 2000. isbn: 978-3-540-67823-6. url:
http : / / dl . acm . org / citation . cfm ? id = 647318 . 723498 (visited on
03/03/2019).

[AR02] M. Abadi and P. Rogaway. Reconciling two views of cryptography (The
computational soundness of formal encryption). J. Cryptology, 15(2):103–
127, 2002.

213

https://doi.org/10.1007/978-3-540-74621-8_7
https://doi.org/10.1109/CSF.2012.16
https://doi.org/10.1007/978-3-642-38631-2_63
https://doi.org/10.1007/978-3-642-38631-2_63
https://doi.org/10.1007/978-3-642-38631-2_63
http://dl.acm.org/citation.cfm?id=647318.723498

Bibliography

[Ax68] James Ax. The elementary theory of finite fields. Annals of Mathematics,
88(2):239–271, 1968.

[BBB+19] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas
Cremers, Kevin Liao, and Bryan Parno. Sok: computer-aided cryptography.
2019. url: https://eprint.iacr.org/2019/1393.pdf.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order mask-
ing. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Com-
puter Science, pages 457–485. Springer, 2015. doi: 10.1007/978-3-662-
46800-5_18. url: http://dx.doi.org/10.1007/978-3-662-46800-5_18.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 116–129. ACM, 2016. doi: 10.1145/2976749.2978427. url: https:
//doi.org/10.1145/2976749.2978427.

[BC12] Gergei Bana and Hubert Comon-Lundh. Towards unconditional sound-
ness: computationally complete symbolic attacker. In Pierpaolo Degano and
Joshua D. Guttman, editors, Proceedings of the 1st International Confer-
ence on Principles of Security and Trust (POST’12), volume 7215 of Lec-
ture Notes in Computer Science, pages 189–208, Tallinn, Estonia. Springer,
March 2012. doi: 10.1007/978-3-642-28641-4_11. url: http://www.
lsv.fr/Publis/PAPERS/PDF/BC-post12.pdf.

[BC14a] Gergei Bana and Hubert Comon-Lundh. A computationally complete sym-
bolic attacker for equivalence properties. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS’14), pages 609–620, Scottsdale, Ari-
zona, USA. ACM Press, November 2014. doi: 10.1145/2660267.2660276.
url: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BC-ccs14.
pdf.

[BC14b] David Basin and Cas Cremers. Know your enemy. ACM Transactions on
Information and System Security, 17(2), 2014.

[BCA+10] Bruno Blanchet, Vincent Cheval, Xavier Allamigeon, and Ben Smyth.
Proverif: cryptographic protocol verifier in the formal model. URL
http://prosecco. gforge. inria. fr/personal/bblanche/proverif, 17, 2010.

[BCE18] Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. Formal Analysis
of Vote Privacy Using Computationally Complete Symbolic Attacker. In
Computer Security - 23rd European Symposium on Research in Computer
Security, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceed-
ings, Part II, pages 350–372, 2018. doi: 10.1007/978-3-319-98989-1_18.
url: https://doi.org/10.1007/978-3-319-98989-1_18.

214

https://eprint.iacr.org/2019/1393.pdf
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
http://dx.doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-642-28641-4_11
http://www.lsv.fr/Publis/PAPERS/PDF/BC-post12.pdf
http://www.lsv.fr/Publis/PAPERS/PDF/BC-post12.pdf
https://doi.org/10.1145/2660267.2660276
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BC-ccs14.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BC-ccs14.pdf
https://doi.org/10.1007/978-3-319-98989-1_18
https://doi.org/10.1007/978-3-319-98989-1_18

Bibliography

[BCE+19] Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada.
Verification methods for the computationally complete symbolic attacker
based on indistinguishability. ACM Transactions on Computational Logic
(TOCL), 21(1):1–44, 2019.

[BCG+13] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yas-
sine Lakhnech, Benedikt Schmidt, and Santiago Zanella Béguelin. Fully au-
tomated analysis of padding-based encryption in the computational model.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, pages 1247–1260. ACM,
2013. doi: 10.1145/2508859.2516663. url: http://doi.acm.org/10.
1145/2508859.2516663.

[BCH10] Mayla Brusò, Konstantinos Chatzikokolakis, and Jerry den Hartog. For-
mal verification of privacy for RFID systems. In CSF, pages 75–88. IEEE
Computer Society, 2010.

[BCJ+19] Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and Ma-
hesh Viswanathan. Automated methods for checking differential privacy.
CoRR, abs/1910.04137, 2019. arXiv: 1910.04137. url: http://arxiv.
org/abs/1910.04137.

[BCV+20] Xavier Bonnetain, Anne Canteaut, VéroniqueCortier, Pierrick Gaudry,
Lucca Hirschi, Steve Kremer Stéephanie Lacour, Matthieu Lequesne, Gae-
tan Leurent Léo Perrin, André Schrottenloher, Emmanuel Thomé, Serge
Vaudenay, and Christophe Vuillot. 2020. url: https://risques-tracage.
fr/docs/risques-tracage.pdf.

[BDF+18] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok,
and Markulf Kohlweiss. State separation for code-based game-playing
proofs. In ASIACRYPT (3), volume 11274 of Lecture Notes in Computer
Science, pages 222–249. Springer, 2018.

[BDG+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In
Alessandro Aldini, Javier López, and Fabio Martinelli, editors, Founda-
tions of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial
Lectures, volume 8604 of Lecture Notes in Computer Science, pages 146–
166. Springer, 2013. isbn: 978-3-319-10081-4. doi: 10.1007/978-3-319-
10082-1_6. url: https://doi.org/10.1007/978-3-319-10082-1_6.

[BDH15] David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial order reduc-
tion for security protocols. In Luca Aceto and David de Frutos-Escrig, edi-
tors, Proceedings of the 26th International Conference on Concurrency The-
ory (CONCUR’15), volume 42 of Leibniz International Proceedings in In-
formatics, pages 497–510, Madrid, Spain. Leibniz-Zentrum für Informatik,
September 2015.

[BDH+08] Michael Backes, Markus Dürmuth, Dennis Hofheinz, and Ralf Küsters. Con-
ditional reactive simulatability. Int. J. Inf. Sec., 7(2):155–169, 2008.

215

https://doi.org/10.1145/2508859.2516663
http://doi.acm.org/10.1145/2508859.2516663
http://doi.acm.org/10.1145/2508859.2516663
https://arxiv.org/abs/1910.04137
http://arxiv.org/abs/1910.04137
http://arxiv.org/abs/1910.04137
https://risques-tracage.fr/docs/risques-tracage.pdf
https://risques-tracage.fr/docs/risques-tracage.pdf
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6

Bibliography

[BDK+10] Gilles Barthe, Marion Daubignard, Bruce M. Kapron, Yassine Lakhnech,
and Vincent Laporte. On the equality of probabilistic terms. In Edmund
M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artifi-
cial Intelligence, and Reasoning - 16th International Conference, LPAR-
16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers, vol-
ume 6355 of Lecture Notes in Computer Science, pages 46–63. Springer,
2010. doi: 10.1007/978-3-642-17511-4_4. url: https://doi.org/10.
1007/978-3-642-17511-4_4.

[BDK+20] David Baelde, Stéphanie Delaune, Adrien Koutsos, Charlie Jacomme, and
Moreau Solène. An interactive prover for protocol verification in the compu-
tational model, 2020. url: https://github.com/squirrel-submission-
sp21/squirrel-prover. Under submission.

[BFG+18] Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie Ja-
comme, and Elaine Shi. Symbolic proofs for lattice-based cryptography.
In Michael Backes and XiaoFeng Wang, editors, Proceedings of the 25th
ACM Conference on Computer and Communications Security (CCS’18),
pages 538–555, Toronto, Canada. ACM Press, October 2018. url: https:
//dl.acm.org/citation.cfm?doid=3243734.3243825.

[BFS+13] C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi, and S. C. Williams.
Less is more: relaxed yet composable security notions for key exchange.
en. International Journal of Information Security, 12(4):267–297, August
2013. issn: 1615-5270. doi: 10.1007/s10207-013-0192-y. url: https:
//doi.org/10.1007/s10207-013-0192-y (visited on 05/17/2019).

[BFW+11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C.
Williams. Composability of Bellare-rogaway Key Exchange Protocols. In
Proceedings of the 18th ACM Conference on Computer and Communica-
tions Security, CCS ’11, pages 51–62, New York, NY, USA. ACM, 2011.
isbn: 978-1-4503-0948-6. doi: 10.1145/2046707.2046716. url: http:
//doi.acm.org/10.1145/2046707.2046716 (visited on 01/30/2019).

[BGH+11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella-
Béguelin. Computer-aided security proofs for the working cryptographer.
In Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes
in Computer Science, pages 71–90, Heidelberg. Springer, 2011.

[BGJ+19] Gilles Barthe, Benjamin Grégoire, Charlie Jacomme, Steve Kremer, and
Pierre-Yves Strub. Symbolic methods in computational cryptography
proofs. In Stéphanie Delaune and Limin Jia, editors, Proceedings of the 31st
IEEE Computer Security Foundations Symposium (CSF’19), pages 136–
151, Hoboken, NJ, USA. IEEE Computer Society Press, July 2019. doi:
10.1109/CSF.2019.00017. url: https://hal.inria.fr/hal-02117794.

[BGS15] Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. Automated
proofs of pairing-based cryptography. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, Denver, CO, USA, Oc-
tober 12-16, 2015, pages 1156–1168. ACM, 2015. doi: 10.1145/2810103.
2813697. url: http://doi.acm.org/10.1145/2810103.2813697.

216

https://doi.org/10.1007/978-3-642-17511-4_4
https://doi.org/10.1007/978-3-642-17511-4_4
https://doi.org/10.1007/978-3-642-17511-4_4
https://github.com/squirrel-submission-sp21/squirrel-prover
https://github.com/squirrel-submission-sp21/squirrel-prover
https://dl.acm.org/citation.cfm?doid=3243734.3243825
https://dl.acm.org/citation.cfm?doid=3243734.3243825
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1145/2046707.2046716
http://doi.acm.org/10.1145/2046707.2046716
http://doi.acm.org/10.1145/2046707.2046716
https://doi.org/10.1109/CSF.2019.00017
https://hal.inria.fr/hal-02117794
https://doi.org/10.1145/2810103.2813697
https://doi.org/10.1145/2810103.2813697
http://doi.acm.org/10.1145/2810103.2813697

Bibliography

[BGV18a] Benjamin Bichsel, Timon Gehr, and Martin Vechev. Fine-grained seman-
tics for probabilistic programs. In Amal Ahmed, editor, Programming Lan-
guages and Systems, pages 145–185, Cham. Springer International Publish-
ing, 2018. isbn: 978-3-319-89884-1.

[BGV18b] Benjamin Bichsel, Timon Gehr, and Martin Vechev. Fine-grained semantics
for probabilistic programs. In 27th European Symposium on Programming
(ESOP’18), volume 10801 of Lecture Notes in Computer Science, pages 145–
185. Springer, 2018.

[BGZ09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. Formal
certification of code-based cryptographic proofs. In 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2009, pages 90–101, New York. ACM, 2009.

[BHO+12] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano.
The quest to replace passwords: a framework for comparative evaluation of
web authentication schemes. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy, SP ’12, pages 553–567. IEEE Computer Society,
2012. isbn: 978-0-7695-4681-0. doi: 10.1109/SP.2012.44. url: http:
//dx.doi.org/10.1109/SP.2012.44.

[BJK20] Gilles Barthe, Charlie Jacomme, and Steve Kremer. Universal equiva-
lence and majority on probabilistic programs over finite fields. In Naoki
Kobayashi, editor, Proceedings of the 35th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS’20), Saarbrücken. ACM, July 2020.
To appear.

[Bla06] Bruno Blanchet. A computationally sound mechanized prover for security
protocols. In 27th IEEE Symposium on Security and Privacy, S&P 2006,
pages 140–154. IEEE Computer Society, 2006.

[Bla07] Bruno Blanchet. CryptoVerif: a computationally sound mechanized prover
for cryptographic protocols. In Dagstuhl seminar "Formal Protocol Verifi-
cation Applied", October 2007.

[Bla09] Bruno Blanchet. Automatic verification of correspondences for security pro-
tocols. Journal of Computer Security, 17(4):363–434, 2009.

[Bla16] Bruno Blanchet. Modeling and verifying security protocols with the applied
pi calculus and proverif. Foundations and Trends® in Privacy and Security,
1(1-2):1–135, 2016. issn: 2474-1558. doi: 10.1561/3300000004. url: http:
//dx.doi.org/10.1561/3300000004.

[Bla18] Bruno Blanchet. Composition Theorems for CryptoVerif and Application
to TLS 1.3. In 31st IEEE Computer Security Foundations Symposium
(CSF’18), pages 16–30, Oxford, UK. IEEE Computer Society, July 2018.

[BLVGB+17] Vijay Bharadwaj, Hubert Le Van Gong, Dirk Balfanz, Alexei Czeskis, Arnar
Birgisson, Jeff Hodges, Michael B. Jones, Rolf Lindemann, and J.C. Jones.
Web authentication: an api for accessing public key credentials, December
2017. url: https://www.w3.org/TR/2017/WD-webauthn-20171205/.

[Bom66] Enrico Bombieri. On exponential sums in finite fields. American Journal of
Mathematics, 88(1):71–105, 1966.

217

https://doi.org/10.1109/SP.2012.44
http://dx.doi.org/10.1109/SP.2012.44
http://dx.doi.org/10.1109/SP.2012.44
https://doi.org/10.1561/3300000004
http://dx.doi.org/10.1561/3300000004
http://dx.doi.org/10.1561/3300000004
https://www.w3.org/TR/2017/WD-webauthn-20171205/

Bibliography

[BPW07] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The Reactive Sim-
ulatability (RSIM) Framework for Asynchronous Systems. Inf. Comput.,
205(12):1685–1720, December 2007. issn: 0890-5401. doi: 10.1016/j.ic.
2007.05.002. url: http://dx.doi.org/10.1016/j.ic.2007.05.002.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Advances in Cryptology
– EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 409–426, Heidelberg. Springer, 2006.

[Bra06] Mark Braverman. Termination of integer linear programs. In International
Conference on Computer Aided Verification, pages 372–385. Springer, 2006.

[BRS15] David A. Basin, Sasa Radomirovic, and Michael Schläpfer. A complete char-
acterization of secure human-server communication. In IEEE 28th Com-
puter Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17
July, 2015, pages 199–213, 2015. doi: 10.1109/CSF.2015.21. url: https:
//doi.org/10.1109/CSF.2015.21.

[BRS16] D. Basin, S. Radomirovic, and L. Schmid. Modeling human errors in secu-
rity protocols. In 2016 IEEE 29th Computer Security Foundations Sympo-
sium (CSF), pages 325–340, 2016. doi: 10.1109/CSF.2016.30.

[Buc76] B. Buchberger. A theoretical basis for the reduction of polynomials to
canonical forms. SIGSAM Bull., 10(3):19–29, August 1976. issn: 0163-5824.
doi: 10.1145/1088216.1088219. url: http://doi.acm.org/10.1145/
1088216.1088219.

[Can00] Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. 2000. url: http://eprint.iacr.org/2000/067.

[CDD+17] Véronique Cortier, Constantin Cătălin Drăgan, François Dupressoir,
Benedikt Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. Machine-
checked proofs of privacy for electronic voting protocols. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 993–1008. IEEE, 2017.

[CGH+85] Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich,
and Roman Smolensky. The bit extraction problem of t-resilient functions
(preliminary version). In 26th Annual Symposium on Foundations of Com-
puter Science (FOCS’85), pages 396–407. IEEE Computer Society, 1985.

[CGT18] Véronique Cortier, David Galindo, and Mathieu Turuani. A formal analysis
of the neuchâtel e-voting protocol. In 3rd IEEE European Symposium on
Security and Privacy (EuroSP’18), pages 430–442, London, UK, 2018. doi:
10.1109/EuroSP.2018.00037.

[CJS20] Hubert Comon, Charlie Jacomme, and Guillaume Scerri. Oracle simula-
tion: a technique for protocol composition with long term shared secrets.
In Jonathan Katz and Giovanni Vigna, editors, Proceedings of the 27st
ACM Conference on Computer and Communications Security (CCS’20),
Orlando, USA. ACM Press, November 2020. To appear.

218

https://doi.org/10.1016/j.ic.2007.05.002
https://doi.org/10.1016/j.ic.2007.05.002
http://dx.doi.org/10.1016/j.ic.2007.05.002
https://doi.org/10.1109/CSF.2015.21
https://doi.org/10.1109/CSF.2015.21
https://doi.org/10.1109/CSF.2015.21
https://doi.org/10.1109/CSF.2016.30
https://doi.org/10.1145/1088216.1088219
http://doi.acm.org/10.1145/1088216.1088219
http://doi.acm.org/10.1145/1088216.1088219
http://eprint.iacr.org/2000/067
https://doi.org/10.1109/EuroSP.2018.00037

Bibliography

[CK17] Hubert Comon and Adrien Koutsos. Formal Computational Unlinkabil-
ity Proofs of RFID Protocols. In Boris Köpf and Steve Chong, editors,
Proceedings of the 30th IEEE Computer Security Foundations Symposium
(CSF’17), pages 100–114, Santa Barbara, California, USA. IEEE Com-
puter Society Press, August 2017. doi: 10.1109/CSF.2017.9. url: http:
//ieeexplore.ieee.org/document/8049714/.

[CKK+19] Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch. iUC:
Flexible Universal Composability Made Simple. Technical report, 2019.
url: https://eprint.iacr.org/2019/1073.pdf.

[CKR18a] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. DEEPSEC: De-
ciding Equivalence Properties in Security Protocols - Theory and Prac-
tice. In Proceedings of the 39th IEEE Symposium on Security and Privacy
(S&P’18), pages 525–542, San Francisco, CA, USA. IEEE Computer Soci-
ety Press, May 2018. doi: 10.1109/SP.2018.00033.

[CKR18b] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. Deepsec: deciding
equivalence properties in security protocols theory and practice. In 2018
IEEE Symposium on Security and Privacy (SP), pages 529–546. IEEE,
2018.

[CKR+03] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Turu-
ani. Deciding the security of protocols with diffie-hellman exponentiation
and products in exponents. In Paritosh K. Pandya and Jaikumar Radhakr-
ishnan, editors, FSTTCS 2003: Foundations of Software Technology and
Theoretical Computer Science: 23rd Conference, Mumbai, India, Decem-
ber 15-17, 2003. Proceedings, pages 124–135, Berlin, Heidelberg. Springer
Berlin Heidelberg, 2003. isbn: 978-3-540-24597-1. doi: 10.1007/978-3-
540-24597-1_11. url: http://dx.doi.org/10.1007/978-3-540-24597-
1_11.

[CKW10] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A Survey of Sym-
bolic Methods in Computational Analysis of Cryptographic Systems. Jour-
nal of Automated Reasoning, 46(3-4):225–259, April 2010. doi: 10.1007/
s10817-010-9187-9. url: http://www.lsv.ens-cachan.fr/Publis/
PAPERS/PDF/CKW-jar10.pdf.

[CL06] Antoine Chambert-Loir. Compter (rapidement) le nombre de solutions
d’équations dans les corps finis. 2006. url: https://arxiv.org/abs/
math/0611584.

[CMP19] Dmitry Chistikov, Andrzej S Murawski, and David Purser. Asymmetric dis-
tances for approximate differential privacy. In 30th International Confer-
ence on Concurrency Theory (CONCUR 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[CR03] Ran Canetti and Tal Rabin. Universal Composition with Joint State. en.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, Lecture
Notes in Computer Science, pages 265–281. Springer Berlin Heidelberg,
2003. isbn: 978-3-540-45146-4.

[CR10] Yannick Chevalier and Michael Rusinowitch. Symbolic protocol analysis
in the union of disjoint intruder theories: combining decision procedures.
Theoretical Computer Science, 411(10):1261–1282, 2010.

219

https://doi.org/10.1109/CSF.2017.9
http://ieeexplore.ieee.org/document/8049714/
http://ieeexplore.ieee.org/document/8049714/
https://eprint.iacr.org/2019/1073.pdf
https://doi.org/10.1109/SP.2018.00033
https://doi.org/10.1007/978-3-540-24597-1_11
https://doi.org/10.1007/978-3-540-24597-1_11
http://dx.doi.org/10.1007/978-3-540-24597-1_11
http://dx.doi.org/10.1007/978-3-540-24597-1_11
https://doi.org/10.1007/s10817-010-9187-9
https://doi.org/10.1007/s10817-010-9187-9
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CKW-jar10.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/CKW-jar10.pdf
https://arxiv.org/abs/math/0611584
https://arxiv.org/abs/math/0611584

Bibliography

[CR16] Brent Carmer and Mike Rosulek. Linicrypt: a model for practical cryptog-
raphy. In 36th Annual International Cryptology Conference (CRYPTO’16),
volume 9816 of Lecture Notes in Computer Science, pages 416–445.
Springer, 2016.

[Cre08] Cas Cremers. On the Protocol Composition Logic PCL. In Proceedings of
the 2008 ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’08, pages 66–76, New York, NY, USA. ACM, 2008.
isbn: 978-1-59593-979-1. doi: 10.1145/1368310.1368324. url: http:
//doi.acm.org/10.1145/1368310.1368324 (visited on 05/17/2019).
event-place: Tokyo, Japan.

[CS18] Gaetan Cassiers and François-Xavier Standaert. Improved bitslice masking:
from optimized non-interference to probe isolation. IACR Cryptology ePrint
Archive, 2018:438, 2018. url: https://eprint.iacr.org/2018/438.

[CSV19] Ran Canetti, Alley Stoughton, and Mayank Varia. Easyuc: using easy-
crypt to mechanize proofs of universally composable security. In 2019 IEEE
32nd Computer Security Foundations Symposium (CSF), pages 167–16716.
IEEE, 2019.

[DDM+05] Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov, and
Mathieu Turuani. Probabilistic Polynomial-Time Semantics for a Proto-
col Security Logic. en. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and
Programming, Lecture Notes in Computer Science, pages 16–29. Springer
Berlin Heidelberg, 2005. isbn: 978-3-540-31691-6.

[Del06] Stéphanie Delaune. Easy intruder deduction problems with homomor-
phisms. Information Processing Letters, 97(6):213 –218, 2006. issn: 0020-
0190. doi: https://doi.org/10.1016/j.ipl.2005.11.008. url: http:
//www.sciencedirect.com/science/article/pii/S0020019005003248.

[Del92] Gilles Deleuze. Postscript on the societies of control. October, 59:3–7, 1992.

[DG14] Daniel J. Dougherty and Joshua D. Guttman. Decidability for lightweight
diffie-hellman protocols. In IEEE 27th Computer Security Foundations
Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages 217–231,
2014. doi: 10.1109/CSF.2014.23. url: http://dx.doi.org/10.1109/
CSF.2014.23.

[DKP12] Stéphanie Delaune, Steve Kremer, and Daniel Pasaila. Security protocols,
constraint systems, and group theories. In Bernhard Gramlich, Dale Miller,
and Uli Sattler, editors, Proceedings of the 6th International Joint Confer-
ence on Automated Reasoning (IJCAR’12), volume 7364 of Lecture Notes
in Artificial Intelligence, pages 164–178, Manchester, UK. Springer, June
2012. doi: 10.1007/978-3-642-31365-3_15. url: https://members.
loria.fr/skremer/files/Papers/CKP-ijcar12.pdf.

[DMP03] Nancy Durgin, John Mitchell, and Dusko Pavlovic. A Compositional Logic
for Proving Security Properties of Protocols. J. Comput. Secur., 11(4):677–
721, July 2003. issn: 0926-227X. url: http://dl.acm.org/citation.
cfm?id=959088.959095 (visited on 05/28/2019).

[Dwo60] Bernard Dwork. On the rationality of the zeta function of an algebraic
variety. American Journal of Mathematics, 82(3):631–648, 1960.

220

https://doi.org/10.1145/1368310.1368324
http://doi.acm.org/10.1145/1368310.1368324
http://doi.acm.org/10.1145/1368310.1368324
https://eprint.iacr.org/2018/438
https://doi.org/https://doi.org/10.1016/j.ipl.2005.11.008
http://www.sciencedirect.com/science/article/pii/S0020019005003248
http://www.sciencedirect.com/science/article/pii/S0020019005003248
https://doi.org/10.1109/CSF.2014.23
http://dx.doi.org/10.1109/CSF.2014.23
http://dx.doi.org/10.1109/CSF.2014.23
https://doi.org/10.1007/978-3-642-31365-3_15
https://members.loria.fr/skremer/files/Papers/CKP-ijcar12.pdf
https://members.loria.fr/skremer/files/Papers/CKP-ijcar12.pdf
http://dl.acm.org/citation.cfm?id=959088.959095
http://dl.acm.org/citation.cfm?id=959088.959095

Bibliography

[DY81] D. Dolev and A. Chi-Chih Yao. On the security of public key protocols.
In 22nd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 1981, pages 350–357. IEEE Computer Society, 1981.

[Ecs] Easycyrpt github repository. 2019. url: https://github.com/EasyCrypt/
easycrypt/tree/deploy-solveeq.

[Eis13] David Eisenbud. Commutative Algebra: with a view toward algebraic geom-
etry, volume 150. Springer Science & Business Media, 2013.

[FDW04] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong
authentication for RFID systems using the AES algorithm. In CHES, vol-
ume 3156 of Lecture Notes in Computer Science, pages 357–370. Springer,
2004.

[FG14] Marc Fischlin and Felix Günther. Multi-Stage Key Exchange and the Case
of Google’s QUIC Protocol. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’14, pages 1193–
1204, New York, NY, USA. ACM, 2014. isbn: 978-1-4503-2957-6. doi: 10.
1145/2660267.2660308. url: http://doi.acm.org/10.1145/2660267.
2660308 (visited on 05/28/2019). event-place: Scottsdale, Arizona, USA.

[Fid] FIDO Yubikey. Web site, 2018. url: https : / / www . yubico . com /
solutions/fido-u2f/. Accessed in January 2018.

[FID18] FIDO. Universal 2nd Factor (U2F), 2018. url: https://fidoalliance.
org/specs/fido-u2f-v1.2-ps-20170411/FIDO-U2F-COMPLETE-v1.2-
ps-20170411.pdf.

[FJ14] Matthew Fredrikson and Somesh Jha. Satisfiability modulo counting: a
new approach for analyzing privacy properties. In Joint Meeting of the
23rd Annual Conference on Computer Science Logic (CSL) and the 29th
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–
10. ACM, 2014.

[FKS14] Daniel Fett, Ralf Küsters, and Guido Schmitz. An Expressive Model for
the Web Infrastructure: Definition and Application to the BrowserID SSO
System. In 35th IEEE Symposium on Security and Privacy (S&P 2014),
pages 673–688. IEEE Computer Society, 2014. url: https://publ.sec.
uni-stuttgart.de/fettkuestersschmitz-sp-2014.pdf.

[Fou75] Michel Foucault. Surveiller et punir. Paris, 1:192–211, 1975.

[G2s] Google 2 Step Verification. Web site, 2018. url: https://www.google.
com/landing/2step/. Accessed in January 2018.

[GFN+17] Paul A. Grassi, James L. Fenton, Elaine M. Newton, Ray A. Perlner,
Andrew R. Regenscheid, William E. Burr, Justin P. Richer, Naomi B.
Lefkovitz, Jamie M. Danker, Kristen K. Choong Yee-Yin Greene, and Mary
F. Theofanos. Nist special publication 800-63b – digital identity guidelines
– authentication and lifecycle management, June 2017. Available at https:
//doi.org/10.6028/NIST.SP.800-63b.

[GGF17] Paul A. Grassi, Michael E. Garcia, and James L. Fenton. Nist special publi-
cation 800-63-3 – digital identity guidelines, June 2017. Available at https:
//doi.org/10.6028/NIST.SP.800-63-3.

221

https://github.com/EasyCrypt/easycrypt/tree/deploy-solveeq
https://github.com/EasyCrypt/easycrypt/tree/deploy-solveeq
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1145/2660267.2660308
http://doi.acm.org/10.1145/2660267.2660308
http://doi.acm.org/10.1145/2660267.2660308
https://www.yubico.com/solutions/fido-u2f/
https://www.yubico.com/solutions/fido-u2f/
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/FIDO-U2F-COMPLETE-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/FIDO-U2F-COMPLETE-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/FIDO-U2F-COMPLETE-v1.2-ps-20170411.pdf
https://publ.sec.uni-stuttgart.de/fettkuestersschmitz-sp-2014.pdf
https://publ.sec.uni-stuttgart.de/fettkuestersschmitz-sp-2014.pdf
https://www.google.com/landing/2step/
https://www.google.com/landing/2step/
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.6028/NIST.SP.800-63-3

Bibliography

[GHS+20] Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis Jackson, Cas Cremers,
and David Basin. A spectral analysis of noise: a comprehensive, automated,
formal analysis of diffie-hellman protocols, 2020.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-
channel protected AES implementation with arbitrary protection order.
In Helena Handschuh, editor, Topics in Cryptology - CT-RSA 2017 - The
Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA,
USA, February 14-17, 2017, Proceedings, volume 10159 of Lecture Notes in
Computer Science, pages 95–112. Springer, 2017. isbn: 978-3-319-52152-7.
doi: 10.1007/978-3-319-52153-4_6. url: https://doi.org/10.1007/
978-3-319-52153-4_6.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput.,
17(2):281–308, 1988.

[GNP19] Marco Gaboardi, Kobbi Nissim, and David Purser. The complexity of veri-
fying circuits as differentially private. CoRR, abs/1911.03272, 2019. arXiv:
1911.03272. url: http://arxiv.org/abs/1911.03272.

[GNW00] Qing Guo, Paliath Narendran, and D.A. Wolfram. Complexity of nilpotent
unification and matching problems. Information and Computation, 162(1):3
–23, 2000. issn: 0890-5401. doi: https://doi.org/10.1006/inco.1999.
2849. url: http://www.sciencedirect.com/science/article/pii/
S0890540199928493.

[Gol05] Oded Goldreich. Foundations of cryptography: a primer, volume 1. Now
Publishers Inc, 2005.

[Hal05] S. Halevi. A plausible approach to computer-aided cryptographic proofs.
Cryptology ePrint Archive, Report 2005/181, 2005.

[HBD19] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for
unbounded verification of privacy-type properties. J. Comput. Secur.,
27(3):277–342, 2019.

[HS15] Dennis Hofheinz and Victor Shoup. GNUC: A New Universal Composability
Framework. Journal of Cryptology, 28(3):423–508, July 2015. issn: 1432-
1378. doi: 10.1007/s00145-013-9160-y. url: https://doi.org/10.
1007/s00145-013-9160-y.

[Iso] ISO/IEC 9798-3:2019, IT Security techniques – Entity authentication –
Part 3: Mechanisms using digital signature techniques. en. url: https:
//www.iso.org/standard/67115.html (visited on 05/28/2019).

[JCC+19] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse. Seems
legit: automated analysis of subtle attacks on protocols that use signatures.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2019, London, UK, Novem-
ber 11-15, 2019, pages 2165–2180. ACM, 2019. doi: 10.1145/3319535.
3339813. url: https://doi.org/10.1145/3319535.3339813.

222

https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://arxiv.org/abs/1911.03272
http://arxiv.org/abs/1911.03272
https://doi.org/https://doi.org/10.1006/inco.1999.2849
https://doi.org/https://doi.org/10.1006/inco.1999.2849
http://www.sciencedirect.com/science/article/pii/S0890540199928493
http://www.sciencedirect.com/science/article/pii/S0890540199928493
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/s00145-013-9160-y
https://doi.org/10.1007/s00145-013-9160-y
https://www.iso.org/standard/67115.html
https://www.iso.org/standard/67115.html
https://doi.org/10.1145/3319535.3339813
https://doi.org/10.1145/3319535.3339813
https://doi.org/10.1145/3319535.3339813

Bibliography

[JK18] Charlie Jacomme and Steve Kremer. An extensive formal analysis of multi-
factor authentication protocols. In Steve Chong and Stéphanie Delaune,
editors, Proceedings of the 31st IEEE Computer Security Foundations Sym-
posium (CSF’18), pages 1–15, Oxford, UK. IEEE Computer Society Press,
July 2018. doi: 10.1109/CSF.2018.00008. url: https://ieeexplore.
ieee.org/document/8429292/.

[Joh16] William Andrew Johnson. Fun with fields. PhD thesis, UC Berkeley, 2016.

[JR10] Charanjit S. Jutla and Arnab Roy. A completeness theorem for pseudo-
linear functions with applications to uc security. Electronic Colloquium on
Computational Complexity (ECCC), 17:92, 2010.

[JW09] Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. ACM
Trans. Inf. Syst. Secur., 13(1):7:1–7:23, 2009.

[Kay05] Neeraj Kayal. Recognizing permutation functions in polynomial time.
ECCC, TR05-008, 173:185–311, 2005.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yu-
val Yarom. Spectre attacks: exploiting speculative execution. meltdownat-
tack.com, 2018. url: https://spectreattack.com/spectre.pdf.

[Kie76] Catarina Kiefe. Sets definable over finite fields: their zeta-functions. Trans-
actions of the American Mathematical Society, 223:45–59, 1976.

[KK16] Steve Kremer and Robert Künnemann. Automated analysis of security pro-
tocols with global state. Journal of Computer Security, 24(5):583–616, 2016.
doi: 10.3233/JCS-160556. url: https://hal.inria.fr/hal-01351388.

[KMT12] Steve Kremer, Antoine Mercier, and Ralf Treinen. Reducing Equational
Theories for the Decision of Static Equivalence. Journal of Automated Rea-
soning, 48(2):197–217, 2012. doi: 10.1007/s10817- 010- 9203- 0. url:
https://hal.inria.fr/inria-00636797.

[Kni89] Kevin Knight. Unification: a multidisciplinary survey. ACM Comput. Surv.,
21(1):93–124, March 1989. issn: 0360-0300. doi: 10.1145/62029.62030.
url: http://doi.acm.org.ins2i.bib.cnrs.fr/10.1145/62029.62030.

[Kou19a] Adrien Koutsos. Decidability of a sound set of inference rules for compu-
tational indistinguishability. In Stéphanie Delaune and Limin Jia, editors,
Proceedings of the 31st IEEE Computer Security Foundations Symposium
(CSF’19), Hoboken, NJ, USA. IEEE Computer Society Press, July 2019.
To appear.

[Kou19b] Adrien Koutsos. Symbolic Proofs of Computational Indistinguishability.
PhD thesis, 2019.

[Kou19c] Adrien Koutsos. The 5g-aka authentication protocol privacy. In IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2019, Stockholm, Swe-
den, June 17-19, 2019, pages 464–479. IEEE, 2019. doi: 10.1109/EuroSP.
2019.00041. url: https://doi.org/10.1109/EuroSP.2019.00041.

[KR17] Ralf Küsters and Daniel Rausch. A Framework for Universally Composable
Diffie-Hellman Key Exchange. In IEEE 38th Symposium on Security and
Privacy (S&P 2017), pages 881–900. IEEE Computer Society, 2017.

223

https://doi.org/10.1109/CSF.2018.00008
https://ieeexplore.ieee.org/document/8429292/
https://ieeexplore.ieee.org/document/8429292/
https://spectreattack.com/spectre.pdf
https://doi.org/10.3233/JCS-160556
https://hal.inria.fr/hal-01351388
https://doi.org/10.1007/s10817-010-9203-0
https://hal.inria.fr/inria-00636797
https://doi.org/10.1145/62029.62030
http://doi.acm.org.ins2i.bib.cnrs.fr/10.1145/62029.62030
https://doi.org/10.1109/EuroSP.2019.00041
https://doi.org/10.1109/EuroSP.2019.00041
https://doi.org/10.1109/EuroSP.2019.00041

Bibliography

[KR19] Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient cryp-
tography. 2019.

[KR94] Hélène Kirchner and Christophe Ringeissen. Combining symbolic constraint
solvers on algebraic domains. J. Symb. Comput., 18(2):113–155, 1994. doi:
10.1006/jsco.1994.1040. url: https://doi.org/10.1006/jsco.1994.
1040.

[KS13] Robert Künnemann and Graham Steel. Yubisecure? formal security anal-
ysis results for the yubikey and yubihsm. In Security and Trust Manage-
ment: 8th International Workshop, STM 2012, Pisa, Italy, September 13-
14, 2012, Revised Selected Papers. Audun Jøsang, Pierangela Samarati, and
Marinella Petrocchi, editors. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013, pages 257–272. isbn: 978-3-642-38004-4. doi: 10.1007/978-3-642-
38004-4_17. url: https://doi.org/10.1007/978-3-642-38004-4_17.

[KT11] Ralf Küsters and Max Tuengerthal. Composition Theorems Without Pre-
established Session Identifiers. In Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security, CCS ’11, pages 41–50,
New York, NY, USA. ACM, 2011. isbn: 978-1-4503-0948-6. doi: 10.1145/
2046707.2046715. url: http://doi.acm.org/10.1145/2046707.2046715
(visited on 05/17/2019). event-place: Chicago, Illinois, USA.

[Len85] A.K. Lenstra. Factoring multivariate polynomials over finite fields. Journal
of Computer and System Sciences, 30(2):235 –248, 1985. issn: 0022-0000.
doi: http://dx.doi.org/10.1016/0022-0000(85)90016-9. url: http:
//www.sciencedirect.com/science/article/pii/0022000085900169.

[LGM98] Michael L Littman, Judy Goldsmith, and Martin Mundhenk. The computa-
tional complexity of probabilistic planning. Journal of Artificial Intelligence
Research, 9:1–36, 1998.

[LMO+08] Axel Legay, Andrzej S Murawski, Joël Ouaknine, and James Worrell. On
automated verification of probabilistic programs. In 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’08), volume 4963 of Lecture Notes in Computer Science,
pages 173–187. Springer, 2008.

[LN83] Rudolf Lidl and Harald Niederreiter. Finite fields. Addison-Wesley, 1983.

[LSB+19] Andreas Lochbihler, S Reza Sefidgar, David Basin, and Ueli Maurer.
Formalizing constructive cryptography using crypthol. In 2019 IEEE
32nd Computer Security Foundations Symposium (CSF), pages 152–15214.
IEEE, 2019.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. meltdownattack.com, 2018. url: https : / /
meltdownattack.com/meltdown.pdf.

[LW06] Alan GB Lauder and Daqing Wan. Counting points on varieties over finite
fields of small characteristic. arXiv preprint math/0612147, 2006.

[Mau01] Stefan Maubach. The automorphism group over finite fields, 2001.

[Mau11] Ueli Maurer. Constructive cryptography - A new paradigm for security def-
initions and proofs. In TOSCA, volume 6993 of Lecture Notes in Computer
Science, pages 33–56. Springer, 2011.

224

https://doi.org/10.1006/jsco.1994.1040
https://doi.org/10.1006/jsco.1994.1040
https://doi.org/10.1006/jsco.1994.1040
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1145/2046707.2046715
https://doi.org/10.1145/2046707.2046715
http://doi.acm.org/10.1145/2046707.2046715
https://doi.org/http://dx.doi.org/10.1016/0022-0000(85)90016-9
http://www.sciencedirect.com/science/article/pii/0022000085900169
http://www.sciencedirect.com/science/article/pii/0022000085900169
https://meltdownattack.com/meltdown.pdf
https://meltdownattack.com/meltdown.pdf

Bibliography

[Mfa] Proverif source files. 2018. url: https://gitlab.inria.fr/cjacomme/
multi-factor-authentication-proverif-examples.

[Mil99] Robin Milner. Communicating and mobile systems: the pi calculus. Cam-
bridge university press, 1999.

[MO05] Andrzej S. Murawski and Joël Ouaknine. On probabilistic program equiva-
lence and refinement. In Martín Abadi and Luca de Alfaro, editors, CON-
CUR 2005 - Concurrency Theory, 16th International Conference, CON-
CUR 2005, San Francisco, CA, USA, August 23-26, 2005, Proceedings, vol-
ume 3653 of Lecture Notes in Computer Science, pages 156–170. Springer,
2005. doi: 10.1007/11539452_15. url: https://doi.org/10.1007/
11539452_15.

[MP13] Gary L Mullen and Daniel Panario. Handbook of finite fields. Chapman and
Hall/CRC, 2013.

[MS01] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In CCS 2001, Proc. 8th ACM Con-
ference on Computer and Communications Security (CCS’01), pages 166–
175. ACM, 2001. url: https://doi.org/10.1145/501983.502007.

[MSC+13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The
tamarin prover for the symbolic analysis of security protocols. In Interna-
tional Conference on Computer Aided Verification, pages 696–701. Springer,
2013.

[MST84] Maurice Mignotte, Tarlok Nath Shorey, and Robert Tijdeman. The distance
between terms of an algebraic recurrence sequence. Journal für die reine und
angewandte Mathematik, (349):63–76, 1984.

[MT79] Robert Morris and Ken Thompson. Password security: a case history. Com-
munications of the ACM, 22(11):594–597, 1979.

[Mvs] Maskverif source files. 2019. url: https://sites.google.com/site/
symbolicforcrypto/.

[MW04] David Molnar and David A. Wagner. Privacy and security in library RFID:
issues, practices, and architectures. In ACM Conference on Computer and
Communications Security, pages 210–219. ACM, 2004.

[MW12] Scott McCallum and Volker Weispfenning. Deciding polynomial-
transcendental problems. Journal of Symbolic Computation, 47(1):16–
31, 2012.

[Nie71] H Niederreiter. Orthogonal systems of polynomials in finite fields. Proceed-
ings of the American Mathematical Society, 28(2):415–422, 1971.

[Nip90] Tobias Nipkow. Unification in primal algebras, their powers and their vari-
eties. J. ACM, 37(4):742–776, October 1990. issn: 0004-5411.

[OW12] Joël Ouaknine and James Worrell. Decision problems for linear recur-
rence sequences. In 6th International Workshop on Reachability Problems
(RP’12), volume 7550 of Lecture Notes in Computer Science, pages 21–28.
Springer, 2012.

[OW14a] Joël Ouaknine and James Worrell. Positivity problems for low-order lin-
ear recurrence sequences. In 25th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’14), pages 366–379. Society for Industrial and Applied
Mathematics, 2014.

225

https://gitlab.inria.fr/cjacomme/multi-factor-authentication-proverif-examples
https://gitlab.inria.fr/cjacomme/multi-factor-authentication-proverif-examples
https://doi.org/10.1007/11539452_15
https://doi.org/10.1007/11539452_15
https://doi.org/10.1007/11539452_15
https://doi.org/10.1145/501983.502007
https://sites.google.com/site/symbolicforcrypto/
https://sites.google.com/site/symbolicforcrypto/

Bibliography

[OW14b] Joël Ouaknine and James Worrell. Ultimate positivity is decidable for sim-
ple linear recurrence sequences. In International Colloquium on Automata,
Languages, and Programming, pages 330–341. Springer, 2014.

[PNB+18] Andrey Popov, Magnus Nystrom, Dirk Balfanz, Adam Langley, Nick
Harper, and Jeff Hodges. Token Binding over HTTP. Internet-Draft
draft-ietf-tokbind-https-12, Internet Engineering Task Force, January 2018.
24 pages. url: https://datatracker.ietf.org/doc/html/draft-ietf-
tokbind-https-12. Work in Progress.

[PRW17] Olivier Pereira, Florentin Rochet, and Cyrille Wiedling. Formal Analysis of
the Fido 1.x Protocol. In The 10th International Symposium on Founda-
tions & Practice of Security, Lecture Notes in Computer Science (LNCS).
Springer, October 2017.

[PSS+11] Kenneth G. Paterson, Jacob C. N. Schuldt, Martijn Stam, and Susan Thom-
son. On the Joint Security of Encryption and Signature, Revisited. en.
In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology –
ASIACRYPT 2011, Lecture Notes in Computer Science, pages 161–178.
Springer Berlin Heidelberg, 2011. isbn: 978-3-642-25385-0.

[Sce15] Guillaume Scerri. Proofs of security protocols revisited. PhD thesis, 2015.

[SCR+18] Giada Sciarretta, Roberto Carbone, Silvio Ranise, and Luca Viganò. De-
sign, formal specification and analysis of multi-factor authentication so-
lutions with a single sign-on experience. In International Conference on
Principles of Security and Trust, pages 188–213. Springer, Cham, 2018.

[Seq] Solveq github repository, 2019. url: https://github.com/EasyCrypt/
solveq.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332, 2004.

[SMC+12] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated Analysis of
Diffie-Hellman Protocols and Advanced Security Properties. In 2012 IEEE
25th Computer Security Foundations Symposium, pages 78–94, June 2012.
doi: 10.1109/CSF.2012.25.

[Squ] Squirrel source files and case-studies. 2020. url: https://github.com/
squirrel-submission-sp21/squirrel-prover.

[SR16] Guillaume Scerri and Stanley-Oakes Ryan. Analysis of Key Wrapping APIs:
Generic Policies, Computational Security. en. In pages 281–295. IEEE Com-
puter Society, June 2016. doi: 10.1109/CSF.2016.27. url: https://hal.
inria.fr/hal-01417123 (visited on 02/27/2019).

[SS88] David Shannon and Moss Sweedler. Using gröbner bases to determine al-
gebra membership, split surjective algebra homomorphisms determine bi-
rational equivalence. J. Symb. Comput., 6(2-3):267–273, December 1988.
issn: 0747-7171. doi: 10.1016/S0747- 7171(88)80047- 6. url: http:
//dx.doi.org/10.1016/S0747-7171(88)80047-6.

[tea17] G Suite team. G suite updates. Blog entry, February 2017. url: https:
//gsuiteupdates.googleblog.com/2017/02/improved-phone-prompts-
for-2-step.html.

[Tor88] Jacobo Toràn. An oracle characterization of the counting hierarchy. In 3rd
Annual Structure in Complexity Theory Conference, pages 213–223, 1988.

226

https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-12
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-12
https://github.com/EasyCrypt/solveq
https://github.com/EasyCrypt/solveq
https://doi.org/10.1109/CSF.2012.25
https://github.com/squirrel-submission-sp21/squirrel-prover
https://github.com/squirrel-submission-sp21/squirrel-prover
https://doi.org/10.1109/CSF.2016.27
https://hal.inria.fr/hal-01417123
https://hal.inria.fr/hal-01417123
https://doi.org/10.1016/S0747-7171(88)80047-6
http://dx.doi.org/10.1016/S0747-7171(88)80047-6
http://dx.doi.org/10.1016/S0747-7171(88)80047-6
https://gsuiteupdates.googleblog.com/2017/02/improved-phone-prompts-for-2-step.html
https://gsuiteupdates.googleblog.com/2017/02/improved-phone-prompts-for-2-step.html
https://gsuiteupdates.googleblog.com/2017/02/improved-phone-prompts-for-2-step.html

Bibliography

[Tor91] Jacobo Torán. Complexity classes defined by counting quantifiers. Journal
of the ACM, 38:753–774, 1991.

[Ver85] NK Vereshchagin. The problem of appearance of a zero in a linear recurrence
sequence. Mat. Zametki, 38(2):609–615, 1985.

[Wei49] André Weil. Numbers of solutions of equations in finite fields. Bulletin of
the AMS, 1949.

[YL] Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH) Transport Layer
Protocol. en. url: https://tools.ietf.org/html/rfc4253 (visited on
05/17/2019).

227

https://tools.ietf.org/html/rfc4253

A Appendix of Part I

229

A Appendix of Part I

A.1 Global Results for MFA

We summarize in Table A.1, A.2, an A.3 all the results we computed using the automated gener-
ation of scenarios, the captions being given in Figure A.1. The results were obtained in 8 minutes
of computing on a server with 12 Intel(R) Xeon(R) CPU X5650 @ 2.67GHz and 50Gb of RAM.
During the computation, 6172 calls to Proverif were made. As Proverif may not terminate
we set a timeout at 3 seconds: only two scenarios exceeded the timeout limit. For readability, we
only display the minimal or maximal interesting scenarios, and results which are implied by an
other scenario are greyed. The table was completely generated by an automated script, to avoid
transcription mistakes.

230

A.1 Global Results for MFA

T
h
re

a
t

S
ce

n
a
ri

o
s

g
2
V

g
2
V

F
P
R

g
2
V

D
g
2
S
T

g
2
S
T

F
P
R

g
2
S
T

D
g
2
D

T
F
P
R

g
2
D

T
D

g
2
D

T
D

E
U

2
F

T
B
-U

2
F

T
B
-g

2
D

T
D

4
4

4
6

4
4

4
4

4
4

4
4

P
H

6
4

3
3

3
6

4
4

4
3

3
3

4
4

4
3

3
3

N
C

4
4

4
6

6
6

4
4

4
4

4
4

F
S

4
4

4
6

6
6

4
4

4
4

4
4

P
H

N
C

6
6

6
6

6
6

6
6

3
3

3
4

4
6

P
H

N
C

M
t−
d
i
s

io
:R
W

6
6

6
6

6
6

6
6

6
3

3
3

3
3

3
6

P
H

F
S

6
6

7
3

3
6

6
6

6
7

3
3

4
4

4
7

3
3

P
H

F
S

M
t−
m
e
m

in
:R
O

6
6

7
3

7
6

6
6

6
7

3
7

3
3
-

3
3

7
3

3
7

7
3

7

P
H

F
S

M
t−
t
ls

io
:R
O

6
6

6
6

6
6

6
7

3
-

3
3

7
3

3
7

4
7

3
3

P
H

F
S

M
t−
u
s
b

in
:R
O

6
6

6
6

6
6

6
7

3
3

4
4

4
7

3
3

P
H

F
S

N
C

M
t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
3
-

3
3

7
3

3
7

6

P
H

F
S

N
C

M
t−
t
ls

io
:R
O

6
6

6
6

6
6

6
6

3
3

7
3

3
7

3
3

3
6

P
H

F
S

M
t−
m
e
m

in
:R
W

6
6

7
3

7
6

6
6

6
7

3
7

3
3

7
3

3
7

3
3

7
7

3
7

P
H

F
S

M
t−
t
ls

io
:R
O
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
7

3
-

3
3

7
3

3
7

3
3

7
7

3
7

P
H

F
S

M
t−
d
i
s

io
:R
W

6
6

7
3

3
6

6
6

6
6

3
7

7
4

4
6

P
H

F
S

N
C

M
t−
m
e
m

in
:R
W

6
6

6
6

6
6

6
6

3
3

7
3

3
7

3
3

7
6

P
H

F
S

M
t−
u
s
b

in
:R
O
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
7

3
7

3
3
-

3
3

7
3

3
7

7
3

7

P
H

F
S

M
t−
t
ls

io
:R
W

6
6

6
6

6
6

6
6

3
3

7
6

6
7

7
-

P
H

F
S

N
C

M
t−
t
ls

io
:R
O
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
3

7
3

3
7

3
3

7
6

P
H

F
S

M
t−
u
s
b

in
:R
W

6
6

6
6

6
6

6
6

4
3

3
3

4
6

P
H

F
S

M
t−
d
i
s

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

7
3

7
6

6
6

6
6

3
7

7
3

3
7

3
3

7
6

P
H

F
S

M
t−
u
s
b

in
:R
O
M

t−
m
e
m

in
:R
W

6
6

6
6

6
6

6
7

3
7

3
3

7
3

3
7

3
3

7
7

3
7

P
H

F
S

M
t−
d
i
s

io
:R
W
M

t−
t
ls

io
:R
O

6
6

6
6

6
6

6
6

3
7

7
3

3
7

3
3

3
6

P
H

F
S

M
t−
t
ls

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
3

7
6

6
6

P
H

F
S

N
C

M
t−
d
i
s

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

6
3

3
7

3
3

7
6

P
H

F
S

M
t−
u
s
b

in
:R
O
M

t−
d
i
s

io
:R
W

6
6

6
6

6
6

6
6

3
7

7
3

3
3

3
3

3
6

P
H

F
S

M
t−
d
i
s

io
:R
O
M

t−
t
ls

io
:R
W

6
6

6
6

6
6

6
6

3
3

7
6

6
6

P
H

F
S

M
t−
u
s
b

in
:R
W
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
3

7
3

3
7

3
3

7
6

P
H

F
S

M
t−
u
s
b

in
:R
O
M

t−
t
ls

io
:R
W

6
6

6
6

6
6

6
6

3
3

7
6

6
6

P
H

F
S

M
t−
u
s
b

in
:R
W
M

t−
t
ls

io
:R
O

6
6

6
6

6
6

6
6

3
3

7
3

3
7

4
6

P
H

F
S

M
t−
d
i
s

io
:R
W
M

t−
t
ls

io
:R
O
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
7

7
3

3
7

3
3

7
6

P
H

F
S

M
t−
u
s
b

in
:R
O
M

t−
d
i
s

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
7

7
3

3
7

3
3

7
6

P
H

F
S

M
t−
d
i
s

io
:R
W
M

t−
t
ls

io
:R
W

6
6

6
6

6
6

6
6

3
7

7
6

6
6

P
H

F
S

M
t−
u
s
b

io
:R
W

6
6

6
6

6
6

6
6

3
3

3
6

6
6

P
H

F
S

M
t−
u
s
b

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
3

7
6

6
6

P
H

F
S

M
t−
u
s
b

io
:R
W
M

t−
t
ls

io
:R
O

6
6

6
6

6
6

6
6

3
3

7
6

6
6

P
H

F
S

M
t−
u
s
b

io
:R
W
M

t−
d
i
s

io
:R
W

6
6

6
6

6
6

6
6

3
7

7
6

6
6

M
t−
m
e
m

in
:R
O

3
3

3
3

3
3

3
3

3
6

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

M
de
v

in
:R
O

6
6

6
6

4
4

4
4

4
-

-
-

-
-

-
4

M
t−
d
i
s

io
:R
O

4
4

4
6

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
4

4
3

3
3

M
t−
t
ls

io
:R
O

6
3

3
3

3
3

3
6

3
3

3
3

3
3

4
4

4
4

4
4

M
t−
u
s
b

in
:R
O

6
4

4
6

4
4

4
4

4
4

4
4

N
C

M
t−
t
ls

io
:R
O

6
6

6
6

6
6

3
3

3
3

3
3

3
3

3
4

4
4

N
C

M
t−
u
s
b

in
:R
O

6
6

6
6

6
6

3
3

3
3

3
3

4
4

4
3

3
3

M
de
v

in
:R
W

6
6

6
6

6
6

6
6

6
6

6
6

M
de
v

io
:R
O

6
6

6
6

4
4

4
4

4
6

6
4

M
t−
t
ls

io
:R
W

6
7

3
7

3
3

7
6

7
3

7
3

3
7

7
3

7
3

3
7

3
3

7
6

7
7
-

3
3

7

N
C

M
t−
d
i
s

io
:R
W

3
3

3
3

3
3

3
3

3
6

6
6

6
6

6
4

4
6

N
C

M
t−
t
ls

io
:R
W

6
6

6
6

6
6

7
7

7
7

7
7

3
3

7
6

7
7
-

7
7

7

N
C

M
t−
u
s
b

in
:R
W

6
6

6
6

6
6

6
6

4
3

3
3

4
6

M
t−
t
ls

io
:R
W
M

t−
m
e
m

in
:R
O

6
7

3
7

3
3

7
6

7
3

7
3

3
7

7
3

7
3

3
7

3
3

7
6

7
7

7
3

3
7

M
t−
d
i
s

io
:R
O
M

t−
t
ls

io
:R
W

6
7

3
7

3
3

7
6

7
3

7
3

3
7

7
3

7
3

3
7

3
3

7
6

7
7

7
3

3
7

N
C

M
t−
t
ls

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
3

7
6

6
6

Table A.1: Global Results for Malware on Trusted Platform - Part 1

231

A Appendix of Part I

T
h
re

a
t

S
ce

n
a
ri

o
s

g
2
V

g
2
V

F
P
R

g
2
V

D
g
2
S
T

g
2
S
T

F
P
R

g
2
S
T

D
g
2
D

T
F
P
R

g
2
D

T
D

g
2
D

T
D

E
U

2
F

T
B
-U

2
F

T
B
-g

2
D

T
D

M
t−
u
s
b

in
:R
O
M

t−
t
ls

io
:R
W

6
7

3
7

3
3

7
6

7
3

7
3

3
7

7
3

7
3

3
7

3
3

7
6

7
7

7
3

3
7

N
C

M
t−
d
i
s

io
:R
W
M

t−
t
ls

io
:R
O

6
6

6
6

6
6

6
6

6
3

3
3

4
6

N
C

M
t−
d
i
s

io
:R
O
M

t−
t
ls

io
:R
W

6
6

6
6

6
6

6
6

3
3

7
6

6
6

N
C

M
t−
u
s
b

in
:R
O
M

t−
d
i
s

io
:R
W

6
6

6
6

6
6

6
6

6
3

3
3

3
3

3
6

N
C

M
t−
u
s
b

in
:R
O
M

t−
t
ls

io
:R
W

6
6

6
6

6
6

6
6

3
3

7
6

6
6

M
t−
u
s
b

io
:R
W

6
4

3
3

3
6

4
4

4
3

3
3

4
6

6
3

3
3

N
C

M
t−
u
s
b

io
:R
W

6
6

6
6

6
6

6
6

3
3

3
6

6
6

F
S

M
t−
m
e
m

in
:R
O

3
3

7
3

3
7

3
3

7
6

6
6

3
3

7
3

3
7

3
3
-

3
3

7
3

3
7

3
3

7

F
S

M
t−
t
ls

io
:R
O

6
6

3
7

7
6

6
6

3
3
-

3
3
-

3
3

7
3

3
7

4
4

F
S

M
t−
u
s
b

in
:R
O

6
6

3
7

7
6

6
6

3
3

3
4

4
4

4
4

F
S

N
C

M
t−
t
ls

io
:R
O

6
6

6
6

6
6

3
3
-

3
3
-

3
3

7
3

3
7

4
3

3
3

F
S

M
t−
m
e
m

in
:R
W

3
3

7
3

3
7

3
3

7
6

6
6

3
3

7
3

3
7

3
3

7
3

3
7

3
3

7
3

3
7

F
S

M
t−
t
ls

io
:R
O
M

t−
m
e
m

in
:R
O

6
6

3
7

7
6

6
6

3
3
-

3
3
-

3
3

7
3

3
7

3
3

7
3

3
7

F
S

M
t−
d
i
s

io
:R
W

3
3

3
3

3
3

4
6

6
6

6
3

7
7

3
7

7
4

4
3

7
7

F
S

M
t−
u
s
b

in
:R
O
M

t−
m
e
m

in
:R
O

6
6

3
7

7
6

6
6

3
3

7
3

3
7

3
3
-

3
3

7
3

3
7

3
3

7

F
S

M
t−
t
ls

io
:R
W

6
6

3
7

7
6

6
6

7
7

7
3

7
7

3
3

7
6

7
7

7
3

7
-

F
S

N
C

M
t−
t
ls

io
:R
O
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

3
3
-

3
3
-

3
3

7
3

3
7

3
3

7
3

3
7

F
S

N
C

M
t−
u
s
b

in
:R
O
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

3
3

7
3

3
7

3
3
-

3
3

7
3

3
7

3
3

7

F
S

M
t−
u
s
b

in
:R
W

6
6

3
7

7
6

6
6

6
3

7
7

4
4

4
3

7
7

F
S

N
C

M
t−
t
ls

io
:R
W

6
6

6
6

6
6

6
6

3
3

7
6

6
6

F
S

M
t−
d
i
s

io
:R
W
M

t−
m
e
m

in
:R
O

3
3

7
3

3
7

3
3

7
6

6
6

6
3

7
7

3
7

7
3

3
7

3
3

7
3

7
7

F
S

M
t−
u
s
b

in
:R
O
M

t−
m
e
m

in
:R
W

6
6

3
7

7
6

6
6

3
3

7
3

3
7

3
3

7
3

3
7

3
3

7
3

3
7

F
S

M
t−
d
i
s

io
:R
W
M

t−
t
ls

io
:R
O

6
6

3
7

7
6

6
6

6
3

7
7

3
7

7
3

3
7

4
3

7
7

F
S

M
t−
t
ls

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

3
7

7
6

6
6

6
3

7
7

3
3

7
6

6
3

7
7

F
S

M
t−
u
s
b

in
:R
O
M

t−
d
i
s

io
:R
W

6
6

3
7

7
6

6
6

6
3

7
7

3
7

7
4

4
3

7
7

F
S

N
C

M
t−
d
i
s

io
:R
W
M

t−
m
e
m

in
:R
O

3
3

7
3

3
7

3
3

7
6

6
6

6
6

6
3

3
7

3
3

7
6

F
S

M
t−
u
s
b

in
:R
W
M

t−
m
e
m

in
:R
O

6
6

3
7

7
6

6
6

6
3

7
7

3
3

7
3

3
7

3
3

7
3

7
7

F
S

N
C

M
t−
u
s
b

in
:R
O
M

t−
m
e
m

in
:R
W

6
6

6
6

6
6

3
3

7
3

3
7

3
3

7
3

3
7

3
3

7
3

3
7

F
S

N
C

M
t−
d
i
s

io
:R
W
M

t−
t
ls

io
:R
O

6
6

6
6

6
6

6
6

6
3

3
7

3
3

3
6

F
S

M
t−
u
s
b

in
:R
W
M

t−
t
ls

io
:R
O

6
6

3
7

7
6

6
6

6
3

7
7

3
3

7
3

3
7

4
3

7
7

F
S

N
C

M
t−
u
s
b

in
:R
W
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
3

7
3

3
7

3
3

7
6

F
S

M
t−
d
i
s

io
:R
W
M

t−
t
ls

io
:R
O
M

t−
m
e
m

in
:R
O

6
6

3
7

7
6

6
6

6
3

7
7

3
7

7
3

3
7

3
3

7
3

7
7

F
S

N
C

M
t−
u
s
b

in
:R
W
M

t−
t
ls

io
:R
O

6
6

6
6

6
6

6
6

3
3

7
3

3
7

4
6

F
S

M
t−
u
s
b

in
:R
O
M

t−
d
i
s

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

3
7

7
6

6
6

6
3

7
7

3
7

7
3

3
7

3
3

7
3

7
7

F
S

M
t−
d
i
s

io
:R
W
M

t−
t
ls

io
:R
W

6
6

3
7

7
6

6
6

6
3

7
7

3
7

7
6

6
3

7
7

F
S

N
C

M
t−
d
i
s

io
:R
W
M

t−
t
ls

io
:R
O
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

6
3

3
7

3
3

7
6

F
S

N
C

M
t−
u
s
b

in
:R
O
M

t−
d
i
s

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

6
3

3
7

3
3

7
6

F
S

M
t−
u
s
b

in
:R
W
M

t−
t
ls

io
:R
W

6
6

3
7

7
6

6
6

6
3

7
7

3
3

7
6

6
3

7
7

F
S

M
t−
u
s
b

io
:R
W

6
6

3
7

7
6

6
6

6
3

7
7

4
6

6
3

7
7

F
S

M
t−
u
s
b

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

3
7

7
6

6
6

6
3

7
7

3
3

7
6

6
3

7
7

F
S

M
t−
u
s
b

io
:R
W
M

t−
t
ls

io
:R
O

6
6

3
7

7
6

6
6

6
3

7
7

3
3

7
6

6
3

7
7

F
S

N
C

M
t−
u
s
b

io
:R
W
M

t−
m
e
m

in
:R
O

6
6

6
6

6
6

6
6

3
3

7
6

6
6

F
S

N
C

M
t−
u
s
b

io
:R
W
M

t−
t
ls

io
:R
O

6
6

6
6

6
6

6
6

3
3

7
6

6
6

F
S

M
t−
u
s
b

io
:R
W
M

t−
d
i
s

io
:R
W

6
6

3
7

7
6

6
6

6
3

7
7

3
7

7
6

6
3

7
7

Table A.2: Global Results for Malware on Trusted Platform - Part 2

232

A.1 Global Results for MFA

T
h
re

a
t

S
ce

n
a
ri

o
s

g
2
V

g
2
V

F
P
R

g
2
V

D
g
2
S
T

g
2
S
T

F
P
R

g
2
S
T

D
g
2
D

T
F
P
R

g
2
D

T
D

g
2
D

T
D

E
U

2
F

T
B
-U

2
F

T
B
-g

2
D

T
D

P
H

N
C

M
u−
d
i
s

io
:R
W

6
6

6
6

6
6

6
6

6
4

4
6

P
H

F
S

M
u−
d
i
s

io
:R
W

6
6

7
3

3
6

6
6

6
7

3
3

7
3

3
4

4
7

3
3

M
u−
m
e
m

in
:R
O

4
4

4
6

4
4

4
4

4
4

4
4

M
u−
d
i
s

io
:R
O

4
4

4
6

4
4

4
3

3
3

3
3

3
4

4
3

3
3

M
u−
t
ls

io
:R
O

6
3

3
3

4
6

3
3

3
4

4
4

4
4

4
4

M
u−
u
s
b

in
:R
O

6
3

3
3

4
6

3
3

3
4

4
4

4
4

4
4

N
C

M
u−
t
ls

io
:R
O

6
6

6
6

6
6

4
4

4
4

4
4

N
C

M
u−
u
s
b

in
:R
O

6
6

6
6

6
6

4
4

3
3

3
4

4
4

M
u−
t
ls

io
:R
W

6
3

7
7

3
3

3
6

3
7

7
4

3
7

7
3

3
3

4
6

6
3

3
3

N
C

M
u−
d
i
s

io
:R
W

4
4

4
6

6
6

6
6

6
4

4
6

M
u−
u
s
b

in
:R
W

6
3

7
3

4
6

3
7

3
4

3
7

3
4

4
3

7
3

3
7

3
4

N
C

M
u−
t
ls

io
:R
W

6
6

6
6

6
6

7
7

7
6

3
3

3
6

6
6

N
C

M
u−
u
s
b

in
:R
W

6
6

6
6

6
6

7
7

7
6

3
7

3
3

7
3

3
7

3
6

N
C

M
u−
d
i
s

io
:R
W
M

u−
t
ls

io
:R
O

6
6

6
6

6
6

6
6

6
4

4
6

N
C

M
u−
u
s
b

in
:R
O
M

u−
d
i
s

io
:R
W

6
6

6
6

6
6

6
6

6
3

3
3

3
3

3
6

N
C

M
u−
u
s
b

in
:R
W
M

u−
d
i
s

io
:R
W

6
6

6
6

6
6

6
6

6
3

7
3

3
7

3
6

M
u−
u
s
b

io
:R
W

6
3

7
3

3
3

3
6

3
7

3
4

3
7

3
3

3
3

4
7

7
7

7
7

7
3

3
3

N
C

M
u−
u
s
b

in
:R
W
M

u−
t
ls

io
:R
W

6
6

6
6

6
6

6
6

3
7

7
6

6
6

N
C

M
u−
u
s
b

io
:R
W

6
6

6
6

6
6

6
6

3
7

3
6

6
6

F
S

M
u−
t
ls

io
:R
O

6
6

7
3

3
6

6
6

4
3

3
3

4
4

4
3

3
3

F
S

M
u−
u
s
b

in
:R
O

6
6

7
3

3
6

6
6

4
3

3
3

4
4

4
3

3
3

F
S

M
u−
d
i
s

io
:R
W

4
4

3
3

3
6

6
6

6
7

3
3

7
3

3
4

4
7

3
3

F
S

M
u−
t
ls

io
:R
W

6
6

7
3

3
6

6
6

7
7

7
7

3
3

3
3

3
6

6
7

3
3

F
S

M
u−
u
s
b

in
:R
W

6
6

7
3

3
6

6
6

7
7

7
7

3
3

4
3

7
3

3
7

3
7

3
3

F
S

M
u−
d
i
s

io
:R
W
M

u−
t
ls

io
:R
O

6
6

7
3

3
6

6
6

6
7

3
3

7
3

3
4

4
7

3
3

F
S

M
u−
u
s
b

in
:R
O
M

u−
d
i
s

io
:R
W

6
6

7
3

3
6

6
6

6
7

3
3

7
3

3
3

3
3

3
3

3
7

3
3

F
S

M
u−
d
i
s

io
:R
W
M

u−
t
ls

io
:R
W

6
6

7
3

3
6

6
6

6
7

3
3

7
3

3
6

6
7

3
3

F
S

M
u−
u
s
b

in
:R
W
M

u−
d
i
s

io
:R
W

6
6

7
3

3
6

6
6

6
7

3
3

7
3

3
3

7
3

3
7

3
7

3
3

F
S

M
u−
u
s
b

io
:R
W

6
6

7
3

3
6

6
6

6
7

3
3

3
3

3
6

6
7

3
3

F
S

M
u−
u
s
b

io
:R
W
M

u−
d
i
s

io
:R
W

6
6

7
3

3
6

6
6

6
7

3
3

7
3

3
6

6
7

3
3

Table A.3: Global Results for Malware on Untrusted Platform

233

A Appendix of Part I

Protocols
I g2V- Google 2-step with Verification code
I g2Vfpr- g2V with fingerprint display
I g2Vdis- g2Vfpr with action display
I g2OT- Google 2-step One Tap
I g2OTfpr- g2OT with fingerprint display
I g2OTdis- g2OT with action display

I g2DTfpr- Google 2-step Double Tap (random
to compare)

I g2DTdis- g2DTfpr with action display
I U2F- FIDO’s U2F
I U2Ftb- TokenBinding U2F
I g2DTdis

tb - TokenBinding g2DTdis

Scenarios:
I NC- No Compare, the human does not com-

pare values
I FS- Fingerprint spoof, the attacker can copy

the user IP address
I PH- The user might be victim of phishing

only on trusted everyday connections or un-
trusted computers

I Minterface
in:acc1,out:acc2- The interface inputs are

given to the attacker with access level acc1,
and acc2 for the outputs

Notations:
I 3- Property satisfied (4if all three)
I 7- Attack found (6if all three)
I 7- Attack also present in a weaker scenario

I 3- Property also satisfied in a stronger sce-
nario

I - - Either scenario not pertinent, or failure to
reconstruct attack trace

Figure A.1: Caption for Global Results

234

B Appendix of Part II

235

B Appendix of Part II

B.1 Formal Corollary for Key Exchange

We denote p = {idI , idR} and s = {lsidIi , lsidRi }i∈N the set of all the copies of the local session
identifiers.

Formalizing the previous Section, to prove the security of a key exchange, we can use the following
Corollary of Theorem 5.5.

Corollary B.1. Let Oke, O be oracles and KEi[_1,_2] := I(lsidIi , id
I);_1‖R(lsidRi , id

R);_2

a key exchange protocol, such that I binds xI , xIid, x
I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE) is

disjoint of the oracle support. Let idI , idR be names and sI = {lsidIi }i∈N,sR = {lsidRi }i∈N sets
of names :

1. ∀i ≥ 1, (νlsidIi , id
I , lsidRi , id

R.

KEi[out(〈xI , lsidIi , xIlsid, xIid〉),out(〈xR, lsidRi , xRlsid, xRid〉)]‖out(〈lsidRi , lsidIi 〉)

is Oke simulatable)).
2. s is disjoint of the support of O.

3.

KE0[out(〈xI , lsidI0, xIlsid, xIid〉),out(〈xR, lsidR0 , xRlsid, xRid)] ∼=Oke,O
KE0[if xIlsid = lsidR0 ∧ xIid = idR then

out(〈k, lsidI0, xlsid, xid〉)
else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI0, xIlsid, xIid〉),
if xRlsid = lsidI0 ∧ xRid = idI then

out(〈k, lsidR0 , xRlsid, xRid〉)
else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)]
Then, for any N which depends on the security parameter:

‖i≤NKEi[out(xI),out(xR)] ∼=O
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(ki,j)
else out(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(kj,i)
else out(xR)]

Then, building upon the previous Corollary and the sequential composition Theorems, the following
Corollary shows the precise requirements to prove the security of a protocol which uses a key
exchange, for an bounded number of session and with long term secrets shared between the key
exchange and the protocol.

Corollary B.2. Let OT , Oke, Or,OP,Q be oracles and

KEi[_1,_2] := I(lsidIi , id
I);_1‖R(lsidRi , id

R);_2 a key exchange protocol, such that I binds
xI , xIid, x

I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE) is disjoint of the oracle support. Let idI , idR

be names, sI = {lsidIi }i∈N,sR = {lsidRi }i∈N and s = sI ∩ sR sets of names.

236

B.2 Formal Corollary for Key Confirmations

Let p = {idI , idR}, P (x, y) = P1(x, y)‖P2(x, y) and Q(x, y, z) = Q1(x, y, z)‖Q1(x, y, z) be
parameterized protocols, such that Nl(P,Q) is disjoint of the oracle support.

I-1 ∀i ≥ 1, (νlsidIi , id
I , lsidRi , id

R.KEi[out(xI),out(xR)]‖out(〈lsidRi , lsidIi 〉) is OT -
simulatable)).

I-2 s is disjoint of the support of OP,Q.

I-3

KE0[out(〈xI , lsidI0, xIlsid, xIid〉),out(〈xR, lsidR0 , xRlsid, xRid〉) ∼=OT ,OP,Q
KE0 [if xIlsid = lsidR0 ∧ xIid = idR then

out(〈k, lsidI0, xIlsid, xIid〉)
else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI0, xIlsid, xIid〉),
if xRlsid = lsidI ∧ xRid = idI then

out(〈k, lsidR0 , xRlsid, xRid〉)
else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)]

and

R-1 ∀ 1 ≤ i, j ≤ n, νp, ki,j .P0(p, ki,j) is Or-simulatable.
R-2 ∀ 1 ≤ i ≤ n, νp, ki,j .Q0(p, ki,j) is Or-simulatable.
R-3 s is disjoint of the support of Ok.
R-4 P0(p, k) ∼=Or,Oke Q0(p, k)

and

C-1 νp.in(xIi).P
I
i (xIi)‖in(xRi).PRi (xRi)is OP,Q-simulatable.

1. νp.

‖i≤n KEi[if (xIid = idR) then
if

1≤j≤n
(xIlsid = lsidRj ∧ xIid = idR) then

out(〈i, j〉)
else P Ii (xIi),

if (xRid = idI) then
if

1≤j≤n
(xRlsid = lsidIj ∧ xRid = idI) then

out(〈i, j〈)
else PRi (xRi)]

is Oke-simulatable.

Then, for any n which may depend on the security parameter:

‖i≤nKEi[P Ii (xIi), P
R
i (xRi)] ∼=

‖i≤nKEi[if xIid = idR then QIi (x
I
i) else P Ii (xIi), if x

R
id = idI then QRi (xRi) else PRi (xRi)]

B.2 Formal Corollary for Key Confirmations

The Theorem for those key exchanges is very similar to Corollary B.2. The main difference is that
now, instead of working on a key exchange KE := I(lsidI , idI)|R(lsidR, idR)[, we further split I
and R, in I = I0; I1 and R := R0;R1, where I0 and R0 will corresponds to the key exchange up to
but not including the first use of the secret key, and I1 and R1 as the remainder of the protocol.

Corollary B.3. Let OKE, Or,OP,Q be oracles and

KEi[_1,_2] := Ii(lsid
I
i , id

I);_1|Ri(lsid
Ri, idR);_2

237

B Appendix of Part II

a key exchange protocol with Ii(lsid
I
i , id

I) := I0
i (lsidIi , id

I); I1
i (xI) and Ri(lsid

R
i , id

R) :=
R0
i (lsid

R
i , id

R);R1
i (x

R) such that I0 binds xI , xid, xlsid, R0 binds xR, xid, xlsid and Nl(KE)
is disjoint of the oracles support. Let p = {idI , idR}, Pi(x, y) = P Ii (x, y)‖PRi (x, y),Q(x, y, z) =
QIi (x, y, z)‖QRi (x, y, z), Ci(z) and Di(z) be protocols, such that Nl(P,Q,C,D) is disjoint of the
oracles support.

Let idI , idR be names, sI = {lsidIi }i∈N,sR = {lsidRi }i∈N and s = sI ∩ sR sets of names.

A-1 ∀i ∈ N, (νlsidIi , idI , lsidRi , idR.Ci(p)‖I0
i (lsidIi , id

I);out(xI)‖R0
i (lsid

R
i , id

R);out(xR) is
OKE simulatable)).

A-2 s is disjoint of the support of Op.

A-3

Ci(p)‖I0
0 (lsidI0, id

I); if xIlsid /∈ sR ∧ xIid = idR then
I1(xI);out(xI)

else out(〈xI , lsidI0, xIlsid, xIid〉)
‖R0(lsidR0 , id

R); if xRlsid /∈ sI ∧ xid = idI then
R1(xR);out(xR)

else out(〈xR, lsidR, xRlsid, xRid〉)∼=OKE ,Op
Ci(p)‖I0(lsidI0, id

I); if xIlsid = lsidR ∧ xid = idR then
out(〈k, lsidI0, xIlsid, xIid〉)

else if xIlsid /∈ sR ∧ xIid = idR then
I1(xR);⊥

else out(〈xI , lsidI , xIlsid, xIid〉)
‖R0(lsidR0 , id

R); if xRlsid = lsidI ∧ xRid = idI then
out(〈k, lsidR0 , xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
I1(xR);⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)

and for any N which may depend on the security parameter:

B-1 ‖i≤N2

Di(p)‖I1
i (ki);P

I
i (p, ki)‖B1

i (ki);P
R
i (p, ki) ∼=Or,Ok ‖i≤n

2

Di(p)‖I1
i (ki);Q

I
i (p, ki)‖B1

i (ki);Q
R
i (p, ki)

and

C-1 νp, lsidIi , lsid
R
i .Di(p)‖in(x).Pi(x) ‖in(x).Qi(x)‖in(x).I1

i (x);P Ii (x)‖in(x).R1
i (x);PRi (x)

‖in(x).I1
i (x);QIi (x)‖in(x).R1

i (x);QRi (x) is Op simulatable.

C-2 νp.

‖i≤N Ci(p)‖I0
i (lsidIi , id

I); if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(〈i, j〉)
else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R)[if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(〈i, j〉)
else if (xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

is Ok simulatable.

Then, for any n:

‖i≤NCi(p)‖Di(p)‖KEi[P Ii (xI), PRi (xR)] ∼=

‖i≤NCi(p)‖Di(p)‖KEi[if xIid = idR then QIi (x
I) else P Ii (xI), if xRid = idI then QRi (xR) else PRi (xR)]

238

B.3 Proofs of Chapter 5

B.3 Proofs of Chapter 5

B.3.1 Oracle Simulation

We first show thatO-simulation, whose definition implies the identical distributions of two messages
produced either by the simulator of by the oracle, implies the equality of distributions of message
sequences produced by either the oracle or the simulator.

Lemma 5.2. Given a functional model Mf , a sequence of names n, an oracle O with support n
and a protocol P , that is O-simulatable with AO, we have, for every x, y, c, r2, rB ∈ {0, 1}?, every
v ∈ Dη

n, for every m ≥ 1, for every PTOM BO (using tags prefixed by 1):

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m = x, φ2

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

where we split ρO into ρAO] ρBO such that O called by B only accesses ρBO and O called by A only
accesses ρAO (which is possible thanks to the distinct prefixes).

Proof. We proceed by induction on m. Let us fix x, y, c, r2, rB ∈ {0, 1}? and v ∈ Dη
n. We assume

that:
Pρs,ρr1 ,ρr2 ,ρO{θ

1
m = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m = x, φ2

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

We define vim+1 = BO(ρs,ρO)(Mf , ρr2 , η, φ
i
m).

As the support of O is n, we have that O(ρs, ρO) = O(πk(ρs, η), ρO) .

Using conditional probabilities, we have that:

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m+1 = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{v

1
m+1 = xm+1| θ1

m = x, φ2
m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

×Pρs,ρr1 ,ρr2 ,ρO{θ
1
m = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

Now, if we define Ov,rB such that Ov,rB = O(πn(ρs, η), ρBO) when [[n]]ηρs = v and ρBO = rB , we have
that

Pρs,,ρr1 ,ρr2 ,ρO{v
1
m+1 = xm+1| θ1

m = x, φ1
m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

=1 Pρs,ρr1 ,ρr2 ,ρO{B
O(πn(ρs,η),ρBO)(Mf , ρr2 , η, φ

1
m) = xm+1

| θ1
m = x, φ1

m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
=2 Pρs,ρr1 ,ρr2 ,ρO{B

Ov,rB (Mf , r2, η, y) = xm+1

| θ1
m = x, φ1

m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
=3 Pρs,ρr1 ,ρr2 ,ρO{B

Ov,rB (Mf , r2, η, y) = xm+1}
=4 Pρs,ρr1 ,ρr2 ,ρO{B

Ov,rB (Mf , r2, η, y) = xm+1

| θ2
m = x, φ2

m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
=5 Pρs,ρr1 ,ρr2 ,ρO{B

O(πn(ρs,η),ρBO)(Mf , ρr2 , η, φ
2
m) = xm+1

| θ2
m = x, φ2

m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

Justified with:

1. because O(ρs, ρO) = O(πn(ρs, η), ρBO);
2. O(πn(ρs, η), ρBO) = Ov,rB , and φ1

m = y;
3. the considered event does not depends on any of the conditional events removed;
4. the considered event does not depends on any of the conditional events added;

239

B Appendix of Part II

5. reversing the previous steps.

So we conclude that, as we also have the induction hypothesis:

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m+1 = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m+1 = x, φ2

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2} (i)

We now define:
u1
m+1 = AO(πn(ρs,η),ρAO)(Mf , ρr1 , θ

1
m] v1

m+1, η)

u2
m+1 = OP (ρs, θ

2
m] v2

m+1)

We define the Turing machine B, such that:

BO(ρs,ρO)(Mf , ρr2 , η, φ
i
m) :=

if ∀j ≤ m+ 1,BO(v,rB)(Mf , r2, η, φ
i
j) = xj

∧φim = y
then BO(v,rB)(Mf , r2, η, φ

i
m)

else ⊥

We then define v′m and θ′m for B similarly as vm for B.

We define Ov,ρAO such that Ov,ρAO = O(πn(ρs, η), ρAO) when [[n]]ηρs = v. We then have:

Pρs,ρr1 ,ρr2 ,ρO{u
1
m+1 = ym+1| θ1

m+1 = x, φ1
m = y, [[n]]ηρs = v, ρBO = rB, ρr2 = r2}

=1 Pρs,ρr1 ,ρr2 ,ρO{A
O
v,ρAO (Mf , ρr1 , x, η) = ym+1| θ1

m+1 = x, φ1
m = y,

[[n]]ηρs = v, ρBO = rB, ρr2 = r2}
=2 Pρs,ρr1 ,ρr2 ,ρO{A

O
v,ρAO (Mf , ρr1 , θ

1′

m+1, η) = ym+1| θ1
m+1 = x, φ1

m = y,
[[n]]ηρs = v, ρBO = rB, ρr2 = r2}

=3 Pρs,ρr1 ,ρr2 ,ρO{A
O
v,ρAO (Mf , ρr1 , θ

1′

m+1, η) = ym+1| [[n]]ηρs = v}
×(Pρs,ρr1 ,ρr2 ,ρO{θ

1
m+1 = x, φ1

m = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
×Pρs,ρr1 ,ρr2 ,ρO{ρ

B
O = rB, ρr2 = r2| [[n]]ηρs = v})−1

=4 Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2′

m+1) = ym+1| [[n]]ηρs = v}
×(Pρs,ρr1 ,ρr2 ,ρO{θ

1
m+1 = x, φ1

m = y, | [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
×Pρs,ρr1 ,ρr2 ,ρO{ρ

B
O = rB, ρr2 = r2| [[n]]ηρs = v})−1

=5 Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2′

m+1) = ym+1| [[n]]ηρs = v}
×(Pρs,ρr1 ,ρr2 ,ρO{θ

2
m+1 = x, φ2

m = y, | [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
×Pρs,ρr1 ,ρr2 ,ρO{ρ

B
O = rB, ρr2 = r2| [[n]]ηρs = v})−1

=6 Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, θ
2′

m+1) = ym+1| θ2
m+1 = x, φ2

m = y, [[n]]ηρs = v,
ρBO = rB, ρr2 = r2}

=7 Pρs,ρr1 ,ρr2 ,ρO{OP (ρs, x) = ym+1| θ2
m+1 = x, φ2

m = y, [[n]]ηρs = v,
ρBO = rB, ρr2 = r2}

=8 Pρs,ρr1 ,ρr2 ,ρO{u
2
m+1 = ym+1| θ2

m+1 = x, φ2
m = y, [[n]]ηρs = v,

ρBO = rB, ρr2 = r2}

Justified with:

1. using the conditional probabilities;
2. by definition of B which produces x under the conditional events;
3. using conditional probabilities, as θm 6= x ∨ φm 6= y ⇒ B = ⊥;
4. by O simulatability on B;
5. using (i);

240

B.3 Proofs of Chapter 5

6. using conditional probabilities, as θm 6= x ∨ φm 6= y ⇒ B = ⊥;
7. by definition of B which produces x under the conditional events;
8. using the conditional probabilities.

Combining the previous equality with equation (i) finally yields through conditional probabilities:

Pρs,ρr1 ,ρr2 ,ρO{θ
1
m+1 = x, φ1

m+1 = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
= Pρs,ρr1 ,ρr2 ,ρO{θ

2
m+1 = x, φ2

m+1 = y| [[n]]ηρs = v, ρBO = rB, ρr2 = r2}
�

B.3.2 Autocomposition Results

Proposition 5.4. Let O be an oracle, two parameterized processes P (x), Q(x), a set of names
n = Ng(P,Q) and fresh names k0, l. We assume that Nl(P,Q) is disjoint of the support of O. If:

I νn.in(cP , x);P (x)‖in(cQ, x);Q(x) is O-simulatable, and
I P (k0);out(cP , x)‖Q(k0);out(cQ, x) ∼=O P (k0);out(cP , l)‖Q(k0);out(cQ, l)

then, for any N,

P (k0);P (x);N ;out(cP , x)‖Q(k0);Q(x);N ;out(cQ, x)
∼=O P (k0);P (x);N ;out(cP , l)‖Q(k0);Q(x);N ;out(cQ, l)

Proof. We proceed by induction on N . The result is exactly the first hypothesis for N = 0.

Given some N > 1, we assume that

P (ki)
;N−1; out(k)‖Q(ki)

;N−1; out(k) ∼=O P (ki)
;N−1; out(l)|Q(ki)

;N−1; out(l) (i)

In the following, we will write P (ki)
;N−1 for P (ki);P (k);N−2 and we will omit to mention the

α-renaming made over the local names in Nl(P,Q) between the different copies of P and Q. The
renaming is however essential so that we may for instance have Nl(PN−1(k)) ∩ Nl(P) = ∅ when
we wish to apply Theorem 5.4. This silent renaming is possible because Nl(P,Q) is not contained
in the support of O.

We obtain by application of Theorem 5.4 with A = P (ki)
;N−1, B = Q(ki)

;N−1, P1(x) :=
P (x);0; out(k) and P2(x) := Q(x);0; out(k):

P ;N (ki); out(k)‖Q;N (ki); out(k) ∼=O P ;N−1(ki);P (l);0; out(k)‖Q;N−1(ki);Q(l);0; out(k) (I)

Now, with Theorem 5.2 applied on P (l);0; out(k)‖Q(l);0; out(k) ∼=O P (l);0; out(l′)‖Q(l);0; out(l′)
with l′ a fresh name, with P := P (ki)

;N−1 and Q := Q(ki)
;N−1, we obtain:

P (ki)
;N−1;P (l);0; out(k)‖Q;N−1(ki);Q(l); out(k) ∼=O P (ki)

;N−1;P (l);0; out(l′)‖Q(ki)
;N−1;Q(l);0; out(l′) (II)

We also perform an application of Theorem 5.4 on (i) with A = P (ki)
;N−1, B = Q(ki)

;N−1,
P1(k) := P (ki)

;0; out(l) and P2(k) := Q(ki)
;0; out(l) :

P (ki)
;N−1;P (l);0; out(l′)|Q(ki)

;N−1;P (l);0; out(l′) ∼=O P (ki)
;N ; out(l)‖Q(ki)

;N ; out(l) (III)

241

B Appendix of Part II

We conclude by transitivity with (I),(II) and (III). �

Simulatability is stable by binding names that do not appear in the protocol, which means that
we will be able simulate at the same times two simulatable protocol who do not share long term
secret.
Lemma B.1. Given a functional modelMf , a sequence of names n, an oracle O with support
n and a sequence of terms t, if νn.t is O-simulatable , then for any sequence of names m such
that m ∩N (t1, . . . , tn) = ∅, νn ∪m.t is O-simulatable.

Proof. Let there be a functional model Mf , a sequence of names n, an oracle O with support n
and a sequence of terms t O-simulatable. As the names of m do not appear in t, the probability of
any event regarding t is independent from an event regarding m so we have for any PTOM AO, η,
sequences c, v, w ∈ {0, 1}∗,

Pρs,ρr1 ,ρr2 ,ρO{A
O(ρs,ρO)(Mf ,m1, . . . ,mk, ρr2 , η) = c | [[n]]ηρs = v, [[m]]ηρs = w}

Pρs,ρr1 ,ρr2 ,ρO{A
O(ρs,ρO)(Mf ,m1, . . . ,mk, ρr2 , η) = c | [[n]]ηρs = v}

= Pρs,ρr,ρO{[[t1, . . . , tn]]ηρs,ρr,ρO = c|[[n]]ηρs = v}
= Pρs,ρr,ρO{[[t1, . . . , tn]]ηρs,ρr,ρO = c|[[n]]ηρs = v, [[m]]ηρs = w}

Thus νn ∪m.t is O-simulatable. �

Proposition 5.3. Let Or be an oracle parameterized by a sequence of names s, and O an ora-
cle. Let p be a sequence of names, P (x), R1

i (x, y), . . . , Rki (x, y) and Q(x) be protocols, such that
Nl(R1

i , . . . , R
k
i) is disjoint of the oracle support. If we have, for sequences of names lsid

1
, . . . , lsid

k
,

with s = {lsidji}1≤j≤k,i∈N :

1. ∀i, j ∈ N, νp, lsidji .R
j
i (p, lsid

j

i) is Or-simulatable.
2. P (p) ∼=Or Q(p)
3. s is disjoint of the support of O.

Then, for any integers N1, . . . , Nk:

P (p)‖i≤N1(R1
i (p, lsid

1

i)‖ . . . ‖i≤NkRki (p, lsid
k

i)
∼=O,Or Q(p)‖i≤N1R1

i (p, lsid
1

i)‖ . . . ‖i≤NkRki (p, lsid
k

i)

Specifically, there exists a polynomial pS (independent of all Rj) such that if pRj is the polynomial
bound on the runtime of the simulator for Rj, we have,

AdvP (p)‖i≤N1 (R1
i (p,lsid

1
i)‖...‖

i≤NkRki (p,lsid
k
i)∼=OQ(p)‖i≤N1R1

i (p,lsid
1
i)‖...‖

i≤NkRki (p,lsid
k
i)(t)

≤ AdvP (p)∼=O,OrQ(p)
(
pS
(
t,N1, |R1|, . . . , Nk, |Rk|, pR1(t), . . . , pRk(t)

))
Rather than proving the previous Theorem, where we recall that the protocols may depend on a
predicate T (x) whose interpretation depends on s, we prove the version where P directly depends
on s.
Proposition B.1. Let Or be an oracle parameterized by a sequence of names s. Let
p be a sequence of names, P (x), R1

i (x, y, z), . . . , R
k
i (x, y, z) and Q(x, y) be protocols, such

that Nl(R1
i , . . . , R

k
i) is disjoint of the oracle support. If we have, for sequences of names

lsid
1
, . . . , lsid

k
, with s = {lsidji}i,j∈N :

1. ∀i, j ∈ N, νp, lsidji .R
j
i (p, lsid

j

i , s) is Or-simulatable.
2. P (p) ∼=O Q(p, s)

242

B.3 Proofs of Chapter 5

Then, for any integers N1, . . . , Nk:

P (p)‖i≤N1(R1
i (p, lsid

1

i , s)‖ . . . ‖i≤NkRki (p, lsid
k

i , s)
∼=Or Q(p, s)‖i≤N1R1

i (p, lsid
1

i , s)‖ . . . ‖i≤NkRki (p, lsid
k

i , s)

Specifically, there exists polynomial pS (independent of all Rj)such that if pRj is the polynomial
bound on the runtime of the simulator for Rj, we have,

AdvP (p)‖i≤N1 (R1
i (p,lsid

1
i ,s)‖...‖

i≤NkRki (p,lsid
k
i ,s)
∼=OrQ(p,s)‖i≤N1R1

i (p,lsid
1
i ,s)‖...‖

i≤NkRki (p,lsid
k
i ,s)(t)

≤ AdvP (p)∼=OQ(p,s)
(
pS
(
t,N1, |R1|, . . . , Nk, |Rk|, pR1(t), . . . , pRk(t)

))

Proof. We prove the result for k = 1, denoting R1 as R, as the generalization is immediate. Let
there be an integer n.

Hypothesis 1 with Lemma B.1 gives us that for 1 ≤ i ≤ N , νlsidi, p.Ri(p, lsidi, s) isOR-simulatable.

Moreover, with δ = {p, s}, N (Ri(p, lsidi, s)) ∩ δ = {p, lsidi}, so thanks to Theorem 5.1, for
1 ≤ i ≤ N , νδ.R(p, lsidi, s) is OR-simulatable.

Now, up to renaming of the local names of R (which is possible as they do not appear in the
oracle support), we have that ∀1 ≤ i < j ≤ N.N (Ri(p, lsidi, s)) ∩ N (Rj(p, lsidj , s)) ⊂ δ, so with
Theorem 5.1 we have that ‖i≤NRi(p, lsidi, s) is OR-simulatable.

Note that if R is simulatable by a simulator bounded by a polynomial pR(t) on an input of size t,
then ‖i ≤ NR(p, lsidi, s) is simulatable by a simulator bounded by a polynomial q(n, pR(t)), where
q is uniform in n and R.

Finally, we have that ‖i≤NRi(p, lsidi, s) is OR-simulatable and P (p, lsidn) ∼=O Q(p, s), so we
conclude with Theorem 5.2.

Instantiating the bound on the advantage from Theorem 5.2 with |C| = n|R| and pC(t) =
q(n, pR(t)) yields the desired result. �

Theorem 5.5. Let Or, O be oracles both parameterized by a sequence of names s. Let p be a
sequence of names, Pi(x, y) and Qi(x, y) be parameterized protocols, such that Nl(P,Q) is disjoint
of the oracles support. If we have, for sequences of names lsid

P
, lsid

Q
, with s = {lsidPi , lsid

Q

i }i∈N:

1. ∀ i ≥ 1, νp, lsid
P

i .Pi(p, lsid
P

i) is Or-simulatable.
2. ∀ i ≥ 1, νp, lsid

Q

i .Qi(p, lsid
Q

i) is Or-simulatable.
3. s is disjoint of the support of O.
4. P0(p, lsid

P

0) ∼=Or,O Q0(p, lsid
Q

0)

then,
||iPi(p, lsid

P

i) ∼=O ||iQi(p, lsid
Q

i)

We once again generalize with the explicit dependence in s.

Theorem B.1. Let Or, O be oracles both parameterized by a sequence of names s. Let p be
a sequence of names, Pi(x, y) and Qi(x, y, z) be parameterized protocols, such that Nl(P,Q)

is disjoint of the oracles support. If we have, for sequences of names lsid
P
, lsid

Q
, with s =

{lsidPi , lsid
Q

i }i∈N :

243

B Appendix of Part II

1. ∀ i ≥ 1, νp, lsid
P

i .Pi(p, lsid
P

i) is Or-simulatable.
2. ∀ i ≥ 1, νp, lsid

Q

i .Qi(p, lsid
Q

i , s) is Or-simulatable.
3. s is disjoint of the support of O.
4. P0(p, lsid

P

0) ∼=Or,O Q0(p, lsid
Q

0 , s)

then, ||iPi(p, lsid
P

i) ∼=O ||iQi(p, lsid
Q

i , s)

Proof. By application of Theorem 5.5, we get that for all n1, n2,

P0(p, lsid
P

0)‖1<i≤N1Pi(p, lsid
P

i)‖1<i≤N2Qi(p, s, lsid
Q

i)
∼=Or,O

Q0(p, s, lsid
Q

0)‖1<i≤N1Pi(p, lsid
P

i)‖1<i≤N2Qi(p, s, lsid
Q

i)

By weakening of the attacker, we get:

P0(p, lsid
P

0)‖1<i≤N1Pi(p, lsid
P

i)‖1<i≤N2Qi(p, s, lsid
Q

i)
∼=O

Q0(p, s, lsid
Q

0)‖1<i≤N1Pi(p, lsid
P

i)‖1<i≤N2Qi(p, s, lsid
Q

i)

Then, for a polynomial p (assumed without loss of generality increasing), any n = p(η), and all
j < n:

P0(p, lsid
P

0)‖1<i≤j−1Pi(p, lsid
P

i)‖1<i≤N−j−1Qi(p, s, lsid
Q

i)
∼=O

Q0(p, s, lsid
Q

0)‖1<i≤j−1Pi(p, lsid
P

i)‖1<i≤N−j−1Qi(p, s, lsid
Q

i)

Through the renaming of the lsid, which is possible as s is disjoint from the oracle support, we get
that:

Pj(p, lsid
P

j)‖P0(p, lsid
P

0) . . . ‖Pj−1(p, lsid
P

j−1)‖Qj+1(p, s, lsid
Q

j+1)‖ . . . Qn(p, s, lsid
Q

n)
∼=O

Qj(p, lsid
Q

j , s)‖P0(p, lsid
P

0) . . . ‖Pj−1(p, lsid
P

j−1)‖Qj+1(p, s, lsid
Q

j+1)‖ . . . Qn(p, s, lsid
Q

n)

Thanks to Theorem 5.5, there exist polynomial pS such that, if pP and pQ are the polynomial
bound on the runtime of the simulators for P or Q, for all j, we have that the advantage of any
attacker running in time t against the previous indistinguishability, denoted D, is bounded by:

AdvD
(
pS
(
t, j − 1, |P |, . . . , p(η)− j − 1, |q|, pP (t), . . . , pQ(t)

))
Thus, for all j, the advantage of any attacker against the corresponding game is uniformly bounded
by:

AdvD
(
pS
(
t, p(η), |P |, . . . , p(η), |q|, pP (t), . . . , pQ(t)

))
We then conclude with an hybrid argument.

�

244

B.3 Proofs of Chapter 5

We first prove a proposition which allows to reduce the security of n sessions in parallel to the
security of one session with N − 1 sessions in parallel. It is expressed in a more general way than
required for basic key exchanges, so that we can reuse it for other results.

Proposition B.2. Let O be an oracle and KEi[_1,_2] := Ii(lsid
I
i , id

I);_1‖Ri(lsidRi , idR);_2

a key exchange protocol, such that I binds xI , xIid, x
I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE) is

disjoint of the oracle support. Let idI , idR be names, sI = {lsidIi }i∈N, sR = {lsidRi }i∈N,
s = sI ∪ sR sets of names,

Let T1(x),T2(x), S1(x),S2(x) be parametric processes with completely disjoint names. Let N be
an integer (which may depend on η), and let s = {lsidIi , lsidRi }1≤i≤N and Os an oracle. If s
is disjoint of the support of O and if,

1. νs.out(s) is Os-simulatable.

2.

‖i≤N−1KEi[out(〈xI , lsidI , xIlsid, xIid〉),out(〈xR, lsidR, xRlsid, xRid〉)]
‖KEn[if xIlsid /∈ sR ∧ xIid = idR then

S1(xI , lsidI , xIlsid, x
I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),
if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]

∼=O,Os

‖i≤N−1KEi[out(〈xI , lsidI , xIlsid, xIid〉),out(〈xR, lsidR, xRlsid, xRid〉)]
‖ KEn[if xIlsid = lsidRn ∧ xIid = idR then

out(〈k, lsidIn, xlsid, xid〉)
if xIlsid /∈ sR ∧ xIid = idR then
T1(xI , lsidIn, xlsid, xid)

else out(〈xI , lsidI , xIlsid, xIid〉),
if xRlsid = lsidIn ∧ xRid = idI then

out(〈k, lsidRn , xlsid, xid〉)
if xRlsid /∈ sI ∧ xRid = idI then
T2(xR, lsidRn , xlsid, xid)

else out(xR, lsidR, xRlsid, x
R
id)

Then:
‖i≤NKEi[if xIlsid /∈ sR ∧ xIid = idR then

S1(xI , lsidI , xIlsid, x
I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),
if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]∼=O
‖i≤N KEi[if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

out(〈ki,j , lsidIi , xlsid, xid〉)
if xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIn, xlsid, xid)
else out(〈xI , lsidI , xIlsid, xIid〉),

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI) then

out(〈kj,i, lsidRi , xlsid, xid〉)
if xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRn , xlsid, xid)
else out(〈xR, lsidR, xRlsid, xRid〉)]

Proof. We fix N and define an ordering (arbitrary) on the couples (i, j)1≤i,j≤N . We then set:

245

B Appendix of Part II

G0
(i,j) :=

‖r≤NKEr[if
(r,t)≥(i,j)

xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIr , xIlsid, xIid〉)
if

(r,t)≥(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIr , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidI , xIlsid, x

I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),

if
(t,r)≥(i,j)

xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRr , xRlsid, xRid)
if

(t,r)≥(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRr , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]

and
G1

(i,j) :=

‖r≤NKEr[if
(r,t)>(i,j)

xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIr , xIlsid, xIid〉)
if

(r,t)>(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIr , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidI , xIlsid, x

I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),

if
(t,r)>(i,j)

xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRr , xRlsid, xRid)
if

(t,r)>(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRr , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]

We note that G1
(i,j) = G0

(i,j)+1, that G
0
(0,0) is the game on the right hand side of the goal, and that

G0
(n,n) is the game on the left hand side of the goal.

Thus, if we have uniformly that G1
(i,j)
∼= G0

(i,j), we can conclude with a classical hybrid argument.

We remark that G1
(i,j) and G0

(i,j) only differ in two places, where a conditional is added in Ii and
one in Rj .

Let us fix (i, j), we define the substitution σ := {lsidIn 7→ lsidIi , lsid
R
N 7→ lsidRj , lsid

I
i 7→

lsidIn, lsid
R
j 7→ lsidRn } and denote s′ = sσ. We apply the substitution both to the oracle and

the protocol, and the hypothesis allows us to get, for all N :

246

B.3 Proofs of Chapter 5

‖(r,s)6=(i,j)Ir(lsid
I
r , id

I);out(〈xI , lsidIr , xIlsid, xIid〉)‖Rs(lsidRs , idR);out(〈xR, lsidRs , xRlsid, xRid〉)
‖Ii(lsidIi , idI); if xIlsid /∈ sR ∧ xIid = idR then

S1(xI , lsidIi , x
I
lsid, x

I
id)

else out(〈xI , lsidIi , xIlsid, xIid),
‖Rj(lsidRj , idR)[if xRlsid /∈ sI ∧ xRid = idI then

S2(xR, lsidRj , x
R
lsid, x

R
id)

else out(〈xR, lsidRj , xRlsid, xid〉)
∼=O,Os′
‖(r,s)6=(i,j)Ir(lsid

I
r , id

I);out(〈xI , lsidIr , xIlsid, xIid〉)‖Rs(lsidRs , idR);out(〈xR, lsidRs , xRlsid, xRid〉)
‖ Ii(lsid

I
i , id

I); if xIlsid = lsidRj ∧ xIid = idR then
out(〈k, lsidIi , xIlsid, xIid)

if xIlsid /∈ sR ∧ xIid = idR then
T1(xI , lsidIr , x

I
lsid, x

I
id)

else out(〈xI , lsidIi , xlsid, xid〉)
‖ Rj(lsid

R
j , id

R)[if xRlsid = lsidIi ∧ xRid = idI then
out(〈k, lsidRi , xRlsid, xRid〉)

if xRlsid /∈ sI ∧ xRid = idI then
T2(xR, lsidRr , x

R
lsid, x

R
id)

else out(〈xR, lsidRi , xRlsid, xRid〉)

We remark that, for any r:

νs.in(x, y); if
(r,t)>(i,j)

x=
lsidlsid

R
t ∧ xid = idR then out(kr,t, y) else out(x, y)

and
νs.in(x, y); if

(t,r)>(i,j)
xRlsid = lsidIt ∧ xid = idR then out(kt,r, y) else out(x, y)

and (resp. with S1)

νs.in(y); if
(r,t)>(i,j)

xIlsid /∈ sR ∧ xIid = idR then T1(y)

and (resp. with S2)

νs.in(y); if
(t,r)>(i,j)

xRlsid /∈ sI ∧ xRid = idI then T2(y)

are Os-simulatable by the attacker as all lsidRj , lsidIj are simulatable with Os

They are then all simulatable in parallel at the same time (Theorem 5.1) and using function
application (Theorem 5.4), we get:

247

B Appendix of Part II

‖r≤NKEr[if
(r,t)>(i,j)

xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIr , xIlsid, xIid〉)
if

(r,t)>(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIr , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidI , xIlsid, x

I
id)

else out(〈xI , lsidI , xIlsid, xIid〉),

,

if
(t,r)>(i,j)

xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRr , xRlsid, xRid)
if

(t,r)>(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRr , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidR, xRlsid, x

R
id)

else out(〈xR, lsidR, xRlsid, xRid〉)]∼=O
‖(r,s)6=(i,j)Ir(lsid

r
I , idI); if

(r,t)>(i,j)
xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIr , xIlsid, xIid〉)
if

(r,t)>(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIr , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidI , xIlsid, x

I
id)

else out(〈xI , lsidI , xIlsid, xIid〉)

‖Rs(lsidsR, idR); if
(t,r)>(i,j)

xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRs , xRlsid, xRid)
if

(t,r)>(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRs , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidRs , x

R
lsid, x

R
id)

else out(〈xR, lsidRs , xRlsid, xRid〉)
Ii(lsid

i
I , idI); if

(i,t)>(i,j)
xIlsid = lsidRt ∧ xIid = idR then

out(〈kr,t, lsidIi , xIlsid, xIid〉)
if xIlsid = lsidRj ∧ xIid = idR) then

out(〈k, lsidIi , xIlsid, xIid〉)
if

(i,t)>(i,j)
xIlsid /∈ sR ∧ xIid = idR then

T1(xI , lsidIi , x
I
lsid, x

I
id)

else if xIlsid /∈ sR ∧ xIid = idR then
S1(xI , lsidIi , x

I
lsid, x

I
id)

else out(〈xI , lsidIi , xIlsid, xIid〉)

Rj(lsid
j
R, idR); if

(t,j)>(i,j)
xRlsid = lsidIt ∧ xRid = idI) then

out(〈kt,r, lsidRj , xRlsid, xRid〉)
if xRlsid = lsidIi ∧ xRid = idI) then

out(〈k, lsidRj , xRlsid, xRid〉)
if

(t,j)>(i,j)
xRlsid /∈ sI ∧ xRid = idI then

T2(xR, lsidRj , x
R
lsid, x

R
id)

else if xRlsid /∈ sI ∧ xRid = idI then
S2(xR, lsidRj , x

R
lsid, x

R
id)

else out(〈xR, lsidRj , xRlsid, xRid〉)

After α-renaming k into ki,j , this is exactly G1
(i,j)
∼= G0

(i,j), which concludes the proof. Note that
the advantage, for any (i, j), against G1

(i,j)
∼= G0

(i,j) is bounded, using the bound from Theorem 5.4,
by the the advantage against G1

(0,0)
∼= G0

(0,0), the case where the most things are simulated.

�

248

B.3 Proofs of Chapter 5

Corollary B.1. Let Oke, O be oracles and KEi[_1,_2] := I(lsidIi , id
I);_1‖R(lsidRi , id

R);_2 a
key exchange protocol, such that I binds xI , xIid, x

I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE) is disjoint

of the oracle support. Let idI , idR be names and sI = {lsidIi }i∈N,sR = {lsidRi }i∈N sets of names :

1. ∀i ≥ 1, (νlsidIi , id
I , lsidRi , id

R.

KEi[out(〈xI , lsidIi , xIlsid, xIid〉),out(〈xR, lsidRi , xRlsid, xRid〉)]‖out(〈lsidRi , lsidIi 〉)

is Oke simulatable)).
2. s is disjoint of the support of O.

3.

KE0[out(〈xI , lsidI0, xIlsid, xIid〉),out(〈xR, lsidR0 , xRlsid, xRid)] ∼=Oke,O
KE0[if xIlsid = lsidR0 ∧ xIid = idR then

out(〈k, lsidI0, xlsid, xid〉)
else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI0, xIlsid, xIid〉),
if xRlsid = lsidI0 ∧ xRid = idI then

out(〈k, lsidR0 , xRlsid, xRid〉)
else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)]
Then, for any N which depends on the security parameter:

‖i≤NKEi[out(xI),out(xR)] ∼=O
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(ki,j)
else out(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(kj,i)
else out(xR)]

Proof. Let us fix N , which may depend on the security parameter.

Ry direct application of Theorem 5.5, with P := I(lsidI , idI);out(〈xI , lsidI , xIlsid, xIid〉)‖R(lsidR, idR);out(〈xR, lsidR, xRlsid, xRid〉),
R := KE, and Q being the right handside of hypothesis (3), we get that:

‖i≤NKEi[out(〈xI , lsidIi , xIlsid, xIid〉),out(〈xR, lsidRi , xRlsid, xRid〉)]∼=O,Oke
‖i≤N−1KEi[out(〈xI , lsidIi , xIlsid, xIid〉),out(〈xR, lsidRi , xRlsid, xRid〉)]

‖KE0[if xIlsid = lsidR ∧ xid = idR then
out(〈k, lsidI , xlsid, xid〉)

else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI , xIlsid, xIid〉),
if xRlsid = lsidI ∧ xRid = idI then
out(〈k, lsidR, xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR, xRlsid, xRid〉)]

This allows us to obtain the hypothesis of Proposition B.2, where Os is instantiated with Oke. We
thus conclude using Proposition B.2.

249

B Appendix of Part II

�

Corollary B.2. Let OT , Oke, Or,OP,Q be oracles and

KEi[_1,_2] := I(lsidIi , id
I);_1‖R(lsidRi , id

R);_2 a key exchange protocol, such that I binds
xI , xIid, x

I
lsid, R binds xR, xRid, x

R
lsid and Nl(KE) is disjoint of the oracle support. Let idI , idR

be names, sI = {lsidIi }i∈N,sR = {lsidRi }i∈N and s = sI ∩ sR sets of names.

Let p = {idI , idR}, P (x, y) = P1(x, y)‖P2(x, y) and Q(x, y, z) = Q1(x, y, z)‖Q1(x, y, z) be parame-
terized protocols, such that Nl(P,Q) is disjoint of the oracle support.

I-1 ∀i ≥ 1, (νlsidIi , id
I , lsidRi , id

R.KEi[out(xI),out(xR)]‖out(〈lsidRi , lsidIi 〉) is OT -
simulatable)).

I-2 s is disjoint of the support of OP,Q.

I-3

KE0[out(〈xI , lsidI0, xIlsid, xIid〉),out(〈xR, lsidR0 , xRlsid, xRid〉) ∼=OT ,OP,Q
KE0 [if xIlsid = lsidR0 ∧ xIid = idR then

out(〈k, lsidI0, xIlsid, xIid〉)
else if xIlsid /∈ sR ∧ xIid = idR then
⊥

else out(〈xI , lsidI0, xIlsid, xIid〉),
if xRlsid = lsidI ∧ xRid = idI then

out(〈k, lsidR0 , xRlsid, xRid〉)
else if xRlsid /∈ sI ∧ xRid = idI then
⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)]

and

R-1 ∀ 1 ≤ i, j ≤ n, νp, ki,j .P0(p, ki,j) is Or-simulatable.
R-2 ∀ 1 ≤ i ≤ n, νp, ki,j .Q0(p, ki,j) is Or-simulatable.
R-3 s is disjoint of the support of Ok.
R-4 P0(p, k) ∼=Or,Oke Q0(p, k)

and

C-1 νp.in(xIi).P
I
i (xIi)‖in(xRi).PRi (xRi)is OP,Q-simulatable.

1. νp.

‖i≤n KEi[if (xIid = idR) then
if

1≤j≤n
(xIlsid = lsidRj ∧ xIid = idR) then

out(〈i, j〉)
else P Ii (xIi),

if (xRid = idI) then
if

1≤j≤n
(xRlsid = lsidIj ∧ xRid = idI) then

out(〈i, j〈)
else PRi (xRi)]

is Oke-simulatable.

Then, for any n which may depend on the security parameter:

‖i≤nKEi[P Ii (xIi), P
R
i (xRi)] ∼=

‖i≤nKEi[if xIid = idR then QIi (x
I
i) else P Ii (xIi), if x

R
id = idI then QRi (xRi) else PRi (xRi)]

Proof. Using Corollary B.1 on hypothesis A-1,A-2 and A-3, we get that, for all N :

250

B.3 Proofs of Chapter 5

‖i≤NKEi[out(xI),out(xR)] ∼=O
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(ki,j)
else out(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(kj,i)
else out(xR)]

Now, as νp, lsidIi , lsidRi .in(x).P (x)‖in(x).Q(x) is Op-simulatable (hypothesis C-1), using twice
Theorem 5.4 we get that :

‖i≤NKEi[P I(xI), PR(xR)] ∼=Op
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

P I(ki,j)
else P I(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

PR(kj,i)
else PR(xR)]

and

‖i≤NKEi[if xIid = idR then QI(xI) else P I(xI), if xRid = idI then QR(xR) else PR(xR)] ∼=Op
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

QI(ki,j)
else P I(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

QR(kj,i)
else PR(xR)]

Moreover, using Theorem 5.5 on hypothesis B-1,B-2,B-3 and B-4, we get that

∀n ‖i≤N
2

Pi(p, ki) ∼=Ok Qi(p, ki)

Combined with Theorem 5.2 on the Ok simulatability of the key exchange (hypothesis C-2) we
get:

251

B Appendix of Part II

‖i≤N KEi[if (xIid = idR) then
if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

P I(ki,j)
else P I(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

PR(kj,i)
else PR(xR)]

∼=
‖i≤N KEi[if (xIid = idR) then

if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

QI(ki,j)
else P I(xI),
if (xRid = idI) then

if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

QR(kj,i)
else PR(xR)]

We thus conclude with transitivity.

�

Corollary B.3. Let OKE, Or,OP,Q be oracles and

KEi[_1,_2] := Ii(lsid
I
i , id

I);_1|Ri(lsid
Ri, idR);_2

a key exchange protocol with Ii(lsid
I
i , id

I) := I0
i (lsidIi , id

I); I1
i (xI) and Ri(lsid

R
i , id

R) :=
R0
i (lsid

R
i , id

R);R1
i (x

R) such that I0 binds xI , xid, xlsid, R0 binds xR, xid, xlsid and Nl(KE) is
disjoint of the oracles support. Let p = {idI , idR}, Pi(x, y) = P Ii (x, y)‖PRi (x, y),Q(x, y, z) =
QIi (x, y, z)‖QRi (x, y, z), Ci(z) and Di(z) be protocols, such that Nl(P,Q,C,D) is disjoint of the
oracles support.

Let idI , idR be names, sI = {lsidIi }i∈N,sR = {lsidRi }i∈N and s = sI ∩ sR sets of names.

A-1 ∀i ∈ N, (νlsidIi , idI , lsidRi , idR.Ci(p)‖I0
i (lsidIi , id

I);out(xI)‖R0
i (lsid

R
i , id

R);out(xR) is OKE
simulatable)).

A-2 s is disjoint of the support of Op.

A-3

Ci(p)‖I0
0 (lsidI0, id

I); if xIlsid /∈ sR ∧ xIid = idR then
I1(xI);out(xI)

else out(〈xI , lsidI0, xIlsid, xIid〉)
‖R0(lsidR0 , id

R); if xRlsid /∈ sI ∧ xid = idI then
R1(xR);out(xR)

else out(〈xR, lsidR, xRlsid, xRid〉)∼=OKE ,Op
Ci(p)‖I0(lsidI0, id

I); if xIlsid = lsidR ∧ xid = idR then
out(〈k, lsidI0, xIlsid, xIid〉)

else if xIlsid /∈ sR ∧ xIid = idR then
I1(xR);⊥

else out(〈xI , lsidI , xIlsid, xIid〉)
‖R0(lsidR0 , id

R); if xRlsid = lsidI ∧ xRid = idI then
out(〈k, lsidR0 , xRlsid, xRid〉)

else if xRlsid /∈ sI ∧ xRid = idI then
I1(xR);⊥

else out(〈xR, lsidR0 , xRlsid, xRid〉)

252

B.3 Proofs of Chapter 5

and for any N which may depend on the security parameter:

B-1 ‖i≤N2

Di(p)‖I1
i (ki);P

I
i (p, ki)‖B1

i (ki);P
R
i (p, ki) ∼=Or,Ok ‖i≤n

2

Di(p)‖I1
i (ki);Q

I
i (p, ki)‖B1

i (ki);Q
R
i (p, ki)

and

C-1 νp, lsidIi , lsid
R
i .Di(p)‖in(x).Pi(x) ‖in(x).Qi(x)‖in(x).I1

i (x);P Ii (x)‖in(x).R1
i (x);PRi (x)

‖in(x).I1
i (x);QIi (x)‖in(x).R1

i (x);QRi (x) is Op simulatable.

C-2 νp.

‖i≤N Ci(p)‖I0
i (lsidIi , id

I); if
1≤j≤N

xIlsid = lsidRj ∧ xIid = idR then

out(〈i, j〉)
else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R)[if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

out(〈i, j〉)
else if (xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

is Ok simulatable.

Then, for any n:

‖i≤NCi(p)‖Di(p)‖KEi[P Ii (xI), PRi (xR)] ∼=

‖i≤NCi(p)‖Di(p)‖KEi[if xIid = idR then QIi (x
I) else P Ii (xI), if xRid = idI then QRi (xR) else PRi (xR)]

Proof. Let N an integer, which may depend on the security parameter. Ry application of Theo-
rem 5.5, with P and R as the left handside of hypothesis A-3, and Q being the right handside of
hypothesis A-3, we get that:

‖i≤n−1Ci(p)‖I0
i (lsidIi , id

I);out(xI)‖R0
i (lsid

R
i , id

R);out(xR)

‖

Cn(p)‖I0
n(lsidIn, id

I); if (xIlsid /∈ sR ∧ xid = idR then
I1
n(xI);out(xI)

else out(xI)
‖R0

n(lsidRn , id
R); if xIlsid /∈ sR ∧ xIid = idI then

R1
n(xR);out(xR)

else out(xR)
∼=OP
‖i≤N−1Ci(p)‖I0

i (lsidIi , id
I);out(xI)‖R0

i (lsid
R
i , id

R);out(xR)
‖ Cn(p)‖I0

n(lsidIn, id
I); if xlsid = lsidnR ∧ xIid = idR then

out(k)
else if xIlsid /∈ sR ∧ xIid = idR then
I1
n(xI); bad

else out(xI)
‖R0

n(lsidRn , id
R)[if xRlsid = lsidnI ∧ xid = idI then

out(k)
else if xRlsid /∈ sI ∧ xRid = idI then
R1
n(xR); bad

else out(xR)

Using Proposition B.2, with S1 = I1(xI);out(xI), S2 = R1(xR);out(xR), R1 = I1(xI);⊥, R2 =
R1(xR);⊥, we get that:

253

B Appendix of Part II

‖i≤N

Ci(p)‖I0
i (lsidIi , id

I); if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);out(xI)

else out(xI)
‖R0

i (lsid
R
i , id

R); if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);out(xR)
else out(xR)

∼=OP
‖i≤N Ci(p)‖I0

i (lsidIi , id
I); if

1≤j≤N
xIlsid = lsidjR ∧ xIid = idR then

out(ki,j)
else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI); bad

else out(xI)
‖R0

i (lsid
R
i , id

R)[if
1≤i≤N

xRlsid = lsidjI ∧ xRid = idI then

out(kj,i)
else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R); bad
else out(xR)

Now, with this context, using twice using Theorem 5.4 with the simulatability of
νp, lsidIi , lsid

R
i .Di(p)

‖in(x).Pi(x)‖in(x).I1
i (x);P Ii (x)‖in(x).R1

i (x);PRi (x) from C-1, we may get that:

‖i≤NCi(p)‖Di(p)‖I0
i (lsidIi , id

I); if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);P Ii (xI)

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R); if xRlsid /∈ sI ∧ xid = idI then
R1
i (x

R);PRi (xR)
else R1

i (x
R);PRi (xR)

∼=OP
‖i≤N Ci(p)‖Di(p)‖I0

i (lsidIi , id
I); if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

I1
i (ki,j);P

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R)[if
1≤k≤m

xRlsid = lsidIj ∧ xRid = idI then

R1
i (kj,i);P

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

254

B.3 Proofs of Chapter 5

We can simplify the left handside of the equivalence and get that:

‖i≤NCi(p)‖Di(p)‖I0
i (lsidIi , id

I); I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R); R1
i (x

R);PRi (xR)
∼=OP

‖i≤N Ci(p)‖Di(p)‖I0
i (lsidIi , id

I); if
1≤j≤m

xIlsid = lsidjR ∧ xid = idR then

I1
i (ki,j);P

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI); bad

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R); if
1≤j≤N

xRlsid = lsidjI ∧ xRid = idI then

R1
i (kj,i);P

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

Ry performing the same operation with Q, we can also get:

‖i≤N

Ci(p)‖Di(p)‖I0
i (lsidIi , id

I); if xIid = idR then
I1
i (xI);QIi (x

I)
else I1

i (xI);P Ii (xI)
‖R0

i (lsid
R
i , id

R); if xRid = idI then
R1
i (x

R);QRi (xR)
else R1

i (x
R);PRi (xR)

∼=OP
‖i≤N Ci(p)‖Di(p)‖I0

i (lsidIi , id
I); if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

I1
i (ki,j);Q

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P I(xI)

‖R0
i (lsid

R
i , id

R)[if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

R1
i (kj,i);Q

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

To conclude with transitivity, we must prove the equivalence between the two idealized version
with either P or Q.

Combining Hypothesis B-1 with Theorem 5.2 on the Ok simulatability of the key exchange (hy-
pothesis C-2) we do get the necessary equivalence to conclude:

255

B Appendix of Part II

‖i≤N Ci(p)‖Di(p)‖I0
i (lsidIi , id

I); if
1≤j≤N

xIlsid = lsidRj ∧ xid = idR then

I1
i (ki,j);P

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI); bad

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R)[if
1≤j≤N

xRlsid = lsidjI ∧ xRid = idI then

R1
i (kj,i);P

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R); bad
else R1

i (x
R);PRi (xR)

∼=
‖i≤N Ci(p)‖Di(p)‖I0

i (lsidIi , id
I); if

1≤j≤N
xIlsid = lsidRj ∧ xIid = idR then

I1
i (ki,j);Q

1
i (ki,j)

else if xIlsid /∈ sR ∧ xIid = idR then
I1
i (xI);⊥

else I1
i (xI);P Ii (xI)

‖R0
i (lsid

R
i , id

R); if
1≤j≤N

xRlsid = lsidIj ∧ xRid = idI then

R1
i (kj,i);Q

R
i (kj,i)

else if xRlsid /∈ sI ∧ xRid = idI then
R1
i (x

R);⊥
else R1

i (x
R);PRi (xR)

�

256

C Appendix of Part III

257

C Appendix of Part III

C.1 Proof of Chapter 7

Lemma 7.1. Let P1, Q1 ∈ P(I,R), P2, Q2 ∈ P (I,R). When σ : I → RI is the substitution that
replaces each variable in I by a fresh random variable in RI , we have:

P1 | P2 ≈Dk Q1 | Q2 ⇔ (P1σ,RI) | P2σ ≈Dk (Q1σ,RI) | Q2σ

Proof. Let P1, Q1 ∈ P(I,R),P2, Q2 ∈ P (I,R), we have:

P1 | P2 ≈Dk Q1 | Q2

⇔ ∀~i ∈ D|I|k , ∀~o ∈ Dn
k . [(P1, P2)]

~i
Dk

(~o,~0) = [(Q1, Q2)]
~i
Dk

(~o,~0)

⇔ ∀~t ∈ D|I|k , ∀~o ∈ Dn
k . [(P1σ, P2σ,RI)]

~i
Dk

(~o,~0,~t) = [(Q1σ,Q2σ,RI)]
~i
Dk

(~o,~0,~t)

⇔ ∀~c′ ∈ Dn+|I|
k . [(P1σ,RI), P2σ)]

~i
Dk

(~c′,~0) = [(Q1σ,RI), Q2σ)]
~i
Dk

(~c′,~0)
⇔ (P1σ,RI) | P2σ ≈Dk (Q1σ,RI) | Q2σ

�

Lemma 7.2. Let P1, . . . , Pn be programs over P(I,R), and Y ⊂ R.

⊥YDk (P1, . . . , Pn)⇔⊥Dk (P1σ, . . . , Pnσ)

where σ : Y → IY is the substitution that replaces each variable in Y by a fresh input variable in
IY .

Proof.

⊥YDk (P1, . . . , Pn) ⇔ ∀~i ∈ D|X|k ,∀~i′ ∈ D|Y |k . [P1, . . . , Pn]
~i,~i′

Dk
= ([P1]

~i,~i′

Dk
, . . . , [Pn]

~i,~i′

Dk
)

⇔ ∀~i ∈ D|I]IY |k . [(P1, . . . , Pn)σ]
~i
Dk

= ([P1σ]
~i
Dk

, . . . , [Pnσ]
~i
Dk

)
⇔⊥Dk (P1σ, . . . , Pnσ)

�

Lemma 7.3. Let P1, . . . , Pn be programs over P(I, {r1, . . . , rm})

⊥Dk (P1, . . . , Pn)⇔ (P1, . . . , Pn) ≈Dk (P1σ1, . . . , Pnσn)

where σi is the substitution that to any rj associates a fresh random variable rij.

Proof.

⊥Dk (P1, . . . , Pn) ⇔ ∀~i ∈ D|X|k . [P1, . . . , Pn]
~i
Dk

= ([P1]
~i
Dk

, . . . , [Pn]
~i
Dk

)

⇔ ∀~i ∈ D|X|k . [P1, . . . , Pn]
~i
Dk

= ([P1σ1]
~i
Dk

, . . . , [Pnσn]
~i
Dk

)

⇔ ∀~i ∈ D|X|k . [P1, . . . , Pn]
~i
Dk

= [(P1σ1, . . . , Pnσn)]
~i
Dk

⇔ (P1, . . . , Pn) ≈Dk (P1σ1, . . . , Pnσn)

Indeed, for any ~i ∈ D
|X|
k we have that [Pi]

~i
Dk

= [Piσi]
~i
Dk

as we are only performing renaming.
Moreover, P1σ1, . . . , Pnσn do not share any variable, and thus trivially verify:

([P1σ1]
~i
Dk

, . . . , [Pnσn]
~i
Dk

) = [(P1σ1, . . . , Pnσn)]
~i
Dk

�

258

C.1 Proof of Chapter 7

Lemma 7.4. Let Dk be a Σ-algebra that contains a binary symbol + such that +Dk is right
invertible. Let P = (p1, . . . , pk) be a program in P(I,R) with {r1, . . . , rk} ⊆ R and x1, . . . , xk fresh
input variables. We have that

P ≈Dk r1, . . . , rk ⇔⊥Dk ((p1 + x1, . . . , pk + xk), (x1, . . . , xk))

Proof. Let P ∈ P(I,R) of arity 1, with r ∈ R and x a fresh deterministic variables, we have
p ≈Dk r ⇔⊥Dk (p+ x, x):

P ≈D r ⇔ ∀~i ∈ D|X|k . [P]
~i
Dk

= [r]
~i
Dk

⇔ ∀~i ∈ D|X|k . [P + x]
~i
Dk

= [r + x]
~i
Dk

⇔ ∀~i ∈ D|X|k . [P + x]
~i
Dk

=
[
(+−1(r, x)) + x

]~i
Dk

⇔ ∀~i ∈ D|X|k . [P + x]
~i
Dk

= [r]
~i
Dk

⇔ ∀~i ∈ D|X|k . ([P + x]
~i
Dk

, [x]
~i
Dk

) = ([r]
~i
Dk

, [x]
~i
Dk

)

⇔ ∀~i ∈ D|X|k . ([P + x]
~i
Dk

, [x]
~i
Dk

) = ([(r, x)]
~i
Dk

)

⇔ ∀~i ∈ D|X|k . ([P + x]
~i
Dk

, [x]
~i
Dk

) = [(P + x, x)]
~i
Dk

⇔⊥Dk (P + x, x)

We may easily generalize for any tuple of values. The reduction is indeed polynomial as the size
(number of symbols) of P + x is the size of P plus two. �

Lemma 7.5. Assume that Dk is at least of size two, and contains a right invertible symbol +.
There exists T (P1, P2, Q1, Q2) such that for any P1, Q1, P2, Q2 ∈ P (I,R) with r ∈ R,

P1|P2 ≈Dk Q1|Q2 ⇔ T (P1, P2, Q1, Q2) ≈Dk r

Proof. Let P1, Q1 ∈ P(∅, R), P2, Q2 ∈ P (∅, R) with |P1| = |Q1| = n. Consider the following
program, S(P,Q):

x
$←− D;~r

$←− D|R|k ; ~r′
$←− D|R|k ;

if x = 0 then
if ¬(P1(~r) = ~0 ∧ P2(~r) = ~0) then
return 1

else return 0
else if x = 1

if(Q1(~r) = ~0 ∧Q2(~r) = ~0) then
return 1

else return 0

else return r

We fix any ~i. Let P = (P1, P2) and Q = (Q1, Q2). The probability that S(P,Q) returns 1, by case
disjunction on the value of x:

1
|Dk| (1− [P]

~i
Dk

(~0,~0)) + 1
|Dk| ([Q]

~i
Dk

(~0,~0))) = 1
|Dk| +

[Q]
~i
Dk

(~0,~0))−[P]
~i
Dk

(~0,~0))

|Dk|

We have,

I [S(P,Q)]
~i
Al (0) = 1

|Dk| +
[P]

~i
Dk

(~0,~0))−[Q]
~i
Dk

(~0,~0))

|Dk|

I [S(P,Q)]
~i
Al (1) = 1

|Dk| +
[Q]

~i
Dk

(~0,~0))−[P]
~i
Dk

(~0,~0))

|Dk|

259

C Appendix of Part III

I for c /∈ {0, 1}, [S(P,Q)]
~i
Al (c) = 1

|Dk| .

Thus, we obtain that

S(P,Q) ≈Dk r ⇔ ∀~i ∈ D
|X|
k . [P]

~i
Dk

(~0,~0) = [Q]
~i
Dk

(~0,~0)

We now use the right invertible function. We assume without loss of generality that 0 the is a
neutral element for +. We have, for a constant ~o ∈ Dn,

S((+−1(P1, c), P2)(+−1(Q1, c), Q2)) ≈Dk r ⇔ ∀~i ∈ D
|X|
k . [P]

~i
Dk

(~o,~0) = [Q]
~i
Dk

(~o,~0)

Thus, if we use x ∈ I a fresh input variable, with T (P1, P2, Q1, Q2) = S((+−1(P1, x), P2)(+−1(Q1, x), Q2))
we finally have that

T (P1, P2, Q1, Q2) ≈Dk r ⇔ ∀~o ∈ Dn,∀~i ∈ D|X|k . [P]
~i
Dk

(~o,~0) = [Q]
~i
Dk

(~o,~0)

�

Proposition 7.1. Let P,Q ∈ P(I,R).

P ≈Dk Q ⇔ ∀~i ∈ D
|I|
k ,∀~o ∈ D|P |k .

∣∣∣{~r ∈ D|R|k |[[P]]
~i,~r
Dk

= ~o}
∣∣∣ =

∣∣∣{~r ∈ D|R|k |[[Q]]
~i,~r
Dk

= ~o}
∣∣∣

⇔ ∃f ∈ bijD
|R|
k ,∀~i ∈ Dk. [[P]]

~i,~r
Dk

= [[Q]]
~i,f(~r)
Dk

Proof. The first equivalence is a direct application of the definition, counting the number of points
rather than taking the probability. We focus on proving the second equivalence.
⇐
For any input value ~i and any c, the equality of the deterministic semantics implies equality of the
preimage for each c, and then∣∣∣{~r ∈ D|R|k |[[P]]

~i,~r
Dk

= c}
∣∣∣ =

∣∣∣{~r ∈ D|R|k |[[Q]]
~i,f(~r)
Dk

= c}
∣∣∣

=
∣∣∣{f−1(~r) ∈ D|R|k |[[Q]]

~i,~r
Dk

= c}
∣∣∣

=
∣∣∣f−1{~r ∈ D|R|k |[[Q]]

~i,~r
Dk

= c}
∣∣∣

=
∣∣∣{~r ∈ D|R|k |[[Q]]

~i,~r
Dk

= c}
∣∣∣

⇒
For any input value ~i and any c, we have

∣∣∣{~r ∈ D|R|k |[[P]]
~i,~r
Dk

= c}
∣∣∣ =

∣∣∣{~r ∈ D|R|k |[[Q]]
~i,~r
Dk

= c}
∣∣∣

This means that for each c we can define a bijection fc : {~r ∈ D
|R|
k |[[P]]

~i,~r
Dk

= c} 7→ {~r ∈
D
|R|
k |[[Q]]

~i,~r
Dk

= c}, which verifies ∀~r ∈ {~r ∈ D
|R|
k |[[P]]

~i,~r
Dk

= c}, [[P]]
~i,~r
Dk

= c = [[Q]]
~i,~r
Dk

= c. More-

over, g : ~r ∈ D|R|k 7→ [[P]]
~i,~r
Dk

is a function whose image is contained in D|P |k , so

D
|R|
k =

⋃
c∈D|P |k

({~r ∈ D|R|k |[[P]]
~i,~r
Dk

= c})

i.e., the domains of all the fc form a partition of D|R|k . Therefore the function f , defined as the

union of all the fc, is a bijective function that verifies ∀~r ∈ D|R|k , [[P]]
~i,~r
Dk

= [[Q]]
~i,f(~r)
Dk

. �

260

C.2 Proofs of Chapter 8

C.2 Proofs of Chapter 8
Corollary C.1. For any k ∈ N, qk-equivalence and qk-conditional equivalence restricted to
programs of fixed arity and without inputs are in C=P.

Proof. We only have to consider qk-conditional equivalence as it is harder than qk-equivalence. Let
P1, Q1 ∈ Pq(∅, R),P2, Q2 ∈ Pq(∅, R) with |P1| = |Q1| = 1.

For some c, we have that verifying if

[P1, P2]F
qk

(c,0) = [Q1, Q2]F
qk

(c,0)

is in C=P. As C=P is closed under finite intersection [Tor88], we can decide in C=P if:∧
c∈Fq

[P1, P2]F
qk

(c,0) = [Q1, Q2]F
qk

(c,0)

This is exactly the definition of conditional equivalence, and thus it concludes the proof. �

Corollary 8.1. For any k ∈ N, Fqk -equivalence and Fqk -conditional equivalence are in coNPC=P.

Proof. First, we only have to consider C−EQUIVq as it is a generalization of equivalence. Next,
we only have to consider C−EQUIVq restricted to program without inputs with Lemma 7.1. Let
P1, Q1 ∈ Pq(∅, R),P2, Q2 ∈ Pq(∅, R) with |P1| = |Q1| = n.

Now,
P1 | P2 ≈qk Q1 | Q2 ⇔ ∀c ∈ Fnqk [P1, P2]F

qk
(c,0) = [Q1, Q2]F

qk
(c,0)

For some c ∈ Fnqk , we have that deciding if

[P1, P2]F
qk

(c,0) = [Q1, Q2]F
qk

(c,0)

is in C=P.

The decision problem is then directly in coNPC=P. �

Lemma 7.2. Let P1, . . . , Pn be programs over P(I,R), and Y ⊂ R.

⊥YDk (P1, . . . , Pn)⇔⊥Dk (P1σ, . . . , Pnσ)

where σ : Y → IY is the substitution that replaces each variable in Y by a fresh input variable in
IY .

Proof.

⊥Yqk (P1, . . . , Pn) ⇔ ∀~i ∈ F|X|
qk
,∀~i′ ∈ F|Y |

qk
. [[P1, . . . , Pn]]Fqk~i, ~i′ = ([[P1]]Fqk~i, ~i′, . . . , [[Pn]]Fqk~i, ~i′)

⇔ ∀~i ∈ F|I]IY |
qk

. [[(P1, . . . , Pn)σ]]Fqk~i = ([[P1σ]]Fqk~i, . . . , [[Pnσ]]Fqk~i)
⇔∼=qk (P1σ, . . . , Pnσ)

�

Lemma 7.3. Let P1, . . . , Pn be programs over P(I, {r1, . . . , rm})

⊥Dk (P1, . . . , Pn)⇔ (P1, . . . , Pn) ≈Dk (P1σ1, . . . , Pnσn)

where σi is the substitution that to any rj associates a fresh random variable rij.

261

C Appendix of Part III

Proof.

∼=qk (P1, . . . , Pn) ⇔ ∀~i ∈ F|X|
qk
. [[P1, . . . , Pn]]Fqk~i = ([[e1]]Fqk~i, . . . , [[Pn]]Fqk~i)

⇔ ∀~i ∈ F|X|
qk
. [[P1, . . . , Pn]]Fqk~i = ([[P1σ1]]Fqk~i, . . . , [[Pnσn]]Fqk~i)

⇔ ∀~i ∈ F|X|
qk
. [[P1, . . . , Pn]]Fqk~i = [[(P1σ1, . . . , Pnσn)]]Fqk~i

⇔ (P1, . . . , P) ≈qk (P1σ1, . . . , Pnσn)

Indeed, for any ~i ∈ F|X|
qk

we have that [[Pi]]Fqk~i = [[Piσi]]Fqk~i as we are only performing renaming.
Moreover, P1σ1, . . . , Pnσn do not share any variable, and thus trivially verify:

([[P1σ1]]Fqk~i, . . . , [[Pnσn]]Fqk~i) = [[(P1σ1, . . . , Pnσn)]]Fqk~i

�

Theorem 8.1. Fqk -conditional independence is coNPC=P-complete.

Proof. Only the hardness remains. Given a CNF formula φ(I,R) over two sets of variables and
(∨,∧) we set P = φ′ ∈ P2(I,R) obtained according to Lemma C.1. With r a fresh random variable,
recall that:

P ≈2 r ⇔ for all valuation of I, φ is true for half of the valuation of R
⇔ φ(I,R) ∈ A−halfSAT

But, with x a fresh deterministic variable and r′ a fresh random variable:

P ≈2 r ⇔ P + x ≈2 r + x
⇔ P + x ≈2 r
⇔ (P + r′, r′) ≈2 (r, r′)

⇔⊥∅2 (P + r′, r′)

And thus, we conclude with:

⊥∅2 (P + r, r) ⇔ φ(I,R) ∈ A−halfSAT

�

Lemma 8.3. For any k ∈ N, Fqk -0-majority reduces in polynomial time to Fqk -0-majority with
r = 1.

Proof. Indeed, for any n, let us denote by Dn any subset of Fmq , wherem = |nq |, such that |Dn| = n.
If we denote by dn a fixed element of Dm, let Tn be the program:

r1, . . . , rm
$←− {x ∈ Fmq |

∨
d∈Dn x = d}

if (r1, . . . , rm) = dn then
return ~0

else
return ~1

Notice that by construction [Tn]F
qk

(0) = 1
n . This is only the most naive version of this encoding,

simpler polynomials can be found for many specific cases. And finally, for any r, s ∈ N, assuming

262

C.2 Proofs of Chapter 8

the probabilities are non zero, we have:

∀~i ∈ F|I|
qk
.

[[P]]F
qk
~i(0)

[[Q]]F
qk
~i(0)
≤ r

s ⇔ ∀~i ∈ F|I|
qk
.

[[P]]F
qk
~i(0)

r ≤ [[Q]]F
qk
~i(0)

s

⇔ ∀~i ∈ F|I|
qk
. [[P]]Fqk~i(0)[[Tr]]Fqk~i(0) ≤ [[Q]]Fqk~i(0)[[Ts]]Fqk~i(0)

⇔ ∀~i ∈ F|I|
qk
. [[(P, Tr)]]Fqk~i(0) ≤ [[(Q,Ts)]]Fqk~i(0)

⇔ (P, Tr) ≺qk (Q,Ts)

�

Lemma 8.4. For any k ∈ N, Fqk -0-majority restricted to inputless programs is in PP.

Proof. Let P,Q ∈ Pq(∅, R). Let us reuse the polynomial time Turing Machine M defined in
Lemma 8.1. Given P1, P2, Q1, Q2 and ~o, it was such that:

[P1, P2]F
qk

(~o,0) = [Q1, Q2]F
qk

(~o,0) ⇔M accepts exactly half of the time

Now, by replacing equals by > signs in the proof, we directly have that:

[P1, P2]F
qk

(~o,0) ≤ [Q1, Q2]F
qk

(~o,0) ⇔M accepts at least half of the time

Thus, we do have:

P ≺qk Q ⇔ [P, 0]F
qk

(0, 0) ≤ [Q]F
qk

(0,0)

⇔M accepts at least half of the time on input (P, 0, Q, 0,0)

�

Lemma 8.5. F2-0-majority is PP-hard (even for inputless programs).

Proof. We show PP-hardness by reduction from MAJSAT. Given a CNF formula φ(R) over two
sets of variables and (∨,∧) we set P = φ′ ∈ P2(R) obtained according to Lemma C.1. We then
have:

φ ∈ MAJSAT ⇔ |X ∈ Fm2 | P (X) = 0| ≤ 2m−1

⇔ |X ∈ Fm2 | P (X) = 0| ≤ |X ∈ Fm2 | x1 = 0|
⇔ P ≺2 x1

�

Lemma 8.6. Fqk -majority is coNPPP complete.

Proof. Hardness Let φ a CNF formula built over two sets of variables I and R. We use the same
construction as in Lemma 8.5 to obtain a polynomial P ∈ P2(I,R) whose truth value is equivalent
of φ.

We have, for some variable r in R:

φ ∈ A−MINSAT ⇔ r ≺2 P

263

C Appendix of Part III

Membership

Let P,Q ∈ Pqk(I,R). We slightly modify M from Lemma 8.4, so that it takes as extra argument a
valuation for the variables in I, and every evaluation of P or Q is made according to the valuation.

Then, we directly have:

P ≺q Q ⇔ ∀~i ∈ F|I|p ,M accepts with probability greater than half on input ~i

This problem is then directly in coNPPP. �

Lemma 8.7. Fq∞-equivalence restricted to linear programs is in PTIME.

Proof. Without loss of generality, we only consider programs without input variables (Lemma 7.1).

Given a set of variables R, we assume that there is an ordering over the variables in R. We say
that an expression is in normal form if it is of one of the following form: 0 or 1, or e, or 1 ⊕ e,
where e is built from variables and ⊕ (but no constants), and variables appear at most once in
increasing order.

Every linear expression can easily be put in normal form, using the commutativity of ⊕, and the
normal form is indeed unique thanks to the ordering on variables.

We now assume that all polynomials are in normal form.

Given P1, . . . , Pn ∈ Pq(∅, R) without multiplications, we iterate over each Pi, where, after initial-
izing a set S to the empty set:

I if vars(Pi) ∩ S 6= ∅, let r = min(vars(Pi) ∩ S) and:
• replace Pi by r;
• set S := S ∪ {r};
• for each j ≥ i, replace Pj by Pj [Pi ⊕ r/r].

I else, continue.

This produces a normal form for any tuple (P1, . . . , Pn), where each Pi is either a fresh random
variable (not appearing in the previous P s), or a linear combination of the previous P1, . . . , Pi−1.

Finally, two programs are universally equivalent if and only if they have the same normal form
(up to α-renaming). Indeed, if they have the same normal form, they are trivially universally
equivalent. Now, if they do not have the same normal form, there exists some i such that Pi and
Qi are two different expressions, and this imply non equivalence.

This basic decision procedures gives us a O(n× |R|) complexity. Indeed, we treat each polynomial
Pi or Qi only once, first to apply the currently known substitutions, and then to transform it into
a fresh random if required. Applying the currently known substitutions may take up to |R| loops,
hence the considered complexity. �

Corollary 8.5. Fq∞-conditional equivalence and Fq∞-equivalence restricted to arithmetic pro-
grams are in EXP.

Proof. [LW06, Corollary 2] provides a precise complexity for the evaluation of Z(P). They provide
an algorithm to compute Z(P) for which there exist an explicit polynomial R such that it runs
in time R(pmkmdm

2

2n)), where d is the sum of the degrees of the P i. It is then polynomial in
the degrees of the polynomials and the size of the finite fields, but exponential in the number of

264

C.2 Proofs of Chapter 8

variables. In our, case, we need to compute three times Z, on polynomials depending over 2m
variables (has we duplicate variables), which gives us en exponential in the size of our arithmetic
programs.

�

Lemma C.1. Given a CNF formula φ(I,R) over two sets of variables and (∨,∧), we can
produce in polynomial time a program P ∈ P2(I,R) equivalent to φ.

Proof. Given a CNF formula φ(I,R) over two sets of variables and (∨,∧) we transform φ into
an equivalent formula φ′ over I] R and ⊕,∧ in polynomial time w.r.t the size of the formula.
Indeed, given a clause of φ of the form x ∨ y ∨ z, we have that x ∨ y ∨ z = (x ⊕ y ⊕ xy) ∨ z =
(x⊕ y⊕xy)⊕ z⊕ (x⊕ y⊕xy)z = x⊕ y⊕xy⊕ z⊕xz⊕ yz⊕xyz = x⊕ y⊕ z⊕xy⊕ yz⊕xz⊕xyz.
With this transformation, we have |φ′| ≤ 5× |φ|.

And then, P = φ′ ∈ P2(I,R) is a program equivalent to φ. �

Lemma C.2. Let P,Q ∈ P2(∅, R) without any multiplication.

P ≈2 Q⇔ P ≈F2∞ Q

Proof.
⇐ Trivial direction.
⇒ As outlined in [BDK+10], one can decide if P ≈2 Q by constructing a bijection represented
by only linear terms (thanks to the weak primality of F2 restricted to addition). We thus have a
bijection σ without multiplication such that P = Qσ. σ is then a bijection over all F2k , and we do
have P ≈F2∞ Q.

�

Lemma C.3. Let b be a propositional formula built over built over atoms of the form B = 0
or B 6= 0 with B ∈ Fq[X]. There exists X ′ ⊃ X and polynomials B1, . . . , Bn ∈ Fq[X ′] so that:

∣∣∣X ∈ Fmqk | b
∣∣∣ =

∣∣∣∣∣∣X ′ ∈ Fmqk |
∧

1≤i≤n

Bi = 0

∣∣∣∣∣∣
Those polynomials can be computed in exponential time.

Proof. We prove by induction of the formula that for any formula b, there exists polynomials
B1, . . . , Bn so that: ∣∣∣X ∈ Fmqk | b

∣∣∣ =

∣∣∣∣∣∣X ′ ∈ Fmqk |
∧

1≤i≤n

Bi = 0

∣∣∣∣∣∣
We will assume that the formula are in conjunctive normal form, hence the exponential time.
b := B = 0 Direct, with X ′ = X and B1 = B.

b := B′ 6= 0 For any k and c we have that:∣∣∣X ∈ Fmqk | B 6= 0
∣∣∣ =

∣∣∣X ∈ Fmqk , t ∈ Fqk | tB − 1 = 0
∣∣∣

265

C Appendix of Part III

Indeed, B is different from zero if and only if it is invertible, and thus if and only if there exist a
single value t such that tB = 1.
b :=

∨
1≤i≤lBi = 0

∣∣∣∣∣∣X ∈ Fmqk |
∨

1≤i≤l

Bi = 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣X ∈ Fmqk | (
∏

1≤i≤l

Bi) = 0

∣∣∣∣∣∣
b :=

∧
1≤i≤k bi By induction hypothesis on each bi we get Bi1, . . . , Bini so that all of them verify:

∣∣∣X ∈ Fmqk | b
∣∣∣ =

∣∣∣∣∣∣X ∈ Fmqk , t ∈ Fqk |
∧

1≤i≤k

∧
1≤j≤ni

Bij = 0

∣∣∣∣∣∣
b := b1 ∨ b2 By induction hypothesis on b1 we get B1, . . . , Bn, and on b2 B′1, . . . , B′n, which satisfies

∣∣∣X ∈ Fmqk | b
∣∣∣ =

∣∣∣∣∣∣X ∈ Fmqk , t ∈ Fqk |
∧

1≤i≤n

Bi = 0 ∨
∧

1≤i≤n

B′i = 0

∣∣∣∣∣∣
�

Lemma 8.11. For any k ∈ N ∪ {∞}, Fqk -conditional equivalence restricted to programs without
failures reduces in exponential time to Fqk -conditional equivalence restricted to arithmetic pro-
grams.

Proof. Let P1, Q1 ∈ Pq(∅, R),P2, Q2 ∈ Pq(∅, R), without failures.

We reason by induction on the total number n of conditional branching in P1 and Q1. By basic
transformations of the conditionals, we can assume that all conditions are of the form B 6= 0 (one
can easily encode negations, conjunction and disjunction using conditionals branching).
n = 0 If there are no conditionals branching, the result is trivial.

n > 1 We consider one of the inner most branching in P1, i.e P1 := C[if B 6= 0 then P t1 else P f1]

for some context C, and P t1 , P
f
1 arithmetic programs.

For a fixed k, we have a classical encoding of the if then else in polynomials (cf CSF19):[
if B 6= 0 then P t1 else P

f
1

]
F
qk

=
[
P f1 +Bq

k−1(P t1 − P
f
1)
]
F
qk

We then have that:

C[if B 6= 0 then P t1 else P
f
1] | P2 ≈qk Q1 | Q2 ⇔ C[P f1 +Bq

k−1(P t1 − P
f
1)] | P2 ≈qk Q1 | Q2

A difficulty of this encoding is that it depends on the k, so it cannot be lifted to universal conditional
equivalence. However, we can remove this difficulty by using an extra variable t to encode the
Bq

k−1.

266

C.2 Proofs of Chapter 8

With t a fresh variable, we write

ifB,P t1 , P
f
1 then = else (P f1 + tB(P t1 − P

f
1), B(Bt− 1), t(Bt− 1))

Now, for any k and c we have that:[
(P f1 +Bq

k−1(P t1 − P
f
1), P2)

]
F
qk

(c,0)

=
∣∣∣X ∈ Fmqk | P

f
1 +Bq

k−1(P t1 − P
f
1) = c ∧ P2 = 0

∣∣∣× 1∣∣∣Fm
qk

∣∣∣
=
∣∣∣X ∈ Fmqk , t ∈ Fqk | ifB,P t1 , P

f
1 then = else (c,0) ∧ P2 = 0

∣∣∣× 1∣∣∣Fm
qk

∣∣∣

Indeed, for any variable t and polynomial B:

(B(Bt− 1) = 0 ∧ t(Bt− 1) = 0)⇔ t = Bq
k−2

Finally: [
(P f1 +Bq

k−1(P t1 − P
f
1), P2)

]
F
qk

(c,0)

=
∣∣∣X ∈ Fmqk , t ∈ Fqk | ifB,P t1 , P

f
1 then = else (c,0) ∧ P2 = 0

∣∣∣× 1∣∣∣Fm
qk

∣∣∣+|Fq|
=
[
(P f1 + tB(P t1 − P

f
1), B(Bt− 1), t(Bt− 1), P2)

]
F
qk

(c,0)

Putting everything together, we get that:

C[if B 6= 0 then P t1 else P
f
1] | P2 ≈qk Q1 | Q2 ⇔ C[P f1 +Bq

k−1(P t1 − P
f
1)] | P2 ≈qk Q1 | Q2

⇔ C[P f1 + tB(P t1 − P
f
1)] | (B(Bt− 1), t(Bt− 1), P2) ≈qk Q1 | Q2

And we finally have:

P1 | P2 ≈Fq∞ Q1 | Q2 ⇔ C[P f1 + tB(P t1 − P
f
1)] | (B(Bt− 1), t(Bt− 1), P2) ≈Fq∞ Q1 | Q2

The conditional equivalence on the right-side contains strictly one less conditional, we thus conclude
by induction hypothesis.

Conclusion We have shown by induction that we can remove all conditional branching. Each re-
moval produces a new instance of polynomial size, and there is necessarily a polynomial number
of conditional branching in the programs. We thus reduces in exponential time C−EQUIVq∞ to
C−EQUIVq∞ over programs without conditionals (recall that removing the failure cost an expo-
nential). �

Lemma 8.12. For any k ∈ N ∪ {∞}, Fqk -conditional equivalence reduces to Fqk -conditional
equivalence restricted to programs without failures in exponential time.

Proof. Let P1, Q1 ∈ Pq(∅, R),P2, Q2 ∈ Pq(∅, R).

Recall that observe are expressed using conditionals with a failure branch, and that sampling in
some specific set can be encoded using the observe primitive. Without loss of generality, we can

267

C Appendix of Part III

consider that ⊥ appears only once, as we can merge the conditions of the different failure branches
in a single one.

Then, P1 is of the form P1 := if b then P t1 else ⊥ for some program P t1 which cannot fail.

Now, with Lemma C.3, we have R′ ⊃ R and polynomials B1, . . . , Bn ∈ Fq[R′] so that:

∣∣∣R ∈ Fmqk | b
∣∣∣ =

∣∣∣∣∣∣R′ ∈ Fmqk |
∧

1≤i≤n

Bi = 0

∣∣∣∣∣∣
And then:

[(if b then P t1 else ⊥, P2)]F
qk

(~o,0)

=
P{P t1=~o∧P2=0∧b}

P{¬b}

=
∣∣∣R′ ∈ Fmqk | P

t
1 = ~o ∧ P2 = 0 ∧

∧
1≤i≤nBi = 0

∣∣∣× 1∣∣∣R′∈Fm
qk
|¬
∧

1≤i≤n Bi=0
∣∣∣

=
∣∣∣R′ ∈ Fmqk | P

t
1 = ~o ∧ P2 = 0 ∧

∧
1≤i≤nBi = 0

∣∣∣× 1∣∣∣R′∈Fm
qk
,ti∈Fq|

∏
1≤i≤n(tiBi−1)=0

∣∣∣

This allows us to conclude, when σ maps random variables to fresh ones, that:

if b then P t1 else ⊥ | P2 ≈qk Q1 | Q2 ⇔ P t1 | P2, B1, . . . , Bn ≈qk Q1 | Q2,
∏

1≤i≤n(tiBiσ − 1)

We thus removed the failure on the left side of the conditional equivalence. Proceeding similarly
on the right side yield the expected result. �

Lemma 8.13. Fq-equivalence reduces in polynomial time to Fq∞-equivalence.

Proof. Let P,Q ∈ Pq(∅, {r1, . . . , rm}). We directly have:

P ≈q Q ⇔
∣∣X ∈ Fmq | P (X) = 0

∣∣ =
∣∣X ∈ Fmq | Q(X) = 0

∣∣
⇔ if

∧
1≤i≤m(

∨
c∈Fq ri = c) then P else 0

≈F2∞

if
∧

1≤i≤m(
∨
c∈Fq ri = c) then Q else 0

�

Lemma 8.14. Fq∞-0-majority restricted to linear programs is in PTIME.

Proof. We show that for linear programs P ≺rqk Q implies that P ≈qk Q. Thus, universal majority
is decidable, as universal equivalence is decidable for linear programs (and in PTIME).

Given P1, . . . , Pn ∈ Pq(∅, R) without multiplications, let us consider once again the normal form
for linear programs. In this normal form, each Pi is either a random ri, or a linear combination of
some rj , with j < i. Let IP be the set of indices i such that Pi = ri. We denote P = (P1, . . . , Pn),

and given ~o ∈ Fnqk , we have that [P]F
qk

(~o) =

{
1

qk×|IP |
if the linear constraints are satisfiable

0 else
Indeed, ~o imposes the values of each ri for i ∈ I, and then for those values, either the other
elements of the program coincides, and if they do not, the program is never equal to ~o.

Let P,Q ∈ Pq(∅, R) without multiplications, we know that:

268

C.2 Proofs of Chapter 8

1. ∀~o ∈ Fnqk , [P]F
qk

(~o) = 1

qk×|IP |
or 0

2. ∀~o ∈ Fnqk , [Q]F
qk

(~o) = 1

q
k×|IQ| or 0

3.
∑
~o∈∈Fn

qk
[P]F

qk
(~o) =

∑
~o∈∈Fn

qk
[Q]F

qk
(~o)

Now, let us assume that there exists ~o such that [P]F
qk

(~o) = 0 and [Q]F
qk

(~o) 6= 0. Then, for

any r, we have Q 6≺rqk P . Moreover, if for all ~c′ 6= ~o, [P]F
qk

(~c′) = 0 or [Q]F
qk

(~c′) 6= 0, it

yields a contradiction with Hypothesis (3). Thus, there exists ~c′ such that [P]F
qk

(~c′) 6= 0 and

[Q]F
qk

(~c′) = 0. This also implies that for all r, P 6≺rqk Q.

Let us assume that for all k, P ≺rqk Q. Then, by the previous development, we know that for all
~o, [P]F

qk
(~o) 6= 0 and [Q]F

qk
(~o) 6= 0. If |IP | 6= |IQ|, it would yield a contradiction with Hypothesis

(3). We thus conclude that |IP | = |IQ|, and based on Hypothesis (1) and (2), we have that for all
~o, [P]F

qk
(~o) = [P]F

qk
(~o). We thus conclude that P ≈qk Q.

We have proven that P ≺rq∞ Q⇔ P ≈q∞ Q, when restricted to linear programs without multipli-
cations. �

Lemma 8.15. F2∞-0-majority is PP-hard.

Proof. We prove that 2-0-majority reduces to 2∞-0-majority in polynomial time.

Let P,Q ∈ P2(∅, R).

P ≺2 Q ⇔ |X ∈ Fm2 | P (X) = 0| ≤ |X ∈ Fm2 | q(X) = 0|
⇔ ∀k,

∣∣X ∈ Fm2k | P (X) = 0 ∧X ∈ Fm2
∣∣ ≤ ∣∣X ∈ Fm2k | Q(X) = 0 ∧X ∈ Fm2

∣∣
⇔ ∀k,

∣∣X ∈ Fm2k | P (X) = 0 ∧ x1(x1 + 1) = 0 ∧ · · · ∧ xm(xm + 1) = 0
∣∣

≤
∣∣X ∈ Fm2k | Q(X) = 0 ∧ x1(x1 + 1) = 0 ∧ · · · ∧ xm(xm + 1) = 0

∣∣
⇔ ∀k,

∣∣X ∈ Fm2k | (P (X), x1(x1 + 1), . . . , xm(xm + 1)) = 0
∣∣

≤
∣∣X ∈ Fm2k | (Q(X), x1(x1 + 1), . . . , xm(xm + 1)) = 0

∣∣
⇔ (P, x1(x1 + 1), . . . , xm(xm + 1)) ≺∞2 (Q, x1(x1 + 1), . . . , xm(xm + 1))

�

269

C Appendix of Part III

C.3 Proofs of Section 9.4.1

Given a multilinear map ê, g1, .., gn, gt a set of groups generators, let X be a set of public names
sampled in Fq , Y be a set of private names sampled in Fq, f1, ...fk, h ∈ K[X,Y] be a set of
polynomials over both public and secret names and Γ be a coherent set of axioms.

Our deducibility problem is to decide if Γ |= X, gf1i1 , ..., g
fk
ik
`E ght Without loss of generality,

we consider here the case of a bilinear map, to simplify the writing, but the proofs scale up to
multilinear maps.

C.3.1 Saturation into the Target Group

First, we reduce our problem to the case of a single group. This result comes from the Proposition
1 of [KMT12]. Their constructive proof can trivially be used to obtain the following proposition:

Proposition C.1. For any sets X and Y , polynomials f1, ...fn, h ∈ K[X,Y] and groups ele-
ments gf1i1 , ..., g

fn
in
, we denote

(geit) = {ê(gij , gik)|1 ≤ j ≤ k ≤ n, gij ∈ G1, gik ∈ G2}
∪{ê(gij , 1)|1 ≤ j ≤ n, gij ∈ G1, }
∪{ê(1, gij)|1 ≤ j ≤ n, gij ∈ G2, }

Then Γ |= X, gf1i1 , ..., g
fn
in
`E ght ⇔ Γ |= X, ge1t , ..., g

eN
t `E−ê ght .

We obtain a problem where we only have elements in the target group, we can therefore reduce
the general problem to the single group case.

C.3.2 Reduction to Polynomials
Lemma C.4. For any sets X and Y , polynomials w1, ...wN , h ∈ K[X,Y] we have Γ |=
X, gw1

t , ..., gwNt `E ght if and only if:

∃(ei, gi) ∈ K[X], (∀i,Γ |= gi 6= 0) ∧
∑
i

ei ×
fi
gi

= h

Proof. If Γ = ∅, the adversary can construct elements of the form (gwit)ei , where ei ∈ K[X], i.e.
ei is a polynomial constructed over variables fully known by the adversary, and then multiply this
kind of term, yielding a sum in the exponent. If Γ 6= ∅, they may also divide by some ggit , with
gi ∈ K[X]. We capture here the three capabilities of the adversary, which when looking in the
exponent immediately translate into the formula on the right side. �

To handle this new problem, we notice that we can actually compute the set {g|Γ |= g 6= 0}.
Indeed, for each axiom f 6= 0, we can extract a finite set of non zero irreducible polynomials by
factorizing them (for example using Lenstra algorithm [Len85]). Any non annulling polynomial
will be a product of all these irreducible polynomials. We can then obtain a finite set Gs = (gi)
such that G = {g|Γ |= g 6= 0} = {

∏
g∈Gs g

kg |∀g, kg ∈ N}. With these notations, we can simplify
proposition 1, because we know the form of the gi. Moreover, as we do not want to deal with
fractions, we multiply by the common denominator of all the wi

gi
.

270

C.3 Proofs of Section 9.4.1

Lemma C.5. For any sets X and Y , polynomials w1, ...wN , h ∈ K[X,Y] we have Γ |=
X, gw1

t , ..., gwNt `E ght if and only if:

∃(ei) ∈ K[X], (kg) ∈ N,
∑
i

ei × wi = h
∏
g∈Gs

gkg

We do not prove this lemma, we will rather reformulate it using more refined mathematical struc-
tures and then prove it. Let us call M = {

∑
i ei × wi|ei ∈ K[X]} the free K[X]-module generated

by the (wi). We recall that a S-module is a set stable by multiplication by S and addition, and
that 〈(wi)〉S is the S-module generated by (wi). We also recall the definition of the saturation
:

Definition C.1. Given a S-module T, f ∈ S and S ⊂ S′, the saturation of T by f in S’ is
T :S′ (f)∞ = {g ∈ S′|∃n ∈ N, fng ∈ T}.

The previous lemma can be reformulated using saturation; if M is the module generated by
w1, ..., wN :

Lemma C.6. Γ |= X, gw1
t , ..., gwNt `E ght ⇔ h ∈M :K[X,Y] (g1...gn)∞

Proof. We recall that:

M :K[X,Y] (g1...gn)∞ = {x ∈ K[X,Y]|∃k ∈ N, (g1...gn)k × x ∈M}

⇒ We have
∑
i ei × wi = h

∏
g∈Gs g

kg . With K = max(kg), we multiply both sides by
∏
g g

K−kg

to get h
∏
g∈Gs g

K =
∑
i

∏
g g

K−kgei × wi ∈M . Which proves that h ∈M :K[X,Y] (g1...gn)∞.
⇐ If h ∈ M :K[X,Y] (g1...gn)∞, we instantly have (ei) ∈ K[X], k ∈ N such that h

∏
g∈Gs g

kg =∑
i eifi. �

We then simplify the saturation, by transforming it into the membership of the intersection of
modules.

Lemma C.7. For any sets X and Y , f1, ...fn, h ∈ K[X,Y], g ∈ K[X],let M = {
∑
i ei×fi|ei ∈

K[X]} . Then, with t a fresh variable M :K[X,Y] g
∞ = 〈(fi) ∪ ((gt− 1)Y

~j)~j∈{degY (fi)}〉K[X,t] ∩
K[X,Y].

Proof. ⊂. Let there be v ∈ M :K[X,Y] g
∞. Then, we have k such that gk × v ∈ M . The following

equalities shows that v is in the right side set v = gktkv− (1+gt+ ...+gk−1tk−1)(gt−1)v. Indeed,
gktkv ∈MK[X, t], so we have (ei) ∈ K[X, t] such that gktkv =

∑
i eifi. Moreover, gk× v ∈M and

g ∈ K[X] implies that degY (v) ⊂ {degY (fi)}. So we do have (e′i) ∈ K[X, t] and (~ji) ⊂ {degY (fi)}
such that

(1 + gt+ ...+ gk−1tk−1)(gt− 1)v =
∑

e′i(gt− 1)Y
~ji

Finally, v ∈ 〈(fi) ∪ ((gt− 1)Y
~j)~j∈{degY (fi)}〉K[X,t] ∩K[X,Y].

⊃. Let there be v ∈ 〈(fi)∪((gt−1)Y
~j)~j∈{degY (fi)}〉K[X,t]∩K[X,Y]. Then we have (ei), (e

′
i) ∈ K[X, t]

and (~ji) ⊂ {degY (fi)} such that :

v =
∑
i

eifi +
∑
i

e′i(gt− 1)Y
~ji

271

C Appendix of Part III

We have that v ∈ K[X,Y], so v is invariant by t. So, if we substitute t with 1
g , we have that

v =
∑
i ei(X,

1
g)fi. Let us consider gk the common denominator of all those fractions and call

e′′i = gkei ∈ K[X]. We finally have gk×v =
∑
i e
′′
i fi ∈M , which means that v ∈M :K[X,Y] g

∞. �

The Buchberger algorithm allows us to compute a Gröbner basis of any free K[X]-module [Eis13]
and then decide the membership problem for a module. We thus solve our membership problem
using this method.

Theorem C.1. For any sets X and Y , polynomials f1, ...fn, h ∈ K[X,Y], group elements
gi1 , ..., gin and a set of axioms Γ we can decide if Γ |= X, gf1i1 , ..., g

fn
in
`E ght

Proof. To decide if h is deducible, we first reduce to a membership problem with Lemma C.6
that can be solved using Lemma C.7 by computing the Gröbner basis of 〈(fi) ∪ ((gt −
1)Y

~j)~j∈{degY (fi)}〉K[X,t], keeping only the elements of the base that are independent of t and then
checking if the reduced form of h is 0. �

As a side note, being able to decide the deducibility in this setting allows us to decide another
classical formal method problem, the static equivalence. Indeed the computation of the Gröbner
basis allows us to find generators of the corresponding syzygies (Theorem 15.10 of [Eis13]), which
actually captures all the possible distinguishers of a frame.

272

Titre: Preuves de protocoles cryptographiques : méthodes symboliques et attaquants puissants

Mots clés: Protocols cryptographiques, méthodes formelles, modèle calculatoire, modèle symbolique,
logique BC

Résumé: L’utilisation des protocoles de commu-
nication est omniprésente dans notre société, mais
leur utilisation comporte des risques de sécurité ou
d’atteinte à la vie privée. Pour réduire ces risques,
il faut exiger de solides garanties, i.e. des preuves
formelles, approfondies, modulaires et vérifiées par
ordinateur. Toutefois, de telles preuves sont très dif-
ficiles à obtenir. Nous essayons dans cette thèse de
faciliter ce processus dans le cas des protocoles cryp-
tographiques et d’attaquants puissants. Nos contri-
butions principales sont

1. une méthodologie d’analyse approfondies dans
le cas de l’authentification multi-facteurs;

2. des résultats de composition permettant des
preuves modulaires de protocoles complexes
dans le modèle calculatoire;

3. l’automatisation d’étapes élémentaires de
preuves calculatoires via des méthodes sym-
boliques appliquées à des programmes proba-
bilistes;

4. un prototype d’assistant de preuve dans le
modèle de l’attaquant symbolique calcula-
toirement complet.

Title: Proofs of Security Protocols: Symbolic Methods and Powerful Attackers

Keywords: Security Protocols, Formal Methods, Computational Model, Symbolic Model, BC logic

Abstract: The use of communication protocols
has become pervasive at all levels of our society. Yet,
their uses come with risks, either about the security
of the system or the privacy of the user. To miti-
gate those risks, we must provide the protocols with
strong security guarantees: we need formal, exten-
sive, modular and machine-checked proofs. How-
ever, such proofs are very difficult to obtain in prac-
tice. In this Thesis, we strive to ease this process in
the case of cryptographic protocols and powerful at-
tackers. The four main contributions of this Thesis,
all based on symbolic methods, are

1. a methodology for extensive analyses via a
case study of multi-factor authentication;

2. composition results to allow modular proofs
of complex protocols in the computational
model;

3. symbolic methods for deciding basic proof
steps in computational proofs, formulated as
problems on probabilistic programs;

4. a prototype of a mechanized prover in
the Computationally Complete Symbolic At-
tacker model.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Abstract
	Résumé
	Table of Contents
	Publications
	1 Introduction
	1.1 Cryptographic Primitives, Security Properties and Protocols
	1.2 Formal Proofs
	1.3 Our Contributions

	2 Formal Models for Protocols
	2.1 Generic Syntax and Semantics for Protocols
	2.1.1 Syntax
	2.1.2 Parameterized Semantics
	2.1.3 Reachability Properties

	2.2 Symbolic Semantics
	2.2.1 Interpretation of Terms
	2.2.2 Attacker Capabilities
	2.2.3 Symbolic Indistinguishability

	2.3 Computational Semantics
	2.3.1 Semantics of Terms and Attackers
	2.3.2 Computational Indistinguishability

	2.4 The BC Logic
	2.4.1 From Protocols to Terms
	2.4.2 A Logic over Terms

	I Extensive
	3 A Symbolic Model for Multi-Factor Authentication
	3.1 Introduction
	3.1.1 Our Contributions
	3.1.2 Related Work

	3.2 Multi-factor Authentication Protocols
	3.2.1 Google 2-step
	3.2.2 FIDO's Universal 2nd Factor - U2F
	3.2.3 Disabling the Second Factor on Trusted Devices
	3.2.4 Token Binding

	3.3 Threat Model
	3.3.1 Malware Based Scenarios
	3.3.2 Fingerprint Spoofing
	3.3.3 Human Errors
	3.3.4 Threat Scenarios Considered

	3.4 The Formal Model
	3.4.1 Extension of the Process Calculus with Secret Channels
	3.4.2 Modelling TLS Communications
	3.4.3 Modelling Threat Models

	4 An Extensive Analysis
	4.1 Introduction
	4.1.1 Our Contributions
	4.1.2 Related Work

	4.2 Analysis and Comparison
	4.2.1 Properties and Methodology
	4.2.2 Google 2-step: Verification Code and One-Tap
	4.2.3 Additional Display
	4.2.4 Conclusion Regarding Google 2-step
	4.2.5 FIDO U2F
	4.2.6 Token Binding
	4.2.7 A g2DTdis Extension : g2DText
	4.2.8 g2DText Analysis

	4.3 Validating Attacks in Practice
	4.3.1 Session Confusion on g2V
	4.3.2 Session Confusion on g2OT
	4.3.3 Phishing Attack on Google 2-step
	4.3.4 Action Confusion and Mixing on Google 2-step and U2F
	4.3.5 USB Attack on U2F

	4.4 Unlinkability
	4.4.1 On Privacy
	4.4.2 Formal Analysis
	4.4.3 Attack against Key Generation
	4.4.4 U2F with Counters
	4.4.5 An Attack Based on Global Counters
	4.4.6 Combining Both Attacks
	4.4.7 Improvements

	4.5 Google 2-step vs U2F
	4.5.1 Practical Considerations
	4.5.2 Final Comparison

	II Modular
	5 A Composition Framework in the Computational Model
	5.1 Introduction
	5.1.1 Our Contributions
	5.1.2 Related Work

	5.2 Protocols and Indistinguishability
	5.2.1 Stateless Oracle Machines

	5.3 Simulatability
	5.3.1 Protocol Simulation
	5.3.2 Generic Oracles for Tagged Protocols

	5.4 Main Composition Theorems
	5.4.1 Composition without State Passing
	5.4.2 Composition with State Passing
	5.4.3 Unbounded Replication

	5.5 Unbounded Sequential Replication
	5.6 Application to Key Exchanges
	5.6.1 Our Model of Key Exchange
	5.6.2 Proofs of Composed Key Exchange Security

	5.7 Basic Diffie-Hellman Key Exchange
	5.8 Extension to Key Confirmations
	5.8.1 Proofs with Key Confirmations

	5.9 Application to SSH
	5.9.1 The SSH Protocol
	5.9.2 Security of SSH
	5.9.3 SSH with Forwarding Agent

	6 The Framework in the BC Logic
	6.1 Introduction
	6.1.1 Our Contributions
	6.1.2 Related Work

	6.2 Oracles in the BC Logic
	6.2.1 Syntax and Semantics
	6.2.2 Oracle Soundness

	6.3 Computational Soundness
	6.4 Extension to the Model for Unbounded Replication

	III Automated
	7 Probabilistic Language and Problems
	7.1 Introduction
	7.1.1 Our Contributions
	7.1.2 Related Work

	7.2 Probabilistic Programming Language
	7.2.1 Syntax and Informal Semantics
	7.2.2 A Core Language
	7.2.3 Semantics

	7.3 Decision Problems and Universal Variants
	7.4 First Results
	7.4.1 Links between Problems
	7.4.2 Semantic Characterization of Equivalence

	8 Complexity and Decidability
	8.1 Introduction
	8.1.1 Our Contributions
	8.1.2 Related Work

	8.2 Complexity in the Finite Case
	8.2.1 Conditional Equivalence
	8.2.2 Independence
	8.2.3 Majority

	8.3 The Universal Case
	8.3.1 General Remarks
	8.3.2 From Arithmetic Programs without Inputs to LRS
	8.3.3 Decidability of Universal Equivalence

	8.4 Program Indistinguishability
	8.5 Undecidability with Loops

	9 In Practice
	9.1 Introduction
	9.1.1 Our Contributions
	9.1.2 Related Work

	9.2 Symbolic Characterization
	9.2.1 Symbolic Abstraction
	9.2.2 Symbolic Characterization

	9.3 Symbolic Methods for Probabilistic Programs
	9.3.1 Using Deduction to Check Uniformity
	9.3.2 Deduction Constraints and Unification for Program Equivalence
	9.3.3 Static Equivalence and Non Equivalence

	9.4 Extending Symbolic Results
	9.4.1 Deciding Deducibility for Diffie-Hellman Theories
	9.4.2 Fields and Commutative Rings
	9.4.3 From One-Step Deduction Constraints to Originated and Monotone Constraints.

	9.5 Deriving Heuristics
	9.5.1 Soundness and Completeness
	9.5.2 Boolean Algebras: the Linear Case
	9.5.3 Boolean Algebras: the General Case
	9.5.4 Extension to More Complex Algebras
	9.5.5 Interference Witnesses
	9.5.6 Sampling from Multiple Distributions

	9.6 Applications
	9.6.1 Implementation of a Library
	9.6.2 Integration in MaskVerif
	9.6.3 Integration in EasyCrypt

	IV A New Hope
	10 An Interactive Prover for Indistinguishability Proofs
	10.1 Introduction
	10.1.1 Our Contributions
	10.1.2 Related Work

	10.2 Overview
	10.3 A Meta-Logic for Reachability and Equivalence
	10.3.1 The Meta-Logic
	10.3.2 Reachability Rules
	10.3.3 Indistinguishability Rules

	10.4 Implementation and Case-Studies
	10.4.1 The Tool
	10.4.2 Case-Studies

	Conclusion and Future Work
	Bibliography
	A Appendix of part:mfa
	A.1 Global Results for MFA

	B Appendix of part:modular
	B.1 Formal Corollary for Key Exchange
	B.2 Formal Corollary for Key Confirmations
	B.3 Proofs of compo:chap:framework
	B.3.1 Oracle Simulation
	B.3.2 Autocomposition Results

	C Appendix of part:auto
	C.1 Proof of prob:chap:langprob
	C.2 Proofs of prob:chap:compdec
	C.3 Proofs of prob:sec:deduc
	C.3.1 Saturation into the Target Group
	C.3.2 Reduction to Polynomials

