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Résumé
Cette thèse a pour vocation le développement et l’application de nouvelles techniques d’infér-

ence statistique bayésienne et d’apprentissage profond aux sondes cosmologiques, telles que le
fond diffus cosmologique ou CMB (pour cosmic microwave background) et les grandes structures
de l’Univers. Nous avons conçu des outils d’analyse de données efficaces et précis pour relever les
défis statistiques imposés par les gros volumes de données complexes des missions CMB ou des
relevés profonds de galaxies de la prochaine génération, dans le but d’optimiser l’exploitation des
données scientifiques afin d’améliorer, à terme, notre compréhension de l’Univers.

La première partie de cette thèse concerne l’extraction des modes E et B du signal de polari-
sation du CMB à partir des données. À cette fin, nous avons utilisé le filtre de Wiener, un outil
puissant pour la reconstruction de signaux, mais qui nécessite l’inversion de matrices denses, ce
qui pose un problème non-trivial pour traiter les gros volumes de données. En conséquence, nous
avons développé une méthode hiérarchique à haute performance, nommée algorithme du dual
messenger, qui garantit la stabilité et la convergence numérique tout en évitant l’inversions de ces
matrices. Nous avons réalisé une demonstration de faisabilité en appliquant l’algorithme aux cartes
d’anisotropies de température du CMB. Nous avons ensuite adapté notre méthode pour traiter les
données de polarisation du CMB et démontré son efficacité pour réaliser la séparation E/B, tout
en illustrant les difficultés des approches traditionnelles pour gérer efficacement ce problème in-
trinsèquement mal posé. Nous avons ensuite généralisé l’algorithme du dual messenger pour la
reconstruction du champ de spin sur la sphère, tout en tenant compte des modèles de bruit réalistes
tels que le bruit anisotrope corrélé. En utilisant des cartes de polarisation simulées du CMB de la
mission Planck comme tests, nous avons démontré les capacités de cet algorithme à reconstruire des
cartes E et B pures, garanti par la suppression des modes ambigus liés au problème de couplage
qui entrave les méthodes classiques de séparation E/B.

La seconde partie porte sur le développement de divers aspects de la modélisation d’inférence
bayésienne pour une exploitation optimale des relevés modernes du décalage vers le rouge ou red-
shift des galaxies. Nous avons développé un cadre d’inférence bayésienne à grande échelle pour
contraindre les paramètres cosmologiques en s’appuyant sur une nouvelle implémentation du test
géométrique d’Alcock-Paczyński (AP). Notre approche, qui repose uniquement sur les symétries
géométriques du principe cosmologique, extrait plusieurs ordres de grandeur d’informations sup-
plémentaires de l’expansion cosmique par rapport aux approches classiques. En particulier, nous
avons présenté nos contraintes cosmologiques sur la densité de matière et l’équation d’état de
l’énergie sombre. Nous avons vérifié que notre implémentation du test AP est robuste à un modèle
mal spécifié qui offre un degré de solidité remarquable au phénomène actuellement non résolu du
biais des galaxies, contournant ainsi une des principales limites des analyses traditionnelles. Etant
donné que le contrôle des effets systématiques est un facteur crucial pour les relevés modernes de
redshift des galaxies, nous avons également présenté une fonction de vraisemblance robuste, qui
résiste aux contaminations inconnues liées aux avant-plans.

Finalement, dans le but de construire des émulateurs de dynamiques complexes dans notre
modèle hiérarchique bayésien, nous avons conçu un nouveau réseau de neurones qui apprend
à peindre des distributions de halo réalistes sur des champs approximatifs de matière noire en
3D. Nous avons utilisé des principes physiques simples pour former le réseau de neurones afin
d’apprendre la relation locale et non-triviale entre le champ de densité de la matière noire et la
distribution de halo sans avoir recours à un modèle physique.

Mots-clés: Cosmologie, grandes structures de l’Univers, fond dissus cosmologique, méthodes
statistiques, apprentissage profond, l’analyse des données.
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Abstract
The essence of this doctoral research constitutes the development and application of novel

Bayesian statistical inference and deep learning techniques to cosmological probes, such as cosmic
microwave background (CMB) and large-scale structure measurements. We have designed efficient
and precise data analysis tools to meet statistical challenges of massive and complex data sets from
next-generation CMB missions or galaxy surveys and optimize their scientific returns to ultimately
improve our understanding of the Universe. This thesis is organized in three main parts.

The first theme deals with the extraction of the E and B modes of the CMB polarization sig-
nal from the data. To this end, we employ the Wiener filter, a powerful signal reconstruction tool,
but which requires the inversion of dense matrices, resulting in a highly non-trivial problem when
dealing with large data sets. We have developed a high-performance hierarchical method, known
as the dual messenger algorithm, which guarantees numerical stability and convergence, while ob-
viating matrix inversions. As a proof of concept, we presented an application of the algorithm to
maps of CMB temperature anisotropies. We then adapted our method for the inclusion of CMB
polarization data and demonstrated its efficacy in performing E/B separation, while illustrating
the difficulties of traditional approaches in dealing efficiently with this inherently ill-conditioned
problem. We subsequently extended the dual messenger algorithm for spin field reconstruction on
the sphere, while accounting for complex and realistic noise models such as correlated anisotropic
noise. Using simulated Planck CMB polarization maps as a test case, we demonstrated the capabil-
ities of the algorithm in reconstructing pure E and B maps, guaranteed to be free from ambiguous
modes resulting from the leakage issue that plagues conventional methods of E/B separation.

The second theme of this doctoral work lies in the development of various aspects of Bayesian
forward modelling machinery for optimal exploitation of state-of-the-art galaxy redshift surveys.
We developed a large-scale Bayesian inference framework to constrain cosmological parameters
via a novel implementation of the Alcock-Paczyński (AP) test. Our approach, relying purely on the
geometrical symmetries of the cosmological principle, extracts several orders of magnitude more
information from the cosmic expansion relative to classical approaches. In particular, we showcased
our cosmological constraints on the matter density and dark energy equation of state. We verified
that our implementation of the AP test is robust to a misspecified model, yielding a remarkable
degree of resilience to the currently unresolved phenomenon of galaxy bias, thereby circumventing
a potentially key limitation. This is consequently among the first methods to extract a large fraction
of information from statistics other than that of direct density contrast correlations, without being
sensitive to the amplitude of density fluctuations. With the control of systematic effects being a cru-
cial limiting factor for modern galaxy redshift surveys, we also presented an augmented likelihood
which is robust to unknown foreground and target contaminations.

Finally, with a view to building fast complex dynamics emulators in our above Bayesian hier-
archical model, we have designed a novel halo painting network that learns to map approximate
3D dark matter fields to realistic halo distributions. We used simple physical principles to train
the mapping network to learn the non-trivial local relation between dark matter density field and
halo distributions without relying on a physical model. Combining statistical inference and deep
generative modelling techniques is the plausible approach to render high-resolution analyses of
upcoming galaxy redshift surveys feasible, while providing statistically interpretable results and
maintaining the scientific rigour.

Keywords: Cosmology, large-scale structure of the Universe, cosmic microwave background,
statistical methods, deep learning, data analysis.
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Context and motivation

Humanity is driven by an inherent desire and fascination to ask and answer fundamental questions
about our Universe. Cosmology, as a natural science to describe and explain the origin and prop-
erties of the Universe, was born out of this epistemological and philosophical need for perspective
on our existence and cosmic origins. Modern cosmology rests on firm mathematical and physical
foundations, and has led to the emergence of a scientific theory that encodes the intricate machin-
ery pertaining to the physics of the primordial Universe and its subsequent evolution, as laid out
in Chapters 1 and 6.

Over the past few decades, there has been remarkable progress in cosmology, with the meta-
morphosis of this field of research into a precision and data-driven science. However, some crucial
open questions and key unresolved issues must still be addressed, such as:

• Deciphering the nature of dark matter and dark energy;

• Detecting the elusive primordial gravitational waves to shed light on the early Universe;

• Verifying the inflationary paradigm as the precursor of cosmic structure formation;

• Probing our model of gravity for any intrinsic limitations;

• Understanding how galaxies trace the underlying dark matter, i.e. galaxy bias problem;

• Measuring the neutrino mass scale.

There are various pathways to solve or contribute towards solving the above problems, with the
cosmic microwave background (CMB) and large-scale distribution of matter being particularly fer-
tile hunting grounds to investigate and elucidate the inner-workings of the Universe.

Nevertheless, in an era of precision cosmology, the data analysis of state-of-the-art galaxy red-
shift surveys and CMB polarization maps with unprecedented levels of sensitivity and resolution
poses complex numerical challenges. Fast and robust methods are required to render the data anal-
ysis of these large and complex data sets computationally tractable. The underlying goal of this
work, therefore, is the development of precise and quantitative tools for statistical data analysis to
efficiently explore the information hidden in our cosmic environment.

Window to probe early Universe physics

Observations of the CMB temperature anisotropies by the Planck satellite (e.g. Planck Collaboration
et al., 2018a) and its predecessors, such as COsmic microwave Background Explorer (COBE) (Smoot
et al., 1992) and the Wilkinson Microwave Anisotropy Probe (WMAP) (e.g. Dunkley et al., 2009),
have made revolutionary contributions in constraining the currently favoured standard model of
cosmology, as described in Chapter 1.3. With the Planck mission exhausting the accessible infor-
mation content of the temperature sector, the next generation of CMB experiments is tailored for
detailed measurements of the maps of polarization anisotropies. Some notable examples include
the Simons Observatory (Ade et al., 2019) and CMB-S4 (Abazajian et al., 2016) experiments.
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Cosmological inference from observations of the CMB polarization, however, requires the sep-
aration of the contributions of the gradient and curl (or E and B) components of the polarization
signal to the data. The E -mode power spectrum provides an independent probe of the scalar modes
measured via the temperature anisotropies (e.g. Abazajian et al., 2016; Suzuki et al., 2016; Henning
et al., 2018; Louis et al., 2017). The inclusion of E -mode polarization data in parameter inference
pipelines allows us to derive more stringent constraints (e.g. Galli et al., 2014), whilst the scientific
potential of B-mode anisotropy observations is extremely promising.

The B-mode component of the polarization is the focus of growing interest in the community.
First, they are an independent confirmation of the lensing effect detected in the temperature and E -
mode anisotropies, as B modes are produced from the gravitational lensing of E modes by the dark
matter distribution along the line of sight (Zaldarriaga and Seljak, 1998). These lensing-induced B
modes have been observed by high-resolution ground-based CMB experiments (e.g. Hanson et al.,
2013; The POLARBEAR Collaboration et al., 2017). Second, and most importantly, the detection of
larger angular scale Bmodes, directly sourced by primordial gravitational waves, remains a key but
elusive objective of modern cosmology due to their extremely low amplitude, with groundbreaking
implications (e.g. Guzzetti et al., 2016; Kamionkowski and Kovetz, 2016).

A measurement of this primordial B-mode signal on large angular scales would be regarded as
a direct validation of the inflationary paradigm as the precursor of this stochastic background of
gravitational waves. The amplitude of this background would directly constrain the energy scale
of inflation, thereby ruling out some inflationary models, while also constraining the reionization
period. In a nutshell, this would open a window to probe the physical mechanisms at work in the
very early Universe, which remains at the frontiers of knowledge,1 thereby dramatically improving
our understanding of this obscure and mysterious period.

The detection of this faint primordial signal is hindered by various complexities, such as fore-
ground contaminations, B modes induced by gravitational lensing of E modes, and non-trivial
noise and systematics inherent to the instrument and observation strategy. In addition, there is a
key E/B leakage issue (e.g. Lewis, Challinor, and Turok, 2002; Bunn et al., 2003), whereby the B
modes are contaminated by the relatively larger E -mode power, which arises due to mode coupling
introduced by incomplete sky coverage. To address this crucial aspect, in Part II, we develop a
powerful statistical reconstruction tool which stringently ensures no such leakage contaminations,
while accounting for anisotropic correlated noise.

Detailed mapping of cosmic matter distribution

The exploration of the Universe on large scales relies primarily on the use of large galaxy surveys,
i.e. a compilation of the positions and optical properties of galaxies in the sky. These surveys are
either photometric, when only wide band observations are available, or spectroscopic, for which the
emission of each galaxy has been finely described at different wavelengths. From their respective
luminous properties, we infer the galaxy redshift, i.e. its total apparent receding velocity.

1It is worth mentioning that spectral distortions in the CMB would provide a complementary and independent probe
of early Universe physics (e.g. Chluba, 2014).
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The statistics of the galaxy distribution measured by the above surveys have emerged as key
tools to investigate various cosmological models and to improve our understanding of the late-time
Universe through the growth and clustering of cosmic structures. In essence, distinct signatures
of rich physics, encompassing quantum field theory and general relativity, are imprinted on the
various processes of structure formation, such as the generation of the initial seed perturbations
and dynamics of gravitational instability, during the course of cosmic history.

Ongoing and upcoming galaxy surveys will map the spatial distribution of galaxies in unprece-
dented volumes of the observable Universe. Some prominent examples include wide photometric
surveys, such as the Dark Energy Survey (DES, The Dark Energy Survey Collaboration, 2005) and
Large Synoptic Survey Telescope (LSST, Ivezic et al., 2008), and deep spectroscopic surveys, such
as Dark Energy Spectroscopic Instrument (DESI, Levi et al., 2013) and Euclid (Laureijs et al., 2011;
Racca et al., 2016; Amendola et al., 2016). Such state-of-the-art galaxy surveys are bringing us closer
to a full census of the galaxy distribution in our patch of Universe. As such, this leads to a crucial
consequence: We are running out of exploitable information on our Universe.

To make further progress in cosmology, we must inevitably transcend traditional data analysis
approaches at the level of two- or three-point statistics of the galaxy distribution. In Part III, we em-
ploy a Bayesian forward modelling machinery for the joint inference of the underlying dark matter
distribution and cosmological parameters from galaxy observations. Since we perform our analy-
sis at the level of the field, the latter naturally encodes all the higher order statistics, resulting in a
substantial information gain. We demonstrate that such an approach yields orders of magnitude
improvement in the cosmological constraints over conventional methods. Moreover, we make use
of recent advances in deep generative modelling to construct fast emulators of complex dynamics in
Part IV, in preparation for future high-resolution analyses using our forward modelling framework.

Structure of this thesis

This thesis is written in three main parts, organized as follows. Part II focuses on the CMB polar-
ization, with the key concepts underlying modern cosmology and physical mechanisms of CMB
anisotropies, within the context of this thesis, outlined in Chapter 1. An introduction to the Wiener
filter, as well as its associated numerical challenges, is provided in Chapter 2, followed by a descrip-
tion of the conceptual framework of our dual messenger algorithm. The applications of our novel
statistical reconstruction tool to CMB temperature anisotropies and polarization are illustrated in
Chapters 3 and 4, respectively. This part of the thesis culminates in the extension of our dual mes-
senger algorithm to reconstruct pure E and B maps, while accounting for anisotropic correlated
noise, as described in Chapter 5.

Part III involves the statistical reconstruction of the large-scale structures of the Universe within
a Bayesian inference framework. Chapter 6 provides an introduction to the theory of cosmic struc-
ture formation, with an emphasis on Lagrangian perturbation theory and numerical simulations,
as relevant to this thesis. The conceptual underpinnings of Bayesian probability theory are sub-
sequently outlined in Chapter 7. Chapter 8 presents the development and implementation of the
ALTAIR forward modelling machinery for cosmological parameter inference from galaxy redshift
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surveys. We present an effective solution to the unknown foreground contamination problem in
galaxy surveys via the development of a robust likelihood in Chapter 9.

Part IV describes the use of machine learning to construct fast complex dynamics emulators
for Bayesian hierarchical models. Basic concepts underlying neural networks are introduced in
Chapter 10, with Chapter 11 reviewing the rationale of the recently proposed generative modelling
framework of adversarial networks. In Chapter 12, we present our halo painting model, encoding
physically motivated neural networks, to map approximate dark matter simulations to 3D halo
distributions.

Finally, in Part V, we summarize the key aspects of the work presented in this thesis. Prospec-
tive applications of the tools developed and possible avenues for future investigations are also laid
out. Supplementary material is provided in the appendices, with Appendix A providing a mathe-
matical description of the convergence properties of the standard messenger and dual messenger
algorithms. Appendix B provides further details pertaining to spin field reconstruction and spheri-
cal harmonic transforms, as relevant to Chapters 4 and 5.
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Part II

Polarization of the cosmic microwave
background
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Chapter 1

Cosmology and the cosmic microwave
background

1.1 The ΛCDM model of the Universe

In this section, we review the theoretical foundations of modern cosmology, which have given rise
to the so-called concordance (ΛCDM) model of the Universe. A comprehensive and detailed intro-
duction to cosmology can be found in Peebles (1980), Kolb and Turner (1990), Peacock (1999), and
Dodelson (2003).

1.1.1 The cosmological principle

The cosmological principle is the cornerstone of modern cosmology. This is the hypothesis that the
Universe is spatially homogeneous and isotropic on sufficiently large scales (Weinberg and Dicke,
1973). Homogeneity implies that we have the same physical conditions at every point of any given
hypersurface, while isotropy implies that we observe identical physical conditions in all spatial
directions from a given point on the hypersurface (Mukhanov, 2005), i.e. there are no preferred
directions in the Universe.

Observational evidence

The isotropy of the Universe is well-established by various cosmological observations, with the ob-
served quasi-isotropic CMB radiation (Smoot et al., 1992; Dunkley et al., 2009; Planck Collaboration
et al., 2018a, e.g.) providing the most remarkable quantitative evidence. There is, however, no con-
sensus concerning the scales above which the Universe is homogeneous, with distinct definitions
for the homogeneity scale proposed in the literature. Past studies of the mean density of galaxies
in the recent galaxy surveys have yielded a homogeneity scale ∼ 70h−1 Mpc (e.g. Scrimgeour et al.,
2012; Hogg et al., 2005), while investigations based on fractal nature of the Universe have led to
varying results (e.g. Sylos Labini et al., 2009; Sarkar et al., 2009; Yadav, Bagla, and Khandai, 2010).
Nevertheless, Alonso et al. (2015) constrained the fractal nature of the galaxy distribution from the
Two Micron All Sky Survey Photometric Redshift (2MASS) survey (Bilicki et al., 2014) while rely-
ing only on the angular distances of galaxies and found no significant deviations from statistical
homogeneity and isotropy in the large-scale structures of the Universe, in agreement with other
complementary methods (e.g. Appleby and Shafieloo, 2014; Avila et al., 2018; Avila et al., 2019).
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General relativistic Universe

The rationale underlying this simplifying hypothesis is encoded in the assumption of a spatially
symmetric tensor gµν, for any time slice, to describe the expansion dynamics of the Universe. Ein-
stein’s theory of general relativity describes the gravitational force as an emergent property of space
and time, with the metric tensor characterizing the geometric relation between two events in a 4D
spacetime manifold (Einstein, 1915). This metric allows us to calculate the separation ds between
these events, separated by dxµ, as ds2 = gµνdxµdxν and is used to solve Einstein’s field equations
(Carroll, 2004):

Gµν ≡ Rµν −
R
2

gµν =
8πG

c4 Tµν + Λgµν, (1.1)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci scalar, Tµν is the energy-
momentum tensor of the matter component, Λ denotes the cosmological constant, c is the speed of
light in vacuum and G corresponds to the gravitational constant.

Friedmann-Lemâitre-Robertson-Walker metric

Under the assumption of the cosmological principle, the physical description of the Universe re-
lies on the Friedmann-Lemaître-Robertson-Walker (FLRW) metric (Friedmann, 1922; Friedmann,
1924; Lemaître, 1927; Lemaître, 1931; Lemaître, 1933; Robertson, 1935; Robertson, 1936a; Robertson,
1936b; Walker, 1937):

ds2 = −c2dt2 + a2(t)
(

dr2

1− kr2 + r2dΩ2
)

, (1.2)

where t is the cosmic time and a(t) is the cosmic scale factor, normalized to unity at present time, i.e.
a0 = 1. dΩ2 = dθ2 + sin θ2dφ2 is the metric on the 2D sphere, with spherical comoving coordinates
(r, θ, φ). k is the reduced curvature parameter, distinguishing between different geometries for
spatial hypersurfaces: k < 0 (open Universe), k = 0 (flat Universe) and k > 0 (closed Universe).
In essence, the cosmic scale factor describes the dynamical behaviour of the Universe. In Chapter
8, we constrain our cosmological model while relying purely on the geometrical symmetries of the
cosmological principle.

Friedmann equations

Friedmann equations, derived from Einstein’s equations of general relativity using the FLRW met-
ric, encode the dynamics of the homogeneous Universe. They can be expressed as follows:

H2 =
8πG
3c4 ρ− k

a2 +
Λ
3

(1.3)

ä
a
= −4πG

3
(ρ + 3P) +

Λ
3

, (1.4)

where H ≡ ȧ/a is the Hubble parameter,1 ρ is the total energy density and P is the pressure.

1We denote differentiation with respect to t using a dot.
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An immediate consequence of the Friedmann equations is the continuity equation,2 which de-
termines the evolution of the energy density:

ρ̇ = −3H(ρ + P). (1.5)

Integrating the above equation leads to the description of the evolution of energy density for each
component in the Universe: ρi ∝ a−3(1+wi), with a constant equation of state, wi ≡ Pi/ρi. Radiation
(relativistic particles such as photons) is characterized by w = 1/3, non-relativistic matter satisfies
w = 0 and the cosmological constant interpreted as a fluid with w = −1. The above equation being
linear, the time evolution of the energy density of each component can be solved independently
from the other.

1.1.2 Constituents of the Universe

For each of the species from the above section, we can define their respective density parameters as
the ratio of their energy density to the critical energy density, within a flat Universe, as Ωi ≡ ρi/ρcrit,
where ρcrit = 3H2/8πG defines the critical point between an expanding and contracting Universe.
This implies that if the sum of cosmological fluids is ρcrit, there is vanishing spatial curvature and
all spatial hypersurfaces are flat. The first Friedmann equation can subsequently be expressed as:

Ωm + ΩΛ + Ωr + Ωk = 1. (1.6)

Using their respective equation of state and the conservation equation, we can express the evolution
of the energy density of each component in terms of the scale factor:

Ωi(a) = Ω(0)
i

(
a
a0

)−3(1+wi)
(

H0

H

)2

, (1.7)

where the present-day values of the Hubble and density parameters are denoted by H0 and Ω(0)
i ,

respectively. Along with Eq. (1.6), this yields the familiar form of the Hubble function expressed in
terms of the scale factor:

H2(a) = H2
0

(
Ω(0)

Λ +
Ω(0)

k
a2 +

Ω(0)
m

a3 +
Ω(0)

r

a4

)
. (1.8)

The ΛCDM scenario is based on a physical description of the gravitational force according to
general relativity, requiring two key ingredients: A component of dark energy via the cosmologi-
cal constant Λ in Einstein’s equations to explain the accelerating cosmic expansion, and a compo-
nent of cold (i.e. non-relativistic) dark matter (CDM) to explain the growth of cosmic structures
and observed distribution of galaxies at present time. Hence, our standard cosmological model is
known as the ΛCDM model and it is remarkably well-described using only six independent cos-
mological parameters: the physical baryon (Ωb), dark matter (Ωdm) and dark energy (ΩΛ) densities
corresponding to the energy content, and the scalar spectral index ns and curvature fluctuation

2This is also a direct result of matter conservation,∇µTµν = 0, where Tµν is the stress-energy tensor of a perfect fluid.
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amplitude As pertaining to the initial power spectrum of fluctuations (cf. Section 1.4.4), and the
reionization optical depth τ.

From the latest Planck observations (Planck Collaboration et al., 2018b), we have the following
cosmological constraints: ΩΛ ≈ 0.68, Ωdm ≈ 0.27, Ωb ≈ 0.05 for a Universe with zero spatial
curvature, i.e. Ωk = 0. Hence, the matter content in the Universe is dominated by cold dark matter,
which does not interact with light. Some dark matter candidates are weakly interacting massive
particles such as neutrinos or neutralinos, and axions (e.g. Fornengo, 2016; Freese, 2017). The energy
content of the Universe is dominated by dark energy, acting as a repulsive force that drives the
acceleration of the cosmic expansion. Its nature is as yet unknown, with vacuum energy, dynamical
scalar field and modified theories of gravity being some common hypotheses (e.g. Debono and
Smoot, 2016).

1.1.3 Cosmological redshift and distance measures

As a consequence of the description of gravity as a geometric property of the spacetime manifold
within general relativity, the notion of “distance” has no unique meaning in any arbitrary curved
and non-stationary spacetimes, yielding distinct ways of specifying cosmological distances. Any
given measure, nevertheless, is based on the separation of two spacetime events on radial null
geodesics given by ds2 = −c2dt2 + a2(t)dr2 = 0. As such, distances in general relativity are deter-
mined by the travelling times of photons emitted by a source at ts and observed at to (e.g. Bartel-
mann and Schneider, 2001).

Due to the expansion of the Universe, the photons of a given wavelength λs emitted by a comov-
ing light source at time ts will be observed with redshifted wavelength λo at to. Photons, being mass-
less particles, travel on null geodesics (ds2 = 0) of zero proper time, implying that c2dt2 = a2(t)dq2,
where dq is the line element on the spatial hypersurface. The comoving distance dcom between the
source and observer can then be calculated as follows:

dcom =
∫ dcom

0
dq =

∫ to

ts

dt
c

a(t)
. (1.9)

By construction, the comoving distance between the source and observer is constant, such that the
following relation holds: ∫ to

ts

dt
c

a(t)
=
∫ to+λo/c

ts+λo/c
dt

c
a(t)

, (1.10)

implying that photons emitted within a given time interval will have covered the same comoving
distance. Assuming a(t) to be approximately constant over these small time intervals, we obtain
the following relation:

λo

λs
=

a(to)

a(ts)
≡ 1 + z, (1.11)

where the relative change in wavelength is given by 1 + z, and z is known as the cosmological red-
shift.3

3This is the redshift due to the expansion of space and not due to the relative velocities of the source and observer.
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The comoving distance can be expressed in terms of redshift as follows:

dcom(zo, zs) ≡
∫ r(zo)

r(zs)
dr =

∫ t(zo)

t(zs)
dt

c
a(t)

=
∫ a(zo)

a(zs)
da

c
a2H(a)

=
∫ zo

zs

dz
c

H(z)
, (1.12)

where H(z) is obtained by combining the Hubble rate H(a) from Eq. (1.8) with relation (1.11). The
above comoving - redshift transformation is of special relevance to Chapter 8. The comoving distance
factors out the expansion of the universe, such that it is not affected by the expansion of space.
In contrast, the proper distance corresponds to a distance measurement at a specific cosmic time,
which would be affected by cosmic expansion. Hence, at present time, the comoving distance is the
proper distance. There are some other common distance measures in cosmology, such as angular
and luminosity distances, but are not particularly pertinent to this thesis.

1.2 Cosmic inflationary paradigm

We present a concise description of the early Universe physics which give rise to the initial con-
ditions for the evolution of cosmic structures described in Chapter 6, and whose signatures are
imprinted on the CMB.

1.2.1 Generation of cosmological fluctuations

The inflationary and Hot Big Bang scenario constitute our contemporary physical model for the
cosmic initial conditions, strongly favoured by current observations. An in-depth review of the
inflationary paradigm is provided in Baumann (2011). Cosmic inflation accounts for some short-
comings in the standard Hot Big Bang model, such as the observed statistical homogeneity and
isotropy of the Universe and the horizon problem (Guth, 1981; Linde, 1982; Albrecht and Stein-
hardt, 1982). During the inflationary epoch, the cosmological equation of state was governed by the
inflaton field, which is a potential-dominated quantum scalar field with negative pressure, resulting
in an exponential growth of the cosmic scale factor. In this scenario, the accelerated expansion of
the very early Universe magnified the microscopic vacuum fluctuations of the inflaton field into
macroscopic cosmological perturbations. These initial quantum fluctuations generated during the
inflationary phase led to inhomogeneities in the matter density (cf. Section 6.2.1) and in the CMB,
as discussed in the following section.

1.2.2 Imprints of early Universe physics

According to the Hot Big Bang scenario (e.g. Kolb and Turner, 1990; Peacock, 1999), the Universe
was in an initial hot and dense state, composed of a primordial plasma of photons, electrons, pro-
tons in thermal equilibrium. Thomson scattering of the photons with the free electrons caused the
Universe to be opaque. The expansion of the Universe led to a gradual decrease in temperature,
and when sufficiently low at T ∼ 3000 K, protons and electrons could combine to form the lightest
atoms in an epoch known as recombination, resulting in photon-matter decoupling. Consequently,
the photons could propagate freely to produce the cosmic microwave background emission and the
surface of last scattering. In a nutshell, the CMB is the remnant light from the earliest moments of
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the Universe and its detection for the first time by Penzias and Wilson (1965) provided substantial
evidence in favour of the Hot Big Bang model and ushered in a new era in cosmology.

Temperature anisotropies

Various signatures of early Universe physics are imprinted on the CMB radiation, both on its tem-
perature and polarization, as a result of the scalar and tensor perturbations generated during the
inflationary epoch. The scalar modes correspond to perturbations in the energy density of cos-
mological fluid at the time of last scattering. These are the only fluctuations which may lead to
structure formation via gravitational instability (Hu and White, 1997) and therefore, are the seeds
of structure formation. In overdense regions, gravitational forces overwhelm pressure, causing the
matter to flow towards the density peaks. The energy of photons is reduced as they climb out of
such potential wells, implying that overdense regions are effectively initially cold. Conversely, un-
derdense regions are hot, and these temperature fluctuations related to the density fluctuations of
the baryons at recombination are encoded in the quasi isotropic CMB radiation. The temperature
anisotropies of the CMB are discussed further in Section 1.3.

Acoustic peaks

Before recombination, as the primordial plasma cools down, the matter gradually starts to dominate
over the radiation, leading to gravitational collapse of overdense regions and subsequent growth of
the density perturbations. The density of such regions increases, but so does the radiation pressure.
Nevertheless, due to the baryons being strongly coupled to radiation, the amplitude of the density
fluctuations decreases, causing the temperature to drop. This rise in radiation pressure can then
withstand the tendency towards collapse. This proceeds in a cyclic scheme, yielding the so-called
acoustic oscillations. This oscillatory phase of the density perturbations manifest as peaks in the
power spectrum of the temperature anisotropies (cf. right panel of Fig. 1.1). In physical terms, these
oscillations correspond to the heating and cooling of the photon-baryon fluid, with compression
and rarefaction induced by an acoustic or standing sound wave.

Baryon acoustic oscillations

After recombination and matter-radiation decoupling, the above oscillatory mechanism ceases, and
baryons can collapse in potential wells generated by (non-baryonic) dark matter. In this case, there
is no oscillation since dark matter does not couple to radiation and this eventually leads to the
growth of cosmic large-scale structures, clusters of galaxies and galaxies. Moreover, the acoustic
waves mentioned above are also imprinted weakly on the clustering of galaxies and matter (Peebles
and Yu, 1970; Bond and Efstathiou, 1984), as observed by galaxy redshift surveys. These features,
which manifest themselves as a small excess in number of pairs of galaxies separated by a given
scale, are known as baryon acoustic oscillations (BAOs). They were first measured via the correlation
function of luminous red galaxies by Eisenstein et al. (2005), with the BAO scale being roughly 150
Mpc in radius at recombination.
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(A) Map of temperature anisotropies (B) Angular power spectrum of temperature fluctua-
tions

FIGURE 1.1: Left panel: Map of the temperature anisotropies of the CMB, as observed by the Planck
satellite (Planck Collaboration et al., 2018a). The gray outline indicates the extent of the confidence
mask, which takes into account the galactic emission from the Milky Way. Note that in standard CMB
data analysis pipelines, the masked regions are artificially augmented using inpainting techniques
(e.g. Starck, Fadili, and Rassat, 2013). Right panel: Angular power spectra of the CMB temperature
anisotropies reconstructed from the Planck observations (Planck Collaboration et al., 2018a). The blue
line indicates the best fit of the standard model of cosmology to the Planck data.

Primordial gravitational waves

Tensor modes can be viewed as gravitational waves, and mathematically correspond to transverse-
traceless perturbations to the metric. Such a plane gravitational wave would distort the space in the
plane of the fluctuation, resulting in a quadrupolar stretching pattern of space. As a consequence of
this spatial distortion induced by gravity waves, the CMB radiation acquires a quadrupole moment,
with Thomson scattering subsequently generating a polarization pattern from this quadrupole
anisotropy (Hu and White, 1997). These polarized anisotropies of the CMB are discussed in Section
1.4. Quantum fluctuations from the inflationary era should, therefore, result in primordial grav-
itational waves, which would be imprinted on the CMB polarization maps. These ripples in the
space-time fabric constitute a major prediction of the inflationary paradigm. The detection of such
gravity waves, as yet elusive by virtue of their extremely low amplitude, is the ultimate goal of
next-generation CMB experiments. The origin of CMB polarization and their key significance are
detailed in Sections 1.4.1 and 1.4.4, respectively.

1.3 CMB temperature anisotropies

In this section, we provide a statistical description of the temperature anisotropies of the CMB and
outline their remarkable contribution in constraining our standard cosmological model.

1.3.1 Statistics of temperature fluctuations

Due to the photons being tightly coupled to the matter before recombination, the CMB has a nearly
uniform blackbody spectrum, with inhomogeneities corresponding to the hot and cold spots. These
temperature variations, of order 10−5, were first detected by COsmic microwave Background Ex-
plorer (COBE) (Smoot et al., 1992), with more refined measurements eventually by the Wilkinson
Microwave Anisotropy Probe (WMAP) (e.g. Dunkley et al., 2009) and Planck satellites (e.g. Planck
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Collaboration et al., 2018a). The map of CMB temperature anisotropies from the final release of the
Planck mission (Planck Collaboration et al., 2018a) is depicted in the left panel of Fig. 1.1.

The spectrum of the temperature anisotropies is measured as a function of angular scale in the
sky. The temperature field can be decomposed into spherical harmonic modes on the sky as follows:

∆T(n̂) = ∑
`,m

aT`mY`m(n̂), (1.13)

where ∆T(n̂) denotes the CMB temperature relative to the mean value (T = 2.725 K) at a direction
n̂ in the sky, and the value of ` indicates a particular angular scale, i.e. inverse of the scale between
two points on the sky, while m denotes the orientation of the modes on the sphere. As such, large
angular scales on the celestial sphere correspond to the small values of `. The spherical harmonic
coefficients encode all the information on the amplitude of the fluctuations for a given scale.

Under the assumption of statistical isotropy, there is no dependence on m, such that each har-
monic coefficient aT`m, for a given scale `, has the following variance:

〈aT`ma∗T`′m′〉 = δ``′δmm′CTT
` , (1.14)

where CTT
` corresponds to the angular power spectrum of the temperature anisotropies, and 〈. . .〉 de-

notes the average over all possible realizations of the Universe. However, since we have only one
observable Universe and there are only (2`+ 1) modes for each scale `, this definition implies that
we have only a finite amount of information to sample the a`m distribution, leading to a fundamen-
tal and inherent uncertainty in the measurement of the C`’s. This uncertainty, known as the cosmic
variance, is given by: (

∆C`

C`

)
=

√
2

2`+ 1
, (1.15)

implying that this variance is larger for low `, i.e. on large angular scales. The right panel of Fig. 1.1
displays the angular power spectrum of the temperature anisotropies obtained from the final release
of the Planck mission (Planck Collaboration et al., 2018a). The Planck measurements correspond to
the red dots with the associated error bars accounting for both measurement errors and the cosmic
variance. The blue line represents the best fit of the ΛCDM model with the observations, and this
remarkable agreement constitutes one of the key successes of our standard model of cosmology as
the currently accepted scenario for the origin and evolution of our Universe. The Planck satellite
has mapped the temperature anisotropies to a precision limited only by the cosmic variance, and
as such, provides the ultimate state-of-the-art measurement, thereby mostly exhausting their infor-
mation content pertaining to primordial fluctuations. Future CMB experiments, therefore, aim to
optimally exploit the cosmological information encoded in the polarized anisotropies.

1.3.2 Primary and secondary anisotropies

The division of the CMB anisotropies into primary and secondary anisotropies is of particular inter-
est. The former emerge from the properties of the primordial photon-baryon fluid before recom-
bination. The amplitude and characteristics of these temperature fluctuations are governed by a
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(A) Map of CMB polarization (B) Thomson scattering

FIGURE 1.2: Left panel: Map of the polarization anisotropies of the CMB, as observed by the Planck
satellite (Planck Collaboration et al., 2018a). Temperature is depicted as colour and polarization as a
vector field, where the orientation and length of the rods indicate the direction and amplitude, respec-
tively. Right panel: Origin of CMB polarization (Hu and White, 1997). Thomson scattering of radiation
with a quadrupole anisotropy off a free electron, thereby inducing linear polarization.

series of physical processes such as the Doppler effect or the Sachs-Wolfe effect. A comprehensive
description of the primary anisotropies is provided in Hu and White (1997).

As the CMB photons travel from the surface of last scattering to our instruments, they expe-
rience distinct cosmological phenomena such as reionization or the gravitational potential of the
cosmic large-scale structures, which alter the photons’ energy. To exploit the primordial informa-
tion encoded in the CMB, these effects (for e.g. Sunyaev-Zel’dovich effect or gravitational lensing),
must be accounted for. Moreover, they are a powerful probe of the late-time Universe. Challinor
and Peiris (2009) review in depth such secondary anisotropies.

1.4 CMB polarization

We review the origins and mathematical description of the CMB polarization, and subsequently
outline their significance and the state-of-the-art pertaining to the observations of the polarized
CMB.

1.4.1 Origins via Thomson scattering

In addition to the temperature anisotropies, the CMB radiation is also polarized, with the associated
power spectrum being around two orders of magnitude lower than its temperature counterpart.
This polarization was first detected in 2002 by the Degree Angular Scale Interferometer (DASI)
(Kovac et al., 2002). The CMB polarization anisotropies resulted from the Thomson scattering of the
anisotropic photon distribution off free electrons during the recombination and reionization epochs
(Hu and White, 1997; Kamionkowski and Kovetz, 2016), with the left panel of Fig. 1.2 depicting
the map from the final Planck release (Planck Collaboration et al., 2018a). Polarization is indicated
via rods whose orientation and length represent the direction and amplitude, respectively, of the
polarized field. The coloured background is the map of temperature anisotropies, smoothed with a
Gaussian kernel.
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If we consider a Cartesian frame, where a photon is travelling with a wavevector parallel to
the x̂ axis, then its transverse electric field would cause the electron to oscillate along the ŷ and ẑ
axes. Since the photons in the primordial plasma are incident from all directions, their respective
contributions average to zero, such that there is no net polarization. Hence, Thomson scattering of
isotropic incoming radiation off an electron would not select any particular polarization direction.
However, if the temperature anisotropy has a quadrupolar pattern, Thomson scattering may induce
a net linear polarization, as illustrated in the right panel of Fig. 1.2, where the two perpendicular
components have different temperature. By symmetry, Thomson scattering does not generate any
circular polarization. The relatively low power of CMB polarization is due to the suppression of the
quadrupole moments by Compton scattering.

1.4.2 Stokes parameters

Linear polarization can be described formally using the (Q,U ) Stokes parameters, and the spherical
harmonic coefficients aE`m and aB`m, analogous to the temperature anisotropies:

(
Q± iU

)
(n̂) = −∑

`,m

(
aE`m ± iaB`m

)
±2Y`m(n̂), (1.16)

where the above spin-weighted harmonics are due to the fact that (Q,U ) transform as a spin-2 field
under rotation by an angle ψ of the plane of the detector, tangent to the sphere (Hu and White,
1997; Seljak and Zaldarriaga, 1997; Kamionkowski, Kosowsky, and Stebbins, 1997b; Zaldarriaga
and Seljak, 1997), as follows:

(
Q± iU

)
(n̂)→ e∓2iψ(Q± iU

)
(n̂). (1.17)

The I Stokes parameter is usually taken to be the intensity of temperature anisotropies, while the
fourth Stokes parameter V describing circular polarization is not considered to be of relevance since
it cannot be generated via Thomson scattering.

1.4.3 E/B decomposition of CMB polarization

In analogy with mathematical properties of electromagnetic fields, we can introduce two new quan-
tities, a curl-free component E and a divergence-free component B of the polarization vector, as
rotationally invariant alternatives to Q and U . Analogous to Eq. (1.14), the power spectra of the E
and B modes are defined as:

〈aE`ma∗E`′m′〉 = δ``′δmm′CEE
` (1.18)

〈aB`ma∗B`′m′〉 = δ``′δmm′CBB
` . (1.19)

E is a scalar field with even parity, while B is pseudo-scalar field with odd parity, i.e. aE`m →
(−1)`aE`m and aB`m → (−1)`+1aB`m, respectively, under a reverse parity (n̂→ −n̂) transformation. As
such, the cross power spectrum CEB

` vanishes, 〈aE`ma∗B`′m′〉 = 0. This also leads to distinct polarization
patterns for the E and B components, as depicted in Fig. 1.3. E modes have tangential and radial
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E < 0 B < 0

E > 0 B > 0
FIGURE 1.3: Characteristic polarization patterns of E and B modes. The polarization directions of the
E field are tangential (radial) around hot (cold) spots, indicated by red (blue) regions, whilst B modes
have swirling patterns with different orientations around hot and cold spots.

polarization directions around hot and cold spots, respectively. B modes, in contrast, have a char-
acteristic swirling pattern, with opposite directions around hot and cold spots (Kamionkowski and
Kovetz, 2016). An in-depth derivation of the harmonics of the scalar fields deduced from the (Q,U )
Stokes parameters is provided in Zaldarriaga and Seljak (1997).

The separation of CMB polarization into the E and B modes is essential for cosmological infer-
ence from observations of the polarization anisotropies. Unfortunately, this E/B decomposition, as
encapsulated in Eq. (1.16), is non-local when the sky is partially observed, such that the relatively
larger E -mode power corrupts the observed B modes. This is commonly referred to as the E/B
leakage or coupling issue.4 Since neither current nor forthcoming CMB experiments will provide full
sky coverage, ensuring no cross contamination between these two components is a fundamental
requirement of any data analysis pipeline aiming to detect the primordial gravitational waves.

While a unique decomposition of the polarization field into E and B modes is not possible in a
finite patch of the sky, the signal vector space can be uniquely decomposed into three orthogonal
subspaces: pure E , pure B and ambiguous subspaces (Lewis, Challinor, and Turok, 2002; Bunn et al.,
2003; Smith, 2006a; Zhao and Baskaran, 2010; Kim and Naselsky, 2010; Bunn, 2011). Mathemati-
cally, we can define the E - and B-mode spherical harmonic vectors as sYE ,B

`m ≡ DE ,B
s Y`m, where DE ,B

s

are the respective differential operators described in Appendix B.3. They are the spin-2 analogues
of divergence and curl, respectively. Here, s = 2 since we are dealing with spin-2 fields. We can
thus define a polarization field f as a B mode if (DEs )† · f = 0. Polarization fields living on the
manifold Ω form a normed vector space with the inner product:

( f , g) ≡
∫

Ω
dΩ f † · g, (1.20)

4Note that the leakage between the polarized and unpolarized observational channels due to instrumental effects,
such as asymmetric beams, pair differencing and polarization angle calibration, is a completely distinct effect.
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such that two fields f and g are orthogonal if ( f , g) = 0. A pure B mode, therefore, is defined
as the field orthogonal to all E modes. The differential operators satisfy the relations: DE†

s ·DBs =

DB†
s ·DEs = 0, such that Bmodes can always be generated via the application of DBs to a polarization

field. We can subsequently show that E and B modes, defined in this way, are orthogonal in the full
sky without boundary:

(DEs ϕ, DBs ψ) =
∫

Ω
dΩ (DEs ϕ)† ·DBs ψ = 0, (1.21)

for arbitrary scalar fields ϕ and ψ, using integration by parts. For spin-2 fields on an incomplete
sky, the above equation holds only if the Dirichlet and Newmann boundary conditions are satisfied
simultaneously, i.e. the field and its first derivative vanishes on the boundary ∂Ω of the observed
region, respectively:

ψ|∂Ω = n̂ · ∇ψ|∂Ω = 0, (1.22)

where n̂ is the normal to the boundary. This allows us to construct a complete orthonormal ba-
sis for all square-integrable polarization fields in a given sky region Ω (cf. Section III in Bunn et
al., 2003, for complementary information) in terms of pure E (curl-free), pure B (divergence-free)
and ambiguous (both curl-free and divergence-free) modes, with the latter component lying in the
subspace orthogonal to both pure subspaces. As such, we can decompose unambiguously any po-
larization field into three components, thereby projecting out the ambiguous modes resulting from
the partially observed or masked sky. Further mathematical description of E/B decomposition is
provided in Chapter 5.4.

1.4.4 Physical interpretations of E and B modes

The E/B decomposition, as described in Section 1.4.3, allows us to distinguish the physical origins
of the geometrical patterns illustrated in Fig. 1.3. Scalar (or density) perturbations can only generate
symmetric polarization patterns, i.e. accounting only for the E modes, whilst gravitational waves
can induce both E and B modes, thereby leading to a non-vanishing B-mode power spectrum. As
such, B modes are solely a signature of tensor perturbations. It is important to note, however, that
gravitational lensing distorts E modes such that they behave like B modes, on the small angular
scales (Zaldarriaga and Seljak, 1998; Seljak and Hirata, 2004). These lensed B modes, which mani-
fest on the small angular scales, are distinct from the primordial ones on the large scales.

While the gravitational waves also induce temperature and E modes, the contribution of the
tensor perturbations to their respective power spectra is negligible as it is overwhelmed by the
contribution from scalar perturbations. As a result, the primordial B-mode power spectrum is the
key quantity to probe the extremely early Universe (e.g. Guzzetti et al., 2016). In particular, the
amplitude of the B-mode signal, emanating from the gravity waves, determines the characteristics
of the inflationary phase, thereby encoding the physics of the earliest observable period of our
Universe.
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The primordial power spectra of the scalar5 and tensor perturbations are parameterized as fol-
lows:

Ps(k) = As

(
k
k0

)ns−1

(1.23)

Pt(k) = At

(
k
k0

)nt

, (1.24)

where As (At) and ns (nt) correspond to the amplitude and spectral index, respectively, of the scalar
(tensor) modes, and k0 is an arbitrary scale at which the perturbation amplitude is evaluated and
is usually referred to as the pivot scale. The primordial tensor spectrum is commonly expressed via
the tensor-to-scalar ratio denoted by r. This quantity characterizes the ratio of the tensor to scalar
mode power generated by cosmic inflation at the pivot scale:

r ≡ At(k0)

As(k0)
. (1.25)

The above power spectrum parameters can be related to inflationary parameters. Hence, r is a direct
measure of the energy scale of inflation (e.g. Baumann, 2011):

V
1
4 ∼

( r
0.01

) 1
4

1016 GeV, (1.26)

where values of r ≥ 0.01 would correspond to inflation occurring at the Grand Unified Theory (GUT)
scale. The extremely high energy scale in the prefactor implies that measurements of the primordial
fluctuations may shed light on high energy physics in a regime far beyond the standard model of
particle physics. Current joint experimental constraints on r, from Planck and BICEP2/Keck array,
have set an upper bound of r < 0.06 at 95% confidence level (BICEP2 Collaboration et al., 2018). In
a nutshell, the measurement of r would allow us to test and validate distinct inflationary scenarios
with different theoretically predicted values of r.

1.4.5 Detection of CMB polarization

The first detection of the E modes by the Degree Angular Scale Interferometer (DASI, Kovac et
al., 2002) marked the onset of the CMB polarization era. Consequently, this provided significant
encouragement for further investment in the instrumental and data analysis aspects to cope with
such challenging observations. Several CMB experiments were designed to estimate the E -mode
power spectrum. A few years ago, the ACTPol collaboration accurately reconstructed the power
spectra of the temperature and E modes, and their cross spectra CTE

` on small scales (Naess et al.,
2014).

The main interest of CMB research subsequently switched to the detection of B modes, with a
series of ground-based, spatial or balloon experiments being designed. The first direct detections of
B modes, corresponding to the lensed B modes on small angular scales, were recently made by the
POLARBEAR experiment (Ade et al., 2014) and the South Pole Telescope (SPT, Hanson et al., 2013),

5This is the dimensionless power spectrum for curvature fluctuations, where ns = 1 corresponds to a scale-invariant
(Harrison-Zel’dovich) spectrum (Harrison, 1970; Zeldovich, 1972).
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FIGURE 1.4: B-mode polarization power spectrum measurements by several CMB experiments, as
labelled on the figure (The POLARBEAR Collaboration et al., 2017). The black curve indicates the the-
oretical ΛCDM spectrum obtained with the cosmological parameters from the Planck Collaboration
et al. (2016b) release.

followed by measurements from the Atacama Cosmology Telescope (ACTPol, Louis et al., 2017), as
illustrated in Fig. 1.4. As such, the focus shifted to the detection of B modes, sourced by primordial
gravitational waves, on large angular scales. In 2014, the BICEP2 collaboration claimed the ground-
breaking detection of this primordial signal (BICEP2 Collaboration et al., 2014), but this discovery
was controversial due to potential foreground contaminations (e.g. Flauger, Hill, and Spergel, 2014;
Mortonson and Seljak, 2014). The Planck data then played a crucial role, with a detailed study of
the polarized dust over the sky (Planck Collaboration et al., 2016e) and a subsequent joint Planck-
BICEP2 analysis revealing that the excess of power found by the BICEP2 team was primarily due
to polarized dust contamination, with no statistically significant evidence for primordial B modes
(BICEP2/Keck Collaboration et al., 2015).

With the first conclusive detection of the primordial B modes as yet unaccomplished, various
CMB experiments with unprecedented sensitivity, tailored for the detection of this extremely weak
signal, are currently under construction. Some examples include the CMB-S4 (Abazajian et al., 2016)
and Simons Observatory (Ade et al., 2019).
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Chapter 2

The Wiener filter

This chapter draws from Kodi Ramanah, Lavaux, and Wandelt (2017), Kodi Ramanah, Lavaux,
and Wandelt (2018) and Kodi Ramanah, Lavaux, and Wandelt (2019).

2.1 The problem

One of the most frequently encountered and ubiquitous problems in astrophysics and cosmology
(and many other fields in science) is signal reconstruction from noisy data. Solutions to this problem
have therefore been researched extensively for the last two centuries (e.g. Gauss, 1809; Jaynes, 1957;
Kalman, 1960). The Wiener filter (Wiener, 1949) has emerged as a standard tool for the analysis of
large data sets for the inference of high-dimensional signals, such as the large-scale structure and
CMB analyses. Hence, it has been employed for a wide range of applications in cosmology and
astrophysics, as described in Section 2.3 below.

The Wiener filter originates from the following statistical problem. We assume our observed
data set d to be a linear combination of the signal s with covariance S and noise n with covariance
N, as follows:

d =Rs + n, (2.1)

where the signal and noise covariances are given by S = 〈ss†〉 and N = 〈nn†〉, respectively. R is
the complete response operator, with the inclusion of harmonic transforms, beam and mask effects,
that models the instrument response to incoming signal. It effectively corresponds to the overall
model of how the instrument converts, on average, an incoming signal s to the observed data d,
with the residual being the noise n, while encoding the relevant physics.

The Wiener filter solution, sWF, is the optimal linear filter when the signal and noise are both
Gaussian random fields. For a particular realization of the data, sWF therefore maximizes the poste-
rior probability distribution ∝ exp(−χ2/2), or equivalently minimizes:

χ2 = (d−Rs)†N−1(d−Rs) + s†S−1s, (2.2)

leading to the Wiener filter equation,

sWF = (S−1 +R†N−1R)−1R†N−1d. (2.3)

sWF is the least-square optimal solution: the Wiener filter minimizes the mean-square deviations
〈ε†ε〉 of the reconstruction errors ε = sWF − s, averaged over all signal and noise realizations.
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2.2 Computational challenges

Computing the Wiener filter solution for large and complex data sets from modern experiments
is numerically challenging. As is evident from Eq. (2.3), the direct numerical implementation of
the Wiener filter requires inversion of dense matrices. This task is rendered intractable by the size
of modern data sets from state-of-the-art experiments, and therefore represents a computational
bottleneck. While it would be extremely convenient if there existed a common basis set, easily
accessible by fast transforms, where both S and N are sparse, this is often not the case as for instance,
the signal and noise covariances may be sparse in Fourier or pixel space, respectively. As such,
the first matrix inversion above is dense in all bases and lives in a high-dimensional space. This
space has typically the size of the number of elements in d, which for Planck maps is O(109),
when accounting for polarization components and the nine frequency bands. Due to the size of the
covariance matrices scaling as the square of the number of data samples, the storage and processing
of dense systems become numerically intractable.

Previous approaches relied on the assumption of a homogeneous and isotropic noise distribu-
tion to find approximate solutions to the Wiener filter equation (e.g. Hirata et al., 2004; Komatsu,
Spergel, and Wandelt, 2005; Mangilli and Verde, 2009). Traditional approaches of computing the
Wiener filter rely on costly and highly non-trivial numerical schemes like Krylov space methods,
such as preconditioned conjugate gradient (PCG) methods (Eriksen et al., 2004; Wandelt, Larson,
and Lakshminarayanan, 2004; Smith, Zahn, and Doré, 2007; Seljebotn et al., 2014; Seljebotn et al.,
2019; Puglisi et al., 2018; Papež, Grigori, and Stompor, 2018), requiring a preconditioner to ap-
proximate the matrix inversion involved. A basic description of the PCG method is provided in
Section 2.4. These complex techniques, however, suffer from various numerical limitations when
dealing with high-dimensional data sets. They require intricate and costly numerical schemes such
as preconditioning the linear system with suitable matrices and subsequently demands significant
investment in software development. Moreover, this approach involves a further inherent stum-
bling block as finding efficient preconditioners is a complicated task in itself (Oh, Spergel, and Hin-
shaw, 1999) since matrices are often extremely ill-conditioned in typical CMB problems (Eriksen
et al., 2004). The inclusion of polarization data in the analysis further exacerbates this predicament
(Larson et al., 2007).

Standard schemes based on the PCG method involved the use of a combination of block and di-
agonal preconditioners on large and small angular scales, respectively (Eriksen et al., 2004), or were
based on a recursive algorithm, where the conjugate gradient solution on a coarse grid is adopted as
the preconditioner on a finer grid (Smith, Zahn, and Doré, 2007). Although both of these approaches
yielded satisfactory performance with the analysis of WMAP data (e.g. Eriksen et al., 2008), they
were found to be too computationally intensive for the high-resolution and sensitivity analysis of
Planck data. Seljebotn et al. (2014) developed a multi-level solver for Gaussian constrained realiza-
tions of the CMB, which is fast once a suitable preconditioner is found but requires careful tuning
and costly precomputations in terms of both computing power and memory requirements. This
approach is therefore less attractive when we have to solve many different systems, each requiring
a specific preconditioner. A pseudo-inverse based preconditioner was recently proposed by Selje-
botn et al. (2019) for CMB component separation. The complexity of this method is illustrated by
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the variety of preconditioners that exist in the literature. Such PCG methods do have some merits,
however, as they are conducive to fast convergence, provided an adequate preconditioner tailored
to the specific problem is available.

Various alternatives to the PCG methods have been proposed in the literature. A recent work
by Horowitz, Seljak, and Aslanyan (2018) was based on recasting the Wiener filtering problem as
an optimization scheme and provides an alternative promising approach for dealing with com-
plex noise models. Münchmeyer and Smith (2019) recently proposed another interesting approach
where a neural network was trained to Wiener filter CMB maps.

Elsner and Wandelt (2013) developed the messenger algorithm which bypasses the need for a
preconditioner, with this approach being efficient and robust. In Section 2.5, we describe the con-
ceptual framework of both the standard and a new formulation that is dual to the messenger algo-
rithm. The evaluation of the Wiener filter from Eq. (2.3) via both the standard and dual messenger
algorithms constitutes the crux of Chapter 3.

2.3 Some astrophysical and cosmological applications

Some common applications of Wiener filtering in the analysis of CMB data include map-making
(e.g. Bunn et al., 1994; Tegmark, 1997a), optimal power spectrum estimation (e.g. Tegmark, 1997b;
Bond, Jaffe, and Knox, 1998; Oh, Spergel, and Hinshaw, 1999; Elsner and Wandelt, 2012a), likelihood
analysis (e.g. Hinshaw et al., 2007; Dunkley et al., 2009; Elsner and Wandelt, 2012c), treatment of
foregrounds (e.g. Bouchet, Prunet, and Sethi, 1999), reconstruction of lensing potential, de-lensing
and template-matching (e.g. Hirata and Seljak, 2003; Hirata et al., 2004; Seljak and Hirata, 2004;
Hanson et al., 2013; Manzotti et al., 2017; Millea, Anderes, and Wandelt, 2017) and investigation of
primordial non-Gaussianity (e.g. Komatsu, Spergel, and Wandelt, 2005; Elsner and Wandelt, 2009;
Elsner and Wandelt, 2010). Moreover, we encounter the Wiener filter in Bayesian inference analy-
ses involving the large-scale structures or the CMB (e.g. Wandelt, Larson, and Lakshminarayanan,
2004; Eriksen et al., 2004; O’Dwyer et al., 2004; Jewell, Levin, and Anderson, 2004; Jasche et al.,
2010b; Jasche and Wandelt, 2013b; Jasche and Lavaux, 2015; Anderes, Wandelt, and Lavaux, 2015;
Alsing et al., 2016; Jasche and Lavaux, 2017). It has also been employed for the reconstruction of
21-cm signal from contaminated data (Gleser, Nusser, and Benson, 2008) and velocity field recon-
structions (Lavaux, 2016).

2.4 Preconditioned conjugate gradient algorithm

In general, the PCG approach consists of solving the following set of linear equations:

Ax = y, (2.4)

where A is usually a very large matrix. We wish to avoid computing the inverse of this dense
matrix and to this end, in the traditional PCG scheme, we make use of a sparse matrix known as
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the preconditionerM, which is the approximate inverse ofA, i.e.M ≈ A−1, as follows:

MAx =My. (2.5)

The Wiener filter Eq. (2.3) can be rewritten as

(1 + S1/2N−1S1/2)S−1/2sWF = S1/2N−1d, (2.6)

such thatA = 1 + S1/2N−1S1/2, x = S−1/2sWF and y = S1/2N−1d, in accordance with Eq. (2.4). For
the specific problem considered in Chapter 3, we make use of a suitable preconditioner which is
diagonal in Fourier space, as follows:

M−1
`` = A`` =

(
∑
k

nk

)
C`

1
L4 , (2.7)

where nk are the eigenvalues of the inverse noise covariance matrix, N−1. We may then imple-
ment this preconditioner in a PCG algorithm (e.g. Golub and Van Loan, 1996) which proceeds as
follows: We make an initial guess x0 and iterate until |xi+1 − xi| / |xi| < ε, resulting in an xWF that
corresponds to the Wiener filter solution sWF. If convergence is not yet achieved, we re-initialize
all parameters every 200 iterations and resume iterations, in order to facilitate convergence. An in-
depth review of the PCG algorithm is provided in Shewchuk (1994). Again, we stress the fact that
finding a suitable preconditioner is the key factor when making use of the PCG method (e.g. Oh,
Spergel, and Hinshaw, 1999) and this consequently is the major stumbling block for state-of-the-art
CMB data analysis.

2.5 Messenger methods

In this section, we describe the conceptual underpinnings of the standard messenger and the new
dual messenger methods as an elegant solution to the Wiener filtering problem.

2.5.1 The standard messenger algorithm

Elsner and Wandelt (2013) proposed a high precision, iterative algorithm for the solution to the full
Wiener filter equation, while being numerically efficient and straightforward to implement. Con-
ceptually, the key idea is to introduce a stochastic auxiliary field t, the so-called “messenger" field,
with covariance T, where T is proportional to the identity matrix. Taking advantage of the use-
ful property of the identity matrix being invariant under any orthogonal basis transformation, the
messenger field acts as an intermediate in transformations between different preferred orthogonal
bases, in which signal and noise covariance matrices are expressed conveniently, i.e. are sparse.
As a result, although directly applying combinations like (S + N)−1 may not be possible, we can
always apply expressions like (S + T)−1 and (N + T)−1, irrespective of the basis chosen to render
S and N sparse. Under such a scheme, the information from the data is transmitted to the signal
via the messenger field that can be transformed efficiently from one basis representation to another,
thereby obviating the requirement to apply the inverse Wiener covariance matrix to data.
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With the introduction of the messenger field t, the modified χ2, where the posterior probability
distribution of s is proportional to exp

(
−χ2/2

)
, is as follows:

χ2
T = (d− t)†N̄−1(d− t) + (t− s)†T−1(t− s) + s†S−1s, (2.8)

where we defined N̄ ≡ N−T, and we choose the covariance matrix of the auxiliary field t according
to T = α1, where α ≡ min(diag(N)). Minimizing with respect to s and t leads to the following two
equations:

[
N̄−1 + (λT)−1

]
t = N̄−1d + (λT)−1s (2.9)

[
S−1 + (λT)−1

]
s = (λT)−1t, (2.10)

where we also introduced a scalar parameter λ whose purpose is to accelerate convergence. In the
limit of λ = 1, the above system of Eqs. (2.9) and (2.10) reduces to the usual Wiener filter Eq. (2.3),
as shown in Appendix A.1. Note that here we set the response operator to identity matrix, i.e.
R = 1, for simplicity. The messenger algorithm basically involves the following steps, as outlined
in Algorithm 1. We initialize the vectors s and t with zeros, and choose an initial high value of λ. We
first solve Eq. (2.9) for the messenger field t in the basis defined by N, the noise covariance matrix.
Then, we change to a basis where the signal covariance matrix S has a sparse representation, such
as Fourier space. Next, we solve for s using Eq. (2.10) and the resulting t from the previous step.
Finally, we transform the result back to the original basis. The signal reconstruction converges to
the Wiener filter solution, i.e. s→ sWF, as λ→ 1.

Algorithm 1 Messenger algorithm
1: procedure MESSENGER(d, N, S, Npix, L)
2: s0 = zeros(Npix, Npix) . Initialize s with zeros
3: t0 = d . Initialize t via an initial guess
4: α = min(diag(N)) . Compute the covariance of messenger field t, such that T = α1

5: N̄ = N− T . Compute the covariance N̄
6: while λ = 104 → 1 do
7: repeat
8: . Transform to Fourier (F ) space, ŝ~̀ = Fs~x =

( L
N

)2
∑
~x

ω−~x·~ks~x, where ω = exp( i2π
N )

9: ŝi+1,~̀ =
[
S−1 + σ(λT)−1]−1

~̀ F
[
(λT)−1

~x ti,~x

]
~̀

10: . σ =
N2

pix

L4 is a numerical factor due to F
11: si+1,~x = F−1(ŝi+1,~̀ ) . Transform to pixel space

12: ti+1,~x =
[
N̄−1 + (λT)−1]−1

~x

[
N̄−1d + (λT)−1si+1

]
~x

13: i← i + 1
14: until ‖si − si−1‖ / ‖si‖ < ε
15: λ← λ× η . Cooling scheme for λ
16: end while
17: s→ sWF . as λ = 1
18: return sWF

19: end procedure
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If εi is the residual at the ith step, then at the following (i + 1)th step, the corresponding residual
is

εi+1 =
[
S(S + λT)−1

] [
N̄(N̄ + λT)−1

]
εi (2.11)

=
[
S(S + λT)−1

] {
(N− T) [N + (λ− 1)T]−1

}
εi. (2.12)

For the case of homogeneous noise, i.e. N ∝ 1, the system is solved exactly in a single step. A key
observation is that |εi+1| < |εi| for all i since the terms in brackets are less than unity, resulting in
unconditional convergence of the signal reconstruction s to the Wiener filter solution sWF. A careful
inspection of Eq. (2.12) yields the following insight: Convergence is fast for low noise pixels and
modes with low signal prior variance while the converse is also true, i.e. the system converges
slowly for high prior variance and high noise pixels. In the latter regimes, a high value of λ would
speed up convergence. Elsner and Wandelt (2013) have shown that it is possible to find a cooling
scheme for λ, where λ � 1 initially, to smoothly bring the algorithm to the final solution (λ = 1).
Here, we reduce λ by a constant factor (1/η), where 1/2 ≤ η ≤ 1. The rationale behind the cooling
scheme adopted in this work is laid out in Appendix A.1.

The standard messenger method has enjoyed considerable success, thereby establishing its cre-
dentials as a reliable method for fast Wiener filtering, without having recourse to a preconditioner.
Essentially, it speeds up the computation of the Wiener filter when the noise is strongly inhomo-
geneous and/or the data is masked. Some applications of the standard messenger algorithm are
listed in Section 2.5.3.

2.5.2 The dual messenger algorithm

In the above messenger algorithm, we made use of a relation to trivially split the noise into two
components: one with a trivial covariance matrix and the other as a fluctuating component over
the sky. An alternative approach is to introduce the auxiliary field at the level of the signal in a
complementary formalism to the standard messenger framework. Due to the two schemes being
complementary to each other, the new algorithm is referred to as the dual messenger algorithm.
The corresponding log-posterior to be optimized then becomes

χ2
U = (d− s)†N−1(d− s) + (s− u)†U−1(s− u) + u†S̄−1u, (2.13)

where, analogous to the standard approach, U = ν1 with ν ≡ min(diag(S)), and the covariance of
the auxiliary field, S̄ ≡ S−U. We derive the corresponding equations that must be satisfied by s
and u at the minimum of χ2

U :

(
N−1 + U−1

)
s = N−1d + U−1u (2.14)

(
U−1 + S̄−1

)
u = U−1s. (2.15)
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The dual messenger algorithm has interesting convergence properties. The amount of reduction of
the residual at each iteration is given by

εi+1 = [N(N + U)−1][S̄(S̄ + U)−1]εi (2.16)

= [N(N + U)−1][(S−U)S−1]εi. (2.17)

This provides the basis for the following mechanism: We artificially truncate the spectrum S to
some lower initial value of `iter that corresponds to a covariance µ and bring `iter slowly to `max

corresponding to our final covariance ν. So, essentially, we vary the covariance U via a cooling
scheme to bring µ → ν, where, in the limit µ = ν, the above system of Eqs. (2.14) and (2.15)
reduces to the usual Wiener filter Eq. (2.3), as shown in Appendix A.2. This results in a redefinition
of S̄ using the Heaviside function as S̄ = Θ(S−U), as described quantitatively in Appendix A.2
(cf. Eqs. (A.17) and (A.18)). For ` . `iter, the ratio given by Eq. (2.17) is always convergent. The
algorithm consists of the following steps. We initialize the vectors s and u with zeros. We begin
iterations with an initial value of `iter and correspondingly µ, and iterate until µ→ ν at `iter = `max,
i.e. s → sWF, in accordance with a chosen convergence criterion for each value of µ. In analogy
with the messenger technique, we need to adopt a cooling scheme for µ. The idea is to reduce µ by
a constant factor (1/β), where 0 < β < 1, which matches the convergence speed of one iteration
with the modification in µ. The rationale behind the cooling scheme tailored for the dual messenger
algorithm is illustrated in Appendix A.2.

Algorithm 2 Dual messenger algorithm
1: procedure DUAL MESSENGER(d, N, S, Npix, L)
2: s0 = zeros(Npix, Npix) . Initialize s with zeros
3: t0 = d . Initialize t via an initial guess
4: α = min(diag(N)) . Compute the covariance of auxiliary field t, such that T = α1

5: N̄ = N− T . Compute the covariance N̄
6: while ξ = (α + µ)→ α do
7: U = (σµ)1 . Compute covariance U
8: . As in Algorithm 1, factor of σ due to F
9: S̄ = Θ(S−U) . Compute covariance S̄

10: repeat
11: t̂i+1,~̀ =

[
(S̄−1 + σξ−1)−1σξ−1]

~̀ F (ti,~x) . Moving to Fourier space, F
12: si+1,~x = F−1(t̂i+1,~̀ ) . Transform to pixel space

13: ti+1,~x =
(
N−1 + ξ−1)−1

~x

(
N−1d + ξ−1si+1

)
~x

14: i← i + 1
15: until ‖si − si−1‖ / ‖si‖ < ε
16: ξ ← ξ × β . Cooling scheme for ξ
17: µ← (ξ − α)/σ . Compute resulting µ
18: end while
19: s→ sWF . as ξ = α, µ = 0
20: return sWF

21: end procedure

However, numerically, the above algorithm does not result in the correct final solution due to
the continuous mode of the signal, i.e. the zero eigenvalue in the signal covariance S. We therefore
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require µ → ν = 0 to obtain the proper solution at the end, which cannot be accommodated by
the dual messenger scheme above. To remedy this numerical predicament, we introduce an extra
degree of freedom, α, in the system, where α ≡ min(diag(N)), thereby incorporating aspects of the
standard messenger method into the dual messenger scheme. This leads to the following χ2:

χ2
ξ = (d− t)†N̄−1(d− t) + (t− s)†ξ−1(t− s) + s†S̄−1s, (2.18)

where ξ = (α + µ)1 = ξ1 = T + U, with µ, T, S̄ and N̄ inheriting their previous definitions. The
corresponding set of equations to be solved iteratively is then:

(
N̄−1 + ξ−1

)
t = N̄−1d + ξ−1s (2.19)

(
ξ−1 + S̄−1

)
s = ξ−1t. (2.20)

If α = 0, we recover the usual dual messenger scheme, while setting µ = 0 yields the standard
messenger algorithm. The definition of ξ implies that the cooling scheme described above still
applies to this hybrid method. As outlined in Algorithm 2, we proceed in similar steps as described
above for the previous scheme, except that here we reduce the norm of ξ by the factor (1/β) and
iterate until ξ → α, at which point µ = 0 and we obtain the proper solution as desired.

2.5.3 Applications of the messenger methods

Elsner and Wandelt (2012b) and Elsner and Wandelt (2013) applied the messenger algorithm on
CMB data from WMAP satellite and found the final map to be accurate to about 1 part in 105,
compared to standard conjugate gradient solvers. Elsner and Wandelt (2012b) also demonstrated
the generation of constrained realizations using the messenger method. Even with the inclusion
of polarization data in the analysis, the messenger algorithm maintained its efficiency. Mangilli
et al. (2013) implemented the messenger algorithm to produce Wiener-filtered simulations of non-
Gaussian CMB maps with the lensing-integrated Sachs Wolf bispectrum signal. The messenger
method was also employed in Planck data analysis, specifically for inverse covariance filtering of
CMB maps at high angular resolutions (Planck Collaboration et al., 2014a; Planck Collaboration
et al., 2014b).

Jasche and Lavaux (2015) implemented a Gibbs sampling adaptation of the messenger algorithm
in a simple, easy to implement but efficient algorithm for Bayesian large-scale structure inference,
specifically aiming at the joint inference of cosmological density fields and power spectra for linear
data models. Anderes, Wandelt, and Lavaux (2015) adopted a similar approach in their Bayesian
hierarchical modelling of the CMB gravitational lensing. Alsing et al. (2016) also implemented the
Gibbs-messenger sampling adaptation developed by Jasche and Lavaux (2015) for Bayesian hierar-
chical modelling of cosmic shear power spectrum inference and eventually for cosmological param-
eter inference (Alsing, Heavens, and Jaffe, 2017). The works of Jasche and Lavaux (2015), Anderes,
Wandelt, and Lavaux (2015) and Alsing et al. (2016) show that the messenger algorithm can be suc-
cessfully adapted for high-resolution conditional Gaussian sampling using Markov Chain Monte
Carlo techniques, demonstrating the flexibility of the method.
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Messenger techniques are becoming increasingly popular and are being further developed as a
viable solution to complex and realistic problems. Recently, Huffenberger and Næss (2018) adapted
the standard messenger method for map-making applications. Using mock Advanced ACTPol-
data, they illustrated the superior quality of maps obtained relative to a traditional PCG approach,
thereby showcasing messenger field map-making as a potentially powerful CMB data analysis tool.
Huffenberger (2018) also applied the messenger method to problems with multiple, uncorrelated
noise sources.

The dual messenger algorithm has also been implemented in the field of optical and information
engineering. For instance, it has been adapted for the removal of atmospheric haze from images (Fu
et al., 2018), demonstrating the versatility of the tool developed. This class of messenger methods
can therefore be tailored to solve a range of Wiener filtering problems and is not limited to astro-
physical and cosmological applications.
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Chapter 3

Application to CMB temperature
anisotropies

The work presented in this chapter is based on Kodi Ramanah, Lavaux, and Wandelt (2017).

3.1 Generation of artificial CMB data set

In this section, we describe the generation of a mock CMB data set to investigate the efficacy of our
dual messenger technique. We generated artificial CMB data, in a realistic scenario, by drawing
Gaussian random fields on a 2D flat sky with grid resolution, Npixels = 5122, and angular extent,
L = 10.0 degrees. This true simulated map is contaminated by Gaussian white noise with covari-
ance matrix, N = (64.0 µK2) 1, via a linear model as given in Eq. (2.1). We made use of CAMB1

(Lewis, Challinor, and Lasenby, 2000) to generate the input angular power spectrum from which
the CMB signals are drawn. We assume a standard ΛCDM cosmology with the set of cosmological
parameters (Ωm = 0.32, ΩΛ = 0.69, Ωb = 0.05, h = 0.67, σ8 = 0.83, ns = 0.97) from Planck (Planck
Collaboration et al., 2016b). A portion of the flat sky is masked by imposing a central square patch
of angular extent 5.0 degrees with a noise covariance of 106N. The three different methods, mes-
senger, dual messenger and PCG, are applied to this set-up to investigate their effectiveness and
efficiency of signal reconstruction. We implement the same “weak” Cauchy convergence criterion,
‖si+1 − si‖ / ‖si‖ < ε, where ε = 10−6, in all the algorithms, to ensure a fair comparison. As a
reference, we make use of the PCG method with the more stringent ε = 10−9 to provide results
against which the other methods can be compared. Currently regarded as the standard Wiener
filtering technique by the scientific community, the PCG method is the natural choice for provid-
ing a reference solution in the absence of an exact analytic solution. By imposing a more stringent
convergence criterion, we ensure that the PCG solution is close to the ground truth.

The remainder of this chapter is organized as follows. We investigate the performance of our
dual messenger algorithm in terms of convergence, computation time and stability, and draw com-
parisons to the standard messenger scheme and the popular PCG method in Section 3.2. Finally, in
Section 3.3, we summarize the main aspects of our findings and discuss the areas of applications
where the potential of our new algorithm can be fully exploited. In Appendices A.1 and A.2, we
illustrate the rationale behind the schemes implemented in this work for fast convergence.

1http://camb.info
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FIGURE 3.1: The simulated CMB map and the reconstruction via the dual messenger algorithm. The
left-hand panel shows the simulated map, which is subsequently contaminated by white noise, with
the central square patch masked by extremely high noise covariance. The right-hand panel illustrates
the corresponding reconstructed map obtained via the dual messenger technique. The messenger and
PCG reconstructions are not shown as they look similar to the dual messenger reconstructed map.
The residual maps displayed in Fig. 3.3, however, help to discern the differences between the various
reconstructions.

3.2 Comparison of messenger and conjugate gradient methods

We now perform a quantitative assessment of the efficacy of reconstruction of the standard and
dual messenger algorithms and a conventional PCG2 method.

3.2.1 Reconstruction of CMB maps and power spectra

The true CMB simulated signal and the reconstructed map obtained using the dual messenger al-
gorithm are displayed in Fig. 3.1. The characteristic feature of Wiener filtering, i.e. the extrapolation
of signal into the mask, can be distinctly observed from the reconstructed map. At an initial cursory
glance, the reconstructed maps from all three methods appear rather similar, and hence, only the
dual messenger reconstruction is displayed in Fig. 3.1. This observation holds for the low noise re-
gions but under scrutiny, the reconstruction in masked regions shows some slight differences. The
residual maps depicted in Fig. 3.3, generated by computing the difference, over the full sky, between
our reference map and the corresponding reconstructed map obtained using each method, help to
discern these differences. The messenger technique provides the most accurate reconstruction in
the masked region as illustrated by its residual map, with less than 3% residuals. The dual mes-
senger and PCG reconstructions yield around 4% and 9% residuals, respectively, with the residuals
obtained via the former algorithm being concentrated on the edges of the mask.

The effectiveness of reconstruction of the dual messenger technique on both small and large
scales is also manifest from Fig. 3.2 which shows the reconstructed power spectra from the different
algorithms. The corresponding power spectra recovered via the messenger, dual messenger and
PCG methods are all in good agreement, on all scales, with the reference one, computed using the

2The corresponding preconditioner adopted is described in Chapter 2.4.
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FIGURE 3.2: Reconstructed power spectra computed using the different algorithms. The dashed line
indicates the input angular power spectrum, Cinput

` , from which the CMB signals are drawn. The
power spectra recovered by the three algorithms are all in good agreement with the reference power
spectrum computed using PCG method with ε = 10−9 on all scales. The deviations on the small scales
from the input power spectrum are due to the characteristic feature of a Wiener filtered signal, where
the power on small scales, in the low signal to noise regime, is suppressed.

PCG scheme with the more stringent convergence criterion of ε = 10−9. The characteristic feature
of Wiener filtering where the recovered power on the small scales in the low signal to noise regime
is suppressed is also observed from Fig. 3.2. Standard Wiener filtering algorithms usually encounter
difficulties in dealing with masked regions having infinite noise. By masking 25% of the simulated
map with noise of the order 106 higher than the unmasked region, we are investigating the worst
case performance aspect of the dual messenger algorithm. Hence, we do not expect the algorithm
to encounter any difficulties in Wiener filtering maps with high levels of inhomogeneous noise.

The dual messenger algorithm is therefore relevant for current and future high-resolution CMB
experiments such as South Pole Telescope, Advanced ACTPol, Simons Observatory and CMB-S4.
The application of the algorithm can be extended to problems involving the polarization of the
CMB. The formalism remains unchanged for spin field reconstruction, although the numerical im-
plementation is less trivial due to the correlation between the temperature and polarization com-
ponents of the signal covariance. The Wiener filtering of polarised CMB data with more complex
noise models will be subjected to future investigation to further showcase the efficiency of the dual
messenger algorithm in treating complex CMB problems.

3.2.2 Numerical convergence and stability

We now investigate the convergence properties of the dual messenger algorithm and also provide
a more in-depth study of the performance of the standard messenger scheme. We quote the usual
statistics for convergence and the change in χ2 of the posterior probability density between succes-
sive iterations for each method, so that unbiased comparisons of their efficiency and effectiveness
can be drawn.

Fig. 3.4 shows the residual error at each iteration for the different methods, as a function of the
number of iterations. For the messenger algorithm, we relax the convergence criterion ε for high
values of λ and reduce ε to 10−6 as λ → 1 in a three-step procedure, as depicted in Fig. 3.4 in
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FIGURE 3.3: The reference map and residual maps from the three algorithms. The top left-hand panel
depicts the reference map computed using the PCG scheme with ε = 10−9, while the other panels
illustrate the residual maps yielded by the three methods, generated by computing the difference be-
tween the reference map and the corresponding reconstructed maps over the full sky. The messenger
approach produces the least amount of residuals, around 3%, while the dual messenger and PCG
schemes result in approximately 4% and 9% residuals, respectively. For the messenger reconstruc-
tions, the residuals lie mostly on the edges of the mask.

dashed red lines. Here, we adopt a cooling scheme where λ is reduced by a constant factor of 4/3,
i.e, η = 3/4, until λ = 1. This consequently ensures that the χ2 decreases rapidly, thereby bringing
us closer to the final solution with a smaller number of iterations, resulting in faster convergence.

For the dual messenger algorithm, we implemented a cooling scheme for ξ with β = 3/4, which
results in fast convergence while providing accurate results. So, we pick an initial value of µ corre-
sponding to an initial value of `iter, and therefore ξ, and iterate until convergence, as dictated by a
given Cauchy criterion. We repeat this iterative procedure, in accordance with the aforementioned
cooling scheme, until ξ = α, at which point we have the Wiener filter solution. Again, we impose
less stringent convergence criterion at higher values of ξ, as shown in Fig. 3.4 in dashed blue lines.

The left panel of Fig. 3.4 essentially illustrates the convergence of the different methods. The
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FIGURE 3.4: Variation of the residual errors, given by the Cauchy criterion (left panel) and
‖Ax− y‖ / ‖y‖ (right panel), with number of iterations for the messenger and PCG methods. The
Cauchy convergence criteria εi imposed for the different regimes of the cooling schemes for λ and
µ are also displayed, along with the corresponding thresholds ε used for the two PCG methods, in
dashed lines. The vertical green line denotes the convergence point of the PCG scheme, with its con-
vergence behaviour already represented by the reference PCG method. The dual messenger algorithm
requires the smallest number of iterations to converge to the final solution than the other two meth-
ods. The corresponding residual errors, characterized by ‖Ax− y‖ / ‖y‖, for all methods drop below
the convergence thresholds adopted, demonstrating the consistency of our computations dictated by
the Cauchy criteria.

dual messenger algorithm requires slightly fewer iterations to converge to the final solution than
the PCG approach, while the messenger technique requires nearly twice as many iterations as its
dual counterpart for convergence. In terms of wall-clock times, the dual messenger has the defi-
nite upper hand, as it runs to completion in around 258 seconds whereas the messenger and PCG
methods have corresponding wall-clock times of roughly 435 seconds and 663 seconds, i.e. recon-
struction via the dual messenger algorithm is nearly three and two times faster than the PCG and
messenger methods, respectively. All computations were run on a single core of an Intel Core i5-
4690 CPU (3.50 GHz). Both messenger algorithms possess the same algorithmic complexity and
memory requirements. They require two Fourier transforms, O(Npixels log Npixels), and two scalar
multiplications corresponding to algebraic operations ofO(Npixels), per iteration. In terms of mem-
ory requirements, two vectors of size Npixels must be temporarily stored in memory. In comparison,
the PCG method requires three Fourier transforms and ten scalar multiplications per iteration, and
temporary storage of eight vectors of dimension Npixels in memory.

We also performed a consistency check by verifying the variation of the residual error given by
‖Ax− y‖ / ‖y‖. This is usually adopted as a convergence criterion for PCG computations. The
variation of this residual error is illustrated in the right panel of Fig. 3.4. The corresponding resid-
ual errors obtained via the different algorithms all drop below their respective Cauchy convergence
thresholds implemented. The oscillatory behaviour of the PCG solution, displayed in the left and
right panels of Fig. 3.4, is mainly due to the re-initialization step after every two hundred iterations
in the algorithm, as described in Section 2.4. However, there are also some oscillations in the resid-
ual errors due to the PCG method being susceptible to instabilities sourced by numerical noise. The
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FIGURE 3.5: Variation of χ2 with number of iterations for the two messenger methods. In the left
panel, we find that the χ2

M of the messenger algorithm drops rapidly with the cooling scheme for λ

adopted, as expected from the earlier discussion. In the right panel, the χ2
DM of its dual counterpart

displays a similar behaviour. In both cases, the final solution matches the χ2
ref of the PCG method with

ε = 10−9.

oscillations in the residual errors in Fig. 3.4 of the two messenger solutions are however due to their
respective cooling schemes, resulting in transitions in the systems of equations with the varying
covariances of the auxiliary fields (cf. Eqs. (A.5) and (A.22)), with the peaks produced coinciding
with these transitions. It is important to note that the residual errors always drop sharply after
the peaks, thereby demonstrating the unconditional stability of the messenger algorithms. From
numerical experiments, the messenger techniques have proven to be far more stable than the PCG
method for nearly degenerate systems.

Due to the Wiener filter being the maximum a posteriori solution, the χ2 of the intermediate so-
lution can be regarded as a useful convergence diagnostic. The χ2 variation as a function of number
of iterations is displayed in Fig. 3.5, with the left and right panels correspondingly showing the con-
vergence of the messenger and dual messenger algorithms. The cooling scheme for λ implemented
in the standard messenger technique causes the χ2

M to drop rapidly with each change in λ. Intu-
itively, this decrease of λ via a series of such steps seems reasonable since the χ2 decreases sharply
with each change in λ, and then reaches a plateau for a given λ until the latter decreases further, as
evidenced in Fig. 2 of Elsner and Wandelt (2012b). The χ2

DM of the dual messenger algorithm has
a similar behaviour. The χ2 in both cases finally attains the χ2

ref of the reference PCG method with
ε = 10−9, with ∆χ2

M/χ2
ref = 9.2× 10−6 and ∆χ2

DM/χ2
ref = 9.0× 10−6, where χ2

ref = 4.2× 104.

Another important convergence diagnostic is the variation of the relative error characterized
by C`(sWF − sref

WF)/C`(sref
WF), computed over the full sky, as a function of scale, `, depicted in Figures

3.6, 3.7 and 3.8 for the messenger, dual messenger and PCG algorithms, respectively. The relative
errors on the small scales are of the order 10−12, 10−12 and 10−15, and conversely, on the large scales,
10−3, 10−3 and 10−2, correspondingly, for the messenger, dual messenger and PCG methods. The
messenger technique displays smooth and nearly uniform convergence on small and intermediate
scales, with the relative error dropping below 10−6, while remaining below 10−3 for the largest
scales. For the dual messenger scheme, the corresponding convergence rate highlights the hierar-
chical fashion in which the solution is computed, while yielding similar final relative error across
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FIGURE 3.6: Convergence rate by frequency bin for the messenger method. This illustrates the relative
error as a function of scale, `. Each line in the figure corresponds to the relative error for a specific value
of the scalar parameter λ. The colour bar indicates the steps involved in the cooling scheme. The
messenger algorithm converges smoothly and in nearly uniform fashion on small and intermediate
scales, with the relative error dropping till below 10−6. However, for larger scales, the relative error
is reduced by lower extent, but stays below 10−3 for the largest scales. For λ = 1, the behaviour is
similar to that displayed by PCG (cf. Fig. 3.8).
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FIGURE 3.7: Convergence rate by frequency bin for the dual messenger method. Same as Fig. 3.6,
except that here each line in the figure corresponds to a given value of ξ, displaying the hierarchical
nature of this scheme. The final relative error is sufficiently low on all scales. A quantitative explana-
tion of the convergence behaviour is given in Appendix A.2.

all scales as the messenger algorithm. The PCG method has the lowest relative error on the smallest
scales, although this may be biased by the fact that the reference method is also a PCG, but remains
inferior to both messenger methods on the largest scales. This is consistent with the significant
residuals resulting from the PCG reconstruction, as observed in the previous section (cf. Fig. 3.3).
We stress that all relative errors above are computed with respect to the reference PCG method with
ε = 10−9.

We also carry out a series of additional runs with various values of the convergence criterion ε

to investigate the wall-clock times required for convergence in each case, thereby providing a more
in-depth picture of the performance of the different algorithms. As illustrated in Fig. 3.9, the dual
messenger technique converges faster than the other methods, except for the extreme values of ε. It
is also interesting to note that we can further reduce its execution time by lowering the factor β for
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FIGURE 3.8: Convergence rate by frequency bin for the PCG method. Same as Fig. 3.6. The relative
error as a function of scale for every 100th iteration is illustrated. The PCG method has a lower relative
error than the dual messenger algorithm on the small scales, but the behaviour on the largest scales
remains inferior to that of both messenger methods. The relative spacing of the lines indicates that
convergence slows down as the PCG method progresses in iterations, and this is in agreement with
its variation of the residual error with number of iterations, as displayed by the green line in Fig. 3.4.
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FIGURE 3.9: Execution times required for convergence as a function of convergence criterion ε for the
different methods. This demonstrates the efficient performance of the two messenger algorithms with
respect to the PCG method.

the cooling scheme without degrading the accuracy of results significantly. For instance, choosing
β = 1/2 reduces the number of iterations required, and therefore computation time, by around 25%
for the case ε = 10−6.

3.3 Conclusions

We presented a new formulation that is dual to the recently developed messenger algorithm, where,
unlike in the standard approach, the auxiliary field is introduced at the level of the signal and is con-
sequently associated with the signal reconstruction instead of the noise. This new iterative solver
provides another pathway to solve the ill-posed problem of Wiener filtering, frequently encoun-
tered in several applications in cosmology and astrophysics.
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We tested our new method on a simulated CMB data set and its performance was evaluated in
terms of effectiveness of reconstruction, convergence properties, processing time and stability. The
dual messenger scheme is shown to match the accuracy of reconstruction of the standard messenger
and PCG methods on all scales. Regarding the convergence of the algorithm, it is shown to perform
smoothly over all scales, with the relative error being sufficiently low even on the largest scales.
For the specific problem under consideration, the dual messenger algorithm has a definite edge
over the standard messenger scheme and the PCG approach in terms of computation time. The
efficiency and effectiveness of this new technique in calculating the Wiener filter solution of general
data sets has therefore been demonstrated. We also provided further insight into the mechanism
of the standard messenger method so that it can be optimized for data analysis by the scientific
community.

The dual messenger algorithm, like its predecessor, does not require an ingenious choice of pre-
conditioner and is straightforward to implement, robust and flexible. It is also capable of taking into
account inhomogeneous noise distributions and arbitrary mask geometries. A key aspect of this
technique is that it computes the Wiener filter solution in a hierarchical manner due to the thresh-
olding of the signal covariance matrix inherent in the algorithm. Given the success of the standard
messenger method, this new dual messenger technique is highly promising and may therefore be
adapted for high precision large-scale data analysis methods in cosmology and astrophysics.

Other performance improvements to this algorithm can be obtained by adapting the working
resolution such that the Nyquist frequency is always slightly higher than the current `iter consid-
ered in the dual messenger method. This would consequently reduce the number of operations
required for Fourier transform. Another possibility is a generalization of both the messenger and
dual messenger algorithms in a combined approach that may further optimize the performance and
efficiency compared to traditional techniques of solving the Wiener filter problem.
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Chapter 4

Optimal and fast E/B separation of CMB
polarization

The work presented in this chapter is based on Kodi Ramanah, Lavaux, and Wandelt (2018).

4.1 Introduction

The polarization of the CMB radiation provides a window to probe the physics of the early Universe
(e.g. Hu and White, 1997; Hu and Dodelson, 2002; Hu, 2003) and consequently lies at the frontiers
of research in modern cosmology. Polarization maps can provide more stringent constraints on cos-
mological parameters for cosmic variance limited experiments (e.g. Galli et al., 2014), although their
fascination lies primarily in the potential detection of the primordial B-mode signals (e.g. Guzzetti
et al., 2016; Kamionkowski and Kovetz, 2016), with the associated physical significance highlighted
in Part I. The mathematical formalism of CMB polarization has been laid out around two decades
ago by Kamionkowski, Kosowsky, and Stebbins (1997b) and Zaldarriaga and Seljak (1997), with
the link to primordial gravitational waves extensively investigated (e.g. Kamionkowski, Kosowsky,
and Stebbins, 1997a; Seljak and Zaldarriaga, 1997).

Cosmological inference from current and next-generation CMB experiments tailored for map-
ping the polarized sky therefore requires sophisticated tools to optimize the scientific returns. An
underlying issue is to extract the gradient and curl components, or the E and B modes, of the po-
larization signal from the data. A potential solution is provided by the Wiener filter (Wiener, 1949),
a powerful signal reconstruction tool that incorporates statistical information about the signal and
noise properties. It has widespread applications in cosmology and astrophysics, especially in the
post-processing of observational data, as outlined in Chapter 2.3. The numerical issues encountered
in computing the exact Wiener filter solution are described in Chapter 2.2. Traditional methods in-
volve the use of the preconditioned conjugate gradient (PCG) scheme (e.g. Eriksen et al., 2004;
Wandelt, Larson, and Lakshminarayanan, 2004; Smith, Zahn, and Doré, 2007), with the panoply of
PCG variants proposed in the literature outlined in Chapter 2.4.

The messenger method, first proposed by Elsner and Wandelt (2013), is a preconditioner-free
Wiener filtering technique. In Chapter 3, we presented the dual messenger algorithm, an enhanced
variant of the standard messenger approach, as a general-purpose tool for Wiener filtering, which
surpasses its predecessor in execution time, with the focus being on the formalism and convergence
properties of the algorithm (Kodi Ramanah, Lavaux, and Wandelt, 2017) (hereafter KLW17). We
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demonstrated the efficiency, effectiveness and unconditional stability of the dual messenger scheme
with respect to the PCG approach when analyzing CMB temperature maps.

The extension of the dual messenger algorithm for the analysis of polarized CMB data sets is
the next key step. Moreover, Bunn and Wandelt (2017) have recently shown that the application
of the Wiener filter to CMB polarization data may produce pure E and B maps, free from cross-
contamination, at a much lower computational cost than the standard methods (e.g. Lewis, Challi-
nor, and Turok, 2002; Lewis, 2003; Bunn et al., 2003; Bunn, 2011). This provides further motivation
for an efficient polarized Wiener filtering tool.

The inclusion of polarization data significantly increases the condition number of the covari-
ance matrices involved (Larson et al., 2007) such that finding appropriate preconditioners becomes
highly non-trivial (Oh, Spergel, and Hinshaw, 1999). As a result, the PCG method may require ex-
pensive pre-computations (e.g. Seljebotn et al., 2014) and may be prone to numerical instabilities,
as also illustrated in this work. The messenger techniques circumvent this ill-conditioning predica-
ment with relative ease since they do not require any preconditioning, as demonstrated by Elsner
and Wandelt (2013). They implemented the standard messenger method for the Wiener filtering of
polarized maps from WMAP, but they excluded B modes from the analysis, thereby reducing the
dimension of the signal covariance.

In this work, we adapt our recently proposed dual messenger algorithm for spin field recon-
struction. We consider an artificially generated polarized CMB data set with correlated noise and
distinct temperature and polarization masks, while incorporating the B modes in the polarization
signal. We demonstrate the ease of implementation, efficiency and unconditional stability of the
algorithm. As a comparison, we also implement a PCG method and illustrate the difficulties en-
countered in converging to a plausible solution.

This chapter is structured as follows. In Section 4.2, we provide a brief description of the dual
messenger algorithm and outline its numerical implementation for polarized signal reconstruction
and generation of constrained realizations. We also describe a generalized procedure for dealing
with masks in Section 4.2.3. We then showcase the capabilities of our scheme in Section 4.3 and
present a modified Jacobi relaxation scheme to further refine the solution in Section 4.3.5. Finally,
we summarize our main findings in Section 4.4. We provide the preconditioner adopted for the
PCG implementation in Appendix B.1.

4.2 Spin field reconstruction with a dual messenger field

The essence of the messenger methods lies in the introduction of an auxiliary field that acts as
a mediator between the different bases where the signal and noise covariances, S and N, can be
conveniently expressed as sparse matrices. This essentially splits the Wiener filter equation into a
set of algebraic equations that must be solved iteratively, obviating the need for matrix inversions
or preconditioners. As pointed out in KLW17, the formalism of the dual messenger algorithm

remains invariant with the inclusion of polarization data in the analysis. We briefly review the
general system of equations that yields the two key equations to be implemented. A complementary
and more in-depth description of the dual messenger algorithm is provided in KLW17. With the
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introduction of the messenger fields t and u at the level of the noise and signal, respectively, the
modified χ2 is as follows:

χ2
T,U = (d− t)†N̄−1(d− t) + (t− u)†T−1(t− u) + (u− s)†U−1(u− s) + s†S̄−1s, (4.1)

where we defined N̄ ≡ N− T, and we choose the covariance matrix of the auxiliary field t accord-
ing to T = α1, where α ≡ min(diag(N)), and in analogous fashion, U = ν1 with ν ≡ min(diag(S))
for the second auxiliary field u. The covariance of the signal s is then given by S̄ ≡ S−U. Physi-
cally, t corresponds to a homogeneous component of the noise covariance, while u is the analogous
component associated with the signal covariance.

Minimizing the χ2 with respect to s, t and u leads to the following three equations:

s = (U−1 + S̄−1)−1U−1u (4.2)

u = (U−1 + T−1)−1(T−1t + U−1s) (4.3)

t = (N̄−1 + T−1)−1(T−1u + N̄−1d). (4.4)

We can reduce the above set of three equations to two equations, as in KLW17, as we need only
one messenger field, but here, we contract the equations in an alternative way, to provide a more
numerically convenient form of the equations adapted to deal with ill-conditioned systems, typical
of CMB polarization problems, while improving convergence. By plugging Eq. (4.2) in Eq. (4.3) and
defining ξ = U + T, we obtain the following set of two equations to be solved iteratively:

u = (S̄ + U)(S̄ + ξ)−1t (4.5)

t = (N̄−1 + T−1)−1(T−1u + N̄−1d), (4.6)

where Eq. (4.5) is simply a Wiener filter of t, assuming a modified signal covariance (S̄ + U). The
mechanism adopted to improve convergence is as follows: We artificially truncate the signal co-
variance S to some lower initial value of `iter that corresponds to a covariance µ. By implementing
a cooling scheme for ξ, we subsequently vary U to bring µ→ ν, where, in the limit µ = ν, we have
u = s and the above system of Eqs. (4.5) and (4.6) reduces to the usual Wiener filter Eq. (2.3). This
results in a redefinition of S̄ using the Heaviside function as S̄ = Θ(S −U), where S corresponds
to the eigenvalues of S. This leads to a hierarchical framework, where we obtain the solution on the
largest scales initially, and gradually the algorithm resolves the fine structures on the small scales.

Due to the continuous mode of the signal, i.e. the zero eigenvalue of S, we therefore require µ→
ν = 0 to finally obtain the desired Wiener filter solution. The cooling scheme for ξ involves reducing
ξ by a constant factor and iterating until ξ → T, at which point µ = 0, as desired. Moreover, U does
not need to be strictly proportional to the identity matrix, and this useful property allows us to
solve the temperature and polarization signals at different rates. The rationale behind the above
approach is described quantitatively in KLW17.

Note that the above equations, for simplicity, are written in a single basis, but all the operators
are written in their respective bases, with all basis transformations made explicit, in Algorithm 3
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below. In terms of the numerical implementation for the joint temperature and polarization anal-
ysis, the formalism of the signal and data vectors, s and d, signal and noise covariances, S and N,
must be generalized as described below.

4.2.1 Numerical implementation

The CMB signal can be described as a 3Npix dimensional vector of harmonic coefficients, s` =

(aT` , aE` , aB` ), for each `, where T , E and B imply temperature, electric/gradient, and magnetic/curl,
respectively, for discretized sky maps of Npix pixels. The data, d = (dI , dQ, dU ), are pixelized maps
of the Stokes parameters, I , Q and U , where I here corresponds to the temperature anisotropy.

Since we assume that the CMB anisotropies are isotropic and Gaussian, the signal covariance
S is diagonal in Fourier space, in the flat-sky approximation. S becomes a block-diagonal matrix,
with a 3× 3 sub-matrix, for all multipole moments `, as follows:

S` =




CTT
` CTE

` 0
CTE
` CEE

` 0
0 0 CBB

`


 , (4.7)

with the vanishing cross-spectra, CTB
` and CEB

` , set to zero.

Here, we consider correlated noise, where the noise covariance matrix is a 3× 3 block-diagonal
matrix, with non-zero elements. The noise covariance matrix has the following block-diagonal
structure, for every pixel i:

Ni =



〈II〉 〈IQ〉 〈IU〉
〈QI〉 〈QQ〉 〈QU〉
〈UI〉 〈UQ〉 〈UU〉


 . (4.8)

The numerical implementation of the dual messenger algorithm adapted for polarized signal
reconstruction is outlined in Algorithm 3. In particular, the computations of S̄ and N̄, via their
respective diagonalized forms S̄ and N̄ , are clearly illustrated. Since the algorithm requires N̄−1,
we circumvent the corner case resulting from N̄ = 0, i.e. when N = T, by imposing the following
constraint on t in the correct vector subspace: Dt|N=T = Dd|N=T, following the notation set in
Algorithm 3.

In Section 4.3.5, we provide a brief description of how the algorithm can be embedded in a
modified Jacobi relaxation mechanism to further refine the solution. We implemented the mask by
setting the noise covariance for the masked pixels to a numerically high value∼ O(1010). While the
formalism above, as illustrated in Algorithm 3, is still valid for dealing with a common temperature
and polarization mask, where the inverse noise covariance must be set to zero, it is nevertheless not
completely adequate for dealing with different masks. The procedure for solving the messenger
Eq. (4.6) must be consequently modified as described in Section 4.2.3. We will implement this
exact masking procedure in a forthcoming publication where complex noise covariances will be
considered for the analysis of real data sets.

A brief note concerning Fourier transforms: Defining φ` as the angle between the vector ` and
the `x axis, we use the following convention for the Fourier transforms of the corresponding maps
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Algorithm 3 Dual messenger algorithm for polarization
1: procedure DUAL MESSENGER(d, N, S, Npix, L)
2: s0 = zeros(Npix, Npix, 3) . Initialize s with zeros
3: t0 = d . Initialize t via an initial guess
4: N = D†ND . Diagonalize N via basis transformation
5: α = min(N ) . Compute the covariance of messenger field t, such that T = α1

6: N̄ = N − T . Compute the covariance N̄
7: S = R†SR . Diagonalize S via basis transformation
8: ξ = µ + σ−1α1 . Compute ξ, µ = (µT , µE , µB)
9: . σ = N2

pix/L4 is a numerical factor, FF † = σ1

10: while ξ→ σ−1α1 do
11: U` = µ . Assign/update covariance U
12: S̄` = Θ(S −U)` . Compute covariance S̄
13: repeat
14: . Transform to Fourier space, cf. Eqs. (4.9) - (4.13)
15: ŝi+1,` = R† (S̄ + U

)
`

(
S̄ + ξ

)−1
`

R
(
σ−1F †ti,x

)
`

16: si+1,x = F (ŝi+1,`) . Transform to pixel space
17: ti+1,x = D† (N̄−1 + T−1)−1

x

(
DT−1si+1 + N̄−1Dd

)
x

18: i← i + 1
19: until ‖si − si−1‖ / ‖si‖ < ε
20: ξ ← ξ × β . Cooling scheme for ξ
21: µ← ξ − σ−1α1 . Compute resulting µ
22: end while
23: s→ sWF . as ξ → σ−1α1, µ→ ν = 0
24: return sWF

25: end procedure

of the Stokes parameters:

Î` = F †Ix =

(
1
L2

)
∑
x

ω−x·kIx (4.9)

Q̂` = F †Qx =

(
1
L2

)
∑
x

(
aE` cos 2φ` − aB` sin 2φ`

)
ω−x·k (4.10)

Û` = F †Ux =

(
1
L2

)
∑
x

(
aE` sin 2φ` + aB` cos 2φ`

)
ω−x·k (4.11)

for ω = exp(i2π/Npix) and an observed sky patch of angular extent L, such that, for the harmonic
coefficients, we have:

aE` = Q̂` cos 2φ` + Û` sin 2φ` (4.12)

aB` = −Q̂` sin 2φ` + Û` cos 2φ`, (4.13)

and trivially, aT` = Î`. The corresponding inverse Fourier transform, F , satisfies FF † = σ1, where
σ = N2

pix/L4. From a linear algebraic standpoint, we have two operators F † and F that act on
the vector spaces (I ,Q,U ) and (aT` , aE` , aB` ), respectively, while still satisfying the orthogonality
condition, FF † = σ1.
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4.2.2 Constrained realizations

It is well-known that the application of a Wiener filter leads to a reduced signal covariance,

〈sWFs†
WF〉 = S(S + N)−1S, (4.14)

by suppressing the power related to the noise. We therefore need to add a fluctuation vector f to
the Wiener-filtered maps to obtain signals that are consistent with the observed data, i.e. having the
correct covariance properties, according to

〈 f f †〉 = (S−1 + N−1)−1. (4.15)

The dual messenger algorithm presented above can be augmented to generate full-sky, noiseless
maps by making some minor adjustments. We simulate a fake signal ŝ with the (prior) signal
covariance S assumed for the Wiener filter, which is subsequently contaminated with noise with
covariance N to generate a fake data set d̂. We obtain constrained realizations (e.g. Hoffman and
Ribak, 1991) via

sCR = sWF + f

=
∼

W d + (ŝ− ∼
W d̂)

=
∼

W (d− d̂) + ŝ, (4.16)

using the Wiener-filtered map, sWF =
∼

W d, and the fluctuation map, f = ŝ− ∼
W d̂. The input to

the dual messenger algorithm is therefore (d− d̂), such that only one execution of the algorithm is
sufficient to provide a constrained realization.

Now, the algorithm yields a solution that is a random realization of a fluctuation map with the
correct signal properties. For a single d, the Wiener filter samples are plausible signal realizations
that optimally take into account the constraints on the signal from the data and are hence known as
constrained realizations.

4.2.3 Incomplete sky coverage

To account for different temperature and polarization masks, the procedure for solving the messen-
ger Eq. (4.6) must be modified, although the covariance T of the messenger field t is still computed
as given in Algorithm 3. The noise covariance N can be written as N = ΣCΣ = ΣP†∆PΣ, where Σ is
a diagonal matrix with the eigenvalues {σi

I , σi
Q, σi

U} corresponding to the noise amplitudes for the
ith pixel, with the orthonormal decomposition of C yielding a diagonal matrix ∆. We then obtain
N̄ = N− T as follows:

N̄ = ΣP†∆PΣ− T

= ΣP†(∆− αPΣ−2P†)PΣ, (4.17)
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FIGURE 4.1: The temperature and polarization masks implemented in the data analysis, correspond-
ing to sky fractions of f Tsky = 0.78 and fPsky = 0.82, respectively.

where, as a reminder, T = α1, with α being the smallest eigenvalue of N. To solve the messenger
Eq. (4.6), we require the inverse N̄−1,

N̄−1 = Σ−1P†(∆− αPΣ−2P†)−1PΣ−1, (4.18)

such that N̄−1 has a block-diagonal structure in pixel space. We obtain the solution for the messen-
ger field by simply evaluating Eq. (4.6) in pixel space,

tx =
(

N̄−1 + T−1
)−1

x

(
T−1

x Fs` + N̄−1
x dx

)
. (4.19)

We implement the temperature and polarization masks by increasing the noise variance to in-
finity for masked pixels, or numerically by setting the inverse noise covariance to zero. This is
achieved by setting Σ−1|mask = 0, subsequently ensuring that data from masked regions do not
contaminate the messenger field.

4.3 Application to CMB polarization

In this section, we demonstrate the application of the dual messenger algorithm to a mock CMB po-
larization data set and highlight the contrast in performance relative to a conventional PCG method.

4.3.1 Polarized map simulation

To simulate joint temperature and polarization maps in the flat-sky approximation, we make use
of a Cholesky decomposition to generate realizations of aT` , aE` and aB` signals with the correct co-
variance properties (cf. Eq. (4.7)), taking into account the correlation between CMB temperature
anisotropy and polarization. We made use of CAMB1 (Lewis, Challinor, and Lasenby, 2000) to gen-
erate the input angular power spectra, CTT

` , CEE
` , CBB

` and CTE
` , from which the corresponding CMB

signals are drawn. We assume a standard ΛCDM cosmology with the set of cosmological param-
eters (Ωm = 0.32, ΩΛ = 0.69, Ωb = 0.05, h = 0.67, σ8 = 0.83, ns = 0.97) from Planck (Planck

1http://camb.info
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FIGURE 4.2: Top panel: The simulated and Wiener-filtered polarization maps. The images above depict
temperature as colour and polarization overlaid as a pattern of stripes. The alignment of the stripes
indicates the direction of polarization while the level of transparency corresponds to the polarization
intensity, with the darker regions implying stronger polarization. The Wiener-filtered map is the max-
imum a posteriori reconstruction of the signal from the data. Bottom panel: The fluctuation map and
constrained realization. To compensate for the power loss due to noise and masked sky, the Wiener-
filtered map is augmented with a fluctuation map, thereby yielding a full-sky, noiseless sample, i.e.
constrained realization, with the correct signal properties. The temperature and polarization masks
applied are visible in the fluctuation map.

Collaboration et al., 2016b). We can then construct the input Q and U maps by transforming real-
izations of E and B signals (cf. Section IIc in Bunn et al., 2003) over flat-sky patches with angular
extent, L = 10.0 degrees, and grid resolution, Npix = 10242. The input Stokes parameters’ maps
are subsequently contaminated with correlated noise, according to the noise covariance given by
Eq. (4.8), with a noise amplitude of 4.0 µK, typical of high-sensitivity CMB experiments tailored for
the detection of B modes. The temperature and polarization masks implemented, corresponding to
sky fractions of f Tsky = 0.78 and fPsky = 0.82, respectively, are depicted in Fig. 4.1.
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4.3.2 CMB polarization analysis

We showcase the application of the dual messenger algorithm in polarization data analysis, while
drawing a comparison to the corresponding solution provided by a PCG method. For the PCG
computation, we make use of the preconditioner provided in Appendix B.1.

As per standard data analysis pipelines, we must filter out the noise and reconstruct a clean
map via a Wiener filtering algorithm. We implement the dual messenger scheme described in the
above sections to compute the Wiener-filtered I ,Q and U maps of the Stokes parameters. The algo-
rithm loops through the iterations until the fractional difference between successive iterations has
reached a sufficiently low value. Here, we implement Cauchy’s “weak” criterion for convergence,
‖si+1 − si‖ / ‖si‖ < ε, where ε = 10−6. We adopt the same cooling scheme as in KLW17, whereby
we reduce ξ by a constant factor, i.e. ξ → ξβ, where β = 3/4, until ξ → σ−1α1. Since we are not
solving the desired system of equations initially, we can also implement a cooling scheme for the
threshold ε. This speeds up the computation significantly by around a factor of three. We relax the
convergence criterion by a factor of η for each µ, thereby reducing ε from 10−4 to 10−6, where we
choose η = 1.1.

The simulated and corresponding Wiener-filtered maps are displayed in the top row of Fig. 4.2.
The polarization intensity is given by (Q2 + U 2)1/2, while the direction of polarization corresponds
to arctan(Q/U )/2. The Wiener-filtered map, as the maximum a posteriori reconstruction, represents
the CMB signal content of the data, with the reconstruction of the large-scale modes in the masked
areas, based on the information content of the observed sky regions, being a natural consequence
of Wiener filtering. As described in Section 4.16, the algorithm generates a fluctuation map to
compensate for the suppressed power on the small scales due to the noise and masked regions of the
sky. The resulting constrained realization map, after combining the Wiener-filtered and fluctuation
maps, has the correct statistical properties consistent with the simulated input map, as illustrated
in Fig. 4.2.

The power spectra of the dual messenger reconstruction for temperature and polarization are
provided in the left panel of Fig. 4.3, thereby showing that the Wiener-filtered maps can be aug-
mented to constrained realizations, resulting in unbiased power spectra. In the high signal-to-noise
regime, the power spectrum of the full-sky, noiseless map is determined by the data, while in the
low signal-to-noise regime, by the assumed power spectrum. The main issue with the PCG recon-
struction, depicted in the right panel, is that it fails to raise the power associated with Bmodes, with
the E -mode power spectrum also displaying some artefacts, especially on the large and intermedi-
ate scales. The low quality of the PCG reconstruction is evident in the behaviour of the convergence
diagnostics for the PCG solution as discussed below.

To illustrate the convergence behaviour of the algorithms, we provide the variations of the resid-
ual errors given by ‖si+1 − si‖ / ‖si‖ and ‖Ax− y‖ / ‖y‖, for a linear system of equations given by
Ax = y, in Fig. 4.4. The residual error given by the latter criterion better characterizes the accu-
racy of the final solution. We find that, for the dual messenger scheme, this residual error always
decreases as the iterations proceed, demonstrating the unconditional stability of the algorithm. The
oscillations in the residual error provided by the Cauchy criterion, as explained in KLW17, are due
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FIGURE 4.3: Reconstructed (binned) power spectra computed using the dual messenger and PCG
algorithms. The dashed lines indicate the input angular power spectra from which the polarized CMB
signals are drawn, while the reconstructions from the Wiener-filtered (WF) and constrained realization
(CR) maps are depicted by the corresponding dotted and solid lines. Left panel: We demonstrate that
a constrained realization obtained via the dual messenger algorithm, as a combination of the Wiener-
filtered and fluctuation maps, yields unbiased power spectra compared to the corresponding input
power spectra. Right panel: The PCG reconstruction strikingly fails to find enough B modes, while
the E -mode power spectrum also displays some artefacts, especially on large and intermediate scales,
demonstrating the unreliability of the power spectra reconstruction. Remarkably, the dual messenger
reconstruction, even with a more lenient ε = 10−4, is visually undistinguishable from that displayed
in the left panel with ε = 10−6, further highlighting the stark contrast in performance between these
two methods.

to the cooling scheme implemented. The peaks result from the transitions in the systems of equa-
tions with the varying covariance of the auxiliary field, with the residual error always dropping
sharply after each peak. However, the oscillations in the residual errors for the PCG implementa-
tion indicate its vulnerability to instabilities sourced by numerical noise. The residual error in the
final PCG solution does not drop below 10−3, three orders of magnitude higher than that achieved
by the dual messenger solution, implying that the accuracy of the PCG solution remains neverthe-
less significantly inadequate.

The corresponding variation in the χ2 is also displayed in the right panel of Fig. 4.4. The χ2
DM

of the dual messenger solution drops rapidly in accordance with the cooling scheme implemented
and the final value matches 〈χ2

d.o.f〉, the expectation value of the χ2, given by the number of degrees
of freedom (d.o.f), for the final solution. This is not the case, however, for the PCG solution, with
χ2

PCG failing to attain the expected level. The convergence diagnostics discussed above demonstrate
the effectiveness and quality of polarized signal reconstruction via the dual messenger algorithm.

The solution may be further refined via the modified Jacobi relaxation scheme described in
Section 4.3.5. This Jacobi adaptation was found to be stable with ε = 10−5 and lower, but the
extra computational cost required, for this specific problem, is not justified due to the inherently
high quality of the dual messenger solution. This may nevertheless be of general interest for other
Wiener filtering applications, to yield adequate solutions for a significantly reduced number of
iterations.
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FIGURE 4.4: Convergence diagnostics corresponding to the dual messenger (DM) and PCG recon-
structions. Left panel: Variation of the residual error, given by the Cauchy criterion, with number of
iterations. The cooling scheme for the convergence threshold ε, indicated by the dashed lines, allows
for faster convergence to the final tolerance desired. Middle panel: The corresponding variation of the
residual error, given by ‖Ax− y‖ / ‖y‖, with number of iterations. The monotonic decrease in this
residual error demonstrates the unconditional stability of the dual messenger algorithm. In contrast,
for the PCG counterpart, this residual error does not drop below 10−3, three orders of magnitude
above that attained by the dual messenger solution, implying that the accuracy of the PCG solution is
significantly lower. The PCG implementation is also susceptible to numerical instabilities, as indicated
by the oscillations in the residual error. Right panel: Variation of χ2 with number of iterations. χ2

DM
drops rapidly and finally matches the expectation value of the χ2 of the final solution, 〈χ2

d.o.f〉, given
by the number of degrees of freedom, indicated by the dashed line. χ2

PCG, however, fails to achieve
this expected level, again highlighting the unreliability and poor quality of the PCG solution.

While the choice of another preconditioner may yield an improved solution for the PCG im-
plementation, in practice, it is highly non-trivial to construct an effective preconditioner, especially
when dealing with an ill-conditioned system, as considered in this work. Moreover, as illustrated
above, the PCG method remains susceptible to numerical instabilities.

4.3.3 Separation of E and B modes

We briefly discuss the so-called E -B coupling problem, whereby the E -mode power leaks into the
much smaller B-mode power, that plagues well-known approximate methods such as the pseudo-
C` methods (e.g. Bond, Jaffe, and Knox, 1998). This aliasing of power is due to the fact that the
spherical harmonics are not orthogonal on a sky with masked regions (e.g. Zaldarriaga, 2001; Bunn,
2002a; Bunn et al., 2003). However, exact methods such as Gibbs sampling circumvent this predica-
ment.

The standard procedure of obtaining a complete sky sample involves two steps: A Wiener filter
is first used to filter out the noise and reconstruct a clean map. Second, the power loss due to noise
and incomplete sky coverage is compensated by a random fluctuation term. The combination of the
Wiener-filtered and fluctuation maps subsequently yields a full-sky, noiseless sample that is consis-
tent with observations, i.e. constrained realization (cf. Section 4.2.2). The corresponding E and B
maps resulting from the dual messenger algorithm are depicted in Fig. 4.5. The E -B coupling issue
no longer arises since we now have a full-sky sample. Since the Wiener filter depends on the choice
of an input power spectrum, a Gibbs sampling scheme, where samples of power spectrum would
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FIGURE 4.5: The simulated, Wiener-filtered and constrained E and Bmaps. In the top row, the Wiener
filter characteristically extends the signal into the masked regions; this works especially well in the
small excized areas of the map, usually required for dealing with point foreground sources. Due to the
non-vanishing cross spectrum CTE

` , the polarization reconstruction in masked areas is rather efficient,
unless the temperature and polarization masks overlap. In the bottom row, the low-amplitude B
modes are inevitably smoothed out due to the suppression of the small-scale power. The constrained
maps represent plausible realizations of de-noised full-sky E and B maps.

be drawn conditional on the data itself, would simultaneously yield the posterior probability dis-
tributions of constrained realizations and their power spectra. This Bayesian framework therefore
allows for a statistically optimal separation of E and B modes in terms of power spectra.

The dual messenger algorithm can thus be incorporated in such a Gibbs sampling scheme, for
instance, as described by Larson et al. (2007), for optimal power spectrum inference from high-
resolution polarized CMB data sets. Larson et al. (2007) implemented a PCG method, while con-
sidering uncorrelated noise only, but the preconditioner was limited by the signal-to-noise ratio of
the data and was not sufficiently efficient for joint analysis of temperature and polarization data.
We have demonstrated that the dual messenger technique is not hindered by such limitations and
maintains its efficiency in performing the two key steps described above, even for high-resolution
maps, while accounting for correlated noise, as quantitatively substantiated in the next section.

A recent work by Bunn and Wandelt (2017), whereby they demonstrate that pure E and Bmaps,
free from any cross-contamination, may be obtained via a Wiener filtering approach, provides fur-
ther motivation for the polarized Wiener filter. This approach provides real-space maps of the E
and B modes while conventional methods are limited to power spectrum estimation (e.g. Challi-
nor and Chon, 2005; Smith, 2006b; Smith, 2006a; Smith and Zaldarriaga, 2007; Grain, Tristram, and
Stompor, 2009) or produce only the derivatives of the polarization maps (e.g. Kim and Naselsky,
2010; Zhao and Baskaran, 2010; Kim, 2011; Bowyer, Jaffe, and Novikov, 2011). Other wavelet-based
reconstruction methods (e.g. Cao and Fang, 2009; Rogers et al., 2016; Leistedt et al., 2017) must
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be carefully adapted for the specific problem being investigated. The dual messenger algorithm
can therefore be optimized to yield pure E and B maps via the framework proposed by Bunn and
Wandelt (2017).

4.3.4 Computational performance

TABLE 4.1: This table provides the computational performance diagnostics for a series of convergence
criteria (ε).

ε i t(mins) χ2
final

‖Axfinal−y‖
‖y‖

10−4 304 10 3.1300× 106 3.1× 10−5

10−5 3589 31 3.1207× 106 3.9× 10−6

10−6 49076 309 3.1196× 106 6.3× 10−7

The execution times and number of iterations required by the dual messenger algorithm, for
Npix = 10242, to run to completion on a single core of a standard workstation, Intel Core i5-4690
CPU (3.50 GHz), for a series of convergence criteria ε, are provided in Table 4.1. The χ2 and resid-
ual errors corresponding to the final solutions are also displayed. While the polarization analysis
above was carried out with ε = 10−6, such a stringent convergence criterion is not required by
most Wiener filtering applications, so execution time is drastically reduced. Code parallelization is
another key option to speed up the execution for high-resolution data sets.

It is worth pointing out that even with more lenient criteria, the algorithm provides decent
results. For instance, executing the above computation with ε = 10−4 requires only 304 iterations for
convergence, corresponding to few minutes of computation time, and already correctly reconstructs
the power spectra on all scales, visually indistinguishable from that displayed in the left panel of
Fig. 3.2. The point at which the threshold |∆χ2| . σχ2 is attained, where |∆χ2| = |χ2 − 〈χ2

d.o.f〉|
and σχ2 ∼ √2nd.o.f. for nd.o.f. degrees of freedom, is another performance indicator. The χ2 for
the ε = 10−4 run drops below this level in 246 iterations, again highlighting the reliability of the
solution achievable with such a low number of iterations. This remarkable performance of the
dual messenger technique is especially significant for applications involving exact inference, such
as Gibbs sampling.

There is a minor caveat, nonetheless, concerning the current iteration scheme with the relaxed
convergence threshold. When dealing with masked regions and very low noise amplitude per
pixel, this may result in a marginal lack of convergence on the largest scales for the temperature
map, where more iterations are required to improve the reconstruction. The E and B maps and
their associated power spectra are, however, unaffected by this issue of convergence. We therefore
plan to devise an enhanced iteration scheme, such as an adaptive dual messenger algorithm, to
improve the treatment of the temperature mask when dealing with real data sets on the sphere.

The algorithmic complexity of the polarized version of the dual messenger method now reflects
the fact that the number of Fourier transforms required per iteration is increased by a factor of three.
The algorithm now requires six Fourier transforms,O(Npix log Npix), and two scalar multiplications
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corresponding to algebraic operations ofO(3Npix), per iteration. In terms of memory requirements,
temporary storage of two vectors of dimension 3Npix is required. In contrast, the PCG algorithm
requires nine Fourier transforms and ten scalar multiplications, per iteration, while eight vectors of
size 3Npix must be temporarily stored in memory.

4.3.5 Refinement via Jacobi relaxation

We provide a brief review of the iterative Jacobi technique and describe how it can be implemented
with the dual messenger algorithm for a refinement of the solution.

Jacobi relaxation is a well-known iterative technique to solve linear systems of equations (Jacobi,
1845; Saad, 2003). The conventional Jacobi method cannot be applied to the ill-conditioned system
investigated here. We therefore augment the dual messenger algorithm via a modified Jacobi relax-
ation scheme.

The standard Jacobi iterative method for the solution at two consecutive iterations, denoted by
n, is as follows:

sn+1
WF = sn

WF+
∼

W (d−W +sn
WF)

= sn
WF+

∼
W d− ∼

W d̂, (4.20)

where the W + operator is given by W + = N−1(S−1 + N−1) and d̂ = W +sn
WF. We split the con-

ventional Jacobi operation into two parts; a usual dual messenger (
∼

W ) operation on the data d and
another

∼
W operation on the Jacobi correction term. For masked regions, where formally no inverse

of N exists, W + is the pseudo-inverse, i.e. WW + = Π, where Π is a projector.

We first compute the usual dual messenger solution, keeping track of the number of iterations
required for each signal covariance truncation µ, then drive the second operation using this pre-
scription for the number of iterations to ensure that the

∼
W operator is invariant. For numerical

stability, we also modify the second Eq. (4.6), after substituting d→ d̂, as follows:

ti+1,x = D†
[
TDZn + (N̄−1 + T−1)DT−1si+1

]−1

x
, (4.21)

where
Zn

x = F †−1
R†S−1/2

`

(
1 + S1/2

` RF †N−1
x FR†S1/2

`

) (
S−1/2Rŝn

WF

)
`

, (4.22)

including all basis transformations, consistent with the notation employed in Algorithm 3. The
above rewriting ensures that the equation is free from any singularities.

4.4 Conclusions

We demonstrated that our recently proposed dual messenger algorithm maintains its efficiency for
the data analysis of joint temperature and polarization maps with correlated noise and reduced sky
coverage. This preconditioner-free method deals with ill-conditioned systems, typically encoun-
tered in the data analysis of polarized CMB maps, with relative ease. This is particularly important
as conventional conjugate gradient solvers fail to deal efficiently with this increase in the condition
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number of the covariance matrices, as illustrated by the failure of the PCG method implemented in
this work to converge to a sensible solution.

The dual messenger algorithm can be conveniently adapted to generate constrained Gaussian
realizations of the CMB sky, which is an essential component of present-day CMB data analyses.
The reconstruction of E and Bmaps from the resulting full-sky, noiseless sample avoids the leakage
issue that arises due to partial sky coverage. The algorithm can also be extended to perform pure
E/B decomposition via the approach proposed by Bunn and Wandelt (2017), as illustrated in the
following chapter.

The implementation of the dual messenger algorithm is straightforward, while being numeri-
cally robust and flexible. We also described how this method can be optimized in a modified Jacobi
relaxation scheme to further refine the solution. In Chapter 5, we demonstrate the extension of our
dual messenger method for applications on the sphere and describe how the formalism can be natu-
rally augmented via a further level of sophistication to account for more complex and realistic noise
models, such as modulated and (spatially) correlated noise, resulting from the scanning strategy of
the instrument.

We intend to showcase the application on real data sets to further validate this algorithm as
a viable signal reconstruction tool for modern CMB data sets. The dual messenger technique can
be further refined to reduce execution time. A potentially significant performance upgrade, espe-
cially on the sphere, is provided by the hierarchical framework of the dual messenger algorithm:
We adapt the working resolution progressively such that the Nyquist frequency is always slightly
above the current `iter considered in the algorithm so as to reduce the cost of harmonic transforms.

We are hopeful that the development of the dual messenger method will ultimately render exact
global Bayesian analyses of high-resolution and high-sensitivity CMB observations numerically
tractable and computationally efficient. This high-performance algorithm is particularly adapted to
cope with the complex numerical challenges posed by modern data sets and is therefore relevant for
current and future high-resolution CMB missions such as Planck, South Pole Telescope, Advanced
ACTPol, POLARBEAR, QUBIC, Simons Observatory and CMB-S4. Whilst we have demonstrated
the application of this algorithm in a cosmological context, it remains nevertheless relevant for spin
field reconstruction in a general framework.
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Chapter 5

Pure E/B decomposition of CMB maps
with anisotropic correlated noise

The work presented in this chapter is based on Kodi Ramanah, Lavaux, and Wandelt (2019).

5.1 Introduction

Cosmological inference from observations of the CMB polarization, as mentioned in Chapter 4, ne-
cessitates the separation of the contributions of the gradient and curl (or E and B) components of
the polarization signal to the data. These scalar E and pseudo-scalar B modes correspond to the
spin-2 analogues of curl-free and divergence-free vector fields (cf. Chapter 1.4.3), respectively, with
a polarization map being represented as the sum of both components (Zaldarriaga and Seljak, 1997;
Seljak and Zaldarriaga, 1997; Kamionkowski, Kosowsky, and Stebbins, 1997b; Kamionkowski,
Kosowsky, and Stebbins, 1997a).

The decomposition of the E and Bmodes on a partial sky is highly non-trivial due to the induced
leakage between the two modes. Masked regions produce a discontinuity at the edges of the map
and this results in a mixing of E and B modes, yielding ambiguous modes. Such modes can be
sourced by either E or B components and cannot be uniquely assigned (Zaldarriaga, 2001; Lewis,
Challinor, and Turok, 2002; Lewis, 2003; Bunn, 2002a; Bunn, 2002b; Bunn et al., 2003; Bunn, 2011).
This is a highly prevalent issue due to most observations being made on an incomplete sky or full-
sky maps being subjected to additional masking to reduce foreground contamination. Since the
E -mode power spectrum is much larger than that of B modes, the ambiguous modes significantly
increase the variance of the B modes, resulting in a spurious measurement of the B-mode power
spectrum. The detection of the inflationary gravitational waves is especially challenging due to their
relatively small amplitude and hence, efficient methods for pure E/B decomposition are essential
for extracting the cosmological information from CMB polarization data.

Several approaches for pure E/B decomposition are described in the literature. While some
techniques yield real-space maps of the derivatives of the polarization maps (e.g. Kim and Nasel-
sky, 2010; Zhao and Baskaran, 2010; Kim, 2011; Bowyer, Jaffe, and Novikov, 2011), others are lim-
ited to power spectrum estimation via the construction of an eigenbasis for the pure-ambiguous
decomposition (e.g. Challinor and Chon, 2005; Smith, 2006b; Smith, 2006a; Smith and Zaldarriaga,
2007; Grain, Tristram, and Stompor, 2009; Alonso et al., 2019). Nevertheless, such approaches do
not result in pure E and B maps in the real space and are computationally intensive. Ferté et al.
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(2013) provides a quantitative comparison of the efficiency of the above techniques for power spec-
trum reconstruction. Wavelet-based techniques have also been proposed, but they must be carefully
adapted for the problem under investigation (Cao and Fang, 2009; Rogers et al., 2016; Leistedt et al.,
2017).

Bunn and Wandelt (2017) (hereafter BW) have recently shown that the E/B decomposition can
be approached from a Wiener filtering (Wiener, 1949) viewpoint, resulting in faster implementation
as compared to the above methods, while providing real-space maps of the E andBmodes. Another
key advantage of such an approach is that it can be naturally extended to treat more interesting
cases such as providing E maps free from the temperature anisotropy contributions by accounting
for temperature and polarization correlations.

In this chapter, we present an augmented version of our dual messenger algorithm (Kodi Ra-
manah, Lavaux, and Wandelt, 2018) (hereafter KLW18) for pure E/B decomposition on the sphere,
based on the principle of the Wiener filter. We adapt the algorithm to encode the BW prescrip-
tion for reconstruction of pure E/B maps and naturally extend the dual messenger framework to
account for complex and realistic noise models. We demonstrate the application of this enhanced
algorithm, designated as DANTE (DuAl messeNger filTEr), on a simulated CMB polarization data
set which emulates the features of the actual Planck data.

The remainder of this chapter is structured as follows. In Section 5.2, we provide a brief de-
scription of the dual messenger formalism adapted for applications on the sphere and illustrate a
Jacobi relaxation method to account for the non-orthogonality of spherical harmonic transforms.
We describe how it can be augmented to deal with non-trivial noise covariance in Section 5.3. We
subsequently illustrate how the algorithm can encode the BW prescription for pure E/B recon-
struction, followed by an outline of the numerical implementation in Section 5.4. We then present a
new optimization scheme for the estimation of noise covariance from Monte Carlo simulations and
showcase the capabilities of DANTE in reconstructing pure E and B maps from simulated Planck
data in Section 5.5. Finally, we summarize our main findings in Section 5.6. In Appendix B.2,
we provide a brief description of spherical harmonic transforms, as employed in this work. Ap-
pendix B.4 outlines the main steps in the derivation of the essential dual messenger equations to
account for anisotropic correlated noise.

5.2 Dual messenger field on the sphere

Conceptually, the essence of the messenger methods lies in the introduction of an auxiliary field
to mediate between the different bases where the signal and noise covariances, S and N, can be
most conveniently expressed as sparse matrices. The addition of this messenger field allows the
Wiener filter equation to be rewritten as a set of algebraic equations that must be solved iteratively,
circumventing the requirement of matrix inversions or preconditioners.

With respect to the standard messenger technique, where a messenger field t is introduced at
the level of the noise, the dual messenger algorithm incorporates an extra messenger field u, at the
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level of the signal, with corresponding covariances T and U, yielding the following augmented χ2:

χ2
T ,U = (d− t)†N̄−1(d− t) + (t−YBu)†T−1(t−YBu) + (u− s)†U−1(u− s) + s†S̄−1s, (5.1)

where N̄ = N− T with T = α1, where α ≡ min(diag(N)), and S̄ = S−U with U = ν1, where
ν ≡ min(diag(S)). When dealing with polarization fields, µ and ν are actually 3× 3 matrices, cor-
responding to the temperature, E and B components. Y and Y† correspond to the basis operators
(synthesis and analysis operators, respectively) for the spherical harmonic transforms, as described
in Appendix B.2, while B indicates convolution with an instrument beam. In terms of physical sig-
nificance, t corresponds to a homogeneous portion of the noise covariance while its counterpart u
is associated with the signal covariance. Optimizing χ2

T ,U yields the following system of equations
to be solved iteratively:

u = (S̄ + U)
[
B†Y†YB(S̄ + U) + T

]−1
B†Y†t (5.2)

t = (N̄−1 + T−1)−1(T−1YBu + N̄−1d). (5.3)

Note that this is the reduced system of equations, with one of the messenger fields made implicit.
The general system of equations is described in more depth in KLW18. To improve convergence, we
implement a similar scheme as in KLW18. We artificially truncate the signal covariance S to some
lower initial value of `iter, corresponding to a covariance µ. We subsequently vary U to bring µ→ ν,
such that in the limit µ = ν, we have u = s and we recover the usual Wiener filter Eq. (2.3) from
the above system of Eqs. (5.2) and (5.3). This is formally valid as long as µ and ν are block matrices
over harmonic space. We may therefore exploit this degree of freedom to solve the temperature
and polarization signals at different rates. The above cooling scheme leads to a redefinition of S̄
using the Heaviside function as S̄ = Θ(S −U), where S corresponds to the eigenvalues of S, i.e.
S = R†SR and S̄ = R†S̄R.

To implement such a hierarchical scheme, we vary U via a cooling scheme for ξ, where ξ =

B†Y†YBU + T. To obtain the appropriate Wiener filter solution, we need to reduce µ → ν = 0,
due to the continuous mode of the signal, i.e. the zero eigenvalue of S. The cooling scheme for ξ

entails gradually reducing ξ by a constant factor and iterating until ξ → T, thereby finally attaining
µ = 0, as required. A quantitative description of the rationale underlying the above cooling scheme
is presented in our previous work (Kodi Ramanah, Lavaux, and Wandelt, 2017).

DANTE is implemented in Python and it makes use of the HEALPIX1 (Górski et al., 2005) li-
brary, in particular the Python wrapper HEALPY, to perform the spherical harmonic transforms
(SHTs). HEALPIX employs an equal area projection scheme, where the SHTs are quasi-orthogonal,
i.e. Y†Y1 ≈ (Npix/4π)1 ≡ β1, where Npix denotes the number of pixels. We account for this
non-orthogonality of SHTs via efficient Jacobi relaxation schemes, as described in future sections.
If an equidistant cylindrical projection on a grid is adopted for the SHTs (e.g. Muciaccia, Natoli,
and Vittorio, 1997; Huffenberger and Wandelt, 2010; McEwen and Wiaux, 2011), the equations
presented in this work are significantly simplified, as a result of β = 1. DANTE employs the

1http://healpix.jpl.nasa.gov
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NUMBA2 (Lam, Pitrou, and Seibert, 2015) compiler for Python arrays and numerical functions to
yield high-performance functions for all the required matricial manipulations to boost execution
speed. NUMBA generates optimized native code using the LLVM compiler (Lattner and Adve,
2004) infrastructure and is used to parallelize the array operations.

5.2.1 Non-orthogonality of spherical harmonic transforms

Unlike in the case of discrete Fourier transforms, the spherical harmonic synthesis and analysis
operators, i.e. Y and Y†, respectively, are not orthogonal and differ by more than a transposition
and a scale factor. The quality of the approximation, Y†Y1 ≈ (Npix/4π)1 ≡ β1, depends on the
`max, Npix and spherical grid considered.

To account for the non-orthogonality of spherical harmonic transforms, we incorporate an inter-
nal Jacobi relaxation method (Jacobi, 1845; Saad, 2003) in DANTE to refine the solution in harmonic
space (cf. equation (5.2)). To obtain U, we need the eigenvalues of S, i.e. U = min(S)1, where
R†SR = S. Equation (5.2) can be formulated as s = Ab, whereA is given by:

A = R†(S̄ + U)
[
RB†Y†YBR†(S̄ + U) + α1

]−1
R, (5.4)

after including the basis transformations, and b = B†Y†t.

An approximation toA can be obtained as follows:

Ã = R†(S̄ + U)
[

βRB†BR†(S̄ + U) + α1
]−1

R, (5.5)

after using the approximate orthogonality relation Y†Y1 ≈ β1. The application of the operator
A is not well-defined but we nevertheless can apply its inverse A−1 to a vector, by applying the
relevant operators sequentially,

A−1 = R†
[
RB†Y†YBR† + α(S̄ + U)−1

]
R. (5.6)

We therefore make use of A−1 and Ã, to obtain the solution for s via the following Jacobi
iterations:

sn+1 = sn + Ã(b−A−1sn), (5.7)

where n denotes the number of Jacobi iterations.

The term (S̄ + U)−1 poses a numerical predicament for the final truncation in the signal covari-
ance, where S̄ = S −U and U = 0, and we subsequently require the inversion of S . We circumvent
the corner case due to the zero eigenvalues of the continuous modes in S by imposing the follow-
ing constraint on the subspace V where S = 0: (S̄ + U)−1|V = S+. S+ is the pseudo-inverse, i.e.
SS+ = Π, where Π is a projector.

2https://numba.pydata.org
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5.2.2 Treatment of masked regions

CMB data analysis inevitably requires the treatment of masks, with many practical applications
requiring that parts of the sky be masked out. For full-sky observations, this is mainly to avoid
contamination from the galactic foreground emissions, thereby preventing spurious power spec-
tra measurements. In the case of ground-based or sub-orbital CMB experiments with partial sky
coverage, missing data are accounted for using masks.

We provide an outline of the general procedure for solving the messenger Eq. (5.3) when dealing
with temperature and polarization masks. Here, we assume correlated noise, such that the noise
covariance N has the following block-diagonal form for every pixel i:

Ni =



〈II〉 〈IQ〉 〈IU〉
〈QI〉 〈QQ〉 〈QU〉
〈UI〉 〈UQ〉 〈UU〉


 , (5.8)

where I , Q and U are the Stokes parameters. More complex noise models will be described in
Section 5.3.

We compute the covariance T of the messenger field t as follows: T = min(N )1 = α1, where
D†ND = N. The noise covariance N can be written as N = ΣCΣ = ΣP†∆PΣ, following the
orthonormal decomposition of C, where Σ is a diagonal matrix with the eigenvalues {σi

I , σi
Q, σi

U}
corresponding to the noise amplitudes for the ith pixel, with the orthonormal decomposition of C
resulting in the diagonal matrix ∆. We then obtain N̄ = N− T as follows:

N̄ = ΣP†∆PΣ− T

= ΣP†(∆− αPΣ−2P†)PΣ, (5.9)

where α, as stated above, is the smallest eigenvalue of N. To solve the messenger Eq. (5.3), we
require the inverse N̄−1,

N̄−1 = Σ−1P†(∆− αPΣ−2P†)−1PΣ−1, (5.10)

such that N̄−1 has a block-diagonal structure in pixel space. We obtain the solution for the messen-
ger field by simply evaluating Eq. (5.3) in pixel space,

tx =
(

N̄−1 + T−1
)−1

x

(
T−1

x YBu` + N̄−1
x dx

)
. (5.11)

We implement the temperature and polarization masks by increasing the noise variance to in-
finity for masked pixels, or numerically by setting the inverse noise covariance to zero. This is
achieved by setting Σ−1|mask = 0, subsequently ensuring that data from masked regions do not
contaminate the messenger field.
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5.3 Dual messenger generalizations

The dual messenger approach can be extended to a broader class of problems, accounting for highly
non-trivial noise covariance, as described in the following sections. In practice, the structure of the
noise covariance, in pixel space, is influenced by the noise properties of the CMB time-ordered data
and the scanning pattern of the telescope.

5.3.1 Correlated modulated noise

The first possible generalization for the noise model is the case of correlated modulated noise. The
noise covariance, in pixel space, can be written as:

N = YFY†DYFY†, (5.12)

where F is a smoothing kernel which is diagonal in the same basis as S, i.e. harmonic space, while
D is the noise variance that can be easily diagonalized in some other basis, e.g. pixel space. The
desired Wiener filter from Eq. (2.3) is then

sWF = S(S + FY†DYF)−1Y−1d. (5.13)

It turns out that this can be solved directly by the dual messenger scheme described above without
any modifications. We transform the data via a simple pre-whitening step, as follows:

d̃ = (YFY†)−1d. (5.14)

The Wiener filter for this model can then be computed via the following steps:

s̃WF = (FY†)−1S(YF)−1
[
(FY†)−1S(YF)−1 + D

]−1
d̃

= (FY†)−1S(S + FY†DYF)−1Y−1d

= (YFY†)−1sWF, (5.15)

after plugging in the effective data vector given by Eq. (5.14).

This problem therefore reduces to one that can be solved directly using the dual messenger
algorithm, requiring the same computational time as in the white noise case. The only additional
steps required are a simple pre-whitening, followed by a post-smoothing operation with F−1 and
F, respectively. For this particular case, we do not demonstrate the application of DANTE, as the
implementation is straightforward.

5.3.2 Modulated correlated noise

The second generalization of the noise model corresponds to modulating the amplitude of spatially
correlated noise. This is a more realistic noise model, typical of CMB experiments such as Planck,
resulting from the scanning strategy of the instrument. The noise covariance, in pixel space, now
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takes the following form:
N = DYCY†D, (5.16)

where C is the isotropic noise covariance, encoding the inverse frequency (1/ f ) noise correlation
on the large scales, typically associated with atmospheric noise, and therefore diagonal in harmonic
space. The modulation, described by D, is sparse in pixel space. The power spectrum C` of the
non-modulated part of the noise can be expressed as:

C` =
σ2

N
β

[
1 +

(
`knee

`

)αknee
]

, (5.17)

with the characteristic scale `knee and tilt αknee of the power-law component, with σN being the noise
amplitude per pixel.

The modulation takes into account the variation of noise amplitude due to the amount of inte-
gration time spent in any single pixel. The isotropic noise covariance in the map is expected to be a
good approximation for scan strategies that cross each pixel in many directions, thereby isotropiz-
ing the way the time-ordered data noise correlations project onto the sky. But even in cases where
the distribution of scan directions per pixel is not entirely isotropic, such as for the Planck data, this
noise model was found to be of sufficient quality to derive the optimal primordial non-Gaussianity
estimators (Planck Collaboration et al., 2016c; Planck Collaboration et al., 2019).

As a result of the above dense noise covariance, Eq. (5.3) is no longer algebraically solvable due
to the required inversion of a fully dense system. But since we are free to choose the covariance T of
the messenger field t, we set T = D(YφY†)D, where φ = min(diag(C)). This yields the following
system of equations:

u = (S̄ + U)
[
B†Y†D−1(YφY†)−1D−1YB(S̄ + U) + 1

]−1
B†Y†D−1(YφY†)−1D−1t (5.18)

t = D
[
(YCY† −YφY†)−1 + (YφY†)−1

]−1 [
(YφY†)−1D−1YBu + (YCY† −YφY†)−1D−1d

]
,

(5.19)

where the second equation can be simplified to the following form via straightforward linear alge-
braic manipulations:

t̃ ≡ D−1t = Y(C− φ1)Y†(YCY†)−1D−1YBu + (YφY†)(YCY†)−1D−1d, (5.20)

which can now be solved trivially to obtain the messenger field. The first Eq. (5.18), however,
cannot be solved directly, but it can be conveniently expanded using an extra messenger field v,
with covariance V = ω(YφY†)1, where ω ≡ min(diag(D2)), yielding the following two trivially
solvable equations:

v = ωMD−1M−1t̃ +
[
1−ωMD−1M−1D−1

]
YBu (5.21)

u =
[
φω(S̄ + U)−1 + B†Y†M−1YB

]−1
B†Y†M−1v, (5.22)
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where the coupling matrixM is defined asM ≡ YY†. We therefore must solve the above system
of three Eqs. (5.20)-(5.22) when accounting for modulated correlated noise. Eq. (5.22) can be written
explicitly in terms of the relevant basis transformations as follows:

u = R†(S̄ + U)
[
RB†Y†M−1YBR†(S̄ + U) + φω1

]−1
RB†Y†M−1v, (5.23)

where, as before, S = R†SR. An in-depth derivation of these equations is laid out in Appendix B.4.
We encode the mask by doing the decomposition, D = ΣD̃Σ = ΣP†∆PΣ, as described in Section
5.2.2, and setting Σ−1|mask = 0. This prescription corresponds exactly to dropping the contribution
of observations that are considered masked out, which may be deduced from Eq. (5.1). We apply
the cooling scheme to ξ = U + φω1, as described in Section 5.5.

5.3.3 Nested Jacobi relaxation

As mentioned in Section 5.2, the above Eqs. (5.20), (5.21) and (5.23) may be simplified significantly
using the approximation Y†Y1 ≈ β1, thereby reducing the required number of SHTs. This approx-
imation is not exact due to the coupling of the SHTs on the pixelized sky. In this work, we employ
Jacobi relaxation to correct for the operationsM−1 ≡ (YY†)−1 and (YCY†)−1.

We follow a similar rationale and employ the same notation as in Section 5.2.1, with the Jacobi
iteration given by Eq. (5.7), where b is any arbitrary vector in harmonic space. For the case of
A = (YCY†)−1, the respective operations are as follows:

Ã = (β−1Y)C−1(β−1Y†), A−1 = YCY†. (5.24)

The correction for M−1 is analogous to the above, with C set to identity matrix, and must be
embedded within the less trivial Jacobi relaxation for Eq. (5.23). The resulting nested relaxation
scheme requires the following operations:

A = R†(S̄ + U)
[
RB†Y†M−1YBR†(S̄ + U) + φω1

]−1
R (5.25)

Ã = R†(S̄ + U)
[
RB†BR†(S̄ + U) + φω1

]−1
R, (5.26)

and the corresponding inverse of operatorA given by:

A−1 = R†
[
RB†Y†M−1YBR†(S̄ + U) + φω1

]
(S̄ + U)−1R, (5.27)

with the basis operations included, and b = B†Y†M−1v.

5.4 Pure E/B decomposition via Wiener filtering

In a finite patch of sky, the polarization field cannot be uniquely decomposed into pure E and pure B
modes. Nevertheless, the polarization map can be uniquely decomposed into three distinct compo-
nents, commonly referred to as the “pure E”, “pure B” and “ambiguous” modes (Lewis, Challinor,
and Turok, 2002; Bunn et al., 2003). This new set of ambiguous modes receives contributions from
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both E and B modes. In such a framework, the signal vector space is divided into three orthogonal
subspaces. The pure B modes exist on the vector subspace orthogonal to that of all E modes, and
similarly for the pure E modes. The ambiguous component, however, lies in the subspace orthogo-
nal to both pure E and B subspaces. This decomposition ensures that a reconstructed pure B map
is not contaminated by E modes.

E/B separation methods based on this pure-ambiguous decomposition originally involved the
construction of an eigenbasis for the various orthonormal subspaces, but this is a tedious and nu-
merically slow procedure. The E/B decomposition is trivial for exact methods such as Gibbs sam-
pling (Larson et al., 2007), which infer the posterior statistics of a full-sky signal conditional on
the data. Gibbs sampling requires a complete sky sample, i.e. optimally filtered data augmented
to cover the whole sky via constrained generalizations (see also KLW18). This is the basis of the
motivation behind the Wiener filtering approach proposed by Bunn and Wandelt (2017).

We briefly review the rationale and the formalism behind this new method, and describe how
it can be incorporated in DANTE. A more comprehensive description is provided in Bunn and
Wandelt (2017).

5.4.1 Background and notation

Considering only polarization measurements, the data set can be described as a 2Npix dimensional
vector of the Stokes parameters Q and U , i.e. d = (dQ, dU ), where Npix corresponds to the dimen-
sion of the pixelized map of a given Stokes parameter. We account for the contribution from the
temperature anisotropy, Stokes I , in a future section. We assume a data model as given by Eq. (2.1),
and Gaussian white noise, although the results presented below would still be relevant for more
complex noise covariance.

The signal can be expressed as a spherical harmonic expansion,

s = sE + sB = ∑
`,m

[
aE`mYEz,`m(r̂j) + aB`mYBz,`m(r̂j)

]
, (5.28)

where r̂j labels the pixel corresponding to measurement j, while the index z ∈ {Q,U} denotes
the associated Stokes parameter. The functions Y can be expressed in terms of spin-2 spherical
harmonics:

YEQ,`m = YBU ,`m = −1
2
(2Y`m +−2 Y`m) (5.29)

YBQ,`m = −YEU ,`m = −1
2
(2Y`m −−2 Y`m). (5.30)

The signal can therefore be written as

s = YE e + YBb, (5.31)

with the coefficients aE`m and aB`m encoded in the vectors e and b, respectively. The matrices YZ , for
Z ∈ {E ,B}, consist of the spherical harmonics evaluated at the given pixel locations.
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Under the assumption of data sourced by a statistically isotropic and random Gaussian process,
the signal is uniquely described by the following covariance:

S ≡ 〈ss†〉 = 〈sE sE†〉+ 〈sBsB†〉 ≡ SE + SB . (5.32)

For a full-sky data set, where d covers the whole sky, the matrices YE and YB span orthogonal
spaces, and hence the E -B coupling issue does not arise and the decomposition is straightforward.
Incomplete sky coverage, however, results in the ambiguous modes that lie in both subspaces at the
same time. The pure B space can therefore be described as the orthogonal complement of the space
spanned by YE , with an analogous definition for the pure E space. The signal vector space can
consequently be divided into three orthogonal subspaces, with the third ambiguous space being
orthogonal to both of the pure subspaces. By projecting the data vector d on the pure B subspace,
the E -mode signal is mapped onto the null space of YB , ensuring no contamination of E modes in
the resulting pure B map.

5.4.2 Purification framework

If the signal covariance S employed in the Wiener filter Eq. (2.3) contains covariances of both E and
B signals, then the resulting Wiener-filtered map would have contributions from both the scalar and
pseudo-scalar components, i.e. sWF = sEWF + sBWF. Bunn and Wandelt (2017) proposed the following
approach to isolate them from each other: Conceptually, the rationale is to treat one component as
a source of noise. We can obtain the Wiener-filtered B map, for instance, via the following replace-
ments: S→ SB and N→ SE + N, such that the Wiener filter Eq. (2.3) becomes:

sBWF =
[
S−1
B + (SE + N)−1

]−1
(SE + N)−1d

= SB [SB + (SE + N)]−1 d, (5.33)

with an analogous expression for sEWF. Recall that sWF = sEWF + sBWF.

However, the above Wiener-filtered maps are contaminated by the ambiguous modes. Due to
our prior signal covariance having a much higher E -mode power, the theory assigns the ambiguous
modes with high signal-to-noise mostly to the E map. In order to ensure no cross-contamination,
whereby a pure B map should have contributions strictly from B modes, Bunn and Wandelt (2017)
suggested raising the signal covariance associated to the E component to infinity, and provided a
proof that this gives the same result as doing a costly eigenmode decomposition and projecting out
the ambiguous modes. We define

S(λ) = SB + λSE (5.34)

as the signal covariance with the E -mode power amplified by a factor of λ. Substituting SB + SE →
S(λ) in Eq. (5.33) yields

sBWF(λ) = SB [S(λ) + N]−1 d

= SBS(λ)−1
[
S(λ)−1 + N−1

]−1
N−1d, (5.35)
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such that in the limit λ → ∞, only the pure B modes survive in the null space of SE . A strictly
analogous procedure holds for the pure E component.

5.4.3 Numerical implementation

To facilitate the numerical evaluation of the expressions above, it is more convenient to work with
a full-sky data set, so that we can use fast transforms to move back and forth between the pixel
and spherical harmonic spaces. Masked pixels are assigned infinite noise covariance, i.e. we set the
inverse noise covariance to zero.

Assuming isotropic and Gaussian CMB anisotropies, the signal covariance S is diagonal in
spherical harmonic basis,

SE = diag(CEE
2 , . . . , CEE

`max
, 0, . . . , 0) (5.36)

SB = diag(0, . . . , 0, CBB
2 , . . . , CBB

`max
), (5.37)

with the ordering convention of having the E -mode component first. Hence, we have

S(λ)−1 = diag
[
(λCEE

2 )−1, . . . , (λCEE
`max

)−1, (CBB
2 )−1, . . . , (CBB

`max
)−1
]
. (5.38)

As a result, S(λ)−1|λ→∞ → S+
B , where the pseudo-inverse S+

B is the inverse of SB within the sub-
space spanned by YB and is zero in the orthogonal subspace of E modes. We consequently obtain
the operator that projects onto the pure E subspace as SBS+

B = PB . Finally, we obtain the Wiener-
filtered pure B map as

spB
WF ≡ lim

λ→∞
sBWF(λ) = SBS+

B (S
+
B + N−1)−1N−1d. (5.39)

The above formalism can be generalized to include the correlation between polarization and
temperature anisotropies, where the data, d = (dI , dQ, dU ), are pixelized maps of the Stokes param-
eters, I , Q and U , where I here corresponds to the temperature anisotropy. The signal covariance
matrix now has a block-diagonal structure in spherical harmonic space, with a 3× 3 sub-matrix, for
all multipole moments `, as follows:

S` =




CTT
` CTE

` 0
CTE
` CEE

` 0
0 0 CBB

`


 , (5.40)

with the vanishing cross-spectra, CTB
` and CEB

` , set to zero.

To find the pure B map, we proceed as before, i.e. SE → λSE with λ → ∞. In this limit, the
temperature and polarization components decouple, yielding the following signal covariance:

SB ≡
[

lim
λ→∞

S(λ)−1
]+

=




CTT
` −

(CTE
` )2

CEE
`

0 0

0 0 0
0 0 CBB

`


 , (5.41)
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such that the above Eq. (5.39) for the Wiener-filtered pure B map still holds.

A similar reasoning results in the following equation for the Wiener-filtered pure E map:

spE
WF = SES+

T E (S
+
T E + N−1)−1N−1d, (5.42)

where ST E is the signal covariance corresponding to:

ST E ≡
[

lim
λ→∞

S(λ)−1
]+

=




0 0 0

0 CEE
` −

(CTE
` )2

CTT
`

0

0 0 0


 . (5.43)

S+
T E is then the pseudo-inverse associated to the subspace containing the temperature and E modes,

i.e. all the B modes lie in the null space of both ST E and S+
T E .

In this work, we encode this prescription in DANTE for optimal reconstruction of pure E and
B maps via Wiener filtering. The numerical implementation for the pure B case entails the usual
Wiener filtering procedure, i.e. solving Eq. (2.3), but assuming infinite covariance for the E compo-
nent, followed by the application of the relevant projection operator PB to obtain the pure B map.
An analogous procedure yields the pure E map.

The above formalism still holds in the presence of more complex noise models, such as the
anisotropic correlated noise considered here. Since the signal covariance becomes fully diagonal
when reconstructing the pure E or B map, we solve Eq. (5.22) itself since no basis transformations
are required, as follows:

u = (S̄ + U)
[
B†Y†M−1YB(S̄ + U) + φω1

]−1
B†Y†M−1v. (5.44)

There is, nevertheless, a caveat in the implementation of the above equation. The signal covariance
S, as given by Eqs. (5.41) and (5.43), is actually the pseudo-inverse of the well-defined S(λ)−1 in
the limit λ → ∞. The trivial implementation is to set the relevant components of ST E and SB to
a numerically large value. Alternatively, Eq. (5.44) can be expressed in the following numerically
convenient form:

u =
[
B†Y†M−1YB + φωS̄−1(S̄−1 + U−1)−1U−1

]−1
B†Y†M−1v, (5.45)

which, for the final step of the cooling scheme, i.e. U = 0, reduces to:

u =
[
B†Y†M−1YB + φωS−1

]−1
B†Y†M−1v. (5.46)

We verified that both implementations resulted in identical solutions, within the limit of numerical
errors.
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FIGURE 5.1: The temperature and polarization masks employed in the data analysis, corresponding to
sky fractions of f Tsky = 0.76 and fPsky = 0.84, respectively. Our artificially generated data set emulates
the features of polarized Planck CMB maps.

5.5 Numerical experiments

In this section, we demonstrate the application of DANTE to an artificially generated but realistic
CMB polarization data set. We present the procedure for the mock generation, followed by a de-
scription of the different steps in the data analysis pipeline.

5.5.1 Mock generation of polarized CMB maps

To simulate joint temperature and polarization maps on the sphere, we make use of HEALPY to
generate realizations of aT` , aE` and aB` signals with the correct covariance properties (cf. Eq. (5.40)),
taking into account the correlation between CMB temperature anisotropy and polarization. We
employed CAMB3 (Lewis, Challinor, and Lasenby, 2000) to generate the input angular power spec-
tra, CTT

` , CEE
` , CBB

` and CTE
` , from which the corresponding CMB signals are drawn. We assume

a standard ΛCDM cosmology with the set of cosmological parameters (Ωm = 0.32, ΩΛ = 0.69,
Ωb = 0.05, h = 0.67, σ8 = 0.83, ns = 0.97) from Planck (Planck Collaboration et al., 2016b). We
can then construct the input Q and U maps by transforming realizations of E and B signals (cf.
Eq. (B.3) in Appendix B.2) on the sphere, with HEALPIX resolution of Nside = 128 and `max = 128,
such that the total number of pixels is Npix = 12× N2

side ≈ 2× 105. The input Stokes parameters’
maps are subsequently contaminated with modulated correlated noise, as described by Eq. (5.47)
below, with a white noise amplitude of σN = 40.0 µK per pixel, typical of high-sensitivity CMB
experiments tailored for the detection of B modes, and the corresponding 1/ f noise parameters of
`knee = 10 and αknee = 1.5 (cf. Eq. (5.17)). We employ the SMICA Planck temperature and polariza-
tion masks (Planck Collaboration et al., 2016a), corresponding to sky fractions of f Tsky = 0.76 and
fPsky = 0.84, respectively, as depicted in Fig. 5.1. While our formalism and code account for the effect
of a beam, we set the beam operator to identity for our present test cases.

3http://camb.info
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5.5.2 Estimation of noise covariance

We now present a posterior optimization method to estimate the noise covariance using Monte
Carlo (MC) simulations. For the case of modulated correlated noise, the data can be modelled as
follows:

d = s + DYC1/2Y†n, (5.47)

following the notation of Eq. (2.1), where D is diagonal in pixel space. We also use liberally the
notation C1/2 to indicate the positive square root matrix of C. As described in Section 5.3.2, the
noise covariance is now given by

N = DYCY†D, (5.48)

with C being the isotropic, homogeneous, noise covariance, which incorporates the inverse fre-
quency (1/ f ) noise correlation on the large scales. The overall aim is to estimate D and C using MC
simulations by casting the covariance estimation problem as a two-level optimization scheme. The
noise realizations can be modelled as the following linear combination:

n = DYC1/2z + k, (5.49)

where z and k are Gaussian random fields with covariances, 〈zz†〉 = 1 and 〈kk†〉 = κ21, respec-
tively. The corresponding χ2, as the negative of the logarithm of the posterior distribution, with the
sum over the contribution of each MC realization, can be written as:

χ2 =
NMC

∑
i=1

[
1
κ2

(
ni −DYC1/2zi

)†(
ni −DYC1/2zi

)
+ z†

i zi

]
. (5.50)

To obtain the maximum a posteriori estimate of D and C, we must optimize the above χ2 with
respect to zi and D, in the limit κ → 0. The χ2 optimization with respect to zi yields, for a given MC
simulation,

z̃i =
(
Y†D2YC1/2 + κ2C−1/2

)−1
Y†Dni, (5.51)

which, in the limit κ → 0, simplifies to

lim
κ→0

z̃i =
(
Y†D2YC1/2

)−1
Y†Dni

= C−1/2Y−1D−2Π̃†Dni, (5.52)

where Π̃† = (YY−1)† is a projector onto the pixel subspace. The inversion per matrix is acceptable
for the term in parenthesis because the operation Y† already projects on the subspace of maps
bandwidth limited to `max. Within that space the Y operator becomes invertible, though at some
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cost. Optimizing the χ2 with respect to D leads to

D̃ =

[
NMC

∑
i=1

(
YC1/2zi

)†(
YC1/2zi

)]−1 NMC

∑
i=1

(
YC1/2zi

)†ni

≡
(

NMC

∑
i=1

m†
i mi

)−1 NMC

∑
i=1

m†
i ni

≡ E−1
NMC

∑
i=1

m†
i ni, (5.53)

where we defined E ≡ ∑i m†
i mi, with mi estimated as follows:

mi = YC1/2zi = Π̃D−2Π̃†Dni, (5.54)

where Π̃ = YY−1 is the projector onto the spherical harmonic space.

The algorithm for the noise covariance estimator proceeds according to the following iterative
scheme: Compute m̃i using Eq. (5.54), and subsequently E−1 to obtain D̃ using Eq. (5.53), followed
by a power spectrum update to obtain C̃ via C̃ = ∑i〈m̂im̂†

i 〉/NMC. In the above, we have defined the
harmonic representation of the map with m̂i = Y−1mi. We solve Eq. (5.53) by implementing fixed
point iterations, but this fixed point is not an attractor. We consequently employ the Babylonian
method (e.g. Fowler and Robson, 1998; Friberg, 2007) to stabilize the fixed point and obtain an
updated D̃, as follows:

D̃ =
1
2

(
D + E−1

NMC

∑
i=1

m†
i ni

)
. (5.55)

We may verify that the fixed point of the above equation is exactly the desired D matrix. Note that
due to the degeneracy between the amplitudes of C and D, we need to anchor the amplitude of the
updated C̃ via the required re-scaling.

We therefore solve the above Eq. (5.53) iteratively, using D2 = ∑i(n†
i ni)/NMC as an initial guess.

We generate 104 MC noise simulations using as template the modulated noise covariance provided
by the Planck data analysis pipeline,4 as an estimate for the ni above. The map estimates, after only
five iterations, for the diagonal and off-diagonal components of the noise covariance matrix, along
with their corresponding reference and residual maps, are displayed in Figs. 5.2 and 5.3, respec-
tively. Visually, the distinct components of the covariance matrix are adequately recovered, with
residuals at the level of ∼ 0.3% and ∼ 6% for the diagonal and off-diagonal components, respec-
tively. As a quantitative diagnostic, we verify the relative deviation in the angular power spectra
reconstructed from the maps, as a function of scale, with respect to their reference components:√

C`(D̂−Dref)/C`(Dref), illustrated in Fig. 5.4. This demonstrates the accuracy of reconstruction
of our noise covariance estimator across the range of scales considered, with only five iterations.
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FIGURE 5.2: Top row: The reference modulated noise covariance used as inputs for the generation of
the noise simulations. Middle row: The corresponding components recovered by the noise covariance
estimator display the expected modulation patterns, indicating qualitatively the efficacy of our esti-
mator. Bottom row: The residuals, generated by computing the difference between the reference and
estimated noise covariance components, demonstrate the high-fidelity reconstructions. Note that for
the relatively low residuals at the level of ∼ 0.3% to be visible, we employ a different colour bar scale
for the residual maps.

5.5.3 Analysis of CMB polarization on the sphere

In this section, we showcase the application of DANTE in Wiener filtering polarized CMB maps
contaminated with anisotropic correlated noise, and also illustrate its efficacy in generating pure E
and Bmaps, guaranteed to be free from any cross-contamination. This corresponds to three distinct
runs using the same realization of mock data, generated as described above in Section 5.5.1, labelled
as “WF”, “pure E” and “pure B”, respectively. The “pure B” run yields a “pure” temperature map
as by-product, which corresponds to the map of temperature anisotropies without any contribution
from the E modes. We anchor the choice of hyperparameter values, described below, for all three
cases.

We make an initial truncation in the power spectrum at ` = 50, corresponding to a given value of
ξ and the algorithm loops through the iterations until the fractional difference between successive
iterations has reached a sufficiently low value, at which point ξ is reduced by a constant factor
according to a given cooling scheme: ξ → ξη, where η = 2/3, until ξ → φω1. We implement a
“weak” criterion for convergence, ‖si+1 − si‖ / ‖si‖ < ε, where ε = 10−5, as a cheap proxy for the
strong criterion that is verified a posteriori in Fig. 5.7.

4Available from http://pla.esac.esa.int/pla/aio/product-action?MAP.MAP_ID=HFI_SkyMap_100_2048_R2.02_
full.fits

http://pla.esac.esa.int/pla/aio/product-action?MAP.MAP_ID=HFI_SkyMap_100_2048_R2.02_full.fits
http://pla.esac.esa.int/pla/aio/product-action?MAP.MAP_ID=HFI_SkyMap_100_2048_R2.02_full.fits


5.5. Numerical experiments 75

Reference DIQ

-5e-06 5e-06µK

Reference DQU

-8e-06 8e-06µK

Reference DIU

-6e-06 6e-06µK

Estimated DIQ

-5e-06 5e-06µK

Estimated DQU

-8e-06 8e-06µK

Estimated DIU

-6e-06 6e-06µK

Residual DIQ

-6e-07 6e-07µK

Residual DQU

-6e-07 6e-07µK

Residual DIU

-6e-07 6e-07µK

FIGURE 5.3: Same as Fig. 5.2, except for the off-diagonal components of the modulated noise covari-
ance. As for their diagonal counterparts, the cross-correlations components are adequately recovered,
with relatively insignificant residuals (∼ 6%).
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FIGURE 5.4: Relative deviation, as a function of scale, of the estimated components of the covari-
ance matrix, with respect to their reference values. This diagnostic quantitatively demonstrates the
performance of our noise covariance estimator with only five iterations.

The reconstructed angular power spectra for the temperature and polarization components are
provided in Fig. 5.5, with the WF solution showing suppressed power on the small scales resulting
from the noise and masked regions of the sky, which is a characteristic feature of Wiener filtering.
For the temperature anisotropies, depicted in the left panel, the pure B run yields the temperature



76 Chapter 5. Pure E/B decomposition of CMB maps with anisotropic correlated noise

100 101 102

`

102

103

`(
`+

1)
2
π
C
`

(µ
K

2
)

Temperature

Cref
`

C input
`

CWF
`

Cpure
`

100 101 102

`

10−5

10−4

10−3

10−2

10−1

100

`(
`+

1)
2
π
C
`

(µ
K

2
)

E mode

100 101 102

`

10−5

10−4

10−3

10−2

10−1

`(
`+

1)
2
π
C
`

(µ
K

2
)

B mode

FIGURE 5.5: Reconstructed temperature, E - and B-mode angular power spectra from the WF and
pure E/B runs. The simulated realizations, depicted using dash-dotted lines, were drawn from
the reference power spectra, denoted by dashed lines, and were subsequently contaminated with
anisotropic correlated noise and masked. Left panel: The Wiener-filtered CTT

` is slightly suppressed
on the small scales, as expected, in the low signal-to-noise regime. With the discarded E -mode con-
tribution being relatively low, the pure CTT

` matches the Wiener-filtered version. Middle panel: The
pure CEE

` is substantially different from its Wiener-filtered counterpart, as the contribution of temper-
ature anisotropies, by virtue of their larger power, is especially significant. Right panel: The contrast
between the Wiener-filtered and pure CBB

` is more significant on the largest scales, as can be seen from
their real-space maps displayed in the bottom row of Fig. 5.6.

power spectra that has been purified with respect to the E modes, and as such, corresponds to the
prediction solely from the temperature data, with no contribution from the polarization compo-
nent. This pure temperature power spectrum does not display any significant difference compared
to the Wiener-filtered one, as expected, due to the relatively small E -mode contribution. The corre-
sponding reconstructed power spectra for the E modes are depicted in the middle panel of Fig. 5.5.
The pure E -mode power spectrum displays a smooth functional behaviour that matches the shape
of the input power spectrum, although substantially suppressed because of the noisy and masked
regions and since the discarded temperature contribution is significant. The right panel displays
the corresponding reconstructions for the B-mode power spectrum. The pure reconstruction, as
in the WF case, suppresses the modes in the low signal-to-noise regime, while also discarding the
ambiguous modes, and shows a notable difference on the largest scales.

The real-space maps of the Wiener-filtered, pure E and B modes, together with their corre-
sponding simulated maps, are illustrated in the middle and bottom rows of Fig. 5.6, respectively.
The corresponding temperature maps are also displayed in the top row, for completeness. Note that
the simulated maps are the generated signal realizations which were subsequently contaminated
with anisotropic correlated noise and masked according to Fig. 5.1. The Wiener-filtered map, as
the maximum a posteriori reconstruction, represents the CMB signal content of the data, with the
reconstruction of the large-scale modes in the masked areas, based on the information content of
the observed sky regions, being a natural consequence of Wiener filtering. Both the Wiener-filtered
and pure temperature maps are similar in appearance, as expected from their reconstructed power
spectra (cf. left panel of Fig. 5.5). This is not the case, however, for the reconstructed E maps, pu-
rified with respect to the temperature anisotropies and ambiguous modes. The pure E map, as a
result, has a lower signal amplitude. Both the Wiener-filtered and pure B maps show the clear re-
construction of the large-scale modes with extremely low amplitude. The striking contrast between
the two maps is on the largest scales near the mask, where the pure B map has lower power. This is
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FIGURE 5.6: Simulated and reconstructed real-space maps of temperature anisotropies, E and B
modes, from top to bottom, from the WF and pure E/B runs. The Wiener-filtered maps for all three
components exhibit the characteristic feature, whereby the signal is extrapolated into the masked re-
gions. The level of anisotropic correlated noise smooths out the small-scale features for the E and B
modes, with the suppression of the small-scale power being more significant for the latter due to its
low amplitude. The pure E and B maps, after the removal of ambiguous modes, display a reduced
signal content. This difference is more striking for the E map since the contribution from the tempera-
ture and E -mode correlations is also discarded. The pure B map has lower power close to the masked
regions, relative to the Wiener-filtered one, as expected, since ambiguous modes are known to have
support primarily near the mask.

consistent with previous work (e.g. Bunn and Wandelt, 2017), where it was found that ambiguous
modes have support primarily near the masked regions.

We illustrate the convergence behaviour of the three solutions via the corresponding variations
of their residual error given by ‖Ax− y‖ / ‖y‖, for a linear system of equations given by Ax = y,
in Fig. 5.7. This residual error adequately characterizes the accuracy of the final solution, with the
relevant equations as follows:

y = S1/2RY†D−1(YCY†)−1D−1d (5.56)

and
A = 1 + S1/2RY†D−1(YCY†)−1D−1YR†S1/2, (5.57)

with x = S−1/2Rs, following the notation from Section 5.3.2. The coupling matrix (YCY†)−1

requires Jacobi iterations for accurate evaluation of the above residual error. For the pure E/B
runs, this is non-trivial as the signal covariance S should have infinite values, as mentioned at end
of Section 5.4.3. To simplify the residual error evaluations in these cases, we simply set the relevant
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FIGURE 5.7: Convergence diagnostics for the reconstructions from the three runs. Left panel: Variation
of residual error, given by ‖Ax− y‖ / ‖y‖, as a function of iterations. This residual error is reduced
monotonically as the iterations proceed, demonstrating the unconditional stability of the dual mes-
senger algorithm in performing the three reconstructions. Middle panel: Variation of residual error as
a function of angular scale for the final solutions. This error is sufficiently low for the range of scales
considered, indicating the quality of the respective solutions. Right panel: Variation of χ2 with num-
ber of iterations for the WF and pure E/B solutions. Their respective χ2 drop to a final value which
is consistent with 〈χ2

d.o.f〉 corresponding to the expectation value of the χ2, given by the number of
degrees of freedom (d.o.f), for the final solutions.

components of S to a numerically large value.

As we demonstrated in our previous work, a characteristic feature of the dual messenger algo-
rithm is the monotonic decrease in the residual error as the iterations proceed, as illustrated in the
left panel of Fig. 5.7, thereby demonstrating the unconditional stability of our method. This residual
error, as a function of angular scale, for the final solutions from the three runs, are depicted in the
middle panel. The Jacobi relaxation schemes employed is required to reduce this error to extremely
low values across the range of scales considered.

The χ2 is computed as follows:

χ2 = (d−YBs)†D−1(YCY†)−1D−1(d−YBs) + s†S−1s, (5.58)

where, as for the residual error evaluations above, we employ Jacobi relaxation for the composite
operation (YCY†)−1. The corresponding χ2 variation for the three different solutions is displayed
in the right panel of Fig. 5.7. In all three cases, the respective χ2 of the dual messenger solutions
drop to a final value which matches 〈χ2

d.o.f〉, the expectation value of the χ2, given by the number
of degrees of freedom (d.o.f), for the final solution. In the absence of masks, 〈χ2

d.o.f〉 is given by the
total number of harmonic modes of the temperature, E and B components. The computation of
〈χ2

d.o.f〉 is, however, non-trivial when masks are involved. We estimated 〈χ2
d.o.f〉 via Monte Carlo

simulations. The convergence diagnostics discussed above, therefore, quantitatively demonstrate
the efficacy of DANTE in performing the three distinct tasks.

Concerning the execution times for the WF, pure E and pure B runs, for the specific test case
investigated, the algorithm runs to completion on four cores of a standard workstation, Intel Core
i5-4690 CPU (3.50 GHz), in around three hours. Note that a conjugate gradient method can, in
principle, deal with such anisotropic noise models, provided that an adequate preconditioner can
be found and this is the major stumbling block. Devising an appropriate preconditioner for such
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a complex problem is an extremely challenging task. For instance, the multi-grid preconditioner
developed by Smith, Zahn, and Doré (2007) at WMAP resolution and sensitivity is already highly
non-trivial. The preconditioner-free approach of the dual messenger algorithm, therefore, is the key
advantage.

5.6 Conclusions and outlook

We presented a numerically robust and fast code, DANTE, for pure E/B decomposition of CMB
polarization maps. It accounts for complex and realistic noise models such as anisotropic correlated
noise, encountered in typical CMB experiments such as Planck. DANTE is an augmented version
of our dual messenger algorithm, adapted for the reconstruction of pure full-sky E and B maps on
the sphere. The algorithm encodes a new method for the pure-ambiguous decomposition, based
on a Wiener filtering approach, recently proposed by Bunn and Wandelt (2017), that guarantees
no cross-contamination between the two maps. We also developed a noise covariance estimator
to reconstruct the components of anisotropic noise covariance from Monte Carlo simulations, as
required by the dual messenger algorithm.

We have demonstrated the capabilities of DANTE in dealing with large data sets and the asso-
ciated high-dimensional covariance matrices. Moreover, as a preconditioner-free method, it is not
hindered by ill-conditioned systems of equations inherent in CMB polarization problems, unlike
standard PCG solvers, as demonstrated in KLW18. DANTE also has an in-built option for drawing
constrained Gaussian realizations of the CMB sky, for applications requiring homogeneous cover-
age of the field of observations. We have not illustrated this particular feature in this work as this
was shown previously in KLW18. DANTE will be rendered public in the near future.

The pure E/B decomposition framework implemented in this work, as a maximum a posteriori
probability approach, has several advantages over traditional methods. It exploits the sparsity of
the E/B decomposition in the spherical harmonic basis, rendering the implementation extremely
efficient. It is therefore much faster and straightforward than methods relying on the construction
of orthonormal bases or wavelet methods that require a certain degree of fine-tuning. Moreover,
E/B purification in the context of pseudo-C` estimators is only feasible when the mask is differen-
tiable up to at least its second derivatives, which is usually achieved via an appropriate apodization
(Alonso et al., 2019). An interesting aspect of our approach is that it is not hindered by such limita-
tions.

We have showcased the performance of DANTE on a realistic mock data set, emulating the fea-
tures of polarized Planck CMB maps. The next step in this series of investigations is to further
augment DANTE with an adaptive upgrade. Despite the improvements made to render the anal-
ysis of high-resolution CMB polarization data sets numerically feasible, the statistically optimal
approach for the separation of E and B modes requires exact global analyses such as Gibbs sam-
pling. This would, however, require several applications of the Wiener filter to obtain one signal
realization conditional on the polarization data (e.g. Larson et al., 2007). The algorithm would there-
fore benefit from a further level of sophistication. A particularly interesting upgrade is to exploit
the hierarchical framework of the dual messenger algorithm by adapting the working resolution
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progressively during execution, thereby substantially reducing the computation time. We also in-
tend to explore the possibility of employing the dual messenger as a preconditioner in a standard
PCG approach, in an attempt to drastically improve the convergence rate. Our algorithm could
also be used to provide better examples of Wiener-filtered maps for a filtering based on machine
learning, as in Münchmeyer and Smith (2019) with the J1 loss function. These examples would be
much more expensive than the purely simulation-based approach of the J2 loss function, but would
also provide a solid validation step.

Ultimately, the underlying objective is to employ this efficient tool in exact global Bayesian anal-
yses of high-resolution and high-sensitivity CMB observations from the latest release of Planck to
yield scientific products of significant value and interest. The resulting reconstructed maps may po-
tentially be employed for various applications such as power spectrum reconstruction, estimation
of lensing potential and searches for non-Gaussianity and statistical anisotropy. Another key aspect
is that the features of the real-space pure B maps allow the characterization of lensing-induced B
modes which go beyond the power spectrum.

DANTE can be easily applied to other CMB data sets in straightforward fashion without major
modifications of the source code, making it a potentially powerful and robust tool for other current
and future high-resolution CMB missions such as South Pole Telescope, Advanced ACTPol, Simons
Observatory and CMB-S4. The flexibility of the code can nevertheless be exploited in other cosmo-
logical contexts, due to the ubiquitous use of the Wiener filter, and even in more general scenarios
involving spin field reconstruction.
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Part III

Large-scale structures of the Universe
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Chapter 6

Dynamics of cosmic structure formation
and evolution

6.1 Growth of density perturbations

The study of cosmic structure formation, in essence, requires the modelling of the dynamics of
a gravitating system in an expanding Universe. We provide a mathematical description of the
physical evolution of cosmic structures in terms of theoretical perturbative analyses, followed by
a brief discussion of numerical simulations to compute the highly non-linear dynamics in regimes
where analytical solutions are no longer feasible.

6.1.1 Physical description of non-linear dynamics

To model the growth of cosmic structures, standard approaches to study the dynamics of density
and velocity fields are based on the assumption that cold dark matter is well described by a fluid.
The study of the fluid motion by focusing on specific locations in space to describe the time evo-
lution of the fluid flow constitutes the basis of Eulerian perturbation theory (e.g. Bernardeau et al.,
2002).

An alternative approach is the Lagrangian description, where the description of the field re-
lies on the determination of the trajectories of particles, with this physical description of structure
growth yielding the Lagrangian perturbation theory (LPT) (e.g. Bouchet et al., 1995), which is em-
ployed in Chapters 8, 9 and 12 as an approximate physical model of cosmic structure formation.
In the following sections, we outline the physical description of large-scale structures to the de-
gree required for the following chapters. An excellent in-depth review of Eulerian and Lagrangian
perturbation theory, including non-linear approximations to gravitational instability, is provided in
Leclercq (2015).

Linear structure formation

In the linear regime, on large scales and during the early stages of gravitational evolution, un-
der the assumption that density fluctuations are relatively small, cosmic structure formation is
governed by a homogeneous growth function D+(a) acting on a density contrast according to
δ(x, a) = D+(a)δ(x, a = 1). The growth factor D+(a) is obtained as the numerical solution to the
linear growth equation, for a general cosmology (e.g. Turner and White, 1997; Wang and Steinhardt,
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1998; Linder and Jenkins, 2003):

d2D+(a)
da2 +

1
a

(
3 +

d ln H
d ln a

)
dD+(a)

da
− 3

2
Ωm(a)D+(a)

a2 = 0, (6.1)

where the cosmological parameter Ωm(a) depends on the scale factor (cf. Eq. (1.7)).

Lagrangian perturbation theory

The Lagrangian framework is based on the displacement field Ψ(q), rather than the position of par-
ticles as in the Eulerian approach, yielding the Lagrangian coordinates. The latter label an infinite
number of infinitesimally light particles, which are homogeneously distributed in the limit of a
completely homogeneous Universe for redshift zi → ∞. A perturbation in the particle positions,
triggered by a given physical phenomenon, results in a perturbation in density. The key point is
that the corresponding displacements are non-zero at very high redshifts. τ is the conformal time,
defined by dt = a(τ)dτ,H ≡ a′/a = aH indicates the conformal expansion rate.

The displacement field maps the initial comoving position q of a particle to its final (Eulerian)
position x(q, ai) at a later time (e.g. Buchert, 1989; Bouchet et al., 1995; Bernardeau et al., 2002):

x(q, ai) = q + Ψ(q, ai), (6.2)

such that the physical position is given by r = ax and the conformal velocity described by u =

dx/dτ. Inserting the above parameterization in the equation of dynamics of perturbations with a
FLRW metric yields

∂u
∂τ

+H(τ)u = −∇xΦ, (6.3)

where Φ is the cosmological gravitational potential and ∇x is the gradient operator in (Eulerian)
comoving coordinates x,

∆Φ =
3
2

Ωm(τ)H2(τ)δm(x) (6.4)

is the cosmological Poisson equation, and

δm(x) ≡ ρ̄

ρ
− 1 =

∣∣∣∣
∂x
∂q

∣∣∣∣
−1

− 1 (6.5)

is the density contrast expressed in terms of the Jacobian of the transformation between Eulerian
and Lagrangian coordinates, obtained via the conservation of mass (continuity equation) in the
relationship between the density contrast and the trajectories, i.e. ρ(x, τ)d3x = ρ(q)d3q.

Zel’dovich Approximation

A first order expansion in the displacement field Ψ leads to the equation of motion in Lagrangian
coordinates:

∇ ·
(

∂2Ψ

∂τ2 +H(τ)
∂Ψ

∂τ

)
=

3
2

Ωm(τ)H2(τ)∇ ·Ψ. (6.6)



6.1. Growth of density perturbations 85

Defining ψ ≡ ∇ ·Ψ, and assuming that Ψ is vorticity-free, the above equation can be simplified by
separating the temporal and spatial dependence to

ψ′′ +H(τ)ψ′ − 3
2

Ωm(τ)H2(τ)ψ = 0, (6.7)

where the prime denotes differentiation with respect to τ.

The solution to the above second order differential equation is the sum of two terms; strictly
growing and decaying functions, D+

1 and D−1 , respectively. The former encodes the essential physics
that leads to the clustering of structures, from small perturbations to large concentrations of matter.
The linear solution can be expressed as

ψ(1)(q, τ) ≡ ∇q ·Ψ(1)(q, τ) = −D+
1 (τ)δ(q), (6.8)

where δ(q) is the growing mode of the initial density contrast in Lagrangian coordinates. Consid-
ering only this specific part of the solution, the coordinate transformation, to first order, behaves
as:

x(q, a) = q +
D+

1 (a)
D+

1 (a0)
Ψ0(q), (6.9)

where Ψ0(q) is the Lagrangian displacement at some cosmic scale a0. The above equation is the
well-known Zel’dovich approximation (ZA) (Zel’Dovich, 1970), which describes the particle dynamics
as straight inertial motion following the initial velocity vector and at first glance, implies ballistic
motion. This is not the case, however, as the linear growth factor D+

1 incorporates feedback effect
from cosmic structure formation and cosmic expansion.

Second-order Lagrangian perturbation theory

Extensions to this approximation have been developed extensively in the literature, with the im-
mediate refinement brought by an expansion to higher orders (e.g. Bouchet et al., 1995). Due to the
ZA being local, it does not provide a sufficient physical description at non-linear stages when parti-
cles form gravitationally bound structures, rather than follow straight trajectories. The addition of
second order terms, therefore, is prerequisite to account for the fact that gravitational instability is
non-local via the inclusion of corrections due to gravitational tidal effects (Bernardeau et al., 2002),
and this provides a remarkable improvement in describing the global properties of density and ve-
locity fields (Melott, Buchert, and Weiss, 1995). Second-order Lagrangian perturbation theory (LPT)
yields the following solution:

x(q, a) = q + Ψ(q, a) = q + Ψ(1)(q, a) + Ψ(2)(q, a), (6.10)

where the divergence of the first-order solution resulting in the ZA, i.e. Eq. (6.8), with the diver-
gence of the second-order solution describing the tidal effects,

ψ(2)(q, τ) = ∇q ·Ψ(2)(q, τ) =
1
2

D+
2 (τ)

[D+
1 (τ)]

2 ∑
i 6=j

[
Ψ(1)

i,i Ψ(1)
j,j −Ψ(1)

i,j Ψ(1)
j,i

]
, (6.11)
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where Ψ(1)
i,j ≡ ∂Ψ(1)

i /∂qj and D2(τ) is the second-order growth factor given as

D+
2 (a) ≈ −3

7
[
D+

1 (a)
]2 Ω−

1
143

m , (6.12)

which is valid for a flat ΛCDM Universe (Bouchet et al., 1995; Scoccimarro, 1998; Bernardeau et al.,
2002).

6.1.2 Numerical simulations of cosmic structure growth

While LPT provides an adequate description of the growth of cosmic structures on the largest scales,
it is no longer valid on the smaller scales since it relies on the convergence of series expansion, as
described in the previous section. As such, this expansion cannot accurately describe the dynamics
of gravitational evolution of dark matter on scales r < 10h−1 Mpc (e.g. Melott, Buchert, and Weiss,
1995; Tassev and Zaldarriaga, 2012), with the non-linear dynamics yielding a strong coupling be-
tween different modes δ(k) in Fourier space, such that a simple analytic approach is not feasible. In
particular, the heterogeneous structure formation violates the above relation of δ(x, a) = D+(a)δ(x).

To overcome such limitations and account for non-linear physical evolution, we can perform
full N-body simulations using a numerical particle mesh model (e.g. Klypin and Shandarin, 1983;
Efstathiou et al., 1985; Hockney and Eastwood, 1988; Klypin and Holtzman, 1997). The purpose
of the particle mesh code is to solve the gravitational N-body problem by following the dynamical
trajectories of a cloud of dark matter particles in a given cosmological volume, while accounting for
their mutual gravitational interactions. We outline the general principles involved in this approach.
The particle mesh code solves the following equations of motion, from some predefined initial
conditions, for positions x and momenta p of dark matter particles, to the present state of large-
scale structures (Jasche and Lavaux, 2019):

dx
da

=
p

ȧa2 (6.13)

dp
da

= − ∇xΦ
aH(a)

, (6.14)

with ȧ being its the first time derivative of the cosmic scale factor, and p = a2 ẋ. The gravitational
potential is encoded in the Poisson equation:

∇2
xΦ =

3
2

H2
0 Ωm

δm(x)
a

=
H0

a
∇2

xΦ̃, (6.15)

where Φ̃ is the reduced gravitational potential, such that the above Poisson equation relating the
density of particles to the potential Φ̃ can be expressed as:

∇2
xΦ̃ =

3
2

H0Ωmδm(x). (6.16)

The densities may subsequently be estimated from the particle positions via the cloud-in-cell (CIC)
scheme (e.g. Hockney and Eastwood, 1988).
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GADGET2 (Springel, 2005) is a popular tool for performing such numerical simulations to study
the non-linear stages of cosmic structure formation, with recent extensions also including baryonic
dynamics, magnetic fields and cosmic rays. In Chapter 12, we construct an efficient emulator of
complex dynamics which predicts the 3D halo distribution using only the 2LPT density field, obvi-
ating the need for full N-body simulations and halo finding algorithms. As described in the next
section, dark matter halos are the key building components of the cosmic large-scale structures.

6.2 Morphology of the cosmic web

In this section, we describe the cosmic matter distribution, followed by a description of the large-
scale structures of the Universe, in terms of the relevant statistical tools.

6.2.1 Distribution of matter in the Universe

Structure formation in the Universe, as described by the equations governing the dynamics in-
volved in the previous section, do not explain the origin of the initial seed perturbations. The com-
monly accepted paradigm is that all the observed cosmic structures were formed via gravitational
instability from primordial microscopic quantum fluctuations generated in the earliest moments
of the Universe, during the so-called Planck epoch. While the origin and statistical properties of
the initial density perturbations are not completely understood, inflationary models currently pro-
vide the most promising explanations (e.g. Guth, 1981; Albrecht and Steinhardt, 1982; Guth and Pi,
1982), as outlined in Chapter 1.2.

A common prediction of the various inflationary scenarios proposed is that the primordial den-
sity fluctuations can be characterized by a Gaussian distribution, as a consequence of the central
limit theorem (Kendall and Stuart, 1968) for the superposition of an extremely large number of
uncorrelated quantum fluctuations. This, in turn, implies that the generation of the initial density
perturbations is a stochastic process and is beyond a description based purely from first principles.
At the fundamental level, a probability distribution function of these fluctuations is prerequisite
to characterize the cosmic large-scale structures. To infer the statistical properties of the density
field, conventional analyses rely on observations of the CMB anisotropies (e.g. Hinshaw et al., 2007;
Planck Collaboration et al., 2014a) or galaxy distribution from redshift surveys (e.g. York et al.,
2000; Alam et al., 2015). The standard practice in cosmology is to employ summary statistics as an
adequate representation of the cosmological density fields, as outlined in the next section.

The gravitational amplification of the initial seed perturbations leads to the hierarchical forma-
tion of the observed structures in the Universe, such as galaxies and clusters of galaxies, in a com-
plex network known as the cosmic web, consisting of filaments, walls and voids (Klypin and Shan-
darin, 1983; Padmanabhan, 1993; Bond, Kofman, and Pogosyan, 1996). The backbone of the cosmic
web is the filamentary distribution of dark matter, resulting in a gravitational scaffold (Massey et al.,
2007), which subsequently yields potential wells into which baryons fall, leading to the formation
of luminous galaxies (Mukhanov, 2005).
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6.2.2 Statistical description of cosmological large-scale structures

According to our standard cosmological model, the primordial density fluctuations can be charac-
terized as a Gaussian random field, as mentioned in the previous section, with observations of the
CMB anisotropies (e.g. Hinshaw et al., 2007; Planck Collaboration et al., 2014a) providing substan-
tial evidence for this paradigm. An in-depth mathematical description of Gaussian random fields
is provided in Leclercq, Pisani, and Wandelt (2014).

The statistical properties of a cosmic Gaussian field are completely described by the two-point
correlation function:

ξ(r) ≡ 〈δ(r′)δ(r′ + r)〉, (6.17)

defined in configuration space as the joint ensemble average, taken over all possible realizations
of the Universe, of the field at two different locations. It depends only on the norm of r, i.e.
ξ(r) = ξ(|r|), for a homogeneous and isotropic Universe, leaving only the amplitude |r| in the
above definition.

The scalar field δ(r) corresponds to the density contrast in the context of large-scale structures,
and can be expressed in terms of its Fourier components,1

δ(r) =
∫ d3k

(2π)3 δ̂(k) exp (ik · r), (6.18)

or equivalently, via its Fourier transform,

δ̂(k) =
∫

d3r δ(r) exp (−ik · r), (6.19)

where the 3D wavevector of the plane wave is denoted by k, with its amplitude (wavenumber)
being k, related to the wavelength λ via k = 2π/λ. Note that the quantities δ̂(k) are complex
random variables. For a real scalar field, we have δ̂(−k) = δ̂∗(k), such that half of the Fourier space
is sufficient to contain all the information.

Computing the two-point correlation function for δ̂(k) in Fourier space yields the following
relation:

〈δ̂∗(k)δ̂(k′)〉 =
∫

d3r′
∫

d3r 〈δ∗(r′)δ(r′ + r)〉 exp [i(k− k′) · r′ − ik′ · r)]

=
∫

d3r′
∫

d3r ξ(r) exp [i(k− k′) · r′ − ik′ · r)]

= (2π)3δD(k− k′)
∫

d3r ξ(r) exp (ik · r)

= (2π)3δD(k− k′)P(k), (6.20)

where δD is the Dirac delta function, and the above result leads to the definition of the power spec-
trum:

P(k) =
∫

d3r ξ(r) exp (ik · r), (6.21)

1The hat denotes Fourier space representation.



6.2. Morphology of the cosmic web 89

as the Fourier transform of the two-point correlation function ξ(r). The power spectrum essen-
tially describes the dispersion of the plane wave amplitudes at different scales in Fourier space.
Nevertheless, it does not provide any information about the phases of the field.

Non-linear structure formation, as described in Section 6.1.2, yields non-Gaussian features via
mode coupling as well as phase correlations, such that the statistical properties of the evolved mat-
ter fields cannot be uniquely described in terms of the above two-point correlation function or
power spectrum. To characterize this non-Gaussian field, higher-order statistics are required. The
above definition (6.17) can be generalized for higher-order correlation functions, such that the nth

order correlation function in Fourier space can be expressed as

〈δ̂(k1)δ̂(k2) . . . δ̂(kn)〉 ≡ (2π)3δD(k1 + k2 + · · ·+ kn)Pn(k1, k2, . . . , kn). (6.22)

The Dirac delta distribution δD enforces statistical homogeneity of the field by ensuring that k-
vector configurations form closed polygons, ∑i ki = 0, such that the above polyspectrum depends
solely on (n− 1) wavevectors in the n-point function. Moreover, for a statistically isotropic field,
there is no dependence on the direction of the k-vectors. Going beyond the power spectrum, the
immediate statistic of interest is the bispectrum B(k), corresponding to n = 3, defined as

〈δ̂(k1)δ̂(k2)δ̂(k3)〉 ≡ (2π)3δD(k1 + k2 + k3)B(k1, k2, k3), (6.23)

which allows us to characterize the spatial distribution of the field. In Chapter 12, we make use of
the power spectrum and bispectrum as quantitative diagnostics of the performance of our neural
network in predicting 3D halo distributions.
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Chapter 7

Bayesian inference in cosmology

7.1 Bayesian probability theory

In this chapter, we present the rationale underlying the use of Bayesian inference techniques for cos-
mological data analysis. We describe the conceptual underpinnings of Bayesian probability theory,
in contrast to the conventional frequentist approach. In particular, we discuss the parameter infer-
ence problem within the Bayesian framework and the role of the prior in Bayesian data analysis, as
relevant to the ALTAIR and BORG algorithms in Chapters 8 and 9.

7.1.1 Frequentist vs. Bayesian statistics

To push the boundaries of our understanding of our physical Universe, we conduct cosmological
observations to identify or investigate unknown cosmic phenomena or verify the validity of existing
theories in the light of the observations. Therefore, we need precise and quantitative tools for data
analysis to make progress by optimally extracting information from observations, while adequately
quantifying the associated uncertainties, in order to establish a physical model of our Universe.

There are two distinct viewpoints pertaining to statistical data analysis, namely the conven-
tional (frequentist) and Bayesian approaches (e.g. Kendall and Stuart, 1968). Although both schools
of thought have their foundations in probability theory, their interpretation of probability when us-
ing probability distributions, and their respective approaches for the determination of characteris-
tic values, testing of hypotheses and model comparison differ crucially (e.g. Trotta, 2008; Heavens,
2009). In essence, a Bayesian method yields more general and profound statements about mea-
surements or observations, as argued in Jasche et al. (2010b). For instance, a frequentist approach
seeks the answer to: “Given the true value s of a signal, what is the probability distribution of the
measured values d?” In contrast, a Bayesian method answers a distinct question: “Given the ob-
servations d, what is the probability distribution of the true signal s?” As such, by inferring the
true value of the signal from observations, the Bayesian framework provides the answer to the
fundamental question inherent to any measurement problem, unlike conventional statistics. The
Bayesian method, in a nutshell, provides an algorithm for knowledge acquisition. The probability
distribution of s quantifies the information content of our knowledge of s. Another distinction is
that the frequentist considers the model as carved in stone, but this is not correct in general. The
validity of the model is limited by the knowledge that we have accrued. The Bayesian evidence, as
outlined in Section 7.2, provides a straightforward path to assess models.
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7.1.2 Definition of probability

First and foremost, the epistemological definition and interpretation of probability is inherently
different from both viewpoints. For instance, we may consider the probability P(A) of an event A
occurring. The frequentist definition of the probability P(A) is the relative frequency of occurrence
of event A in repeated experiments, in the limit of infinite equiprobable repetitions (Heavens, 2009).
The various shortcomings of this frequentist definition are clearly outlined in Trotta (2008). In con-
trast, from the Bayesian viewpoint, the probability P(A) represents the degree of belief associated
with the occurrence of event A, under consideration of all available information (Heavens, 2009).
This intuitive concept of probability represents a state of knowledge in the presence of incomplete
information (Jaynes, 2003).

7.1.3 Bayes identity

The basis of Bayesian statistics lies in a set of fundamental consistency requirements and philosoph-
ical principles for plausible reasoning, known as Cox’s axioms (Cox, 1946), and can be derived from
one of the axioms of probability theory, involving conditional probabilities (e.g. Trotta, 2008; Trotta,
2017):

P(y|x)P(x) = P(x|y)P(y) = P(x, y), (7.1)

where the vertical bar represents conditionality, such that P(x|y) implies the probability of x given
y and P(x, y) denotes the joint probability distribution of x and y. The above identity leads to the
mathematical formulation for inverse problems, i.e. if we know how x arises from y, then we can
use x to constrain y, providing a pathway from forward modelling to the inverse problem (Leclercq,
Pisani, and Wandelt, 2014).

7.2 Bayesian data analysis

The Bayes identity, from Eq. (7.1), is usually written as follows:

P(θ|d) = P(d|θ)P(θ)P(d) , (7.2)

where θ represents a given set of model parameters corresponding to a particular theory, and d is
the data set, with both θ and d written as vectors. This constitutes the mathematical foundation of
Bayesian analysis (e.g. Trotta, 2008; Heavens, 2009; Verde, 2010):

• P(d|θ) is the likelihood and it corresponds to the probability of the data before it is known,
given the theory;

• P(θ) is the prior probability distribution which is the probability of the theory in the absence
of data;

• P(θ|d) is the posterior probability distribution, indicating the probability of the theory after
the data is known;
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• P(d) is known as the evidence and it is the probability of the data before it is known, without
making any assumptions about the theory.

In a Bayesian analysis, any uncertain quantities have an associated probability distribution func-
tion, such that the key outcome is the posterior density which provides a quantitative measure of the
relative degree of rational belief in a range of parameter values, given the combined information
from the prior and the data. This is a stark contrast to a frequentist analysis, which yields an esti-
mator for the parameters of interest (Leclercq, Pisani, and Wandelt, 2014). The choice of the prior
distribution is discussed in Section 7.2.2.

7.2.1 The parameter inference problem

Bayesian data analysis typically takes the form of parameter inference and model comparison. The
former is of interest to Chapters 8 and 9, and is hence outlined here. In essence, this allows the
interpretation of observations in terms of a model, which is a theoretical framework incorporating
some assumptions, characterized by some free parameters (Heavens, 2009).

Within the Bayesian framework, the parameter inference problem can be expressed as (Verde,
2010): “What is the probability distribution of the model parameters given the available data?”
This can formulated, in a general context, as follows: Given a vector of parameters θ associated
to a physical model M, we should specify priors P(θ|M) for each parameter, followed by the
construction of an appropriate likelihood function P(d|θ,M). The likelihood encodes a generative
and probabilistic model of the data, i.e. it reflects the data acquisition procedure. For instance,
a measurement with Gaussian noise is adequately modelled by a normal distribution (Leclercq,
Pisani, and Wandelt, 2014).

We subsequently obtain the posterior distribution for the model parameters of interest by ap-
plying the Bayes identity (cf. Eq. (7.2)), yielding

P(θ|d,M) ∝ P(d|θ,M)P(θ|M), (7.3)

after specifying the prior and encoding the information from the data in the likelihood function
(Trotta, 2008). The Bayesian evidence P(d|M) is simply a normalizing constant for parameter
inference and is therefore omitted above (Heavens, 2009). It is, however, crucial for model compari-
son. In practice, θ can correspond to a set of parameters, with some physically interesting quantities
ζ and some nuisance parameters ψ. The above posterior is therefore the joint posterior distribution
for θ = {ζ, ψ}. To obtain the marginal posterior of interest, we must marginalize over the nuisance
parameters, as follows (Leclercq, Pisani, and Wandelt, 2014):

P(ζ|d,M) ∝
∫

dψ P(d|ζ, ψ,M)P(ζ, ψ|M). (7.4)

The key outcome of the above parameter inference problem is the posterior probability den-
sity function, P(θ|d,M). To extract information from the latter, we usually make use of Markov
Chain Monte Carlo methods for efficient exploration of the posterior in high-dimensional parame-
ter spaces, as explained in Section 7.3.
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7.2.2 Choice of priors

The choice of a suitable prior is a key component of any Bayesian analysis. Due to the absence
of a unique prescription for selecting a prior, it has attracted considerable criticism in the past, as
summarized by Gelman (2008). The choice of priors is nevertheless not a limitation of the Bayesian
approach, nor does it undermine the objectivity of an analysis. Since there can be no inference
without assumptions, the prior, within Bayesian probability theory, is a systematic way of quanti-
fying one’s assumptions and a priori state of knowledge about the specific problem before actually
looking at the data. In general, if the likelihood is more informative than the prior, the posterior
converges to a common function, irrespective of choice of prior, guaranteeing objectivity. Moreover,
specifying priors ensures transparency, as unreasonable or unjustified assumptions are exposed to
scientific criticism. In comparison, assumptions adopted in a frequentist analysis may not be so ev-
ident. A more in-depth discussion about priors is provided in Leclercq, Pisani, and Wandelt (2014)
and Trotta (2017).

7.3 Markov Chain Monte Carlo methods

This section contains an introduction to Markov Chain Monte Carlo (hereafter MCMC) methods,
as employed in Chapters 8 and 9. We outline the elementary notions underlying MCMC for the
exploration of high-dimensional posterior distributions and briefly review some standard MCMC
methods which have proven to be extremely efficient.

7.3.1 The Monte Carlo rationale

The posterior distribution, as the primary result of the Bayesian analysis, encodes all the relevant
information about the physical system under investigation. Any statistical inference, however, re-
quires appropriate statistical summaries, such as the mean, median or mode, drawn from the poste-
rior (Leclercq, Pisani, and Wandelt, 2014). Unfortunately, the representation of such a distribution,
especially in high dimensions, is numerically challenging in practice (Heavens, 2009). Due to com-
putational limitations, direct numerical integration of Eq. (7.4) is not feasible.

A possible solution is to map the posterior density numerically via a sampled representation in
the high-dimensional space using Monte Carlo simulations (Trotta, 2008). The underlying rationale
is to approximate the posterior by a set of samples drawn from the true posterior distribution:

P(θ|d) ≈ PN(θ|d) =
1
N

N

∑
i=1

δD(θ − θi), (7.5)

where a sum of N Dirac delta distributions provides an estimate to the desired posterior distribu-
tion. By design, the posterior probability, at any given point, is proportional to the local density
of samples in the parameter space (Leclercq, Pisani, and Wandelt, 2014). Using Eq. (7.5), we can
compute any integrals to obtain any desired statistical summary, such as the mean and variance
(Heavens, 2009). For instance, the expectation value of a given function of the parameters f (θ) can
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be approximated by the following tractable sum:

〈 f (θ)〉 =
∫

dθ f (θ)P(θ) ≈ 1
N

N

∑
i=1

f (θi). (7.6)

An advantage of the above approach is that marginalization consequently becomes trivial as
we only have to histogram the number of samples falling within different bins of a given sub-
set of parameters, while disregarding the remaining parameters, obviating the need for any high-
dimensional integration (Trotta, 2017). Moreover, uncertainty quantification becomes conceptually
straightforward as the variation between the samples provides a quantitative measure of the un-
certainty. This is especially convenient for a Bayesian approach, as there is no inherent distinction
between statistical and systematic uncertainties. The former is due to the stochastic nature of the
experiment, while the latter emanates from the deterministic effects that are not perfectly known
(Leclercq, Pisani, and Wandelt, 2014).

7.3.2 Markov chains for posterior exploration

In Chapters 8 and 9, we investigate physical systems with O(107) free parameters, such that direct
evaluation of the posterior is never a possibility and we have to rely on the numerical approxi-
mation of sampling. The success of Monte Carlo methods, nevertheless, relies on the ability to
efficiently draw samples from the target distribution P(θ). One method of sampling is the sophis-
ticated Markov Chain Monte Carlo (MCMC) technique. This allows us to map out numerically
the posterior by constructing a sequence or “chain” of points in parameter space, whose density is
proportional to the target posterior density (Trotta, 2008).

By definition, a Markov chain is a sequence of random elements {θ1, θ2, . . . , θn, . . .} of some
“state space” χ, where the conditional distribution of θn+1, given all the previous n elements, de-
pends solely on θn, i.e. the immediate preceding element (Trotta, 2017). It can be shown that Markov
chains converge (asymptotically) to a stationary state, i.e. there is no dependence on n, where the
successive elements in the chain are randomly drawn samples corresponding to the target distribu-
tion P(θ|d) (Trotta, 2008; Heavens, 2009), such that

P (n)(θ)→ P(θ) as n→ ∞, for any θ0. (7.7)

The above crucial property of stationary transition probability constitutes the basis of the MCMC tech-
nique (Leclercq, Pisani, and Wandelt, 2014). The state of the chain, after some initial steps in the
parameter space, depending on the initial position θ0, before reaching the high-density regions of
the target distribution is known as the “burn-in” phase. Once the chain has converged, yielding
a sufficiently large number of samples, we can compute summary statistics of the target posterior
distribution as explained in the previous section (cf. Eq. (7.6)). There are several well-known tech-
niques for constructing Markov chains, with the choice of algorithm depending on the problem
being investigated. In the following section, we review two such algorithms, as relevant to the
future chapters of this thesis.
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7.3.3 Metropolis-Hastings algorithm

A simple and widely used MCMC method is the Metropolis-Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970). To construct the Markov chain, the basic procedure is to initially choose an
arbitrary starting point θ0 in the parameter space as the first sample, then propose a new point θ′

from the current point θ via a specified proposal distribution Q(θ′|θ), for a jump from θ to θ′. The
new point is accepted with a probability which depends on the ratio of the final and initial target
densities (Heavens, 2009), computed at each step using

P(acceptance) = min
[

1,
P(θ′)Q(θ′|θ)
P(θ)Q(θ|θ′)

]
. (7.8)

If accepted, the proposed point becomes the new state in the chain, otherwise the chain stays at
θ (Leclercq, Pisani, and Wandelt, 2014), with the above procedure repeating in iterative fashion.
Nevertheless, this method is sub-optimal for high-dimensional problems, with the proposal distri-
bution dictating the step size being a key component that requires some fine tuning for efficient
exploration of the parameter space (Trotta, 2008).

7.3.4 Gibbs sampling framework

The Gibbs sampling framework, as proposed by Geman and Geman (1987) and Gelfand and Smith
(1990), is particularly suited to problems where the joint posterior distribution is not known explic-
itly, but it is straightforward and computationally cheap to sample from the conditional distribution
of one of the free parameters at a given time (Trotta, 2017). This has been shown to work well for
cosmological inference problems with O(107) parameters, such as the statistical reconstruction of
large-scale structures from galaxy surveys (e.g. Jasche et al., 2010b).

Gibbs sampling entails updating each of the parameters in turn by drawing the proposal distri-
bution of the given variable, conditional on the remaining ones (Smith and Roberts, 1993). For a 2D
parameter space, where θ = {x, y} and d is the relevant data, we obtain the nth sample by drawing:

x(n) x P
(

x|y = y(n−1), d
)

(7.9)

y(n) x P
(

y|x = x(n), d
)

, (7.10)

where the symbol x denotes sampling from the distribution on the right. Here, the target dis-
tribution is the joint posterior distribution P(x, y|d). In the second step above, the draw for y is
conditional on the value of x that has been updated to the value corresponding to the latest draw
of x, i.e. x(n) (Trotta, 2017).

The mathematical formalism justifying the above being equivalent to sampling the joint pos-
terior, under certain conditions, is provided in Casella and George (1992). Gibbs sampling can
therefore be considered as a special case of Metropolis-Hastings sampling, with one-dimensional
proposal distributions and an acceptance rate of unity (Trotta, 2017), which is the major advantage
of this technique. This can also be generalized to blocks of variables, known as block Gibbs sampling,
where all the variables are updated conditional on the others.
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In Chapters 8 and 9, we employ an efficient method for sampling extremely high-dimensional
parameter spaces, known as the Hamiltonian Monte Carlo (HMC) technique, within a block Gibbs
sampling framework, as described in Section 8.4.3. Section 8.5 outlines the conceptual framework
of the HMC sampling method.
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Chapter 8

Precision cosmology with cosmic
expansion

The work presented in this chapter is based on Kodi Ramanah et al. (2019).

8.1 Introduction

The past few decades have witnessed the advent of an array of galaxy redshift surveys, with the
state-of-the-art catalogues mapping millions of galaxies with precision positioning and accurate
redshifts. The Sloan Digital Sky Survey (SDSS) (York et al., 2000; Abazajian et al., 2009; Ahn et al.,
2014; Alam et al., 2015) and the Six Degree Field Galaxy Redshift Survey (6dFGRS) (Jones et al.,
2009) are two notable examples. Future cutting-edge surveys from the Euclid (Laureijs et al., 2011;
Racca et al., 2016; Amendola et al., 2016) and Large Synoptic Survey Telescope (LSST) (Ivezic et al.,
2008) missions, currently under construction, further highlight the wealth of galaxy redshift data
sets which would be available within a five to ten year time frame. Sophisticated and optimal data
analysis techniques, in particular large-scale structure analysis methods, are in increasing demand
to cope with the present and upcoming avalanches of cosmological and astrophysical data, and
therefore optimize the scientific returns of the missions.

With the metamorphosis of cosmology into a precision (and data-driven) science, the three-
dimensional (3D) large-scale structures have emerged as an essential probe of the dynamics of
structure formation and evolution to further our understanding of the Universe. The two-point
statistics of the 3D matter distribution have developed into key tools to investigate various cosmo-
logical models and test different inflationary scenarios. Various techniques to measure the power
spectrum and several reconstruction methods attempting to recover the underlying density field
from galaxy observations are described in literature (e.g. Bertschinger and Dekel, 1989; Bertschinger
and Dekel, 1991; Hoffman, 1994; Lahav et al., 1994; Fisher et al., 1995; Sheth, 1995; Webster, Lahav,
and Fisher, 1997; Bistolas and Hoffman, 1998; Schmoldt et al., 1999; Saunders and Ballinger, 2000;
Zaroubi, Hoffman, and Dekel, 1999; Zaroubi, 2002; Erdoǧdu et al., 2004; Erdoǧdu et al., 2006), with
the recent focus being on large-scale Bayesian inference methods (e.g. Kitaura and Enßlin, 2008;
Kitaura et al., 2009; Jasche and Kitaura, 2010; Jasche et al., 2010b; Jasche and Wandelt, 2012; Jasche
and Wandelt, 2013b; Jasche and Lavaux, 2015; Jasche and Lavaux, 2019). A formal and rigorous
Bayesian framework provides the ideal setting to solve the ill-posed problem of inferring signals
from noisy observations, while quantifying the corresponding statistical uncertainties.
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The potential of such Bayesian algorithms to jointly infer cosmological constraints, nevertheless,
has not yet been exploited. We present, for the first time, a non-linear Bayesian inference frame-
work for cosmological parameter inference from galaxy redshift surveys via an implementation of
the Alcock-Paczyński (AP, Alcock and Paczynski, 1979) test. We extend the hierarchical Bayesian
inference machinery of BORG (Bayesian Origin Reconstruction from Galaxies) (Jasche and Wandelt,
2013a), originally developed for the non-linear reconstruction of large-scale structures, to constrain
cosmological parameters. BORG encodes a physical model for gravitational structure formation,
yielding a highly non-trivial Bayesian inverse problem. This consequently allows us to reformu-
late the standard problem of present 3D density field reconstruction as an inference problem for
initial conditions at an earlier epoch from current galaxy observations. BORG builds upon the im-
plementation of the Hamiltonian Monte Carlo (HMC) method (Neal, 1993), initially introduced in
the HADES (HAmiltonian Density Estimation and Sampling) algorithm (Jasche and Kitaura, 2010),
for efficiently sampling the high dimensional and non-linear parameter space of possible initial
conditions at an earlier epoch.

In this work, the conceptual framework is to constrain the comoving-redshift coordinate trans-
formation and therefore infer the appropriate cosmology which would result in isotropic correla-
tions of the galaxy density field. The key aspect of this application of the AP test consequently
lies in its robustness to a misspecified model and the approximations therein, yielding a near-
optimal exploitation of the model predictions, without relying on its accuracy in modelling the
scale dependence of the correlations of the density field. Here, we employ Lagrangian Perturba-
tion Theory (LPT) as a physical description for the non-linear dynamics and perform a joint infer-
ence of initial conditions, and consequently the corresponding non-linearly evolved density fields
and associated velocity fields, and cosmological parameters, from incomplete observations. This
augmented framework with cosmological applications is designated as ALTAIR (ALcock-Paczyński
consTrAIned Reconstruction).

This chapter is organized as follows. In Section 8.2, the underlying principles of the AP test
are outlined, followed by a description of the forward modelling approach and data model imple-
mented in Section 8.3. In Section 8.4, we describe the LPT-Poissonian posterior implemented in
this work. We provide a brief overview of the Hamiltonian sampling approach in Section 8.5, and
follow up by deriving the required equations of motion in Section 8.5.2, with the numerical imple-
mentation outlined in Section 8.6. We subsequently describe how we increase the efficiency of our
cosmological parameter sampler via a rotation of the parameter space in Section 8.6.3. We then test
the algorithm in Section 8.8 on an artificially generated galaxy survey, with the mock generation
procedure described in the preceding Section 8.7, by investigating its performance via statistical
efficiency and consistency tests. In Section 8.9, we summarize the main aspects of our work and
discuss further possible extensions to our algorithm in order to fully exploit its potential in deriv-
ing cosmological constraints.

8.2 The Alcock-Paczyński test

The Alcock-Paczyński (AP) test (Alcock and Paczynski, 1979) is a cosmological test of the expan-
sion of the Universe and its geometry. The main advantage of this test is that it is independent of



8.2. The Alcock-Paczyński test 101
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FIGURE 8.1: Comparison of cosmological constraints from BAO measurements and our implementa-
tion of AP test in ALTAIR. The grey and green lines denote the 1σ confidence region, centred on the
fiducial cosmological parameters, obtained from our AP test and BAO constraints from SDSS-III (Data
Release 12) (Alam et al., 2017), respectively. The BAO constraints have not been combined with Planck
CMB measurements. This demonstrates the potentially unprecedented constraining power of our AP
test compared to standard BAO analyses, as discussed in Section 8.2, with the inset focusing on the
ALTAIR constraints where the fiducial cosmology is depicted in dashed lines. This error forecast is
validated on a simulated analysis (cf. Fig. 8.8).
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FIGURE 8.2: Schematic representation of the reconstruction pipeline. The forward model consists of a
chain of various components for the non-linear evolution from initial conditions and the subsequent
transformation from comoving to redshift space for the application of the AP test. This consequently
transforms the initial density field into a set of predicted observables, i.e. a galaxy distribution in
redshift space, for comparison with data via a likelihood or posterior analysis.
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the evolution of galaxies but depends only on the geometry of the Universe. The assumption of
incorrect cosmological parameters in data analysis produces distortions in the appearance of any
spherical object or isotropic statistical distribution. The AP test provides a pathway to exploit this
resulting spurious anisotropy to constrain the cosmological parameters. Here, we invoke the AP
test to ensure that the underlying geometrical properties of isotropy of the Universe (Friedmann,
1922; Friedmann, 1924; Lemaître, 1927; Lemaître, 1931; Lemaître, 1933; Robertson, 1935; Robert-
son, 1936a; Robertson, 1936b; Walker, 1937; Saadeh et al., 2016) are maintained. As such, the key
underlying assumption adopted in this work relies purely on the geometrical symmetries of the cos-
mological principle. As a result, such a test does not employ the growth of structures to constrain
cosmology, unlike cluster abundance (e.g. Wang and Steinhardt, 1998).

The AP test, and various formulations thereof, have been studied extensively in the context of
galaxy and quasar surveys (e.g. Phillipps, 1994; Ryden, 1995; Ballinger, Peacock, and Heavens, 1996;
Matsubara and Suto, 1996; Popowski et al., 1998; de Laix and Starkman, 1998; López-Corredoira,
2014). Variants of the AP test have also been successfully applied to cosmic voids (e.g. Sutter et
al., 2012; Lavaux and Wandelt, 2012; Sutter et al., 2014; Hamaus et al., 2014; Hamaus et al., 2015;
Hamaus et al., 2016) and also to other cosmological observables like supernovæ (Blake et al., 2011),
the Lyman-α forest (Hui, Stebbins, and Burles, 1999) and 21 centimetre emission maps (Nusser,
2005; Barkana, 2006).

With baryon acoustic oscillations (BAOs) being a robust standard ruler, the AP test has been uti-
lized for the simultaneous measurement of the Hubble parameter and angular diameter distance of
distant galaxies (e.g. Seo and Eisenstein, 2003; Blake and Glazebrook, 2003; Glazebrook and Blake,
2005; Padmanabhan and White, 2008; Shoji, Jeong, and Komatsu, 2009). In Fig. 8.1, we depict the
1σ confidence region of the cosmological constraints inferred via our implementation of the AP
test. As a comparison, we also indicate the corresponding confidence region obtained via BAO
measurements from the SDSS-III (Data Release 12) (Alam et al., 2017). These BAO constraints have
not been combined with Planck measurements, which would significantly tighten the constraints.
Nevertheless, this highlights the significant potential constraining power of our AP test compared
to standard BAO analyses, while being at least as robust. While this improvement is extremely sub-
stantial for the mock SDSS-III survey considered here, we will investigate to what extent the above
promise holds when applied to actual SDSS-III data in a follow-up work, as unknown systematics
represent a potential caveat. We discuss Fig. 8.1 in more depth in Section 8.8.

The crucial aspect of our AP test is that it does not assume that the correlation function is cor-
rectly modelled. This robustness to a misspecified model is illustrated explicitly in Section 8.8,
where we demonstrate that the shape of the prior power spectrum adopted in the inference frame-
work does not impact on the inferred cosmological constraints (cf. Fig. 8.12). As a result of this ro-
bustness, our AP test has a definite edge over standard approaches. Moreover, it has been pointed
out that other cosmological tests, such as the luminosity distance - redshift relation, can be consid-
ered as generalized formulations of the AP test (Mukherjee and Wandelt, 2018), further underlining
the strength of the approach presented in this work.
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8.3 The forward modelling approach

The large-scale structure (LSS) posterior implemented in this work, based on the BORG framework
(Jasche and Wandelt, 2013a), is described in depth in Section 8.4. A key component of the inference
framework is the forward modelMp which links the initial conditions δ

ic,(r)
p to the redshift space

representation of the evolved density field δ
f,(z)
p as follows:

δ
f(z)
p =Mp

(
1 + δ

ic(r)
p

)
=M(1)

p ◦M(2)
p

(
1 + δ

ic(r)
p

)
=M(1)

p

(
ρ

f(r)
p

)

= Jp

(
∑
i,j
E−1

ij ρ
f(r)
j xα(i)

p yβ(i)
p zγ(i)

p

)
− 1, (8.1)

where ρ
f(r)
p ≡ 1 + δ

f(r)
p is the final density field in comoving space. The forward model consists

of two components, Mp = M(1)
p ◦M(2)

p . The first component, M(2)
p ≡ Gp(a, {δic

p }), contains a
physical description of the non-linear dynamics, and consequently propagates the initial conditions
forward in time using LPT, yielding a non-linearly evolved final density field in comoving space,
δ

f(r)
p .

To encode the AP test, we incorporate another component in the forward model that takes care
of the coordinate transformation from comoving (r) to redshift (z) space, encoded in M(1)

p (cf.
Fig. 8.2). Schematically, we construct a second grid in redshift space, which involves a triquintic
interpolation (fifth order interpolation scheme in three dimensions) on the comoving grid. This
interpolation scheme is described in Section 8.5.3, with the notation employed in Eq. (8.1) clearly
laid out. The corresponding Jacobian factor of this transformation, |J z

r | (cf. Section 8.3.4), entails
cosmological dependence and is consequently included in the AP test as well as through the direct
coordinate dependence Eij.

The redshift space representation then allows for comparison with data via the likelihood or
posterior. The essence of this AP test to constrain cosmological parameters can be summarized as
follows: The Bayesian inference machinery explores the various cosmological expansion histories
and selects the cosmology-dependent evolution pathways which result in isotropic correlations of
the galaxy density field.

Fig. 8.2 illustrates the reconstruction scheme implemented in ALTAIR. First, galaxies are pro-
jected from the survey onto a 3D grid, such that we have a distribution of galaxies in redshift space
and this constitutes our observable. We then generate a 3D density field according to Gaussian ini-
tial conditions (homogeneous prior) with a reference power spectrum, typically ΛCDM cosmology.
The forward model subsequently transforms the initial density field into a set of predicted observ-
ables which are then compared to data via a likelihood or posterior analysis. And conversely, given
the position of galaxies, we can infer this density field.

While we implement LPT to approximately describe gravitational non-linear structure forma-
tion in this work, other more adequate physical descriptions such as 2LPT or the non-perturbative
particle mesh (see recent upgrade of BORG in Jasche and Lavaux, 2019) can be straightforwardly em-
ployed, within the flexible block sampling approach described in Section 8.4.3, by upgrading the
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first component,M(2)
p ≡ Gp(a, {δic

p }), of our forward model (cf. Fig. 8.2). Nevertheless, our imple-
mentation of the AP test exploits essentially the isotropy of the correlation function, such that there
is no explicit dependence on the accuracy of modelling the scale dependence of the correlations,
rendering this method robust to a misspecified model and the approximations therein.

8.3.1 The galaxy data model

Galaxies can be considered as tracers of the matter fluctuations since they follow the gravitational
potential of the underlying matter distribution, with the statistical uncertainty due to the discrete
nature of the galaxy distribution usually modelled by a Poissonian distribution (e.g. Layzer, 1956a;
Peebles, 1980). Poissonian likelihoods have emerged as the standard for non-linear LSS inference
(e.g. Jasche et al., 2010a; Jasche and Kitaura, 2010; Kitaura, Jasche, and Metcalf, 2010). The Poisso-
nian likelihood distribution implemented in ALTAIR, for multiple subcatalogues or galaxy observa-
tions labelled by the index g, can be expressed as follows:

L
(
{Ng

p}|λg
p
)
= ∏

p

(λ
g
p)

Ng
p e−λ

g
p

Ng
p !

, (8.2)

where Ng
p is the observed galaxy number counts in redshift space in the given voxel p. λ

g
p is the

expected number of galaxies at this given position and is related to the final density field δf
p, in

redshift space, via
λ

g
p

(
{δf

p}, {θi}
)
= Rg

p(θi)T
[
1 + δf

p

]
, (8.3)

where Rg
p is the overall linear response operator of the survey that incorporates the survey geom-

etry and selection effects, and θi corresponds to a set of cosmological parameters. T is the galaxy
biasing model which accounts for the fact that galaxies do not trace exactly the underlying matter
distribution, and are therefore biased tracers with clustering properties that do not exactly mirror
those of dark matter (Kaiser, 1984). This is currently one of the most challenging and unresolved
issues hindering the analysis of galaxy distributions in non-linear regimes (e.g. see the review by
Desjacques, Jeong, and Schmidt, 2016; Schmidt et al., 2018). In this work, we adopt the standard ap-
proach of a local, but non-linear bias function, in particular, the phenomenological model proposed
by Neyrinck et al. (2014), such that the above Poisson intensity field can be expressed as

λ
g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
)
= Rg

pN̄g
[
1 + δf

p

]β
e−ρg[1+δf

p]
−εg

, (8.4)

where the bias function, described by four parameters, N̄g, the mean density of tracers, and {bg
i } =

{β, ρg, εg}, is a truncated power-law bias model with the additional exponential function suppress-
ing galaxy clustering in under dense regions. This bias model, with a power law and an exponential
at low densities, were found to be in good agreement with standard excursion set and local-growth-
factor models (for more details, see Neyrinck et al., 2014). The main limitation of this bias model
is that it is purely local. Nevertheless, it is more adequate than a simplistic linear bias model and
mitigates in practice the deficiencies of our physical model (LPT) at the considered resolution. The
expected number of galaxies can subsequently be related to the initial conditions δic

p via the forward
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modelMp, as described above, due to the deterministic nature of structure formation, i.e. the Dirac
delta function in Eq. (8.20).

The logarithm of the likelihood from Eq. (8.2) can therefore be expressed, in terms of the initial
conditions, as

lnL
[
{Ng

p}
∣∣Mp

(
{δic

p }
)

, {θi}, {N̄g}, {bg
i }
]

= −∑
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{
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p}, {θi}, {N̄g}, {bg
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)
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p ln
[
λ

g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
)]

+ ln
(

Ng
p !
)
}

. (8.5)

We therefore have a likelihood distribution that encodes the statistical process describing the gen-
eration of galaxy observations given a specific realization of 3D initial conditions. This data model
is inherently non-linear as a result of the galaxy biasing model employed and also due to the signal
dependence of Poissonian noise, which does not behave as an additive nuisance.

8.3.2 The augmented joint posterior distribution

The augmented joint posterior distribution corresponds to the following:

P
(
{δic

p }, {N̄g}, {bg
i }, {θi}|{Ng

p}, S
)

∝ L
[
{Ng

p}
∣∣Mp({δic

p }), {θi}, {N̄g}, {bg
i }
]

Π
(
{δic

p }|S
)

Π
(
{N̄g}, {bg

i }
)

Π ({θi}) , (8.6)

where the Π’s correspond to the respective priors for each parameter. Hence, given our forward
modelM, which incorporates sequential components of structure formation and coordinate trans-
formation, as described above, the complex task of modelling accurate priors for the statistical
behaviour of present-day matter fluctuations can be recast into a Bayesian inference problem for
the initial conditions. From this joint posterior distribution, we can construct the various condi-
tional posterior distributions for each parameter of interest. The modular statistical programming
approach adopted in outlined in Section 8.4.3.

Since the non-linear LSS analysis has been reformulated as an initial conditions statistical in-
ference problem, as described by the joint posterior distribution (8.6), this method depends solely
on forward evaluations, and consequently has a definite edge over traditional approaches of initial
conditions inference that require backward integration of the equations of motion or the inversion
of the flow of time (e.g. Nusser and Dekel, 1992). The latter methods are prone to erroneous fluctu-
ations in the initial density and velocity fields, resulting from spurious growth of decaying modes.
Moreover, such schemes are hindered by survey incompleteness which requires the knowledge of
the complex and, as yet, unknown multivariate probability distribution for the matter fluctuations,
to render the backward integration of non-linear models physically meaningful via constrained re-
alizations. In comparison, the forward modelling approach here conveniently accounts for survey
masks and statistical uncertainties in the initial conditions, which amounts to modelling straightfor-
ward uncorrelated Gaussian processes, to generate data constrained realizations of the initial and
evolved density fields.
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8.3.3 The cosmological parameter posterior distribution

In this work, we sample the present-day values of matter density and dark energy equation of state
parameters, {θi} = {Ωm, w0}, via the following conditional posterior distribution,

P
(
{θi}|{Ng

p}, {δic
p }, {N̄g}, {bg

i }, S
)
= P

(
{θi}|{Ng

p}, {δic
p }, {N̄g}, {bg

i }
)

, (8.7)

assuming conditional independence of the cosmological power spectrum, i.e. Fourier transform of
the covariance matrix S, once the density field is known. This assumption holds as we are only
probing the cosmological expansion in this work, with the power spectrum anchored with a fidu-
cial cosmology. We quantitatively demonstrate the validity of this assumption in Section 8.8 by
comparing the entropy of prior information against that of posterior information (cf. Fig. 8.11). We
defer power spectrum sampling to a future work. Applying Bayes’ identity, and using the joint
posterior distribution from Eq. (8.6), we obtain
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after omitting the terms without any cosmological parameter dependence.

Since this work attempts to demonstrate the capabilities of ALTAIR to constrain the cosmologi-
cal parameters, as proof of concept, we set uniform prior distributions on θi. To sample from the
above marginal posterior distribution, we make use of a slice sampling procedure (e.g. Neal, 2000;
Neal, 2003). After obtaining a realization of θi, we need to update the comoving-redshift coordinate
transformation in the forward model.

We adopt a dynamical dark energy model, in particular, the standard Chevallier-Polarski-Linder
(CPL) parameterization (Chevallier and Polarski, 2001; Linder, 2003), where the evolution of the
dark energy equation of state parameter w is a linear function of the scale factor a, as follows:

w = w0 + (1− a)wa. (8.9)

In this work, we set wa = 0 and infer the present-day value w0. Moreover, we impose the assump-
tion of flatness, i.e. Ωk = 0, such that the dark energy density is Ωde = 1−Ωm.

Due to the correlation between Ωm and w0, we perform a rotation of the (Ωm, w0) parameter
space, using orthonormal basis transformations derived from the covariance matrix, to improve the
efficiency of the slice sampler. This procedure is outlined in Section 8.6.3, with the significant gain
in efficiency illustrated in Fig. 8.4. The corresponding sampler for the bias parameters is outlined
in Section 8.4.4.
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8.3.4 Jacobian of comoving-redshift transformation

In this section, we derive the Jacobian, J z
r , of the coordinate transformation between comoving (r)

and redshift (z) space. Since we desire the redshift space representation of the density field,

ρz[z(r)] = ρr(r)
∣∣∣∣
∂z
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∣∣∣∣
−1

= ρr(r)
∣∣J r

z
∣∣−1

= ρr(r)
∣∣J z

r
∣∣, (8.10)

or in terms of the density contrast,

δz[z(r)] = [1 + δr(r)]
∣∣J z

r
∣∣− 1, (8.11)

where J r
z is the corresponding Jacobian for the converse (redshift to comoving) transformation.

The set of three indices {i, j, k} below are spatial coordinates {1, 2, 3}. With the functional de-
pendence of z = f (r), we have
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r
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r
, (8.12)

where we defined r =
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j , and z̄ is the cosmological redshift. Taking the derivative yields
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after applying the chain rule. Differentiating with respect to the comoving coordinate, and using
d (1/r) = −∑j(1/r3)rjdrj,
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where we made use of rdr = ∑k rkdrk which follows from the definition r =
√

∑k r2
k . To compute

∂z̄/∂r, we start from the definition of comoving distance,
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, (8.15)

with the conventional definition for E(z),

E(z) =
√

Ωde(1 + z)3(1+w) + Ωk(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4, (8.16)

where c is the speed of light and H0 is the Hubble constant today, such that

∂z̄
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(
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)
E(z̄). (8.17)
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Finally, the Jacobian matrix can be expressed as follows:

J r
z{ik} =

∂zi

∂rk
=

(
H0

c
E(z̄)− z̄

r

)
rirk

r2 +
z̄
r

δk
ik, (8.18)

and we obtain the desired
∣∣J z

r{ik}
∣∣ by taking the reciprocal of

∣∣J r
z{ik}

∣∣.

8.4 The LPT-Poissonian posterior

In this section, we describe the large-scale structure (LSS) posterior distribution implemented in this
work. We demonstrate how the complex problem of exploring the high dimensional joint posterior
distribution can be reduced to a set of distinct steps via a multiple block sampling scheme.

8.4.1 The density posterior distribution

The primary objective is to fully characterize the 3D cosmic LSS in observations via a numerical
representation of the corresponding LSS posterior using sophisticated Markov Chain Monte Carlo
(MCMC) techniques, in particular to provide data constrained realizations of a set of plausible 3D
density contrast amplitudes underlying a given set of galaxy observations. The posterior distribu-
tion for the evolved density field fluctuation δf

p can be formulated, in a general context, via Bayes’
identity as:

P
(
{δf

p}|{Ng
p}
)
=
L
(
{Ng

p}|{δf
p}
)

Π
(
{δf

p}
)

Π
(
{Ng

p}
) , (8.19)

where Ng
p is the observed number of galaxies in voxel p, at position xp in the sky, in redshift

space, for the gth galaxy sample, with the prior Π({δf
p}) incorporating our a priori knowledge of

the present-day matter fluctuations in the Universe, the likelihood L({Ng
p}|{δf

p}) and the normal-
izing factor given by the evidence Π({Ng

p}).

A major stumbling block consequently arises, as discussed extensively in Jasche and Wandelt
(2013a), since the inference framework requires a suitable prior Π({δf

p}) which adequately de-
scribes the physical behaviour of the gravitationally evolved density field. Nevertheless, as elab-
orated in the following section, most attempts made in this direction so far have been based on
heuristic approximations and the absence of a closed form description of the present day matter
fluctuations encoded in a multivariate probability density distribution still persists.

However, Jasche and Wandelt (2013a) proposed an elegant approach to circumvent this key
impediment based on the following assertions: There is substantial evidence that primordial seed
fluctuations at redshifts z ∼ 1000 can be modelled as a Gaussian random field to great accuracy
(e.g. Linde, 2008; Komatsu et al., 2011; Planck Collaboration et al., 2016d), consistent with inflation-
ary theories and CMB observations. Moreover, the evolution of the initial conditions relies solely
on deterministic gravitational structure formation processes. Therefore, a conceptually reasonable
alternative to modelling the complex statistical behaviour of the non-linear matter distribution is
to formulate the inference problem at the level of the initial conditions adequately described by
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Gaussian statistics. This constitutes the conceptual foundation of the BORG framework (Jasche and
Wandelt, 2013a).

Given a forward model Mp that connects the initial conditions δ
ic,(r)
p , in comoving (r) space,

to the redshift (z) space representation of the final density field δ
f,(z)
p , we can therefore express the

conditional posterior for the evolved density field as

P
(
{δf

p}|{δic
p }
)
= ∏

p
δD
[
δf

p −Mp

(
{δic

p }
)]

, (8.20)

where δD(x) denoting the Dirac delta distribution encapsulates the assumption that the structure
formation process is deterministic. Within this generic framework, the forward model may be
generalized to a chain of arbitrary components linking the primordial density fluctuations to the
present-day density contrast. Nevertheless, at its crux lies a cosmic structure formation model
Gp(a, {δic

p }) for the non-linear evolution of initial conditions into a final density field at a given

scale factor a, i.e. δ
f,(r)
p = Gp(a, {δic,(r)

p }). The forward model implemented in this work to encode
the AP test is described in Section 8.3 above.

We can then obtain a prior distribution for δf
p via a two-step sampling procedure: First, a re-

alization of δic
p is generated from the prior distribution Π({δic

p }) and subsequently evolved with a
given forward modelMp({δic

p }). This essentially implies generating samples from the joint prior
distribution of δic

p and δf
p:

P
(
{δf

p}, {δic
p }
)
= Π

(
{δic

p }
)
P
(
{δf

p}|{δic
p }
)

= Π
(
{δic

p }
)

∏
p

δD
[
δf

p −Mp

(
{δic

p }
)]

, (8.21)

after plugging in the conditional posterior distribution from Eq. (8.20).

Assuming a normal distribution with zero mean and covariance S corresponding to an under-
lying cosmological power spectrum for the initial conditions δic

p , the joint prior distribution can be
expressed as

P
(
{δf

p}, {δic
p }|S

)
= Π

(
{δic

p }|S
)

∏
p

δD
[
δf

p −Mp

(
{δic

p }
)]

=
e−

1
2 ∑p,q δic

p S−1δic
q

det(2π S) ∏
p

δD
[
δf

p −Mp

(
{δic

p }
)]

. (8.22)

Reformulating the statistical inference problem in terms of the initial conditions δic
p results in

the following joint posterior distribution of δic
p and δf

p, conditional on the observed galaxy number
counts Ng

p ,

P
(
{δf

p}, {δic
p }|{Ng

p}, S
)
=
L
(
{Ng

p}|{δf
p}, {δic

p }
)
P
(
{δf

p}, {δic
p }|S

)

Π
(
{Ng

p}|S
) , (8.23)

after making the dependence on the underlying power spectrum explicit. Assuming that the galaxy
observations are conditionally independent of the initial conditions once the final density field
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is known, i.e. L({Ng
p}|{δf

p}, {δic
p }) = L({Ng

p}|{δf
p}) and using the joint prior distribution from

Eq. (8.22) leads to the LSS posterior distribution:

P
(
{δf

p}, {δic
p }|{Ng

p}, S
)
= L

(
{Ng

p}|{δf
p}
) Π

(
{δic

p }|S
)

Π
(
{Ng

p}|S
) ×∏

p
δD
[
δf

p −Mp

(
{δic

p }
)]

. (8.24)

By marginalizing over the final density field δf
p, we finally obtain our posterior distribution as fol-

lows:

P
(
{δic

p }|{Ng
p}, S

)
= L

[
{Ng

p}
∣∣Mp

(
{δic

p }
)] Π

(
{δic

p }|S
)

Π
(
{Ng

p}|S
) , (8.25)

thereby connecting present galaxy observations Ng
p to their corresponding primordial density fields

δic
p via a given forward model, Mp({δic

p }). We must therefore sample from the highly non-linear
and non-Gaussian posterior above to obtain realizations of the 3D initial density fields conditioned
on the galaxy observations via the sophisticated HMC method described below in Section 8.5.

8.4.2 Choice of density prior

Standard Wiener filtering approaches employ isotropic Gaussian priors on the present-day density
contrast which is justified for inference on the largest scales (e.g. Zaroubi, Hoffman, and Dekel,
1999; Zaroubi, 2002; Erdoǧdu et al., 2004; Erdoǧdu et al., 2006; Kitaura and Enßlin, 2008; Kitaura
et al., 2009; Jasche et al., 2010b; Jasche and Lavaux, 2015), where the density field can be reason-
ably approximated as a Gaussian random field. Although the exact probability distribution for the
density field in the mildly and strongly non-linear regimes is not known, the deviation from Gaus-
sianity is well-established and we therefore require a non-Gaussian prior to effectively capture the
details of the highly complex filamentary nature of the present day cosmic web.

Lognormal density priors were subsequently proposed (Coles and Jones, 1991) and this proved
to be an adequate phenomenological choice (e.g. Hubble, 1934; Peebles, 1980; Gaztanaga and Yokoyama,
1993; Kayo, Taruya, and Suto, 2001), albeit with some limitations, for modelling the evolved matter
field in the mildly non-linear regime (Kitaura et al., 2009; Jasche and Kitaura, 2010; Jasche et al.,
2010a). The use of Edgeworth expansions to construct prior distributions involving third order
moments has also been proposed in the literature (Kitaura, 2012).

In this work, we rely on Lagrangian Perturbation Theory (LPT) to model cosmic structure for-
mation, which accounts for non-local effects of gravitational mass transport from initial to final
positions. It has been extensively shown that LPT provides a sufficient description of the cosmic
LSS on large scales, where it is capable of reproducing the exact one-, two- and three-point statistics
of the evolved field, while still being a reasonable approximation to the higher order statistics (e.g.
Moutarde et al., 1991; Buchert, Melott, and Weiss, 1994; Bouchet et al., 1995; Scoccimarro, 2000;
Scoccimarro and Sheth, 2002).

The essence of the above approach is that it provides a pathway to recover the high-order statis-
tics of the matter distribution using only the 2-point statistics of the initial conditions, obviating the
need for additional parameters to describe higher order statistics for the matter inference problem.
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FIGURE 8.3: Schematic representation of the multi-step iterative block sampling procedure imple-
mented in ALTAIR. Initially, a realization of the 3D density contrast is obtained conditional on galaxy
observations, followed by the other parameters being sampled conditional on the respective previous
samples. Subsequent iterations of this procedure yield samples from the full joint posterior distribu-
tion within a modular statistical programming framework.

Moreover, since our model encodes the dynamics, the reconstruction of the large-scale velocity field
is automatically generated without incurring the expense of an increased parameter space.

8.4.3 Modular statistical programming

In this work, we exploit the modular statistical programming framework inherent in the BORG algo-
rithm to encode the AP test as an additional component to the original block sampling machinery.
This approach allows us to model any Bayesian hierarchical problem to take into account any ob-
servational systematics via data models of higher complexity. Here, we account for the unknown
parameters {bg

i } of the galaxy bias model described in Section 8.3.1 and unknown normalizations
{N̄g} for distinct galaxy samples, as illustrated in Fig. 8.3. These last normalizations, in practice,
scale as the noise amplitudes as we are using a per-voxel Poissonian likelihood.

Conceptually, within such a framework, the overall aim is to characterize fully the augmented
joint posterior P({δic

p }, {N̄g}, {bg
i }, {θi}|{Ng

p}, S) of different tracer populations labelled by the in-
dex g. Since it is not computationally feasible and advisable to sample directly from the high dimen-
sional joint posterior distribution, we make use of an important theorem on Metropolis-Hastings
block sampling which allows us to break the high dimensional sampling problem into a series of
lower dimensional ones (Hastings, 1970). We therefore dissect the exploration of the full joint pa-
rameter space into a sequence of conditional sampling procedures.
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The block sampling approach consists of drawing samples from the following conditional prob-
ability distributions:

(1) {δic
p }s+1 x P

(
{δic

p }|{θi}s, {Ng
p}s, {N̄g}s, {bg

i }s, S
)

(2) {N̄g}s+1 x P
(
{N̄g}|{θi}s, {Ng

p}s, {δic
p }s, {bg

i }s, S
)

(3) {bg
i }s+1 x P

(
{bg

i }|{θi}s, {N̄g}s, {Ng
p}s, {δic

p }s, S
)

(4) {θi}s+1 x P
(
{θi}|{N̄g}s, {Ng

p}s, {δic
p }s, {bg

i }s, S
)

. (8.26)

In the above expressions, s denotes the sampling step and the symbol x indicates sampling from
the distribution on the right hand side. A series of iterations of the individual sampling steps above
will converge to the target distribution, i.e. the full joint posterior distribution (Hastings, 1970).
Hence, by simultaneously exploring the 3D initial density field {δic

p }, the galaxy bias parameters
{bg

i }, the galaxy density contrast normalizations {N̄g} and the cosmological parameters {θi} via an
implementation of high dimensional MCMC methods in a multiple block sampling procedure, we
can obtain samples from the desired joint posterior distribution.

8.4.4 The bias posterior distribution

The formalism for the data model is presented in a generic context in Section 8.3.1, such that it can
be implemented for two or more different galaxy surveys, distinct subsamples of a given catalogue
or even different cosmological probes of the LSS. The advantage of splitting a galaxy sample into
various subsamples is that we can treat the respective systematic and statistical uncertainties of
each subsample separately, thereby allowing us to account for the distinct clustering behaviour of
galaxy populations in the LSS sample via their respective bias parameters.

These additional parameters can be trivially incorporated in the flexible block sampling ap-
proach adopted here, as described in Section 8.4.3. The mean numbers of galaxies, N̄g, for the
various subsamples are essential for defining the density contrast of the galaxy distribution, with
an erroneous value of N̄g resulting in a non-zero value of the mean, yielding spurious large-scale
power in the inferred density fields (Jasche and Wandelt, 2013b). Due to a lack of a priori knowl-
edge, we must perform a joint inference of the set of four N̄g and bg

i bias parameters, together with
initial and final density fields, to take into account possible cross-correlations and interdependen-
cies. Unlike traditional approaches (e.g. Tegmark et al., 2004), here we infer the bias factors directly
from the relation between the data and the density field.

The conditional posterior distribution for the bias parameters, given a realization of the density
field and galaxy number counts for the respective subcatalogues, can be expressed as:

P
(
{N̄g}, {bg

i }|{θi}, {Ng
p}, {δic

p }
)

∝ L
[
{Ng

p}
∣∣Mp

(
{δic

p }
)

, {θi}, {N̄g}, {bg
i }
]
×Π

(
{N̄g}, {bg

i }
)

,
(8.27)

following an analogous reasoning to that described in Section 8.3.3. Adopting a standard maximally
agnostic philosophy, we set uniform prior distributions for the bias parameters:

Π
(
{N̄g}, {bg

i }
)
= Θ ({N̄g})Θ

(
{bg

i }
)

, (8.28)
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where the Heaviside function Θ(x) ensures that the parameters are positive, as required by the bias
model. The non-linear shape of the galaxy biasing function, as given in Eq. (8.4), poses a particular
challenge as no straightforward sampling procedure can be derived. We therefore sample from the
above conditional bias posterior distribution via sequential slice sampling steps (e.g. Neal, 2000;
Neal, 2003) to ensure unit acceptance rates.

8.5 Hamiltonian sampling

The exploration of the LPT-Poissonian posterior, described by Eq. (8.6), requires highly non-linear
reconstruction methods and is therefore numerically intensive. From the Bayesian viewpoint con-
sidered in this work, a single estimate of the density field is not of particular interest, with the
desired scientific output being a sampled representation of the multidimensional LSS posterior.
Extracting any relevant statistical summary, such as mean, mode or variance, given this posterior
representation, is then straightforward. Furthermore, the propagation of uncertainties to the final
inferred quantities is smooth and coherent.

In the absence of a known procedure to directly sample from a LPT-Poissonian distribution, a
Metropolis-Hastings sampling scheme with an accept-reject step must be implemented. But such
a mechanism suffers from the well-known drawback of possible high rejection rate, where a low
acceptance rate of proposed samples will render the method numerically inefficient. This is espe-
cially significant since the inference of 3D density fields typically involves extremely high number
of inference parameters. For instance, in this work, there are over 2× 106 free parameters, which
correspond to primordial density fluctuation amplitudes δic

p at respective grid nodes. Exploring this
high dimensional parameter space via a random walk, as in conventional Markov Chain Monte
Carlo (MCMC) methods, consequently results in a high rejection rate. This is an understatement,
as in practice, the acceptance rate is virtually zero, with one chance over 106 of going in the right
direction, without taking into account the step size.

To limit the number of samples and alleviate the numerical scaling of the method, we imple-
ment a Hamiltonian Monte Carlo (HMC) scheme. This method guarantees an acceptance rate of
unity in the absence of numerical errors. The numerical efficiency of the Hamiltonian sampling lies
in deterministically proposing new samples to the Metropolis-Hastings algorithm, based on tech-
niques to follow dynamical particle motion in potentials. The HMC algorithm therefore maintains
a reasonable sampling efficiency in high dimensional spaces by suppressing the dominant random
walk behaviour.

The HMC method has been successfully implemented for the inference of density fields in the
non-linear regime, and has been found to be very efficient (e.g. Jasche and Kitaura, 2010; Jasche
et al., 2010a; Kitaura, Gallerani, and Ferrara, 2012; Jasche and Wandelt, 2013a; Jasche and Wandelt,
2013b). Moreover, this approach is less prone to spurious effects induced by numerical inaccu-
racies due to the final accept/reject step of the Metropolis-Hastings sampler ensuring correctness
of the target density. Numerical inaccuracies would only be detrimental to the efficiency, without
comprimising the correctness.
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We briefly review the underlying framework and rationale of the HMC method. An excellent in-
depth review of this approach is provided in Duane et al. (1987) and Neal (1993), with its application
to LSS inference illustrated in Jasche and Kitaura (2010), Jasche et al. (2010a), Jasche and Wandelt
(2013a) and Jasche and Wandelt (2013b) and Jasche and Lavaux (2019).

8.5.1 Theoretical background and review

The essence of the HMC method is as follows: If we want to generate random variates according
to a desired probability distribution P({xi}), with {xi} being a set of N elements xi, then we may
interpret the negative logarithm of the distribution as a potential ψ(x),

ψ(x) = − ln(P(x)). (8.29)

We can subsequently formulate a corresponding Hamiltonian that describes the dynamics in the
multidimensional phase space by adding a kinetic term to the above potential. To this end, we
introduce a “momentum” variable pi and a “mass matrix” M as nuisance parameters, as follows:

H =
1
2 ∑

i,j
pi M−1

ij pj + ψ(x). (8.30)

This Hamiltonian, as in classical mechanics, describes the dynamics in a high dimensional param-
eter space. We then obtain the new target probability distribution by exponentiating the above
Hamiltonian:

e−H = P({xi}) exp

(
1
2 ∑

i,j
pi M−1

ij pj

)
. (8.31)

The form of the Hamiltonian ensures that the new joint distribution can be separated into a Gaus-
sian distribution for the momenta {pi} and the target distribution P({xi}). This implies that the
two sets of variables {xi} and {pi} are independent, and hence, we can obtain samples from the
target distribution P({xi}) simply by marginalizing over the auxiliary momenta.

The next step is to generate a random variate from the joint distribution, which is proportional to
exp (−H). We must first draw a set of momenta from the distribution defined by the kinetic energy
term, which is an N-dimensional Gaussian with covariance M. To obtain a new sample from the
joint distribution, we allow the system to evolve deterministically, from a given initial point in the
high dimensional parameter space ({xi}, {pi}), according to Hamilton’s equations:

dxi

dt
=

∂H
∂pi

(8.32)

dpi

dt
=

∂H
∂xi

= −∂ψ(x)
∂xi

. (8.33)

Integrating the above equations of motion for the time variable t up to a fixed pseudo-time τ results
in the new position ({x′i}, {p′i}) in phase space. This new point in phase space is accepted according
to the standard Metropolis-Hastings acceptance rule:

PA = min
{

1, exp
[
−
(

H
(
{x′i}, {p′i}

)
− H ({xi}, {pi})

)]}
. (8.34)
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Since the equations of motion provide a solution to a Hamiltonian system, the energy or the Hamil-
tonian described by Eq. (8.30) must be conserved. A direct consequence of this conservation of the
Hamiltonian is that the HMC approach yields an acceptance rate of unity. In practice, however, the
acceptance rate may be lower due to numerical inaccuracies in the integration scheme. After accept-
ing a new sample, the mechanism proceeds by discarding the momentum counterpart and restarts
the sampling procedure by randomly drawing a new set of momenta. The individual momenta
{pi} do not have to be stored in memory which is numerically convenient, and marginalization
simply implies discarding them.

The HMC sampling scheme can therefore be summarized in two steps. The first step is es-
sentially a Gibbs sampling step which results in a new set of Gaussian distributed momenta. The
second step involves computing the deterministic dynamical trajectory on the posterior surface. We
obtain samples of the desired target distribution by marginalizing over the nuisance parameters, i.e.
by discarding the auxiliary momenta {pi}.

8.5.2 Equations of motion for large-scale structure inference

As described above, the Hamiltonian Monte Carlo (HMC) approach allows the exploration of the
non-linear LSS posterior via the study of the Hamiltonian dynamics in the high dimensional pa-
rameter space. To ensure a high acceptance rate, the HMC exploits the gradient of the logarithmic
posterior distribution to optimally explore this parameter space, such that the algorithm also re-
quires the derivatives of the posterior distribution, as outlined below.

From the LSS posterior illustrated in Eq. (8.6), we can derive the corresponding forces required
to evaluate the Hamiltonian trajectories. The Hamiltonian potential ψ(δic) can be written as

ψ(δic) = − ln
[
P
(
{δic

p }, {N̄g}, {bg}, {θi}|{Ng
p}, S

)]

= ψlikelihood(δ
ic) + ψprior(δ

ic), (8.35)

where the potential ψprior(δic) corresponds to

ψprior(δ
ic) =

1
2

δic,†S−1δic =
1
2 ∑

ij
δic,∗

i S−1
ij δic

j , (8.36)

while ψlikelihood(δ
ic) is given by

ψlikelihood(δ
ic) = ∑

p

{
λ

g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
)
− Ng

p ln
[
λ

g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
)]}

. (8.37)

Using the definition of the Hamiltonian potential ψ(δic) from Eq. (8.35), we obtain the correspond-
ing equations describing the Hamiltonian forces by differentiating with respect to δic:

∂ψ(δic)

∂δic
i

=
∂ψprior(δic)

∂δic
i

+
∂ψlikelihood(δ

ic)

∂δic
i

. (8.38)
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The prior term is trivially obtained as

∂ψprior(δic)

∂δic
i

= ∑
j

δic,∗
j S−1

ij . (8.39)

The corresponding likelihood term, however, cannot be derived in straightforward fashion. We
compute this adjoint gradient as a sequential application of linear operations, as follows:

∂ψlikelihood(δ
ic)

∂δic
s

= ∑
q

∂ρ
(r)
q

∂δic
s

∑̃
p

∂ρ
(z)
p̃

∂ρ
(r)
q

∑
p,g

∂λ
g
p

∂ρ
(z)
p̃

∂ψlikelihood

∂λ
g
p

, (8.40)

where we explicitly expressed the coordinate transformation from comoving (r) to redshift (z)
space, and ρp = 1 + δf

p is the density field. Eq. (8.40) constitutes a sequence of matrix vector appli-
cations, as follows:

∼Gqs ≡
∂ρ

(r)
q

∂δic
s

(8.41)

Q p̃q ≡
∂ρ

(z)
p̃

∂ρ
(r)
q

= ∑
i
E−1

i p̃ ∑̃
p
J p̃xα(i)

p̃ yβ(i)
p̃ zγ(i)

p̃ (8.42)

Kpp̃ ≡∑
g

∂λ
g
p

∂ρ
(z)
p̃

= ∑
g

δk
p,p̃

λ
g
p

ρ
(r)
p̃

[
ρgεgρ

−εg,(r)
p̃ + β

]
(8.43)

vp ≡
∂ψlikelihood

∂λ
g
p

= 1− Ng
p

λ
g
p

(
{δf

p}, {θi}, {N̄g}, {bg
i }
) , (8.44)

where J is the Jacobian of the comoving-redshift transformation,
∼G indicates the derivative of LPT

(cf. Appendix D in Jasche and Wandelt (2013a)) and δk
p,p̃ is the Kronecker delta. The derivation of

the adjoint gradient for the triquintic interpolation is illustrated in the following section.

Using the above results, the two equations of motion (8.32) and (8.33) for the Hamiltonian sys-
tem can be expressed as follows:

dδ̂ic
i

dt
= ∑

j
M−1

ij pj, (8.45)

and
dp̂i

dt
= −∑

j
δic,∗

j S−1
ij − ∑

q,p̃,p

∼Gqi Q p̃qKpp̃ vp, (8.46)

where the hats denote Fourier space representation. We can now obtain new samples from the LSS
posterior by following the dynamical evolution of the Hamiltonian system, governed by Eqs. (8.45)
and (8.46), in phase space.
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8.5.3 Adjoint gradient for generic 3D interpolation

The 3D interpolation can be expressed generally, for any arbitrary nth order of interpolation, as:

Pαβγ =
n

∑
i=0

n

∑
j=0

n

∑
k=0

aijkxi
αyj

βzk
γ =

n

∑
i,j,k

aijkEαβγ
ijk, (8.47)

where P is the interpolated surface and E is a (n + 1)3× (n + 1)3 matrix required for computing the
vector of interpolation coefficients a. In this work, we implement a triquintic interpolation scheme,
which corresponds to n = 5, with the indices {i, j, k}, {α, β, γ} = {0, 1, 2, 3, 4, 5} constituting the
particular indexing scheme employed to denote the voxels involved. E is therefore a 216 × 216
matrix for the triquintic scheme.

The above system of equations can be reformulated as a matrix for the linear system described
by P = Ea, such that the vector of interpolation coefficients can be computed in straightforward
fashion through matrix inversion, a = E−1P. The advantage of this approach is that E−1 can
computed only once and stored, and then used for interpolation at any location inside the cube
(e.g. Lekien and Marsden, 2005).

The derivative of the generic 3D interpolation is required as a component of the adjoint gradient
at the core of the HMC sampler described in Section 8.5.2. The 3D interpolated density field, in
redshift space (cf. Eq. (8.10)), can be written explicitly as:

ρ̃k = Jk

(
∑
i,m
E−1

im ρmxα(i)
k yβ(i)

k zγ(i)
k

)
, (8.48)

whereJ is the Jacobian of the comoving-redshift transformation from Section 8.3.4, evaluated at the
location of the mesh element k. Here, we employed a compact notation, where {x, y, z} correspond
to the fractional steps with respect to a reference node in the grid, i.e. interpolation weights, and
{α, β, γ} label the powers of the elements of E via:

i = α(n + 1)2 + β(n + 1) + γ, (8.49)

with the index m ∈ {i, j, k} from Eq. (8.47). Using the chain rule, the resulting gradient w, after
application of the incoming gradient v from the previous components in the forward model, is
obtained as follows:

wa = ∑
k

vk
∂ρ̃k

∂ρa

= ∑
k
Jkvk ∑

i,m
E−1

im δk
maxα(i)

k yβ(i)
k zγ(i)

k

= ∑
i
E−1

ia ∑
k
Jkvkxα(i)

k yβ(i)
k zγ(i)

k

= ∑
i,k
E−1

ia ξik, (8.50)
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where ξik ≡ Jkvkxα(i)
k yβ(i)

k zγ(i)
k represents the contribution to the adjoint gradient from a specific

voxel labelled by the indexing scheme adopted. This is convenient as E−1 is already available from
the execution of the 3D interpolation in the forward model.

8.6 Numerical implementation

Our numerical implementation of the augmented version of BORG, that incorporates cosmological
parameter inference, while assuming a more realistic non-linear bias model, is designated as AL-
TAIR. It employs the FFTW3 library for fast Fourier transforms (Frigo and Johnson, 2005), whose
feature of parallel transforms allows for straightforward parallelization of our code. For random
number generation, we make use of the GNU scientific library (gsl) (Galassi et al., 2009), in partic-
ular, the Mersenne Twister MT19937, with 32-bit word length, from the gsl_rng_mt19937 routine.
The use of the Mersenne Twister algorithm as a pseudo-random number generator for Monte Carlo
simulations has been proven to be efficient and dependable (Matsumoto and Nishimura, 1998).

8.6.1 The leapfrog scheme

In order to obtain samples from the LSS posterior, we must integrate the equations of motion (8.45)
and (8.46) numerically over a pseudo-time interval τ by means of a leapfrog scheme. Ideally, we
want to solve the equations exactly for an optimal acceptance rate. As such, the choice of this in-
tegrator is motivated by several reasons. Primarily, the leapfrog scheme is convenient as it is a
symplectic integrator and is therefore exactly reversible, thereby maintaining detailed balance (Du-
ane et al., 1987) of the Markov chain. The high accuracy of such an integration scheme is conducive
to the conservation of the total Hamiltonian along a given trajectory, within the limit of numerical
errors, resulting in high acceptance rates. It is also numerically stable and allows for simple propa-
gation of errors. To avoid resonant trajectories, τ is drawn from a uniform distribution. The numer-
ical implementation of the “kick-drift-kick” leapfrog scheme here follows closely the descriptions
provided in Jasche and Kitaura (2010) and Jasche and Wandelt (2013a), which we refer the reader
to for more elaborate and complementary explanations.

8.6.2 Hamiltonian mass

The “mass matrix” M contains a large number of parameters that must be tuned to optimize the
performance of the HMC sampler. Conceptually, this Hamiltonian mass characterizes the inertia
of individual parameters as they move through the parameter space. As a result, the choice of
M is a compromise to limit slow exploration efficiency due to extremely large masses and avoid
large numerical errors of the integration scheme due to extremely light masses, and is therefore a
trade-off between efficiency and acceptance rate.

A general prescription for the Hamiltonian masses, when the density fluctuations δf
p can be

characterized as a Gaussian random field, is to set them inversely proportional to the variance of
that specific δf

p (Taylor, Ashdown, and Hobson, 2008). However, this prescription has been found
to be effective even for the case of non-Gaussian distributions, such as the LPT-Poissonian posterior
encountered in this work (Jasche and Wandelt, 2013a; Jasche, Leclercq, and Wandelt, 2015; Lavaux
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FIGURE 8.4: Left panel: The correlation length of the Ωm Markov chain. The chain has a correlation
length of the order of 25 samples. The dashed-dotted lines depict the longer correlation length without
the rotation of the cosmological parameter space, by nearly a factor of five. Right panel: The burn-in
phase for both scenarios, illustrated via the deviation from the reference cosmology. The dashed-
dotted lines depict the MCMC chains obtained without rotating the parameter space, where the burn-
in phase consequently requires around five times more iterations. The longer correlation length and
burn-in phase highlight the loss in efficiency compared to the more sophisticated sampler.

and Jasche, 2016). Since the leapfrog scheme requires the inversion of M, a diagonal representa-
tion of M is numerically convenient, given the extremely high dimensionality of the problem. We
therefore choose M to be inversely proportional to the cosmological power spectrum, M = S−1, i.e.
diagonal in its Fourier basis. This choice, moreover, improves the efficiency of the HMC sampler
and results in faster convergence since it accounts for the correlation structure of the underlying
density field (Jasche and Wandelt, 2013a).

8.6.3 Rotation of cosmological parameter space

To increase the efficiency of the cosmological parameter sampler, we rotate the (Ωm, w0) parameter
space, using orthogonal basis transformations, before slice sampling. The corresponding covariance
matrix can be orthonormally decomposed as C = Q†∆Q, where Q†Q = 1.

We perform a rotation of the θ vector of cosmological parameters, about the mean θ̄, using the
transformation:

θ̃ = ∆−
1
2 Q(θ− θ̄), (8.51)

where the tilde denotes the transformed variable. A key point is that we must rotate back to the
original frame when computing the logarithm of the posterior via

θ = Q†∆
1
2 θ̃+ θ̄. (8.52)

This is implemented at each step of the Markov chain, such that the covariance used to compute
the orthogonal basis operators must be learnt progressively as follows:

Cn+1 =
n

n + 1
Cn +

(θn − θ̄)†(θn − θ̄)

n
, (8.53)
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0 1completeness
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0 1completeness

FIGURE 8.5: Observed sky completeness, used to generate and analyze the mock catalogue in this
work, are illustrated in the left and right panels, corresponding to the CMASS and LOW-Z components
of the SDSS-III survey, respectively.

at the given nth step. The above transformation helps to decorrelate the variables involved when
sampling, thereby reducing the burn-in period significantly. This procedure is especially effective
with highly correlated parameters, as is the case for (Ωm, w0) (cf. Fig. 8.8).

We investigate the statistical efficiency of our cosmological parameter sampler by computing the
correlation length of the Markov chain. Subsequent samples in the chain are generally correlated
and hence do not qualify as independent samples of the target posterior distribution. The corre-
lation length characterizes the statistical efficiency of generating independent samples of a given
parameter θ, as follows:

C(θ)n =
1

N − n

N−n

∑
i=0

(
θi − 〈θ〉√

Var(θ)
θi+n − 〈θ〉√

Var(θ)

)
, (8.54)

where n is the number of transition steps in the chain, 〈θ〉 and Var(θ) correspond to the mean and
variance, respectively, i.e. 〈θ〉 = 1/N ∑i θi and Var(θ) = 1/N ∑i(θ

i − 〈θ〉)2, while N is the to-
tal number of realizations in the chain. This correlation length therefore indicates the number of
independent realizations that can be drawn from the MCMC chain with a given number of transi-
tion steps. For an unbiased comparison, we computed the correlation length using the same chain
length for both scenarios, while ignoring their respective burn-in phases. From the left panel of
Fig. 8.4, we deduce that the correlation length for the Ωm chain is of the order of 25 samples. With-
out the rotation of (Ωm, w0) parameter space, the correlation length is longer by nearly a factor of
five, further demonstrating the gain in efficiency obtained with the more sophisticated sampler.

8.7 Generation of a mock galaxy catalogue

We describe the generation of an artificial galaxy survey using as template the Sloan Digital Sky
Survey (SDSS-III), consisting of four galaxy subcatalogues, to validate the methodology described
in the previous sections. The procedure implemented here for the mock generation is essentially
based on the descriptions provided in Jasche and Kitaura (2010) and Jasche and Wandelt (2013a).
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FIGURE 8.6: Radial selection functions for the CMASS sample, in solid and dashed lines for the North
Galactic Cap (NGC) and South Galactic Cap (SGC), respectively. The corresponding radial selection
functions for the LOW-Z sample are depicted in dash-dotted (NGC) and dotted lines (SGC). These
selection functions are used to generate the mock data to emulate features of the actual SDSS-III BOSS
data.

At first, we generate a realization for the initial density contrast δic
p from a normal distribution

with zero mean and covariance corresponding to an underlying cosmological power spectrum for
the matter distribution. This power spectrum, including baryonic wiggles, is computed follow-
ing the prescription provided in Eisenstein and Hu (1998) and Eisenstein and Hu (1999), assum-
ing a standard Λ cold dark matter (ΛCDM) cosmology with the set of cosmological parameters
(Ωm = 0.3089, ΩΛ = 0.6911, Ωb = 0.0486, h = 0.6774, σ8 = 0.8159, ns = 0.9667) from Planck
(Planck Collaboration et al., 2016b). This yields a 3D Gaussian initial density field in an equidistant
Cartesian grid with Nside = 128, i.e. consisting of 1283 voxels, where each voxel corresponds to a
discretized volume element with a physical voxel size of 31.25 h−1 Mpc, and comoving box length
of 4000 h−1 Mpc. As a result, this implies a total of∼ 2.1× 106 inference parameters, corresponding
to the amplitude of the primordial density fluctuations at the respective grid nodes.

To ensure a sufficient resolution of inferred final density fields, we oversample the initial density
field by a factor of eight, thereby evaluating the LPT model with 2563 particles in every sampling
step. The following step is to scale this 3D distribution of initial conditions to a cosmological scale
factor of ainit = 0.001 via multiplication with a cosmological growth factor D+(ainit). These initial
conditions are subsequently evolved forward in time, in non-linear fashion, with LPT providing an
approximate description of gravitational LSS formation. We then construct a final 3D non-linearly
evolved density field δf

p from the resulting particle distribution via the cloud-in-cell (CIC) method
(e.g. Hockney and Eastwood, 1988).

To generate the mock galaxy survey, we essentially need to simulate the inhomogeneous Poisso-
nian process described by Eq. (8.2), by drawing random samples from the distribution, on top of the
final density field δf

p. In this work, we generate a mock data set with realistic features emulating the
highly structured survey geometry and selection effects of the SDSS-III survey, with the observed
sky completeness depicted in the left and right panels of Fig. 8.5, respectively, for the CMASS and
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LOW-Z components of the SDSS-III survey. To account for the different selection effects in the
northern and southern galactic planes, each component is further divided into two subcatalogues,
corresponding to North/South Galactic Caps (NGC/SGC). The respective radial selection functions
for these four subcatalogues are illustrated in Fig. 8.6. Here, the selection functions are numerical
estimates obtained by binning the corresponding distribution of tracers N(d) in the CMASS and
LOW-Z components (e.g. Ross et al., 2017), where d is the comoving distance from the observer.

The projection of the completeness functions into the 3D volume produces the 3D observation
mask Cg

p. The survey properties are described by the galaxy selection function and the 3D com-
pleteness function, with the product of these two functions yielding the survey response operator
Rg

p. More specifically, it is the average of the product of the 2D survey geometry Cg(x̂) = Cg
p(x̂) and

the selection function f (x) at each volume element of the 3D grid:

Rg
p =

1
|Vp|

∫

Vp

d3x Cg(x̂) f g(x), (8.55)

where the volume occupied by the pth voxel is indicated by Vp, with |V| the volume of the set V .

Finally, we generate the four artificial galaxy subcatalogues, labelled by g, by Poisson sampling
on the grid with N̄g

p = {110.42, 122.94, 71.43, 205.48}, resulting in a total number of 997828 galaxies.
The values of N̄g

p are chosen such that the mock catalogue reflects the characteristics of the actual
SDSS-III data which contains around one million tracers.

8.8 Results and discussion

We perform a series of tests to evaluate the performance of our algorithm in a realistic context by
applying ALTAIR on the simulated SDSS-III-like galaxy catalogue described in the previous section.
In particular, the focus is on the burn-in and convergence behaviour of our method, which are key
indicators of the overall numerical feasibility and statistical efficiency for real data applications.

8.8.1 Cosmological parameter inference

To validate the conceptual framework for cosmological parameter inference and the robustness of
our implementation of the AP test, the reproducibility of the input cosmology and the correlations
with the other inferred quantities such as galaxy bias are also of interest.

The Markov chains for the cosmological parameters, displayed in Fig. 8.7, were initialized with
an over-dispersed state. This figure consequently illustrates an initial burn-in phase, lasting ∼250
MCMC steps, where the Markov chains follow a persistent drift towards the high probability region
of the parameter space. The rotation of the (Ωm, w0) parameter space before slice sampling, as
described in Section 8.6.3, reduces the burn-in period significantly, by roughly a factor of five, as
shown in the right panel of Fig. 8.4, resulting in improved sampling efficiency.

The corresponding marginal and joint posterior distributions for the cosmological parameters
are displayed in Fig. 8.8, demonstrating the capability of ALTAIR to infer tight constraints from
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FIGURE 8.7: MCMC chains for the cosmological parameters, for the first 1000 samples, with the refer-
ence cosmology employed in the mock generation indicated by the horizontal dashed lines. An initial
burn-in phase lasting ∼250 Markov transitions is illustrated by the coherent drift of the Markov chain
towards the preferred region in parameter space.
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FIGURE 8.8: Marginal posteriors for Ωm (left panel) and the dark energy equation of state, w0 (middle
panel), for ∼3000 MCMC realizations, ignoring the burn-in phase of ∼250 Markov steps. The corre-
sponding mean and standard deviation for each parameter are indicated in the top right corner of each
plot. The joint posterior (right panel) for Ωm and w0, depicting the high level of correlation between
these two parameters. The highly informative distortion due to the cosmic expansion, as a result of
probing a deep redshift range, yields extremely tight constraints on the above cosmological parame-
ters. As a consistency test, this validates our implementation of the AP test to correctly recover the
input cosmology.

galaxy redshift surveys. This robust AP test fully exploits the high information content from the cos-
mic expansion as a result of probing a deep redshift range, where the distortion is more pronounced,
yielding the following cosmological constraints: Ωm = 0.3080± 0.0036 and w0 = −0.998± 0.008.
As a comparison, the SDSS-III (DR12, BAO + Planck) constraints are as follows: Ωm = 0.310± 0.005
and w0 = −1.01± 0.06 (Alam et al., 2017), further highlighting the significant constraining power
of our AP test. We acknowledge the significant difference in the size of uncertainties. A back
of the envelope computation of the information gain is as follows: Considering a sphere of 100
h−1 Mpc for BAO against all voxels in 4000 h−1 Mpc, NBAO = 40003/(4π × 1003/3) = 15278, com-
pared to Nvox = 1283, yields an improvement of

√
Nvox/NBAO = 11.7, which provides an order of

magnitude of our uncertainties on the cosmological parameters. This is an approximate attempt
to quantify the information gain from including smaller scales (in our work, ∼ 0.17 h−1 Mpc) than
the BAO scale by essentially counting the number of modes. However, the above argument does
not imply that employing finer resolutions will result in an infinite gain of information. There is a
saturation of information at a certain resolution due to the slow variation in the density fields across
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FIGURE 8.9: Mean and standard deviation maps for the initial (top panel) and final density fields
(bottom panel), computed from the MCMC realizations, with the same slice through the 3D density
fields being illustrated above. In unobserved or masked regions, the density fields are not constrained
by data, and they average out to the cosmic mean density. However, in observed regions, the Gaussian
nature of the initial conditions and the filamentary nature of the non-linearly evolved density field is
manifest. The corresponding variance is therefore higher in regions devoid of data.

neighbouring voxels, such that further refinement beyond this limit will not yield any additional
information.

To verify that the cosmological information stems purely from the geometric distortion due to
the cosmic expansion, i.e. the AP test, we perform the following experiment: We deactivate the
cosmic expansion component in our forward model and sample the cosmological parameters using
only the LPT evolved density field. We consequently recover the corresponding prior distributions
for the marginal posteriors of the cosmological parameters. As a result, this implies that the infor-
mation derives purely from the geometry and not from the clustering of the non-linearly evolved
density field, at least for the test case with the physical voxel size considered in this work.
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FIGURE 8.10: Top panel: Reconstructed power spectra from the inferred posterior initial density field
realizations for all sampling steps of the Markov chain. The MCMC samples are colour-coded accord-
ing to their sample number, as indicated by the colour bar. This is a self-consistency test to verify
whether the sampled density fields are in accordance with the reference power spectrum, depicted in
dashed lines, employed in the mock generation. Bottom panel: The deviation from the true underlying
solution, with the thick dashed lines representing the prior power spectrum. The thin grey and and
black dotted lines correspond to the Gaussian 1σ and 2σ limits, respectively.

8.8.2 Inference of 3D initial conditions and evolved matter fields

The mean initial and final density fields computed from ∼4000 realizations (ignoring the burn-in
phase) are illustrated in the left panel of Fig. 8.9 for a particular slice of the 3D field. The maps reveal
that on average we can recover highly detailed and well-defined structures in the observed regions.
In particular, the filamentary nature of the non-linearly evolved density field can be clearly seen,
while the Gaussian nature of the initial conditions can also be deduced visually. However, in poorly
or not observed regions, the ensemble mean density field approaches the cosmic mean density, as
expected, since regions lacking any observational information should on average reflect the cosmic
mean. The uncertainty in these regions is accurately accounted for in the inference process, as
demonstrated by the right panel, since each sampled density field is a constrained realization, i.e.
these regions are augmented with statistically correct information.

8.8.3 Cosmological power spectra reconstruction

In the top panel of Fig. 8.10, we illustrate the power spectra reconstructed from all the realizations of
3D initial density field, obtained from the posterior via the HMC sampler. This is a self-consistency
test to confirm that the sampled density fields are in agreement with the reference (prior) power
spectrum adopted for the mock generation, as substantiated quantitatively in the bottom panel,
where the ratio of the a posteriori power spectra to the prior distribution is shown. The measured
power spectra therefore demonstrate that the individual realizations possess the correct power
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FIGURE 8.11: Summary statistics of the reconstructed power spectra from the inferred posterior initial
density field realizations depicted in Fig. 8.10, with the ensemble mean indicated by a solid green line.
The solid blue line corresponds to the ensemble mean of the power spectra realizations generated us-
ing the inferred cosmological parameters. The shaded regions indicate their respective 1σ confidence
region, i.e. 68% probability volume. This plot shows that the prior information entropy is inferior to
the posterior information entropy, due to the narrower distribution of the former. The prior power
spectrum adopted, as a result, does not impact significantly on the cosmological parameter inference
via the AP test.

throughout the entire domain of Fourier modes considered in this work. Moreover, they do not
exhibit any spurious power artefacts typically resulting from erroneous treatment of survey char-
acteristics, such as survey geometry and selection effects, and galaxy biases, implying that such
effects have been properly accounted for.

In order to verify the impact of the prior power spectrum on the actual inference of cosmolog-
ical parameters, we illustrate, in Fig. 8.11, the distributions of power spectra computed using the
inferred cosmology and the prior analytic prescription (Eisenstein and Hu, 1998; Eisenstein and Hu,
1999) and the reconstructed power spectra from Fig. 8.10, via their respective summary statistics,
normalized with respect to the fiducial power spectrum. The scatter in the latter a posteriori power
spectra reconstructed from the sampled density field realizations is significantly higher than distri-
bution of the former prior spectra. This implies that the entropy of prior information is much lower
than that of posterior information, thereby demonstrating that the prior power spectrum does not
influence the cosmological parameter inference via the AP test and justifying the assumption made
in Section 8.3.3.

8.8.4 Robustness to model misspecification

We further demonstrate this robustness of our AP test by employing a modified prior power spec-
trum in the inference procedure. By adopting a different cosmology (Ωm = 0.40, w0 = −0.85),
we modify the shape of the power spectrum, and subsequently apply ALTAIR on the same mock
catalogue from Section 8.7. As shown in Fig. 8.12, we recover the fiducial cosmological parameters
employed in the mock generation, although with slightly larger uncertainties than for the original
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FIGURE 8.12: Same as Fig. 8.8, but employing a different prior power spectrum (Ωm = 0.40, w0 =
−0.85), for ∼3000 MCMC realizations. By recovering the fiducial cosmological parameters employed
in the mock generation, this test case explicitly highlights the robustness of our approach to the shape
of the prior power spectrum adopted. The corresponding uncertainties are slightly larger than for the
original run by around 15%.
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FIGURE 8.13: Correlation matrix of the galaxy bias and cosmological parameters, normalized using
their respective variance. This illustrates the weak correlation between the inferred cosmological con-
straints and the galaxy bias. The lack of dependence on the currently unknown phenomenon of galaxy
biasing is therefore a key highlight of our implementation of the AP test for cosmological parameter
inference.

run by roughly 15%. This test case therefore explicitly highlights the robustness of our implementa-
tion of the AP test to a misspecified model since it does not optimize the information from the scale
dependence of the correlations of the density field, but rather from the isotropy of the field.

8.8.5 Resilience of cosmological constraints to galaxy bias

From the correlation matrix of Ωm, w0 and the galaxy bias parameters for each of the four subcata-
logues, illustrated in Fig. 8.13, we deduce the extremely weak correlation between the cosmological
constraints and the bias. This is a key positive aspect of our method, as galaxy bias remains nev-
ertheless a highly active and challenging field of research (see, for e.g., Desjacques, Jeong, and
Schmidt, 2016), due to its complex non-linear behaviour on intermediate and small scales, which
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may potentially limit the effectiveness of traditional methods of cosmological parameter inference
(Pollina et al., 2018).

Moreover, this insensitivity to the galaxy bias implies that our method does not rely on absolute
density fluctuation amplitudes, but on the actual location of matter. This entails that our AP test ex-
ploits the geometrical structure of the density field and not its absolute amplitude since the power
spectrum does not influence the inferred cosmological constraints. To the best of our knowledge,
this is a novel aspect of cosmological inference, with most of our current understanding of cos-
mology based on measurements of density contrast amplitudes. We present, therefore, one of the
first methods which extracts a large fraction of information from statistics other than that of direct
density contrast correlations, without relying on the power spectrum or bispectrum. Our method
consequently yields complementary information to state-of-the-art methods.

8.9 Summary and conclusions

We presented the implementation of a robust AP test that performs a detailed fit of the cosmolog-
ical expansion via a non-linear and hierarchical Bayesian LSS inference framework. This forward
modelling approach employs LPT as a physical description for the non-linear dynamics and se-
quentially encodes the cosmic expansion effect for joint inference of the cosmological parameters
and underlying 3D density fields, while also fitting the mean density of tracers and bias param-
eters. In essence, this inference machinery explores the various cosmological expansion histories
and selects the cosmology-dependent evolution pathways which yield isotropic correlations of the
galaxy density field, thereby constraining cosmology.

We demonstrated the application of our algorithm ALTAIR on an artificially generated galaxy
catalogue, consisting of four subcatalogues, that emulates the highly structured survey geometry
and selection effects of SDSS-III. We performed a series of statistical efficiency and consistency tests
to validate the methodology adopted and showcased its potential to yield tight constraints on cos-
mological parameters from current and future galaxy redshift surveys. The main strength of our
implementation of the AP test lies in its robustness to a misspecified model and its inherent approx-
imations, thereby near-optimally exploiting the model predictions, without relying on its accuracy
in modelling the scale dependence of the correlations of the field.

Moreover, another key aspect of our approach, resulting from the robustness to a misspecified
model, is that the cosmological constraints show extremely weak dependence on galaxy bias. This
yields two crucial advantages. First, this is especially interesting as the lack of a sufficient physical
description of this bias remains a potential limiting factor for standard approaches of cosmological
parameter inference from such redshift surveys. Furthermore, this lack of sensitivity to the bias also
implies that our method does not depend on the absolute density fluctuation amplitudes. This is
therefore among the first methods to extract a large amount of information from statistics other than
that of direct density contrast correlations, without relying on the power spectrum or bispectrum,
thereby providing complementary information to state-of-the-art techniques.
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There is scope for further development of the ALTAIR framework, such as incorporating power
spectrum inference, which is a highly non-trivial undertaking. We also intend to augment the cur-
rent formalism to include the treatment of redshift space distortions, which is key for unbiased
constraints on the cosmological parameters, and apply ALTAIR on state-of-the-art galaxy redshift
catalogues for cosmological inference.
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Chapter 9

Explicit Bayesian treatment of unknown
foreground contaminations

The work presented in this chapter is based on Porqueres, Kodi Ramanah, Jasche, and Lavaux
(2019).

9.1 Introduction

The next generation of galaxy surveys, such as Large Synoptic Survey Telescope (LSST) (Ivezic et
al., 2008) or Euclid (Laureijs et al., 2011; Amendola et al., 2016; Racca et al., 2016), will not be limited
by noise but by systematic effects. In particular, deep photometric observations will be subject to
several foreground and target contamination effects, such as dust extinction, stars and seeing (e.g.
Scranton et al., 2002; Ross et al., 2011; Ho et al., 2012; Huterer, Cunha, and Fang, 2013; Ho et al.,
2015).

In the past, such effects have been addressed by generating templates for such contaminations
and accounting for their overall template coefficients within a Bayesian framework. Leistedt and
Peiris (2014), for instance, performed an extensive effort in compiling a total set of 220 foreground
contaminations for the inference of the clustering signal of quasars in the Sloan Digital Sky Survey
(SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) (Bovy et al., 2012). Foreground contam-
inations are also dealt with in observations of the cosmic microwave background, where they are
assumed to be an additive contribution to observed temperature fluctuations (e.g. Tegmark and Efs-
tathiou, 1996; Tegmark et al., 1998; Hinshaw et al., 2007; Eriksen et al., 2008; Ho et al., 2015; Vansyn-
gel et al., 2016; Sudevan et al., 2017; Elsner, Leistedt, and Peiris, 2017). In the context of large-scale
structure analyses, Jasche and Lavaux (2017) presented a foreground sampling approach to account
for multiplicative foreground effects which can affect the target and the number of observed objects
across the sky.

All these methods rely on a sufficiently precise estimate of the map of expected foreground con-
taminants to be able to account for them in the statistical analysis. These approaches exploit the fact
that the spatial and spectral dependence of the phenomena generating these foregrounds are well-
known. But what if we are facing unknown foreground contaminations? Can we make progress
in robustly recovering cosmological information from surveys subject to yet unknown contamina-
tions? In this work, we describe an attempt to address these questions and develop an optimal and
robust likelihood to deal with such effects. The capability to account for “unknown unknowns” is
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Colour indexing

0 191colour index

FIGURE 9.1: Schematic to illustrate the colour indexing of the survey elements. Colours are assigned
to voxels according to patches of a given angular scale. Voxels of the same colour belong to the same
patch, and this colour indexing is subsequently employed in the computation of the robust likelihood.

also the primary motivation behind the blind method for the visibility mask reconstruction recently
proposed by Monaco, Di Dio, and Sefusatti (2019).

This chapter is organized as follows. We outline the underlying principles of our novel likeli-
hood in Section 9.2, followed by a description of the numerical implementation in Section 9.3. We
subsequently assess the performance of our proposed likelihood via a comparison with a standard
Poissonian likelihood in Section 9.5, with the specific problem considered illustrated in the preced-
ing Section 9.4. The key aspects of our findings are finally summarized in Section 9.6.

9.2 Robust likelihood model

We describe the conceptual framework for the development of the robust likelihood which consti-
tutes the crux of this work. The standard analysis of galaxy surveys assumes that the distribution
of galaxies can be described as an inhomogeneous Poisson process (Layzer, 1956b; Peebles, 1980;
Martínez and Saar, 2003) given by

P(N|λ) = ∏
i

e−λi(λi)
Ni

Ni!
, (9.1)

where Ni is the observed number of galaxies at a given position in the sky i and λi is the expected
number of galaxies at that position. The expected number of galaxies is related to the underlying
dark matter density field ρ via

λ = SN̄ρb exp(−ρgρ−ε), (9.2)

where S encodes the selection function and geometry of the survey, N̄ is the mean number of
galaxies in the volume, and {b, ρg, ε} are the parameters of the non-linear bias model proposed
by Neyrinck et al. (2014).
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FIGURE 9.2: Slice through the 3D coloured box. The extrusion of the colour indexing scheme (cf.
Fig. 9.1) onto a 3D grid yields a collection of patches, denoted by a given colour, with a group of
voxels belonging to a particular patch, to be employed in the computation of the robust likelihood.
The axes indicate the comoving distances to the observer, who is located at the origin (0,0,0).

The key contribution of this work is to develop a more robust likelihood than the standard
Poissonian likelihood by marginalizing over the unknown large-scale foreground contamination
amplitudes. We start with the assumption that there is a large-scale foreground modulation that
can be considered to have a constant amplitude over a particular group of voxels. Assuming that A
is the amplitude of this large-scale perturbation, we can write λα = Aλ̄α, where the index α labels
the voxels over which the perturbation is assumed to have constant amplitude. The likelihood
consequently has the following form:

P(N|λ̄, A) = ∏
α

e−Aλ̄α ANα(λ̄α)Nα

Nα!
(9.3)

= e−A ∑α λ̄α A∑α Nα ∏
α

(λ̄α)Nα

Nα!
. (9.4)

We can marginalize over the unknown foreground amplitude A as follows:

P(N|λ̄) =
∫

dA P(N, A|λ̄) (9.5)

=
∫

dA P(A|λ̄) P(N|A, λ̄) (9.6)

=
∫

dA P(A) P(N|A, λ̄), (9.7)

where, in the last step, we assumed conditional independence, P(A|λ̄) = P(A). This assumption is
justified since the processes which generate the foregrounds are expected to be independent of the
mechanisms involved in galaxy formation. As a result of this marginalization over the amplitude
A, and using a power-law prior for A, P(A) = κA−γ where γ is the power-law exponent and κ is
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an arbitrary constant, the likelihood simplifies to:

P(N|λ̄) = κ

(
∑α Nα

)
!

(
∑β λ̄β

)∑α Nα+1−γ ∏
α

(λ̄α)Nα

Nα!
(9.8)

∝
1

(
∑β λ̄β

)1−γ ∏
α

(
λ̄α

∑β λ̄β

)Nα

. (9.9)

We employ a Jeffreys prior for the foreground amplitude A, which implies setting γ = 1. Jef-
frey’s prior is a solution to a measure invariant scale transformation (Jeffreys, 1946) and is there-
fore a scale independent prior, such that different scales have the same probability and there is no
preferred scale. This scale invariant prior is optimal for inference problems involving scale mea-
surements as this does not introduce any bias on a logarithmic scale. Moreover, this is especially
interesting because this allows for a total cancellation of unknown amplitudes in Eq. (9.9), resulting
in the following simplified form of our augmented likelihood:

P(N|λ̄) ∝ ∏
α

(
λ̄α

∑β λ̄β

)Nα

. (9.10)

9.3 Numerical implementation

9.3.1 Modified formalism for HMC sampling

We implement the robust likelihood in BORG (Bayesian Origin Reconstruction from Galaxies, Jasche
and Wandelt, 2013a), a hierarchical Bayesian inference framework for the non-linear inference of
large-scale structures. It encodes a physical description for non-linear dynamics via Lagrangian
Perturbation Theory (LPT), resulting in a highly non-trivial Bayesian inverse problem. At the
core, it employs a Hamiltonian Monte Carlo (HMC) method for the efficient sampling of a high-
dimensional and non-linear parameter space of possible initial conditions at an earlier epoch, with
typicallyO(107) free parameters, corresponding to the discretized volume elements of the observed
domain. The HMC implementation is detailed in Jasche and Kitaura (2010) and Jasche and Wandelt
(2013a). The essence of BORG is that it incorporates the joint inference of initial conditions, and con-
sequently the corresponding non-linearly evolved density fields and associated velocity fields, from
incomplete observations. An augmented variant, BORG-PM, employing a particle mesh model for
gravitational structure formation, has recently been presented (Jasche and Lavaux, 2019). An exten-
sion to BORG has also been developed to constrain cosmological parameters via a novel application
of the Alcock-Paczyński test (Kodi Ramanah et al., 2019).

For the implementation of the robust likelihood, the HMC method that constitutes the basis of
the joint sampling framework requires the negative log-likelihood and its adjoint gradient, which
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are given by

Ψ ≡ − logP(N|λ̄)
= ∑

α

Nα log
(

∑
β

λ̄β

)
−∑

α

Nα log λ̄α (9.11)

and
∂Ψ
∂λ̄γ

∂λ̄γ

∂ρ
=

λ̄γ

ρ

(
b + ερgρ−ε

)[∑α Nα

∑β λ̄β
− Nγ

λ̄γ

]
. (9.12)

9.3.2 Colour indexing scheme

The labelling of voxels with the same foreground modulation is encoded via a colour indexing
scheme that groups the voxels into a collection of angular patches. This requires the construction
of a sky map which is divided into regions of a given angular scale, where each region is denoted
by specific colour and stored in HEALPIX format (Górski et al., 2005), as illustrated in Fig. 9.1. An
extrusion of the sky map onto a 3D grid subsequently yields a 3D distribution of patches, with a
particular slice of this 3D coloured grid displayed in Fig. 9.2. The collection of voxels belonging to a
particular patch is employed in the computation of the robust likelihood given by Eq. (9.11), where
α corresponds to the colour index.

This is a maximally ignorant approach to deal with unknown systematics where we enforce that
every modulation above a given angular scale is not known. Since the colouring scheme does not
depend on any foreground information, the numerical implementation of the likelihood is therefore
generic. Moreover, another advantage of our approach is that the other components in our forward
modelling scheme do not require any adjustments to encode this data model. However, we have
not considered additive contaminations typically emanating from stars. We defer the extension of
our data model to account for such additive contaminants to a future investigation.

9.4 Mock generation with foreground contaminants

We provide a brief description of the generation of the mock data set, that will be used to test the
effectiveness of our novel likelihood, essentially based on the procedure adopted in Jasche and Ki-
taura (2010) and Jasche and Wandelt (2013a). We first generate a realization for the initial density
contrast δi

k from a zero-mean normal distribution with covariance corresponding to the cosmologi-
cal power spectrum, such that we have a 3D Gaussian initial density field in a cubic equidistant grid
with Nside = 256, consisting of 2563 voxels, where each voxel corresponds to a discretized volume
element, and comoving box length of 2000h−1 Mpc. This 3D distribution of initial conditions must
then be scaled to a cosmological scale factor of ainit = 0.001 using a cosmological growth factor
D+(ainit).

The underlying cosmological power spectrum, including baryonic acoustic oscillations, for the
matter distribution is computed using the prescription described in Eisenstein and Hu (1998) and
Eisenstein and Hu (1999). We assume a standard Λ cold dark matter (ΛCDM) cosmology with
the set of cosmological parameters (Ωm = 0.3089, ΩΛ = 0.6911, Ωb = 0.0486, h = 0.6774, σ8 =
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FIGURE 9.3: Radial selection function for the CMASS (north galactic cap) survey which is used to
generate the mock data to emulate features of the actual SDSS-III BOSS data.
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FIGURE 9.4: Observed sky completeness (left panel) of the CMASS component of the SDSS-III survey
for the north galactic cap and dust extinction map (right panel) used to generate the large-scale con-
tamination. This reddening map has been generated from the SFD maps (Schlegel, Finkbeiner, and
Davis, 1998).

0.8159, ns = 0.9667) from Planck Collaboration et al. (2016b). We then employ LPT to transform
the initial conditions into a non-linearly evolved field δf

k at redshift z = 0, which is subsequently
constructed from the resulting particle distribution via the cloud-in-cell (CIC) method (e.g. Hockney
and Eastwood, 1988).

Given the final density field δf
k, we generate a mock galaxy redshift catalogue subject to fore-

ground contamination. For the test case considered in this work, we generate a data set that emu-
lates the characteristics of the SDSS-III survey, in particular the highly structured survey geometry
and selection effects. We use a numerical estimate of the radial selection function of the CMASS
component of the SDSS-III survey, shown in Fig. 9.3, obtained by binning the corresponding distri-
bution of tracers N(d) in the CMASS sample (e.g. Ross et al., 2017), where d is the comoving distance
from the observer. The CMASS radial selection function is therefore estimated from a histogram of
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FIGURE 9.5: Contaminated completeness mask (left panel) and percentage difference compared to the
original completeness mask (right panel). The contamination is introduced by multiplying the original
mask by a factor of (1− 5F) where F is a foreground template, in this case, the dust extinction map
downgraded to the angular resolution of the colour indexing map depicted in Fig. 9.1. The factor
α = 5 is chosen such that the mean contamination is 15%, an arbitrary choice to ensure that the
contaminations are significant in the completeness mask. The difference between the original and
contaminated mask shows that the effect is stronger on the edges of the survey.

galaxy distribution over redshift. The procedure to construct the CMASS sky completeness is, how-
ever, less trivial. We derive this CMASS mask, depicted in the left panel of Fig. 9.4, from the SDSS-III
BOSS Data Release 12 (Alam et al., 2015) database by taking the ratio of spectroscopically confirmed
galaxies to the target galaxies in each polygon from the mask.

In order to emulate a large-scale foreground contamination, we construct a reddening map that
describes dust extinction, illustrated in the right panel of Fig. 9.4. This dust template is derived
from the data provided by Schlegel, Finkbeiner, and Davis (1998) via straightforward interpolation,
rendered in HEALPIX format (Górski et al., 2005).1 The contamination is produced by multiplying
the completeness mask of CMASS, shown in the left panel of Fig. 9.4, by a factor of (1− ηF), where
F is the foreground template rescaled to the angular resolution of the colour indexing scheme, and
η controls the amplitude of this contamination. To obtain a mean contamination of 15% in the
completeness, we chose η = 5 as an arbitrary choice to ensure that the foreground contaminations
are significant. This mean value corresponds to the average contamination per element of the sky
completeness. Fig. 9.5 shows the contaminated sky completeness and the percentage difference,
with the edges of the survey being more affected by the contamination due to their proximity to
the galactic plane where the dust is more abundant. The mock catalogue is produced by drawing
random samples from the inhomogeneous Poissonian distribution described by Eq. (9.1) and using
the modified completeness.

9.5 Results and discussion

In this section, we discuss results obtained by applying the BORG algorithm with the robust likeli-
hood to contaminated mock data. We also compare the performance of our novel likelihood with
that of the standard Poissonian likelihood typically employed in large-scale structure analyses. In

1The construction of this template is described in more depth in Section 3 of Jasche and Lavaux (2017).
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FIGURE 9.6: Mean and standard deviation of the inferred non-linearly evolved density fields, com-
puted from the MCMC realizations, with the same slice through the 3D fields being depicted above
for both the Poissonian (upper panels) and augmented (lower panels) likelihoods. The filamentary na-
ture of the non-linearly evolved density field can be observed in the regions constrained by the data,
with the unobserved or masked regions displaying larger uncertainty, as expected. Unlike our robust
data model, the standard Poissonian analysis yields some artefacts in the reconstructed density field,
particularly near the edges of the survey, where the foreground contamination is stronger.

order to test the effectiveness of our likelihood against unknown systematics and foreground con-
taminations, the algorithm is agnostic about the contamination and assumes the CMASS sky com-
pleteness depicted in the left panel of Fig. 9.4.

9.5.1 Non-linear density field inference

We first study the impact of the large-scale contamination on the inferred non-linearly evolved den-
sity field. To this end, we compare the ensemble mean density fields and corresponding standard
deviations for the two Markov chains with the Poissonian and novel likelihoods, respectively, il-
lustrated in the top and bottom panels of Fig. 9.6, for a particular slice of the 3D density field. As
can be deduced from the top left panel of Fig. 9.6, the standard Poissonian analysis results in spu-
rious effects in the density field, particularly close to the boundaries of the survey since these are
the regions that are the most affected by the dust contamination. In contrast, our novel likelihood
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(A) Robust likelihood (B) Standard Poissonian likelihood

FIGURE 9.7: Reconstructed power spectra from the inferred initial conditions from a BORG analy-
sis with unknown foreground contamination for the robust likelihood (left panel) and the Poissonian
likelihood (right panel) over the full range of Fourier modes considered in this work. The σ limit corre-
sponds to the cosmic variance σ =

√
1/k. The colour scale shows the evolution of the power spectrum

with the sample number. The power spectra of the individual realizations, after the initial burn-
in phase, from the robust likelihood analysis possess the correct power across all scales considered,
demonstrating that the foregrounds have been properly accounted for. In contrast, the standard Pois-
sonian analysis exhibits spurious power artefacts due to the unknown foreground contaminations,
yielding excessive power on these scales.

analysis yields a homogeneous density distribution through the entire observed domain, with the
filamentary nature of the present-day density field clearly seen. While we can recover well-defined
structures in the observed regions, the ensemble mean density field tends towards the cosmic mean
density in the masked or poorly observed regions, with the corresponding standard deviation being
higher to reflect the larger uncertainty in these regions. From this visual comparison, it is evident
that our novel likelihood is more robust against unknown large-scale contaminations.

9.5.2 Cosmological power spectra reconstruction

From the realizations of our inferred 3D initial density field, we can reconstruct the corresponding
matter power spectra and compare them to the prior cosmological power spectrum adopted for the
mock generation. The top panel of Fig. 9.7 illustrates the inferred power spectra for both likelihood
analyses, with the bottom panel displaying the ratio of the a posteriori power spectra to the prior
power spectrum. While the standard Poissonian analysis yields excessive power on the large scales
due to the artefacts in the inferred density field, the analysis with our novel likelihood allows us to
recover an unbiased power spectrum across the full range of Fourier modes.

In addition, we tested the combined effects of the foreground and unknown noise amplitudes
by estimating the covariance matrix of the Fourier amplitudes of the reconstructed power spectra.
As depicted in Fig. 9.8, our novel likelihood exhibits uncorrelated amplitudes of the Fourier modes,
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FIGURE 9.8: Correlation matrix of power spectrum amplitudes with respect to the mean value for the
robust likelihood, normalized using the variance of amplitudes of the power spectrum modes. The
correlation matrix shows that our augmented data model does not introduce any spurious correlation
artefacts, thereby implying that it has properly accounted for the selection and foreground effects.

as expected from ΛCDM cosmology. The strong diagonal shape of the correlation matrix indicates
that our proposed data model correctly accounted for any mode coupling introduced by survey
geometry and foreground effects.

9.6 Summary and conclusions

The increasing requirement to control systematic and stochastic effects to high precision in next-
generation deep galaxy surveys is one of the major challenges for the coming decade of surveys.
If not accounted for, unknown foreground effects and target contaminations will yield significant
erroneous artefacts and bias cosmological conclusions drawn from galaxy observations. A common
spurious effect is an erroneous modulation of galaxy number counts across the sky, hindering the
inference of 3D density fields and associated matter power spectra.

To address this issue, we proposed a novel likelihood to implicitly and efficiently account for
unknown foreground and target contaminations in surveys. We described its implementation into
a framework of non-linear Bayesian inference of large-scale structures. Our proposed data model is
conceptually straightforward and easy to implement. We illustrated the application of our robust
likelihood to a mock data set with significant foreground contaminations and evaluated its perfor-
mance via a comparison with an analysis employing a standard Poissonian likelihood to showcase
the contrasting physical constraints obtained with and without the treatment of foreground contam-
ination. We have shown that foregrounds, when unaccounted for, lead to spurious and erroneous
large-scale artefacts in density fields and corresponding matter power spectra. In contrast, our
novel likelihood allows us to marginalize over unknown large-angle contamination amplitudes,
resulting in a homogeneous inferred density field, thereby recovering the fiducial power spectrum
amplitudes.
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The results presented above in Section 9.5 clearly demonstrate the efficacy of our proposed
likelihood in robustly dealing with unknown foreground contaminations for the inference of non-
linearly evolved dark matter density fields and the underlying cosmological power spectra from
deep galaxy redshift surveys. This method can be inverted to constrain foreground properties of
the contamination. The inferred dark matter density allows building galaxy catalogues without
contaminations. These can be compared to the actually observed number counts to reconstruct the
foreground properties as the mismatch between the two catalogues.

We are convinced that our approach will contribute to optimizing the scientific returns of cur-
rent and coming galaxy redshift surveys. We have demonstrated the effectiveness of our robust
likelihood in the context of large-scale structure analysis. Our augmented data model remains nev-
ertheless relevant for more general applications with other cosmological probes, with applications
potentially extending even beyond the cosmological context.
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Part IV

Deep learning for cosmological
simulations
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Chapter 10

Machine learning

10.1 Artificial neural networks

The development and application of machine learning algorithms to find patterns embedded in
cosmological data sets is one of the key themes at the frontiers of research in the field (e.g. Ntampaka
et al., 2019; Carleo et al., 2019). Machine learning techniques have proven to be extremely effective at
extracting substantial information from data, identifying interesting outliers, data compression via
dimensionality reduction and generating simulated or fake observations at minimal computational
costs (Acquaviva, 2019).

A list of recent machine learning successes in cosmology is provided by Ntampaka et al. (2019).
These compelling successful applications indicate that machine learning is now another crucial tool
in our data analysis toolbox, with the potential to make significant contributions to cosmological
research in the next decade. In particular, upcoming large galaxy surveys, such as Euclid (Laureijs et
al., 2011; Racca et al., 2016) and LSST (Ivezic et al., 2008) will provide a plethora of opportunities to
optimize and harness the capability of machine learning methods. Acquaviva (2019) puts forward
a list of arguments and useful guidelines for the proper use of machine learning in solving the
big data problems from future galaxy surveys. One of the salient points mentioned is the use of
machine learning to model the currently unresolved and unknown physics involved in a given
cosmic phenomenon, thereby providing a data-driven approach as an alternative to a simplistic
(analytical) model. This is the rationale behind our development of a cutting-edge machine learning
technique to map dark matter simulations to 3D halo distributions, presented in Chapter 12.

In the remainder of this chapter, we describe the basic concepts in machine learning and intro-
duce the terminology. We outline the standard framework of the ubiquitous convolutional neural
networks in Section 10.2, followed by a discussion of crucial practices for proper neural network
implementation in Sections 10.3 and 10.4.

10.1.1 Perceptron

Artificial neural networks consist of simple interconnected adaptive units, analogous to the bio-
logical nervous system (Kohonen, Barna, and Chrisley, 1988; Kohonen, 1990), that combine to learn
complex patterns. The fundamental building block of a neural network is the artificial neuron, which
receives a set of weighted (scalar) inputs and outputs a single scalar, as illustrated in Fig. 10.1. This
primitive artificial neuron is known as a perceptron (Goodfellow, Bengio, and Courville, 2016).
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FIGURE 10.1: Basic unit of a neural network known as the perceptron. The neuron takes the sum of
a set of weighted inputs and adds a bias parameter which is used to change the threshold at which
the neuron is activated, followed by the application of an “activation” function. The latter is usually a
non-linear function to encode a degree of non-linearity in the perceptron.
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FIGURE 10.2: Examples of common activation functions.

The terminology of deep learning is usually attributed to neural networks having a large number
of layers, typically exceeding four layers, and implies a certain degree of abstraction between the in-
puts and outputs which may not be within the limits of our understanding (Bengio, 2009). The first
layer of the neural network is the input layer and is fed with the input, while the last layer is called
the output layer and yields the result of the computation. All the other layers, sandwiched between
the input and output layers, are referred to as the hidden layers. Stacking layers of neurons yields
multilayer perceptrons (Nielsen, 2015), i.e. fully connected networks. In such a multilayer network,
the composition of the straightforward operations described in Eq. (10.1) below, from the initial to
the final layers, yields a highly non-linear mapping between the inputs and their corresponding
outputs. An example of a multilayer perceptron with three input and one output neurons, and four
neurons in each of the two intermediate hidden layers, is illustrated in Fig. 10.3.

In feed-forward neural networks, the information is propagated forward throughout the distinct
layers of the network, from the inputs to their corresponding outputs. Every neuron in a given
layer takes a linear combination of the outputs of a certain subset of neurons in the previous layer
and applies a non-linear operation, commonly known as the activation function (Nielsen, 2015). If
we define xl

i and xl+1
j as the ith neuron of the lth layer, jth neuron of the (l + 1)th layer, respectively,

and wl
ij, bl

j as the trainable weights and bias of the lth layer, then the outputs of the lth layer can be
written as

xl+1
j = f

[
∑

i∈Nl

(
wl

jix
l
i + bl

j

)]
≡ f (zl

j), (10.1)
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FIGURE 10.3: Example of a multilayer perceptron (fully connected network) with three inputs, one
output and two hidden layers with four nodes in each layer.

where Nl is the number of neurons in the lth layer and f is the activation function described in the
following section. We will refer to zl

j as the weighted, biased input in the sections below for simplic-
ity. The purpose of the bias parameter associated to a neuron is to vary the threshold at the neuron
is triggered (McCulloch and Pitts, 1943). The essence of neural networks is to model complex and
highly non-trivial mappings between the inputs and the corresponding outputs by applying the
non-linear activation function to linear combinations of their input elements (Goodfellow, Bengio,
and Courville, 2016). The key advantage is that no a priori information of the unknown underlying
mapping is required, as the network can learn it from a sufficient set of labelled data. This is known
as the training set since it consists of a set of inputs for which the corresponding outputs are known,
and this is the actual data set used to fit the model. This is known as supervised learning (Carleo
et al., 2019) and the training procedure is detailed in Section 10.1.3.

10.1.2 Activation function

Some popular activation functions are the sigmoid, hyperbolic tangent, rectified linear activation
(ReLU) (Nair and Hinton, 2010) and leaky rectified linear activation (leaky ReLU) (Maas, Hannun,
and Ng, 2013), depicted in Fig. 10.2. We make use of the ReLU and leaky ReLU in our neural net-
works in Chapter 12, with the latter defined as follows:

f (zi) =

{
αzi, zi < 0
zi, zi ≥ 0.

(10.2)

We obtain the ReLU function simply by setting α to zero, where α is a pre-defined small negative
slope. The class of the ReLU activation functions are usually preferred over the sigmoid and hyper-
bolic tangent functions since they mitigate the vanishing gradient issue (Nielsen, 2015) outlined in
Section 10.1.3, and are computationally less expensive.
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10.1.3 Backpropagation

The multiple network parameters in each layer, i.e. the weights and biases, are optimized using
gradient descent applied to the error in the output. This procedure is known as backpropagation,
due to the use of the chain rule by the gradient to propagate the information backwards from the
respective outputs of each layer (Goodfellow, Bengio, and Courville, 2016). The quantity to be
minimized is referred to as the loss function, denoted by L, which is a metric that measures the
distance between the network predicted and true known values for the elements in the training set.

The change in the output ∆xl+1
j , from node j can be expressed as a linear function of the change

in the weights, ∆wij, and change in the biases of node j, ∆bl
j, as follows1 (Nielsen, 2015):

∆xl+1
j ≈ ∑

i∈Nl

(
∂ f (zl

i)

∂wl
ij

∆wl
ij +

∂ f (zl
i)

∂bl
ij

∆bl
j

)
, (10.3)

which can be computed using gradient descent. The above can be reversed, such that the change in
the weights and biases can be computed via the change in the outputs for each layer. In order for the
network’s output to match the known outputs from the training set, we can perform a minimization
procedure on the error, i.e. loss function (Rumelhart, Hinton, and Williams, 1988). Although the
choice of this loss function will depend on the specific task to be performed by the neural network,
a suitable loss function, by design, should be sensitive to slight changes in the output induced by
extremely small changes in the weights and biases (LeCun et al., 2012).

For optimal training of the weights and biases, the loss function should gradually be reduced to
its minimum value, i.e. ∆L < 0. The change in the loss function, given a change in the weights and
biases, can be written as (Rumelhart, Hinton, and Williams, 1988):

∆L ≈ ∂L
∂wl ∆wl , and ∆L ≈ ∂L

∂bl ∆bl , (10.4)

respectively, where we employ a vector notation above for simplicity. For the change in the loss
function to be negative, we choose

∆wl = −η
∂L
∂wl , and ∆bl = −η

∂L
∂bl , (10.5)

which would imply that

∆L = −η

∣∣∣∣
∣∣∣∣

∂L
∂wl

∣∣∣∣
∣∣∣∣
2

, and ∆L = −η

∣∣∣∣
∣∣∣∣

∂L
∂bl

∣∣∣∣
∣∣∣∣
2

, (10.6)

respectively. η is the learning rate for the gradient descent algorithm, which should be set to a typi-
cally small value, for the approximations in Eq. (10.4) to hold, but sufficiently large for the weights
to update (Nielsen, 2015). The weights and biases of the network are updated via backpropagation

1Note that this approximation is valid only for very small steps.
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until convergence of the loss function, as follows:

wl
n+1 = wl

n − η
∂L

∂wl
n

, and bl
n+1 = bl

n − η
∂L
∂bl

n
, (10.7)

with the above transformations yielding an optimal reduction in the loss function on every subse-
quent input of training data (Rumelhart, Hinton, and Williams, 1988).

The rate of change of the loss function, given the weighted, biased input zl at any layer, with this
gradient denoted by ∂L/∂zl , can be evaluated via the chain rule which relates the rate of change
of the weights or biases between different layers (Rumelhart, Hinton, and Williams, 1988). For the
output layer, this can be obtained as follows:

∂L
∂zout =

∂L
∂ f (zout)

� ∂ f (zout)

∂zout , (10.8)

where � implies the Hadamard or Schur product2 (Davis, 1962). We can propagate the gradient of
the loss function to any preceding layer l:

∂L
∂zl =

(
wl+1

)T ∂L
∂zl+1 �

∂ f (zl)

∂zl , (10.9)

where (wl+1)T indicates the transpose of the weights at the subsequent (l + 1)th layer (Nielsen,
2015). As such, the error propagation through the activation function of the lth layer is done via the
Hadamard product, thereby yielding the rate of change of zl . The above Eqs. (10.8) and (10.9) allow
us to compute the gradient of the loss function with respect to the weighted, biased output at any
given layer. The gradients of the loss function with respect to the weights and biases, respectively,
can then be determined using the chain rule and the relation (10.9), as follows:

∂L
∂wl = f

(
zl−1

) ∂L
∂zl , and

∂L
∂bl =

∂L
∂zl . (10.10)

The final step in the backpropagation algorithm is to update the weight and biases using Eq. (10.7).

We can optimize the neural network hyperparameters, such as the number of layers and neu-
rons, and learning rate, by a quantitative evaluation of the model’s performance over the validation
set with known output values. The purpose of the validation data set is to allow frequent model
evaluations on occasionally seen data, but the network never learns from the latter. A common
practice is to split the original data set into two portions for the training and validation. The final
assessment of the mapping learnt by the network is done over a separate unseen test set, which
provides an unbiased evaluation of the trained model (Carleo et al., 2019).

The vanishing gradient predicament arises when ∂L/∂wij ≈ 0, such that wn+1 → wn (cf.
Eq. (10.7)), with an analogous argument applying to the biases. This implies that the neuron satu-
rates, impeding its ability to learn (Rosasco et al., 2004). This is due to an activation function where
f (xi) ≈ 0 or f (xi) ≈ 1 causing the gradient to tend to zero, as in the case of the sigmoid function.
The latter is also non-zero centred, which is not conducive to the effectiveness of gradient descent

2This is simply the element-wise product. For instance, for two vectors of same dimension: (s� t)j ≡ sjtj.
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during training. These two factors are detrimental to training efficiency and are therefore important
elements to consider in the choice of activation functions. The hyperbolic tangent function also sat-
urates, but it is zero-centred, which alleviates some training issues, and is therefore preferred over
the sigmoid function (LeCun et al., 2012).

10.2 Convolutional neural networks

Convolutional neural networks (hereafter CNNs) (LeCun and Bengio, 1995; LeCun et al., 1998)
are a particular type of network, tailored for problems where spatial information is important. A
schematic of a standard CNN is depicted in Fig. 10.4, where the input image is a 2D snapshot of
the matter density field. A convolutional kernel, or filter, of a given size, encoding a set neurons,
is applied to each pixel of the input image and its neighbourhood as it sweeps through the whole
region. Each pixel in a given layer is only a function of the pixels in the previous layer which are
contained within the window defined by the kernel, known as the receptive field of the layer. This
produces a feature map which contains high values in the pixels which match the pattern encoded in
the weights and biases of the corresponding neurons that are optimized during training. To probe
different aspects of the input image, a convolutional layer typically employs several filters, yielding
a set of feature maps which become the inputs to the subsequent layer. In the standard framework,
the convolutional step is usually followed by a pooling layer for the purpose of subsampling or
dimensionality reduction (Goodfellow, Bengio, and Courville, 2016). Alternating between these
two types of layers will reduce the original input image to a compact representation of features,
which can be flattened to a vector. This vectorized feature is subsequently fed to the final layer
which is a fully connected layer, thereby generating an output (Lecun, Bengio, and Hinton, 2015).

Formally, the convolutional operation can be described as a specialized linear operation, with
the discrete convolution implemented by matrix multiplication, such that a convolutional layer,
labelled by l, can be computed via

xl
j = f


 ∑

i∈Mj

xl−1
i × kl

ij + bl
j


 , (10.11)

where f is the activation function, k corresponds to the convolutional kernel, Mj represents the
receptive field and b is the bias parameter (Goodfellow, Bengio, and Courville, 2016).

The architecture outlined above allows the network to autonomously extract significant spatial
features from the input image. Stacking several convolutional layers creates a hierarchical internal
representation of features, allowing the network to identify increasingly complex patterns as more
layers are added. As the information propagates across distinct layers of neurons, the information
encoded in the input image is transformed into an internal representation encapsulating the most
relevant features from the image. Convolutional layers, therefore, provide a natural approach to
take spatial context into consideration, with a stack of such layers increasing the sensitivity of sub-
sequent layers to features on increasingly larger scales, i.e. the size of the receptive field grows the
deeper we go in the network. Moreover, CNNs retain the local information while performing the
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FIGURE 10.4: Schematic of a convolutional neural network. The input image, here a snapshot of a
non-linearly evolved density field, is scanned using a convolutional kernel to extract spatial features.
There is a set of such kernels in one convolutional layer to extract distinct features, yielding a set
of feature maps. In the standard framework, a subsequent pooling step downgrades the resolution,
and the convolutional and pooling steps are repeated until the input image is reduced to a compact
representation of features, at which point it is flattened to a vector and fed to a fully connected layer,
eventually resulting in a given output.

convolution on adjacent pixels, such that convolutional layers allow both local and global informa-
tion to propagate through the network (Lecun, Bengio, and Hinton, 2015).

Such deep CNNs have been particularly useful for image processing and pattern recognition,
and are therefore gaining in popularity in the cosmological community. Caldeira et al. (2018) ex-
ploited deep CNNs for the reconstruction of CMB lensing potential. Schmelzle et al. (2017) imple-
mented a similar network architecture for cosmological model discrimination using noisy conver-
gence maps, capturing non-Gaussian information from the data. Based on the work of Gupta et
al. (2018), Ribli, Pataki, and Csabai (2019) implemented an improved CNN architecture, exploiting
such non-Gaussian information in simulated weak lensing maps, which led to tighter cosmologi-
cal constraints. The application of CNNs to fields on the sphere has recently been the subject of a
few investigations. Cohen et al. (2018) used spherical convolution in Fourier space to implement
spherical CNNs, while Perraudin et al. (2019) devised a graph-based representation of spherical
convolutional layers, which they applied to a classification problem of weak lensing mass maps
derived from distinct cosmological models. Krachmalnicoff and Tomasi (2019) developed a pixel-
based algorithm to build spherical CNNs, showcasing its performance for the estimation of cosmo-
logical parameters from simulated CMB maps. Recent work involving the large-scale structures are
outlined in Chapter 12.

10.3 Overfitting

During training, there is a risk that the neural network learns about specific recurring features
present in the training set, which are not relevant or useful in practice, and this is known as overfit-
ting (Draper and Smith, 2014). As a result, the network weights are tuned to detect these particular
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features in the test set, such that they overlook the actual informative features in the data.

To alleviate the risk of overfitting, regularization methods (e.g. Nowlan and Hinton, 1992),
where weight penalties are introduced in the loss function, are commonly employed. A concep-
tually straightforward solution to overfitting was recently proposed in the form of dropout (Srivas-
tava et al., 2014). This technique entails switching off a given fraction of randomly chosen network
weights by setting them to zero, such that only the fraction of non-zero weights are updated during
training. This is equivalent to sampling different networks in the total number of possible networks
for the given architecture, where each network can learn about specific features, with the ensemble
of networks being insensitive to these features, thereby preventing overfitting. Dropout, therefore,
allows the network to learn distinct features, without overlearning certain features present in the
data, leading to significant improvement in the performance of deep networks (Srivastava et al.,
2014). In the next section, we describe another alternative involving data augmentation, which we
employ in training our neural network in Chapter 12.

10.4 Data augmentation

Training deep neural networks requires a large amount of data and it is well-known that a large
data set is conducive to network performance due to the inherent model complexity. However, this
may be a limitation for certain problems where it is computationally expensive to generate large
training sets, as in the case of cosmological N-body simulations. Data augmentation provides a
straightforward solution to this predicament by artificially augmenting the training set size. To this
end, data augmentation takes an original piece of data and makes a particular modification to it,
such that both the original and synthetically modified data can be used as inputs to the network (e.g.
Witten et al., 2016). Convolutional layers, for instance, encode a certain degree of invariance with
respect to translation, orientation and size, and this is essentially the premise of data augmentation.
Some commonly used techniques are:

• Flipping the image across either the horizontal or vertical axis;

• Applying a random rotation to the image;

• Applying a certain translation to the image;

• Adding artificial (Gaussian) noise to the image pixels;

• Randomly cropping a certain portion of the image.

The above transformations generate a similar image which the neural network can learn from, with-
out being biased by the salient features in the original image. As a result, this prevents the net-
work from learning irrelevant patterns or features in the original data set. The effectiveness of the
above standard data augmentation techniques for image classification was recently demonstrated
by Perez and Wang (2017). In Chapter 12, we artificially augment our training set on the fly by
performing a random rotation to our cosmological simulations, such that we extract 3D slices from
a randomly oriented region.
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Chapter 11

Generative adversarial networks

This chapter draws from Kodi Ramanah, Charnock, and Lavaux (2019).

11.1 Introduction

Generative adversarial networks were first proposed in the seminal work of Goodfellow et al.
(2014), and have emerged as powerful generative models, albeit with some limitations, as described
below, which have been addressed by recent developments. In the standard GAN framework, gen-
erative modelling is formulated as a game between two competing networks, trained in an adver-
sarial setting. A generator network, parameterized by a vector θ, Gθ produces some artificial data
given some vector of random noise, and a discriminator network D differentiates between the syn-
thetic output of the generator and the true data. Otherwise said, the generator network provides
a way to map one distribution to another, and notably produces samples from the latter target
distribution.

The game between the generator Gθ and discriminator Dε can be formally expressed as the
minimax objective of distance V(Pr, Pg):

V(Pr, Pg) = min
θ∈RNg

max
ε∈RNd

E
x∼Pr

[log (Dε(x))] + E
z∼Pz

[log (1−Dε(Gθ(z)))] , (11.1)

where Pr corresponds to the data distribution and Pg is the model distribution defined by the dis-
tribution Pz transformed by the generator Gθ , with θ corresponding to the network weights. The
source distribution Pz is often a uniform or Gaussian distribution. In this work, the vector z, and the
corresponding distribution Pz, are provided by another complex distribution, as discussed in Sec-
tion 12.4. We note that the discriminator network must also be provided and optimized according
to the weights ε.

The training phase is completed when a Nash equilibrium (Nash, 1951) is reached, i.e. when
neither of the two opponents can improve by unilaterally adjusting their strategy, and the dis-
criminator cannot distinguish between the true and artificial data. At this point, the generator, in
principle, would have learned to output a sufficiently good representation of the real data proba-
bility distribution, i.e. Pg ≈ Pr, and would therefore be able to map a known or latent probability
distribution to the target data distribution.

Unfortunately, the standard GAN framework is vulnerable to training instabilities, often result-
ing from issues involving vanishing gradients or mode collapsing, where the generator output lies
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FIGURE 11.1: Schematic of a generative adversarial network, where two networks are trained in an
adversarial setting. The task of the generator is to generate realistic samples from input random noise
and the discriminator takes as input the generated or fake samples and classifies them as real or fake.
The two networks compete against each other until the discriminator can no longer distinguish be-
tween the real and fake samples, at which point the generator has learned how to map random noise
to extremely realistic samples.

in a restricted phase space, thereby producing incoherent results. In remainder of this chapter, we
review some of the successes of the improved deep convolutional GAN and outline the underlying
conceptual framework of the recently proposed variant of Wasserstein GAN.

11.2 Deep convolutional GANs

Despite the drawbacks outlined above, GANs have still been shown to be extremely successful.
Radford, Metz, and Chintala (2015) developed an improved GAN architecture, known as deep
convolutional GAN (DCGAN), by replacing the multilayer perceptrons in the generator and dis-
criminator networks with convolutional layers (Lecun, Bengio, and Hinton, 2015). A schematic of
the DCGAN is provided in Fig. 11.1. Other improvements, such as batch normalization (Ioffe and
Szegedy, 2015), i.e. ensuring that the input to each unit is normalized with zero mean and unit vari-
ance, were also introduced to stabilize the learning and promote gradient flow in deeper networks.
Such infrastructural upgrades result in overall improved training stability and render the network
more robust to discrete-mode and manifold model collapse (Metz et al., 2016; Arjovsky and Bottou,
2017). Nevertheless, DCGANs remain susceptible to model instabilities.

11.3 Wasserstein GANs

Arjovsky, Chintala, and Bottou (2017) proposed another variant of GAN, which encodes an alterna-
tive loss function based on the Wasserstein-1 distance between a real and a generated distribution,
also known as the Earth Mover’s distance. This distance can be informally and intuitively inter-
preted as the minimum cost of transporting mass in order to transform a probability distribution
into a given target distribution. This variant, referred to as Wasserstein GAN (or WGAN) despite
there being no adversarial component to the training, has shown to be capable of learning arbi-
trarily complex probability distributions of a panoply of data sets (Arjovsky, Chintala, and Bottou,
2017), leading to extremely realistic results (e.g. Karras et al., 2017).
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FIGURE 11.2: Schematic representation of Wasserstein halo painting network implemented in this
work. The role of the generator is to learn the underlying non-linear relationship between the input
3D density field and the corresponding halo count distribution. The difference between the output of
the critic for the real and predicted halo distributions is the approximately learnt Wasserstein distance
and is used as the loss function which must be minimized to train the generator.

The Wasserstein distance, W(Pr, Pg), has the desired properties for the convergence of se-
quences of probability distributions (Arjovsky, Chintala, and Bottou, 2017). The WGAN value
function can be expressed via the Kantorovich-Rubinstein duality (Villani, 2008) as

W(Pr, Pg) = sup
C∈C

{
E

x∼Pr
[Cε(x)]− E

z∼Pz
[Cε(Gθ(z))]

}
, (11.2)

where the supremum is over the set of 1-Lipschitz functions denoted by C, such that minimizing
the above value function with respect to the generator parameters will also minimize W(Pr, Pg)

for the case of an optimal discriminator. The discriminator network D(x) is now designated as the
critic C(x), since it is not trained to differentiate or classify as in the standard GAN framework. To
ensure that the critic is a 1-Lipschitz function, the form of the function that the network takes must
be closed. This condition can be enforced by restricting the allowed weight space for the critic net-
work. WGANs are, therefore, simply generative networks where the loss function is learned using
a second network. This new distance mitigates the concept of adversarial training by broadening
the concept further and allowing to measure differences between whole distributions. By relying on
the earth-mover concept, it also ensures that the critic stays within a safe subspace contrary to GAN
discriminatory network. A schematic representation of our generative network, used to establish a
mapping between the 3D density field and its corresponding halo count distribution, is illustrated
in Fig. 11.2. A detailed description of the training methodology is provided in Section 12.4.

11.4 Prior work involving GANs

GANs, and their variants mentioned above, are becoming increasingly popular among the astro-
physical and cosmological community by virtue of their versatility and effectiveness to achieve
impressive results. Mustafa et al. (2019) developed a DCGAN to generate cosmological weak lens-
ing convergence maps with high statistical confidence, while the de-noising of such maps within a
GAN framework was investigated by Shirasaki, Yoshida, and Ikeda (2018). GANs have also been
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optimized for the efficient generation of realistic 2D realizations of the cosmic web, demonstrating
their ability to capture the complexity of large-scale structures (Rodríguez et al., 2018). Tröster et al.
(2019) employed a GAN to map dark matter density fields to gas pressure distributions, thereby
augmenting N-body simulations with baryons. Other interesting applications of GANs involve de-
noising galaxy images to recover impressive detailed features, outperforming standard convolution
methods (Schawinski et al., 2017), separating AGN from their host galaxy’s light profile (Stark et al.,
2018), deblending galaxy superpositions (Reiman and Göhre, 2018), atmospheric retrievals on exo-
planets (Zingales and Waldmann, 2018) and generating physically realistic galaxy images (Fussell
and Moews, 2018) and deep galaxy fields (Smith and Geach, 2019). The improved variant of WGAN
has been used for the generation and refinement of signal patterns of particle detectors from simu-
lations of cosmic-ray induced air showers (Erdmann et al., 2018). Zamudio-Fernandez et al. (2019)
recently used a WGAN to generate 3D cosmic neutral hydrogen (HI) distributions with properties
closely matching those from costly cosmological hydrodynamic simulations.
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Chapter 12

Painting halos from 3D dark matter fields

The work presented in this chapter is based on Kodi Ramanah, Charnock, and Lavaux (2019).

12.1 Introduction

Investigating the formation and evolution of dark matter halos, as the key building blocks of cos-
mic large-scale structure, is essential for constraining various cosmological models and further un-
derstanding our Universe. The highly non-linear dynamics involved nevertheless renders this a
complex problem, with N-body simulations currently the only tool to compute the non-linear grav-
itational evolution from initial conditions (e.g. Springel, 2005), yielding mock dark matter halo cat-
alogues as the main output. The resulting catalogues of positions, velocities and masses of halos
are necessary for cosmological inference from galaxy surveys. As an example, running very large
simulations of pure dark matter, such as FUR-DEUS (Alimi et al., 2012), to generate fake observa-
tions of the full Universe several times is not feasible, and requires a large amount of memory and
disk storage. A way to emulate such simulations, quickly and reliably, would be of use to a wide
community as a new method for data analysis and light cone production for the next cosmological
survey missions such as Euclid (Laureijs et al., 2011) and Large Synoptic Survey Telescope (LSST)
(Ivezic et al., 2008).

With the recent developments in the field of machine learning, deep generative modelling tech-
niques have emerged as a viable tool to construct emulators of expensive simulations. In this work,
we present such a deep learning approach to generate the 3D halo distribution from dark matter
simulations. Using our construction, the neural network is used to learn the mapping from the dark
matter density to halo fields and therefore predicts the abundance of halos at a given position based
on the large-scale density distribution. Once trained, the emulator is capable of rapidly predicting
simulations of halo distribution based on a non-linearly evolved density field. Furthermore, by
learning this mapping for different halo mass bins, we can also predict the mass distribution of the
halos.

A key aspect of our approach is that the neural network is able to paint a halo count distribution
from a numerically cheap non-linear density field, such as a realization obtained via Lagrangian
Perturbation Theory (LPT), which requires negligible computational resources on modern machines
relative to N-body simulations. The interest of this technique lies in the possibility that most of the
cosmological dependence of the observed matter distribution in the N-body simulation is already
encoded in the inexpensive LPT simulation. As a result, this approach would eliminate the need to



158 Chapter 12. Painting halos from 3D dark matter fields

run a full particle mesh simulation, thereby allowing detailed analyses of state-of-the-art surveys
to be feasible on regular computing facilities. The idea of painting complex astronomical objects
has been implemented in the past, notably for galaxies with MOLUSC (Sousbie et al., 2008) and LY-
MAS (Peirani et al., 2014). Another related work is the PINOCCHIO algorithm (Monaco et al., 2002;
Monaco, Theuns, and Taffoni, 2002) for identifying dark matter halos in a given numerical realiza-
tion of the linear density field. However, our aim here is to build an automated model generator
with even higher accuracy and insensitivity to the underlying cosmology.

We take inspiration from a recently proposed variant of generative models, known as generative
adversarial networks (GANs) (Goodfellow et al., 2014), which have met considerable success with
a range of applications, such as generating extremely realistic fake celebrities (Karras et al., 2017;
Karras, Laine, and Aila, 2018) and artificial bedroom images (Radford, Metz, and Chintala, 2015). In
particular, we will use the key ideas in training WGANs, i.e. GANs optimized using the Wasserstein
distance (Arjovsky, Chintala, and Bottou, 2017), to ensure that our network is able to paint halos
well. The GANs, and variants thereof, are described in depth in Chapter 11.

Neural networks have recently been employed for various aspects of large-scale structure anal-
ysis. He et al. (2019) devised a deep neural network to predict the non-linear cosmic structure
formation from linear perturbation theory, with the network architecture based on the U-Net (Ron-
neberger, Fischer, and Brox, 2015) learning model. Zhang et al. (2019) constructed a two-phase con-
volutional neural network architecture to map 3D dark matter fields to the corresponding galaxy
distribution in hydrodynamic simulations. Berger and Stein (2019) implemented a 3D deep convo-
lutional neural network to generate mock halo catalogues by identifying protohalos directly from
the cosmological initial conditions. This was preceded by a similar work by Lucie-Smith et al.
(2018), where a random forest classifier was used to trace the halos formed in N-body simula-
tions back to their initial conditions. Modi, Feng, and Seljak (2018) proposed a framework, with
the end product being the converse, to reconstruct initial conditions from the halo fields using the
multilayer perceptron, i.e. fully connected neural networks. Deep convolutional networks were
also used to classify the distinct components of the cosmic web such as filaments and walls from
N-body simulations (Aragon-Calvo, 2019).

This chapter is organized as follows. Section 12.2 describes several other network refinements
which we implement in designing our network architecture. Section 12.3 illustrates the relevant
aspects of the dark matter simulations used in the training and validation of our neural network,
as described in Section 12.4. We follow up by investigating the performance of the algorithm in
terms of various diagnostics, as detailed in Section 12.5. Finally, in Section 12.6, we summarize our
main findings and discuss the areas of application where our halo painting network, tailored for
mapping dark matter distributions to halo fields, can be optimized.

12.2 Network refinements

To optimize the performance of our halo painting network, we consider several architectural up-
grades which have been recently presented in the literature. In this section, we briefly describe the
network refinements which are implemented in our network architecture and training machinery.
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12.2.1 Inception

A particular deep convolutional architecture was proposed by Szegedy et al. (2015) and Szegedy
et al. (2016), code-named Inception, which achieved state-of-the-art performance for object classi-
fication and detection purposes. This is a novel level of organization which results in increased
network depth and width, thereby improving the efficiency of deep neural network architecture.

The original Inception module (Szegedy et al., 2015) consists of a series of convolutions, on the
same level, with kernel sizes of 5× 5, 3× 3 and 1× 1 in each Inception module, which is diagram-
matically represented in Fig. 12.1. In this diagram, the blue box represents convolution within each
feature space, while the gray convolutions are taken across features. In the case of blue convolu-
tions, the kernel size defines the receptive field of a layer, i.e. the size of the patch of the input
which affects the connected output. The outputs are concatenated and fed to the subsequent com-
ponents of the network, which may be another Inception module. This concatenation increases the
amount of features available for the next layer to make more computations. Stacking successive
Inception modules yields further depth, with each module being optimized to recognize features
on various scales. The Inception module, as proposed in Szegedy et al. (2015), also introduces max
pooling layers and 1× 1 convolutions. A max pooling transformation downgrades the resolution
of the input grid by some factor by taking local maxima. The two additional 1× 1 convolutions
are inserted in each branch before the 3× 3 and 5× 5 convolutions for dimensionality reduction to
limit the computational resources required to a reasonable amount. Indeed, by convolving along
the feature space, they may produce new compressed features with lower dimensions, though with
the same size for each feature. This possibility of controlled dimensionality reduction is the crux of
the Inception module.

The essence of Inception lies in increased network depth, while obviating the potential draw-
backs of deep convolutional networks. Naively stacking large convolutional layers to build very
deep networks is computationally expensive and renders the networks prone to overfitting. More-
over, gradient updates may not flow smoothly throughout such networks. The key advantage of
Inception is therefore a remarkable gain in quality where the computational workload is not greatly
increased compared to networks with lower depth and width.

12.2.2 Residual connections

A residual learning framework was proposed by He et al. (2016) to improve the training of deep
neural networks. Conceptually, the framework relies on a reformulation of a given layer as learning
the residual mapping with reference to its input, rather than directly learning the desired underly-
ing mapping. He et al. (2016) empirically demonstrated that such residual networks mitigate the
degradation issue, whereby very deep networks are susceptible to saturation and eventually degra-
dation of the training accuracy. This is the result of higher training error with increasing network
depth. Residual networks are commonly abbreviated as ResNets.

The desired underlying mapping can be formally denoted as H(xi), such that the stack of non-
linear layers would fit the residual mapping of F (xi) = H(xi)− xi, where i labels a given layer. The
original mapping can therefore be reformulated as H(xi) = F (xi) + xi. The hypothesis is that the
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conv, 3x3 conv, 5x5

conv, 1x1conv, 1x1

conv, 1x1

conv, 1x1

max pooling, 3x3

previous layer

filter concat

FIGURE 12.1: Original Inception block, with filter dimensionality reduction, as proposed by Szegedy
et al. (2015). The grey convolutional (“conv”) layers indicate the 1× 1 convolutions introduced for the
purpose of dimensionality reduction. We note that they are actually convolutions according along the
feature space, of dimension F, of the previous layer, which is mono-dimensional, to produce F̃ new
features but with the same physical size. As F̃ < F, we achieve dimensionality reduction with respect
to the number of features. The blue 1× 1 convolutional layer corresponds to a normal convolution
inside each feature. The output of the Inception module is the concatenation of the filters (“filter
concat”) from the respective convolutional layers. This increases the dimension of the feature space
depending on the number of output of each of the top convolutions. With the exclusion of the max
pooling path, we make use of this architecture in the Wasserstein halo painting network.

residual function of F (xi) is easier to optimize than the desired function of H(xi) (He et al., 2016).
The formulation of F (xi) + xi can be implemented via feedforward neural networks with “shortcut
connections”. Such connections skip one or more layers and perform identity mapping.

The implementation of residual connections in typical deep neural networks is straightforward.
The only modification involves adding an extra identity shortcut connection between the input to
a given layer and the output of the subsequent layer (cf. Fig. 12.2). Another positive aspect of
adding residual connections is that no extra parameters are required and therefore the computa-
tional workload is not greatly increased except for negligible element-wise addition. The residual
learning framework, in a nutshell, yields substantial accuracy gains by allowing extremely deep
networks to be trained since the gradient information can flow without degradation to the early
layers, thereby alleviating the vanishing gradient problem. In a standard encoder-decoder struc-
ture, this especially facilitates the propagation of small-scale information as the size of the images
is reduced gradually in the encoding phase (Isola et al., 2016).

In this work, we implement a combination of ResNets and Inception architecture, as depicted in
Fig. 12.3 with the same color convention as in Fig. 12.1, yielding residual Inception blocks. Szegedy
et al. (2017) have demonstrated that the introduction of residual connections within the Inception
module leads to significant improvement in training speed. The state-of-the-art performance ob-
tained by combining these two network refinements is a crucial factor behind our choice of network
architecture for the halo painting network.

12.2.3 Gradient penalty

As discussed above, the weights of the critic network for WGANs must be restricted to ensure that
this network is 1-Lipschitz. When first conceived, weight clipping was used to enforce this criterion.
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FIGURE 12.2: Residual learning block, as proposed by He et al. (2016). Activations are denoted by
A, with element-wise addition indicated by the plus (+) symbol. In this case, the residual learning is
implemented via an identity shortcut connection which skips two convolutional layers. As such, the
output of the above ResNet is xi+1 = F (xi) + xi, where F (xi) represents the residual mapping. In
the case where xi and F (xi) do not possess the same dimensions, an additional convolutional layer
without any activation function is introduced before the sum.

However, Gulrajani et al. (2017) demonstrated that the use of weight clipping can lead to poor per-
formance of WGANs in certain scenarios, such as optimization difficulties, which may be mitigated
via batch normalization (Ioffe and Szegedy, 2015), although this does not guarantee convergence of
very deep WGAN critics as illustrated in their work. Gulrajani et al. (2017) therefore came up with
an alternative in the form of a gradient penalty in the loss function. This obviates the undesirable
behaviour induced by weight clipping, while yielding substantial performance improvements.

Since a differentiable function is 1-Lipschitz if and only if the norm of its gradient is at most 1
everywhere, Gulrajani et al. (2017) proposed to directly constrain the gradient norm of the critic’s
output with respect to its input. The Lipschitz constraint is hence imposed by penalizing the gra-
dient norm for random samples x̂ ∼ Px̂, where x̂ = εx + (1− ε)x̃ and ε is sampled randomly and
uniformly, ε ∈ [0, 1], resulting in the following augmented objective:

L = E
z∼Pz

[Cε(Gθ(z))]− E
x∼Pr

[Cε(x)] + λ E
x̂∼Px̂

[
(||∇x̂Cε(x̂)||2 − 1)2

]
, (12.1)

where λ is an arbitrary penalty coefficient and λ = 10 has been shown to work well for a range
of architectures and data sets (Gulrajani et al., 2017). Essentially, we must introduce a gradient
penalty term in the original critic loss, which forces the gradient of the critic network to remain
close to unity. Alternatively, interpreting the loss function as the opposite of the log-likelihood, this
term states that not more than a fluctuation of ∼

√
1/10 compared to one is allowed for the norm

of the gradient.

A key advantage of the gradient penalty alternative is that it yields stable gradients which al-
lows training of deep and complex networks without requiring ad hoc solutions such as batch nor-
malization.
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12.3 Cosmological simulations

In this work, we adopt the reference element of the VELMASS cosmological simulation suite. The
VELMASS suite is comprised of 10 cosmological simulations, 9 of which are probing slightly different
variations of a selection of cosmological parameters whilst using the same initial phases. The 10th

simulation has the same parameter values as the central simulation described below, but with dif-
ferent initial phases, such that it can be independent from the other simulations, allowing us to per-
form blind model comparison. The simulation that we use in this work assumes a Planck-like cos-
mology (Planck Collaboration et al., 2016b) with Ωm = 0.315, Ωb = 0.049, H0 = 68 km s−1Mpc−1,
σ8 = 0.81, ns = 0.97 and YHe = 0.248 (named “central” or Ω simulation). The power spectrum is ob-
tained through the analytic prescription of Eisenstein and Hu (1999), and the initial conditions were
generated by MUSIC (Hahn and Abel, 2011). This simulation suite is designed to test the robustness
of analysis tools to acceptable variations in cosmology.

The cosmological simulation covers a volume of 2000h−1 Mpc with 20483 particles tracing dark
matter. It was initialized at a redshift z = 50 and evolved to present time with GADGET2 (Springel,
2005), adopting a softening length for gravity equal to 48h−1 kpc corresponding to 1/20 of the
mean interparticle separation. The ROCKSTAR halo finder algorithm (Behroozi, Wechsler, and Wu,
2013) was subsequently employed to extract the halos from the simulation and generate the 3D
halo field. The halo identification involves finding particles belonging to regions for which the
local density is above a specific threshold, in our case as derived by the Friend-Of-Friend linking
length, 45 times the mean density. Sub-halos are found by reducing recursively the linking length
to find more compact structure. Each halo/sub-halo is pruned if it holds less than 10 particles as
they are considered to be unstable. ROCKSTAR further performs a test for each particle to check if
it is gravitationally bound to the structure. If this is not the case, the particles are removed from
the halo. Once all these procedures are done, we are left with 23% of the total mass in structures
considered as virialized by ROCKSTAR. We histogram the halo counts onto a grid of 5123 which
is the resolution we choose to work at, i.e. each voxel has a side length of L ≈ 4h−1 Mpc. The
halos were selected in four equally spaced logarithmic bins in the mass range: 1012 − 1014 h−1 M�.
Finally, we also produce the result of a pure second order Lagrangian perturbation theory (2LPT)
simulation by setting the redshift for which MUSIC must create initial conditions to z = 0. We build
the corresponding gridded density fluctuation field by applying the cloud-in-cell (CIC) algorithm
(e.g. Hockney and Eastwood, 1988) to the particle distribution at the same resolution that we chose
for the halo distribution, i.e. each voxel with length L ≈ 4h−1 Mpc.

We can test the cosmological dependence of the halo painting network by complementing the
Ω simulation with other variants obtained assuming different cosmological parameters, for testing
purposes. The initial random phases are kept the same and only the effects induced by different
cosmological parameters are introduced. In this work, we concentrate on two additional 20483

cosmological simulations with Ωm = 0.355 and Ωm = 0.275. We repeat the entire procedure,
above, for these two simulations, i.e. execution of the N-body simulation, identification of halos,
construction of the 2LPT field and both resampling the halos and performing the CIC of the 2LPT
field onto a 5123 grid.
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FIGURE 12.3: Residual Inception block, as implemented in this work, for the halo painting network
architecture. Our Inception module is a slightly modified version of the original architecture (cf.
Fig. 12.1). In particular, we replace all 2D convolutional layers with their 3D counterpart and the only
dimensionality reduction comes from not padding the input when performing the convolutions. All
convolutional layers employ 10 filters, with a leaky ReLU activation implemented after the residual
connection.

12.4 Model architecture and training methodology

Our halo painting network is built to perform the map between the dark matter distribution and
the halo count distribution. This allows us to use physical intuition to guide the model architecture.
Considering the halo mapping network, we input a patch of the 2LPT field directly, unlike the usual
conception of a GAN where a flat array of noise is normally used as the input. We are therefore
physically mapping from a well-understood distribution of dark matter instead of a latent space.
Although our halo painting network is not a generator in the classical machine learning sense,
we refer to it as the “generator” below to make the analogy with the WGAN training routine.
The “generator” terminology is also justified because the mapping network transforms a complex
density field sampled from a Gaussian random field transformed by the 2LPT dynamics into a halo
field with even less trivial statistical properties.

Knowing that information from the dark matter field is aggregated from a relatively local patch
via some non-linear process allows us to choose a simple form for the generator network, a schematic
of which is shown in Fig. 12.4. We connect the local region of the dark matter field using a 3D
modification of the residual Inception block, shown in Fig. 12.3. Since the receptive field of 5× 5
convolution kernel is 20h−1Mpc per side, then performing a second 5× 5× 5 convolution on the
output of the first increases the receptive field to ∼ 40h−1Mpc per side. In fact, since the kernels are
3D, the furthest distance that information can be propagated from the dark matter field to the halo
distribution is 70h−1Mpc across the diagonal of such stacked kernels, whilst still learning the small
scale features from the 1× 1× 1 kernels and the mid-scale features with the 3× 3× 3 kernels. This
distance is far enough that the halo field should be insensitive to influences at such a scale. Since we
use residual connections in the Inception blocks, we combine structure from distant patches, whilst
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FIGURE 12.4: Schematic representation of the halo painting network implemented in this work. The
network consists of two residual Inception blocks (cf. Fig. 12.3), followed by a series of four convo-
lutional layers with 1× 1× 1 kernel, across feature space as in the gray box in the Inception module.
The activation function used is a leaky rectified linear (leaky ReLU) unit, except for the output layer
where a rectified linear (ReLU) activation ensures non-negative halo counts in the generated 3D halo
field. The input to the halo mapping network is a 3D realization of density field, with the output being
the corresponding halo count distribution. The input is conveniently chosen to be larger to eliminate
the need for padding. In the schematic, we indicate the size of the tensors used during training. We
can use any input density fields sampled on a mesh with side Ndensity > 25 which will predict a halo
field sampled on a smaller mesh with side Nhalo = Ndensity − 8.

Input 
(3D real/generated 

halo counts)

Output 
(scalar)

flattening + fully connected 

8x22³

c
o
n

v,
 7

x
7
x
7

leaky

ReLU

leaky

ReLU

16x18³

leaky

ReLU

32x8³ 64x8³ 32768 1

c
o
n

v,
 5

x
5

x
5

c
o
n

v,
 3

x
3
x
3

c
o
n

v,
 1

x
1
x
1

real

generated leaky

ReLU

FIGURE 12.5: Schematic representation of the critic employed in this study. The network encodes a
series of four convolutional layers, gradually reducing their respective kernel sizes from 7× 7× 7 to
1× 1× 1, and activated with leaky ReLU, with the corresponding output flattened and fed into a fully
connected layer with linear activation. The critic reduces the input real and generated halo fields each
to a compact scalar representation whose difference is an approximation to the Wasserstein distance.

still retaining a close relation to the density field itself. To learn the non-linear process from this
receptive density field, we use four convolution layers with kernel size 1× 1× 1 with no residual
connection, which provides the non-linearity necessary to combine the local density distribution
and perform the map to the distribution of halo counts. Since there is an enormous complexity in
the 2LPT field, we use many filters in each layer to learn the wide variety of possible features. Every
single kernel in our network has 10 filter channels to provide an extremely large path to build the
complex non-linear map. For such a generator, we have 31,930 trainable parameters which is rel-
atively few (in machine learning terms). The non-linearity is provided by the popular leaky ReLU

activation function with a leaky parameter of α = 0.1. To ensure the positivity of the halo count
field, we use ReLU at the last layer.

In principle, we can train the generator network using 2LPT density patches as small as 93

voxels to predict a single halo count distribution voxel (due to using convolutions with no padding),
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FIGURE 12.6: Training and validation loss for our physical mapping network for the first 5 × 104

weight updates. These respective losses are an approximation to the Wasserstein distance, as mea-
sured by the critic. As expected, this distance tends to zero as training proceeds and our halo painting
network effectively learns the mapping from the dark matter to halo distribution. We note that the
validation loss is closely tracking the training loss. As it can be seen, the two curves are mostly over-
lapping in the above plot, except at the very edge.

although the learned kernels, and therefore the predicted halo count field, would not be sensitive to
any information from outside of this region. The maximum extent of the generator comes from the
size of the kernels in the two residual Inception blocks, which is 253 voxels of the density field to
predict a 173 halo patch. To increase the number of features to attempt to learn at once, we actually
select 583 voxels from the gridded 2LPT field to predict a 503 voxel halo count distribution.

A major advantage to this prescription of building the generator in such a way is that we can
train the network using small simulations and predict massive halo fields provided with large,
cheap 2LPT fields. For example, we could, in parallel, make millions of 583 voxel cosmological
simulations and run the halo finder on each for the training data, which is relatively quick in com-
parison to running an extremely large, say 20483 voxel simulation. Then, using the trained genera-
tor, we could predict any size halo field just by providing the 2LPT calculation, which is relatively
cheap compared to performing the same sized simulation. Such a large 2LPT density field slab with
508× 508× 58 voxels is used to predict a 500× 500× 50 halo distribution slab and the projection is
shown in Fig. 12.7 for the central slice of depth ∼ 100h−1 Mpc and side length of ∼ 2000h−1 Mpc.

Provided with our generator network which during training, as described above, will take 583

voxel 2LPT fields to paint 503 voxel halo count distributions, we now need to build a critic network
to measure the distance between the painted halo counts and the corresponding real halo counts
from the VELMASS simulation. Our critic, as depicted in Fig. 12.5, utilizes a series of four convo-
lutional layers, while gradually reducing their respective kernel sizes from 7× 7× 7 to 1× 1× 1,
and activated with leaky ReLU (α = 0.1), with the output of the last convolutional layer flattened
and fed into a fully connected layer with linear activation. The critic encodes relevant information
from the input real or predicted halo fields into compact representations, thereby reducing the size
of the 3D distributions. The output of the critic is a single scalar which is used to compute the ap-
proximately learned Wasserstein distance between the predicted and true halo distributions given
a particular generative network. This output can therefore be used to compute the loss function
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(11.2) which is minimized to train the generative network. We implement the above networks and
the training routine outlined below in TENSORFLOW (Abadi et al., 2016).

During training, we load both the entire 2LPT density field and histogrammed halo count dis-
tribution from the Ω VELMASS simulation into the TENSORFLOW graph and select by index sub-
volume elements of size 583 and 503, respectively, which massively reduces computation time com-
pared with passing the 3D slices of data at each weight update. These patches corresponds to side
lengths of L ≈ 225h−1 Mpc and L ≈ 200h−1 Mpc, respectively. The input to the generator is ran-
domly chosen and the corresponding true halo counts volume is selected. Note that here, the batch
size is unity, such that the number of weight updates corresponds to the number of density field
patches used to train the generator. We use a 5123 simulation box for training, where we use a
large portion of the box for training and the remaining section for validation, such that we utilize
non-mutual parts of the box for the training and validation set. To encode some further symme-
tries through our training set, we also perform a rotation of the selected patches, thereby extracting
the input 3D slice from a randomly oriented region. The generator employs the gradient of the
Wasserstein loss function (11.2) with respect to its parameters θ for training.

The initial training step involves the optimization of the weights of the critic network to mini-
mize the augmented loss function (12.1), while concurrently freezing the parameters of the genera-
tor. The weights of the critic must be updated ncritic times, where ncritic is sufficient for the critic to
converge. The samples for this initial step are randomly selected (and rotated) 2LPT fields and cor-
responding true halo counts. In the subsequent step, the critic weights are temporarily anchored,
and the generator parameters are adjusted. The training routine then proceeds in iterative fash-
ion, until an overall convergence of the generator is achieved. The training rationale is to reduce
the Wasserstein distance between the true halo counts and the halo counts mapped from the cor-
responding input density field such that the generator gradually learns the correct mapping. The
training procedure outlined above is represented schematically in Fig. 11.2.

In this work, we use ncritic = 5 and set the arbitrary coefficient for the gradient penalty to
λ = 10, with ε having a randomly and uniformly drawn value 0 ≤ ε ≤ 1. We implement the
popular Adam (Kingma and Ba, 2014) optimization algorithm, with a learning rate of 10−4 and first
and second moment exponential decay rates of 0.5 and 0.999, respectively. We trained the network
for ∼ 5× 105 generator weight updates for the different mass bins, requiring around 30 hours on a
NVIDIA Quadro P6000. The training and validation loss for the first 5× 104 weight updates of our
halo painting model is illustrated in Fig. 12.6. This is the approximately learnt Wasserstein distance
which tends to zero as training proceeds and the generator effectively learns the mapping from the
dark matter to halo distribution.

12.5 Results

Fig. 12.7 depicts the reference and predicted halo fields, for a 3D slice of depth ∼ 100h−1 Mpc and
side length of ∼ 2000h−1 Mpc, and the difference between the reference and predicted fields, ob-
tained from a completely unseen simulation. The corresponding 2LPT density field is also shown
for the sake of completeness. Qualitative agreement is impressive, implying that the halo painting
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FIGURE 12.7: Prediction of 3D halo field by our halo painting model for a slice of depth∼ 100h−1 Mpc
and side length of ∼ 2000h−1 Mpc. A blind validation dataset is shown in the top right panel, with
the predicted halo count depicted below it. The corresponding 2LPT density field is displayed in the
top left panel, with the difference between the reference and predicted halo distributions depicted
in the lower left panel. A visual comparison of the reference and predicted halo count distributions
indicates qualitatively the efficacy of our halo painting network. Note that we did not normalize the
2LPT density field in this work, which renders the performance of our network even more remarkable.

network is capable of mapping the complex structures of the cosmic web, such as halos, filaments
and voids, to the corresponding distribution of halo counts. We now assess and validate the perfor-
mance of our halo painting model using quantitative diagnostics.

We illustrate the conditional probability distribution of the predicted halo count per voxel given
the respective true (or reference) value in the left panel of Fig. 12.8, with the right panel depicting
the distribution of the difference between the reference and predicted values. The conditional prob-
ability distribution, which accounts for the intrinsic halo distribution, indicates that our predictions
fare well in lower and average density environments (counts less than 10) while it overshoots when
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FIGURE 12.8: Left panel: The conditional probability distribution of the predicted halo count per voxel
given the corresponding true (i.e. reference) value. This properly represents the error in our predic-
tion, while accounting for the intrinsic halo distribution. Our network predictions fare well in lower
and average density environments with halo counts less than 10, but overshoots when the halo count
is higher. There are, however, very few regions which reach such high halo count (. 0.03%), such that
our predictions are not often skewed by such rare occurrences. Right panel: The distribution of the
difference between the reference and predicted halo counts per voxel. This shows that the difference
is close to zero for the majority of the voxels, with the difference being larger than 3 for only ∼ 1.5%
of the total number of voxels.

the halo count is high (counts greater than 10). But it is important to note that there are very few
regions which reach such high halo count (. 0.03%) and thus our network predictions are not often
skewed by such rare occurrences. The distribution of the difference shows that our network predic-
tions for most voxels closely match the corresponding true values, with the difference being larger
than 3 for only ∼ 1.5% of the total number of voxels. We now assess and validate the performance
of our halo painting model using other quantitative diagnostics.

12.5.1 Two-point correlation and power spectrum

As quantitative assessment, we employ summary statistics, as per the standard practice in cosmol-
ogy. These summary statistics provide a reliable metric to gauge our halo painting network in terms
of their capacity to encode essential information.

The two-point correlation function, denoted by ξ(r), is the quintessential measure employed by
cosmologists, along with its Fourier transform, the power spectrum P(k), defined as follows:

ξ(|r|) = 〈δ(r′)δ(r′ + r)〉 (12.2)

P(|k|) =
∫

d3r ξ(r)eik·r, (12.3)

where the δ’s correspond to the field relative contrast, i.e. δ(r) = ρ(r)/ρ̄− 1, with ρ(r) the matter
density and ρ̄ the mean matter density. Assuming the cosmological density field is approximately a
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Gaussian random field, as is the case on the large scales or at earlier times, the above two statistics
provide a sufficient description of the field.

We first consider the power spectra of the reference and predicted halo distributions, denoted by
Phh(k) and Ppp(k), as a standard measure for the description of the matter and halo distributions.
The indices p and h label the predicted and true (reference) halo modes, respectively. The top
left panel of Fig. 12.9 illustrates their respective mean and 1σ confidence regions for one thousand
randomly selected patches with side lengths of L ≈ 400h−1 Mpc from a blind set of data, thereby
quantitatively showcasing the remarkable performance of the halo painting model in learning the
map from 2LPT density fields to halo number counts.

We also investigate some standard diagnostics at the level of two-point correlation functions
in Fourier space to evaluate the model performance against the ground truth. The three metrics
considered, each dependent on the mode k, are as follows:

1. Transfer function (T(k))

T(k) ≡
√

Ppp(k)
Phh(k)

(12.4)

2. Cross correlation coefficient (rc)

rc(k) =
Php(k)√

Phh(k)Ppp(k)
(12.5)

3. Stochasticity (s(k))

s(k) = Phh(k)(1− rc(k)2), (12.6)

where, as before, Phh(k) and Ppp(k) are the auto power spectra of the reference and predicted halo
fields, respectively, while Php(k) corresponds to the cross power spectrum of the reference and
predicted halo field. The transfer function, defined as the square root of the ratio of the two auto
power spectra, indicates the discrepancy in amplitudes, as a function of the Fourier modes, whilst
the cross correlation coefficient characterizes the mismatch in phases between the real and predicted
halo count fields. These two diagnostics quantify the predictive capability of our halo painting
network, while the fraction of the variance that cannot be accounted for in the true model is encoded
in the stochasticity.

Fig. 12.9 displays the scale dependence of the above summary statistics for the reference and
predicted halo count fields with one thousand independent randomly selected patches, from an
unseen simulation, in terms of their respective mean and 1σ confidence regions. The power spectra
of the predicted halo fields match extremely closely that of the reference halo distributions. The
cross correlation coefficient is close to unity on the large scales and drops to rc ≈ 0.7 at k ≈ 0.4.
The turnover, at k ≈ 0.25, is due to the grid resolution, and the prediction in the shaded area is not
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FIGURE 12.9: Summary statistics of the 3D power spectra of the density, reference and predicted halo
fields for one thousand randomly selected patches. The solid lines indicate their respective means,
while the shaded regions indicate their respective 1σ confidence regions, i.e. 68% probability volume.
The above diagnostics demonstrate the ability of our halo painting model to reproduce the charac-
teristic statistics of the reference halo fields and therefore provide substantial quantitative evidence
for the performance of our neural network in mapping 3D density fields to their corresponding halo
distributions. Note that the turnover in the cross-correlation coefficient is due to the grid resolution,
and the prediction in the shaded area is redundant in practice. The behaviour of the cross-correlation
coefficient and stochasticity of the halo field derived linearly from 2LPT, illustrated in the bottom pan-
els, shows that our network predictions reproduce the reference halo field with overall higher fidelity,
at least up to the regime limited by the grid resolution.

taken into account in practice. The above two-point summary statistics showcase the performance
of our network in predicting the entire halo distribution. We also make a comparison with the
corresponding diagnostics of the 2LPT halo field which corresponds to a statistical description of the
halo distribution, derived from the 2LPT density field, which is valid, by construction, at the two-
point level and on large scales. It is built by scaling the 2LPT density field by the adequate linear
bias factor so that we match the power spectrum of the halo field on large scales. The behaviour
of the cross-correlation coefficient and stochasticity of the 2LPT halo field, illustrated in the bottom
panels of Fig. 12.9, shows that our network predictions reproduce the reference halo field with
overall higher fidelity, at least up to the regime limited by the grid resolution. On large scales,
the ensemble mean stochasticity is lower by typically a factor of two, and its variance is smaller



12.5. Results 171

0.0 0.2 0.4 0.6 0.8 1.0

θ/π

105

B
(k

)
[h
−

3
M

p
c3

]

k1 = 0.2 h Mpc−1, k2 = 0.3 h Mpc−1

2LPT halo

Reference halo

Predicted halo

0.0 0.2 0.4 0.6 0.8 1.0

θ/π

0.8

0.9

1.0

1.1

B
(k

) p
re

d
/B

(k
) r

ef

Varying cosmology

Ωm = 0.275

Ωm = 0.315

Ωm = 0.355

0.0 0.2 0.4 0.6 0.8 1.0

θ/π

101

102

103

104

105

B
(k

)
[h
−

3
M

p
c3

]

k1 = 0.6 h Mpc−1, k2 = 0.7 h Mpc−1

0.0 0.2 0.4 0.6 0.8 1.0

θ/π

0.6

0.8

1.0

1.2

1.4

B
(k

) p
re

d
/B

(k
) r

ef

Varying cosmology

FIGURE 12.10: Left panels: Summary statistics of the 3D bispectra of the 2LPT, reference and predicted
halo fields for a given small- and large-scale configurations, k1 = 0.6 h Mpc−1 and k2 = 0.7 h Mpc−1,
k1 = 0.2 h Mpc−1 and k2 = 0.3 h Mpc−1, respectively. In both cases, there is a close agreement
between the bispectra from the reference and predicted halo distributions. In particular, our network
predictions are a significant improvement over the corresponding 2LPT halo fields. Right panels: The
deviation from the 3D bispectra of the reference halo distributions of the corresponding predictions
for the two cosmology variants. The above bispectrum diagnostics show that our network is more
sensitive to the fiducial cosmology than at the level of the two-point correlation function. The 1σ
confidence regions for five hundred randomly selected patches are depicted in each panel.

by about 30%. On small scales, which are not covered by our predictor, the two estimates behave
mostly in a similar way. Over the entire scale range, our predictor fails to go below the level given by
the mean Poisson shot noise. We will investigate in the future how to improve the current situation,
particularly on large scales as shot noise should not be a limitation given that the entire procedure
is fully deterministic, both on the N-body simulation and the neural network sides.

12.5.2 Three-point correlation and bispectrum

The non-linear dynamics involved in gravitational evolution of cosmic structures contributes to
a certain degree of non-Gaussianity of the cosmic density field on the small scales. Higher-order
statistics are therefore required to characterize this non-Gaussian field. We employ the bispectrum,
i.e. the Fourier transform of the three-point correlation function, to quantify the spatial distribution
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FIGURE 12.11: Top panels: The corresponding power spectra, as in the top left panel of Fig. 12.9, for the
fiducial and two cosmology variants, with 1σ confidence regions for one thousand randomly selected
patches. The top left and right panels demonstrate the capability of our halo painting network to
reproduce the two-point summary statistics when applied to simulations generated with the fiducial
cosmology. Bottom panels: The corresponding transfer functions highlight the consistency between the
power spectra reconstructed from the predicted and real halo fields for the three cosmology variants,
with the deviation from their respective reference spectra being below 10%. The above diagnostic
therefore shows that our halo painting model is slightly sensitive to the underlying cosmology at the
level of the power spectrum.

of the density field, defined as:

(2π)3δD(k1 + k2 + k3)B(k1, k2, k3) = 〈δ̂(k1)δ̂(k2)δ̂(k3)〉, (12.7)

where δD is the Dirac delta. The bispectra reconstructed from the 2LPT, reference and predicted
halo fields are displayed in Fig. 12.10. In particular, we show the bispectra for a given small- and
large-scale configurations. The construction of the 2LPT halo field is described above in Section
12.5.1. This allows us to make a fair comparison between the clustering of the respective halo fields.
The left panel demonstrates that our halo painting network reproduces the non-linear halo field
both on the small and large scales, and is therefore capable of mapping the complex cosmic struc-
tures apparent in the reference halo field. The agreement between the reference and predicted halo
bispectra on the largest scales is slightly suboptimal as both our halo painting and critic networks
are not tailored to produce structure on this level. Our network predictions also show a significant
improvement over the corresponding 2LPT halo fields. The above bispectrum computations were
performed using the publicly available PYLIANS1 code.
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12.5.3 Dependence on cosmology

We investigate the influence of the fiducial cosmology adopted for the simulations on the efficacy of
our halo mapping model. We depict in Fig. 12.11 the network predictions for two cosmology vari-
ants in terms of their respective two-point summary statistics. The corresponding transfer func-
tions, depicted in the bottom panels, show a deviation of about 10% from the reference power
spectra of their respective real halo distributions on the smallest and largest scales. The right panels
of Fig. 12.10 illustrate the ratio of the predicted to reference bispectra for the two configurations
displayed in the left panels. We find that there is a more significant dependence of our network on
the fiducial cosmology at higher order statistics.

The above diagnostics therefore demonstrate a certain degree of sensitivity on the underlying
cosmology, as expected, since the non-linearly evolved 2LPT density field does not capture com-
pletely the inherent cosmological dependence, in accordance with the results from He et al. (2019).
However, we expect that this sensitivity to the cosmology may be reduced by training over a range
of cosmologies, thereby rendering our halo painting network more resilient to cosmological priors.
We defer such an investigation to a future work.

12.5.4 Individual mass bins

To verify whether the network has properly encoded the halo mass information, we investigate the
mapping learned for the different mass bins. We depict in Figs. 12.12 and 12.13, respectively, the
corresponding power and bispectrum diagnostics for the four individual mass bins. Their respec-
tive predicted power and bispectra demonstrates the exceptional performance of our halo painting
network across the range of halo masses involved. The above diagnostics show that the network is
also capable of predicting the mass distribution of halos.

12.6 Summary and conclusions

We have presented a novel halo painting network2 for mapping 3D density fields to dark matter
halo fields, inspired by an implementation of a recent variant of generative adversarial networks
which employs the Wasserstein distance as a metric for training the network. Our network architec-
ture encodes some of the recently proposed refinements to optimize its effectiveness and efficiency.
The painting network employs residual Inception blocks, combining residual networks (ResNets)
and Inception architecture, a choice which was heavily inspired by our physical notion of the true
process. For improved training performance, we implement the gradient penalty method via the
addition of a penalty term in the critic loss, as an alternative to the standard weight clipping, to
enforce the Lipschitz-1 constraint on the critic. Our neural network, as a result of these upgrades,
is not prone to training instability issues and does not exhibit any undesired behaviour.

We trained our halo painting network on 2LPT simulations to infer the relationship between
the dark matter density field and the final halo distribution. We showcased the performance of our

1Available from https://github.com/franciscovillaescusa/Pylians
2The source code repository, including a JUPYTER notebook tutorial, is available at https://github.com/doogesh/

halo_painting

https://github.com/franciscovillaescusa/Pylians
https://github.com/doogesh/halo_painting
https://github.com/doogesh/halo_painting
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FIGURE 12.12: The corresponding power spectra, as in the top left panel of Fig. 12.9, for the individual
mass bins, with 1σ confidence regions for one thousand randomly selected patches. The above diag-
nostic, at the level of two-point statistics, highlights the remarkable performance of our halo painting
network across the range of halo masses involved. As such, it can also predict the mass distribution
of halos.

network in predicting the 3D halo distribution via a series of diagnostics, at the level of two- and
three-point summary statistics, demonstrating that this mapping can be learned to a sufficiently
high level of accuracy and that it reduces substantially the stochasticity over the Poisson shot noise.
This performance is especially remarkable given that our neural network has only ∼ O(104) train-
able parameters, which is relatively few parameters in machine learning terms. In essence, our
halo painting model allows us to rapidly generate simulations of halo distribution based on a non-
linearly evolved density field within a fraction of a second on modern GPUs. For instance, the
network prediction for a 2563 simulation size requires roughly one second on the NVIDIA Quadro
P6000.

A crucial aspect of our halo painting network, in a nutshell, lies in its capability to paint a halo
distribution from a computationally cheap non-linear density field. This, as a result, provides a
deterministic transformation to statistically populate the density field with highly non-linear struc-
tures such as halos. The halo painting network, therefore, bypasses the need to run full particle
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FIGURE 12.13: Bispectrum diagnostics for the individual mass bins, for five hundred randomly se-
lected patches. The top and bottom panels depict the large and small configurations, respectively,
as considered in the left panels of Fig. 12.10. At the level of three-point statistics, we find that our
network performs remarkably well across the range of halo masses involved.

mesh simulations, thereby ensuring that detailed and high-resolution analyses of current and next-
generation galaxy surveys, via the forward modelling approaches outlined below, are still feasible
on regular computing clusters. Another interesting advantage of our approach is that our network
can predict the 3D halo distribution for any arbitrary simulation box size due to the convolutional
kernels being translationally invariant. With this method, a large simulation box does not require
the tiling of smaller sub-elements, rendering our approach simple and elegant.

An immediate application of our halo painting network is that it can be employed for fast gen-
eration of mock halo catalogues and light cone production. This would be especially useful for the
data analysis of upcoming large galaxy surveys of unprecedented sizes, such as Euclid and LSST.
Another potential application of our network is that it can be utilized to fill in small-scale struc-
ture at a high resolution from low resolution large-scale simulations. It is also worth investigating
whether we can further improve the performance of our painting model by training on the dis-
placement field, rather than the density field, as carried out in He et al. (2019). We defer such an
investigation to a future undertaking. We also intend to explore other avenues, in terms of net-
work architecture and training methodology, to render our halo painting model robust to different
cosmologies, such that it could be optimized to constrain cosmological parameters via hierarchical
Bayesian models, such as the ALTAIR (ALcock-Paczyński consTrAIned Reconstruction) algorithm
(Kodi Ramanah et al., 2019).

The technology developed here is relevant to Bayesian forward modelling approaches for large-
scale structure inference. For instance, it may be incorporated as part of the forward model in the
BORG (Bayesian Origin Reconstruction from Galaxies) (Jasche and Wandelt, 2013a; Jasche, Leclercq,
and Wandelt, 2015; Lavaux and Jasche, 2016; Jasche and Lavaux, 2019) framework to generate
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sharp features due to redshift space distortions, such as Fingers of God effects. Since dark matter
dynamics is well-posed, such a neural network may be employed as an emulator to transform an
approximate large-scale model, such as Lagrangian Perturbation Theory (LPT), into a 3D halo dis-
tribution. Halo masses can subsequently be remapped to galaxy masses via another deterministic
function, while encoding a stochastic selection, yielding the galaxy distribution of interest.

Bayesian inference methods often require the adjoint gradient of the forward model in the sam-
pling procedure, and as such, neural networks are perfectly suited for such tasks since they are, by
their very nature, fully differentiable. The combination of statistical inference and machine learn-
ing is the plausible approach to accelerate high-resolution analyses of upcoming galaxy redshift
surveys and provide statistically interpretable results, while maintaining the scientific rigour.



177

Part V

Summary, conclusions and outlook
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Key aspects of doctoral work

In essence, this thesis presents the development of sophisticated Bayesian statistical inference and
machine learning techniques to extract cosmological information from the CMB polarization and
large-scale structures of the Universe. We showcased the efficacy and performance of the precise
tools developed for optimal exploitation of next-generation CMB missions and galaxy redshift sur-
veys to answer key unresolved questions at the frontiers of research in cosmology.

The Wiener filter is a powerful signal reconstruction tool that incorporates statistical informa-
tion about the signal and noise, with widespread cosmological and astrophysical applications. This
is nevertheless a highly non-trivial problem when dealing with large and complex data sets, as the
solution requires the inversion of dense matrices. In Chapter 2, we developed a high-performance
hierarchical method, known as the dual messenger algorithm, which guarantees numerical stabil-
ity and convergence, while obviating matrix inversions. As a proof of concept, we applied the
algorithm to maps of CMB temperature anisotropies in Chapter 3, showing that it outperforms a
conventional preconditioned conjugate gradient (PCG) method in terms of execution time, while
matching its efficacy of reconstruction.

In Chapter 4, we presented an extension to our dual messenger algorithm for the reconstruction
of polarized CMB maps. Unlike standard PCG solvers, our method can deal with high-resolution
joint temperature and polarization maps with relative ease. We showed how the algorithm can be
modified to generate fluctuation maps, which, combined with the Wiener filter solution, yield un-
biased constrained signal realizations, consistent with observed data. This generation of Gaussian
constrained realizations of the CMB sky is an essential component of present-day CMB analyses.
We demonstrated the performance of our algorithm for E/B separation using various convergence
diagnostics and illustrated the difficulties of standard PCG techniques in effectively treating this
fundamentally ill-conditioned problem.

In Chapter 5, we presented an augmented version of our dual messenger algorithm for spin
field reconstruction on the sphere, while accounting for highly non-trivial and realistic noise models
such as anisotropic correlated noise. We also described an optimization method for the estimation
of noise covariance from Monte Carlo simulations. Using simulated Planck polarized CMB maps
as a showcase, we demonstrated the capabilities of the algorithm in reconstructing pure E and B
maps, guaranteed to be free from ambiguous modes resulting from the leakage or coupling issue
that plagues conventional methods of E/B separation. Our algorithm, designated as DANTE (DuAl
messeNger filTEr), therefore, has a potentially key role in the data analysis of high-resolution and
high-sensitivity CMB data, especially with the range of upcoming CMB experiments tailored for
the detection of the elusive primordial B-mode signal.

In Chapter 8, we presented an extension to the Bayesian inference framework of BORG (Bayesian
Origin Reconstruction from Galaxies), originally developed for the non-linear 3D reconstruction of
large-scale structures, to constrain cosmological parameters using galaxy redshift surveys via a
novel application of the Alcock-Paczyński (AP) test. Our inference machinery allows the joint re-
construction of the non-linearly evolved density field as well as the initial conditions and expansion
history of the large-scale structures within the observed domain, while fully accounting for all un-
certainties inherent to the analysis. Our augmented Bayesian hierarchical framework, designated
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as ALTAIR (ALcock-Paczyński consTrAIned Reconstruction), exploits the high information content
of the cosmic expansion, extracting several orders of magnitude more information compared to
standard approaches. The novelty of this AP test lies in constraining the comoving-redshift trans-
formation to infer the appropriate cosmology which yields isotropic correlations of the cosmic ini-
tial conditions, with the underlying assumption relying purely on the geometrical symmetries of
the cosmological principle. Such an AP test does not rely explicitly on modelling the full statis-
tics of the field, with the robustness of our test to model misspecification verified via simulations.
This leads to another crucial advantage, namely that the cosmological parameters exhibit extremely
weak dependence on the currently unresolved phenomenon of galaxy bias, thereby circumventing
a potentially significant limitation. This is consequently among the first methods to extract a large
fraction of information from statistics other than that of direct density contrast correlations, without
being sensitive to the amplitude of density fluctuations. Using a mock SDSS-III survey as showcase,
we demonstrated the performance of ALTAIR in inferring tight constraints on the matter density and
dark energy equation of state.

In Chapter 9, we presented a novel likelihood which is robust to unknown systematic effects
such as foreground and target contaminations. Conceptually, this robust likelihood marginalizes
over the unknown large-scale contamination amplitudes. The primary motivation underlying this
work is the fact that forthcoming surveys, such as LSST and Euclid, will be limited by system-
atic uncertainties. In order to make progress in recovering cosmological information from such
surveys, it is essential to develop a data model to deal with such effects. We illustrated the effec-
tiveness of our robust likelihood, implemented within the BORG framework, via an application on a
mock SDSS-III catalogue subject to dust extinction contamination, while being maximally agnostic
about the foregrounds. We demonstrated that it allows the recovery of unbiased power spectrum
across all scales, unlike the standard Poissonian likelihood typically employed in large-scale struc-
ture analyses, which yields excessive power on large scales due to contamination from spurious
modes. Robust likelihood approaches, as presented in this chapter, will be crucial to control un-
known systematics and maximize the outcome of decadal galaxy surveys.

In Chapter 12, we presented a novel halo painting technique using physically motivated neural
networks to map approximate 3D dark matter fields to realistic halo distributions. Using such an
emulator, we can learn the non-trivial local relation between dark matter density field and halo dis-
tributions without relying on a physical model. In learning to paint halo distributions from com-
putationally cheap, analytical and non-linear density fields, we bypass the need for full N-body
simulations and halo finding algorithms. Furthermore, by design, our halo painting network needs
only local patches of dark matter density to predict the halos, and as such, it can predict the 3D halo
distribution for any arbitrary simulation box size. Our neural network can be trained using small
simulations and used to predict large halo distributions, as long as the resolutions are equivalent.
We assessed our model’s ability to generate 3D halo count distributions which reproduce, to a high
degree, summary statistics such as the power spectrum and bispectrum, of the reference realiza-
tions. Such complex dynamics emulators would substantially improve the efficiency of our above
forward modelling approaches.
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Outlook

There is scope for further development of the methods presented above, either to render them even
more efficient or as preparation for actual data applications by incorporating other complexities not
yet accounted for. We outline some potential extensions and scientific applications of our statis-
tical inference and machine learning tools below. The ultimate goal inevitably involves the more
interesting aspect of real data applications of these algorithms to obtain valuable scientific products
from state-of-the-art CMB and galaxy redshift data sets, thereby contributing towards solving the
unresolved mysteries at the frontiers of research in modern cosmology.

Exact global analyses of CMB polarization

Due to its high speed execution, coupled with lenient memory requirements, the dual messenger
(DANTE) algorithm can be optimized in exact global Bayesian analyses, such as Gibbs sampling, of
state-of-the-art CMB polarization data for a statistically optimal separation of pure E and B modes.
The development of the Gibbs sampling pipeline is especially relevant with the latest and final
release of Planck data (Planck Collaboration et al., 2018a) and the advent of next-generation CMB
experiments, such as CMB-S4 and Simons Observatory. Gibbs sampling of full-resolution polarized
CMB data will potentially yield scientific products of significant value and interest to the commu-
nity of cosmologists. The reconstructed maps may subsequently be employed for various applica-
tions such as power spectrum reconstruction, estimation of lensing potential, tests for foreground
contamination and searches for non-Gaussianity and statistical anisotropy such as hemispherical
power anisotropy.

Constraints on early Universe physics via CMB polarization

The application of DANTE, encoded within a statistically optimal Gibbs sampling scheme, to polar-
ization data from upcoming CMB missions with unprecedented sensitivity may lead to an eventual
detection of the primordial B modes. This groundbreaking detection will unlock the gravitational
wave window to the very early Universe and drastically improve our understanding of the cur-
rently obscure phases of primordial cosmology. The imprint of primordial gravitational waves
on the degree-scale B modes of the CMB polarization would strongly validate the inflationary
paradigm, while revealing the energy scale of cosmic inflation. This would potentially also yield
some insights about the fundamental symmetries of nature and properties of quantum gravity.

Redshift space distortions and unknown systematic effects

The ALTAIR formalism can be augmented to account for redshift space distortions, which is es-
sential to infer unbiased cosmological constraints. To render the inference from upcoming galaxy
redshift surveys more robust, we may employ our novel likelihood, presented in Chapter 9, in AL-
TAIR to deal with unknown systematic effects such as foreground and target contaminations. With
the control of systematics being a crucial limiting factor for modern galaxy surveys reaching un-
precedented depths and sky coverages, our Bayesian forward modelling approach is prepared to
cope with such challenges.
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Dynamical dark energy, neutrino masses and test of gravity

Within the modular statistical programming scheme of ALTAIR, we may encode the parameter in-
ference of the equation of state of distinct phenomenological dark energy models, which may shed
some light on the nature of this obscure component driving the late-time cosmic accelerated expan-
sion and yield a more precise picture of our cosmic expansion history. Another possibility worth
exploring is the inference of neutrino masses, currently a major area of investigation. We may also
constrain the cosmic growth rate, which would correspond to a test of gravity

Principled way of using machine learning

Amidst all the excitement pertaining to the unprecedented rise and ubiquity of machine learning
in the scientific community, they are simply another addition to our cosmological toolbox. As such,
we should harness the power of such algorithms to enhance our set of data analysis tools. However,
given the standard of our current computing resources, machine learning may be considered as ex-
pedient means to tackle virtually any problem, which may not yield any deep insights and actually
hinder the progress of our understanding. It is, therefore, essential to learn how to formalize and
decipher the specific problem under consideration, and find the best possible route to the solution
without incurring costs of interpretability. Scientific intuition and rigour remain, nevertheless, the
pillars of advancement in science.

Fast complex dynamics emulators for Bayesian hierarchical models

In line with the above principles, we have designed a physically motivated neural network in Chap-
ter 12 to model complex dynamics involved in cosmic structure evolution. An immediate extension
of our network architecture is to augment low-resolution N-body simulations with high-resolution
structures. The next step is to build our emulator in the forward model of ALTAIR, which would
substantially improve the efficiency of our Bayesian hierarchical framework. The synergy between
deep learning and Bayesian inference provides us with a principled approach to perform detailed
and high-resolution analyses of upcoming galaxy surveys, which would yield statistically inter-
pretable results with proper uncertainty quantification.
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Appendix A

Convergence properties of the messenger
methods

A.1 Cooling scheme for the messenger algorithm

In this section, we illustrate the rationale behind the cooling scheme for the scalar parameter λ

adopted for the standard messenger technique. In the computations below, we assume invertibility
of matrices everywhere. Using T = α1, where α = min(diag(N)), the χ2

T for the messenger scheme
from Eq. (2.8) can be written as

χ2
T = (d− s)† [N + (λ− 1)α1]−1 (d− s) + s†S−1s. (A.1)

Hence, in the messenger approach, we have N→ [N+(λ− 1)α1] and plugging this into the Wiener
filter given by Eq. (2.3) yields

sWF(λ) =
{
[N + (λ− 1)α1]−1 + S−1

}−1
[N + (λ− 1)α1]−1d

= S [S + N + (λ− 1)α1]−1 d, (A.2)

where we assume that all matrices are invertible. As a consistency check, for λ = 1, Eq. (A.2)
reduces to Eq. (2.3), the usual Wiener filter equation. The difference between the solutions at two
consecutive values of λ is given by

sWF(λ)− sWF(λ
′) = S

{
[S + N + (λ− 1)α1]−1 − [S + N + (λ′ − 1)α1]−1

}
d

= S[S + N + (λ− 1)α1]−1 {S + N + (λ′ − 1)α1− [S + N + (λ− 1)α1]
}

· [S + N + (λ′ − 1)α1]−1d

= α(λ′ − λ)S [S + N + (λ− 1)α1]−1 [S + N + (λ′ − 1)α1
]−1 d. (A.3)

Now, we consider limiting cases of Eq. (A.3). We assume a homogeneous noise distribution, i.e.,
N = α1. From Eq. (A.2), we have

‖sWF(λ)‖` = C`(C` + λα)−1‖d‖`. (A.4)
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Using Eqs. (A.3) and (A.4), the relative error can then be computed as follows:

‖sWF(λ)− sWF(λ′)‖`
‖sWF(λ)‖`

≤
[
|λ′ − λ|α

(
C`

C` + λα

)(
1

C` + λ′α

)
‖d‖`

] [
C`

(C` + λα)
‖d‖`

]−1

≤ α|λ′ − λ|
C` + λ′α

, (A.5)

where, for an arbitrary matrix M, ‖M‖` is the subset of ‖M‖ over subspace `. From Eq. (2.11), we
have the fractional error reduction, after one iteration, given by

1− ε ≤ C`

C` + λα

(
N̄

N̄ + λα

)
, (A.6)

where the term in parentheses will always favour rapid convergence. The other term is strongly
convergent on small scales, but to give bounds to the maximum convergence speed of “slow modes”,
we focus on the latter, leading to

ε ≤ 1− C`

C` + λα
=

λα

C` + λα
. (A.7)

To favour convergence, from Eqs. (A.5) and (A.7), we require the two conditions:

α|λ′ − λ|
C` + λ′α

.





λα
C`+λα

λ′α
C`+λ′α

(A.8)

so that the error reduction in one iteration matches the change in solution arising from two consec-
utive values of λ. This results in the following two constraints: |λ′ − λ| ≤ λ′ and |λ′ − λ| ≤ λ. The
former is automatically satisfied, while the latter leads to the following bounds: λ′/2 ≤ λ ≤ λ′.
Therefore, for the cooling scheme, we can write λ = ηλ′, where 1/2 ≤ η ≤ 1, to improve conver-
gence on all scales. This is the motivation behind our choice of η = 3/4 in this work.

A.2 Cooling scheme for the dual messenger algorithm

As in the previous section, we wish to analytically determine the cooling scheme that would im-
prove convergence for the dual messenger algorithm. We first derive the Wiener filter solution
for the dual messenger, i.e., the analogue of Eq. (A.2) for this scheme. We begin by writing down
Eqs. (2.14) and (2.15), showing the dependence on the power spectrum truncation µ:

(
N−1 + U−1

µ

)
sWF(µ) = N−1d + U−1

µ uµ (A.9)
(

U−1
µ + S̄−1

µ

)
uµ = U−1

µ sWF(µ). (A.10)
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Solving for sWF(µ) via the following steps:

N−1d =
[
(N−1 + U−1

µ )−U−1
µ (U−1

µ + S̄−1
µ )−1U−1

µ

]
sWF(µ)

=
[
(N−1 + U−1

µ )(S̄µ + Uµ)− S̄µU−1
µ

]
(S̄µ + Uµ)

−1sWF(µ)

=
[
N−1(S̄µ + Uµ) + 1

]
(S̄µ + Uµ)

−1sWF(µ)

=
[
N−1 + (S̄µ + Uµ)

−1
]

sWF(µ), (A.11)

so that finally, we have
sWF(µ) =

[
N−1 + (S̄µ + Uµ)

−1
]

N−1d. (A.12)

In the limit µ → ν, where ν ≡ min(diag(S)), S̄ + U → S, reducing Eq. (A.12) to the usual Wiener
filter Eq. (2.3), implying consistency. When we change the truncation of the spectrum, µ → µ̃, for
µ̃ < µ, we obtain a new solution sWF(µ̃). The counterpart of Eq. (A.5) is then

sWF(µ̃)− sWF(µ) = (S̄µ̃ + Uµ̃)
[
(S̄µ̃ + Uµ̃) + N

]−1 d− (S̄µ + Uµ)
[
(S̄µ + Uµ) + N

]−1 d

=
[
(S̄µ̃ + Uµ̃)(N + S̄µ̃ + Uµ̃)

−1 − (S̄µ + Uµ)(N + S̄µ + Uµ)
−1
]

d. (A.13)

Here, we consider Fourier space, so that Uµ̃ → µ̃ and Uµ → µ. We can write the truncated signal
covariance matrix as

S̄µ̃ = S̄µ + ∆µ̃,µ1, (A.14)

where ∆µ̃,µ = µ̃ − µ is the portion of the power spectrum bounded by µ̃ and µ, while the corre-
sponding truncated signal covariances can be represented by Heaviside functions as follows:

S̄µ = Θ(S− µ) (A.15)

S̄µ̃ = Θ(S− µ̃), (A.16)

where, for a matrix M = PΛP−1, after applying a basis transformation, with Λ being diagonal,

Θ(M) = PΘ(Λ)P−1, (A.17)

and

Θ(Λ)ii =

{
0, Λii ≤ 0
Λii, Λii > 0.

(A.18)
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Using Eq. (A.14) in Eq. (A.13) results in

sWF(µ̃)− sWF(µ) =
[
(S̄µ + ∆µ̃,µ + µ̃)(N + S̄µ + ∆µ̃,µ + µ̃)−1 − (S̄µ − µ)(N + S̄µ + µ)−1

]
d

=
[
S̄µ + ∆µ̃,µ + µ̃− (S̄µ + µ)(N + S̄µ + µ)−1(N + S̄µ + ∆µ̃,µ + µ̃)

]

· (N + S̄µ + µ + ∆µ̃,µ + µ̃− µ)−1d

=
[
S̄µ + ∆µ̃,µ + µ̃− S̄µ − µ− (S̄µ + µ) + (N + S̄µ + µ)−1(∆µ̃,µ + µ̃− µ)

]

· (N + S̄µ + ∆µ̃,µ + µ̃)−1d

=
[
(N + S̄µ + µ)− S̄µ − µ

]
(N + S̄µ + µ)−1(∆µ̃,µ + µ̃− µ)

· (N + S̄µ + ∆µ̃,µ + µ̃)−1d

= N(N + S̄µ + µ)−1(∆µ̃,µ + µ̃− µ)(N + S̄µ + ∆µ̃,µ + µ̃)−1d. (A.19)

Using Eq. (A.14) and substituting the following form of Eq. (A.12),

sWF(µ̃) = S̄µ̃

[
N + (S̄µ̃ + µ̃)−1

]−1
d, (A.20)

in Eq. (A.19) leads to

sWF(µ̃)− sWF(µ) = N(N + S̄µ + µ)−1(∆µ̃,µ + µ̃− µ)(S̄µ̃ + µ̃)−1sWF(µ̃), (A.21)

such that finally we obtain the following equation for the relative error:

‖sWF(µ̃)− sWF(µ)‖
‖sWF(µ̃)‖

≤
∥∥∥N(N + S̄µ + µ)−1(∆µ̃,µ + µ̃− µ)(S̄µ̃ + µ̃)−1

∥∥∥ . (A.22)

Now, for µ → µ̃, there are three distinct regimes of relevance and we consider each case below.
To investigate the convergence behaviour in the different regimes, we make use of the following
equation, obtained by plugging Eqs. A.15) and (A.16) in Eq. (A.14),

Θ(S− µ̃) = Θ(S− µ) + ∆µ̃,µ. (A.23)

The three regimes are:

• S` > µ1,
where Θ(S− µ̃) = S` − µ̃1, and Θ(S− µ) = S` − µ1, so that ∆µ̃,µ = µ− µ̃, and this causes
the second term in Eq. (A.22) to vanish, implying that the relative error is not affected by our
choice of µ̃. This shows that the Wiener filter solution is naturally computed in a hierarchical
fashion using the dual messenger algorithm.

• µ̃1 < S` < µ1,
where Θ(S − µ̃) = S` − µ̃1, and Θ(S − µ) = 0, so that ∆µ̃,µ = S` − µ1, leading to the
following relative error:

‖sWF(µ̃)− sWF(µ)‖
‖sWF(µ̃)‖

≤
∥∥∥N(N + S̄µ + µ)−1

∥∥∥
∥∥∥(S` − µ1)(S̄µ̃ + µ̃)−1

∥∥∥
µ̃,µ

. (A.24)
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The first term behaves as a constant, i.e.,
∥∥N(N + S̄µ + µ)−1

∥∥ ∼ α′, so that the relative error
can be approximated as

‖sWF(µ̃)− sWF(µ)‖
‖sWF(µ̃)‖

≤ α′
∣∣∣∣
C` − µ

C`

∣∣∣∣
µ̃,µ

= α′
∣∣∣∣1−

µ

C`

∣∣∣∣
µ̃,µ

, (A.25)

since S̄µ̃ + µ̃ ∼ C`. Also, α′ ∼ 1, and to favour convergence, we want this change to be
as large as possible but sufficiently small such that iterating the solution results in rapid
decay of the error, i.e., the change in the solution due to changing µ should be matched to
the change when iterating the solution. If µ = βC`, choosing 0 < β < 1 would therefore
improve convergence by avoiding the early freeze of modes in the iteration scheme. This
served as the basis for our choice of β = 3/4 in this work.

• S` < µ̃1,
where Θ(S − µ̃) = 0 = Θ(S − µ), so that ∆µ̃,µ = 0, and again using the approximation
S̄µ̃ + µ̃ ∼ C` yields

‖sWF(µ̃)− sWF(µ)‖
‖sWF(µ̃)‖

≤ α′
∣∣∣∣
µ̃− µ

C`

∣∣∣∣
µ̃,µ

. (A.26)

So, the overall convergence behaviour can be quantitatively described by:

‖sWF(µ̃)− sWF(µ)‖
‖sWF(µ̃)‖

≤ 0 + α′
∣∣∣∣1−

µ

C`

∣∣∣∣
µ̃,µ

+ α′
∣∣∣∣
µ̃− µ

C`

∣∣∣∣
µ̃,µ

, (A.27)

and this leads to the following interpretation: For higher values of µ on large scales, the third term
in Eq. (A.27) dominates since |µ̃− µ| is large. But for the final truncations, µ̃ ∼ µ, so this regime
is saturated, while on small scales, the second term dominates as µ � C`, so the relative error
continues to drop till the final truncation. The cooling scheme described above applies naturally to
the hybrid version of the dual messenger method.
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Appendix B

Supplementary information for spin field
reconstruction

B.1 Preconditioner for conjugate gradient descent

For the PCG computation in Chapter 4, we implement a straightforward generalization of the di-
agonal preconditioner adopted in KLW17 (cf. Chapter 2.4). Essentially, the Wiener filter Eq. (2.3) is
reformulated as Ax = y, where A = 1 + S1/2N−1S1/2, x = S−1/2sWF and y = S1/2N−1d. Solving
for x requires the inverse ofA, which can be approximated by a preconditionerM, i.e.M ≈ A−1.

Here, the preconditionerM has the following block-diagonal form, for all multipole moments
`:

M` =




1 + ψCTT
` 1 + ψCTE

` 0
1 + ψCTE

` 1 0
0 0 1


 , (B.1)

with ψ = L−4Npix

(
F−1N−1

I
)
`=0

, where NI is the noise covariance associated with the Stokes pa-
rameter I .

B.2 Spherical harmonic transforms

We provide a brief description of the transformation between pixel and spherical harmonic domain
in order to be precise about the notation employed in Chapter 5.

Assuming the primary CMB fluctuations to be an isotropic Gaussian random field, the CMB
signal can be described as a vector of spherical harmonic coefficients, with the associated signal
covariance S given by:

S`m,`′m′ = 〈a`ma`′m′〉 = δ``′δmm′C`, (B.2)

where C` is the CMB power spectrum. The proper basis to represent isotropic Gaussian random
fields on the sphere is described by spherical harmonics. Given a grid on the sphere, i.e. a set
of pixel positions n̂p, we can transform a field expressed in spherical harmonic (SH) basis, with
coefficients s`m, to one sampled on the sphere via SH synthesis, as follows:

s(n̂p) =
`max

∑
`=0

`

∑
m=−`

a`mY`m(n̂p) =
`max

∑
`=0

`

∑
m=−`

Y `m
p a`m. (B.3)
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Formally, the SH synthesis may be expressed as a matrix product, s(p) = Ya(`m), where Y is the
synthesis operator that encodes the value of the SHs evaluated at each n̂p of the grid.

Conversely, the transformation from pixel to harmonic basis is referred to as SH analysis, with
the analysis operator being an integral related to the synthesis operator:

a(`m) '∑
p

Y∗`m(n̂p)s(n̂p)δΩp = Y−1s(p) = ∑
p

4π

Npix
Y†,`m

p s(n̂p) =
4π

Npix
Y†s(p). (B.4)

It is important to emphasize the scaling operation above and note that the last equalities are valid
only for an equal-area pixelization such as HEALPIX (Górski et al., 2005). These spherical harmonic
transforms are the spherical analogue of Fourier transforms.

B.3 Differential operators

We define the following complex differential operators acting on a spin-s quantity fs on the sphere:

ð fs ≡ −(sin θ)s
(

∂θ + i
∂ϕ

sin θ

)
(sin θ)−s fs(θ, ϕ) (B.5)

ð̄ fs ≡ −(sin θ)−s
(

∂θ − i
∂ϕ

sin θ

)
(sin θ)s fs(θ, ϕ), (B.6)

where ð and ð̄ are the spin raising and lower operators, respectively, such that ð fs is a spin-(s + 1)
quantity and ð̄ fs is a spin-(s − 1) quantity. The general definition of the spin-weighted spherical
harmonics with spin s ≥ 0 is as follows:

sY`m ≡ β`,sðsY`m, −sY`m ≡ (−1)sβ`,sð̄sY`m, (B.7)

where β`,s ≡
√
(`− s)!/(`+ s)!, with Y`m being the standard spherical harmonics. The property of

(sY`m)
∗ = (−1)(s+m)

−s Y`−m is satisfied by these functions.

The spherical harmonic vectors sYE ,B
`m for the E and B modes, and their associated differential

operators DE ,B
s , respectively, are defined as

sYE`m ≡ DEs Y`m ≡ −
β`,s

2

(
ðs + ð̄s

−i(ðs − ð̄s)

)
Y`m = −1

2

(
sY`m + (−1)s −sY`m

−i[sY`m − (−1)s −sY`m]

)
(B.8)

sYB`m ≡ DBs Y`m ≡ −
β`,s

2

(
i(ðs + ð̄s)

ðs + ð̄s

)
Y`m = −1

2

(
i[sY`m − (−1)s −sY`m]

sY`m + (−1)s −sY`m

)
. (B.9)

For a spin-0 quantity (s = 0), the above functions simplify to: 0YE`m = (Y`m, 0) and 0YB`m = (0, Y`m).

B.4 Dual messenger formalism for modulated correlated noise covari-
ance

We provide a more in-depth derivation of the two dual messenger Eqs. (5.21) and (5.22) required
for the treatment of modulated correlated noise covariance in Chapter 5. The third Eq. (5.20) can be
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derived from Eq. (5.19) in straightforward fashion via linear algebraic simplifications.

Eq. (5.2) can be written in its explicit form as:

u =
[
B†Y†T−1YB + (S̄ + U)−1

]−1
B†Y†T−1t, (B.10)

with the covariance of the messenger field t being T = D(YφY†)D. This equation bears a striking
resemblance to the standard Wiener filter Eq. (2.3) and can therefore be solved via the introduc-
tion of an extra messenger field v with covariance V = ω(YφY†)1, where ω ≡ min(diag(D2)),
resulting in the following χ2:

χ2
V = (t− v)†[D(YφY†)D−V

]
(t− v) + (v−Ybu)†V−1(v−Ybu) + u†(S̄ + U)−1u. (B.11)

Minimizing the above χ2 with respect to v and u yields the following set of equations:

v = ω(YφY†)D−1(YφY†)−1D−1
[
t + ω−1D(YφY†)D(YφY†)−1 − 1

]
YBu (B.12)

u =
[
φω(S̄ + U)−1 + B†B

]−1
B†Y†M−1v, (B.13)

where, as before, we employ the definition of the coupling matrixM ≡ YY†. It is more convenient
to work with t̃ ≡ D−1t, such that we can rewrite Eq. (B.12) as:

v = ωMD−1M−1t̃ +
[
1−ωMD−1M−1D−1

]
YBu. (B.14)

The preference for the above form is that masked regions do not pose any numerical issue, as
D−1|mask = 0, such that v|mask → YBu.
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