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Abstract

Global environmental changes are main drivers of nutrient cycling in ecosystem.

However, present studies mainly focus on evaluating the effects of single -and less often a few

- global change factors on soil N cycling processes in grasslands. In addition, these studies

have not recognized the importance of the response of grassland soil N cycling to co-

occurring multiple global change factors and disturbance like fire. It remains unclear how N

cycling response to fire could differ under different global change scenarios. This strongly

restricts our ability to understand and predict global change effect on grasslands. In this work,

two experiments were conducted: (i) a mesocosm experiment to assess the combined effects

of increased N deposition and changes in both the precipitation amount and frequency on soil

N cycling in a semi-arid Monsoon grassland; and (ii) an in situ experiment to assess the main

and combined effects of elevated CO2, warming, increased precipitation, N deposition and fire

on soil N cycling in a Mediterranean grassland. This allows studying the -possibly interactive-

effects of several global change factors on the abundances of soil N-cycling microbial

communities. The microbial groups studied were ammonia oxidizing bacteria (AOB) and

archaea (AOA), nirK- and nirS-nitrite reducers, nosZI- and nosZII-N2O reducers, plus

Nitrobacter and Nitrospira for the Mediterranean grassland. The main results are as follows:

1) The responses of different groups of soil (de)nitrifiers to global change scenarios

differed strongly in both grasslands. In the Monsoon grassland, AOB abundance mostly

responded to nitrogen, whereas AOA were more sensitive to soil water dynamics than

nitrogen. The main effects of decreased precipitation amount and altered precipitation

frequency differed between the four denitrifier groups studied. The nirK- and nirS-harboring

nitrite reducers and nosZI-harboring N2O reducers were more sensitive to N deposition than

nosZII-harboring N2O reducers, and nirK- and nirS-bacteria responded to reduced

precipitation in an opposite direction. This highlights niche differentiation between these

groups and indicates that the balance between them may be altered in the future. In addition,

the study showed that N2O emission was related to soil denitrification instead of nitrification

in the Monsoon grassland. 2) In the Mediterranean grassland, nitrogen deposition increased

the abundance of AOB and to a lesser extent AOA and Nitrobacter (+12% to 182%), but not

Nitrospira. Meanwhile, N deposition increased the abundance of nirK and nosZI and to a
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lesser extent nirS (+ 10% to 46%), but not nosZII. Instead, Precipitation had a negative main

effect on Nitrobacter (up to -61%) and no significant effect on the three other nitrifier groups.

Further, precipitation increased the abundance of nirS (+ 3% to 26%), whereas no significant

effect was observed on the three other denitrifier groups. Further, burning had a negative main

effect on AOB (- 20% to 56%) and did not affect the abundances of soil denitrifiers

immediately after fire, but it decreased the abundance of nirK (-6% to 37%) and nosZI (-5%

to 36%) almost three years after the initial disturbance. No main effect of elevated CO2 and

heating was observed. Nitrobacter abundance was mostly affected by global change factors

through their effects on AOB abundance, whereas Nitrospira abundance was more related to

changes of AOA. The effects of multiple global changes and fire on soil (de)nitrifying

microbial communities abundance were not additive and thus cannot be predicted by studies

on single global change factor.

These results demonstrate that for both grasslands studied, the effects of multiple global

change factors and disturbances on soil N cycling could not be predicted simply by studying

the effects of one or two factors. The observed interactive effects were explained by

environmental variables like soil moisture, mineral N availability, pH and growth of plant

belowground parts. This calls for more comprehensive studies in the global change biology

domain. Modelling and evaluating the generality of these complex interaction effects is thus a

high priority for research to predict the responses of soil N cycling processes to global change

and feedbacks on climate in the future.

Key words Elevated CO2; Warming; Precipitation Regime; N Deposition; Fire Disturbance;
Denitrification and Denitrifiers; Nitrification and Nitrifiers
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Résumé

Les changements globaux sont les principaux moteurs du cycle des nutriments dans les

écosystèmes. Cependant, les études actuelles se concentrent principalement sur l’évaluation

des effets d’un facteur du changement global et moins souvent de plusieurs facteurs sur les

processus du cycle de l’azote dans le sol. De plus, ces études n'ont pas pris en compte le fait

que la modification du régime de précipitation avait également une influence sur le régime de

dépôt humide d'azote. En outre, la réponse du cycle de l'azote dans les sols des prairies à de

multiples facteurs du changement global agissant ensemble -et parfois en même temps que

des perturbations telles que les incendies- doit encore être étudiée. Cela limite fortement notre

capacité à comprendre et à prévoir les effets du changement global sur les prairies. Dans ce

travail de doctorat, deux expériences ont été menées: (i) une expérience en mésocosmes pour

évaluer les effets combinés d'une augmentation des dépôts d'azote et de changements dans la

quantité et de la fréquence des précipitations sur le cycle de l'azote édaphique dans une prairie

semi-aride; et (ii) une expérience in situ pour évaluer les effets combinés de l'augmentation de

la concentration en CO2, du réchauffement, d une modification des précipitations, du dépôt

d'azote et d’un feu sur le cycle de l'azote du sol dans une prairie méditerranéenne. Cela permet

d'étudier les effets de la combinaison de plusieurs facteurs de changement global (et d une

perturbation, le feu) sur l'abondance des communautés microbiennes du cycle de l'azote. Les

groupes microbiens étudiés étaient les bactéries et les archées oxydant l'ammoniac (AOB et

AOA, respectivement), les bactéries réductrices de nitrite porteuses des gènes nirK ou nirS, et

les réducteurs de N2O porteurs des gènes nosZI- et nosZII pour les deux sites, plus les

bactéries oxydant le nitrite du genre Nitrobacter et Nitrospira pour la prairie méditerranéenne.

Les principaux résultats et conclusions sont les suivants :

1) Les réactions des différents groupes de (dé)nitrifiants aux scénarios de changement

global différaient fortement quel que soit le type de prairie. Les AOB dépendaient

principalement de la disponibilité en azote En revanche, dans les deux prairies, les AOA

étaient sensibles à la dynamique de l'eau du sol. Les principaux effets de la diminution des

précipitations et de la fréquence des précipitations diffèraient entre les quatre groupes de

dénitrifiants étudiés. Les réducteurs de nitrite hébergeant les gènes nirK et nirS et des

réducteurs de N2O porteurs du gène nosZI étaient plus sensibles au dépôt d'azote que les

réducteurs de N2O porteur du gène nosZII. Les bactéries de type nirK et nirS réagissaient à
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une réduction des précipitations de façon opposée. Cela met en évidence la différenciation de

niche qui existe entre eux et indique que l'équilibre entre ces deux groupes pourrait être

modifié à l'avenir. En outre, l'étude a montré que les émissions de N2O étaient liées à la

dénitrification plutôt qu'à la nitrification dans la prairie semi-aride. 2) Dans la prairie

méditerranéenne, les dépôts d’azote ont accru l’abondance des AOB (- 20% à 56%) et, dans

une moindre mesure, des AOA et Nitrobacter, mais pas Nitrospira. En parallèle, les dépôts

d'azote ont augmenté l'abondance de nirK et de nosZI et, dans une moindre mesure, de nirS (+

10% à 46%), mais pas de nosZII. Les précipitations ont eu un effet principal négatif sur

Nitrobacter (jusqu'à -61%) et aucun effet significatif sur les trois autres groupes nitrifiants. De

plus, les précipitations ont augmenté l'abondance de nirS (+ 3% à 26%) sans avoir un effet

significatif sur les trois autres groupes de dénitrifiants. De plus, le feu a eu un effet principal

négatif sur les AOB (- 20% à 56%) et n'a pas affecté l'abondance des dénitrifiants

immédiatement après feu mais a diminué l'abondance de nirK (- 6% à 37%) et nosZI (-5% à

36%) près de trois ans après le feu. Aucun effet principal de l élévation du CO2 ni du

réchauffement n'a été observé. L'abondance de Nitrobacter était principalement affectée par

les facteurs de changement globaux via leurs effets sur l'abondance des AOB, tandis que

l'abondance des Nitrospira était davantage liée aux changements d'abondance des AOA. Les

effets de multiples changements globaux et du feu sur l'abondance des (dé)nitrifiantes du sol n

étaient pas additifs et ne peuvent donc pas être prédits par des études étudiant les facteurs du

changement global de façon isolée.

Ces résultats démontrent que pour les deux prairies étudiées, les effets des facteurs du

changement global et du feu sur le cycle de l’azote du sol ne pouvaient être prédits

simplement en étudiant les effets d’un ou de deux facteurs. Les effets interactifs observés ont

été expliqués par quelques variables environnementales telles que l'humidité du sol, la

disponibilité de l'azote minéral, le pH et la croissance des parties souterraines de la plante.

Nos résultats appellent des études plus complètes dans le domaine de la biologie et l

écologie du changement global. La modélisation et l'évaluation de la généralité de ces effets

d'interaction complexes entre différents facteurs constituent donc une priorité majeure pour

les chercheurs qui veulent prédire les réactions des processus du cycle de l'azote des sols au

changement global ainsi que les rétroactions sur le climat dans la période à venir.

Mots-Clés: CO2 élevé; Réchauffement climatique; Régime de précipitation; Dépôt d'azote;

Perturbation par le feu; Dénitrification; Nitrification
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1 Introduction

1.1 Context
Soil N Cycling Processes

Although nitrogen (N) is one of the most widely distributed elements in nature, it limits or

regulates primary production in most terrestrial ecosystems [1, 2]. Amechanistic understanding of the

soil N cycling processes is therefore critical when analyzing the functioning of terrestrial ecosystems

and their responses to natural and anthropogenic changes and disturbances [3]. Nitrification and

denitrification are two major processes of the N cycle that play key roles for the production and

transformation of N forms important for plant nutrition, namely nitrate (NO3
-) and ammonium (NH4

+)

(Fig. 11). They also partly determine N losses, through the production of NO3
- subjected to leaching

to ground water and of N-containing gases from the soil system to the atmosphere, including nitrous

oxide (N2O), a potent greenhouse gas. Hence de(nitrifiers) are not only important to the local soil

environment, but also to the global environment. It is thus important for researchers to work on the

environmental determinants of these processes and their responses in face of the changes and

disturbances that characterize the Anthropocene [4].

Fig. 11 Overview of the terrestrial nitrogen cycle [4]. Nitrification and denitrification are highlighted in blue and green,

respectively
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Nitrifiers

Nitrification is a stepwise process consisting of the oxidation of ammonia (NH3) to nitrite (NO2
-)

and subsequently to NO3
- (Fig. 12 ) [4-6] . Nitrification in soil is generally divided into autotrophic

and heterotrophic nitrification. It is widely accepted that autotrophic nitrification is the prevalent

nitrification process in most soils [7]. In soil, nitrification is mainly carried out by chemoautotrophic

ammonia-oxidizing bacteria (AOB) and archaea (AOA) [8] and nitrite-oxidizing bacteria (NOB,

mainly represented by Nitrobacter and Nitrospira genera) [9-10].

For a long time, AOB were believed to be the only soil microorganisms responsible for the first

step of nitrification (ammonia oxidation), which is often assumed to be the limiting step as NO2

generally does not accumulate in the environment. It was thus thought that only AOB possess the

gene encoding the key enzyme ammonia monooxygenase, AMO [5]. In the 2000, it has been found

that some archaea can also perform ammonia oxidation [11]. This has been supported by strain

isolation and physiological studies [12-15], metagenomic studies [16] and nitrification inhibition

coupled with molecular analysis [17-18]. The amoA gene, which codes for a subunit of the AMO

enzyme, has been used extensively as a molecular marker gene for cultivation-independent studies

of AOB and AOA in soil systems [11, 19, 20]. In the majority of terrestrial ecosystems, soil AOAwere

often found outnumber AOB [11, 21-25] and a few studies reported relationships between nitrification

rates in soil and AOA abundance [20, 26].Whereas soil AOB are largely monophyletic on the basis of

16S rRNA and their diversity is relative low as compared with other functional groups [27]. The

obligate chemoautotrophic lifestyle of AOB leads to the large probability of constrains of both the

diversity and abundance of AOB [28]. Nitrite oxidizing bacteria (NOB) are distributed more widely,

among Alpha, Beta and Gamma classes of proteobacteria and the Nitrospira phylum, for Nitrobacter,

Nitrotoga, Nitrococcus, Nitrospina and Nitrospira respectively [29, 30], but Nitrobacter and Nitrospira

are the most important NOB in soils [9 , 10] . Nitrospira were often viewed as canonical nitrite-

oxidizing bacteria (NOB) [31-34]. However, some studies discovered the first complete ammonia

oxidizers ( comammox ) in the bacterial genus Nitrospira [35, 36]. In addition, it was reported that

nitrifier denitrification is another pathway of nitrification where ammonia is oxidized to nitrite

followed by a reduction step of nitrite to nitric oxide, N2O and N2
[37].

1.1.2.1 Ammonia-Oxidizing Bacteria and Ammmonia-Oxidizing Achea

It is widely accepted that a variety of environmental factors control the abundances of ammonia

- and nitrite-oxidizers and nitrification rates in soil [8, 38-40]. These factors include substrate (i.e. NH4
+

and NO3
- for AOB/AOA and NOB, respectively) concentration, temperature, pH [ 41 ] and

moisture/oxygen availability [42-43].
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AOB are generally chemolitho-autotrophs and are obligate aerobes [5]. Pratscher et al. (2011)

showed that AOB were often favored by high concentration of NH4
+ [24]

. In contrast, AOA are

autotrophic or mixotrophic microbes [24] and their abundance often does not respond to soil NH4
+ level

[41, 44, 45]. For instance, Simonin et al. (2015) found an increase in the abundance of AOB with N

addition while no response was found in AOA abundance [46]. There are also some results found

positive responses of AOA to N addition when ammonia concentrations are low [15, 24, 47-48]. Several

studies documented that high level of fertilization inhibits AOA [12, 49-51]. In addition, AOA are

favored by acidic conditions [52-53]. It is generally accepted that NH3 rather than NH4
+ is used as

substrate for ammonia oxidization [5, 54]. Actually, as soil pH decreases, the availability of ammonia is

decreased by increasing ionization to NH4
+ [55], and this can favor the growth of AOA, because the

half-saturation constant of AOA for ammonia is significantly lower than AOB (i.e. higher affinity,

allowing AOA to perform better than AOB under low NH3 concentration [12]). In addition, AOAwas

often detected under environmental surveys at the oxic-anoxic interface [56-59], which indicated an

adaptation to low oxygen conditions. Further, the low Km for O2 found for N. maritimus as well as

other AOA [12, 60] supported a hypothesis that AOA are very likely better adapted to low O2 than

AOB, while AOB are adapted to more aerobic conditions [61].

The latest study found that the addition of organic substances could facilitate the growth of

AOA strains PS0 and HCA1, showing their characteristics of mixotrophic growth [62]. In contrast,

some studies reported that the presence of organic substances had inhibitory effect on the growth of

some certain AOA strains such as Nitrosopumilus maritimus SCM1 and Nitrosocaldus yellowstonii
[13-14].

1.1.2.2 Nitrite oxidizers

Recent studies indicated that nitrite oxidation, the second step of nitrification (Fig. 12), can

limit the rate of nitrification in particular conditions, such as in disturbed soil systems [63-64] so that

more work is need on nitrite oxidizers (microbial ecology studies have studied mostly ammonia

oxidizers and information on the ecology of nitrite oxidizers in soil remains scarce). Previous

studies found two major genera of NOB in soils, i.e., Nitrobacter and Nitrospira [ 9 , 10 , 65 , 66].

Nitrospira are assumed to be generally characterized by low half-saturation constants for NO2
- and

O2, thus being favored by low availability of NO2
- and O2; whereas the half-saturation constants of

Nitrobacter are higher so that Nitrobacter outcompete Nitrospira when the concentrations of NO2
-

and O2 are high [67-70]. This has been supported by studies on NOB dynamics in soils [10, 26, 71] and

chemostats [72]. Further, some Nitrobacter [73, 74] and Nitrospira [75] [76] can grow heterotrophically or

mixotrophically. Recently, it has been shown that mixotrophic Nitrobacter can dominate the
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Nitrobacter community in some soils [26]. Currently, it is increasingly accepted that the main

ecological difference between these two groups is related to N availability: Nitrobacter are favored

by high N availability and Nitrospira by low N availability [76], whereas the mixotrophic capacity of

some Nitrobacter can be important to some extent [26, 77].

Fig. 12 Nitrification pathway diagram [6]. The main processes I have worked on during my Ph.D., i.e. ammonia

oxidation (red) and nitrite oxidation (green)

Denitrifiers

Denitrification is a stepwise process reducing NO3
- and NO2

- to gaseous nitrogen (N)

compounds, with nitric oxide (NO), N2O or N2 as end products [78] (Fig. 13). However, many nitrate

reducing bacteria do not participate to further steps of denitrification and are thus not denitrifiers.

Fig. 13 Denitrification pathway diagram [6]. The main processes I have worked on during my Ph.D., i.e. nitrite reduction

(blue) and N2O reduction (purple)

The ability to perform one step of the denitrification process is widespread among several

phylogenetic groups [79]. This makes a functional approach preferable for studying this process, and

targeting functional genes specific of one step (Fig. 13 ) allows the characterization and

quantification of a group of functionally similar organisms.

Overall, denitrifiers oxidize organic carbon for energy by using NO3
- or NO2

- as an electron
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acceptor when O2 concentration is low. Most denitrifiers are facultative anaerobes and use O2 rather

than NO3
- if O2 is available [42].

1.1.3.1 Nitrite reducers

A key step of denitrification is NO2
- reduction, being performed by bacteria harboring NIR

genes (Fig. 13), i.e. the nirK or nirS gene [80]. The abundance of nirK-harboring bacteria generally

increases with soil organic carbon concentration [44, 81-88]. The abundance of nirS-harboring bacteria

have been reported to be often positively related to soil NO3
- concentration [81, 89, 90]. In addition,

previous studies also reported that nirK abundance had a positive correlation with temperature [91].

The nirS gene abundance had strong correlations with NH4
+ and NO3

−, and pH [91]. It was reported

that the nirK-harboring denitrifiers appear to be more sensitive to soil nutrient changes than nirS-

harboring denitrifiers[84, 92].

1.1.3.2 N2O reducers

Another key step of denitrification is N2O reduction, which is performed by bacteria harboring

NOS genes (Fig. 13), i.e. the nosZI or nosZII gene [93, 94]. The nosZI groups were reported consisting

exclusively of Alpha-, Beta-, and Gamma-proteo bacteria. Because about eighty percentage of

genomes with nosZI also possess nirK or nirS, organisms possessing nosZI genes are likely to be

complete denitrifiers [95, 96]. In contrast, nearly half of organisms with nosZII appear to be non-

denitrifying N2O reducers [96]. Previous studies suggested that nosZII was more abundant or equally

as compared with nosZI clade I in a range of environments [93 ] . Many studies reported the

dominance of nosZII over nosZI, with ratios ranging from 1.5 to 10 with quantitative PCR method
[93, 97, 98]. Based on abundance analysis, Hallin et al. (2018) summarized that nosZI could have key

role in N2O reduction in aquatic systems, whereas the nosZII reducers are generally more relevant

in soils Many studies indicated that the abundance of nosZI-N2O reducers was positively correlated

with the C:N ratio [99, 100]. Other studies found that the abundance of nosZI-harboring bacteria were

mainly driven by soil NO3
- concentration [81] or negatively correlated to soil pH [44].The abundance

of nosZII-harboring bacteria has been reported to be affected mainly by soil organic carbon content
[81], and to be modified by soil pH, soil moisture, soil total N and Ca concentration [99].

Coupling Between Different Groups of Nitrifiers and Denitrifiers

Overall, organisms performing one step of nitrification or denitrification are expected to

depend to some degree on the organisms performing the previous step(s). However, niche

differentiation exists between different groups of nitrifiers or denitrifiers performing a same N
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process as indicated above. Consequently, some degree of coupling has been observed between

different groups of (de)nitrifiers sharing similar ecological requirements. For instance, analyzing the

responses of many N-cycling microbial groups in soil along fertilization gradients, Ma et al. (2016)

reported a strong coupling between the abundances of soil Nitrobacter and AOB, and a coupling

between the abundances of AOA, narG-nitrate reducers and nirK-nitrite reducers [44]. Similarly,

Assemien et al. (2019) found that soil NO3
- was the main driver of the abundances of both nirS- and

nosZI-harboring bacteria, whereas soil organic carbon was an important driver for nirK-harboring

bacteria and also (though to a lesser extent) for nosZII-harboring bacteria [81].

This suggests that some microbial groups largely share similar environmental determinants (e.g.

AOB and Nitrobacter) whereas a high niche differentiation exists between other groups, such as

Nitrobacter and Nitrospira [46]. However, this view oversimplifies the complexity of N-related

microbial communities of course, as functional diversity exists within one group. A first example in

this context is that soil Nitrobacter include two contrasted groups of bacteria (chemolithotrophs and

mixotrophs) with quite different niches regarding N, organic C and O2 availabilities [26]. Another

example is that Xie et al. (2014) detailed how different groups of nirK-bacteria or different groups

of nirS-bacteria have contrasted responses along a grazing gradient in relation to different soil

environmental drivers [101]. This should be kept in mind when interpreting results of changes in the

abundances of a particular N-cycling group targeted by a specific functional gene.

Global Change: Multiple Factors at Stake

From the industrial revolution period to the past century, due to the increase of the Earth's

population, the increased exploitation of the earth's resources, and the rapid development of science

and technology, humans are currently affecting and changing the global ecosystem at an

unprecedented speed and scale [102]. Along with the surge in population and the ever-increasing

demand for resource use, global problems caused by natural and anthropogenic impacts of global

ecosystems have emerged. Global processes and the processes of change under their interactions are

defined as global change. In essence, global change refers to the remarkable change in the human-

environment relationship that has occurred over the last few centuries [103]. This has even led to the

idea that we now live in a new era which can be called the Anthropocene [104].

Global change not only includes climate change, but also changes in population, economy,

energy use, land use, biodiversity, nutrient cycling, the linkages and interactions between these

different changes [103]. Among them, the impact of global environmental changes caused by human

beings on the diversity and functioning of terrestrial ecosystems has received increasing attention
[105-107]. Global environmental changes characterized in particular by elevated atmospheric CO2



7

concentrations, warming, changes in precipitation patterns, and increased nitrogen deposition [108, 109]

have been exacerbated by anthropogenic disturbances like fertilization.

1.1.5.1 Rising Atmospheric CO2

Increased human activity has led to an increase in greenhouse gas emissions. For example,

industrial activities and combustion of fossil fuels emit large amounts of greenhouse gases such as

CO2, methane (CH4) and nitrous oxide (N2O). From 1750 to 2011, the global atmospheric CO2

concentration has increased from ~280 ppm to ~391 ppm (Fig. 14) [110]. The average value today

this year is 408 ppm (https://www.co2.earth/daily-co2). This rise strongly results from the increment of

the global consumption of fossil fuels [111]. Atmospheric CO2 concentration is expected to exceed

700 ppm by the end of this century [112].

Fig. 14 Atmospheric carbon dioxide (CO2) concentration from 1750 [110]

1.1.5.2 Warming

As reported by the WMO (2005), the global average surface temperature has increased by 0.6-

0.7°C since pre-industrial periods (1850-1900) [113]. However, the temperature increased sharply at

+0.18°C per decade since 1976. The 10 warmest years for the earth s surface temperature

occurred since 1990 [114] and the period from 1983 to 2012 was very likely the warmest period of

the last 800 years in the Northern Hemisphere. It is increasingly accepted that the acceleration of

the warming during the last four decades mainly resulted from the increasing atmospheric

concentrations of greenhouse gases due to human activities [115-117].

At this rate, global temperatures would increase by 1.5°C around 2040 (Fig. 15) [118]. Warming

would be varied spatially or seasonally [119]. In many locations, particularly in regions of Northern

Hemisphere mid-latitude winter (December-February), the temperature of the regional warming

would be more than double as compared with global average [118]. Previous predicted that there
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would be substantially warmer and wetter winters and marginally warmer summers in the next 100

years California [120, 121].

Fig. 15 Human-induced warming as compared to pre-industrial period, which has already reached about 1°C above pre-

industrial levels in 2017. Prediction based on the present warming rate, the temperature would be above 1.5°C around

2010 [118]

1.1.5.3 Changed precipitation regime

Precipitation is distributed unevenly over the globe. The average distribution of precipitation is

controlled mainly by the availability of moisture and the atmospheric circulation patterns, being

influenced by temperature [122 ] . Therefore, human-induced increase of temperature and the

consequent +7% increase of the water holding capacity of the atmosphere per centigrade warming
[123, 124] will very likely alter the atmospheric water vapor concentrations and overall evaporation [125,

126] . The latter will change the formation of cloud [124 , 127 ] , contributing to the alteration of

precipitation patterns, including the amount, frequency, type and intensity of precipitation [128]. The

annual mean precipitation is likely to increase in the regions of the equatorial Pacific and high

latitudes and in many mid-latitude wet regions (Fig. 16). In contrast, mean precipitation will likely

decrease in most mid-latitude and subtropical dry regions. Based on observations for the 1900-2005

period, Trenberth et al. (2017) reported that precipitation has already increased in northern and

central Asia, northern Europe, and eastern North and South America [124], but decreased in the

Mediterranean, Sahel, southern Asia, and southern Africa. In addition to the precipitation amount,

the intensity, frequency and distribution of are also considered as crucial [129]. Trenberth et al. (2007)
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documented that atmospheric water vapor concentrations increased by 5% over the 20th century,

leading to increased intensity of precipitation events [124]. Changes in extreme events have also been

observed since about 1950. An increase in the number of extreme precipitation events, such as

extreme droughts, heavy rains, and floods [129, 130] [131], can have a significant impact on ecosystems.

Fig. 16 Average precipitation changes expected for the 2081 2100 period as compared to 1986 2005 under the

RCP2.6 (left) and RCP8.5 (right) scenarios. Predictions are based on multi-model mean projections [132]

1.1.5.4 Increased N deposition

In addition to climate change factors, nitrogen (N) deposition is another important factor of

global environmental change. Since the industrial revolution of the 19th century, the phenomena of

fossil fuels burning, the application of chemically synthesized N fertilizers and development of

livestock production surged all over the world. These processes have released large amounts of NHx

(including NH3, RNH2) and NOx -which are active N compounds- into the atmosphere [133-135]. It is

estimated that human induced inputs of activated N has enhanced from 15Tg N yr-1 to 165Tg N yr-1

from 1860 to 2002, from 55% to 60% of the activated N being released as NHx and NOx
[136]. This is

leading to a steep increase in atmospheric N deposition (Fig. 17) [108]. For instance, Goulding et al.

(1998) found that 70-80% of the N emitted into the atmosphere will be returned to terrestrial and

aquatic ecosystems in the form of wet or dry N deposition [137], and ca. 38% of the deposited N

settles in terrestrial ecosystems [136]. N deposition mainly occurs as wet N deposition.
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Fig. 17 Total inorganic nitrogen deposition (mg N m-2 yr-1) spatial patterns in early 1990s (a), and 2050 (b) [108]

1.1.5.5Modified Fire Regime

Fires have been a common natural disturbance from the late Devonian Period [138]. Fire is

recognized as a global phenomenon [139 , 140] that affects more land area than any other natural

disturbance [141]. It has been estimated that more than 30% of the land surface is subjected to a

significant frequency of fires [142]. Owing to ongoing global changes, it is expected that fire regimes

will immediately respond to climate change [143] in terms of frequency/recurrence, size, seasonality,

and fire intensity.

Flannigan et al. (2009) estimated that historical (1960 2000) global annual area burned by

wildland fires range from 273 to 567 Mha, with an average of 383 Mha [144]. Approximately 80

86% of the global area burned occurs in grassland and savannas, primarily in Africa and Australia,

but also in South Asia and South America, while the remainder occurs in forested regions [145, 146]

(Fig. 18).

Fig. 18 Global map of average annual area burned (percentage of cell burned) for the 1960-2000 period [144]
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Historically, ground fires are thought to have occurred every 15 to 20 years in red fir forests, 4

to 20 years in mixed conifer forests, 6 to 8 years in coastal redwood forests, and 5 to 10 years in

grasslands and woodlands [147-148]. Numerous important factors determine fire frequencies in

grasslands, including climate, vegetation type, and extreme weather events such as drought or heavy

winds [149]. Reconstructed fire history shows that fire frequency is highly dependent on climate [150].

Consequently, models suggest a likely increase in both ignition rates and fire spread with the

warmer temperatures, lower humidity, higher winds, and drier fuels that are expected under future

climate scenarios [151, 152]. If precipitation remains high during some years, fire risk during dry years

is likely to increase as a result of increased plant productivity -and thus increased fuel amount for

fire- in previous years. Torn et al. (1998) projected that climate change will greatly increase the

number of wildfires [151]. Moritz et al. (2012) examined the pixel-wise agreement among the 16

global climate models (GCMs) in increase and decrease of different climate variables to assess

general trajectories from recent historical to the 2010 2039 and 2070–2099 periods [153].

More specifically, in the Mediterranean region, over the last 60 years, human activity has

already influenced the pattern, frequency and intensity of fires [154-156]. Fires are frequent [157-158] and

are likely to be altered further by human beings in the coming century by climate change, especially

in the western US [152, 159-160].

As common processes in many ecosystems, especially in grassland ecosystems, fires are one of

the major drivers of the structure and functioning of ecosystems due to their pervasive effects on

carbon and nutrient cycling [161] and microclimates [162].

Grassland Ecosystems: Global Coverage and Classification of Grassland

Grassland, which is the largest of the four major natural biomes [163], is a terrestrial ecosystem

dependent on disturbance [164 ] . Grassland is dominated by herbaceous vegetation and with

significant seasonality of productivity [165], being maintained by factors such as drought, grazing,

fire, and/or freezing temperatures [166]. However, grasslands not only include non-woody systems

but also shrublands, woodlands, savannas, and tundra [167]. The area of the grassland (excluding

Antarctica and Greenland) was estimated ranging from ~31 to 43 % of land area or from ~42 to 56

million km2 [168, 169]. FAO (2019) estimates that 70% of the world agricultural area and 26% of the

world land area are covered by grasslands [170]. Grasslands not only act as the production base for

animal husbandry, providing environmental protection, but also stores organic carbon in terrestrial

ecosystems, providing net primary productivity. However, due to the rapid increase in population

accompanying with the effects of climate change, the grassland ecosystem process and function has

seriously been affected, particularly soil nitrogen cycling process.
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Fig. 19 Grassland and climate zones. From Unger and Jongen et al. (2014) [171]

1.2 Research Status about Impacts of Global Change Factors on Soil N Cycling
Extensive studies have reported that global change factors, such as elevated atmospheric carbon

dioxide (CO2), warming, changes in precipitation regime and elevated N deposition, but also fire

disturbances like fire, can alter the function of soil including N cycling. In particular, global change

effects have been reported on microbial nitrification and denitrification processes in soil [172, 173]. As

detailed below, each of the global change factors listed above can alter the activity, the abundance and

the structure of soil nitrifying and denitrifying microbial communities. Indeed, each of these factors

can modify soil environmental variables to which nitrification and denitrification processes are

sensitive. For instance, nitrification process is favored by well-aerated soils with high concentration

of NH4
+, and moderate temperatures but is unfavored by acidic conditions [174, 175]. Denitrification is

favored by anaerobic conditions with high NO3 availability, moderate temperatures and high labile

C availability, and also could be affected by changes in soil pH [78, 175-178]. Hereafter, I briefly review

how each of these global environmental change factors can influence the activity and abundances of

soil nitrifiers and denitrifiers.

CO2 Effect on Nitrifiers and Denitrifiers

Elevated concentration of atmospheric CO2 often stimulates plant photosynthesis [179], increases

plant carbon inputs to the soils [180-182] and enhances plant water use efficiency [183] and nutrient use

efficiency [184]. This alters soil C and N availabilities, soil moisture and oxygen level, which might

in turn affect nitrifiers and denitrifiers.
Table 11 A review of the effects of elevated CO2 on plant-soil ecosystems variables, including: environmental variables,

plant growths, activity and abundance of (de)nitrifiers, and soil N2O emissions. , positive effect; , negative effect;
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ns, no significant effect; -, no study available; gray arrows indicate responses that have been observed only in a limited

number of studies as compared to more generally observed

CO2 Effects References

Direct effects
á plant photosynthesis and growth [179, 184]

á plant water use efficiency WUE [183]

á nutrient use efficiency [184]

Indirect effects
á soil water content (through WUE) [185-191]

á organic C inputs to soil (through higher root growth) [181, 182]

DEA
á â ns

á: [192-198]

â: [173, 195, 199-203]

ns: [173, 204-210]

NEA á â ns
á: [46, 194, 202]

â: [173, 201, 203, 204, 211, 212]

ns: [199, 205, 207, 210, 213]

AOB â ns
â: [214, 215]

ns: [46, 203, 216-221]

AOA á ns
á: [217, 220]

ns: [46, 203, 215-217, 220]

Nitrobacter Ns ns: [26, 46]

Nitrospira Ns ns: [26, 46]

nirK á â ns
á: [222]

â: [215]

ns: [217, 221, 223]

nirS á â ns
á: [222, 224]

â: [217]

ns: [220, 223]

nosZI Ns ns: [221-223, 225]

nosZII -

N2O á â ns
á: [173, 226-230]

â: [231]

ns: [206, 232, 233]

Previous results about elevated CO2 effects on soil N cycling are rather inconsistent [173, 234]

(Table 11). Denitrifying enzyme activity (DEA) was often found to be significantly increased by

elevated CO2. For instance, Ineson et al. (1998) found higher denitrification rates inLolium perenne

mesocosms growing under elevated CO2 and high N inputs [235]. Similarly, Carnol et al. (2002)

reported a positive response of DEA to elevated CO2 in a 4 years mesocosm experiment [196]. Higher

denitrification under elevated CO2 can be attributed to the stimulation of denitrifiers by higher fine

root amount, higher exudation of labile C compounds and anerobic conditions resulting from

increased soil water content (due to higher WUE) and increased soil respiration that also reduce

oxygen level in the soil atmosphere [236 , 237]. However, there are also several studies that have

reported that DEA was decreased at elevated CO2 or remained unchanged at elevated CO2 (Table 11

). Such responses of DEA to elevated CO2 have been attributed to an insignificant effect of elevated
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CO2 on soil water content, an insufficient response of soil O2 availability induced by elevated CO2,

and/or been attributed to soil NO3
- limitation [199].

Similarly, nitrifying enzyme activity (NEA) also showed contrasted responses to elevated CO2 and

was found either to be increased, decreased or not changed by elevated CO2 (see Table 11).

The abundances of soil nitrifiers and denitrifiers have also been reported to be modified by

elevated CO2 (Table 11). Generally, little effect of elevated CO2 on the abundance of soil nitrifiers

and denitrifiers has been found. For instance, the abundance of soil AOA and AOB showed no

response to elevated CO2 in a long-term FACE grassland experiment conducted in Minnesota [221].

Other studies have reported no response of the abundance of soil AOA and soil AOB to elevated

CO2, either in the field [203, 216, 217, 221, 223] and in greenhouse experiments [46]. However, positive

response of the abundance of soil AOA to elevated CO2 was reported by Regan et al. (2001) [217] in

a dry block which was furthest from water table, and negative response of the abundance of AOB

was reported by Horz et al. (2004) [214] in a Californian annual grassland. Nitrite-oxidizers have

mostly been reported to be insensitive to elevated CO2. Simonin et al. (2015) reported no effect of

elevated CO2 on the abundance of Nitrobacter bacteria and Nitrospira bacteria in grassland

mesocosms [46]. This lack of response was consistent with results from a study conducted in a

Californian annual grassland showing no significant response of the abundance of Nitrobacter and

Nitrospira to elevated CO2
[26].

The responses of the abundances of soil denitrifiers, such as nirK-, nirS- and nosZ-harboring

bacteria to elevated CO2 are also variable (as shown in Table 11). For instance, Regan et al. (2001)
[217] observed that the responses of the abundance of soil nirK-, nirS- and nosZI-harboring bacteria

to elevated CO2 depended on soil depth and the soil water content, with negative effect on nirK-

harboring bacteria at MED block ( intermediate to water table) whereas only slight negative trend at

DRY (furthest to water table) and WET (nearest to water table) block between soil depth of 15-22.5

cm. Similarly, the nirS-harboring bacteria was decreased by elevated CO2 in the MED and WET

blocks in soil depth of 15 -30 cm. Tu et al. (2017) [223] and He et al. (2010) [221] found no significant

effect of elevated CO2 on these denitrifying functional genes. However, in the SoyFACE

experimental site established on a farmland, He et al. (2014) [222 ]observed significant positive

responses of nirK- and nirS- harboring bacteria to elevated CO2. Such differences could mainly

result from the soil nutrient state, with often lower N in grassland ecosystems, and higher N in the

soybean agro-ecosystem. In addition, a negative response of soil denitrifier abundances to elevated

CO2 was reported in some field experiments. Finally, elevated CO2 often has positive effect on soil

N2O emission as reviewed by Barnard et al. (2005), although some studies found no significant

effect (such as Carter et al. 2011; Hungate et al. 1997) [186, 233] or even negative effect under low N
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conditions [231].

Warming Effect on Nitrifiers and Denitrifiers

Table 12 A review of the effects of warming on plant-soil ecosystems variables, including: environmental variables,

plant growths, activity and abundance of (de)nitrifiers, and soil N2O emissions. , positive effect; , negative effect;

ns, no significant effect; -, no study available; gray arrows indicate responses that have been observed only in a limited

number of studies as compared to more generally observed

Warming Effects References
Direct effects á soil temperature [238]

Indirect effects

â soil moisture [239-241]

Altered plant species composition [242]

á photosynthesis [243]

á productivity [243, 244]

á soil labile C [244]

DEA
á ns

á: [173, 174, 205, 233, 244-248]

ns: [173, 247, 249]

NEA
á â ns

á: [205, 207, 250-252]

â: [174, 194, 218]

ns: [173, 249, 252, 253]

AOB á â ns
á: [205, 241]

â: [250, 254]
[254]ns: [218, 252, 255-259]

AOA á â ns
á: [252, 260]

â: [241, 254, 255, 257, 261]

ns: [241, 255, 256, 259, 260, 262, 263]

Nitrobacter á á: [264, 265]

Nitrospira â â: [241, 250]

nirK á â ns
á: [261, 266, 267]

â: [241, 268]

ns: [205, 259]

nirS á â ns
á: [266]

â: [241]

ns: [259, 261, 267, 269]

nosZI á â ns
á: [205]

â: [241, 267]

ns: [259, 266]

nosZII -

N2O á â ns
á: [230, 245, 270-272]

â: [273]

ns: [233]

Warming increases soil temperature and often reduces soil moisture [239] (Table 12). It can also

have indirect effects on soil microbial activities through changes in the length of the growing season
[274 ] and in plant species composition [242 ] . Previous studies have shown that warming can
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significantly increase DEA in the field [205, 233, 246], in mesocosms [244] and in incubation experiments
[245, 247, 248]. The positive response of soil DEA to warming was mainly attributed to increased soil

labile C [244]. The response of soil microbial activities to warming could however be offset by a

decrease of soil moisture [240, 275]. Several studies reported no effect of warming on DEA, as in a

long-term field experiment in tundra plant communities in Northern Sweden [249] and an incubation

experiment with 6 different soil texture types [247]. A meta-analysis actually reported no overall

effect of warming on DEA (see the review by Barnard and Leadley 2005) [173] (Table 12).Positive

responses of NEA to warming have also been reported by several studies (see Table 12). In contrast,

negative responses of soil NEA have also been reported, likely due to increased soil respiration

which lead to decreased soil O2 concentration[174]. Besides, several studies reported no effect of

warming on NEA, e.g. in a long-term field experiment in Northern Sweden [249] and in an artificial

grassland ecosystem established in Belgium [253]. Overall, a meta-analysis reported no effect of

warming on NEA (see the review by Barnard and Leadley 2005) [173] (Table 12).

Numerous studies have reported the responses of the abundances of soil nitrifying and

denitrifying functional genes to warming (see Table 12). For instance, Long et al. (2012) [263]

showed that warming did not significantly change the abundance of AOA, being consistent with the

result from an elevated temperature experiment in a pristine forest soil [254]. In contrast, a study

showed a decrease of AOA diversity under soil warming in the rhizosphere of a boreal forest tree
[276]. According to some authors, the ammonia oxidizers, especially the AOB, may be in an inferior

position to compete with plants as temperature increases [277, 278].

Previous studies have shown that the response of the abundances of soil denitrifying functional

genes to warming was variable. For example. Zhang et al. (2013) [259] reported no significant effect

of warming on nirK, nirS and nosZI-harboring bacteria in a grassland experiment. Similarly, Jung et

al. (2011) [261 ]found no response of the abundance of nirS to warming in an Antarctic soil, and

Cantarel et al. (2012) [205] observed no effect of warming on the abundance of nirK in an upland

grassland ecosystem. However, Jung et al. (2011) [261] found a positive response of the abundance of

nirK to warming. Warming generally increases soil N2O emission, likely via increasing soil

microbial activity [245] or soil labile carbon content [244].

Precipitation Effect on Nitrifiers and Denitrifiers

Previous studies on the effects of changes in precipitation regime on soil N cycling have mostly

focused on changes in the amount of precipitation [205, 279] [280 ], whereas fewer studies have

considered changes in the duration of the rainy season [232, 233] and in the distribution of precipitation
[281] . Changes in precipitation regime obviously lead to changes in soil water content and soil
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oxygen content which can affect soil nitrifiers and denitrifiers. In particular, increased precipitation

increases soil water content and soil heterotrophic respiration thus decreasing soil O2 availability [240]

, which would benefit the growth of denitrifiers but would be unfavorable for nitrifiers [78, 174] [247]

(Table 13).
Table 13 A review of the effects of elevated precipitation amount on plant-soil ecosystems variables, including:

environmental variables, plant growths, activity and abundance of (de)nitrifiers, and soil N2O emissions. , positive

effect; , negative effect; ns, no significant effect; -, no study available; gray arrows indicate responses that have been

observed only in a limited number of studies as compared to more generally observed

E l e v a t e d
Precipitation
Amount

Effects References

Direct effects á soil water content

Indirect effects á plant productivity [243, 282, 283]

DEA á â ns
á: [194, 213, 247, 284]

â: [285]

ns: [285]

NEA
â ns

â: [285, 286]

ns: [194]

AOB á ns á: [250, 287, 288]

ns: [255, 259, 289]

AOA á ns á: [287, 288]

ns: [255, 259, 289]

Nitrobacter â â: [26]

Nitrospira Ns ns : [26]

nirK á ns á: [287]

ns: [259, 289-291]

nirS á ns á: [287]

ns: [259, 289-292]

nosZI á ns á: [287, 292]

ns: [259, 289-291]

nosZII -
N2O á â á: [205, 232, 290, 292-295]

â: [290]

An increased amount of precipitation has been reported to increase DEA [194, 213, 284] (Table 13)

mainly through decreasing soil O2 availability. Increased precipitation has been found to either

reduce NEA (Chen et al. 2013, Niboyet et al. 2011 for potential nitrite-oxidation) [213, 286] due to

decreased soil O2 availability, or to increase NEA likely due to higher N mineralization rates and

associated substrates for nitrifiers (Niboyet et al. 2011 for potential ammonia-oxidation) [213]. High

frequency precipitation (more dry-rewetting cycles) increased net N mineralization [296, 297].

The effects of altered precipitation on the abundances of soil nitrifiers and denitrifiers are rather



18

inconsistent (Table 13). Increased precipitation has no significant effect ;[198, 255, 259] or positive effect
[287, 288] on the abundance of soil ammonia-oxidizers (Table 13). Consistently, studies investigating

decreased precipitation effects have reported either no significant effect on soil ammonia-oxidizers

or decreases in the abundance of soil AOB [198, 262] and AOA [262, 290, 298]. Very few studies have

investigated the response of soil nitrite-oxidizers to altered precipitation. Le Roux (2016) [26]

reported negative response of Nitrobacter bacteria to elevated precipitation but no response of soil

Nitrospira to this treatment for a Californian annual grassland, the abundance of Nitrobacter being

strongly and positively correlated to soil potential nitrite oxidation [26].

Numerous studies have documented the effect of altered precipitation on the abundance of soil

denitrifiers, except on soil nosZII-harboring bacteria (Table 13; Table 14). An increase in

precipitation amount has been reported to either increase or have no significant effect on the

abundances of soil nirK-, nirS-, and nosZI-harboring bacteria (Table 13). Concurrently, soil N2O

emissions have been often been reported to increase with elevated precipitation, while soil N2O

emissions are mostly reduced by decreased precipitation amount (Table 14).
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Table 14 A review of the effects of decreased precipitation on plant-soil ecosystems variables, including: environmental

variables, plant growths, activity and abundance of (de)nitrifiers, and soil N2O emissions. , positive effect; ,

negative effect; ns, no significant effect; -, no study available; gray arrows indicate responses that have been observed

only in a limited number of studies as compared to more generally observed

D e c r e a s e d
P r e c i p i t a t i o n
Amount

Effects References

Direct effects â soil water content [246]

Indirect effects â plant productivity [243]

DEA á ns
á: [299]

ns:[205]

NEA á ns
á:[299]

ns:[205, 300]

AOB á ns
á: [198, 262]

ns: [254, 255, 298, 301]

AOA á ns
á: [262, 290, 298]

ns: [198, 254, 255, 290, 298, 300-302]

Nitrobacter -
Nitrospira -

nirK á â ns
á: [290, 303]

â: [262, 302]

ns: [290, 300, 301])[198]

nirS á â ns
á: [290, 303]

â: [262, 301, 304]

ns: [198, 290, 301, 304]

nosZI á â ns
á: [290, 303]

â: [262]

ns: [198, 246, 290, 300, 301]

nosZII â â: [262]

N2O á â ns
á: [225, 254]

â: [280, 290, 305];
ns: [233]

Nitrogen Deposition Effect on Nitrifiers and Denitrifiers

Nitrogen deposition generally increases net plant primary productivity (NPP) [306] and increases

the soil nitrogen content and more particularly mineral N availability [307]. But N deposition also

alters the rate of nitrogen turnover in soil [308, 309], reduces soil pH, alters litter quality, consequently

changing soil conditions for soil (de)nitrifiers [307].
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Fig. 110 Diagram of potential mechanisms for N addition effects on soil microbes, most of these mechanisms being

relevant to understand the possible responses of nitrifiers and denitrifiers to N deposition [307]

Numerous studies have reported positive effects of N addition on soil N cycling processes

including nitrification and denitrification (see the review by Barnard et al. 2005) [173] (Table 15). N

addition increases ammonium and nitrate availability for nitrifiers and denitrifiers, resulting in

increased NEA and DEA [20 , 173, 208, 310]. However, some studies found that the DEA showed no

significant response to N addition [311], which could be attributed to the nutrient status of the soil [312].

Indeed, in soil systems with lower fertility, nitrogen addition increased DEA, but in high soil

nutrient condition, negative effect of N addition on DEAwas observed [312].
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Table 15 A review of the effects of Nitrogen addition on plant-soil ecosystems variables, including: environmental

variables, plant growths, activity and abundance of (de)nitrifiers, and soil N2O emissions. , positive effect; ,

negative effect; ns, no significant effect; -, no study available; gray arrows indicate responses that have been observed

only in a limited number of studies as compared to more generally observed

N addition Effects References
Direct effect á N availability [307]

Indirect effect

á ANPP [306]

á litter quality [307]

â BNPP [307]

â soil pH [307]

DEA
á ns

á: [173, 208, 300, 310, 313-316]

ns: [233, 300]

NEA á â ns
á: [4, 46, 198, 208, 300, 311, 312, 317-319]

â: [312]

ns: [319]

AOB á â ns
á: [4, 46, 47, 49, 263, 298, 300, 317, 319-330]

â: [22, 263, 328, 331]

ns: [214, 263, 288, 289, 300, 332-335]

AOA á â ns

á: [47, 300, 312, 323, 325, 328, 329, 336]

â: [289, 320, 321, 325, 330, 337]

ns: [44-46, 49, 198, 222, 259, 263 , 288, 300,

317, 319, 327, 329, 332, 333, 338-340]

Nitrobacter á [26, 44, 46]

Nitrospira á â ns
á: [331]

â: [46, 341]

ns: [26, 44] [342]

nirK á â ns
á: [92, 261, 321, 323, 325, 343, 344]

â: [259, 325, 332, 338, 345]

ns: [44, 45, 198, 289, 303, 312, 329, 346-348]

nirS á â ns
á: [92, 261, 312, 323, 325, 343, 349, 350]

â: [259, 321, 325, 332, 345]

ns: [44, 45, 198, 289, 303, 312, 346]

nosZI á â ns
á: [312, 321, 325, 332, 343, 349]

â: [259, 325]

ns: [44, 45, 198, 261, 289, 303, 312, 346]

nosZII â ns
â: [351]

ns: [173, 351-353]

N2O á ns
á: [173, 186, 240, 293, 294, 321, 349, 354-359]

ns: [290]

N addition has been found to elicit inconsistent responses in the abundances of soil nitrifiers

and denitrifiers (Table 15). Responses of AOB vary with fertilizer type, ecosystem, study type, and

soil pH, and are generally favored in soils fertilized with inorganic N sources[47]. Carey et al. (2016)

suggested that elevated N supply enhances soil nitrification potential by increasing AOB

populations [47]. Current studies indeed frequently reported a positive response of AOB which
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dominate N-rich environments [20] [360], to N addition (see Table 15 ). The abundance of AOA,

which are favored by lower NH3 and lower pH conditions, often showed no significant response to

N addition (see Table 15). However, some studies showed that AOA abundance was decreased by N

addition [307] [337] or increased by N addition [25, 300, 307, 361]. Actually, N deposition can alter the ratio of

AOA to AOB. For example, N addition could induce the decrement of soil pH [25], which favored

AOArather than AOB [52].

Nitrobacter are generally increased by N addition [26, 44, 46] because of their higher half-saturation

constants and higher growth rates as compared to Nitrospira which favor Nitrobacter under

conditions of high nitrite NO2
- availability. In contrast, Nitrospira which have low half-saturation

constants for NO2
- and lower growth rates [67-70] showed inconsistent response to N addition (Table

15).

The responses of the abundance of soil denitrifiers to N addition are also rather inconsistent

(Table 15), depending on soil nutrient availability, labile C content, soil depth, fertilizer type,

ecosystem, and soil pH.

Fire Effect on Nitrifiers and Denitrifiers

Burning can have a direct effect on soil (de)nitrifiers, as it induces direct temperature elevation

to soils and may lead to heat-induced mortality of soil microbes [362] [363]. However, Delmas et al.

(1995) reported that low intensity fires (e.g. flames with 2-5 m/min and 1-2 m height) induced heat

wave not penetrating very deep (soil temperature changed only within 3 cm) [364]. Consequently,
microbes are probably not impacted directly by burning due to heating. Besides direct effect,

burning most often indirectly affects the abundance of soil microbes via altering soil physical and
chemical properties such as soil water content, soil temperature, and the availability of soil

nutrients and labile carbon exudated by roots (Fig. 111) [365]. There are many reports including
numerous reviews on the effects of fire on soil properties [366] [143]. This includes effects on soil

temperature, soil water content, but also availability of soil organic matter and nutrient (Table 16).

In addition, burning also can affect plant growth [367, 368].

Burning has been reported to increase [369, 370], decrease [369] or to have no effect [4] on NEA,

sometimes depending on soil sampling timing after burning [369-371]. Similarly, the responses of DEA

to burning are also inconsistent (Table 16).

In general, burning would increase the abundance of AOB due to increased soil pH [372-373] or

increased NH3 concentration [20, 23, 25, 50,373]. However, a grassland study has reported no burning

effect on the abundance of AOB [4]. The abundance of AOA has been shown to respond negatively

to burning, which may result from increased soil pH [372], because AOA tended to be favored by
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lower pH as compared to AOB. The effects of fire on soil nitrite-oxidizers have been rarely

investigated. In a study conducted in Tallgrass Prairie, no response of the relative abundance of

Nitrospira bacteria has been found [342].

Fig. 111 Diagram of potential direct (solid arrows) and indirect (dashed arrows) mechanisms through which fire

disturbance positive (+) or negative (-) effects on microbial abundance [365]

Fire increased the abundance of soil nirK- and nirS-harboring bacteria likely due to an increase

of soil pH [370]. No study to date has been reported the response of nosZII-harboring bacteria to fire

disturbance. The response of soil N2O emission to burning was often expected to be positive

because of burning induced changes of soil environmental variables such as soil water content and

availability of soil NO3
- and C, or altered soil (de)nitrifier activity and abundance (Table 16). For

instance, Niboyet et al. (2011) reported that fire increased soil N2O emission after 2 and 3 years of

fire disturbance which was attributed to the changes of soil water content and labile carbon [284].

Other studies also found positive response of fire disturbance but was mainly ascribed to the fire

induced increase of soil NH4
+ concentration [374-375].
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Table 16 A review of the effects of burning on plant-soil ecosystems variables, including: environmental variables, plant

growths, activity and abundance of (de)nitrifiers, and soil N2O emissions. , positive effect; , negative effect; ns, no

significant effect; -, no study available; gray arrows indicate responses that have been observed only in a limited

number of studies as compared to more generally observed

Burning Effects References

Direct effects
á soil temperature [362, 363, 368, 376, 377]

á soil C quantity and quality [365]

Indirect effects

á BNPP [367, 368]

á soil water content [368, 378]

â soil water content [135]

â soil NH4+ [370]

á soil pH [371, 372, 379-382]

â soil pH [300]

ns pH [383]

DEA
á â ns

á: [314, 370, 384]

â: [369, 370]

ns: [369]

NEA
á â ns

á: [369, 370, 385]

â: [369]

ns: [4]

Microbial enzyme
activity

á â
á: [386]

â:[387, 388]

AOB
á ns á: [370, 372, 373, 385]

ns: [4]

AOA
á â á: [370]

â: [372]

Nitrobacter -

Nitrospira ns ns: [342]

nirK á ns á: [370]

ns: [135, 370, 389]

nirS á ns á: [370]

ns: [135, 370, 389]

nosZI á ns á: [389]

ns: [135, 370, 389]

nosZII -
N2O á â ns á: [284]

â: [135]

ns: [284]

Research Knowledge Gaps Regarding Effects of Global Change Factors on nitrifiers and

denitrifiers

An increasing number of studies have assessed the interactive effects of multiple global change
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factors on the activity and/or abundance of soil nitrifiers and denitrifiers [4, 26, 46, 194, 198, 205, 207, 208, 213,

214, 232, 258-260, 284, 300, 313, 390, 391]. Those studies have highlighted that the response of soil nitrification

and denitrification to multiple global change factors was not necessarily additive, the effects of

multiple global change factors amplifying or dampening each other. These studies have mostly

focused on two global change factors, while fewer studies have reported the effects of more than

three co-occurring global change factors on soil nitrifiers and denitrifiers [4, 26, 198, 205, 208, 213, 214, 259, 284]

. In these studies, changed precipitation amount and frequency have not been unraveled and the

coupling between changed precipitation regime and changed regime of wet N deposition has not

been considered. Furthermore, the interactive effects of global change factors and disturbances such

as fire on nitrification and denitrification have been poorly investigated to date (apart from few

exceptions [4, 232, 284]). Only one study to date has investigated the response of the abundance of the

soil nitrifiers to the combined effect of fire and multiple global environmental changes: Docherty et

al. (2012) have studied the response of AOB following a wildfire event part of a global change

experiment [4], who only reported one date after fire (9 months after wild-fire) and with only 2

blocks for wild-fire treatment. In addition, no study has investigated the response of other soil

nitrifying groups (AOA, Nitrobacter, Nitrospira) and of soil denitrifying groups to the interactive

effects of multiple global change factors and fire disturbance. In addition, the temporal responses of

the soil nitrifiers and denitrifiers according to time after fire and under different global change

scenarios have never been evaluated so far.

1.3 Objectives of My Ph.D. Work
The main objective of my Ph.D. work was to study the -possibly interactive- effects of several

global change factors (namely increased N deposition; altered rainfall regime; warming; and/or CO2

elevation) and fire disturbance on microbial communities involved in soil N dynamics in grasslands,

focusing on different groups of nitrifiers and denitrifiers. To address this, I have worked on two

experiments:

(i) a mesocosm experiment assessing the combined effects of increased N deposition and

changes in both the amount and the frequency of rainfall in semi-arid Monsoon grassland (Songnen

grassland, see chapters 2 and 3). In this experiment, a first novelty was to decouple the modification

of precipitation amount and the modification of precipitation frequency; and a second novelty was

to mimic chronic wet N deposition by coupling N input to precipitation events; and

(ii) an in situ experiment assessing the combined effects of increased N deposition,

enhanced precipitation, warming, elevated CO2 and fire in a Mediterranean grassland (Californian

grassland, see chapters 3 and 4). The novelty was to assess the effect of these 5 global change
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factors and all their combinations (32 treatments, replicated) on 8 microbial groups involved in soil

N cycling (4 groups of nitrifiers and 4 groups of denitrifiers).
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1.4 Experimental Designs Used in My Ph.D.

Fig. 112 Diagram of Experimental Designs Used in My Ph.D. (In the experiment conducted in Monsoon grassland,

global change factors include N deposition, - rainfall amount and +/- rainfall frequency; In the experiment conducted in

Mediterranean grassland, global change factors include N deposition, + rainfall amount plus extending 3-week rainfall

period, N deposition, elevated CO2, warming and fire disturbance)

Experimental Design in Semi-Arid Monsoon Grassland

An experiment based on 36 mesocosms was set up in a greenhouse at the experimental facility

of Northeast Normal University, China (43° 51´N, 125°19´E, 236 m a.s.l.). Each mesocosm was a

38-liter cylinder (34 cm in diameter and 42 cm in depth) containing ca. 50 kg of grassland soil

collected in the Grassland Ecosystem Field Station of the Northeast Normal University (123°44´E,

44º40´N, 167 m a.s.l.), part of the Songnen Grassland area of China. Soil was air dried and sieved

(2 cm) to roughly mix the soil and remove stones and large plant fragments before filling the

mesocosms with soil. The mesocosms were buried in the ground to buffer temperature changes of

the belowground part during the day, with the top edge of each mesocosm being placed 3 cm above

ground level to avoid surface runoff. Each mesocosm was planted with 30 individuals of Leymus

chinensis (Trin.) Tzvel, the dominant grass species in Songnen Grassland [392]. Plants were pre-

cultivated in soil until 3-4 leaves developed. Planting was made in April 2013, one year prior to

treatment inception, under ambient conditions and without any fertilization. Mesocosms were

considered deep enough because in the field most of the root system of L. chinesis is found in the 5-

10 cm soil layer. The mesocosms were mown once a year in late August to simulate farmers

practice in Songnen grassland. Mesocosms were also regularly weeded to remove unplanted species.

The experiment consists of a three factors factorial design with randomized block. The three

factors were N deposition (with two levels: 0 and +10 g N-NH4NO3 m-2 yr-1); precipitation amount
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(with two levels: ambient precipitation amount, 370 mm and -30% ambient amount); and

precipitation frequency (with three levels: ambient frequency, +50% and -50% ambient

precipitation frequency; the total precipitation amount remaining the same). Three replicates were

used for each of 12 treatments, and the 36 mesocosms were arranged according to three blocks,

each including the 12 treatments. Based on a 60-years record of daily precipitations (from 1953 to

2013; data from the Climatic Station of Changling County, Jilin Province), the semi-arid climate in

this area is characterized by a low annual precipitation amount (ca. 430 mm) with a short rainy

season typically from May to September (average total precipitation amount during this period is

370 mm) and a long dry period from October to April (average total precipitation amount for this

period is 50 mm). From October to April, all mesocosms were exposed to natural precipitation

events without any treatments applied. During the growing season from May to September, both in

2014 and in 2015, the treatments (precipitation amount × precipitation frequency × N deposition)

were simulated. Light transmissive material was used as shelter to avoid interference of natural N

deposition and precipitation. N deposition in the North China Plain is estimated to be as high as 8.3

g-N m-2 yr-1 and could become higher in the future [393]. Further, Wang et al. (2008) observed that

wet deposition in the China Northern Loess area accounts for over 90% of the total atmospheric N

deposition [394], and Xing & Zhu (2002) reported a N-NH4
+: N-NO3

- ratio of 3:1 to 4:1 for wet

inorganic N deposition [395] . Here we used 10 g-N m-2 per rainy season for simulating wet N

deposition, applied as ammonium-nitrate with a N-NH4
+-:N-NO3

- ratio of 3.4:1. To simulate chronic

N deposition as experienced in the field, the N input was coupled with simulated precipitation by

dissolving N in water used for each prescribed precipitation, so that the prescribed total

precipitation amount during the growing season (370 mm) corresponded to a total wet deposition of

10 g-N m-2. The current precipitation frequency for the study area was defined according to a recent

10 years record of precipitation frequency during growing season (from 2000 to 2010; data from the

Climatic Station of Changling County, Jilin Province). Precipitation frequency changes as compared

to the 10-year average were chosen according to the minimum and maximum observed frequencies,

leading to treatments with -50% and +50% days of precipitation events. Whatever the precipitation

frequency treatments, all the mesocosms received the same total amount of precipitation per month

(and same total precipitation over the growing season). The largest simulated precipitation amount

in a single day was 24 mm. Detail experimental design see

Table 17. Mesocosms were slowly hand watered (with a watering sprayer) to minimize surface

runoff. The experimental treatments lasted for two years. In the first year, the experimental

treatments were carried out, without sampling; plants and soil were sampled in the second

experimental year.
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Table 17 Monthly values of precipitation amount (ambient precipitation amount, Actrl; reduced

precipitation amount, A-30%) and frequency (reduced by 50%, F-50%; normal frequency, Fctrl;

increased by 50%, F+50%)F) used for the experiment in the semi-arid Monsoon grassland
Precipitation amount (mm) F - 5 0 %

(days)
F c t r l

(days)
F+ 5 0%

(days)Actrl A-30%

May 23 7 5 9 14
June 66 20 6 11 17
July 144 43 6 12 18
August 97 29 5 10 15
September 41 12 4 7 11

Experimental Design in Mediterranean Grassland

A field experiment was set up at the Jasper Ridge Global Change Experiment (JRGCE) in the

Jasper Ridge Biological Preserve (Fig. 113) located in the eastern foothills of the Santa Cruz

Mountains in northern California 37°24'N, 122°14'. The JRGCE began in the fall of 1998, and

provides global change scenarios with four global-change factors, each at two levels (ambient and

elevated): atmospheric CO2 concentration (ambient and +275 ppm) manipulated in a free-air CO2

enrichment (FACE) system, temperature (ambient and soil surface warming of 0.8-1℃ for 12 years

and then 1.5 2℃) by using overhead infrared heat lamps, precipitation (ambient and +50% above

ambient and 3 weeks elongation of the growing season) manipulated first with drip irrigation (1998

2000) and then with sprayed sprinklers irrigation system (2001 2004) system, and N supply

(ambient and +7 g Ca(NO3)2-N m-2 yr-1) twice per year. The first simulated N deposition event was

2 g-N m-2 addition in solution early in the growing season (November) to mimic the accumulated

dry N deposition flushed into the system with the first rains. The second simulated N deposition

event was manipulated later in the season (January February), with 5g N m-2 addition as slow-

release pellets (Nutricote 12 0 0, Agrivert, Riverside, California, United States) [396, 397].

Fig. 113 Map of Jasper Ridge Global Change Experiment area at the Jasper Ridge Biological Preserve. Circles
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represent 2 m diameter global change treatment plots (n = 36 total). Orange circles indicate plots that receive both

+CO2 and heat treatments. Red circles indicate plots that receive heat treatment, but ambient CO2. Yellow circles

indicate plots that receive +CO2 treatment, but ambient temperature. White circles indicate plots at ambient CO2 and

temperature. In blocks with two white circles, one is an infrastructure free control. For each circular plot, one

quadrant receives +N treatment, one quadrant receives elevated precipitation treatment, one quadrant receives both +N

and elevated precipitation treatment, and one quadrant is held at ambient precipitation and N. Red shading indicates the

areas which were subjected to a low intensity experimental burn in July 2011 [109, 368]

The elevated levels of the global change factors studied were selected according to scenarios

predicted to occur at the end of the 21st century for central California [398]. Thirty-two circular plots

(2-m diameter) were established at the JRGCE. Each plot was divided into four subplots (each with

ca. 0.78 m2) using fiberglass barriers (0.5 in depth) to separate soil between neighboring quadrants

and soil between plot and surrounding grassland. The experiment was organized as a randomized

block split-plot design, with CO2 and temperature treatments manipulated at the plot level, and

precipitation and N treatments manipulated at the subplot level. There were eight replicates (i.e.

blocks) for all 16 treatments. In addition, an accidental and low-intensity fire occured in two of the

eight blocks of the experiment in July 2003 [284, 377, 388]. Then, a controlled burned was conducted by

the California Department of Forestry and Fire Protection in July 2011 in half of the blocks,

resulting in a new experiment with all combinations between five factors, 32 treatments, with four

replicates for each. This prescribed fire was conducted based on a plan to achieve typical grassland

fire intensities while also maintaining high confidence that the burns remained within predetermined

areas. Air temperatures at the time of burning were 23-25°C and relative humidity was 45-50%. The

prescribed fire consumed 100% of the aboveground vegetation, with maximum flame lengths of 0.6

to 1.3 m and rates of spread of 5.6 to 15 m/minute.

For the paper on global change scenarios effect on soil nitrifiers and denitrifiers (see section 1.2),

the following keywords were used and search in Web of Science:

((AOB or AOA or ammonia and oxidi* or nitrifier* or nitrifying or Nitrobacter or Nitrospira

or nitrite oxidi* ) and ((fire or fires or burning) or "elevat* CO2 or elevat* carbon

dioxide" or "increased CO2 or increased carbon dioxide" or change* CO2” or “change*

carbon dioxide" or "elevat* temperature” or "increased temperature” or warming or "nitrogen

deposition” or “nitrogen addition " or "N deposition or N addition" or elevated

precipitation or elevated rainfall* or decreased precipitation or decreased rainfall* or

altered precipitation or altered rainfall* )) and soil for searching papers published on

nitrifiers and ((nirK or nirS or nosZ or denitrifier* or denitrifying or nitrite oxidi* or

nitrous oxide* or N2O) and ((fire or fires or burning) or "elevat* CO2 or elevat* carbon
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dioxide" or "increased CO2 or increased carbon dioxide" or change* CO2 or “change*

carbon dioxide" or "elevat* temperature” or "increased temperature” or warming or "nitrogen

deposition” or “nitrogen addition " or "N deposition or N addition" or elevated

precipitation or elevated rainfall* or decreased precipitation or decreased rainfall* or

altered precipitation or altered rainfall* )) and soil for searching published papers for

denitrifiers and soil N2O emission.
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2 Responses of Soil Nitrifiers to Chronic N Deposition and Changes

in Precipitation Amount and Frequency in a Semi-Arid Monsoon

Grassland

2.1 Introduction
Human-induced global changes have significantly altered most terrestrial ecosystem processes,

especially nitrogen (N) cycling processes [194, 256]. Rising atmospheric N deposition along with

alteration of precipitation regime are two important aspects of these global changes [134]. Some areas

on the globe are particularly exposed to high N deposition loads, due to intensive agricultural and

fossil fuel combustion [133, 134, 136]. In particular, N deposition in the North China Plain is estimated

to be as high as 8.3 g-N m-2 yr-1 and could become higher in the future [393]. Regarding the nature of

N deposition in this area, Wang et al. (2008) observed that wet deposition in the China Northern

Loess area accounts for over 90% of the total atmospheric N deposition [394], and Xing & Zhu (2002)

reported a NH4
+-N: NO3

--N ratio of 3:1 to 4:1 for wet inorganic N deposition [395]. Many studies

have shown that enhanced N deposition deeply influences soil N cycling processes such as N

mineralization, nitrification and denitrification [399].

Together with increased N deposition, global change is also characterized by changes in

precipitation patterns. According to the report of IPCC (2013), changes in precipitation patterns will

not be uniform. In many mid-latitude and subtropical dry regions, mean precipitation will likely

decrease [132], and Liu et al. (2005) found that precipitation has already decreased over the 1960-

2000 period in the North China Plain and north central China [400]. However, for terrestrial areas,

climate models predict that besides changes in precipitation amount, reduced or increased

precipitation frequency with or without modifications in total precipitation amount will occur
[124, 129, 401, 402]. Changes in precipitation frequency can lead to significant changes in ecological

processes [403, 404] [405] and are expected to have large impacts on N cycling particularly in arid and

semi-arid ecosystems [297, 402]. Indeed, changes in precipitation frequency can alter the whole water

balance in the soil-plant continuum, affecting the growth of root systems and changing root N

uptake. For example, reduced rainfall frequency without altering total rainfall amount induces larger

rainfall pulses, hence providing more water to deep roots, whereas increased rainfall frequency

induces shallower root systems with higher fine root biomass of wheat (Triticum aestivum L. cv.



33

SST33) [406]. Previous studies have shown that rainfall frequency (or drying-rewetting frequency)

influences soil N cycling in different terrestrial ecosystems [407-410]. Indeed, modified rainfall

frequency induces changes in soil moisture regime with a direct effect on soil N transformation [411].

Meanwhile, it also induces changes in vegetation growth [412] and root exploration of the soil with

cascading effects on soil microbial community as well as roots-microbes interactions [413]. However,

only few studies have conducted experiments with changes in precipitation frequency decoupled

from possible changes in total annual precipitation amount, and all of these studies have been

conducted in mesic grasslands [171, 414].

Moreover, wet N deposition is tightly coupled to precipitation events [415, 416] so that altering

precipitation frequency also modifies the temporal distribution of wet N deposits. But the response

of N cycling to simulated N deposition is often studied based on a single or a few N addition

event(s) during the year [193, 417-420]. The interactive effects of modified rainfall regime and of co-

occurring wet N deposition on soil N cycling have never been investigated so far.

Leymus chinensis is a typical species of perennial grassy pastures widely distributed in the

eastern part of the Eurasian grassland, including the outer Baikal region of Russia, the northern

eastern part of the Mongolian People's Republic, as in China's Northeast Plain, North China Plain

and the Loess Plateau. In the grassland area of Northeast China (so called Songnen grassland),

Leymus chinensis is the dominant species. This semi-arid grassland is highly limited by both water

and N [421, 422]. At the same time, it is located in areas prone to high N deposition loads [393] and where

precipitation regime is expected to be modified over the next decades according to the precipitation

history [400] so that important consequences of these global change factors can be expected.

In this chapter, a grassland mesocosm experiment was conducted to investigate the responses of

soil N-cycling microbial processes (net N mineralization, Net-N-min; and nitrifying enzyme activity,

NEA) and abundances of nitrifiers (Ammonia-Oxidizing-Archaea, AOA; and Ammonia-Oxidizing-

Bacteria, AOB) along with soil environmental variables (soil water content and mineral N

availabilities) to changes in precipitation amount (-30%), precipitation frequency (±50% in term of

events per month during the growing season as compared to current precipitation regime according

to history of the local climate projections) and co-occurring wet N deposition. We hypothesized that

(1) soil Net-N-min and NEAwould be increased by reduced precipitation amount because of more

aerobic conditions induced by reduced precipitation; simultaneously, reduced precipitation amount

may increase plant belowground growth, which would result in either increased soil organic matter

for microbes or increased competition between plant and soil microbes; (2) increased rainfall

frequency for a given total rainfall amount (i.e. more rainfall events with low intensity) would

increase soil Net-N-min, NEA and nitrifying abundance, which could be due to more aerobic
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conditions with frequent dry-rewetting cycles. This positive effect could be increased by the co-

occurring chronic N deposition, which could provide more N nutrient in this N limited grassland; (3)

as compared to AOB abundance, AOA abundance would be less sensitive to treatments because of

the strong adaptive property of AOA (Table 14; Table 15).

2.2 Study site
Soil was collected in the Grassland Ecosystem Field Station of the Northeast Normal

University (123°44´E, 44º40´N, 167 m a.s.l.), part of the Songnen Grassland area of China. This

area is characterized by a typical temperate semi-arid Monsoon climate. Mean annual precipitation

ranges from 250 to 490 mm, with more than 70% falls from June to August. The annual mean air

temperature is 6.4°C, ranging from minimum ca. -27°C in January to maximum ca. 30°C in July,

respectively. The frost-free period is about 140 days (generally from early May to late September).

Soil texture for the 0-10cm layer is 17.9% clay, 8.1% silt and 74.0% sand, corresponding to a sandy

loam soil according to International Society of Soil Science Standard (ISSS). Soil pH, EC and bulk

density are 7.85, 2.17 dS m-1 and 1.85 g cm-3, respectively (0-10 cm layer). Soil total carbon,

dissolved carbon and total nitrogen concentrations are 7.22 ± 0.05, 0.20 ± 0.01 and 0.74 ± 0.01 mg

g-1 respectively. Soil ammonium and nitrate concentrations are 0.92 ± 0.08 and 0.07 ± 0.01 μg-N g-1.

The vegetation type in the study area is a meadow steppe, mainly composed of perennial grasses,

and the dominant species is Leymus Chinensis [392]. Leymus chinensis is widely distributed in the

arid and semi-arid grasslands of northern China, Russia, and eastern Mongolia. Leymus chinensis is

very resistant to cold, drought and salt and alkali. Other species in the area include the grass species

Calamagrostis epigejos, Stipa baicalensis and Phragmites australis; the forbs Artemisia scoparia,

Artemisia mongolica, Kalimeris integrifolia, Hemarthria sibirica and Carex diriuscula; and the

legumes Apocynum venetum, Melissitus rutenica, and Lathyrus quinquenervius [392].

2.3 Materials and Methods
Experimental Design

See section 1.4.1

Soil Sampling and Measurements

2.3.2.1 Soil temperature and soil water content

Soil temperature and volumetric water content (SWC) (%) were determined for the 0-10 cm

layer with a TRIME Pico 64 field moisture TDR-sensor [423] every two weeks from early June to

late September in 2015.
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2.3.2.2 Soil environmental variables

On 11th August 2015, three 10 cm-deep soil cores were collected in each mesocosm, using an

auger (3 cm in diameter). The remaining holes were filled with fine quartz sand to limit alteration of

gaseous diffusion from soil. After sieving (2-mm) the sampled soil, fresh soil sub-samples were

stored at -80°C before DNA extraction and quantitative PCR (qPCR) analyses. Other fresh soil sub-

samples were stored at 4°C before determination of the concentrations of soil ammonium, NH4
+ (μg

-N g-1 dry soil), and total dissolved organic carbon, DOC (mg-C g-1 dry soil). Fresh soil sub-samples

were also used to quantify net N mineralization rate, Net N-min (μg-N g-1 dry soil day-1), and

nitrifying enzyme activity, NEA (μg-N g-1 h-1). Other soil sub-samples were air-dried before

analysis of soil total carbon (TOC) and total nitrogen concentration (mg g-1 dry soil).

TOC was analyzed with an elemental analyzer (Vario TOC; Elementar, Hanau, Germany) after

acidizing the air-dried soil samples with 1 M HCl. Total soil N concentration was analyzed with an

elemental analyzer (Pyrocube, Elementar, Hanau, Germany) after grounding with a Wiley ball mill

(MM400, Retsch, Hanau, Germany). NH4
+ concentrations were determined by extraction with KCl.

Briefly, 10 g (equivalent dry weight) fresh soil sub-samples were extracted with 50 ml KCl (2 M)

solution, extracted in a shaker (180 rpm) for 1h, and the supernatants were filtered (0.45 μm) before

analysis. Concentrations of inorganic N were then analyzed using a continuous flow analyzer

(Alliance Flow Analyzer, Futura, Frépillon, France). To determine the soil DOC concentration, 10 g

fresh soil were extracted using 50 ml K2SO4 (0.5 M) solution, and the extracts were analyzed with a

Vario TOC element analyzer (Elementar, Hanau, Germany).

2.3.2.3 Soil net N mineralization and nitrifying enzyme activity

Soil net N mineralization (Net N-min) rate was measured during aerobic incubation according

to Hart et al. (1994) [424]. 10 g (equivalent dry mass) fresh soil were placed in a 100 ml glass flask

which was then covered with a thin perforated parafilm to allow gas exchange but minimize water

loss. The soil was incubated for 28 days at 25°C in the dark. Ammonium and nitrate concentrations

(μg-N g-1 dry soil) were determined before and after incubation as described above. Net N-min was

calculated as the net accumulation rates of total mineral N (sum of NH4
+ and NO3

–) during the

incubation[424]. NEA was determined according to the shaken-slurry method [424]. For each sample,

15 g soil were mixed with 100 ml of 1.5 mM ammonium-sulfate and incubated at 25°C. Then, 10

ml slurry samples were sampled after 2, 4, 17.5, 22 and 24 h and centrifuged. Supernatants were

filtered (0.45 μm) and immediately analyzed as described above for NO3
-. NEAwas calculated from

the linear increase of NO3
- during the incubation.
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2.3.2.4 Soil DNA extraction and quantification of the abundances of ammonia-oxidizing bacteria

and archaea

Soil DNAwas extracted from ca. 0.5 g of soil using PowerSoil DNA isolation kit (MO BIO

laboratories, Carlsbad, CA, USA) according to the manufacturer's instructions. The concentration of

the extracted genomic DNA was determined on a Nano Drop 2000 device (Fisher Scientific,

Schwerte, Germany). The abundances of ammonia-oxidizing archaea (AOA) and ammonia-

oxidizing bacteria (AOB) were quantified with a Lightcycler 480 (Roche Diagnostics, Meylan,

France), targeting the amoA gene. The sets of primers used were CrenamoA23f/CrenamoA616r for

AOA and AmoA-1F/AmoA-2R for AOB. Further details about the primers are provided in Table 21.

Possible PCR inhibition by co-extracted compounds was evaluated by serial dilution and no

inhibition was observed. Amplification efficiencies were 90~98% and the R2 value of the standard

curves were always higher than 0.99.

Table 21 Sets of primers used for amplification of the amoA gene of AOA and AOB by real-time PCR

Target genes Primers Sequences (5`-3`)

amoA-AOA [425] CrenamoA23F ATGGTCTGGCTWAGACG

CrenamoA616R GCCATCCATCTGTATGTCCA

amoA-AOB [426] AmoA-1F GGGGTTTCTACTGGTGGT

AmoA-2R CCCCTCKGSAAAGCCTTCTTC

Data Analysis and Calculation

Data were analyzed with the SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). The effects of

wet N deposition, precipitation amount, precipitation frequency and their interactions on soil abiotic

and biotic variables were tested with three-way ANOVA, with block as a random factor and N

deposition, precipitation amount and precipitation frequency as fixed factors. Data were log-

transformed if needed to meet the assumptions of ANOVA (normality was tested with Shapiro-Wilk

test, and equal variance was tested using Levene s test). When treatment effects were significant,

mean comparisons were performed with Tukey s post hoc tests. Main effects of N deposition,

reduced precipitation amount, reduced precipitation frequency and increased precipitation

frequency as compared to control (no N deposition; mean history precipitation amount and mean

history precipitation frequency) were tested using T-test. Differences were considered statistically

significant for P < 0.05. The correlations between abundances and soil environmental variables

were examined using Spearman's rank correlation coefficient.

In addition, path analysis was performed using Amos25® (Amos Development Corporation,



37

Crawfordville, FL, USA) to explore the possible causal links between the abundance of nitrifiers,

the nitrifying enzyme activity and soil environmental variables. The complete model with all

possible causal relationships considered is presented in Fig. 21. A χ² test was used to evaluate the

model, i.e. whether the covariance structures implied by the model adequately fitted the actual

covariance structures of the data (a non-significant χ² test with P > 0.05 indicates an adequate fit by

the model). Within a model, the coefficients of paths indicate by how many standard deviations the

effect variable would change if the causal variable was changed by one standard deviation.

Fig. 21 Complete model used for structural equation modeling aimed at identifying the main drivers of changes in the

abundance and enzyme activity of soil nitrifiers in response to N deposition and changed precipitation amount and

frequency

Treatment effect size was quantified as response ratio (R) which was calculated as: R=Ln(T/C),

where T is the value under the treatment considered, and C is the value under control conditions.

For instance, a response ratio with positive value indicates positive treatment effect, and negative

value indicate negative treatment effect.

2.4 Results
Soil Environmental Variables

Soil temperature was not influenced by any treatment during the experiment (Fig. 22). The

main effects of nitrogen deposition (N), precipitation amount (A) and precipitation frequency (F) on

SWC at sampling date were all significant (Table 22). N deposition (N10) and reduced precipitation

amount (A-30%) tended to decrease soil water content (SWC) (Table 22). The N10 effect on SWC was

significant on June 3rd, August 1st and August 11th, and the A-30% effect was significant on July 14th,

August 1st and August 11th. Precipitation frequency (F) effect on soil water content was more

variable, a significant difference being observed on 17th July. SWC increased under increased

precipitation frequency (F+50%), which was significant at 3rd June 1st August and 11th August,

whereas no significant effect of decreased precipitation frequency (F-50%) was observed. A

significant N×A× F interaction effect was observed on SWC (Table 22).
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Fig. 22 (Top) Values of water content of the 0-10 cm soil layer (bars) and soil temperature at 10 cm depth (dots) at the 6

sampling dates during the growing season, for the 12 treatments. (Bottom) Soil water content according to (b) nitrogen

deposition (N), (c) precipitation amount (A), and precipitation frequency (F) at the 6 sampling dates. N0, no N

deposition; N10, N deposition with 10 g NH4NO3 m-2. yr-1; Actrl , normal precipitation amount (370mm); A-30%,

precipitation amount reduced by 30%; F-50%, rainfall frequency reduced by 50%; Fctrl, normal precipitation frequency;

F+50%, precipitation frequency increased by 50%. Arrow indicates soil sampling date. *, P < 0.05; **, P < 0.01; ***, P <

0.001

The main effects of nitrogen deposition (N), precipitation amount (A) and precipitation

frequency (F) on soil ammonium concentration (NH4
+) were significant (Table 22). Overall, NH4

+-

N increased from 1.45μg-N g-1 for N0 to 1.83μg-N g-1 for N10, and A-30% decreased NH4
+-N from

1.74μg-N g-1 to 1.54μg-N g-1 for Actrl. Soil NH4
+ was significantly influenced by the N × F

interaction (Table 22).
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Table 22 ANOVA results summarizing the effects of nitrogen (N) deposition, precipitation amount (A) and precipitation

frequency (F), along with all their possible interactions, on soil water content (SWC) at sampling date, ammonium

content (NH4
+), net N mineralization rate (Net N-min), nitrifying enzyme activity (NEA), and the abundances of

ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). *, P < 0.05; **, P < 0.01; ***, P < 0.001

Variables Nitrogen
deposition (N)

Precipitatio
n amount

(A)

Precipitation
frequency (F)

N ⅹ F A ⅹ F N ⅹ A N ⅹ A ⅹ F

SWC *** *** ** ns * *** *
NH4

+ *** * *** * ns ns ns
Net N-min ns ** *** * ns ns **

NEA *** ns * ns ns ns ns
AOB *** ns * ns ns ns ns
AOA ns ns ns ns *** ** ns

Net Nitrogen Mineralization and Nitrifying Enzyme Activity

The main effects of precipitation amount (A) and frequency (F) on soil net nitrogen

mineralization (Net N-min) were significant, whereas no main effect of nitrogen deposition (N) was

observed on Net N-min (Table 22).

Fig. 23 Response ratio of soil net N mineralization (net N-min) and nitrifying enzyme activity (NEA) to the following

main treatments: simulated N deposition (N10), reduced precipitation amount (A-30%) and precipitation frequency

changes (either reduced by 50%, F-50%; or increased by 50%, F+50%). *, P < 0.05; **, P < 0.01; ***, P < 0.001

Net N-min significantly increased from 45.50μg-N g-1 day-1 for Actrl to 65.30μg-N g-1 day-1

for A-30% (response ratio of 0.15), whereas both F-50% and F+50% significantly decreased Net N-min

(Fig. 23) with a response ratios of -0.81 and -0.48, respectively. The main effects of nitrogen

deposition (N) and precipitation frequency (F) on NEAwere significant, whereas no main effect of

precipitation amount (A) and interaction between treatments was observed on NEA (Table 22).
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Overall, NEA significantly increased from 82.86μg-N g-1 h-1 for N0 to 120.92μg-N g-1 h-1 for N10

(response ratio of 0.38).

Abundance of Ammonia Oxidizing Bacteria and Their Drivers

The abundance of ammonia oxidizing bacteria (AOB) was significantly affected by the main

treatment of N and F without any significant interaction effect between treatments (Table 22). AOB

abundance significantly increased from 3.11×105 copies g-1 soil for N0 to 3.94×105 copies g-1 soil for

N10 (response ratio of 0.13). F-50% decreased AOB abundance to 3.09×105 copies g-1 soil as

compared to 3.58×105 copies g-1 soil for Fctrl, whereas no significant difference was found for F+50%
as compared to Fctrl (Fig. 24).

Overall, the abundance of AOB was negatively related to soil water content (SWC), and

positively though weakly related to soil net nitrogen mineralization (net N-min). The changes

in SWC and net N-min explained 13% of the variance of the AOB abundance. Further, NEA was

positively correlated with the abundance of AOB (Fig. 24-Right).

Fig. 24 (Left) Response ratio of the abundance of soil ammonia-oxidizing bacteria (AOB) to N deposition (N10) and

precipitation frequency changes (either reduced by 50%, F-50%; or increased by 50%, F+50%). *, P < 0.05; **, P < 0.01;

***, P < 0.001; the response ratios of soil water content (SWC) and net N mineralization (net N-Min) are also

presented. (Right) Structural equation model result relating changes in the abundance of AOB and soil nitrifying

enzyme activity (NEA) to net N-min and SWC. Values near the arrows are path coefficients. A green arrow indicates a

positive correlation, a red arrow indicates a negative correlation, and a grey dash arrow indicates a marginally

significant correlation. The percentage of variance explained by the model for each explained variable are indicated at

the bottom-right of each corresponding box. *, P < 0.05

Thus, the main positive effect of N deposition on the abundance of AOB and NEAwas (at least

partly) mediated by decreased SWC and to a lesser extent increased N-min. In contrast, the main
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negative effect of altered precipitation frequency on the AOB abundance and NEA was partly

mediated by decreased net N-min with a weaker role of SWC (Fig 2-4).

Abundance of Ammonia Oxidizing Archaea and Their Drivers

The abundance of AOAwas significantly affected by the A × F and N × A interactions, without

any main treatment effect (Table 22). Under ambient precipitation amount (Actrl), N10 significantly

increased the abundance of AOA to 8.11×107 copies g-1 soil as compared to 6.47×107 copies g-1 soil

for N0 (response ratio of 0.20). However, the positive response to N deposition was not observed

under reduced precipitation amount (A-30%) (Fig. 25-Top-Left). In addition, the abundance of AOA

was positively affected by A-30% under N0, whereas this effect was dampened under N10 (Fig. 25-Top

-Right).

Fig. 25 (Top-Left) Response ratios of the abundance of soil ammonia-oxidizing archaea (AOA) and of net N

mineralization (net N-Min) to N deposition according to precipitation amount (control, ACtrl, or reduced by 30%, A-30%);

and (Bottom-Left) correlation between AOA and net N-Min under ACtrl. (Top-Right) Response ratios of AOA and soil

water content (SWC) according to N deposition (no N deposition, N0, or N deposition, N10); and (Bottom-Right)

correlation between AOA and SWC under N0. *, P < 0.05; **, P < 0.01; ***, P < 0.001

The abundance of AOA was significantly and positively related to net N-min under Actrl

whatever the precipitation frequency and nitrogen deposition treatments (R2=0.35, P < 0.05). AOA
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tended to be negatively related to SWC under N0 across all precipitation amount and frequency

treatments (R2=0.20, P=0.073).

2.5 Discussion
Although global change biology has emerged as a research field over the last decades [427], with

a strong focus on climate change effects on ecosystems, researches distinguishing the responses of

soil N processes to changed precipitation frequency and changed total precipitation amount are still

limited. Further, many studies have analyzed the effect of increased atmospheric N deposition on

soil N cycling but generally by prescribing one or a few N addition event(s) per year rather than

manipulating chronic N deposition [428, 429]. Mimicking the coupling between changed precipitation

frequency and wet N deposition occurring through precipitation events has not been done so far in

global change studies. The present study is thus novel because it evaluates the possibly interactive

effects of changed precipitation amount, altered rainfall frequency and chronic N deposition co-

occurring with simulated precipitation events on soil nitrifiers and N processes. AOA were

dominant over AOB in the study soil, which is consistent with previous studies in many grasslands
[45, 327, 430].

For NEA and AOB, the only significant effects observed were the main effects of N deposition

and of precipitation frequency, whereas no interaction effect between global change factors was

found. The path analysis and response ratio computation showed that N deposition (N10) acted by

decreasing soil water content (SWC), likely through increase plant production leading to increased

transpiring foliar surfaces, as observed for rice (Oryza sativa) cultivars [431]. The decrease in SWC

provided more aerobic conditions favorable for AOB, as AOB are favored by sufficiently high

oxygen availability [40, 432]. The positive correlation between NEA and AOB abundance suggests a

dominant role of AOB for nitrification in this semiarid grassland. This is consistent with previous

reports in Tibetan alpine meadows [44], although AOA have been reported also have an important

role in some grasslands [ 26 ] . Furthermore, N deposition tended to increase soil net nitrogen

mineralization, which contributed the increase of the abundance of AOB. Indeed, AOB are known

to be favored by higher N availability [433] and many previous studies have reported a positive

effects of N inputs on AOB and NEA [46, 173], N10 increased soil NEA. However, no relationship was

observed between the abundance of AOB and soil ammonium concentration. This may be due to

quick uptake of ammonium by plants and/or quick immobilization by soil microorganisms. More

generally, soil ammonium concentrations result from various N processes decreasing or increasing

the ammonium pool, and snapshot concentration measurements thus reflect quasi-steady state

concentrations rather than turnover. It is then possible that soil ammonium concentration is not a
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good proxy of actual ammonium availability.

The positive response of Net N-min to decreased precipitation amount found here is surprising,

N mineralization is generally positively correlated with SWC [288, 434, 435] and SWC was decreased

under the A-30% treatment. Our results contrast with previous studies reporting no significant effect,

such as for a North American grassland (along a gradient of increasing precipitation; Barrett et al.

2002). In our study, the positive response of net N-min to A-30% maybe ascribed to increased

belowground biomass production (data not shown) and possibly higher, labile C inputs by roots

through exudation. Because the study site is characterized with low soil organic carbon content

(6.58 mg g-1), increased belowground biomass could alleviate energy limitation for soil microbial

mineralizers.

In addition, N mineralization was strongly decreased by changed precipitation frequency. N

mineralization is influenced by dry-rewetting cycles [411]. It is possible that for F+50%, smaller and

more frequent rainfall events only wet the surface soil layers where mineralization substrate and

nitrifiers are not concentrated. By contrast, for F-50%, large rainfall events penetrate deeper into soil

layers, where microbial activity and organic nitrogen are lower, and wet the soil layers less

frequently.

In contrast to results for AOB, no significant main effect of treatments was found on the

abundance of AOA, including the main N effect. Similar results have also been reported by Shen et

al. (2008) [25], Ma et al. (2016) [44] and Assemien et al. (2017) [433] who found that long-term N

fertilization increased AOB abundance without detectable effect on AOA abundance. This is due to

the fact that AOA and AOB tend to differ in their N substrate affinity and energy use efficiency [260].

AOA was reported to have better low-substrate tolerance and have greater potential for mixotrophic

growth as compared to AOB [390, 436]. The abundance of AOAwas significantly strongly affected by

the A × F interaction, and to a lesser extent by the N × A interaction. In particular, the abundance of

soil AOA was significantly increased by N deposition (N10) under ambient precipitation amount

(Actrl), which can be explained by the increment of soil net N-min by N10 (Fig. 25), resulting more

substrate for AOA. In contrast, no significant response of net N-min or AOA to N10 was found

under A-30%. This indicated that, under A-30%, the abundance of AOA and net N-min was limited by

soil water content rather than N nutrient. Further, under no N deposition treatment (N0), A-30%

significantly decreased SWC, contributing to the significant increment of the abundance of AOA.

This is can be ascribed to the aerobic condition favored the growth of AOA. In contrast, under N10

treatment, the decrease of SWC was much lower than under N0 treatment, contributing the lower

increment of AOA under N10 treatment as compared to under N0 (Fig. 25).
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2.6 Summary
It is essential to study interactive effects of global change factors such as chronic N deposition,

altered precipitation amount and frequency on soil N dynamics. Based on a mesocosm experiment

for the Songnen grassland, interactive effects between factors are very important. For instance, P

amount and frequency for AOA (most important effect) and N × F for N-min. Conclusions can be

made in this study that the responses of AOB and AOA to the global change scenarios differed

strongly. AOB mostly responded to N: either directly with N deposition treatment, or indirectly with

P amount or frequency changes by altering N cycling. In contrast, AOAwere particularly sensitive

to soil water dynamics than N dynamics at this study site. This shows that the manipulating P

frequency independently of P amount in global change experimental studies is fundamental,

particularly in ecosystems where AOAare expected to play an important role for soil N dynamics.
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3 Response of Soil Denitrifiers and N2O emissions to Chronic N

Deposition and Precipitation Amount and Frequency in a semi-arid

Grassland

3.1 Introduction: Possible Feedbacks Between Global Change Factors and Soil
N2O Emissions
Many studies have shown that enhanced N deposition deeply influences soil N cycling

processes and generally results in increased emissions of nitrous oxide, N2O, by soil [173, 358]. This

can feedback on climate change because N2O has a warming potential per molecule 300 times

higher than carbon dioxide and is also a major stratospheric ozone-destructing compound [437-439]. In

addition, numerous studies have documented soil N2O emission can be altered by precipitation

regime [205, 232, 280, 286, 410]. In terrestrial ecosystems, N2O emitted from soil is mainly the product of

nitrification and denitrification [440, 441]. The first step of nitrification (the oxidation of ammonium,

NH4
+, to nitrite, NO2

-) is carried out by ammonia-oxidizing bacteria (AOB) and ammonia oxidizing

archaea (AOA) and can generate N2O as a byproduct [442, 443]. Nitrification is generally favored by

aerobic conditions [5, 444]. In contrast, denitrification is a stepwise process reducing nitrate, NO3
-, and

NO2
- to gaseous nitrogen (N) compounds, with NO, N2O or N2 as end products [78], which is favored

by anaerobic conditions [445]. A key step of denitrification is nitrite reduction, being performed by

bacteria harboring the nirK or nirS gene that have a major role for N2O production [80]. Another key

step is N2O reduction, which is performed by bacteria harboring the nosZI or nosZII gene [93, 94].

N2O emissions from soil depend on the balance between its production and consumption, and hence

on the responses of nitrifiers, NO2
- reducers and N2O reducers to changes in soil environmental

conditions [446].

Different studies [173 , 256, 354] have analyzed the effects of N deposition on N2O fluxes and

underlying microbial processes [173, 321, 354]. For instance, in the review paper of Barnard et al. (2005)
[173], it was reported that soil N2O emission was stimulated by N addition either in the field with the

effect sizes of 128%, or in the laboratory with 328%. But these studies generally used one or a few

N addition events, which does not mimic the actual chronic N inputs associated to precipitation

events. Numerous studies analyzed the effect of modified precipitation regime on N2O emissions by

soils [205 , 232 ] . For instance, Brown et al. (2012) reported that altered precipitation (elevated
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precipitation amount and extend rainfall season) stimulated soil N2O emission in JRGCE, an annual

grassland [232]. But the treatment applied included both an increased precipitation amount and

number of rainfall events [232]. Wet N deposition is often tightly coupled to rainfall events [415, 416] so

that altering precipitation frequency also modifies the temporal distribution of chronic wet N

deposition. But to what extent N deposition, changed precipitation frequency and modified

precipitation amount can have interactive effects on N2O emissions remains to be studied.

As dominant and typical species of perennial grass, Leymus chinensis is widely distributed in

the eastern part of the Eurasian grassland and is the dominant species in Songnen, a semi-arid

grassland. Songnen grassland is highly limited by both water and N [421] and the location area is

prone to high N deposition loads [393]. The precipitation regime in this area is expected to be

modified over the next decades according to the precipitation history [389]. Consequently, the effects

of chronic wet N deposition, reduced precipitation amount (-30%) and altered precipitation

frequency (either +50% or -50%) on the abundances of 4 major soil denitrifier groups, denitrifying

enzyme activity and soil N2O emissions in this semi-arid grassland were studied.

We hypothesized that (1) reduced precipitation amount would induce decreased soil moisture

which would be unfavorable to soil denitrifiers; in contrast, reduced precipitation amount would

hinder plant growth and hence decrease the competition for nitrate between plants and denitrifiers;

(2) decreased rainfall frequency for a given total rainfall amount (i.e. fewer rainfall events of higher

intensity) would increase average soil N2O emission by generating periods of higher soil moisture

generating more anoxia, which would be favorable to denitrifying enzyme activity and abundance.

This effect would be amplified by wet N deposition that would increase nitrate availability in soil

and increase plant growth and likely root exudation, which are both favorable to denitrifiers; (3)

conversely, increased rainfall frequency would decrease soil N2O emission because this would limit

periods of high soil moisture, hence constraining more soil microorganisms through drought and

limiting anoxic periods in this semi-arid ecosystem, which would be particularly unfavorable for

denitrifiers. We also used structural equation modelling (SEM) to identify and hierarchize the

environmental drivers underlying the response of denitrifiers to N deposition, changed precipitation

frequency and modified precipitation amount. In addition, I evaluated by a literature search what

extent the results obtained for this semi-arid grassland are consistent with results obtained for other

grassland ecosystems. I discuss the implications of our results for a better understanding of the

effect of multiple global change factors acting in concert on soil N dynamics and N2O emissions.

3.2 Study site
See Chapter 2.2
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3.3 Materials and Methods
Experimental Design

See Chapter 1.4.1

Sampling and Measurements

3.3.2.1 Soil environmental variables

Soil temperature, water content, and total and dissolved organic carbon (TOC and DOC,

respectively) were measured as described in section 2.3.2.2. Nitrate (NO3
-) concentrations were

determined by extraction with KCl. Briefly, 10 g (equivalent dry weight) fresh soil sub-samples

were extracted with 50 ml KCl (2 M) solution, extracted in a shaker (180 rpm) for 1h, and the

supernatants were filtered (0.45μm) before analysis. Concentrations of NO3
--N were then analyzed

using a continuous flow analyzer (Alliance Flow Analyzer, Futura, Frépillon, France).

3.3.2.2 Soil denitrifying enzyme activity (DEA)

Soil denitrifying enzyme activity (DEA) was measured according to a protocol modified from

Enwall et al. (2005) [447] and Patra et al. (2005) [448]. Triplicate soil samples (25 g) were placed in

250 ml flasks containing 25 ml of substrate with 1 mM glucose and 1 mM KNO3. The flasks were

capped with gas tight stopper and anaerobic conditions in the flasks were generated by replacing the

flask atmosphere with N2. Acetylene (10%) was added to the flask headspaces to prevent N2O

reduction. The soil slurries were incubated at 25°C on a rotary shaker for 3 h, and gas samples were

collected every 30 min. N2O was analyzed on a gas chromatograph (7890A, Agilent, Santa Clara,

USA). DEA was calculated from the increase of N2O concentration in the flask headspace, which

was always linear during the incubation.

3.3.2.3 Measurements of N2O emission flux from soil

N2O emissions were measured every three days from May 1st to September 30th in 2015 (i.e.

second year of treatment) using the closed static chamber technique [449 ] . The chamber was

composed of a steel collar with a gutter (about 3cm deep) at the top end and a PVC lid (35 cm in

height and 30 cm in diameter), with two small fans to mix the gases inside the chamber. The steel

collar was inserted into the soil (10 cm deep) immediately after transplanting the plants to the

mesocosms, and the collars were maintained in the mesocosms for the whole experimental period.

During gas measurements, the collar was covered by a PVC lid, which was shaded on the top with

polystyrene foam and covered with aluminum foil to minimize temperature and pressure

fluctuations for the enclosed gases, whereas the sides were left partially uncovered to allow for light
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entering the chamber. Before setting the chamber, the gutter on the top edge of the collar was filled

with water for airtight seal. A 2.5 mm diameter hole in each lid was tightly fitted with a gas-check

valve connected to a flexible Teflon pipe (2-3 mm diameter) with 15 cm stretched into the chamber

and 5 cm outside on the top to facilitate gas sampling. This design produced a 44 L chamber volume

that fits criteria defined in guidelines for N2O chamber methodologies [450]. During a pre-experiment,

gas samples were collected 0, 15, 30, 45, 60, 90 and 120 min after chamber closure. The results

showed that N2O concentration in the chamber increased linearly with time during the first 45-60

min (R2 > 0.9). Therefore, during the experiment, two gas samples at 0 and ca. 50 min were

collected. N2O measurements were made between 10:00 and 12:30 am and emission rates were

assumed to be closed to the average gas flux for that day. Air sampling was carried out using a 100

ml polyurethane syringe, flushing 100 ml of air back 3 times through the connected Teflon pipe

(modified after de Klein et al. 2003) [451]. The air samples were drawn into pre-evacuated Tedlar®

air-sampling bags (Delin Company, Dalian, China, 300 ml). N2O concentrations of the air samples

were quantified within a few days by gas chromatography (7890A, Agilent).

3.3.2.4 Soil DNA extraction and quantification of denitrifier abundances
Table 31 Sets of primers used for amplification of soil denitrifier groups by real-time PCR

Target genes Primers Sequences (5-3)

nirK [452] nirK1F GGMATGGTKCCSTGGCA

nirK5R GCCTCGATCAGRTTRTGG

nirS [453] cd3AF GTSAACGTSAAGGARACSGG

R3cd GASTTCGGRTGSGTCTTGA

nosZI [454] nosZ-1181F CGCTGTTCITCGACAGYCAG

nosZ-1880R ATGTGCAKIGCRTGGCAGAA

nosZII [93] nosZII-F CTI GGI CCI YTK CAYAC

nosZII-R2 I GAR CAR AAI TCB GTR

Soil DNA extraction method is as described in Chapter 2.3.2.4. The abundances of nitrite-

reducers (harboring the nirK or nirS gene) and N2O-reducers (harboring the nosZI or nosZII gene)

were quantified with a Lightcycler 480 (Roche Diagnostics, Meylan, France). The sets of primers

were nirK1F/nirK5R for nirK-harboring bacteria, Cd3aF/R3cd for nirS-harboring bacteria, NOSZ-

1181F/NOSZ-1880R for nosZI-harboring bacteria and nosZ-II-F/nosZ-II-R2 for nosZII-harboring
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bacteria. Further details about the primers are provided in Table 31. Possible PCR inhibition by co-

extracted compounds was evaluated by serial dilution and no inhibition was observed.

Amplification efficiencies were 80~93% and the R2 value of the standard curves were always higher

than 99%.

Data Analysis and Calculation

The ANOVAand mean comparison analyses were performed as described in Section 2.3.3. The

complete structural equation model, with all possible causal relationships considered, is presented in

Fig. 31.

Fig. 31 Complete model used for structural equation modeling aimed at identifying the main drivers of changes in the

abundances of soil denitrifiers, denitrifying enzyme activity (DEA), and N2O emission from soil in response to N

deposition, changed precipitation amount and changed precipitation frequency. SWC, DOC, TOC, NO3
- and DEA refer

to soil water content, dissolved organic carbon, total organic carbon, nitrate concentration and denitrifying enzyme

activity

For the literature survey on N addition effect on soil N dynamics and N2O emission rates, the

percentage change of a given variable induced by the N treatment as compared to the control was

calculated as: % N effect = (value under N treatment value under control) / value under control ×

100%. I selected studies from the literature according to the following criteria: (1) only grassland

and steppe ecosystems were considered; (2) because addition levels can influence N effect on N2O

emission [173], N rates as close as possible to 10g-N m-1 yr-1 were selected (i.e. if several N rates

were applied in a study, the rate closest to 10g-N m-1 yr-1 was considered); (3) when a study reported

N effects for different sites or vegetation covers, results were considered as independent replications.

When N effects were measured several times in the same year, I selected data collected at the date

closest to the peak biomass period. Results obtained for a given ecosystem over several years were

averaged. A total of 29 references were selected. N effect values were collected either from text,

from tables or from figures using GetData Graph Digitizer 2.24 (http://getdata-graph-digitizer.com).
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Considering all dataset with both nitrification in Chapter 2 and denitrification, soil N2O emission

was correlated with denitrification rather than nitrification, therefore, soil N2O emission was further

analyzed together with denitrification in this Chapter.

3.4 Results
Soil Environmental Variables

The main effects of nitrogen deposition (N), precipitation amount (A), precipitation frequency

(F) along with the N×A× F interaction effect on SWC were significant (Table 32). The response of

SWC to the treatments is detailed in Chapter 2.4.1. The main effects of N and A on soil nitrate

concentration (NO3
-) were both significant, without any N×A interaction (Table 32). Overall,

increased N deposition increased soil NO3
- from 1.05 μg g-1 for N0 1.41 μg g-1 for N10, while A-30%

increased NO3
- from 1.06 μg g-1 for Actrl to 1.41 μg g-1 under A-30%. No main or interactive effects of

nitrogen deposition, precipitation amount and precipitation frequency were observed for both soil

total organic carbon (TOC) and dissolved organic carbon (DOC) (Table 32).

Table 32 ANOVA results summarizing the effects of nitrogen deposition (N), precipitation amount (A) and precipitation

frequency (F), along with their possible interactions, on soil water content (SWC), nitrate content (NO3
-), total organic

carbon (TOC) and dissolved carbon content (DOC). *, P < 0.05; **, P < 0.01; ***, P < 0.001

Variables
Nitrogen
depositio
n (N)

Precipitatio
n amount

(A)

Precipitatio
n frequency

(F)
N ⅹ F A ⅹ F N ⅹ A N ⅹ A ⅹ F

SWC *** *** ** ns * *** *
NO3- ** ** ns * ns ns ns
TOC ns ns ns ns ns ns ns
DOC ns ns ns ns ns ns ns

Abundances of Nitrite Reducers and N2O Reducers

The abundances of soil nirK- and nirS-harboring nitrite-reducers were significantly affected by

main effect of N, A, and F. In addition, a significant N×F interaction effect was observed on nirK

abundance while a A×F interaction effect was found for nirS abundance. In contrast, the main effect

of N on the abundance of nosZI-harboring N2O reducers was significant, as was the main effect of

A on the abundance of nosZII N2O reducers. A N × A × F interactive effect was observed on the

abundance of both nosZI- and nosZII-harboring bacteria (Fig. 32).
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Table 33 ANOVA results summarizing the effects of nitrogen deposition(N) , precipitation amount (A) and precipitation

frequency (F), along with all their possible interactions, on the abundances of nirK-, nirS-, nosZI- and nosZII-harboring

bacteria, denitrifying enzyme activity (DEA), and soil N2O fluxes. *, P < 0.05; **, P < 0.01; ***, P < 0.001

Variables
Nitrogen
deposition

(N)

Precipitation
amount
(A)

Precipitation
frequency

(F)
N ⅹ F A ⅹ F N ⅹ A N ⅹ A ⅹ F

nirK ** ** ** ** ns ns ns
nirS ** *** ** ns ** ns ns
nosZI *** ns ns ns *** ns *
nosZII ns * ns ns ns ns **
DEA ns ns ** ** * ns *
N2O ** *** ns * ns ** ns

Overall, N10 significantly decreased the abundances of nirK, nirS and nosZI by 20%, 27% and

47% respectively (i.e. response ratios of -0.25, -0.44, and -0.55, respectively; see Fig. 32 and Fig.33

). Decreased total precipitation amount decreased the abundance of nirS from 7.96 × 106 copies g-1

soil for Actrl to 4.72 × 106 copies g-1 soil for A-30%, but increased the abundances of nirK and nosZII

by 28% and 30% respectively (response ratios of 0.25 and 0.12 respectively; see Fig. 32). The F-50%
and F+50% treatments significantly decreased the abundance of nirS-harboring nitrite reducers by

54% and 37% respectively (response ratios of -0.39 and -0.27 respectively; Fig.33). In addition, F-

50% decreased the abundance of nirK by 37% whereas no significant effect of F+50% on the

abundance of nirK was found.
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Fig. 32 Response ratio of (a) denitrifying enzyme

activity (DEA) and nitrous oxide emission (N2O);

(b) the abundances of nirK-, nirS-nitrite reducers;

and (c) the abundances of nosZI- and nosZII-N2O

reducers to the following main treatments: N

deposition (N10), reduced rainfall amount (A-30%)

and rainfall frequency changes (either reduced by

50%, F-50%; or increased by 50%, F+50%). For each

main treatment: *, P < 0.05; **, P < 0.01; ***, P

< 0.001

Under Fctrl, N deposition significantly

decreased the abundance of nirK from

4.72×105 copies g-1 soil under N0 to

2.76×105 copies g-1 soil (response ratio of

-0.59) under N10, whereas this negative

effect was dampened under altered

precipitation frequency (Fig.33-Left).

Unde r N 0 , t h e abundance o f n i rK

significantly decreased from 2.76×105

copies g-1 soil under Fctrl to 2.34×105

copies g-1 soil under F-50% (response ratio

of -0.14 (Fig.33-Right). In contrast, no

s igni f ican t effec t of prec ip i ta t ion

frequency was found on the abundance of

nirK when precipitation events were

coupled to wet N deposition (Fig.33-Right).
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Fig.33 Response ratio of the abundance of nirK-harboring bacteria to (Left) N deposition (N10) and (Right) changed

rainfall frequency (either reduced by 50%, F-50%; or increased by 50%, F+50%). *, P < 0.05; **, P < 0.01; ***, P < 0.001

The N×A×F interaction effect on the abundances of nosZI- and nosZII- N2O-reducers was

significant (Table 33). Fig. 34 details this 3-way interaction effect for the abundance of nosZI-

harboring bacteria. Under normal precipitation amount and frequency (ActrlFctrl), the abundance of

nosZI did not respond to N deposition, whereas under reduced precipitation frequency (ActrlF-50%)

N10 decreased the abundance of nosZI by 44.2% (response ratio of -0.95). Similar negative effects of

N deposition on the abundance of nosZI–harboring N2O reducers were found under A-30%F-50% and

A-30%F+50% treatments Fig. 34-Top-Left). Reduced precipitation amount significantly increased the

abundance of nosZI under control conditions (N0Fctrl) and to a lesser extent under N0F+50%, but not

under reduced precipitation frequency (N0F-50%). Reduced precipitation amount also increased the

abundance of nosZI-harboring bacteria under N10Fctrl, but decreased nosZI abundance when chronic

N deposition was combined with reduced precipitation frequency (N10F-50%), whereas no significant

effect was observed under the N10F-50% treatment (Fig. 34-Top-Right). Reduced precipitation

frequency (F-50%) significantly increased the abundance of nosZI N2O-reducers under control

conditions (ActrlN0), and this positive effect was dampened under the A-30%N0 and ActrlN10

treatments (Fig. 34-Bottom-Left). In contrast, reduced precipitation frequency decreased nosZI

abundance when chronic N deposition was combined with reduced precipitation amount (N10A-30%)

condition (Fig. 34-Bottom-Left). Increased precipitation frequency increased the abundance of

nosZI under Actrl N10 whereas no significant effect of increased precipitation frequency was

observed under the other treatments (Fig. 34-Bottom-Right).
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Fig. 34 Response ratio of the abundance of nosZI-harboring bacteria induced by (Top-Left) N deposition according to

other treatments; (Top-Right) reduced precipitation amount according to other treatments; (Bottom-Left) precipitation

frequency reduced by 50% according to other treatments; and (Bottom-Right) precipitation frequency increased by 50%

according to other treatments. N0, no N deposition; N10, N deposition with 10g NH4NO3 m-2. yr-1; Actrl, normal total

precipitation amount; A-30%, precipitation amount reduced by 30%; F-50%, precipitation frequency reduced by 50%; Fctrl,

normal precipitation frequency; F+50%, precipitation frequency increased by 50%. *, P < 0.05; **, P < 0.01; ***, P <

0.001

Denitrifying Enzyme Activity (DEA) and Soil N2O Emissions

The main effect of precipitation frequency (F) on DEA was significant as were the N×F, A×F

and A×N×F interaction effects (P <0.05) (Table 33). Overall, DEA significantly decreased from 685

ng N2O-N g-1 h-1 for Fctrl to 434 ng N2O-N g-1 h-1 for F-50%, but no significant F+50% effect on DEA

was found.

Mean N2O emission over the growing season (May-September) was highly correlated with the

mean N2O flux measured from two weeks before to two weeks after soil sampling (R2>0.9 data not

shown). Hereafter, we focus on the N2O flux integrated over the growing season which ranged from

7.8 to 26.2 μg N2O-N m-2 h-1 according to treatment. The main effects of N and W and the N×W

interaction effect (and to a lesser extent the N×F effect) were significant on N2O emission (Table 33
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).

Considering all the dataset, N2O emissions were strongly and positively related to nirK-

harboring nitrite reducers, and negatively related to soil water content (SWC) and to a lesser extent

to the abundance of nosZI-harboring N2O reducers (Fig. 35). These drivers explained 48% of the

variance in the changes in N2O emissions. Note that we also tried to account for the possible roles

of ammonia oxidizing bacteria and archaea and of nitrifying enzyme activity (see Chapter 2) but

these variables were never retained in the SEM for explaining N2O emissions.

Fig. 35 Best structural equation model linking N2O emission to microbial, soil environmental variables and plant N pool.

Values near the arrows are path coefficients. The green arrow indicates a positive effect and the red arrows indicate

negative effects. The percentage of variance in N2O emission explained by the model is indicated at the bottom-right of

the corresponding box. , 0.05< P <0.1; **, P < 0.01; ***, P < 0.001

Given that the strong interaction effect on N2O emissions was the N×W effect, we further

analyzed this effect and underlying drivers. Decreased rainfall amount increased N2O emissions

without N deposition (N0), but not when rainfalls were associated to N deposition (

Fig. 36-Left-Top). In both cases, N2O emissions were positively related to the abundance of

nirK-harboring bacteria (and to a lesser extent to soil nitrate concentration under N0), and

negatively related to SWC, with the changes in these drivers explaining 42-43% of the variance in

N2O emissions (

Fig. 36-Left-Bottom). Chronic N deposition increased N2O emissions under Actrl, but not under

A-30% (Fig. 3-6-Right-Top). Consistently, N2O emissions were positively related to soil nitrate

concentration only under A-30%, while N2O emissions were positively related to nirK abundance and



56

negatively related to SWC whatever the precipitation amount. These three drivers explained 48% of

the variance in N2O emissions under both Actrl and A-30% conditions (Fig. 36-Right-Bottom). Overall,

the A x N interaction effect on N2O emissions was thus strongly related to the strong A x N

interaction effect observed on SWC (Table 2-2).

Fig. 36 Response ratio of N2O to (Top-Left) reduced precipitation amount according to N deposition, and to (Top-Right)

N deposition according to precipitation amount. The response ratios of soil water content (SWC) and of the abundance

of nirK-harboring bacteria (nirK) are also presented. (Bottom) Best structural equation models linking N2O emission to

microbial and soil environmental variables under different N deposition or precipitation amount scenarios. The green

arrows indicate positive effects and the red arrows indicate negative effects. Values near the arrows are path coefficients.

The percentage of variance explained by the model for each explained variable is indicated at the bottom-right of each

corresponding box. N0, no N deposition; N10, N deposition with 10 g NH4NO3 m-2. yr-1; Actrl, normal precipitation

amount; A-30%, precipitation amount reduced by 30%. *, P < 0.05; **, P < 0.01; ***, P < 0.001

3.5 Discussion
As mentioned in Chapter 2, many studies have been conducted on the response of soil N

cycling processes and N2O emissions to global change factors. However, only few studies have

conducted experiments with changes in precipitation frequency without altering total annual

precipitation amount [171, 414 ]. Besides, some global change experiments involved concurrent

modifications of both total precipitation amount and number of precipitation events, without

decoupling both aspects [ 232 ] . Further, many studies have analyzed the effect of increased

atmospheric N deposition on soil N cycling but generally using very few N addition event(s) per
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year rather and mimicking more N fertilization than chronic N deposition [428, 429]. No study of

global change effects on soil N processes and microbial groups simulated chronic N deposition co-

occurring with precipitation events as far as we know. The novelty of our study is thus that it

evaluates the possibly interactive effects of three global change factors: (1) changed precipitation

amount, (2) altered rainfall frequency, and (3) chronic N deposition co-occurring with simulated

precipitation events, on N2O emissions from soil and the enzyme activity and abundances of soil

denitrifiers.

Response of Soil Denitrifiers and N2O Emissions to Main Effect of Global Change

Factors

3.5.1.1 Lack of stimulation of denitrifiers and weak stimulation of N2O emissions by N deposition

In our study, N2O emissions from soil only weakly responded to N deposition, with a 27.6%

increase on average despite the high amount of N added. This stimulation is lower than that

reported in most previous studies (Fig. 3-7). Concurrently, and contrary to our assumptions, the

main effect of N deposition on the abundances of nirK- and nirS-nitrite reducers, as on nosZI-N2O

reducers, was significant but negative, and N deposition also tended to decrease DEA. This is

inconsistent with the results of most previous studies reporting increased denitrifier abundances in

response to N addition (Fig. 3-7).

Fig. 37 Comparison of the effects of N addition on N2O emission from soil and denitrifying enzyme activity and

abundances for grassland/steppe ecosystems, as observed in our study (white dots) and reported in the literature (black

dots), Denitrifying enzyme activity, DEA; N2O emission from soil, N2O; abundances of nirK- and nirS-harboring nitrite

reducers, nirK and nirS, respectively; and abundance of nosZI-harboring N2O reducers, nosZI. For previously published

studies, bars show 95% confidence intervals of the mean size effects (number of experiments were indicated between

brackets)

For instance, N addition increased DEA by 34% in a Mediterranean grassland [213]. This may be
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due to the following reasons. First, N addition could have increased soil acidity as fertilization is

often associated to decreased pH [307]. However, N deposition did not modify soil pH (7.82 for N10

and 7.78 for N0). Second, it is possible that most of the N added through chronic N deposition

benefited plants rather than soil microbes. I verified this by analyzing plant N pools in the

mesocosms under all treatments and observed an increase in the total plant N pool (increase

representing 4.2 to 13.4 g-N m-2) and a weak increase in the total soil N pool (representing -0.4 to

2.8 g-N m-2) (Fig. 38). This is likely due to the capacity of the dense root system of the perennial

grass species L. chinensis to uptake efficiently the small amount of N brought to the soil through

each rainfall event during the growing season. Third, likely due to the N-promoted plant growth

(particularly for aboveground parts) and associated higher plant transpiration, soil water content

decreased strongly when N deposition co-occurred with rainfalls, for instance from 20% under

FCTRLN0 to 9% FCTRLN10. The latter value is particularly low and likely unfavorable to denitrifiers

and their activity. These mechanisms, both directly and indirectly linked to the higher capacity of

plants than soil microbes to benefit from chronic wet N deposition, explained the overall weak

increase of N2O emission by N deposition. This result, very unusual as compared to results reported

for other grassland ecosystems (Fig. 3-7), could be due to the eco-physiology of the dominant plant

species of the Songnen grassland and its ability to efficiently capture low N amounts and withstand

intense drought [455]. It is also likely due to the more realistic simulation of wet N deposition used

here. Indeed, mimicking wet N deposition by chronic N addition associated to each precipitation

event during the plant growing season may lead to a different outcome of the plants-microbes

competition for N than using one or a few addition events with much higher N amounts. This

should be further explored in future researches.
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Fig. 38 Treatments effects on plant N pool (above-ground and below-ground)and soil N pool. N0, no N deposition; N10,

N deposition with 10g NH4NO3 m-2. yr-1; Actrl, normal total precipitation amount; A-30%, precipitation amount reduced by

30%; F-50%, precipitation frequency reduced by 50%; Fctrl, normal precipitation frequency; F+50%, precipitation frequency

increased by 50%. *, P < 0.05; **, P < 0.01; ***, P < 0.001

If N deposition on a plant cover dominated by plant species very efficient at retrieving added N

induces an increase of the amount of transpiring leaf surfaces, and a cascading negative effect on

SWC and denitrification, then this negative effect would be critical in drier environments. But it

could be dampened or even reversed in wetter environments. Analyzing the results from our

literature search, I did observe that the response of soil N2O emission to N addition across

ecosystems indeed depend on precipitation amount, N addition increasing N2O emission in
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environments with high annual precipitation but not in drier ecosystems (Fig. 39).

Fig. 39 Relationship between N deposition effect on N2O emission by soils and precipitation amount in grassland

ecosystems. The white dot corresponds to the present study, and black dots to results from the literature

3.5.1.2 Contrasted effects of reduced precipitation amount on denitrifier groups

Reduced precipitation amount (A-30%) induced a strong decrease of the abundance of soil nirS-

harboring bacteria. This is consistent with our hypothesis and with several previous studies

reporting that the abundances of soil denitrifiers are positively correlated with SWC in arid or semi-

arid grasslands [303]. However, the abundance of nirK- and nosZII-harboring bacteria significantly

increased in response to decreased precipitation. Because A-30% tended to decrease plant below-

ground growth (data not shown), this could decrease the competition between plant and denitrifiers

for nitrate. In addition, no significant response of DEA to decreased precipitation amount was

observed in this study, which could be due to the opposite effects of A-30% on the abundance of nirK-

and nirS-harboring bacteria.

3.5.1.3 Opposite effects of changed precipitation frequency on nitrite reducers and N2O reducers

Out of expectation, F-50% significantly decreased the abundance of nitrite reducers (both nirK-

and nirS-harboring bacteria), while the abundances of N2O reducers (both nosZI- and nosZII-

harboring bacteria) were not affected. Because annual amount is low in these grasslands (280-370

mm during the growing season), soil NO3
- is not prone to leaching [456]. However, under F-50%

individual precipitation events corresponded to a higher water amount on average, which likely

enhanced the leaching of soil nitrate below the 0-10 cm soil layer, resulting in decreased N substrate

for nitrite reducers. Consistently to the decrease in the abundances of both nirK- and nirS-harboring

bacteria, DEA was significantly decreased by F-50% as compared to Fctrl,. Several previous studies

have also found that changes in DEA are positively related to changes in the abundance of nitrite
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reducers (such as Yin et al. 2014[457]). Overall, N2O emission tended to decrease with F-50% likely

due to a decreased production of N2O (decreased abundance of nitrite reducers and DEA whereas

the abundance of N2O reducers was not affected.

Denitrification pulses were reported after water addition in several arid and semiarid

ecosystems [458-460]. However, in this study, the abundances of soil nitrite reducers, DEA and N2O

emission showed no significant response to the main treatment of F+50% (except a decrease in the

abundance of nirS-harboring bacteria). This is maybe because under F+50%, individual precipitation

events were associated to too low water amount (0.5 to 8 mm on average) to really induce anaerobic

conditions in the upper soil layer.

Taken together, our results illustrate that the four groups of denitrifiers studied often responded

in different ways to the main effects of the 3 global change factors, supporting the view that they

have different ecological niches as previously reported by Assemien et al. (2019) [461], who reported

that both nirS- and nosZI- harboring bacteria intensely depended on soil NO3
- availability whereas

nirK- and nosZII-harboring bacteria were mainly linked with soil pH and soil organic carbon. In

addition, other studies, such as Hallin et al. (2009) also documented the niche differentiation

between nosZI- and nosZII–harboring bacteria in a review paper, which is consistent with my

results [360].

Importance of Interaction Effects Between Reduced Precipitation Amount and

Frequency and N Deposition on Soil Denitrifiers and N2O Emissions

A significant interaction effect of N×F was observed on the abundance of nirK-harboring

bacteria. The effect of N deposition on the abundance of nirK-harboring bacteria was negative

under Fctrl, but altered precipitation frequency dampened the negative effect. This is maybe because

altered precipitation frequency changed soil NO3
- vertical distribution by leaching (see discussion

above), modifying the availability of N substrate for nirK-harboring bacteria. In addition, under N0,

altered precipitation frequency (either F-50% or F+50%) significantly decreased the abundance of nirK-

harboring bacteria. However, when N deposition co-occurred with precipitation, the effect of

decreased precipitation frequency tended to be positive. Under N0, soil nirK-harboring bacteria

were likely very N limited in this soil, and the F-50% treatment induced larger water pulses that could

move more soil NO3
- into deeper soil layers (outside the 0-10cm layer sampled). The F+50%

treatment increased plant below-ground growth (data not shown), likely increasing the competition

for nitrate between plant and nirK-harboring bacteria. When precipitation events were coupled to

wet N deposition, the additional input of N into the soil alleviated these two mechanisms, which

likely explained the observed interaction effect.
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A significant N×A×F interactive effect was found on the abundances of both nosZI and nosZII-

harboring N2O reducers. For instance, under control conditions for precipitation, ActrlF+50%, and A-

30%Fctrl, N10 did not significantly influence nosZI abundance. In contrast N10 decreased nosZI

abundance under the ActrlF+50%, A-30%F-50% and A-30%F+50% treatments. Under A-30%, N10 decreased

the abundance of nosZI-harboring N2O reducers. It is difficult to interpret these results, because the

ecological drivers of N2O reducers are less known than those of nitrite reducers, and because the

global change factors likely have multiple effects on plant growth and labile C exudation by roots,

soil N availability (either directly or through plant-microbes competition), soil water balance and

oxygen level in the soil atmosphere (either directly for the nature of water inputs by rainfall events,

or indirectly through an influence on leaf area and transpiration). For instance, N addition increased

soil N availability, which favor the growth of nosZI-harboring bacteria; but decreased P amount

may induce higher soil O2 concentration by decreasing SWC, which would be unfavorable. Further,

F+50%, which indicates more dry-rewetting cycles, may further affect soil water and O2 state and

affect plant belowground biomass. This supports previous reports indicating that precipitation

frequency can strongly influence soil nutrient cycling [410] and that N deposition can influence soil

water balance [307].

Similarly, interaction effects between global change factors (N x A and to a lesser extent N x F)

were observed on N2O emission. Under N0 condition, A-30% significantly increased soil N2O

emission, and this could result from a synergy between the positive response of the abundance of

nirK-harboring bacteria and the increased NO3
- concentration. In contrast, when N deposition co-

occurred with precipitation events, the response of N2O emission to A-30% was not significant

anymore. This was explained by the lower response ratios of both SWC and NO3
- concentration.

Under Actrl, soil N2O emission increased by N deposition via increasing NO3
- concentration. In

contrast, when precipitation amount decreased (A-30%), no stimulation of N2O emission by N

deposition, which maybe resulted from soil water limitation. However, overall and out of

expectation, soil N2O emission was negatively correlated with soil water content across the different

treatments.

Taken together, these results show that chronic wet N deposition co-occurring with rainfalls

lead to decreased or unchanged N cycling rates and slight increase of N2O emissions, which is a

rather unusual situation as compared to previous studies conducted in other grassland ecosystems.

This may be due to the remarkable ability of dominant plants of the Songnen grassland to efficiently

capture N associated to precipitation events (thus restricting any positive effect of N deposition on

N availability for soil microbes) and grow accordingly (thus increasing soil water uptake and

enhancing drought stress for soil microorganisms). In addition, significant interaction effects were
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observed between altered rainfall frequency and N deposition on N2O emissions and many soil

abiotic and biotic variables, which shows that studies focusing only on altered precipitation regime

or only on wet N deposition are not sufficient to infer how global change will affect N dynamics in

terrestrial ecosystems.

3.6 Summary
Using a mesocosm experiment for the semiarid Songnen grassland, we analyzed for the first

time the effects of chronic N deposition, reduced precipitation amount and altered frequency, along

with all their interactions, on the abundances of soil nitrite reducers and N2O reducers, DEA, and

soil N2O emission. Surprisingly, N deposition tended to decrease denitrifier abundances and DEA in

this semiarid grassland. This was explained by the very efficient capture of added N by the

dominant grass species and by the increased plant growth leading to increased transpiration of

decreased soil moisture with N deposition. The main effects of decreased precipitation amount and

altered precipitation frequency differed between the four denitrifier groups studied. For instance,

nirK- and nirS-harboring nitrite reducers and nosZI-harboring N2O reducers were more sensitive to

N deposition than nosZII-harboring N2O reducers, and nirK- and nirS-bacteria had opposite

responses to reduced precipitation, which supports the view that these groups have distinct

ecological niches. The responses of the abundance of each denitrifier group, denitrifying enzyme

activity and soil N2O emission to N deposition, altered precipitation amount and frequency imply

complex interaction effects between these three global change factors. It is thus impossible to

predict how denitrifiers and denitrification respond to global change scenarios involving multiple

factors only from the knowledge of single factor effects. In particular, interactive effects between N

deposition and decreased precipitation amount, and N deposition and altered precipitation frequency

were observed on soil N2O emission, which was linked to changes in the abundance of nirK-

harboring bacteria, soil water content and soil nitrate content. This illustrates the complex interplay

that occurs between the water and nitrogen cycle and depends on the global change scenario

considered. Our results demonstrate the need to analyze the rarely studied interactions between

precipitation frequency, precipitation amount and wet N deposition to adequately predict how

global change will affect soil N dynamics and N2O emissions by soil in the future.
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4 Responses of Soil Nitrifiers to a Fire Disturbance and Multi-

factorial Global Change Scenarios in a Mediterranean Grassland

4.1 Introduction
Many Californian ecosystems are threatened by multiple global change factors that will co-

occur, including increased atmospheric CO2 concentration, warming, altered precipitation regime,

and enhanced nitrogen (N) deposition. Along with the increase of global consumption of fossil fuels,

the atmospheric concentration of CO2 has been rising from ~280 ppm in 1750 to nearly 400 ppm

now [110], and is expected to reach around 605-755 ppm at the 2070 horizon [462, 463]. Surveys over

the past 50 years suggest that warming may be operating in California [464], and model simulations

indicate that annual temperature is likely to rise by 1.7-2.2°C in the next century in California [121,

464], with a trend toward warmer winter and spring temperatures [464]. Changes in precipitation

predicted for California differ between climate models. For example, one model (Parallel Climate

Model) indicated that precipitation might increase slightly in Northern California by the end of

century, whereas another model (Geophysical Fluid Dynamics Laboratory CM2.1) predicted

decreased precipitation [464]. According to Field et al. (1999), winter precipitation will increase and

will more often fall as the form of rain than snow [121]. The increase of atmospheric N deposition

and its effects on ecosystems in the United States have been recognized for longtime [465], dry

deposition of nitrate being particularly high over California [466]. In western United States, N

deposition ranges from 1 to 4 kg ha-1 yr-1, reaching 30 to 90 kg ha-1 yr-1 in some urban and

agricultural areas [467]. Stickman et al. (2019) estimated the amount of the N deposition in 2013 and

2014 in California to be ca. 29 kg ha-1 yr-1 [468].

An additional aspect of global change impacting Californian ecosystems is fire. California is

indeed a fire-prone area where fire activity has greatly increased over the recent years[159 ] .

Westerling et al. (2006) attributed this increase of the wildfires to warmer spring and summer

temperatures [159]. This trend will likely be reinforced according to climate change scenarios [469, 470]

and predicted increased fuel loads, implying a higher risk of large, damaging fires in parts of

California.

Each of these facets of global change can affect key soil microbial functional groups including

nitrifiers. Nitrification corresponds to the oxidation of ammonia into nitrite and nitrate, an important

process for plant nutrition (role in N availability and ammonium/nitrate balance). Ammonia
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oxidation, driven by both ammonia oxidizing bacteria and archaea (AOB and AOA, respectively) [12]

, is often assumed to be the rate-limiting step of nitrification, but studies reported that nitrite

oxidation can limit the rate of nitrification in disturbed soils [63, 64]. Dominant nitrite oxidizing

bacteria (NOB) in soil, namely Nitrobacter and Nitrospira, can thus also play an important role in

soil N dynamics. Increased atmospheric CO2 concentration could affect nitrifiers mainly indirectly

through modified plant growth, increased water use efficiency and cascading effects on soil water

balance and/or altered C and nutrient dynamics [214 , 215] . An effect of higher atmospheric CO2

concentration has been reported on soil AOB and AOA [46, 214, 221, 471] and on NOB [26, 46].Warming has

also been shown to influence nitrifiers [260 , 391 ], although this depends on the amplitude of the

increase in temperature [245]. Altered precipitation can affect soil nitrifiers, directly through its effect

on soil moisture and indirectly through altered plant growth. N deposition has also been reported to

influence soil nitrifiers as they critically depend on N supply [44, 472] (see the review in Simonin et al.

2015 [46]. In addition, fire can also influence soil nitrifiers as reported in grassland ecosystems [4]. As

the effect of fire on soil temperature is often restricted to the very upper soil layer (e.g. 0-2 cm,

Delmas et al. 1995 [364]), fire effect on nitrifiers is likely mainly indirect, through changes of soil

carbon and nitrogen pools [473], soil texture [379, 474], aggregate formation [475], bulk density [379], pH
[476], water content [368], and plant compartment [377].

The previous studies cited above have mostly focused on the effects of one or two global

change factors. Fewer studies have reported the effects of multiple (≥3) interactive global change

factors on soil nitrifying groups [26, 205, 214, 259]. Actually, the response of soil nitrifying groups to

multiple global change factors and fire disturbance has only been reported by Docherty et al. (2012) [4],

but focusing only on AOB. In addition, Docherty et al. (2012) only reported one date after fire (9

months after wild-fire) and with only 2 blocks for wild-fire treatment [4]. The temporal responses of

the major soil nitrifier groups to fire under different global change scenarios involving factors like

CO2, warming, changed precipitation regime and N deposition, have never been evaluated so far.

We studied the responses of four major groups of soil nitrifiers (AOB, AOA, Nitrobacter and

Nitrospira) to a prescribed fire disturbance under 16 global change scenarios, based on the Jasper

Ridge Global Change experimental site in California [109, 214]. The experimental design involves 5

factors (fire, CO2, warming, precipitation, N deposition) with 2 levels for each, and all their possible

combinations, leading to 32 treatments (16 global change scenarios, each with or without fire)

replicated 4 times. The responses of the abundances of the four nitrifier groups (by quantitative PCR)

just before fire, just after fire, and 9 and 33 months after the fire were surveyed. The objectives were

to:

(1) evaluate the importance of the main effect of each factor and of 2-, 3-, 4- and 5-way
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interaction effects on nitrifier group abundances. A neutral assumption was that the number of

significant effects detected would be proportional to the number of effects considered (i.e. with such

an experimental design, the number of the main effects tested at each date for 4 nitrifier groups is 20

(4 groups x 5 factors), but the number of 4-way interaction effects tested is 20 for instance);

(2) analyze how these effects on nitrifiers change with time following fire. I assumed that the

effects of main treatments like N deposition would be strong and visible at all dates and across

treatments for AOB and Nitrobacter. Because AOB has lower phylogenetic diversity as compared to

other N-cycling functional groups [5, 214], which may lead to somewhat high sensitivity in gene

abundance [259]; and Nitrobacter are favored by high NO2
- [67, 70]. However, the five global factors

manipulated here are known to often act through indirect effects involving modified plant growth,

soil properties, soil C and N cycling over time [365 ]. Thus, the expectation was that complex

interaction effects could arise when different global change factors are combined, and that these

effects could evolve according to time after fire. In particular, we assumed that fire effect on soil

nitrifiers could differ depending on the global change scenarios considered and on the time since the

initial disturbance, and will be dampened through time after the initial disturbance; and

(3) identify the main drivers explaining the effect of burning on the four groups of soil nitrifiers

under different global change scenarios using measurements of soil environmental variables

important for nitrifiers (moisture, ammonium, organic C and pH) that were previously collected. We

assumed that the interaction effects observed between fire and other global change factors could be

explained by similar interaction effects on key soil environmental variables.

4.2 Study Site
The study was conducted at the Jasper Ridge Global Change Experiment (JRGCE) in the Jasper

Ridge Biological Preserve, located in the eastern foothills of the Santa Cruz Mountains in northern

California 37°24'N, 122°14'W. The study site is characterized by a Mediterranean-type climate with

a cool, wet winter from November to March, and a hot, dry summer from June to October. At the

study site, mean annual air temperature is 13.3°C and average of precipitation 787 mm, more than

80% falling between November and March, 1998 2006 average [213]. The grassland is dominated

by annual grasses (Avena barbata and Bromus hordeaceus) and annual forbs (Geranium dissectum

and Erodium botrys) [397, 477]. The soil is a fine, mixed, Typic Haploxeralf developed from Franciscan

complex alluvium sandstone [284, 388].

Thirty-two circular plots (2 m diameter) were established at the JRGCE in the fall of 1998,

allowing four global-change factors manipulations with two levels (ambient and elevated) for each

factor: atmospheric CO2 concentration (ambient and +275 ppm) manipulated with a free-air CO2
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enrichment (FACE) system; temperature (ambient and soil surface warming of +1.5-2.0°C ) by

using overhead infrared heat lamps; precipitation (ambient and +50% above ambient with 3 weeks

elongation of the growing season) manipulated first with drip irrigation (1998 2000) and then with

sprayed sprinklers irrigation system; and N supply (ambient and +7 g Ca(NO3)2-N m-2 yr-1) twice

per year. Each year, the first simulated N deposition event is a 2 g N m-2 addition in solution early in

the growing season (November) to mimic the accumulated N deposition flushed into the system

with the first rains. The second simulated N deposition event occurs later in the season (January

February), with 5 g N m-2 addition as slow-release pellets (Nutricote 12 0 0, Agrivert, Riverside,

California, United States) [396, 397]. Each plot was divided into four quadrants (each with ca. 0.78 m2)

using fiberglass barriers (0.5 in depth) to separate soil between neighboring quadrants and soil

between plot and surrounding grassland. A randomized block split-plot design was used: the CO2

and temperature treatments were manipulated at the plot level, while the precipitation and N

treatments were manipulated at the subplot level The levels of treatments were chosen according to

scenarios for central California at the end of the 21st century [109, 284, 396, 397]. Eight replicates (blocks)

for these 16 global change treatments (all combinations between the 4 factors with 2 levels: 24)

were set up initially. An accidental and low-intensity fire occurred in two of the eight blocks of the

experiment in July 2003 [284, 377, 388]. A controlled burned was conducted in July 2011 to mimic a fire

disturbance in half of the 8 blocks (including the 2 previously burned ones), resulting in five factors

and all their combinations (total of 32 treatments) with four replicates for each.

4.3 Materials and Methods
Experimental Design

See chapter 1.4.2.

Sampling and Measurement

4.3.2.1 Plant and Soil Variables

Plant and soil variables were measured as part of a project former to the present Ph.D. and will

be used here as putative drivers of the abundances of the nitrifiers groups. Soil cores (5 cm diameter;

7 cm deep) were sampled in each quadrant in July 2011 at two dates (4 days before fire and 2 days

after fire), April 2012 (9 months after fire) and April 2014 (33 months after fire). Large roots and

rocks were removed by hand and soil sample was thorough mixed. Fresh soil samples were used for

measuring the following soil environmental variables: gravimetric soil water content (SWC), pH,

dissolved organic carbon content (DOC) and NH4
+ concentration. Above-ground net plant primary

productivity (ANPP), below-ground net plant primary productivity (BNPP) and total net plant
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primary productivity (TNPP) were assessed according to Dukes et al. (2005) [396]. Soil nitrifying

enzyme activity (NEA) data obtained on the same soil samples part of another study (Niboyet, Le

Roux et al, pers. com) were used to determine whether abundances of nitrifier groups correlated

with NEA.

4.3.2.2 Soil DNA Extraction and Quantification of the Abundance of Nitrifier Groups

We used ca. 0.5 g of frozen soil to extract soil DNA using PowerSoil DNA isolation kit (MO

BIO laboratories, Carlsbad, CA, USA) according to the manufacturer's instructions. The quantity of

extracted DNA was assessed using the Quant-iTTM Picogreen dsDNA Assay Kit (Invitrogen,

Carlsbad, CA, USA) according to the manufacturer s instructions.

The abundances of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA)

were measured by quantitative PCR targeting the amoA functional gene encoding for ammonia

monooxygenase. The sets of primers used were AmoA-1F/AmoA-2R for AOB [ 426 ] and

CrenamoA23f/CrenamoA616r for AOA [425]. The final reaction volume was 20 μLand contained

(final concentrations) 0.5 μMof each primer for the bacterial amoA or 1 μM of CrenamoA23f and

0.75 μM of CrenamoA61 for archaeal amoA , along with 2 % bovine serum albumin (BSA), 1× of

QuantiTect SybrGreen PCR Master Mix (Qiagen, Courtaboeuf, France) and 102–107 gene copies

number per microliters of the target DNA sequences, using a linearized plasmid containing cloned

archaeal amoA genes of 54d9 fosmide fragment [11] and bacterial amoA genes of Nitrosomonas

europaea DNA (GenBank accession number: L08050) as standards. The samples were run on a

Lightcycler 480 (Roche Diagnostics, Meylan, France) as follows: for AOA, first with 15 min at 95°

C for initial denaturation step; 50 amplification cycles (45s at 94°C, 45s at 55°C, and 60s at 72°C);

one cycle melting step (15s at 95°C, 30s at 60°C and continuous 95°C; and one cycle cooling step

with 10s at 40°C ; for AOB, first with 15 min at 95°C for initial denaturation step; 45 amplification

cycles (30s at 95°C, 45s at 54°C, 45s at 72°C, and 15s at 80°C ); one cycle melting step (1s at 95°C,

20s at 68°C and continuous at 98°C ; and one cycle cooling step with 10 s at 40°C. Melting curve

analysis confirmed the specificity of amplification for both AOA and AOB. Amplification

efficiencies of 81-87% obtained for AOA and 87-90% AOB quantification, respectively.

The abundance of Nitrospira was measured by quantitative PCR targeting the 16S rRNA gene

sequences specific for this group [10]. The sets of primers used were Ns675f and Ns746r [478]. The

final reaction volume was 25 μL, containing 1× of QuantiTect SybrGreen PCR Master Mix (Qiagen,

Courtaboeuf, France), 0.4 μM of each primer, and 102–107 Nitrospira copies using a linearized

plasmid DNA (GenBank accession number: FJ529918). The samples were run on a Lightcycler 480

(Roche Diagnostics, Meylan, France) as follows: first with 15 min at 95°C for initial denaturation
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step; 45 amplification cycles (30s at 95°C, 30s at 66°C, and 1 min at 72°C); one cycle melting step

(1s at 95°C, 20s at 68°C and continuous at 98°C); and one cycle cooling step with 10s at 40°C.

Melting curves confirmed the specificity of the amplification. The amplification efficiency was

85% and no PCR inhibition was observed during tests by dilution.

The abundance of Nitrobacter-like NOB was quantified by targeting the functional gene nxrA
[10], encoding for the nitrite oxidoreductase. The sets of primers used were F1norA and R2norA [10,

479]. The final reaction volume was 20 μL, containing 1× of QuantiTect SybrGreen PCR Master Mix

(Qiagen, Courtaboeuf, France), 0.5 μM of each primer, and 102–107 gene copies using a linearized

plasmid containing cloned nxrA gene of Nitrobacter hamburgensis X14 (DSMZ 10229). The

samples were run on a Lightcycler 480 as follows: first with 15 min at 95°C for initial denaturation

step; 45 amplification cycles (30s at 95°C, 45s at 55°C, and 45s at 72°C); one cycle melting step (5s

at 95℃, 1 min at 65℃ and continuous at 97℃; and one cycle cooling step with 10s at 40°C. The

amplification efficiency was 89% and no PCR inhibition was observed during tests by dilution.

Data Analysis

Outliers were detected using Tukey s method prior to the statistical analyses: values greater

than the 75th percentile plus 1.5 times the interquartile distance, or less than the 25th percentile

minus 1.5 times the interquartile distance were treated as outliers (Shoemaker and North Haven

2008). The block effect was assessed using PROC GLM in SAS 9.4 (SAS Institute, Cary, NC,

USA). If significant, data were normalized per block prior to the detection of the outliers (the ratio

of the individual value to the average value of each block was calculated to normalize for the block

effect). The outlier numbers of AOB are 4, 3, 0 and 1, respectively -0.13, 0.06, 9 and 33 months

after fire; the corresponding outlier numbers of AOA are 2, 1, 0 and 2; of Nitrospira are 4, 0, 7 and

0; and of Nitrobacter are 8, 3, 5, and 0.

T-test was performed on the data obtained before the 2011 fire to assess a possible residual

effect of the 2003 burning by comparing blocks with no burning, blocks with only one (2011)

burning events, and with two (2003 and 2011) burning events.

First, data were first analyzed using PROC MIXED in SAS 9.4 using a full factorial split-plot

analysis of variance in order to assess the overall effects of the burning disturbance and other global

environmental changes treatments on the abundance of the four groups of soil nitrifiers (AOB,

AOA, Nitrospira and Nitrobacter). Data were analyzed for each sampling date by including the CO2,

warming and burn treatments as whole-plot factors, and the precipitation and N treatments as split-

plot factors. The normality of the residuals and the independence of the residuals related to the

predicted values were analyzed, if these criteria were not met, data were transformed with Box-Cox
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using Minitab® 18.0 (Minitab Inc., PA, USA) software prior to analyses. Effects with P < 0.05 are

referred to as significant.

Second, based on the results of the mixed-model analysis obtained for the four sampling dates,

the most significant effect observed that including burning was selected for each nitrifier group.

Accordingly, the effect of burning was compared under the different relevant global change

scenarios using T-test. For example, the heat (H) × nitrogen (N) × burning (B) interaction effect was

the most significant interaction effect involving burning observed across the sampling dates.

Therefore, I focused on the H × N × B interaction effect and the burning effect was compared

between the control, H, N and H × N conditions using T-tests (Fig. 45), checking data normality and

homogeneity of variance after data transformation if needed. For graphical representation, main

treatment effect size was calculated as: Effect = T – C, where the T is the value with treatment, and

the C is the value with control. Effects with P < 0.05 are referred to as significant.

Third, in order to explore and hierarchize the links between changes in the abundances of soil

nitrifiers following fire and environmental variables (SWC, pH, DOC, NH4
+ and ANPP and BNPP),

path analysis was performed using Amos25® (Amos Development Corporation, Crawfordville, FL,

USA). The complete model with all possible causal relationships considered is presented in Fig. 41.

Fig. 41 Complete model used for identifying the main drivers of changes in the abundances of soil nitrifiers by

structural equation modeling. Ammonia-Oxidizing Bacteria, AOB; Ammonia-Oxidizing Archaea, AOA. The variables

included in the model are soil ammonium concentrations (NH4
+), gravimetric soil water content (SWC), soil dissolved

organic carbon content (DOC), soil pH (pH), and belowground net primary productivity (BNPP)

A χ² test was used to evaluate the model, i.e. whether the covariance structures implied by the

model adequately fitted the actual covariance structures of the data (a non-significant χ² test with P >

0.05 indicates an adequate fit by the model). Within a model, the coefficients of paths indicate by

how many standard deviations the explained variable would change if the causal variable was

changed by one standard deviation.
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4.4 Results
AOA abundances averaged across all treatments ranged from 2.08×105 copies g-1 soil to

3.89×106 copies g-1 soil copies g-1 soil and were higher than the abundances of other soil nitrifier

groups except at 33 months after burning when Nitrospira abundance was the highest (Fig. 42). For

each sampling date, the abundance of Nitrospira was higher than Nitrobacter abundance (from

4.66×105 to 1.26×106 copies g-1 soil for Nitrospira, and from 3.74×103 to 5.22×104 copies g-1 soil

for Nitrobacter). The abundances of soil ammonia-oxidizers significantly varied between four

sampling dates, whereas nitrite-reducers abundances were similar between the two first soil

sampling dates (0.13 month before and 0.06 months after burning), but abundances tended to be

lower at the 2 other dates and significant for Nitrobacter.

Fig. 42. The abundances of the four groups of soil nitrifiers averaged across all treatments at each of the four sampling

dates: 4 days before burning (-0.13 month); 2 days after burning (0.06 month); 9 months after burning; and 33 months

after burning. Bars are means + s.e. (n=128 minus outliers). Lowercases indicate significant difference between

sampling dates of each group

Importance of the Main Effect and Interactive Effect of Fire and Other Global Change

Factors on Nitrifier Abundances

Both significant main treatment effects and interactive treatment effects of global change

factors including fire were observed on soil nitrifier abundances (Table 41). Overall and for the 3
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sampling dates after burning and the 4 nitrifier groups considered, main treatment effects were the

most commonly observed, followed by 3-way interactive effects (Fig. 43). I assessed to what extent

the number of significant effects detected was linked to the number of tested possible effects.

Overall, the percentage of significant effects across the 4 groups of nitrifiers and the 3 soil sampling

dates after burning was 8.6%. Using this percentage and the number of tests performed, I computed

an expected number of significant effects (black dots in Fig. 43) assuming an evenly distributed

percentage of significant effects across the 1-, 2-, 3-, 4- and 5-way interactions. Focusing only on

interactions including burning, and accounting for the number of possible interactions including

burning, The expected number of significant effects including burning (red dot in Fig. 43) was also

computed. The number of significant main effects was 1.8-fold higher than expected (Fig. 43). The

number of significant 3-way interaction effects was close to the expected number based on the total

percentage, whereas significant 2-, 4- and 5-way interactions were less numerous than expected (Fig.

43). The significant main treatment effects detected were dominated by N deposition, with a lesser

importance of burning and precipitation. No significant main effect of CO2 or heat was found (Table

41; Fig. 43). The number of significant main burning effects was higher than expected. For the 2-, 4

- and 5-way interaction effects including burning, the number of significant effects observed was

lower than expected, whereas for 3-way interaction effects, the number of significant effects

observed was as expected based on the mean percentage of significant effects (Fig. 43).
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Fig. 43 Main and interactive effects of global change factors (CO2, heat, precipitation change, and nitrogen deposition)

and burning on the abundances of four groups of soil nitrifiers (Ammonia-Oxidizing Oxidizers, Ammonia-Oxidizing

Archaea, Nitrospira and Nitrobacter) across the 3 sampling dates after burning. Columns indicate the observed number

of significant effects. For multi-factor interactions, effects including burning (orange) or not (blue) were distinguished.

Dots indicate the expected number of significant effects based on the observed mean percentage of effects that were

significant (i.e. 8.6%) and the number of effects tested across the 4 groups of the nitrifiers and 3 sampling dates.

Expected number of significant effects in total (black) or focusing only on effects including burning (red) were

distinguished

Temporal trends in the Effects of Main Global Change Factors on Soil Nitrifiers

Among the four groups of nitrifiers, Nitrospira was the only one insensitive to the main effect

of nitrogen (N) deposition, and was sensitive to precipitation (P) and burning (B) at one sampling

data only (Fig. 44). Overall, a positive main N effects was observed on the three other groups of

nitrifiers, the abundances of AOB and Nitrobacter being the most increased by N deposition (Table

41, Fig. 44-Left-Top).
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Fig. 44 Main effects of (Top) nitrogen addition, (Middle) precipitation change and (Bottom) burning on (Left) the

abundances of soil nitrifiers (Ammonia-Oxidizing Bacteria, AOB; Ammonia-Oxidizing Archaea, AOA; Nitrospira and

Nitrobacter) and (Right) environmental variables (soil water content ,SWC, soil ammonium concentration, NH4
+, soil

dissolved organic carbon, DOC, and plant belowground net primary productivity, BNPP) immediately prior to burning

(-0.13 month, i.e. 4 days prior to the fire), and at the three sampling dates after burning (0.06 month, i.e. 2 days after

burning, and 9 and 33 months after burning). ns, not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ND, no data

The N-induced increase in the abundance of AOB and AOA tended to be higher at the last two

dates (corresponding to end of plant growing season) and lower at the first two dates (dry season).

Concurrently, N deposition had a positive effect on NH4
+ and soil DOC concentration at the last

sampling date (+42.9% and +14.0% for NH4
+ and soil DOC, respectively). In contrast, BNPP

negatively responded to the main N treatment, especially in the burning year (2011) (7.4% decrease

in response to the main N treatment; Fig. 43-Top- Right).
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The main P effects were of lesser amplitude and more variable than the main N effect (Fig. 43-

Middle). The main P effect tended to be positive (but was never significant) on the abundance of

AOA, whereas the abundances of AOB and Nitrospira tended to decrease with P, the main P effect

being significant only for Nitrospira 9 months after fire. In contrast, a strong and negative main P

effect was observed on Nitrobacter abundance, ranging from -60% to -70% for the three dates after

fire. Changed P also significantly increased SWC during plant peak biomass periods at 9 (by 16.0%)

and 33 (by 13.8%) months after burning whereas the effect on soil NH4
+ and DOC were variable.

Further, changed P induced a significant decrease of BNPP 9 months after burning (-23.8%).

The main B treatment tended to negatively affect the abundances of the four nitrifiers groups

except for AOA just after burning (Fig. 44-Left-Bottom), but effects were not significant, except 9

and 33 months after fire for AOB, and 33 months after fire for Nitrospira. A significant main B

effect was observed on the abundance of AOB both 9 and 33 months after burning (-56% and -41%,

respectively), and on the abundance of Nitrospira 33 months after burning (-28%). Across all

treatments, burning significantly increased SWC by 8.1% and 7.8% after 9 and 33 months,

respectively. The responses of NH4
+ and DOC varied with sampling dates. In particular, B

significantly increased DOC (+36.3%) just after burning but decreased DOC (-6.9%) 9 months after

burning. BNPP did not significantly respond to the main B effect (Fig. 43-Right-Bottom)

Responses of Soil Nitrifiers to Burning according to Global Change Scenarios

4.4.3.1 Ammonia oxidizing bacteria and archaea

For both the abundances of AOB and AOA, the most significant effect including burning

corresponded to the 3-way heat (H) × nitrogen (N) × burning (B) interaction 33 months after

burning (P value of 0.0097 and 0.0265, respectively) (Table 41), so that this interaction effect was

focused.

Under N deposition only, a significant positive burning effect on AOB abundance was found

just after burning, but a negative larger burning effect 9 months after burning (P < 0.01) with a

similar, not significant trend observed 33 months after burning. Under warming (H) only, burning

significantly decreased AOB abundance 33 months after fire. A significant negative burning effect

was also found under elevated H and N conditions 9 months after fire (Fig. 45-Top).

For AOA abundance, a significant burning effect was only observed under the H scenario 33

months after fire (9.90×104 copies g-1 soil and 2.29×105 copies g-1 soil under the HB and B

treatments, respectively) (Fig. 46-Top).
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Fig. 45 (Top) Abundance of soil ammonia-oxidizing bacteria (AOB) under different global change scenarios (Control,

Ctrl; N, N deposition; H, heat) with and without burning (B). (Bottom-Left) Structural equation model results relating

AOB abundance to soil water content (SWC) and belowground net primary productivity (BNPP). Values near the

arrows are path coefficients. The red arrows indicate negative correlations. The percentage of variance explained by the

model is indicated at the bottom-right of the corresponding box. (Bottom-Right) Burning effect on SWC and BNPP

under the relevant scenarios, 9 and 33 months after burning. *, P < 0.05; **, P < 0.01; ***, P < 0.001



78

Fig. 46 (Top) Abundance of soil ammonia-oxidizing archaea (AOA) under different global change scenarios (Control,

Ctrl; N, N deposition; H, heat) with and without burning (B). (Bottom-Left) Structural equation model results relating

AOA abundance to soil water content (SWC) and ammonium content (NH4
+). Values near the arrows are path

coefficients. The green and red arrows indicate a positive and negative correlation, respectively. The percentage of

variance explained by the model is indicated at the bottom-right of the corresponding box. (Bottom-Right) Burning

effect on SWC and NH4
+ under the relevant scenarios, 9 and 33 months after burning. **, P < 0.01; ***, P < 0.001

4.4.3.2 Nitrite oxidizing bacteria

Regarding Nitrobacter abundance, the most significant effect including burning corresponded

to the H × P × N × B interaction 9 months after fire (P=0.0018) (Table 41). Burning significantly

decreased Nitrobacter abundance under PN and HP conditions 9 months after fire, and under HPN

conditions 2 days after fire.
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Fig. 47 (Top-Left) Abundance of soil Nitrobacter under different global change scenarios (Control, Ctrl; , N deposition;

P, precipitation) with and without burning (B). (Bottom-Left) Structural equation model results relating Nitrobacter

abundance to ammonia-oxidizing bacteria (AOB), soil water content (SWC) and below-ground net primary productivity

(BNPP). Values near the arrows are path coefficients. The green and red arrows indicate a positive and negative

correlation, respectively. The percentage of variance explained by the model is indicated at the bottom-right of the

corresponding box. (Bottom-Right) Burning effect on AOB, SWC and BNPP under the relevant scenarios 9 months

after burning. *, P < 0.05; **, P < 0.01; ***, P < 0.001

Regarding Nitrospira abundance, the most significant effect including burning was the main B

effect observed 33 months after burning (P = 0.0058) (Table 41). At this date, burning significantly

decreased the abundance of Nitrospira from 1.03×106 to 7.32×105 copies g-1 soil (Fig. 48-Top-Left),

whereas no significant effect was found at the other dates.
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Fig. 48 (Top-Left) Abundance of soil Nitrospira under control (Ctrl) and burning (B) condition. (Top-Right) Burning

effect on SWC and abundance of AOA under the relevant scenarios observed 33 months after burning. (Bottom)

Structural equation model results relating Nitrospira abundance to soil water content (SWC), abundance of soil

ammonia-oxidizing archaea (AOA) and ammonium concentration (NH4
+). Details on graphical presentation and colours

as in figure Fig. 47*, P < 0.05; **, P < 0.01; ***, P < 0.001

Identification of the Main Drivers of Nitrifier Abundances under the Burning and

Global Change Treatments

Structural equation modelling (SEM) showed that AOB abundance was negatively related with

SWC and to a lesser extent with BNPP (Fig. 45-Bottom-Left). SWC and BNPP however explained

only 10% of the total variance in AOB abundance (Fig. 45-Bottom-Left). AOA abundance was also

negatively related with SWC, and was positively related to NH4
+. SWC and NH4

+ concentration

explained 27% of the total variance of AOA abundance (Fig. 46-Bottom-Left).

The abundance of Nitrobacter was explained (42% of total variance) by AOB abundance,

BNPP and SWC, with a prominent role of AOB abundance and SWC (Fig. 47-Bottom-Left). The

abundance of Nitrospira was positively related to AOA abundance and to a lesser extent negatively

related to SWC. AOA and SWC explained 50% of the total variance in Nitrospira abundance (Fig.

4Bottom).

4.5 Discussion
Importance of Main Effects and Interactive Effects of Fire and Global Change Factors

on Nitrifier Abundances
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As compared to an even distribution of significant effects independently of the number of

factors interacting (i.e. number of significant effects just proportional to the number of effects

tested), the number of the main treatment effects that were significant was two-fold than expected,

with a prominent role of the main nitrogen deposition (N) treatment, and to a lesser extent

precipitation (P) and burning (B). This is consistent with previous research results for the same

experimental site reporting that both plant and soil compartments in this grassland ecosystem are

particularly responsive to the nitrogen supply [2, 232, 284, 396]. In addition, Niboyet et al. (2011b) [213]

found significant response of soil nitrification rates to nitrogen and increased precipitation, but no

response to CO2 and warming. Regarding the other main effects of P and B, our results are also

consistent with previous studies. In particular, a main effect of precipitation was observed on

potential nitrification rate in addition to a main N effect, whereas no main effect of warming and

CO2 was found [284 ] . Similarly, Brown et al. (2012) observed a significant main effect of

precipitation on N2O emissions but no effect of warming and CO2
[232]. This is likely due to the fact

that the N treatment corresponded to a rather high N input applied over 13 years before our first soil

sampling, inducing a high increase in soil mineral N as already observed [194, 214]. In addition,

modified precipitation has been shown to have both direct effects on soil moisture [480 ] and

cascading effects on plant growth and C and N cycling at Jasper Ridge, and all these effects can

influence soil nitrifiers through altered oxygen, N and C availabilities. In contrast, heating intensity

was weak at the study site, with a low increase of soil temperature initially with +0.8 to 1°C for 12

years and then +1.5 to +2°C [481], which is quite realistic but lower than warming treatments applied

in other warming experiments on grasslands [205, 267]. Similarly, Zhang et al. (2013) reported no

significant response of the abundance of soil ammonia-oxidizers to heating in a steppe ecosystem
[259]. In addition, the +275 ppm increase in atmospheric CO2 concentration could have only indirect

effects on soil nitrifiers through plants because CO2 concentration in the soil atmosphere has

already reached ~ 400 ppm in 2013 [482]. This likely explains why no significant main effect of CO2

was observed and that this factor rarely appeared in the significant interaction effects. This is

consistent with previous studies reporting a lack of elevated CO2 effect on the abundances of

ammonia oxidizers in dryland ecosystem [260 , 391 ], and in the rhizosphere of white clover and

ryegrass cultured in dystric cambisol [219]. In addition, in the same experimental site, Horz et al.

(2004) found that significant CO2 effect on the abundance of AOB can only be found when

combined with increased precipitation [214].

For interaction effects, the number of significant effects was lower than expected in particular

for the 2-, 4- and 5-way factor combinations. This was likely due to the fact that the N and B

treatments induced strong effects that appeared more as main effects than interaction effects. Still,



82

some strong interaction effects were detected for some nitrifier groups, interaction effects being

observed in more than half of the cases (nitrifier group × date) studied. This shows that global

change effects on soil nitrifiers are not predictable from single factor studies. Below I first discuss

the main effects of global change factors on the abundances of soil nitrifier groups that were

significant. I then discuss how the effect of burning on nitrifier abundances was affected by global

change scenarios involving N deposition, elevated CO2, modified precipitation and/or warming.

Response of Soil Nitrifier Groups to Main Treatment Effect of Global Change Factors

4.5.2.1 Nitrogen Deposition

AOA and AOB abundances increased with N deposition, the positive N effect being greater on

AOB than AOA. This supports the view that AOB rather than AOA are favored by N addition [20, 44-

47, 320, 327, 338, 433]. The response of AOA to N addition is actually more variable, and AOA abundance

can even decrease following N addition [307, 337]. Based on a meta-analysis, Carey et al. (2016) found

that on average N addition increases the abundance of AOA and AOB by 27% and 326%,

respectively [47]. Our results are thus explained. In addition, Nitrogen deposition increased the

abundance of Nitrobacter but not Nitrospira. This is consistent with a previous report on N addition

effect on NOB for the same site [26] and other grasslands [44, 46]. Overall, our results support the view

that a niche differentiation exists between the nitrifier groups regarding N availability [10, 44, 432], and

that AOB and Nitrobacter have a greater fitness and greater N oxidation rates at higher N level than

AOA and Nitrospira [8, 14 , 67, 69 , 70], although functional diversity exists within each group [101].

Moreover, the SEM analysis showed that the changes of AOB abundance explained 60% of the

changes in Nitrobacter abundance. Our results thus support the view that a close relationship often

exists between the abundances of AOB and Nitrobacter [44, 433], likely because increased AOB

abundance induced an increased NO2
- availability.

4.5.2.2 Increased Precipitation

Increased precipitation (P) had no significant effect on soil AOA, AOB and Nitrospira (except

a slight negative effect observed for Nitrospira at one date), but strongly decreased Nitrobacter

abundance. Consistently, Le Roux (2016) reported that increased precipitation reduced soil potential

nitrite oxidation rate at the same grassland site. This could be due to the fact that soil Nitrobacter

bacteria, include chemolitotrophs and mixotrophs [26]. Whereas chemolitotrophic Nitrobacter are

mostly positively related to oxygen and N availabilities, mixotrophic Nitrobacter are favored by

increased organic carbon availability and can withstand well decreased oxygen level [26]. The

decrease of the total Nitrobacter abundance with increased precipitation could thus result from the
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concurrent increase of SWC that induced lower O2 availability (negative effect on chemolitotrophic

Nitrobacter) and decrease of BNPP that likely induced lower organic C supply by roots (negative

effect on mixotrophic Nitrobacter). Consistently, the SEM analysis showed that Nitrobacter

abundance was positively related to BNPP and negatively related to SWC, in addition to the

positive relation observed with AOB abundance.

4.5.2.3 Burning

Published studies about fire impact on soil nitrifier abundances are rare in grassland ecosystems
[4]. More studies focused on forest ecosystems [4, 365]. Considering studies on burning effects on total

soil microbial abundance, variable effects were reported, from negative [365, 483] to positive [484-486]

suggesting that multiple direct and indirect mechanisms underlie the burning effects. The most

direct effect of burning is heating and increased soil temperature linked to fire intensity and

duration [487]. This can lead to heat-induced mortality of soil microbes [362, 363]. Previous studies have

indicated that fatal temperatures for soil microbes can be lower than 100°C [488 ]. However, in

grasslands, with fires of similar intensity as observed in our study (fire speed of 2-5 m/min and

flames height of 1-2 m), the heat wave did not penetrate very deep in soil. For instance, Delmas et

al. (1995) reported that during a fire event soil temperature reached 100°C at the surface, 75°C at 1

cm depth, 50°C at 3 cm depth [364]; below no change in temperature was observed [364]. As we

sampled the 0-7 cm soil layer, the direct effect of burning through heating is thus expected to be

marginal. This is supported by the lack of any significant burning effect observed just after fire for

AOA and Nitrospira, while only one (interaction) effect including burning was observed for AOB

and for Nitrobacter but with a lower significance (P > 0.01) as compared to other effects. Similarly,

no significant effect of a low intensity fire was found on bacterial abundance in a sclerophyll forest
[25]. In contrast, the abundance of AOB was significantly reduced by the burning treatment 9 months

after fire, while both AOB and Nitrospira abundances decreased in response to burning 33 months

after fire. This demonstrates a lasting effect of burning on soil nitrifiers, likely through indirect

effects, including on SWC as observed here and likely on the vegetation status. Similarly, increased

soil water content [ 368 , 489 ] and BNPP [367] after a burning event were reported in grassland

ecosystems. Fire can also affect N inputs and losses and more generally the grassland N balance [4,

284], which could impact soil nitrifiers. For instance, burning can induce large amount of NH3

volatilization, and more generally induces a loss of N from the aboveground plant parts. Here, no

significant main effect of burning on soil NH4
+ but only a negative trend, which could contribute to

the limitation of AOB growth, was observed.

A striking result is the lasting effect of burning on soil nitrifiers, two groups remaining
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impacted by burning 33 months after fire. In contrast, Vázquez et al. (1993) reported a short-term

stimulation of burning on soil microbial abundance [490], whereas the effect of burning disappeared

one year after burning. In contrast, Mabuhay et al. (2004) found that burning effect on soil

microbial biomass and abundance can last at least 25 years [491], illustrating the long-term fire

effects of burning on soil microbes in forest system.

Responses of Soil Nitrifiers to Fire Disturbance Are Modified by Global Change

Scenarios

Because a major novelty of our work is to combine burning with 16 global change scenarios

combining N deposition, increased precipitation, elevated CO2 and warming, and because

interaction effects including burning were often observed, we analyzed how and why the responses

of nitrifier abundances to burning are modified according to global change scenarios.

For both AOB and AOA, the strongest interaction effect including burning was the N × H × B effect.

Burning never affected AOB abundance under ambient N and H conditions, but significantly

decreased AOB abundance under elevated N and N × H conditions 9 months after fire, and under H

conditions 33 months after fire. These effects were linked to burning effects on SWC and BNPP.

The negative effect of burning under N deposition after 9 months was mostly explained by a

particularly positive effect of burning on SWC when combined with N deposition but not heating.

The reason for such a strongly positive effect of burning on SWC mostly under N only conditions

remains unclear. However, this increase in SWC probably lead to lower soil O2 availability, and

AOB maybe more sensitive to environmental change because soil AOB are largely monophyletic on

the basis of 16S rRNA and their diversity is relative low as compared with other functional groups
[27]. In addition, the negative burning effect on AOB under N × H conditions after 9 months was

mostly linked to an observed trend for increased BNPP. Higher BNPP may have induced an

increased competition between plant roots and AOB for ammonium, and AOB are weak

competitors for ammonium as compared to plant roots [492]. The interaction effects were not stable

with time, as after 33 months the burning effect was significant only under H conditions. This is

explained because the burning effect on SWC and BNPP changed with time: for instance, 33

months after fire, no burning effect on SWC was observed under N conditions and a negative trend

was observed for burning effect on BNPP under H × N conditions. This is consistent with previous

reports showing that burning effect on soil moisture [371] and plant biomasses [368, 377] can vary with

time following burning either because of cascading effects that evolve with time after fire or

because of different climatic conditions. Previous results reporting significant positive burning

effect on the abundance of AOB were published by Long et al. (2014) [263, 372] and Zhang et al.



85

(2018) [370]. The difference response of the abundance of AOB to fire disturbance maybe resulted

from the intensity and duration of burning event as discussed in 4.5.2.3, and also soil nutrient state.

AOA abundance responded to burning only under H condition 33 months after fire. Under H

conditions, burning increased SWC without modifying soil NH4
+ concentration, which explained

the decrease in AOA abundance induced by burning likely through decreased O2 level. This

contrasts with control (ambient N and H) conditions where burning did not increase much SWC and

did not affect soil NH4
+ concentration. Further, under N and H × N conditions, the burning-induced

increase in SWC (negative for AOA according to the SEM analysis) was counterbalanced by

increased soil NH4
+ concentration (positive for AOA according to SEM results).

For the abundances of Nitrobacter, the most significant effect including burning was the P × N

× H × B interaction after 9 months. A significant negative burning effect was found only under the

H × P and P × N conditions. The significantly negative response of AOB abundance to burning

under the PN scenario was explained by the combination of decreased AOB abundance (thus likely

decreased nitrite supply) and increased SWC (increased anoxia), which were the main two drivers

of AOB abundance according to the SEM analysis. In contrast, whereas a similar burning effect on

SWC was observed under N only conditions, this was counterbalanced by a positive effect on AOB

abundance. Similarly, whereas decreases in AOB abundance due to burning were similar under H ×

× N and H × P × N conditions than under P × N, no concurrent increase in SWC were observed

under these two other global change scenarios. Our results show that change in only AOB

abundance or only SWC was insufficient to lead to a decrease of Nitrobacter abundance in response

to burning, but that the synergy between decreased AOB abundance and increased SWC induced a

negative response of Nitrobacter. When burning induced a decrease in SWC only, without altered N

supply to NOB, this likely counter selected autotrophic Nitrobacter that are sensitive to O2 level,

but mixotrophic Nitrobacter could then take over [26]. Only concurrent decreases of SWC and AOB

abundance would induce conditions (low N and O2 availabilities) unfavorable for the two main

trophic types of Nitrobacter.

Overall, based on a unique comparison of 32 treatments (16 global change scenarios, with or

without burning), our results support three major conclusions:

- Due to niche differentiation, the four groups of nitrifiers responded differently to the 32 global

change treatments. This indicates that the balance between different nitrifier groups may be altered

in the future;

- Soil nitrifiers were particularly sensitive to the main effects of N deposition, and to a lesser

extent increased precipitation and burning, whereas no main effect of elevated CO2 and warming

was observed.
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- Besides the importance of main effects, many interaction effects, many of them including 3 or

4 factors, and many of them including burning, were observed. This demonstrates that the effects of

global change x disturbance scenarios on soil N cycling cannot be predicted simply by studying the

effects of one or two factors. Global change research thus increasingly requires the use of

experimental designs manipulating many factors and their possible interactions. Our results also

highlight the strong interactions observed between global change conditions and fire disturbance.

The good news is that we were often able to relate these interaction effects on soil nitrifiers to

effects observed on a few soil environmental drivers like moisture, N availability and plant growth.

Modelling and evaluating the generality of these complex interaction effects is a high priority for

future global change research.

4.6 Summary
We studied the effects of 32 treatments mimicking global change scenarios based on the

manipulation of N deposition, atmospheric CO2, warming, precipitation and a fire disturbance

(accounting for all their possible combinations) on soil nitrifier abundances in a Mediterranean

grassland. Four major groups of soil nitrifiers were quantified by quantitative PCR: ammonia-

oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), Nitrobacter and Nitrospira. Overall,

nitrogen deposition increased the abundance of AOB and to a lesser extent AOA and Nitrobacter,

but not Nitrospira. Nitrobacter abundance was mostly affected by global change factors through

their effects on AOB abundance, whereas Nitrospira abundance was more related to changes of

AOA. Precipitation had a negative main effect on Nitrobacter and no clear effect on the three other

nitrifier groups. Burning had a negative main effect on AOB. No main effect of elevated CO2 and

heating was observed. However, many interactive effects between global change factors were

observed, often including burning. Our results show that the effects of global change × disturbance

scenarios on soil N cycling cannot be predicted simply by studying the effects of one or two factors.

They also highlight the strong interactions observed between global change conditions and fire

disturbance. We were often able to relate the interaction effects on soil nitrifiers to effects observed

on a few soil environmental drivers (moisture, N availability and plant growth). Modelling and

evaluating the generality of these complex interaction effects is a high priority for future global

change research.
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5 Response of Soil Denitrifiers to Multiple Global Change Factors

and Fire Disturbance in a Mediterranean Grassland

5.1 Introduction
Denitrification is a microbial respiratory process during which soluble nitrogen (N) oxides

(nitrate, NO3
−, and nitrite, NO2

−) are sequentially reduced by specific reductases into gaseous forms

(nitric oxide NO, nitrous oxide N2O and N2) [493], N2O being a potent greenhouse gas [231]. The

abundance and activity of soil denitrifiers depend on environmental conditions like organic carbon,

moisture, oxygen, pH and N availability, which can all be affected by global changes. Thus,

understanding the response of soil denitrifiers to global change is important to anticipate possible

feedbacks to climate change.

Previous studies reported that N2O emissions depend on the balance between different

denitrifier groups [81, 446, 494], in particular (1) nitrite-reducers (harboring the nirK or nirS gene) that

reduce NO2
− to NO but also have a key role for N2O production as most NO-producing denitrifying

cells convert efficiently NO which is a toxic compound [495]; and (2) N2O-reducers (harboring the

nosZI gene or the recently discovered nosZII gene) that transform N2O into N2
[93, 94, 496]. Thus,

understanding how net soil N2O emissions may be affected by global change factors requires to

analyze the responses of NO2- and N2O-reducers to changes in soil environmental conditions

induced by global change. In particular, global changes such as rising atmospheric CO2, warming,

changes in precipitation regime, increased N deposition, as well as disturbances such as fire could all

alter the soil environmental conditions to which soil denitrifiers are sensitive. These global changes

all prone to change in the next decades [149] and can have interactive effects [232]. However, the effects

of co-occurring multiple global change factors and fire disturbance on soil denitrifiers have not been

studied (most studies have focused on 1 or 2 global change factors only: see Florio et al. 2019 [446]

for a review of N addition effects on denitrifiers; and Hartmann et al. 2013 [300]; Li et al. 2017 [303]).

We studied the responses of four major groups of soil denitrifiers (nirK-, nirS-, nosZI-, and

nosZII-harboring bacteria) to a prescribed fire disturbance under 16 global change scenarios, based

on the manipulation of warming, atmospheric CO2, N deposition and altered precipitation regime

and all their combinations, at the Jasper Ridge Global Change Experiment in California (Shaw et al.

2002) [109]. The 32 treatments at this experimental site (16 global change scenarios, each with or
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without fire) were replicated 4 times. The abundances of the four denitrifier groups were quantified

by quantitative PCR just before fire, just after fire, and 9 and 33 months after the fire. The

objectives were to:

(1) evaluate the importance of the main effect of each factor and of 2-, 3-, 4- and 5-way

interaction effects on denitrifier group abundances using same way as for nitrifiers, see section 4.1;

(2) analyze how these effects on denitrifiers change with time following the fire disturbance.

We assumed that the effects of main treatments like N deposition would be strong and visible at all

dates and across all treatments for nirK, nirS and nosZI, as these groups are known to be

particularly sensitive to altered N supply but not nosZII (see Table 15; also see review table of

Florio et al. 2019[446]. In addition, as the five global factors manipulated here are known to often

influence ecosystems through indirect effects involving modified plant growth and soil properties

and C and N cycling [284, 368, 377, 388]and as these effects can evolve with time after fire [368], we

expected that complex interaction effects could arise when different global change factors and fire

are combined, and that these effects could evolve according to time after fire. In particular, we

assumed that fire effect on soil denitrifiers could differ depending on the global change scenarios

considered and on the time since the initial fire disturbance. Further, we hypothesized that fire

effects would be dampened with time after the fire disturbance if fire had mostly a direct effect

through increased soil temperatures killing bacteria in the top soil [497], but that lasting effects would

be observed if fire had mostly indirect effects influencing water/carbon/nutrient cycling and

vegetation dynamics as often reported [365];

(3) identify the main drivers explaining the effect of burning on the four groups of soil

denitrifiers and possibly the most significant interaction effects between burning and global change

factors with soil environmental variables (soil moisture, nitrate, organic C and pH) and abundance

of nitrifiers. We used structural equation modeling to identify the main drivers of the abundance of

each denitrifier group across all treatments, and explore whether interactive effects between fire and

global change treatments on the abundance of each denitrifier group could be explained by

interactive effects on the main drivers identified.

5.2 Study Site
See chapter 4.2



89

5.3 Materials and Methods
Experimental Design

See section 1.4.2.

Sampling and Measurement

5.3.2.1 Plant/Soil Variables

Plant and soil variables were measured as part of a project former to the present Ph.D. and will

be used here as putative drivers of the abundances of the denitrifiers groups. See section 4.3.2.1.

5.3.2.2 Soil DNA extraction and quantification of the abundance of nitrite-reducers (nirK- and nirS-

harboring bacteria) and N2O-reducers (nosZI- and nosZII-harboring bacteria)

DNA extraction method is the same as Chapter 4.3.2.2. The abundances of nitrite-reducers

were quantified by measuring the fragments of the nirK and nirS genes encoding the copper and cd1

nitrite reductases, respectively [498]. For nirK, the primers used are nirK876 and nirK1040 [477]. The

final reaction volume was 20 μl and contained (final concentration) 1 μM of each primer, 1 × of

Quanti Tect SybrGreen PCR Master Mix (Qiagen, Courtaboeuf, France), 0.02 μg 0.1% of T4 gene

protein 32 (Qbiogene, Carlsbad, CA USA) and 5 ng of sample DNA or 102–107 copies of standard

DNA (linearized plasmid with the nirK gene of Sinorhizobium meliloti 1021). PCR cycles were as

follows: first with 15 min at 95°C for initial denaturation step; 45 amplification cycles (15s at 95°C,

30s at 63°C, and 30s at 72°C); one cycle melting step (1s at 95°C, 20s at 68°C and continuous 98°

C); and one cycle cooling step with 10s at 40°C; Samples were analyzed on a Lightcycler 480

(Roche, Diagnostics, Meyland, France). For nirS, the sets of primers used were nirSCd3aF [83] and

nirSR3cd [453]. The final reaction volume was 25 μl and contained (final concentration) 1 μM of

each primer, 1 × of Quanti Tect SybrGreen PCR Master Mix (Qiagen, Courtaboeuf, France), 0.02 μ

g 0.1% of T4 geneS protein 32 (Qbiogene, Carlsbad, CA USA) and 12.5 ng of soil DNA extract or

102–107 copies of the targeted DNA sequence, using a linearized plasmid containing the nirS gene

of Pseudomonas stutzeri Zobell DNA as standard. The samples were run on a Lightcycler 480

(Roche, Diagnostics, Meyland, France) as follows: first with 15 min at 95°C for initial denaturation

step; 45 amplification cycles (15s at 95°C, 30s at 59°C, 30s at 72°C and 30s at 80°C ); one cycle

melting step (15s at 95°C, 30s at 78°C and continuous 95°C); and one cycle cooling step with 10s at

40°C; Samples were analyzed on a Lightcycler 480 (Roche, Diagnostics, Meyland, France).

For nosZI-harboring N2O reducers, the sets of primers used were nosZ2F and nosZ2R [377]. The

final reaction volume was 25 μl, with (final concentration) 1.25 μM of each primer, 1 × of

QuantiTect SybrGreen PCR Master Mix (Qiagen, Courtaboeuf, France), 0.016 μg 0.1% of T4 gene

protein 32 and 12.5 ng of soil DNA extract or 102–107 copies of the targeted DNA fragment
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(linearized plasmid with the targeted nosZ gene of Pseudomonas stutzeri). Assays were run on a

Lightcycler 480 (Roche, Diagnostics, Meyland, France), as follows: first with 15 min at 95°C for

initial denaturation step; 6 cycles of touchdown (95°C for 15s, 65°C for 30s and 72°C for 30s and

80°C for 15s), 40 amplification cycles (95°C for 15s, 60°C for 15s, 72°C for 30s and 80°C for 15s);

one melting cycle (15s at 95℃, 15s at 60℃ and continuous 95℃); and one cycle cooling step with

30s at 40°C. For nosZII-harboring N2O reducers, the sets of primers used were nosZIIF and

nosZIIR2 [93]. The final reaction volume was 25 μl and contained (final concentration) 1 μM of each

primer, 1.2 × of QuantiTect SybrGreen PCR Master Mix (Qiagen, Courtaboeuf, France), 0.3 mg ml-

1 of bovine serum albumin (BSA) and 20 ng of soil DNA extract or 102–107 of targeted fragments

(linearized plasmid with the nosZ gene of uncultured bacterium clone CJEAb111). Assays were

performed in on a Lightcycler 480 (Roche Diagnostics, Meyland, France) according to the

following steps: first with 15 min at 95°C for initial denaturation step; 45 amplification cycles (30s

at 95°C, 1min at 53°C, and 1min at 72°C); one cycle fusion step (15s at 95℃, 15s at 60℃ and

continuous 95℃); and one cycle cooling step with 30s at 40°C.

Prior to qPCR assays, two types of tests were performed to evaluate possible inhibition of PCR.

First, for all soils, a dilution approach was used: qPCR assays were performed with 5, 10 and 20 ng

of soil DNA to evaluate possible PCR inhibition according to the amount of co-extracted

compounds (nirK used as a target). Second, we compared the qPCR results obtained when using (i)

the standard DNA plasmid leading to a concentration of 107 nirK copies and (ii) the standard DNA

plasmid at the same concentration plus 5 ng of extracted DNA for each soil. No inhibition was

observed. The amplification efficiencies were 93%, 79%, 86 %, and 93%, for nirK, nirS, nosZI and

nosZII, respectively. Abundances were expressed as gene copy numbers per g equivalent dry soil.

Analysis

Methods and steps of outliers detection and block effect assessment were the same as for

nitrifiers, see section 4.3.3 for details. The outlier numbers of nirK are 6, 4, 1 and 1, respectively -

0.13, 0.06, 9 and 33 months after fire; the corresponding outlier numbers of nirS are 5, 4, 0, and 1;

of nosZI are 9, 2, 0, 3. Note that, for nosZII, no data available before fire (-0.13 months), the outlier

numbers are 12, 8, and 1 at 0.06, 9, and 33 months after fire disturbance, respectively.

Data were analyzed to assess the overall effects of the burning disturbance and other global

environmental changes treatments on the abundance of the four groups of soil denitrifiers (nirK,

nirS, nosZI and nosZII-harboring bacteria) using PROC MIXED in SAS 9.4 using a full factorial

split-plot analysis of variance in order. At each sampling date, the CO2, warming and burn

treatments were included as whole-plot factors, and the precipitation and N treatments as split-plot
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factors. The normality of the residuals and the independence of the residuals related to the predicted

values were analyzed. If these criteria were not met, data were transformed with Box-Cox using

Minitab® 18.0 (Minitab Inc., PA, USA) software. Effects with P < 0.05 are referred to as significant.

Based on the results of the mixed-model analysis obtained for the four sampling dates, the most

significant interaction effect observed between burning and global change factors was selected for

each denitrifier group. Accordingly, the effect of burning was compared under the different relevant

global change scenarios using T-test. For example, the precipitation (P) × nitrogen (N) × burning (B)

interaction effect was the most significant interaction effect involving burning observed across the

sampling dates for nirS gene. Therefore, the burning effect was compared between the control, P, N

and PN conditions, using T-tests (Fig. 55) and checking data normality and homogeneity of variance

after data transformation if needed. For graphical representation, main treatment effect size was

calculated as: Effect = T – C, see section 4.3.3 for details.

In order to explore and hierarchize the links between changes in the abundances of the four soil

denitrifier groups following fire and environmental variables (SWC, pH, DOC, NO3
- and ANPP and

BNPP), as well as nitrifier group abundances (AOA, AOB, Nitrobacter, and Nitrospira), path

analysis was performed using Amos25® (Amos Development Corporation, Crawfordville, FL,

USA). The complete model with all possible causal relationships considered is presented in Fig. 51.

A χ² test was used to evaluate the model, i.e. whether the covariance structures implied by the

model adequately fitted the actual covariance structures of the data (a non-significant χ² test with P >

0.05 indicates an adequate fit by the model). Within a model, the coefficients of paths indicate by

how many standard deviations the explained variable would change if the causal variable was

changed by one standard deviation.

Fig. 51 Complete model used for identifying the main drivers of changes in the abundances of soil denitrifiers (nirK,

nirS, nosZI and nosZII-harbouring bacteria) by structural equation modelling. The variables included in the model are

the abundances of soil nitrifiers (AO, Ammonia-oxidizers; AOB, Ammonia-Oxidizing Bacteria; AOA, Ammonia-
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Oxidizing Archaea; NO, Nitrite-Oxidizers), soil ammonium concentrations (NH4
+), gravimetric soil water content

(SWC), soil dissolved organic carbon content (DOC), soil pH (pH), belowground net primary productivity (BNPP), and

soil nitrate concentrations (NO3
-)

5.4 Results

Fig. 52 The abundances of the four groups of soil denitrifiers averaged across all treatments 4 days before burning (-

0.13 month); 2 days after burning (0.06 month); 9 months after burning; and 33 months after burning. Bars are mean +

s.e. (n=128 minus outliers). Different letters indicate significant differences of the abundance of a given group between

sampling dates. ND indicates no data available

The nirK abundance dominated over nirS abundance for each sampling date, ranging from

2.33×106 to 9.40×106 copies g-1 soil and 1.09×106 to 1.77×106 copies g-1 soil, respectively (Fig. 52).

The nosZII abundance was always higher than nosZI abundance at the three dates for which nosZII

data were available. nosZI and nosZII abundances ranged from 7.27×105 to 2.50×106 copies g-1 soil

and 3.54×106 to 1.05×107 copies g-1 soil, respectively.

Importance of the Main Effect and Interactive Effect of Fire and Other Global Change

Factors on Denitrifier Abundances

Both significant main treatment effects and interactive treatment effects of global change

factors, often including fire, were observed on soil denitrifier abundances (Table 51). Overall, for

the 3 sampling dates after burning and the 4 denitrifier groups considered, main treatment effects

were the most commonly observed, followed by 3-way interactive effects (Fig. 53). We assessed to

what extent the number of significant effects detected was linked to the number of effects tested.
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Overall, the percentage of significant effects across the 4 groups of denitrifiers and the 3 soil

sampling dates after burning was 8.3%. Using this percentage and the number of tests performed,

the expected number of significant effects (black dots in Fig. 53) was computed assuming an evenly

distributed percentage of significant effects across main effects and the 2-, 3-, 4- and 5-way

interactions. Focusing only on interactions including burning, and accounting for the number of

possible interactions including burning, the expected number of significant effects including

burning was also computed (red dot in Fig. 53). The number of significant main effects was 1.4-fold

higher than expected (Fig. 53). The number of significant 3-way interaction effects was close to the

expected number based on the total percentage, whereas significant 2-, 4- and 5-way interactions

were less numerous than expected (Fig. 53). The significant main treatment effects detected

corresponded mostly to N deposition effect, with a lesser importance of main burning effect and

precipitation effect. No significant main effect of CO2 or heat was found (Table 51; Fig. 53). The

number of significant observed main burning effects was 2-fold higher than expected. For the 3-, 4-

and 5-way interaction effects including burning, the number of significant effects observed was

lower than expected, whereas for 2-way interaction effects, the number of significant effects

observed was as expected based on the mean percentage of significant effects (Fig. 53).



94

Ta
bl
e
51

M
ix
ed

m
od
el
re
su
lts

su
m
m
ar
iz
in
g
th
e
si
gn
ifi
ca
nt
ef
fe
ct
so

fg
lo
ba
lc
ha
ng
e
fa
ct
or
s(
C
O

2,
C
;h
ea
t,
H
;n
itr
og
en

de
po
si
tio
n,
N
;p
re
ci
pi
ta
tio
n
ch
an
ge
,P
;B

ur
ni
ng
,B

)a
nd

th
ei
ri
nt
er
ac
tio
ns

on
th
e
ab
un
da
nc
es
of

so
il
de
ni
tri
fie
rs
(n
ir
K
-,
ni
rS
-,
no
sZ
I-
an
d
no
sZ
II
-h
ar
bo
rin

g
ba
ct
er
ia
)a
tt
he

4
sa
m
pl
in
g
da
te
s:
4
da
ys

be
fo
re
bu
rn
in
g
(-
0.
13

m
on
th
);
2

da
ys

af
te
rb
ur
ni
ng

(0
.0
6
m
on
th
);
9
m
on
th
sa
fte
rb
ur
ni
ng
;a
nd

33
m
on
th
sa
fte
rb
ur
ni
ng
.V
al
ue
sb

et
w
ee
n
br
ac
ke
ts
ar
e
P
va
lu
es

D
en
itr
ifi
er
s

E
ff
ec
ts

-0
.1
3
m
on
th

0.
06

m
on
th

9
m
on
th
s

33
m
on
th
s

ni
rK

M
ai
n
ef
fe
ct
s

B
(0
.0
38
5)
N
(0
.0
24
5)

N
(<
0.
00
01
)

N
(0
.0
00
5)

B
(0
.0
00
4)
N
(<
0.
00
01
)

In
te
ra
ct
iv
e
ef
fe
ct
s
in
cl
ud
in
g
B

B
H
P(
0.
00
38
)

B
H
PN

(0
.0
41
3)

In
te
ra
ct
iv
e
ef
fe
ct
s
ex
cl
ud
in
g
B

ni
rS

M
ai
n
ef
fe
ct
s

P(
0.
00
78
)N

(0
.0
44
1)

N
(0
.0
01
0)

P(
0.
00
56
)

P(
0.
02
06
)N

(0
.0
31
6)

In
te
ra
ct
iv
e
ef
fe
ct
s
in
cl
ud
in
g
B

B
PN

(0
.0
21
3)

B
C
(0
.0
31
4)
B
P(
0.
04
84
)

In
te
ra
ct
iv
e
ef
fe
ct
s
ex
cl
ud
in
g
B

C
N
(0

.0
0
4
9
)

P
N

(0
.0

1
7
9
)

C
PN

(0
.0
12
5)

C
PN

(0
.0
25
7)

C
N
(0

.0
3
8
4
)

H
PN

(0
.0
30
5)

H
N
(0

.0
3
6
8
)
P
N
(0

.0
1
6
2
)

H
PN

(0
.0
05
4)

no
sZ
I

M
ai
n
ef
fe
ct
s

N
(0
.0
.0
01
1)

N
(<
0.
00
01
)

N
(0
.0
00
9)

B
(0
.0
01
8)
N
(<
0.
00
01
)

In
te
ra
ct
iv
e
ef
fe
ct
s
in
cl
ud
in
g
B

B
PN

(0
.0
46
2)

B
P(
0.
03
17
)B

PN
(0
.0
03
1)

In
te
ra
ct
iv
e
ef
fe
ct
s
ex
cl
ud
in
g
B

C
N
(0
.0
18
1)

H
PN

(0
.0
31
8)

no
sZ
II

M
ai
n
ef
fe
ct
s

In
te
ra
ct
iv
e
ef
fe
ct
s
in
cl
ud
in
g
B

B
H
PN

(0
.0
40
7)

B
PN

(0
.0
14
5)

B
H
PN

(0
.0
11
5)

B
C
(0
.0
06
9)

In
te
ra
ct
iv
e
ef
fe
ct
s
ex
cl
ud
in
g
B

C
PN

(0
.0
13
1)

H
PN

(0
.0
34
3)



95

Fig. 53 Main effects and interactive effects of global change factors (CO2, heat, precipitation change, and nitrogen

deposition) and burning on the abundance of four groups of soil denitrifiers (nirK- and nirS-harboring nitrite-reducers;

and nosZI- and nosZII-harboring N2O reducers) at the 3 sampling dates after burning (2 days after burning; 9 months

after burning; and 33 months after burning). Columns indicate the observed number of significant effects. For

significant multi-factors interactions, we distinguished those including burning (orange) or not (blue). Black and red

dots indicate the expected number of significant effects based on the ratio between the number of observed significant

effects and the number of total interactions tested in the model for 4 groups of the denitrifiers of 3 sampling dates

Main Interaction Effect of Global Change Factors on Soil Denitrifiers

Overall, positive main N effects were observed on the abundances of denitrifier groups except

nosZII-harboring bacteria, the abundances of nirK and nosZI being increased by 14.7% to 41%, and

27.1% to 46.1% by N deposition, respectively; whereas nirS abundance increased only by 10.1% to

26.4% (Table 51, Fig. 54-Left-Top). Concurrently, a very strong and positive N deposition effect

was observed on soil NO3
- concentrations (Fig. 54-Left-Top). In addition, nirS-harboring bacteria

was the only group that responded to the main precipitation (P) effect, being significantly increased

by 16.5% to 26.0% by elevated P at 3 among the 4 sampling dates (Fig. 54). Increased P also

significantly increased SWC during plant peak biomass periods (9 and 33 months after fire, by

16.0% and by 13.8%, respectively), whereas the effects of increased P on soil NO3
- and DOC were

variable and mostly not significant. Further, increased P significantly decreased BNPP by 23.8% at

9 months after burning.

Significant main burning effects (B) were observed 33 months after burning for nirK and nosZI



96

(-37.2% and -29%, respectively) (Fig. 54). Across all treatments, burning also significantly

increased SWC by 8.1% and 7.8% after 9 and 33 months, respectively. The responses of NO3
- and

DOC varied with sampling dates. In particular, B significantly increased DOC (+36.3%) just after

fire but decreased DOC (-6.9%) 9 months after burning. BNPP did not significantly respond to the

main B effect (Fig. 43-Right-Bottom).

Fig. 54 Main effect of nitrogen addition, increased precipitation and burning on the abundances of soil denitrifiers (nirK

-, nirS-, nosZI- and nosZII-harboring bacteria) (Left) and (Right) on environmental variables : soil water content (SWC),

soil nitrate concentration (NO3
-), soil dissolved organic carbon (DOC) and plant belowground net primary productivity

(BNPP) at the four sampling dates (-0.13 month, that is 4 days before burning; 0.06 month, 2 days after burning; and 9

and 33 months after burning). ns, not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ND, no data; Values of

BNPP for 2011 is presented at 2 days after burning
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Responses of Soil Denitrifiers to Fire Disturbance: Interactions with Global Change

Scenarios

5.4.3.1 Nitrite-reducers

Significant burning effects (main and interactive) were found before fire for nirK (Table 51).

This might be due to a legacy of the 2003 fire on the abundance of nirK and we thus did not analyze

nirK response to fire.

Fig. 55 (Top) Abundance of soil nirS-harboring nitrite-reducers (nirS) under different global change scenarios (Control,

Ctrl; N, N deposition; P, precipitation; whatever the warming and elevated CO2 treatments) with orange lines- and

without blue lines- burning (B). (Bottom-Left) Structural equation model results relating nirS abundance to soil water

content (SWC), total abundance of ammonia oxidizers (SumAO), and belowground net primary productivity (BNPP).

Values near the arrows are path coefficients. The green arrows indicate positive correlations. The red arrows indicate

negative correlations. The percentage of variance explained by the model is indicated at the bottom-right of the

corresponding box. (Bottom-Right) Burning effect on SumAO and SWC under the relevant scenarios at 33 months after

burning. *, P < 0.05; **, P < 0.01; ***, P < 0.001

Regarding the abundance of nirS-harboring nitrite reducers, the most significant interactive

effect including burning corresponded to the 3-way interaction of precipitation (P) × nitrogen (N) ×

burning (B) (Table 51). Therefore, this 3-way interaction effect was further analyzed (i.e. across the

other warming and elevated CO2 treatments). Burning significantly decreased nirS abundance only

under the N deposition scenario 33 months after fire (6.80×105 and 1.08×106 copies g-1 soil under
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the N × B and N treatments, respectively), whereas no burning effect was observed under control

(no N deposition and ambient P), P and P × N conditions (Fig. 55-Top).

Structural equation modelling (SEM) showed that nirS abundance was mostly explained (34%

of total variance) by the total abundance of ammonia oxidizers (SumAO) and SWC (Fig. 55-Bottom

-Left) (Fig. 55-Bottom-Left).

5.4.3.2 N2O-reducers

Regarding nosZI abundance, the most significant effect including burning corresponded to the

P × N × B interaction observed 33 months after fire (P=0.0031) (Table 51).

Fig. 56 (Top) Abundance of soil nosZI-harboring nitrite-reducers (nosZI) under different global change scenarios

(Control, Ctrl; P, precipitation; N, N deposition;) with orange lines- and without blue lines- burning (B) (B).

(Bottom-Left) Structural equation model results relating nosZI abundance to soil water content (SWC), nirS abundance

(nirS) and soil pH. Values near the arrows are path coefficients. The green arrows indicate positive correlations. The red

arrows indicate negative correlations. The percentage of variance explained by the model is indicated at the bottom-

right of the corresponding box. (Bottom-Right) Burning effect on nirS abundance under the relevant scenarios at 33

months after burning. #, 0.05< P <0.1; *, P < 0.05; **, P < 0.01; ***, P < 0.001
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At this date, burning significantly decreased nosZI abundance only under N conditions

(9.40×105 and ×106 copies g-1 soil under the N and NB treatments, respectively) (Fig. 56-Top). The

abundance of nosZI was related to nirS abundance and SWC, and marginally to soil pH. These

variables explained 75% of the total variance of nosZI abundance. Consistently with the PNB

interaction effect observed on nosZI abundance, burning only decreased nirS abundance under N

conditions (Fig. 55).

For nosZII abundance, the most significant effect including burning corresponded to the C × B

interaction 33 months after fire (P=0.0069) (Table 51). Under ambient CO2 conditions, burning

decreased nosZII abundance (1.18×107 and 6.87×106 copies g-1 soil under the ambient and B

treatments, respectively), whereas burning increased nosZII abundance at elevated CO2 (7.26×106

and 9.18×106 copies g-1) under the C and CB treatments, respectively) (Fig. 57-Top).

Fig. 57 (Top) Abundance of soil nosZII-harboring nitrite-reducers (nosZII) under different global change scenarios

(Control, Ctrl; C: elevated CO2) with orange lines- and without blue lines- burning (B). (Bottom-Left) Structural

equation model results relating nosZII abundance to soil water content (SWC), nirS abundance (nirS) and soil pH.

Values near the arrows are path coefficients. The green arrows indicate positive correlations. The red arrows indicate

negative correlations. The percentage of variance explained by the model is indicated at the bottom-right of the

corresponding box. (Bottom-Right) Burning effect on nirS abundance and soil pH under the relevant scenarios at 33
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months after burning. *, P < 0.05; **, P < 0.01; ***, P < 0.001

The abundance of nosZII was mostly related to nirS abundance and soil pH. These variables

explained 24% of the total variance of nosZII abundance (Fig. 57-Bottom-Left).

5.5 Discussion
Importance of Main Effects and Interactive Effects of Fire and Global Change Factors

on Denitrifier Abundances

Consistent with results obtained for soil nitrifier abundances (see 4.5.1), the number of the

main treatment effects that were significant on soil denitrifiers abundance was two-fold than

expected, with main positive nitrogen deposition (N) treatment effect being the most often observed,

and followed by main positive precipitation (P) and negative burning (B) effects, and with no main

effect of warming and CO2. This is consistent with previous studies for the same experimental site

reporting a main effect of N addition and a main effect of elevated P which both increased

denitrifying enzyme activity DEA, whereas elevated CO2 and warming had no significant effect on

DEA [213]. Brown et al. (2012) also observed a significant and positive main effect of P on soil N2O

emissions and showed that denitrification was the main driver of soil N2O emissions at this site [232].

In addition, a main B treatment effect on N2O emissions from soil was also reported after the 2003

fire at the same study site but this effect was positive [284] which contrasts to the main B treatment

effect reported in the present study that was negative on both the abundances of nirK and nosZI-

harboring bacteria. In contrast, weak heating intensity (initially with +0.8 to 1°C and then +1.5 to

+2°C,) which is quite realistic but lower than warming treatments applied in other warming

experiments on grasslands [205 , 267 ] . In addition, the +275 ppm increase in atmospheric CO2

concentration could have only indirect effects on soil nitrifiers through plants because CO2

concentration in the soil atmosphere has already reached ~ 400 ppm in 2013 [482]. This likely

explains why no significant main effect of CO2 was observed and that this factor rarely appeared in

the significant interaction effects.

For interaction effects, as for soil nitrifiers, the number of significant effects was lower than

expected in particular for the 2-, 4- and 5-way interactions, which may be due to the fact that the N

and B treatments induced strong effects that appeared more as main effects than interactive effects.

However, some strong interaction effects from two- to four-way factors were observed for denitrifier

groups. This is consistent with previous studies reporting that global change factors can elicit

complex interactive responses in plant and/or soil compartments [109, 232, 284, 377], and in particular

with a previous study reporting interactive effects of fire and global change factors on DEA and soil

N2O emissions [284]. Our results thus further indicate that the effects of global change factors and
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fire cannot be simply predicted by single effects in isolation.

Response of Soil Denitrifier Groups to Main Treatment Effect of Global Change Factors

5.5.2.1 Nitrogen Deposition

N addition effect on soil denitrifiers are reported to vary with intrinsic soil nutrient state [44, 312]

and other soil environmental variables like soil pH [345]. In limited N conditions, which is our case in

JRGCE [377], the abundances of soil denitrifiers are generally increased by N addition directly by

increased mineral N substrate availability [312 ]. As expected, the N treatment induced positive

responses in the abundance of nitrite-reducers. We observed that nirK abundance was more

(positively) responsive to N deposition than nirS. This is consistent with previous studies reporting

that nirK communities are more sensitive than nirS communities to environmental gradients [499].

Other studies also reported that nirS-harboring bacteria responded more than nirK to increased N

deposition in winter wheat grown system [312], and that nirS-harboring bacteria in moist savanna and

steppe soils are mainly favored by higher soil NO3
- availability whereas nirK-harboring bacteria

would depend more on soil organic carbon [81]. The N addition also increased the abundance of

nosZI- but not nosZII-harboring bacteria. This illustrates the niche differentiation that exists

between these two groups of N2O-reducers, as highlighted by Assemien et al. (2019) [461], who also

identified nosZI-harboring bacteria as mainly driven by NO3
- availability, whereas nosZII-harboring

bacteria would be more favored by soil organic carbon in West African cultivated soils.

5.5.2.2 Increased Precipitation

Generally, the response of soil denitrifier abundance to precipitation amount not only depends

on changes in soil moisture but also on changes in soil N and C substrate availabilities [290] through

changing plant growth and/or litter decomposition. In our study, the nirS abundance responded

positively to increased P, which is consistent with results of Ding et al. (2015) showing that nirS

abundance significantly increased with increasing soil moisture, and consistent with the observed

increase in soil water content under increased precipitation at our site [287]. The difference in

phylogenetic diversity between nirK and nirS denitrifiers explained the variable response of nirK-

and nirS abundance to P treatment. In contrast, the abundances of soil N2O-reducers did not respond

to elevated P, which is consistent with previous results [259, 289, 290]. For instance, Zhang et al. (2013)

reported no watering effect on soil N2O-reducers as part of a long-term global change experiment in

a steppe ecosystem of Inner Mongolia [259]. Microbial response to global changes varied from year

to year and microorganisms might adapt to environmental changes after long-term treatments [2],

indicating that the denitrifiers (except nirS-harboring bacteria) may adapt to the P treatments in our
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long-term simulated treatment.

5.5.2.3 Burning

No direct burning effect was found on all 4 groups denitrifiers immediately after fire,

consistently with the effect of fire observed on soil nitrifiers (see section 4.5.2.3). This further

illustrates that the low intensity fire disturbance in this grassland ecosystem did not exert direct

effect on soil microbes through heating during the fire event in our study site. The abundances of

nirK- and nosZI-harboring bacteria were reduced by burning 33 months after fire, illustrating the

indirect burning effect by increasing of SWC. This is consistent with previous studies reporting

burning changed soil water content [368, 378, 489], available N [135], available carbon [135, 371], and soil

pH [371]. Consistent with this, we have found that Burning significantly altered soil moisture, soil

nitrate and DOC contents at our site, with a remaining effect of fire on soil moisture almost 3 years

after the initial disturbance. Fire-induced changes in soil properties may last for several years. For

instance, Alcaniz et al. (2016) reported that the burning effects on soil pH, N, available phosphorus,

potassium, calcium and magnesium still existed 9 years after fire in a Mediterranean forest [371].

Consistently, Mabuhay et al. (2004) found that responses of soil microbial biomass and abundance

to burning can last at least 25 years [491], illustrating the long lasting fire effects of burning on soil

microbes. In addition, over the long-term, burning may modify the soil microbial community by

altering plant community composition via plant-induced changes (e.g. C allocation) in the soil

environment [500].

5.5.2.4 Responses of Soil Denitrifiers to Fire Disturbance Are Modified by Global Change

Scenarios

Similar with the analysis of soil nitrifiers (see section 4.5.3), we found that the responses of

denitrifier abundances to burning were modified by the global change scenarios.

The strongest interactive effect including burning was the P × N × B 3-way interaction on the

abundances of nirS- and nosZI-harboring bacteria and the C × B 2-way interaction on the

abundance of nosZII-harboring bacteria. Burning decreased the abundance of nirS only under high

N conditions, 33 months after the initial fire disturbance. The main drivers of the abundance of nirS

were the total abundance of ammonia-oxidizers and to a lesser extent soil moisture. The burning

induced decrease in the abundance of ammonia-oxidizers though not significant may partly

explain this decrease in the abundance of nirS in the burned plots due to lower substrate availability.

Contrary to expectations, this decrease in substrate availability for nirS-harboring bacteria might

have been exacerbated under high N conditions as the N treatment stimulates plant growth which
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might elicit higher competition between plants and microbes for mineral N [109, 396].

Similarly, burning also decreased the abundance of nosZI only under high N conditions 33

months after the initial fire disturbance. This effect likely resulted from the decreased in nirS

abundance induced by burning at high N conditions. Indeed, the abundance of nirS was identified as

the main driver of changes in the abundance of nosZI by structural equation modelling and a

decrease in the abundance of nirS in the burned and fertilized plots would lead to a decrease in the

availability of substrates for nosZI-harboring bacteria in these plots. This is consistent with a

previous study conducted in West African cultivated soils that showed that the nirS- and nosZI-

harboring bacteria tended to covariate and have similar niche distribution [81].

Burning decreased the abundance of nosZII-harboring bacteria at ambient CO2 but increased it

at elevated CO2 33 months after the fire disturbance. These treatment effects might be at least partly

explained by changes in the abundance of nirS induced by burning, and by subsequent changes in

substrate availability for nosZII-harboring bacteria. Indeed, under ambient CO2 conditions, burning

significantly reduced the abundance of nirS which might have led to the observed decrease in the

abundance of nosZII resulting from lower substrate availability, while at high CO2 conditions, the

trend for higher abundance of nirS in the burned plots though not significant may have

contributed to the increase in the abundance of nosZII with more substrate availability. Changes in

soil pH in the burned plots though not significant may further explain the observed effects as

it has been reported that the abundance of nosZII-harboring bacteria is positively related to soil pH
[501].

5.6 Summary
We studied the combined effects of 16 global change scenarios based on the manipulation of

atmospheric CO2, warming, precipitation and N deposition and a fire disturbance (i.e. 32 treatments

in total) on the abundances of soil denitrifiers in a Mediterranean grassland. Four groups of soil

denitrifiers were quantified by quantitative PCR: nirK-, nirS-, nosZI and nosZII- harboring bacteria

at several sampling dates across the three years following the fire. Several main effects of the

treatments were reported: overall, enhanced nitrogen deposition increased the abundance of nirK

and nosZI and to a lesser extent nirS, but not nosZII, and increased precipitation increased the

abundance of nirS, while no main effect of CO2 and warming was found. Burning did not affect the

abundances of soil denitrifiers immediately but decreased the abundance of nirK and nosZI almost

three years after the initial disturbance. In addition, several interactive effects between fire and

global change factors were observed, the Burn × Precipitation × N and the Burn × CO2 interactions

affecting the most the abundances measured. Our results thus indicate that the effects of multiple
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global changes and fire on soil denitrifying microbial communities are not additive and thus cannot

be predicted by studies on single global change factor.
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6 Conclusions and Perspectives

6.1 Conclusions
Based on my results, I conclude that:

(1) In both grasslands, the responses of different groups of soil (de)nitrifiers to global change

scenarios differed strongly. In the Monsoon grassland, AOB mostly responded to N, either directly

for N deposition, or indirectly when other global change factors like altered precipitation amount or

frequency affected N availability. In contrast, AOA were more sensitive to soil water than N

dynamics. The nirK- and nirS-harboring nitrite reducers and nosZI-harboring N2O reducers were

more sensitive to N deposition than nosZII-harboring N2O reducers, and nirK- and nirS-bacteria

responded to reduced precipitation in the opposite direction.

(2) In the Mediterranean grassland, the effects of multiple global changes and fire disturbance

on soil denitrifying microbial communities are not additive. The interactive effects were explained

by key environmental variables like soil moisture, mineral N availability, pH and belowground

plant growth. This indicates that it is impossible to predict how (de)nitrifiers and (de)nitrification

respond to global change scenarios involving multiple factors only from the knowledge of single

factor. Modelling and evaluating the generality of these complex interaction effects is thus a high

priority for research to predict the responses of soil N cycling processes to global change and

feedbacks on climate in the future.

6.2 Novelty and Limitation of My Work, and Perspectives
Numerous researches have documented the effects of global change factors on soil N cycling

process, but they have rarely investigated the combined effects of multiple global change factors

and/or disturbances, which is a main novelty of the work presented here. In particular, several

novelties of this Ph.D. work can be highlighted:

This study performed in China is the first one assessing the effects of changes in the amount of

precipitation, the frequency of precipitation and the co-occurring chronic wet N deposition on soil

N cycling process, recognizing that wet N deposition is coupled to individual precipitation events.

However, a limit of the study is that our conclusions are based on one sampling date only and that

the study was conducted in mesocosms and not directly in the field. A perspective of this work

would be to further study the combined effects of changes in precipitation regime and associated
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wet deposition over the long-term in an in situ experiment, but this raises feasibility concerns

regarding the manipulation of precipitation and wet N deposition. Further, it is also needed to

compare how N deposition affects soil nitrous oxide emission when N is added as chronic N

deposition small N amount associated to each rainfall event) and when only a few N addition events

(typically 1 or 2 events per year, maximum one event per month) as traditionally used in many

studies to simulate N deposition.

Our study is also the first one assessing the effects of a fire disturbance under 16 long-term

global change scenarios applied in situ on the abundances of soil nitrifiers and denitrifiers (AOA,

AOB, Nitrobacter, Nitrospira and nirK-, nirS-, nosZI- and nosZII-harboring bacteria, respectively).

Changes in the abundances of the soil nitrifiers and denitrifiers may alter N2O emissions from

grassland soils. As we found that fire altered the abundances of soil nitrifiers and denitrifiers 33

months after the initial disturbance, a longer-term survey of fire effects would allow assessing the

duration of a fire event on soil N cycling microbial communities and associated processes.

More generally, our results have revealed significant interactive effects of multiple global

change factors and disturbances on soil nitrifiers and denitrifiers and they thus highlight the need

for long-term in situ global change experiments manipulating multiple global change factors and

disturbances. This is highly needed if we want to better predict the response of soil N cycling to

ongoing global change.



107

References

[1] Harpole W S, Ngai J T, Cleland E E, et al. Nutrient co limitation of primary producer communities[J].

Ecol Lett, 2011, 14(9): 852-862.

[2] Gutknecht J L, Field C B, Balser T C. Microbial communities and their responses to simulated global

change fluctuate greatly over multiple years[J]. Global Change Biol, 2012, 18(7): 2256-2269.

[3] Tamm C O, Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, and

ecosystem stability[M]: Springer Science & Business Media, 2012.

[4] Docherty K M, Balser T C, Bohannan B J, et al. Soil microbial responses to fire and interacting global

change factors in a California annual grassland[J]. Biogeochemistry, 2012, 109(1-3): 63-83.

[5] Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J].

Annu Rev Microbiol, 2001, 55(1): 485-529.

[6] Levy-Booth D J, Prescott C E, Grayston S J. Microbial functional genes involved in nitrogen fixation,

nitrification and denitrification in forest ecosystems[J]. Soil Biol Biochem, 2014, 75: 11-25.

[7] Petersen D G, Blazewicz S J, Firestone M, et al. Abundance of microbial genes associated with nitrogen

cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska[J]. Environ

Microbiol, 2012, 14(4): 993-1008.

[8] Prosser J I, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation

and differentiation[J]. Trends Microbiol, 2012, 20(11): 523-531.

[9] Freitag T E, Chang L, Clegg C D, et al. Influence of inorganic nitrogen management regime on the

diversity of nitrite-oxidizing bacteria in agricultural grassland soils[J]. Appl Environ Microbiol, 2005,

71(12): 8323-8334.

[10] Attard E, Poly F, Commeaux C, et al. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers

underlie the response of soil potential nitrite oxidation to changes in tillage practices[J]. Environ Microbiol,

2010, 12(2): 315-326.

[11] Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in

soils[J]. Nature, 2006, 442(7104): 806-809.

[12] Martens-Habbena W, Berube P M, Urakawa H, et al. Ammonia oxidation kinetics determine niche

separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7266): 976-979.



108

[13] Könneke M, Bernhard A E, José R, et al. Isolation of an autotrophic ammonia-oxidizing marine

archaeon[J]. Nature, 2005, 437(7058): 543.

[14] De la Torre J R, Walker C B, Ingalls A E, et al. Cultivation of a thermophilic ammonia oxidizing archaeon

synthesizing crenarchaeol[J]. Environ Microbiol, 2008, 10(3): 810-818.

[15] Hatzenpichler R, Lebedeva E V, Spieck E, et al. A moderately thermophilic ammonia-oxidizing

crenarchaeote from a hot spring[J]. PNAS, 2008, 105(6): 2134-2139.

[16] Treusch AH, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and Amo related proteins

indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environ Microbiol, 2005,

7(12): 1985-1995.

[17] Offre P, Prosser J I, Nicol G W. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by

acetylene[J]. FEMS Microbiol Ecol, 2009, 70(1): 99-108.

[18] Reigstad L J, Richter A, Daims H, et al. Nitrification in terrestrial hot springs of Iceland and Kamchatka[J].

FEMS Microbiol Ecol, 2008, 64(2): 167-174.

[19] Carney K M, Matson P A, Bohannan B J. Diversity and composition of tropical soil nitrifiers across a

plant diversity gradient and among land use types[J]. Ecol Lett, 2004, 7(8): 684-694.

[20] Di H J, Cameron K C, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich

grassland soils[J]. Nat Geosci, 2009, 2(9): 621-624.

[21] Hai B, Diallo N H, Sall S, et al. Quantification of key genes steering the microbial nitrogen cycle in the

rhizosphere of sorghum cultivars in tropical agroecosystems[J]. Appl Environ Microbiol, 2009, 75(15):

4993-5000.

[22] He J Z, Shen J P, Zhang LM, et al. Quantitative analyses of the abundance and composition of ammonia-

oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term

fertilization practices[J]. Environ Microbiol, 2007, 9(9): 2364-2374.

[23] Jia Z, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural

soil[J]. Environ Microbiol, 2009, 11(7): 1658-1671.

[24] Pratscher J, Dumont M G, Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria

in an agricultural soil[J]. PNAS, 2011, 108(10): 4170-4175.

[25] Shen J P, Zhang L M, Zhu Y G, et al. Abundance and composition of ammonia-oxidizing bacteria and

ammonia-oxidizing archaea communities of an alkaline sandy loam[J]. Environ Microbiol, 2008, 10(6):

1601-1611.

[26] Le Roux X, Bouskill N J, Niboyet A, et al. Predicting the responses of soil nitrite-oxidizers to multi-

factorial global change: A trait-based approach[J]. Front Microbiol, 2016, 7: 628.

[27] Curtis T P, Sloan W T, Scannell J W. Estimating prokaryotic diversity and its limits[J]. PNAS, 2002,

99(16): 10494-10499.



109

[28] Ward B B. How many species of prokaryotes are there?[J]. PNAS, 2002, 99(16): 10234-10236.

[29] Koops H-P, Pommerening-Röser A. Distribution and ecophysiology of the nitrifying bacteria emphasizing

cultured species[J]. FEMS Microbiol Ecol, 2001, 37(1): 1-9.

[30] Alawi M, Off S, Kaya M, et al. Temperature influences the population structure of nitrite oxidizing

bacteria in activated sludge[J]. Env Microbiol Rep, 2009, 1(3): 184-190.

[31] Watson S W, Bock E, Valois F W, et al. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-

oxidizing bacterium[J]. Arch Microbiol, 1986, 144(1): 1-7.

[32] Ehrich S, Behrens D, Lebedeva E, et al. A new obligately chemolithoautotrophic, nitrite-oxidizing

bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship[J]. Arch Microbiol, 1995,

164(1): 16-23.

[33] Spieck E, Hartwig C, McCormack I, et al. Selective enrichment and molecular characterization of a

previously uncultured Nitrospira‐like bacterium from activated sludge[J]. Environ Microbiol, 2006, 8(3):

405-415.

[34] Lebedeva E, Alawi M, Maixner F, et al. Physiological and phylogenetic characterization of a novel

lithoautotrophic nitrite-oxidizing bacterium, Candidatus Nitrospira bockiana [J]. Int J Syst Evol Micr,

2008, 58(1): 242-250.

[35] Daims H, Lebedeva E V, Pjevac P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015,

528(7583): 504.

[36] Van Zwieten L, Kammann C, Cayuela M L, et al., Biochar effects on nitrous oxide and methane

emissions from soil[M].London, New York: Earthscan Books Ltd, 2015.

[37] Wrage N, Velthof G L, van Beusichem M L, et al. Role of nitrifier denitrification in the production of

nitrous oxide[J]. Soil Biol Biochem, 2001, 33(12): 1723-1732.

[38] DeLeval J, Remacle J. The influence of environmental factors on nitrification[J]. Environ

Biogeochemistry, 1976, 1: 259-269.

[39] DeMarco J, Kurbiel J, Symons J M, et al. Influence of environmental factors on the nitrogen cycle in

water[J]. J Am Water Works Ass, 1967, 59(5): 580-592.

[40] Prinčič A, Mahne I, Megušar F, et al. Effects of pH and oxygen and ammonium concentrations on the

community structure of nitrifying bacteria from wastewater[J]. Appl Environ Microbiol, 1998, 64(10):

3584-3590.

[41] Nicol G W, Leininger S, Schleper C, et al. The influence of soil pH on the diversity, abundance and

transcriptional activity of ammonia oxidizing archaea and bacteria[J]. Environmental microbiology, 2008,

10(11): 2966-2978.

[42] Chapin III F S, Matson P A, Vitousek P, Principles of terrestrial ecosystem ecology[M]: Springer Science

& Business Media, 2011.



110

[43] Jones D L, Shannon D, V. Murphy D, et al. Role of dissolved organic nitrogen (DON) in soil N cycling in

grassland soils[J]. Soil Biol Biochem, 2004, 36(5): 749-756.

[44] Ma W, Jiang S, Assemien F, et al. Response of microbial functional groups involved in soil N cycle to N,

P and NP fertilization in Tibetan alpine meadows[J]. Soil Biol Biochem, 2016, 101: 195-206.

[45] Tian X-F, Hu H-W, Ding Q, et al. Influence of nitrogen fertilization on soil ammonia oxidizer and

denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow[J]. Biol Fert Soils,

2014, 50(4): 703-713.

[46] Simonin M, Le Roux X, Poly F, et al. Coupling between and among ammonia oxidizers and nitrite

oxidizers in grassland mesocosms submitted to elevated CO2 and nitrogen supply[J]. Microb Ecol, 2015,

70(3): 809-818.

[47] Carey C J, Dove N C, Beman J M, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more

strongly to nitrogen addition than ammonia-oxidizing archaea[J]. Soil Biol Biochem, 2016, 99: 158-166.

[48] Wuchter C, Abbas B, Coolen M J, et al. Archaeal nitrification in the ocean[J]. PNAS, 2006, 103(33):

12317-12322.

[49] Di H J, Cameron K C, Shen J P, et al. Ammonia-oxidizing bacteria and archaea grow under contrasting

soil nitrogen conditions[J]. FEMS Microbiol Ecol, 2010, 72(3): 386-394.

[50] Schauss K, Focks A, Leininger S, et al. Dynamics and functional relevance of ammonia-oxidizing

archaea in two agricultural soils[J]. Environ Microbiol, 2009, 11(2): 446-456.

[51] Valentine D L. Opinion: Adaptations to energy stress dictate the ecology and evolution of the archaea[J].

Nat Rev Microbiol, 2007, 5(4): 316.

[52] Gubry-Rangin C, Nicol G W, Prosser J I. Archaea rather than bacteria control nitrification in two

agricultural acidic soils[J]. FEMS Microbiol Ecol, 2010, 74(3): 566-574.

[53] Lehtovirta-Morley L E, Stoecker K, Vilcinskas A, et al. Cultivation of an obligate acidophilic ammonia

oxidizer from a nitrifying acid soil[J]. PNAS, 2011, 108(38): 15892-15897.

[54] Suwa Y, Imamura Y, Suzuki T, et al. Ammonia-oxidizing bacteria with different sensitivities to

(NH4)2SO4 in activated sludges[J]. Water Res, 1994, 28(7): 1523-1532.

[55] De Boer W, Kowalchuk G. Nitrification in acid soils: micro-organisms and mechanisms[J]. Soil Biol

Biochem, 2001, 33(7-8): 853-866.

[56] Beman J M, Popp B N, Francis C A. Molecular and biogeochemical evidence for ammonia oxidation by

marine Crenarchaeota in the Gulf of California[J]. ISME J, 2008, 2(4): 429.

[57] Coolen M J, Abbas B, Van Bleijswijk J, et al. Putative ammonia oxidizing Crenarchaeota in suboxic

waters of the Black Sea: a basin wide ecological study using 16S ribosomal and functional genes and

membrane lipids[J]. Environ Microbiol, 2007, 9(4): 1001-1016.

[58] Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in



111

water columns and sediments of the ocean[J]. PNAS, 2005, 102(41): 14683-14688.

[59] Santoro A E, Casciotti K L, Francis C A. Activity, abundance and diversity of nitrifying archaea and

bacteria in the central California Current[J]. Environ Microbiol, 2010, 12(7): 1989-2006.

[60] Park B-J, Park S-J, Yoon D-N, et al. Cultivation of autotrophic ammonia-oxidizing archaea from marine

sediments in coculture with sulfur-oxidizing bacteria[J]. Appl Environ Microbiol, 2010, 76(22): 7575-

7587.

[61] French E, Kozlowski J A, Mukherjee M, et al. Ecophysiological characterization of ammonia-oxidizing

archaea and bacteria from freshwater[J]. Appl Environ Microbiol, 2012, 78(16): 5773-5780.

[62] Qin W, Amin S A, Martens-Habbena W, et al. Marine ammonia-oxidizing archaeal isolates display

obligate mixotrophy and wide ecotypic variation[J]. PNAS, 2014, 111(34): 12504-12509.

[63] Gelfand I, Yakir D. Influence of nitrite accumulation in association with seasonal patterns and

mineralization of soil nitrogen in a semi-arid pine forest[J]. Soil Biol Biochem, 2008, 40(2): 415-424.

[64] Roux-Michollet D, Czarnes S, Adam B, et al. Effects of steam disinfestation on community structure,

abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil[J].

Soil Biol Biochem, 2008, 40(7): 1836-1845.

[65] Spieck E, Lipski A, Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria, in

Method Enzymol. 2011, Elsevier. p. 109-130.

[66] Pester M, Maixner F, Berry D, et al. NxrB encoding the beta subunit of nitrite oxidoreductase as

functional and phylogenetic marker for nitrite oxidizing Nitrospira[J]. Environ Microbiol, 2014, 16(10):

3055-3071.

[67] Schramm A, De Beer D, Gieseke A, et al. Microenvironments and distribution of nitrifying bacteria in a

membrane bound biofilm[J]. Environ Microbiol, 2000, 2(6): 680-686.

[68] Manser R, Gujer W, Siegrist H. Consequences of mass transfer effects on the kinetics of nitrifiers[J].

Water Res, 2005, 39(19): 4633-4642.

[69] Blackburne R, Vadivelu V M, Yuan Z, et al. Kinetic characterisation of an enriched Nitrospira culture

with comparison to Nitrobacter[J]. Water Res, 2007, 41(14): 3033-3042.

[70] Nowka B, Daims H, Spieck E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite

availability as a key factor in niche differentiation[J]. Appl Environ Microbiol, 2015, 81(2): 745-753.

[71] Wertz S, Leigh A K, Grayston S J. Effects of long-term fertilization of forest soils on potential

nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers[J].

FEMS Microbiol Ecol, 2012, 79(1): 142-154.

[72] Nogueira R, Melo L F. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite oxidizing

bioreactors[J]. Biotechnol Bioeng, 2006, 95(1): 169-175.

[73] Bock E, Sundermeyer-Klinger H, Stackebrandt E. New facultative lithoautotrophic nitrite-oxidizing



112

bacteria[J]. Arch Microbiol, 1983, 136(4): 281-284.

[74] Bock E, Koops H-P, Möller U C, et al. A new facultatively nitrite oxidizing bacterium, Nitrobacter

vulgaris sp. nov[J]. Arch Microbiol, 1990, 153(2): 105-110.

[75] Daims H, Nielsen J L, Nielsen P H, et al. In situ characterization of nitrospira-like nitrite-oxidizing

bacteria active in wastewater treatment plants[J]. Appl Environ Microbiol, 2001, 67(11): 5273-5284.

[76] Gruber-Dorninger C, Pester M, Kitzinger K, et al. Functionally relevant diversity of closely related

Nitrospira in activated sludge[J]. ISME J, 2015, 9(3): 643.

[77] Degrange V, Lensi R, Bardin R. Activity, size and structure of a Nitrobacter community as affected by

organic carbon and nitrite in sterile soil[J]. FEMS Microbiol Ecol, 1997, 24(2): 173-180.

[78] Tiedje J M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium[J]. Biol

Anaerobic Microorganisms, 1988, 717: 179-244.

[79] Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiol Mol Biol R, 1997, 61(4):

533-616.

[80] Philippot L. Denitrifying genes in bacterial and archaeal genomes[J]. BBA-Gene Structure Expression,

2002, 1577(3): 355-376.

[81] Assémien F L, Cantarel A AM, Florio A, et al. Different groups of nitrite-reducers and N2O-reducers

have distinct ecological niches and functional roles in West African cultivated soils[J]. Soil Biol Biochem,

2019, 129: 39-47.

[82] Dambreville C, Hallet S, Nguyen C, et al. Structure and activity of the denitrifying community in a maize

-cropped field fertilized with composted pig manure or ammonium nitrate[J]. FEMS Microbiol Ecol,

2006, 56(1): 119-131.

[83] Kandeler E, Deiglmayr K, Tscherko D, et al. Abundance of narG, nirS, nirK, and nosZ genes of

denitrifying bacteria during primary successions of a glacier foreland[J]. Appl Environ Microbiol, 2006,

72(9): 5957-5962.

[84] Bárta J, Melichová T, Vaněk D, et al. Effect of pH and dissolved organic matter on the abundance of nirK

and nirS denitrifiers in spruce forest soil[J]. Biogeochemistry, 2010, 101(1-3): 123-132.

[85] Chen S, Peng S, Chen B, et al. Effects of fire disturbance on the soil physical and chemical properties and

vegetation of Pinus massoniana forest in south subtropical area[J]. Acta Ecologica Sinica, 2010, 30(3):

184-189.

[86] Enwall K, Throbäck I N, Stenberg M, et al. Soil resources influence spatial patterns of denitrifying

communities at scales compatible with land management[J]. Appl Environ Microbiol, 2010, 76(7): 2243-

2250.

[87] Zhou J, Deng Y, Luo F, et al. Phylogenetic molecular ecological network of soil microbial communities in

response to elevated CO2[J]. MBio, 2011, 2(4): e00122-00111.



113

[88] Banerjee S, Siciliano S D. Factors driving potential ammonia oxidation in Canadian arctic ecosystems:

does spatial scale matter?[J]. Appl Environ Microbiol, 2012, 78(2): 346-353.

[89] Philippot L, Bru D, Saby N P, et al. Spatial patterns of bacterial taxa in nature reflect ecological traits of

deep branches of the 16S rRNAbacterial tree[J]. Environ Microbiol, 2009, 11(12): 3096-3104.

[90] Yuan Q, Liu P, Lu Y. Differential responses of nirK‐and nirS‐carrying bacteria to denitrifying conditions

in the anoxic rice field soil[J]. Env Microbiol Rep, 2012, 4(1): 113-122.

[91] Zhang L, Zeng G, Zhang J, et al. Response of denitrifying genes coding for nitrite (nirK or nirS) and

nitrous oxide (nosZ) reductases to different physico-chemical parameters during agricultural waste

composting[J]. Appl Microbiol Biotechnol, 2015, 99(9): 4059-4070.

[92] Chen Z, Luo X, Hu R, et al. Impact of long-term fertilization on the composition of denitrifier

communities based on nitrite reductase analyses in a paddy soil[J]. Microb Ecol, 2010, 60(4): 850-861.

[93] Jones C M, Graf D R, Bru D, et al. The unaccounted yet abundant nitrous oxide-reducing microbial

community: a potential nitrous oxide sink[J]. ISME J, 2013, 7(2): 417.

[94] Sanford R A, Wagner D D, Wu Q, et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity

and abundance in soils[J]. PNAS, 2012, 109(48): 19709-19714.

[95] Hallin S, Philippot L, Löffler F E, et al. Genomics and ecology of novel N2O-reducing microorganisms[J].

Trends Microbiol, 2018, 26(1): 43-55.

[96] Graf J, Scherzer R, Grunfeld C, et al. Levels of C-reactive protein associated with high and very high

cardiovascular risk are prevalent in patients with rheumatoid arthritis[J]. PLoS One, 2009, 4(7): e6242.

[97] Tsiknia M, Paranychianakis N V, Varouchakis E A, et al. Environmental drivers of the distribution of

nitrogen functional genes at a watershed scale[J]. FEMS Microbiol Ecol, 2015, 91(6).

[98] Graf D R, Zhao M, Jones C M, et al. Soil type overrides plant effect on genetic and enzymatic N2O

production potential in arable soils[J]. Soil Biol Biochem, 2016, 100: 125-128.

[99] Domeignoz-Horta L, Spor A, Bru D, et al. The diversity of the N2O reducers matters for the N2O: N2

denitrification end-product ratio across an annual and a perennial cropping system[J]. Front Microbiol,

2015, 6: 971.

[100] Juhanson J, Hallin S, SöderströmM, et al. Spatial and phyloecological analyses of nosZ genes underscore

niche differentiation amongst terrestrial N2O reducing communities[J]. Soil Biol Biochem, 2017, 115: 82-

91.

[101] Xie Z, Le Roux X, Wang C, et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing

and associated soil environmental drivers in Tibetan alpine meadows[J]. Soil Biol Biochem, 2014, 77: 89-

99.

[102] Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities[J]. Science, 2008,

319(5864): 756-760.



114

[103] Steffen W, Andreae M O, Crutzen P, et al. Abrupt changes: The achilles heels of the earth system[J].

Environment, 2004, 46: 8-20.

[104] Subramanian M. Humans versus Earth: the quest to define the Anthropocene[J]. Nature, 2019, 572(7768):

168-170.

[105] Field C B, Chapin III F S, Matson P A, et al. Responses of terrestrial ecosystems to the changing

atmosphere: a resource-based approach[J]. Annu Rev Ecol and S, 1992, 23(1): 201-235.

[106] Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary

production from 1982 to 1999[J]. Science, 2003, 300(5625): 1560-1563.

[107] Sala O E, Chapin F S, Armesto J J, et al. Global biodiversity scenarios for the year 2100[J]. Science, 2000,

287(5459): 1770-1774.

[108] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future[J].

Biogeochemistry, 2004, 70(2): 153-226.

[109] Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environmental changes

suppressed by elevated CO2[J]. Science, 2002, 298(5600): 1987-1990.

[110] Stocker T, Climate change 2013: the physical science basis: Working Group I contribution to the Fifth

assessment report of the Intergovernmental Panel on Climate Change[M]: Cambridge University Press,

2013.

[111] Rotty R M, Marland G, Fossil fuel combustion: recent amounts, patterns, and trends of CO2, in The

Changing Carbon Cycle: A Global Analysis, L R. Trabalka D. E. Reichle, Editor. 1986, Springe: New

York. p. 474-490.

[112] Prentice I C, Farquhar G, Fasham M, et al., The carbon cycle and atmospheric carbon dioxide. 2001,

Cambridge University Press.

[113] WMO, Joint CIMO Expert Team on Surface-Based Instrument Inter comparison and Calibration

Methods and IOC on Surface-Based Instrument Inter comparison. 2015: Genova.

[114] Jones P, Palutikof J, "Global temperature record". 2006: Climate research unit, University of East Anglia.

http://www.cru.uea.ac.uk/cru/info/warming/.

[115] Santer B D, Taylor K, Wigley T, et al. A search for human influences on the thermal structure of the

atmosphere[J]. Nature, 1996, 382(6586): 39.

[116] Tett S F, Stott P A, Allen M R, et al. Causes of twentieth-century temperature change near the Earth's

surface[J]. Nature, 1999, 399(6736): 569.

[117] Meehl G A, Washington W M, Wigley T, et al. Solar and greenhouse gas forcing and climate response in

the twentieth century[J]. J Climate, 2003, 16(3): 426-444.

[118] Allen K, Cook E, Evans R, et al. Lack of cool, not warm, extremes distinguishes late 20th Century

climate in 979-year Tasmanian summer temperature reconstruction[J]. Environ Res Lett, 2018, 13(3):



115

034041.

[119] Collins M, Knutti R, Arblaster J, et al., Long-term climate change: projections, commitments and

irreversibility, in Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013, Cambridge

University Press. p. 1029-1136.

[120] Cayan D, Maurer E, Dettinger M, et al., Climate scenarios for California. 2006.

[121] Field C B, Daily G C, Davis F W, et al., Confronting climate change in California, in Ecological impacts

on the Golden State. 1999, the Union of Concerned Scientists, Cambridge, Massachusetts, and the

Ecological Society of America: Washington, DC.

[122] Mishra A K, Özger M, Singh V P. An entropy-based investigation into the variability of precipitation[J]. J

Hydrol, 2009, 370(1-4): 139-154.

[123] Wentz F J, Ricciardulli L, Hilburn K, et al. How much more rain will global warming bring?[J]. Science,

2007, 317(5835): 233-235.

[124] Trenberth K E. Changes in precipitation with climate change[J]. Clim Res, 2011, 47(1-2): 123-138.

[125] Santer B D, Mears C, Wentz F, et al. Identification of human-induced changes in atmospheric moisture

content[J]. PNAS, 2007, 104(39): 15248-15253.

[126] Santer B D, Thorne P, Haimberger L, et al. Consistency of modelled and observed temperature trends in

the tropical troposphere[J]. Int J Climatol, 2008, 28(13): 1703-1722.

[127] Meehl G A, Stocker T F, Collins W D, et al., Global climate projections. 2007.

[128] Karl T R, Melillo J M, Peterson T C, et al., Global climate change impacts in the United States[M]:

Cambridge University Press, 2009.

[129] Easterling D R, Meehl G A, Parmesan C, et al. Climate extremes: observations, modeling, and impacts[J].

Science, 2000, 289(5487): 2068-2074.

[130] Team P P, Gohagan J K, Prorok P C, et al. The Prostate, Lung, Colorectal and Ovarian (PLCO) cancer

screening trial of the National Cancer Institute: history, organization, and status[J]. Control Clin Trials,

2000, 21(6): 251S-272S.

[131] Solomon S, Qin D, Manning M, et al., Climate change 2007-the physical science basis: Working group I

contribution to the fourth assessment report of the IPCC[M]: Cambridge university press, 2007.

[132] I I W G, Climate Change 2013-The Physical Science Basis: Summary for Policymakers. 2013,

Intergovernmental Panel on Climate Change.

[133] Erisman J W, Galloway J, Seitzinger S, et al. Reactive nitrogen in the environment and its effect on

climate change[J]. Curr Opin Env Sust, 2011, 3(5): 281-290.

[134] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends,

questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.



116

[135] Liu X, Chen C R, Wang W J, et al. Soil environmental factors rather than denitrification gene abundance

control N2O fluxes in a wet sclerophyll forest with different burning frequency[J]. Soil Biol Biochem,

2013, 57: 292-300.

[136] Galloway J N, Cowling E B. Reactive nitrogen and the world: 200 years of change[J]. AMBIO: J Hum

Environ, 2002, 31(2): 64-72.

[137] Goulding K W, Bailey N J, Bradbury N J, et al. Nitrogen deposition and its contribution to nitrogen

cycling and associated soil processes[J]. New Phytol, 1998, 139(1): 49-58.

[138] Schmidt MW, Noack AG. Black carbon in soils and sediments: analysis, distribution, implications, and

current challenges[J]. Global Biogeochem Cy, 2000, 14(3): 777-793.

[139] Bowman DM, Balch J K, Artaxo P, et al. Fire in the Earth system[J]. Science, 2009, 324(5926): 481-484.

[140] Gonzalez-Perez J A, Gonzalez-Vila F J, Almendros G, et al. The effect of fire on soil organic matter--a

review[J]. Environ Int, 2004, 30(6): 855-870.

[141] Lavorel S, Flannigan M D, Lambin E F, et al. Vulnerability of land systems to fire: Interactions among

humans, climate, the atmosphere, and ecosystems[J]. Mitig Adapt Strat Gl, 2007, 12(1): 33-53.

[142] Chuvieco E, Giglio L, Justice C. Global characterization of fire activity: toward defining fire regimes

from Earth observation data[J]. Global change biol, 2008, 14(7): 1488-1502.

[143] Bento-Gonçalves A, Vieira A, Úbeda X, et al. Fire and soils: Key concepts and recent advances[J].

Geoderma, 2012, 191: 3-13.

[144] Flannigan M D, Krawchuk M A, de Groot W J, et al. Implications of changing climate for global

wildland fire[J]. Int J Wildland Fire, 2009, 18(5): 483-507.

[145] Mouillot F, Field C B. Fire history and the global carbon budget: a 1× 1 fire history reconstruction for the

20th century[J]. Global Change Biol, 2005, 11(3): 398-420.

[146] Van Der Werf G R, Randerson J T, Giglio L, et al. Global fire emissions estimates during 1997-2016[J].

Earth Syst Sci Data, 2017(1866-3508).

[147] Brown P M, Swetnam TW. A cross-dated fire history from coast redwood near Redwood National Park,

California[J]. Can J Forest Res, 1994, 24(1): 21-31.

[148] Skinner C N, Chang C, Fire regimes, past and present, in Sierra Nevada Ecosystem Project: Final report

to Congress. Vol. II. Assessments and Scientific Basis for Management Options. Wildland Resources

Center Report No. 37. 1996, Centers for Water and Wildland Resources: University of California, Davis.

p. 1041-1069.

[149] Dukes III L L, Shaw S F, Madaus J W. How to complete a summary of performance for students exiting

to postsecondary education[J]. Asses Effect Interv, 2007, 32(3): 143-159.

[150] Carcaillet C, Bergeron Y, Richard P J, et al. Change of fire frequency in the eastern Canadian boreal

forests during the Holocene: does vegetation composition or climate trigger the fire regime?[J]. J Ecol,



117

2001, 89(6): 930-946.

[151] Torn M S, Mills E, Fried J, Will climate change spark more wildfire damage, in Confronting Climate

Change In California. 1998, Lawrence Berkeley National Laboratory: Berkeley, CA.

[152] Fried J S, Torn M S, Mills E. The Impact of Climate Change on Wildfire Severity: A Regional Forecast

for Northern California[J]. Climatic Change, 2004, 64(1/2): 169-191.

[153] Moritz M A, Parisien M-A, Batllori E, et al. Climate change and disruptions to global fire activity[J].

Ecosphere, 2012, 3(6): 1-22.

[154] Mataix-Solera J, Cerdà A, Arcenegui V, et al. Fire effects on soil aggregation: A review[J]. Earth-Sci Rev,

2011, 109(1-2): 44-60.

[155] Pausas J G, Keeley J E. A burning story: The role of fire in the history of life[J]. BioScience, 2009, 59(7):

593-601.

[156] Pereg L, Mataix-Solera J, McMillan M, et al. The impact of post-fire salvage logging on microbial

nitrogen cyclers in Mediterranean forest soil[J]. Sci Total Environ, 2018, 619-620: 1079-1087.

[157] Franklin J, Coulter C L, Rey S J. Change over 70 years in a southern California chaparral community

related to fire history[J]. J Veg Sci, 2004, 15(5): 701-710.

[158] Trabaud L, Grandjanny M, Post-fire reconstitution of the flowering phenology in Mediterranean

shrubland plants, in Fire and biological processes., Trabaud L., Prodon, R., Editor. 2002, Backhuys

Publishers: Leiden, The Netherlands. p. 99-113.

[159] Westerling A L, Hidalgo H G, Cayan D R, et al. Warming and earlier spring increase western U.S. forest

wildfire activity[J]. Science, 2006, 313(5789): 940-943.

[160] Westerling A, Bryant B. Climate change and wildfire in California[J]. Climatic Change, 2008, 87(1): 231-

249.

[161] Augustine S, Mishra M K, Lakshminarasamma N. Adaptive droop control strategy for load sharing and

circulating current minimization in low-voltage standalone DC microgrid[J]. IEEE T Sustain Energ, 2014,

6(1): 132-141.

[162] Romanyà J, Casals P, Vallejo V R. Short-term effects of fire on soil nitrogen availability in Mediterranean

grasslands and shrublands growing in old fields[J]. Forest Ecol Manag, 2001, 147(1): 39-53.

[163] Sims P, Risser P, Grasslands, in North American Terrestrial Vegetation, Billings Michael G. Barbour &

William Dwight, Editor. 2000, New York (NY): North American Terrestrial Vegetation, Cambridge

University Press.

[164] Jongen M, Unger S, Pereira J S. Effects of precipitation variability on carbon and water fluxes in the

understorey of a nitrogen-limited montado ecosystem[J]. Oecologia, 2014, 176(4): 1199-1212.

[165] Smith E, Taylor T, Casada J, et al. Experimental Grassland Renovator 1[J]. Agron J, 1973, 65(3): 506-508.

[166] Anderson H E, Aids to determining fuel models for estimating fire behavior, in Gen. Tech. Rep. INT-122.



118

1982, US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station:

Ogden, Utah.

[167] White R P, Murray S, Rohweder M, et al., Grassland ecosystems[M]: World Resources Institute

Washington, DC, 2000.

[168] Olson J S, Watts J A, Allison L J, Carbon in live vegetation of major world ecosystems[M]: Oak Ridge

National Laboratory, 1983.

[169] Whittaker R H, Likens G E, The biosphere and man, in Primary productivity of the biosphere, Whittaker

H. Lieth and R. H., Editor. 1975, Springer: Verlag, New York. p. 305-328.

[170] FAO, Are grasslands under threat? 2019, Food and Agriculture Organization of the United Nations.

[171] Unger S, Jongen M. Consequences of changing precipitation patterns for ecosystem functioning in

grasslands: A review[J]. Progr Bot, 2015, 76: 347-393.

[172] Butterbach-Bahl K, Dannenmann M. Denitrification and associated soil N2O emissions due to agricultural

activities in a changing climate[J]. Curr Opin Env Sust, 2011, 3(5): 389-395.

[173] Barnard R, Leadley P W, Hungate B A. Global change, nitrification, and denitrification: A review[J].

Global Biogeochem Cy, 2005, 19(1).

[174] Grundmann G, Renault P, Rosso L, et al. Differential effects of soil water content and temperature on

nitrification and aeration[J]. Soil Sci Soc Am J, 1995, 59(5): 1342-1349.

[175] Linn D M, Doran J W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in

tilled and nontilled soils 1[J]. Soil Sci Soc Am J, 1984, 48(6): 1267-1272.

[176] Merrill A G, Zak D R. Factors controlling denitrification rates in upland and swamp forests[J]. Can J

Forest Res, 1992, 22(11): 1597-1604.

[177] ŠImek M, Cooper J. The influence of soil pH on denitrification: progress towards the understanding of

this interaction over the last 50 years[J]. Eur J Soil Biol, 2002, 53(3): 345-354.

[178] Strong D, Fillery I. Denitrification response to nitrate concentrations in sandy soils[J]. Soil Biol Biochem,

2002, 34(7): 945-954.

[179] Long S P, Baker N R, Raines C A, Analysing the responses of photosynthetic CO2 assimilation to long-

term elevation of atmospheric CO2 concentration[M]: Springer, Dordrecht, 1993.

[180] Berntson G, Bazzaz F. Belowground positive and negative feedbacks on CO2 growth enhancement[J].

Plant Soil, 1995, 187(2): 119-131.

[181] Cotrufo M, Gorissen A. Elevated CO2 enhances below ground C allocation in three perennial grass

species at different levels of N availability[J]. New Phytol, 1997, 137(3): 421-431.

[182] Van Ginkel J, Gorissen A, Polci D. Elevated atmospheric carbon dioxide concentration: effects of

increased carbon input in a Lolium perenne soil on microorganisms and decomposition[J]. Soil Biol

Biochem, 2000, 32(4): 449-456.



119

[183] Jackson R, Sala O, Field C, et al. CO2 alters water use, carbon gain, and yield for the dominant species in

a natural grassland[J]. Oecologia, 1994, 98(3-4): 257-262.

[184] Owensby C E, Coyne P I, Ham J M, et al. Biomass production in a tallgrass prairie ecosystem exposed to

ambient and elevated CO2[J]. Ecol Appl, 1993, 3(4): 644-653.

[185] Arnone III J A, Bohlen P J. Stimulated N2O flux from intact grassland monoliths after two growing

seasons under elevated atmospheric CO2[J]. Oecologia, 1998, 116(3): 331-335.

[186] Hungate B A, Holland E A, Jackson R B, et al. The fate of carbon in grasslands under carbon dioxide

enrichment[J]. Nature, 1997, 388(6642): 576.

[187] Hungate B A, Reichstein M, Dijkstra P, et al. Evapotranspiration and soil water content in a scrub oak

woodland under carbon dioxide enrichment[J]. Global Change Biol, 2002, 8(3): 289-298.

[188] Lutze J L, Gifford R M. Carbon accumulation, distribution and water use of Danthonia richardsonii

swards in response to CO2 and nitrogen supply over four years of growth[J]. Global Change Biol, 1998,

4(8): 851-861.

[189] Mosier N S, Ladisch C M, Ladisch M R. Characterization of acid catalytic domains for cellulose

hydrolysis and glucose degradation[J]. Biotechnol Bioeng, 2002, 79(6): 610-618.

[190] Niklaus P A, Spinnler D, Körner C. Soil moisture dynamics of calcareous grassland under elevated

CO2[J]. Oecologia, 1998, 117(1-2): 201-208.

[191] Reich P B. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition[J]. Science, 2009,

326(5958): 1399-1402.

[192] Abbasi M K, Muller C. Trace gas fluxes of CO2, CH4 and N2O in a permanent grassland soil exposed to

elevated CO2 in the Giessen FACE study[J]. Atmos Chem Phys, 2011, 11(17): 9333-9342.

[193] Ambus P, Robertson G. Fluxes of CH4 and N2O in aspen stands grown under ambient and twice-ambient

CO2[J]. Plant Soil, 1999, 209(1): 1-8.

[194] Barnard R, Le Roux X, Hungate B A, et al. Several components of global change alter nitrifying and

denitrifying activities in an annual grassland[J]. Funct Ecol, 2006, 20(4): 557-564.

[195] Billings S, Schaeffer S, Evans R. Trace N gas losses and N mineralization in Mojave desert soils exposed

to elevated CO2[J]. Soil Biol Biochem, 2002, 34(11): 1777-1784.

[196] Carnol M, Hogenboom L, Jach M E, et al. Elevated atmospheric CO2 in open top chambers increases net

nitrification and potential denitrification[J]. Global Change Biol, 2002, 8(6): 590-598.

[197] Smart D R, Ritchie K, Stark J M, et al. Evidence that elevated CO2 levels can indirectly increase

rhizosphere denitrifier activity[J]. Appl Environ Microbiol, 1997, 63(11): 4621-4624.

[198] Zhang C J, Shen J P, Sun Y F, et al. Interactive effects of multiple climate change factors on ammonia

oxidizers and denitrifiers in a temperate steppe[J]. FEMS Microbiol Ecol, 2017, 93(4).

[199] Barnard R, Barthes L, Roux X L, et al. Atmospheric CO2 elevation has little effect on nitrifying and



120

denitrifying enzyme activity in four European grasslands[J]. Global Change Biol, 2004, 10(4): 488-49

[200] Matamala R, Drake B G. The influence of atmospheric CO2 enrichment on plant-soil nitrogen interactions

in a wetland plant community on the Chesapeake Bay[J]. Plant Soil, 1999, 210(1): 93-101.

[201] RÜTting T, Clough T J, MÜLler C, et al. Ten years of elevated atmospheric carbon dioxide alters soil

nitrogen transformations in a sheep-grazed pasture[J]. Global Change Biol, 2010, 16(9): 2530-2542.

[202] Zheng J-Q, Shi-Jie H, Yu-Mei Z, et al. Microbial activity in a temperate forest soil as affected by elevated

atmospheric CO2[J]. Pedosphere, 2010, 20(4): 427-435.

[203] Zhong L, Bowatte S, Newton P C D, et al. Soil N cycling processes in a pasture after the cessation of

grazing and CO2 enrichment[J]. Geoderma, 2015, 259-260: 62-70.

[204] Barnard R, Barthes L, Le Roux X, et al. Dynamics of nitrifying activities, denitrifying activities and

nitrogen in grassland mesocosms as altered by elevated CO2[J]. New Phytol, 2004, 162(2): 365-376.

[205] Cantarel A AM, Bloor J M G, Pommier T, et al. Four years of experimental climate change modifies the

microbial drivers of N2O fluxes in an upland grassland ecosystem[J]. Global Change Biol, 2012, 18(8):

2520-2531.

[206] Hall J, Paterson E, Killham K. The effect of elevated CO2 concentration and soil pH on the relationship

between plant growth and rhizosphere denitrification potential[J]. Global Change Biol, 1998, 4(2): 209-

216.

[207] Larsen K S, Andresen L C, Beier C, et al. Reduced N cycling in response to elevated CO2, warming, and

drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of

treatments[J]. Global Change Biol, 2011, 17(5): 1884-1899.

[208] Niboyet A, Barthes L, Hungate B A, et al. Responses of soil nitrogen cycling to the interactive effects of

elevated CO2 and inorganic N supply[J]. Plant Soil, 2010, 327(1-2): 35-47.

[209] Phillips R L, Whalen S C, Schlesinger W H. Influence of atmospheric CO2 enrichment on nitrous oxide

flux in a temperate forest ecosystem[J]. Global Biogeochem Cy, 2001, 15(3): 741-752.

[210] Pinay G, Barbera P, Carreras-Palou A, et al. Impact of atmospheric CO2 and plant life forms on soil

microbial activities[J]. Soil Biol Biochem, 2007, 39(1): 33-42.

[211] Bowatte S, Carran R A, Newton P C, et al. Does atmospheric CO2 concentration influence soil nitrifying

bacteria and their activity?[J]. Soil Res, 2008, 46(7): 617-622.

[212] Yang S, Zheng Q, Yuan M, et al. Long-term elevated CO2 shifts composition of soil microbial

communities in a Californian annual grassland, reducing growth and N utilization potentials[J]. Sci Total

Environ, 2019, 652: 1474-1481.

[213] Niboyet A, Le Roux X, Dijkstra P, et al. Testing interactive effects of global environmental changes on

soil nitrogen cycling[J]. Ecosphere, 2011, 2(5): art56.

[214] Horz H P, Barbrook A, Field C B, et al. Ammonia-oxidizing bacteria respond to multifactorial global



121

change[J]. PNAS, 2004, 101(42): 15136-15141.

[215] Kelly J J, Peterson E, Winkelman J, et al. Elevated atmospheric CO2 impacts abundance and diversity of

nitrogen cycling functional genes in soil[J]. Microb Ecol, 2013, 65(2): 394-404.

[216] Nelson D M, Cann I K, Mackie R I. Response of archaeal communities in the rhizosphere of maize and

soybean to elevated atmospheric CO2 concentrations[J]. PLoS One, 2010, 5(12): e15897.

[217] Regan K, Kammann C, Hartung K, et al. Can differences in microbial abundances help explain enhanced

N2O emissions in a permanent grassland under elevated atmospheric CO2?[J]. Global Change Biol, 2011,

17(10): 3176-3186.

[218] Rakshit R, Patra A K, Pal D, et al. Effect of elevated CO2 and temperature on nitrogen dynamics and

microbial activity during wheat (Triticum aestivuml. L) growth on a subtropical inceptisol in india [J]. J

Agron Crop Sci, 2012, 198(6): 452-465.

[219] Schortemeyer M, Hartwig U A, Hendrey G R, et al. Microbial community changes in the rhizospheres of

white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE)[J]. Soil Biol

Biochem, 1996, 28(12): 1717-1724.

[220] Sun J, Xia Z, He T, et al. Ten years of elevated CO2 affects soil greenhouse gas fluxes in an open top

chamber experiment[J]. Plant Soil, 2017, 420(1-2): 435-450.

[221] He Z, Xu M, Deng Y, et al. Metagenomic analysis reveals a marked divergence in the structure of

belowground microbial communities at elevated CO2[J]. Ecol Lett, 2010, 13(5): 564-575.

[222] He Z, Xiong J, Kent A D, et al. Distinct responses of soil microbial communities to elevated CO2 and O3

in a soybean agro-ecosystem[J]. ISME J, 2014, 8(3): 714.

[223] Tu Q, He Z, Wu L, et al. Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched

grassland ecosystem[J]. Soil Biol Biochem, 2017, 106: 99-108.

[224] Zhou X, Fornara D, Wasson E A, et al. Effects of 44 years of chronic nitrogen fertilization on the soil

nitrifying community of permanent grassland[J]. Soil Biol Biochem, 2015, 91: 76-83.

[225] Pujol Pereira E I, Chung H, Scow K, et al. Microbial communities and soil structure are affected by

reduced precipitation, but not by elevated carbon dioxide[J]. Soil Sci Soc Am J, 2013, 77(2): 482-488.

[226] Brenzinger K, Kujala K, Horn M A, et al. Soil Conditions Rather Than Long-Term Exposure to Elevated

CO2 Affect Soil Microbial Communities Associated with N-Cycling[J]. Front Microbiol, 2017, 8: 1976.

[227] Kamman C. Impact of rising atmospheric CO2 concentrations on the fluxes of the greenhouse gases N2O

and CH4 in a grassland ecosystems[D]. Giessen, Germany: University of Giessen, 2001.

[228] Kammann C, Müller C, Grünhage L, et al. Elevated CO2 stimulates N2O emissions in permanent

grassland[J]. Soil Biol Biochem, 2008, 40(9): 2194-2205.

[229] Kettunen R, Saarnio S, Martikainen P J, et al. Can a mixed stand of N2-fixing and non-fixing plants

restrict N2O emissions with increasing CO2 concentration?[J]. Soil Biol Biochem, 2007, 39(10): 2538-



122

2546.

[230] van Groenigen K J, Osenberg C W, Hungate B A. Increased soil emissions of potent greenhouse gases

under increased atmospheric CO2[J]. Nature, 2011, 475(7355): 214-216.

[231] Baggs E, Richter M, Hartwig U, et al. Nitrous oxide emissions from grass swards during the eighth year

of elevated atmospheric pCO2 (Swiss FACE)[J]. Global Change Biol, 2003, 9(8): 1214-1222.

[232] Brown J R, Blankinship J C, Niboyet A, et al. Effects of multiple global change treatments on soil N2O

fluxes[J]. Biogeochemistry, 2012, 109(1-3): 85-100.

[233] Carter M S, Ambus P, Albert K R, et al. Effects of elevated atmospheric CO2, prolonged summer drought

and temperature increase on N2O and CH4 fluxes in a temperate heathland[J]. Soil Biol Biochem, 2011,

43(8): 1660-1670.

[234] Freeman C, Kim S-Y, Lee S-H, et al. Effects of elevated atmospheric CO2 concentrations on soil

microorganisms[J]. J Microbiol, 2009, 42(4): 267-277.

[235] Ineson P, Coward P, Hartwig U. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under

elevated CO2: the Swiss free air carbon dioxide enrichment experiment[J]. Plant Soil, 1998, 198(1): 89-95.

[236] Körner C. Biosphere responses to CO2 enrichment[J]. Ecol Appl, 2000, 10(6): 1590-1619.

[237] Zak D R, Pregitzer K S, King J S, et al. Elevated atmospheric CO2, fine roots and the response of soil

microorganisms: a review and hypothesis[J]. New Phytol, 2000, 147(1): 201-222.

[238] Bai E, Li S, Xu W, et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools

and dynamics[J]. New Phytol, 2013, 199(2): 431-440.

[239] Brzostek E R, Blair J M, Dukes J S, et al. The effect of experimental warming and precipitation change

on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal[J]. Global

Change Biol, 2012, 18(8): 2617-2625.

[240] Liu L, Greaver T L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may

be largely offset by stimulated N2O and CH4 emission[J]. Ecol Lett, 2009, 12(10): 1103-1117.

[241] Waghmode T R, Chen S, Li J, et al. Response of nitrifier and denitrifier abundance and microbial

community structure to experimental warming in an agricultural ecosystem[J]. Front Microbiol, 2018, 9:

474.

[242] Saxe H, Cannell M G, Johnsen Ø, et al. Tree and forest functioning in response to global warming[J].

New Phytol, 2001, 149(3): 369-399.

[243] Wu Z, Dijkstra P, Koch G W, et al. Responses of terrestrial ecosystems to temperature and precipitation

change: a meta-analysis of experimental manipulation[J]. Global Change Biol, 2011, 17(2): 927-942.

[244] Tscherko D, Kandeler E, Jones T. Effect of temperature on below-ground N-dynamics in a weedy model

ecosystem at ambient and elevated atmospheric CO2 levels[J]. Soil Biol Biochem, 2001, 33(4-5): 491-501.

[245] Avrahami S, Liesack W, Conrad R. Effects of temperature and fertilizer on activity and community



123

structure of soil ammonia oxidizers[J]. Environ Microbiol, 2003, 5(8): 691-705.

[246] Keil D, Niklaus P A, von Riedmatten L R, et al. Effects of warming and drought on potential N2O

emissions and denitrifying bacteria abundance in grasslands with different land-use[J]. FEMS Microbiol

Ecol, 2015, 91(7).

[247] Maag M, Vinther F P. Nitrous oxide emission by nitrification and denitrification in different soil types and

at different soil moisture contents and temperatures[J]. Appl Soil Ecol, 1996, 4(1): 5-14.

[248] Braker G, Schwarz J, Conrad R. Influence of temperature on the composition and activity of denitrifying

soil communities[J]. FEMS Microbiol Ecol, 2010, 73(1): 134-148.

[249] Bjork R G, Majdi H, Klemedtsson L, et al. Long-term warming effects on root morphology, root mass

distribution, and microbial activity in two dry tundra plant communities in northern Sweden[J]. New

Phytol, 2007, 176(4): 862-873.

[250] Avrahami S, Bohannan B J. Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in

temperature, soil moisture content, and fertilizer concentration[J]. Appl Environ Microbiol, 2007, 73(4):

1166-1173.

[251] Malchair S, De Boeck H J, Lemmens C M H M, et al. Do climate warming and plant species richness

affect potential nitrification, basal respiration and ammonia-oxidizing bacteria in experimental

grasslands?[J]. Soil Biol Biochem, 2010, 42(11): 1944-1951.

[252] Nguyen L T T, Broughton K, Osanai Y, et al. Effects of elevated temperature and elevated CO2 on soil

nitrification and ammonia-oxidizing microbial communities in field-grown crop[J]. Sci Total Environ,

2019, 675: 81-89.

[253] Malchair S, De Boeck H J, Lemmens C M H M, et al. Diversity function relationship of ammonia-

oxidizing bacteria in soils among functional groups of grassland species under climate warming[J]. Appl

Soil Ecol, 2010, 44(1): 15-23.

[254] Szukics U, Abell G C, Hodl V, et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and

increasing temperature in a pristine forest soil[J]. FEMS Microbiol Ecol, 2010, 72(3): 395-406.

[255] Auyeung D S N, Martiny J B H, Dukes J S. Nitrification kinetics and ammonia-oxidizing community

respond to warming and altered precipitation[J]. Ecosphere, 2015, 6(5): art83.

[256] Cui P, Fan F, Yin C, et al. Long-term organic and inorganic fertilization alters temperature sensitivity of

potential N2O emissions and associated microbes[J]. Soil Biol Biochem, 2016, 93: 131-141.

[257] Pierre S, Hewson I, Sparks J, et al. Ammonia oxidizer populations vary with nitrogen cycling across a

tropical montane mean annual temperature gradient[J]. Ecology, 2017, 98(7): 1896-1907.

[258] Long X, Chen C, Xu Z, et al. Abundance and community structure of ammonia-oxidizing bacteria and

archaea in a temperate forest ecosystem under ten-years elevated CO2[J]. Soil Biol Biochem, 2012, 46:

163-171.



124

[259] Zhang X, Liu W, Schloter M, et al. Response of the abundance of key soil microbial nitrogen-cycling

genes to multi-factorial global changes[J]. PLoS One, 2013, 8(10): e76500.

[260] Hu H W, Macdonald C A, Trivedi P, et al. Effects of climate warming and elevated CO2 on autotrophic

nitrification and nitrifiers in dryland ecosystems[J]. Soil Biol Biochem, 2016, 92: 1-15.

[261] Jung J, Yeom J, Kim J, et al. Change in gene abundance in the nitrogen biogeochemical cycle with

temperature and nitrogen addition in Antarctic soils[J]. Res Microbiol, 2011, 162(10): 1018-1026.

[262] Kaurin A, Mihelič R, Kastelec D, et al. Resilience of bacteria, archaea, fungi and N-cycling microbial

guilds under plough and conservation tillage, to agricultural drought[J]. Soil Biol Biochem, 2018, 120:

233-245.

[263] Long X, Chen C, Xu Z, et al. Abundance and community structure of ammonia oxidizing bacteria and

archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming[J]. J Soil

Sediment, 2012, 12(7): 1124-1133.

[264] Datta T, Racz L, Kotay S M, et al. Seasonal variations of nitrifying community in trickling filter-solids

contact (TF/SC) activated sludge systems[J]. Bioresour Technol, 2011, 102(3): 2272-2279.

[265] Siripong S, Rittmann B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater

treatment plants[J]. Water Res, 2007, 41(5): 1110-1120.

[266] Qiu Y, Jiang Y, Guo L, et al. Contrasting warming and ozone effects on denitrifiers dominate soil N2O

emissions[J]. Environ Sci Technol, 2018, 52(19): 10956-10966.

[267] Xu X, Ran Y, Li Y, et al. Warmer and drier conditions alter the nitrifier and denitrifier communities and

reduce N2O emissions in fertilized vegetable soils[J]. Agr Ecosyst Environ, 2016, 231: 133-142.

[268] Song Y, Song C, Ren J, et al. Short-Term Response of the Soil Microbial Abundances and Enzyme

Activities to Experimental Warming in a Boreal Peatland in Northeast China[J]. Sustainability, 2019,

11(3): 590.

[269] Song K, Lee S-H, Mitsch W J, et al. Different responses of denitrification rates and denitrifying bacterial

communities to hydrologic pulsing in created wetlands[J]. Soil Biol Biochem, 2010, 42(10): 1721-1727.

[270] Chen X, Wang G, Huang K, et al. The effect of nitrogen deposition rather than warming on carbon flux in

alpine meadows depends on precipitation variations[J]. Ecol Eng, 2017, 107: 183-191.

[271] Martins C S C, Nazaries L, Delgado-Baquerizo M, et al. Identifying environmental drivers of greenhouse

gas emissions under warming and reduced rainfall in boreal-temperate forests[J]. Funct Ecol, 2017,

31(12): 2356-2368.

[272] Smith K. The potential for feedback effects induced by global warming on emissions of nitrous oxide by

soils[J]. Global Change Biol, 1997, 3(4): 327-338.

[273] Gödde M, Conrad R. Immediate and adaptational temperature effects on nitric oxide production and

nitrous oxide release from nitrification and denitrification in two soils[J]. Biol Fert Soils, 1999, 30(1-2):



125

33-40.

[274] Post E, Forchhammer M C, Bret-Harte M S, et al. Ecological dynamics across the Arctic associated with

recent climate change[J]. Science, 2009, 325(5946): 1355-1358.

[275] Verburg P H, Overmars K P. Combining top-down and bottom-up dynamics in land use modeling:

exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model[J]. Landscape Ecol,

2009, 24(9): 1167.

[276] Bomberg M, Münster U, Pumpanen J, et al. Archaeal communities in boreal forest tree rhizospheres

respond to changing soil temperatures[J]. Microb Ecol, 2011, 62(1): 205-217.

[277] Kaye J P, Hart S C. Competition for nitrogen between plants and soil microorganisms[J]. Trends Ecol

Evol, 1997, 12(4): 139-143.

[278] Zogg G P, Zak D R, Ringelberg D B, et al. Compositional and functional shifts in microbial communities

due to soil warming[J]. Soil Sci Soc Am J, 1997, 61(2): 475-481.

[279] Cregger M A, McDowell N G, Pangle R E, et al. The impact of precipitation change on nitrogen cycling

in a semi-arid ecosystem[J]. Funct Ecol, 2014, 28(6): 1534-1544.

[280] Goldberg S D, Gebauer G. Drought turns a Central European Norway spruce forest soil from an N2O

source to a transient N2O sink[J]. Global Change Biol, 2009, 15(4): 850-860.

[281] Porporato A, Vico G, Fay P A. Superstatistics of hydro climatic fluctuations and interannual ecosystem

productivity[J]. Geophys Res Lett, 2006, 33(15).

[282] Kong D L, Lu X T, Jiang L L, et al. Extreme rainfall events can alter inter-annual biomass responses to

water and N enrichment[J]. Biogeosciences, 2013, 10(12): 8129-8138.

[283] Zhang B, Zhu J, Pan Q, et al. Grassland species respond differently to altered precipitation amount and

pattern[J]. Environ Exp Bot, 2017, 137: 166-176.

[284] Niboyet A, Brown J R, Dijkstra P, et al. Global change could amplify fire effects on soil greenhouse gas

emissions[J]. PLoS One, 2011, 6(6): e20105.

[285] Holtgrieve G W, Jewett P K, Matson P A. Variations in soil N cycling and trace gas emissions in wet

tropical forests[J]. Oecologia, 2006, 146(4): 584-594.

[286] Chen Y, Xu Z, Hu H, et al. Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization

and precipitation increment in a typical temperate steppe in Inner Mongolia[J]. Appl Soil Ecol, 2013, 68:

36-45.

[287] Ding K, Zhong L, Xin X, et al. Effect of grazing on the abundance of functional genes associated with N

cycling in three types of grassland in Inner Mongolia[J]. J Soil Sediment, 2015, 15(3): 683-693.

[288] Hu H W, Macdonald C A, Trivedi P, et al. Water addition regulates the metabolic activity of ammonia

oxidizers responding to environmental perturbations in dry subhumid ecosystems[J]. Environ Microbiol,

2015, 17(2): 444-461.



126

[289] Zhang C-J, Yang Z-L, Shen J-P, et al. Impacts of long-term nitrogen addition, watering and mowing on

ammonia oxidizers, denitrifiers and plant communities in a temperate steppe[J]. Appl Soil Ecol, 2018,

130: 241-250.

[290] Chen J, Xiao G, Kuzyakov Y, et al. Soil nitrogen transformation responses to seasonal precipitation

changes are regulated by changes in functional microbial abundance in a subtropical forest[J].

Biogeosciences, 2017, 14(9): 2513-2525.

[291] Wang Y, Uchida Y, Shimomura Y, et al. Responses of denitrifying bacterial communities to short-term

waterlogging of soils[J]. Sci Rep, 2017, 7(1): 803.

[292] Snider D, Thompson K, Wagner-Riddle C, et al. Molecular techniques and stable isotope ratios at natural

abundance give complementary inferences about N2O production pathways in an agricultural soil

following a rainfall event[J]. Soil Biol Biochem, 2015, 88: 197-213.

[293] Chen W, Zheng X, Chen Q, et al. Effects of increasing precipitation and nitrogen deposition on CH4 and

N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia, China[J]. Geoderma, 2013,

192: 335-340.

[294] Zhang J, Han X. N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and

superphosphate) and increased precipitation in northern China[J]. Atmos Environ, 2008, 42(2): 291-302.

[295] Zheng J, Doskey P V. Simulated rainfall on agricultural soil reveals enzymatic regulation of short-term

nitrous oxide profiles in soil gas and emissions from the surface[J]. Biogeochemistry, 2016, 128(3): 327-

338.

[296] Yahdjian L, Sala O E. Size of precipitation pulses controls nitrogen transformation and losses in an arid

patagonian ecosystem[J]. Ecosystems, 2010, 13(4): 575-585.

[297] Austin A T, Yahdjian L, Stark J M, et al. Water pulses and biogeochemical cycles in arid and semiarid

ecosystems[J]. Oecologia, 2004, 141(2): 221-235.

[298] Fuchslueger L, Kastl E M, Bauer F, et al. Effects of drought on nitrogen turnover and abundances of

ammonia-oxidizers in mountain grassland[J]. Biogeosciences, 2014, 11(21): 6003-6015.

[299] Fromin N, Pinay G, Montuelle B, et al. Impact of seasonal sediment desiccation and rewetting on

microbial processes involved in greenhouse gas emissions[J]. Ecohydrology, 2010, 3(3): 339-348.

[300] Hartmann AA, Barnard R L, Marhan S, et al. Effects of drought and N-fertilization on N cycling in two

grassland soils[J]. Oecologia, 2013, 171(3): 705-717.

[301] Hammerl V, Kastl E M, Schloter M, et al. Influence of rewetting on microbial communities involved in

nitrification and denitrification in a grassland soil after a prolonged drought period[J]. Sci Rep, 2019, 9(1):

2280.

[302] Gschwendtner S, Tejedor J, Bimuller C, et al. Climate change induces shifts in abundance and activity

pattern of bacteria and archaea catalyzing major transformation steps in nitrogen turnover in a soil from a



127

mid-European beech forest[J]. PLoS One, 2014, 9(12): e114278.

[303] Li H, Yang S, Xu Z, et al. Responses of soil microbial functional genes to global changes are indirectly

influenced by aboveground plant biomass variation[J]. Soil Biol Biochem, 2017, 104: 18-29.

[304] Kim S-Y, Lee S-H, Freeman C, et al. Comparative analysis of soil microbial communities and their

responses to the short-term drought in bog, fen, and riparian wetlands[J]. Soil Biol Biochem, 2008, 40(11):

2874-2880.

[305] Plaza-Bonilla D, Léonard J, Peyrard C, et al. Precipitation gradient and crop management affect N2O

emissions: Simulation of mitigation strategies in rainfed Mediterranean conditions[J]. Agr Ecosyst

Environ, 2017, 238: 89-103.

[306] LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is

globally distributed[J]. Ecology, 2008, 89(2): 371-379.

[307] Treseder K K. Nitrogen additions and microbial biomass: Ameta analysis of ecosystem studies[J]. Ecol

Lett, 2008, 11(10): 1111-1120.

[308] Aber J D, Nadelhoffer K J, Steudler P, et al. Nitrogen saturation in northern forest ecosystems[J].

BioScience, 1989, 39(6): 378-286.

[309] Vitousek P M, Farrington H. Nutrient limitation and soil development: experimental test of a

biogeochemical theory[J]. Biogeochemistry, 1997, 37(1): 63-75.

[310] Mohn J, Schürmann A, Hagedorn F, et al. Increased rates of denitrification in nitrogen-treated forest

soils[J]. Forest Ecol Manag, 2000, 137(1-3): 113-119.

[311] Carter M S, Klumpp K, Le Roux X. Lack of increased availability of root-derived C may explain the low

N2O emission from low N-urine patches[J]. Nutr Cycl Agroecosys, 2006, 75(1-3): 91-100.

[312] Wang Y, Ji H, Wang R, et al. Responses of nitrification and denitrification to nitrogen and phosphorus

fertilization: does the intrinsic soil fertility matter?[J]. Plant Soil, 2019, 440(1-2): 443-456.

[313] Kaleem Abbasi M, Müller C. Trace gas fluxes of CO2 CH4 and N2O in a permanent grassland soil

exposed to elevated CO2 in the Giessen FACE study[J]. Atmos Chem Phys, 2011, 11(17): 9333-9342.

[314] Ajwa H, Dell C J, Rice C. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as

related to burning and nitrogen fertilization[J]. Soil Biol Biochem, 1999, 31(5): 769-777.

[315] Duan Y F, Hallin S, Jones C M, et al. Catch Crop Residues Stimulate N2O Emissions During Spring,

Without Affecting the Genetic Potential for Nitrite and N2O Reduction[J]. Front Microbiol, 2018, 9: 2629.

[316] Simek M. Emissions of N2O and CO2, denitrification measurements and soil properties in red clover and

ryegrass stands[J]. Soil Biol Biochem, 2004, 36(1): 9-21.

[317] Ouyang Y, Norton J M, Stark J M, et al. Ammonia-oxidizing bacteria are more responsive than archaea to

nitrogen source in an agricultural soil[J]. Soil Biol Biochem, 2016, 96: 4-15.

[318] Barnard R, Leadley P W, Lensi R, et al. Plant, soil microbial and soil inorganic nitrogen responses to



128

elevated CO2: a study in microcosms of Holcus lanatus[J]. Acta Oecol, 2005, 27(3): 171-178.

[319] Di H, Cameron K, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich

grassland soils[J]. Nat Geosci, 2009, 2(9): 621.

[320] Chen Y L, Hu H W, Han H Y, et al. Abundance and community structure of ammonia-oxidizing Archaea

and Bacteria in response to fertilization and mowing in a temperate steppe in Inner Mongolia[J]. FEMS

Microbiol Ecol, 2014, 89(1): 67-79.

[321] Fan X F, Yu H Y, Wu Q Y, et al. Effects of fertilization on microbial abundance and emissions of

greenhouse gases (CH4 and N2O) in rice paddy fields[J]. Ecol Evol, 2016, 6(4): 1054-1063.

[322] Hermansson A, Lindgren P E. Quantification of ammonia-oxidizing bacteria in arable soil by real-time

PCR[J]. Appl Environ Microbiol, 2001, 67(2): 972-976.

[323] Luo G, Wang T, Li K, et al. Historical nitrogen deposition and straw addition facilitate the resistance of

soil multifunctionality to drying-wetting cycles[J]. Appl Environ Microbiol, 2019, 85(8): e02251-02218.

[324] Mendum T, Sockett R, Hirsch P. Use of molecular and isotopic techniques to monitor the response of

autotrophic ammonia-oxidizing populations of the β subdivision of the class Proteobacteria in arable soils

to nitrogen fertilizer[J]. Appl Environ Microbiol, 1999, 65(9): 4155-4162.

[325] Ning Q, Gu Q, Shen J, et al. Effects of nitrogen deposition rates and frequencies on the abundance of soil

nitrogen-related functional genes in temperate grassland of northern China[J]. J Soil Sediment, 2015,

15(3): 694-704.

[326] Okano Y, Hristova K R, Leutenegger C M, et al. Application of real-time PCR to study effects of

ammonium on population size of ammonia-oxidizing bacteria in soil[J]. Appl Environ Microbiol, 2004,

70(2): 1008-1016.

[327] Shen X-Y, Zhang L-M, Shen J-P, et al. Nitrogen loading levels affect abundance and composition of soil

ammonia oxidizing prokaryotes in semiarid temperate grassland[J]. J Soil Sediment, 2011, 11(7): 1243-

1252.

[328] Peng Y, Wang G, Li F, et al. Soil temperature dynamics modulate N2O flux response to multiple nitrogen

additions in an alpine steppe[J]. J Geophys Res-Biogeo, 2018, 123(10): 3308-3319.

[329] Shi X, Hu H-W, Kelly K, et al. Response of ammonia oxidizers and denitrifiers to repeated applications

of a nitrification inhibitor and a urease inhibitor in two pasture soils[J]. J Soil Sediment, 2016, 17(4): 974-

984.

[330] Taylor A E, Zeglin L H, Wanzek T A, et al. Dynamics of ammonia-oxidizing archaea and bacteria

populations and contributions to soil nitrification potentials[J]. ISME J, 2012, 6(11): 2024.

[331] Shi X Z, Hu H W, Wang J Q, et al. Niche separation of comammox Nitrospira and canonical ammonia

oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition[J]. Soil Biol Biochem,

2018, 126: 114-122.



129

[332] Duan P P, Wu Z, Zhang Q Q, et al. Thermodynamic responses of ammonia-oxidizing archaea and bacteria

explain N2O production from greenhouse vegetable soils[J]. Soil Biol Biochem, 2018, 120: 37-47.

[333] Li L, Xing M, Lv J W, et al. Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching

in two different vegetation communities in alpine tundra[J]. Sci Rep, 2017, 7.

[334] Schmidt C S, Hultman K A, Robinson D, et al. PCR profiling of ammonia-oxidizer communities in acidic

soils subjected to nitrogen and sulphur deposition[J]. FEMS Microbiol Ecol, 2007, 61(2): 305-316.

[335] Wu J, Li Y, Zhang M. Activated sludge floc morphology and nitrifier enrichment can explain the

conflicting reports on the oxygen half-saturation index for ammonium oxidizing bacteria (AOB) and

nitrite oxidizing bacteria (NOB)[J]. J Chem Technol Biot, 2017, 92(10): 2673-2682.

[336] Zhou X B, Smith H, Silva A G, et al. Differential Responses of Dinitrogen Fixation, Diazotrophic

Cyanobacteria and Ammonia Oxidation Reveal a Potential Warming-Induced Imbalance of the N-Cycle

in Biological Soil Crusts[J]. PLoS One, 2016, 11(10).

[337] Xu Y-G, Yu W-T, Ma Q, et al. Responses of bacterial and archaeal ammonia oxidisers of an acidic

luvisols soil to different nitrogen fertilization rates after 9 years[J]. Biol Fert Soils, 2012, 48(7): 827-837.

[338] Kastl E-M, Schloter-Hai B, Buegger F, et al. Impact of fertilization on the abundance of nitrifiers and

denitrifiers at the root soil interface of plants with different uptake strategies for nitrogen[J]. Biol Fert

Soils, 2015, 51(1): 57-64.

[339] Xiang X, He D, He J-S, et al. Ammonia-oxidizing bacteria rather than archaea respond to short-term urea

amendment in an alpine grassland[J]. Soil Biol Biochem, 2017, 107: 218-225.

[340] Zhang N N, Sun G, Liang J, et al. Response of ammonium oxidizers to the application of nitrogen

fertilizer in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Appl Soil Ecol, 2018, 124: 266-274.

[341] Ramirez K S, Lauber C L, Knight R, et al. Consistent effects of nitrogen fertilization on soil bacterial

communities in contrasting systems[J]. Ecology, 2010, 91(12): 3463-3470.

[342] Coolon J D, Jones K L, Todd T C, et al. Long-term nitrogen amendment alters the diversity and

assemblage of soil bacterial communities in tallgrass prairie[J]. PLoS One, 2013, 8(6): e67884.

[343] Hamonts K, Clough T J, Stewart A, et al. Effect of nitrogen and waterlogging on denitrifier gene

abundance, community structure and activity in the rhizosphere of wheat[J]. FEMS Microbiol Ecol, 2013,

83(3): 568-584.

[344] Kaštovská E, Picek T, Bárta J, et al. Nutrient addition retards decomposition and C immobilization in two

wet grasslands[J]. Hydrobiologia, 2012, 692(1): 67-81.

[345] Wallenstein M D. Effects of increased nitrogen deposition on forest soil nitrogen cycling and microbial

community structure[D]. Duke University, 2005.

[346] Duan R, Long X E, Tang Y F, et al. Effects of different fertilizer application methods on the community

of nitrifiers and denitrifiers in a paddy soil[J]. J Soil Sediment, 2018, 18(1): 24-38.



130

[347] Pajares S, Bohannan B J. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in

tropical forest soils[J]. Front Microbiol, 2016, 7: 1045.

[348] Szukics U, Hackl E, Zechmeister-Boltenstern S, et al. Contrasting response of two forest soils to nitrogen

input: rapidly altered NO and N2O emissions and nirK abundance[J]. Biol Fert Soils, 2009, 45(8): 855-

863.

[349] Acea M J, Carballas T. Microbial fluctuations after soil heating and organic amendment[J]. Bioresour

Technol, 1999, 67(1): 65-71.

[350] Pajares S, Campo J, Bohannan B J M, et al. Environmental controls on soil microbial communities in a

seasonally dry tropical forest[J]. Appl Environ Microbiol, 2018, 84(17).

[351] Torralbo F, Menéndez S, Barrena I, et al. Dimethyl pyrazol-based nitrification inhibitors effect on

nitrifying and denitrifying bacteria to mitigate N2O emission[J]. Sci Rep, 2017, 7(1): 13810.

[352] Florio A, Pommier T, Gervaix J, et al. Soil C and N statuses determine the effect of maize inoculation by

plant growth-promoting rhizobacteria on nitrifying and denitrifying communities[J]. Sci Rep, 2017, 7(1):

8411.

[353] Krause H-M, Thonar C, Eschenbach W, et al. Long term farming systems affect soils potential for N2O

production and reduction processes under denitrifying conditions[J]. Soil Biol Biochem, 2017, 114: 31-41.

[354] Bouwman A F, Boumans L J M, Batjes N H. Emissions of N2O and NO from fertilized fields: Summary

of available measurement data[J]. Global Biogeochem Cy, 2002, 16(4): 6-1-6-13.

[355] Inselsbacher E, Wanek W, Ripka K, et al. Greenhouse gas fluxes respond to different N fertilizer types

due to altered plant-soil-microbe interactions[J]. Plant Soil, 2011, 343(1-2): 17-35.

[356] Kim Y S, Imori M, Watanabe M, et al. Simulated nitrogen inputs influence methane and nitrous oxide

fluxes from a young larch plantation in northern Japan[J]. Atmos Environ, 2012, 46: 36-44.

[357] Lee S W, Im J, Dispirito A A, et al. Effect of nutrient and selective inhibitor amendments on methane

oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils:

characterization of the role of methanotrophs, nitrifiers, and denitrifiers[J]. Appl Microbiol Biotechnol,

2009, 85(2): 389-403.

[358] Stehfest E, Bouwman L. N2O and NO emission from agricultural fields and soils under natural vegetation:

summarizing available measurement data and modeling of global annual emissions[J]. Nutr Cycl

Agroecosys, 2006, 74(3): 207-228.

[359] van den Heuvel R N, van der Biezen E, Jetten M S M, et al. Denitrification at pH 4 by a soil-derived

Rhodanobacter-dominated community[J]. Environ Microbiol, 2010, 12(12): 3264-3271.

[360] Hallin S, Jones C M, Schloter M, et al. Relationship between N-cycling communities and ecosystem

functioning in a 50-year-old fertilization experiment[J]. ISME J, 2009, 3(5): 597-605.

[361] Daebeler A, Bodelier P L E, Hefting M M, et al. Soil warming and fertilization altered rates of nitrogen



131

transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland

soil[J]. Soil Biol Biochem, 2017, 107: 114-124.

[362] Cairney J W G, Bastias B A. Influences of fire on forest soil fungal communitiesThis article is one of a

selection of papers published in the Special Forum on Towards Sustainable Forestry The Living Soil:

Soil Biodiversity and Ecosystem Function[J]. Can J Forest Res, 2007, 37(2): 207-215.

[363] Hart S C, DeLuca T H, Newman G S, et al. Post-fire vegetative dynamics as drivers of microbial

community structure and function in forest soils[J]. Forest Ecol Manag, 2005, 220(1-3): 166-184.

[364] Delmas R, Lacaux J P, Menaut J C, et al. Nitrogen compound emission from biomass burning in tropical

African savanna FOS/DECAFE 1991 experiment (Lamto, Ivory Coast)[J]. J Atmos Chem, 1995, 22(1-2):

175-193.

[365] Dooley S R, Treseder K K. The effect of fire on microbial biomass: a meta-analysis of field studies[J].

Biogeochemistry, 2012, 109(1-3): 49-61.

[366] Shakesby R. Post-wildfire soil erosion in the Mediterranean: review and future research directions[J].

Earth-Sci Rev, 2011, 105(3-4): 71-100.

[367] Knapp AK, Conard S L, Blair J M. Determinants of soil CO2 flux from a sub humid grassland: effect of

fire and fire history[J]. Ecol Appl, 1998, 8(3): 760-770.

[368] Strong A L, Johnson T P, Chiariello N R, et al. Experimental fire increases soil carbon dioxide efflux in a

grassland long-term multifactor global change experiment[J]. Glob Chang Biol, 2017, 23(5): 1975-1987.

[369] Castaldi S, Aragosa D. Factors influencing nitrification and denitrification variability in a natural and fire-

disturbed Mediterranean shrubland[J]. Biol Fert Soils, 2002, 36(6): 418-425.

[370] Zhang M, Wang W, Wang D, et al. Short-term responses of soil nitrogen mineralization, nitrification and

denitrification to prescribed burning in a suburban forest ecosystem of subtropical Australia[J]. Sci Total

Environ, 2018, 642: 879-886.

[371] Alcaniz M, Outeiro L, Francos M, et al. Long-term dynamics of soil chemical properties after a

prescribed fire in a Mediterranean forest (Montgri Massif, Catalonia, Spain)[J]. Sci Total Environ, 2016,

572: 1329-1335.

[372] Long X E, Chen C, Xu Z, et al. Shifts in the abundance and community structure of soil ammonia

oxidizers in a wet sclerophyll forest under long-term prescribed burning[J]. Sci Total Environ, 2014, 470-

471: 578-586.

[373] Yeager C M, Northup D E, Grow C C, et al. Changes in nitrogen-fixing and ammonia-oxidizing bacterial

communities in soil of a mixed conifer forest after wildfire[J]. Appl Environ Microbiol, 2005, 71(5):

2713-2722.

[374] Anderson I C, Levine J S, Poth M A, et al. Enhanced biogenic emissions of nitric oxide and nitrous oxide

following surface biomass burning[J]. J Geophys Res-Atmos, 1988, 93(D4): 3893-3898.



132

[375] Levine J S, Cofer III W R, Sebacher D I, et al. The effects of fire on biogenic soil emissions of nitric

oxide and nitrous oxide[J]. Global Biogeochem Cy, 1988, 2(4): 445-449.

[376] Blair J M. Fire, N availability, and plant response in grasslands: a test of the transient maxima

hypothesis[J]. Ecology, 1997, 78(8): 2359-2368.

[377] Henry H A, Chiariello N R, Vitousek P M, et al. Interactive effects of fire, elevated carbon dioxide,

nitrogen deposition, and precipitation on a California annual grassland[J]. Ecosystems, 2006, 9(7): 1066-

1075.

[378] Muñoz-Rojas M, Martini D, Erickson T, et al. Recovery of microbial community structure and

functioning after wildfire in semi-arid environments: optimising methods for monitoring and

assessment[C]// EGU General Assembly Conference Abstracts, 2015.

[379] Granged A J P, Zavala LM, Jordán A, et al. Post-fire evolution of soil properties and vegetation cover in a

Mediterranean heathland after experimental burning: A 3-year study[J]. Geoderma, 2011, 164(1-2): 85-94.

[380] Mataix-Solera J, Guerrero C, García-Orenes F, et al., Forest fire effects on soil microbiology[M].New

Hampshire: Science Publishers, Enfield, 2009.

[381] Ponder F, Tadros M, Loewenstein E F. Microbial properties and litter and soil nutrients after two

prescribed fires in developing savannas in an upland Missouri Ozark Forest[J]. Forest Ecol Manag, 2009,

257(2): 755-763.

[382] Sherman L A, Brye K R, Gill D E, et al. Soil chemistry as affected by first-time prescribed burning of a

grassland restoration on a coastal plain ultisol[J]. Soil Sci, 2005, 170(11): 913-927.

[383] Brye K R. Soil physiochemical changes following 12 years of annual burning in a humid subtropical

tallgrass prairie: a hypothesis[J]. Acta Oecol, 2006, 30(3): 407-413.

[384] Andersson M, Michelsen A, Jensen M, et al. Tropical savannah woodland: effects of experimental fire on

soil microorganisms and soil emissions of carbon dioxide[J]. Soil Biol Biochem, 2004, 36(5): 849-858.

[385] Ball P N, MacKenzie M D, DeLuca T H, et al. Wildfire and Charcoal Enhance Nitrification and

Ammonium-Oxidizing Bacterial Abundance in Dry Montane Forest Soils[J]. J Environ Qual, 2010, 39(4):

1243.

[386] Rodríguez J, González-Pérez J A, Turmero A, et al. Wildfire effects on the microbial activity and

diversity in a Mediterranean forest soil[J]. Catena, 2017, 158: 82-88.

[387] Fontúrbel M T, Barreiro A, Vega J A, et al. Effects of an experimental fire and post-fire stabilization

treatments on soil microbial communities[J]. Geoderma, 2012, 191: 51-60.

[388] Gutknecht J LM, Henry H AL, Balser T C. Inter-annual variation in soil extra-cellular enzyme activity in

response to simulated global change and fire disturbance[J]. Pedobiologia, 2010, 53(5): 283-293.

[389] Liu X, Chen C, Wang W, et al. Response of soil denitrifying communities to long-term prescribed burning

in two australian sclerophyll forests[J]. Geomicrobiol J, 2015, 32(7): 577-584.



133

[390] Shen J P, Zhang L M, Di H J, et al. A review of ammonia-oxidizing bacteria and archaea in Chinese

soils[J]. Front Microbiol, 2012, 3: 296.

[391] Hu H-W, Macdonald C A, Trivedi P, et al. Effects of climate warming and elevated CO2 on autotrophic

nitrification and nitrifiers in dryland ecosystems[J]. Soil Biol Biochem, 2016, 92: 1-15.

[392] Wang D, Ba L. Ecology of meadow steppe in Northeast China[J]. Rangeland J, 2008, 30(2): 247-254.

[393] He C-E, Liu X, Fangmeier A, et al. Quantifying the total airborne nitrogen input into agroecosystems in

the North China Plain[J]. Agr Ecosyst Environ, 2007, 121(4): 395-400.

[394] Wang Z, Zhang Y, Liu X, et al. Dry and wet nitrogen deposition in agricultural soils in the Loess area[J].

Acta Ecologica Sinica, 2008, 28(7): 3295-3301.

[395] Xing G, Zhu Z. Regional nitrogen budgets for China and its major watersheds[J]. Biogeochemistry, 2002,

57(1): 405-427.

[396] Dukes J S, Chiariello N R, Cleland E E, et al. Responses of grassland production to single and multiple

global environmental changes[J]. Plos Biol, 2005, 3(10): e319.

[397] Zavaleta E S, Shaw M R, Chiariello N R, et al. Grassland responses to three years of elevated temperature,

CO2, precipitation, and N deposition[J]. Ecol Monogr, 2003, 73(4): 585-604.

[398] Hayhoe K, Cayan D, Field C B, et al. Emissions pathways, climate change, and impacts on California[J].

PNAS, 2004, 101(34): 12422-12427.

[399] Zhang N, Wan S, Li L, et al. Impacts of urea N addition on soil microbial community in a semi-arid

temperate steppe in northern China[J]. Plant Soil, 2008, 311(1-2): 19-28.

[400] Liu B, Xu M, Henderson M, et al. Observed trends of precipitation amount, frequency, and intensity in

China, 1960 2000[J]. J Geophys Res-Atmos, 2005, 110(D8).

[401] Dore M H. Climate change and changes in global precipitation patterns: what do we know?[J]. Environ

Int, 2005, 31(8): 1167-1181.

[402] Weltzin J F, Loik M E, Schwinning S, et al. Assessing the response of terrestrial ecosystems to potential

changes in precipitation[J]. Bioscience, 2003, 53(10): 941-952.

[403] Knapp A K, Beier C, Briske D D, et al. Consequences of more extreme precipitation regimes for

terrestrial ecosystems[J]. Bioscience, 2008, 58(9): 811-821.

[404] Smith M D. The ecological role of climate extremes: current understanding and future prospects[J]. J

Ecol, 2011, 99(3): 651-655.

[405] Knapp AK, Fay P A, Blair J M, et al. Rainfall variability, carbon cycling, and plant species diversity in a

mesic grassland[J]. Science, 2002, 298(5601): 2202-2205.

[406] Proffitt A, Berliner P, Oosterhuis D. A comparative study of root distribution and water extraction

efficiency by wheat grown under high-and low-frequency irrigation 1[J]. Agron J, 1985, 77(5): 655-662.

[407] Dijkstra F A, Augustine D J, Brewer P, et al. Nitrogen cycling and water pulses in semiarid grasslands:



134

are microbial and plant processes temporally asynchronous?[J]. Oecologia, 2012, 170(3): 799-808.

[408] Fierer N, Schimel J P. Effects of drying rewetting frequency on soil carbon and nitrogen

transformations[J]. Soil Biol Biochem, 2002, 34(6): 777-787.

[409] Liao X, Inglett P W, Inglett K S. Seasonal patterns of nitrogen cycling in subtropical short-hydroperiod

wetlands: Effects of precipitation and restoration[J]. Sci Total Environ, 2016, 556: 136-145.

[410] Nielsen U N, Ball B A. Impacts of altered precipitation regimes on soil communities and biogeochemistry

in arid and semi-arid ecosystems[J]. Glob Chang Biol, 2015, 21(4): 1407-1421.

[411] Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in

soils[J]. Global Change Biol, 2009, 15(4): 808-824.

[412] Weltzin J F, Tissue D T. Resource pulses in arid environments: patterns of rain, patterns of life[J]. New

Phytol, 2003, 157(2): 171-173.

[413] Classen A T, Sundqvist M K, Henning J A, et al. Direct and indirect effects of climate change on soil

microbial and soil microbial plant interactions: What lies ahead?[J]. Ecosphere, 2015, 6(8): 1-21.

[414] Beier C, Beierkuhnlein C, Wohlgemuth T, et al. Precipitation manipulation experiments challenges and

recommendations for the future[J]. Ecol Lett, 2012, 15(8): 899-911.

[415] Boring L R, Swank W T, Waide J B, et al. Sources, fates, and impacts of nitrogen inputs to terrestrial

ecosystems: review and synthesis[J]. Biogeochemistry, 1988, 6(2): 119-159.

[416] Rodhe H, Grandell J. On the removal time of aerosol particles from the atmosphere by precipitation

scavenging[J]. Tellus, 1972, 24(5): 442-454.

[417] Tang W, Chen D, Phillips O L, et al. Effects of long-term increased N deposition on tropical montane

forest soil N2 and N2O emissions[J]. Soil Biol Biochem, 2018, 126: 194-203.

[418] Yue P, Cui X, Gong Y, et al. Fluxes of N2O, CH4 and soil respiration as affected by water and nitrogen

addition in a temperate desert[J]. Geoderma, 2019, 337: 770-772.

[419] Zhang Y, Xie X, Jiao N, et al. Diversity and distribution of amoA-type nitrifying and nirS-type

denitrifying microbial communities in the Yangtze River estuary[J]. Biogeosciences, 2014, 11(8): 2131-

2145.

[420] Zhang W, Mo J, Yu G, et al. Emissions of nitrous oxide from three tropical forests in Southern China in

response to simulated nitrogen deposition[J]. Plant Soil, 2008, 306(1-2): 221-236.

[421] Lü X-T, Han X-G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland

of Inner Mongolia, China[J]. Plant Soil, 2010, 327(1-2): 481-491.

[422] Shi Y, Gao S, Zhou D, et al. Fall nitrogen application increases seed yield, forage yield and nitrogen use

efficiency more than spring nitrogen application in Leymus chinensis, a perennial grass[J]. Field Crop Res,

2017, 214: 66-72.

[423] Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content: Measurements in



135

coaxial transmission lines[J]. Water Resour Res, 1980.

[424] Hart S C, Stark J M, Davidson E A, et al., Nitrogen mineralization, immobilization, and nitrification, in

Methods of soil analysis: part 2 microbiological and biochemical properties, R. W. Weaver S. Angel, P.

Bettomley, D. Bezdicek, S. Smith, A. Tabatabai, and A. Wollum, Editor. 1994, Soil Science Society of

America: Madison, Wisconsin, USA. p. 985-1018.

[425] Tourna M, Freitag T E, Nicol G W, et al. Growth, activity and temperature responses of ammonia-

oxidizing archaea and bacteria in soil microcosms[J]. Environ Microbiol, 2008, 10(5): 1357-1364.

[426] Rotthauwe J H, Witzel K P, Liesack W, . The ammonia monooxygenase structural gene amoA as a

functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Appl

Environ Microb, 1997, 63(12): 4704-4712.

[427] Long S P, Shekar R. 2013 reviews of Global Change Biology[J]. Global Change Biol, 2013, 19(1): 1-2.

[428] Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological

analyses of soil microbial communities across nitrogen gradients[J]. ISME J, 2012, 6(5): 1007.

[429] Pregitzer K S, Zak D R, Burton A J, et al. Chronic nitrate additions dramatically increase the export of

carbon and nitrogen from northern hardwood ecosystems[J]. Biogeochemistry, 2004, 68(2): 179-197.

[430] Nicol G W, Leininger S, Schleper C, et al. The influence of soil pH on the diversity, abundance and

transcriptional activity of ammonia oxidizing archaea and bacteria[J]. Environ Microbiol, 2008, 10(11):

2966-2978.

[431] Xiong D, Yu T, Ling X, et al. Sufficient leaf transpiration and nonstructural carbohydrates are beneficial

for high-temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments[J]. Funct

Plant Biol, 2015, 42(4): 347.

[432] Ke X, Angel R, Lu Y, et al. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy

soil[J]. Environ Microbiol, 2013, 15(8): 2275-2292.

[433] Assemien F L, Pommier T, Gonnety J T, et al. Adaptation of soil nitrifiers to very low nitrogen level

jeopardizes the efficiency of chemical fertilization in west african moist savannas[J]. Sci Rep, 2017, 7(1):

10275.

[434] Booth M S, Stark J M, Rastetter E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic

analysis of literature data[J]. Ecol Monogr, 2005, 75(2): 139-157.

[435] Fisk M C, Schmidt S K, Seastedt T R. Topographic patterns of above and belowground production and

nitrogen cycling in alpine tundra[J]. Ecology, 1998, 79(7): 2253-2266.

[436] Erguder T H, Boon N, Wittebolle L, et al. Environmental factors shaping the ecological niches of

ammonia-oxidizing archaea[J]. FEMS Microbiol Lett, 2009, 33(5): 855-869.

[437] Liu S C. Possible effects on fropospheric O 3 and OH due to No emissions[J]. Geophys Res Lett, 1977,

4(8): 325-328.



136

[438] Wang W, Yung Y, Lacis A, et al. Greenhouse effects due to man-made perturbations of trace gases[J].

Science, 1976, 194(4266): 685-690.

[439] Ravishankara A, Daniel J S, Portmann R W. Nitrous oxide (N2O): the dominant ozone-depleting

substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125.

[440] Bremner J M. Sources of nitrous oxide in soils[J]. Nutr Cycl Agroecosys, 1997, 49(1-3): 7-16.

[441] Wrage N, Velthof G, Laanbroek H, et al. Nitrous oxide production in grassland soils: assessing the

contribution of nitrifier denitrification[J]. Soil Biol Biochem, 2004, 36(2): 229-236.

[442] Hayatsu M, Tago K, Saito M. Various players in the nitrogen cycle: diversity and functions of the

microorganisms involved in nitrification and denitrification[J]. Soil Sci Plant Nutr, 2008, 54(1): 33-45.

[443] Firestone M K, Davidson E A, Microbiological basis of NO and N2O production and consumption in soil,

in Exchange of trace gases between terrestrial ecosystems and the atmosphere, DS Andreae MO &

Schimel, Editor. 1989, John Wiley and Sons Ltd.: Chichester, UK. p. 7-21.

[444] Bateman E, Baggs E. Contributions of nitrification and denitrification to N2O emissions from soils at

different water-filled pore space[J]. Biol Fert Soils, 2005, 41(6): 379-388.

[445] Smith M S, Tiedje J M. Phases of denitrification following oxygen depletion in soil[J]. Soil Biol Biochem,

1979, 11(3): 261-267.

[446] Florio A, Bréfort C, Gervaix J, et al. The responses of NO2
−- and N2O -reducing bacteria to maize

inoculation by the PGPR Azospirillum lipoferum CRT1 depend on carbon availability and determine soil

gross and net N2O production[J]. Soil Biol Biochem, 2019, 136: 107524.

[447] Enwall K, Philippot L, Hallin S. Activity and Composition of the Denitrifying Bacterial Community

Respond Differently to Long-Term Fertilization[J]. Appl Environ Microb, 2005, 71(12), 8335-8343.

[448] Patra P K, Maksyutov S, Nakazawa T. Analysis of atmospheric CO2 growth rates at Mauna Loa using

CO2 fluxes derived from an inverse model[J]. Tellus B, 57(5): 357-365.

[449] de Klein C A, Barton L, Sherlock R R, et al. Estimating a nitrous oxide emission factor for animal urine

from some New Zealand pastoral soils[J]. Soil Res, 2003, 41(3): 381-399.

[450] Rochette P, Chadwick D, de Klein C, et al., Deployment protocol, in Nitrous oxide chamber methodology

guidelines. 2015, C.A.M. de Klein, M. Harvey (Eds.): Ministry for Primary Industries, Wellington, New

Zealand. p. 34-55.

[451] Rochette P, Chadwick D, de Klein C, et al. Deployment protocol[J]. Nitrous oxide chamber methodology

guidelines. (Eds CAM de Klein, MJ Harvey) Ver, 2012, 1: 34-55.

[452] Ducey T F, Ippolito J A, Cantrell K B, et al. Addition of activated switchgrass biochar to an aridic subsoil

increases microbial nitrogen cycling gene abundances[J]. Appl Soil Ecol, 2013, 65: 65-72.

[453] Throbäck I N, Enwall K, Jarvis Å, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for

community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiol Ecol, 2004, 49(3): 401-417.



137

[454] Rich J J, Heichen R S, Bottomley P J, et al. Community composition and functioning of denitrifying

bacteria from adjacent meadow and forest soils[J]. Appl Environ Microb, 2003, 69(10): 5974-5982.

[455] Lin J, Shi Y, Tao S, et al. Seed-germination response of Leymus chinensis to cold stratification in a range

of temperatures, light and low water potentials under salt and drought stresses[J]. Crop Pasture Sci, 2017,

68(2): 188-194.

[456] Shi Y, Wang J, Le Roux X, et al. Trade-offs and synergies between seed yield, forage yield, and N-related

disservices for a semi-arid perennial grassland under different nitrogen fertilization strategies[J]. Biol Fert

Soils, 2019: 1-13.

[457] Yin C, Fan F, Song A, et al. Different denitrification potential of aquic brown soil in Northeast China

under inorganic and organic fertilization accompanied by distinct changes of nirS-and nirK-denitrifying

bacterial community[J]. Eur J Soil Biol, 2014, 65: 47-56.

[458] Mummey D, Smith J, Bolton Jr H. Nitrous oxide flux from a shrub-steppe ecosystem: sources and

regulation[J]. Soil Biol Biochem, 1994, 26(2): 279-286.

[459] McCalley C K, Sparks J P. Abiotic gas formation drives nitrogen loss from a desert ecosystem[J]. Science,

2009, 326(5954): 837-840.

[460] McCalley C K, Sparks J P. Controls over nitric oxide and ammonia emissions from Mojave Desert

soils[J]. Oecologia, 2008, 156(4): 871-881.

[461] Assemien F L, Cantarel A AM, Florio A, et al. Different groups of nitrite-reducers and N2O-reducers

have distinct ecological niches and functional roles in West African cultivated soils[J]. Soil Biol Biochem,

2019, 129: 39-47.

[462] Singh M, Poonia M K, Kumhar B L. Climate change: impact, adaptation and mitigation: A review[J].

Agricultural Reviews, 2017, 38(1).

[463] Watson R T, Zinyowera M C, Moss R H, et al., The regional impacts of climate change. 1998, IPCC:

Geneva.

[464] Cayan D R, Maurer E P, Dettinger M D, et al. Climate change scenarios for the California region[J].

Climatic Change, 2008, 87(S1): 21-42.

[465] Integrated Assessment Report. 1991, National Acid Precipitation Assessment Program: Washington, DC.

[466] Padgett P E, Allen E B, Bytnerowicz A, et al. Changes in soil inorganic nitrogen as related to atmospheric

nitrogenous pollutants in southern California[J]. Atmos Environ, 1999, 33(5): 769-781.

[467] Fenn M E, Baron J S, Allen E B, et al. Ecological effects of nitrogen deposition in the western United

States[J]. BioScience, 2003, 53(4): 404-420.

[468] Sickman J O, James A E, Fenn M E, et al. Quantifying atmospheric N deposition in dryland ecosystems:

A test of the Integrated Total Nitrogen Input (ITNI) method[J]. Sci Total Environ, 2019, 646: 1253-1264.

[469] Houghton J T, Ding Y, Griggs D J, et al., Climate change 2001: the scientific basis[M]: The Press



138

Syndicate of the University of Cambridge, 2001.

[470] Running S W. Is global warming causing more, larger wildfires?[J]. Science, 2006, 313(5789): 927-928.

[471] Hungate B A, Ecosystem responses to rising atmospheric CO2: feedbacks through the nitrogen cycle, in

Carbon dioxide and environmental stress, HA Luo Y and Mooney, Editor. 1999, Elsevier: San Diego,

California. p. 265-285.

[472] Treseder K K. Ameta analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2

in field studies[J]. New Phytol, 2004, 164(2): 347-355.

[473] Muqaddas B, Zhou X, Lewis T, et al. Long-term frequent prescribed fire decreases surface soil carbon

and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia[J]. Sci Total Environ,

2015, 536: 39-47.

[474] Alcaniz M, Outeiro L, Francos M, et al. Effects of prescribed fires on soil properties: A review[J]. Sci

Total Environ, 2018, 613-614: 944-957.

[475] Albalasmeh A A, Berli M, Shafer D S, et al. Degradation of moist soil aggregates by rapid temperature

rise under low intensity fire[J]. Plant Soil, 2013, 362(1-2): 335-344.

[476] Guinto D, Xu Z, House A, et al. Soil chemical properties and forest floor nutrients under repeated

prescribed-burning in eucalypt forests of south-east Queensland, Australia[J]. New Zeal J For Sci, 2001,

31(2): 170-187.

[477] Henry S, Baudoin E, López-Gutiérrez J C, et al. Quantification of denitrifying bacteria in soils by nirK

gene targeted real-time PCR[J]. J Microbiol Meth, 2004, 59(3): 327-335.

[478] Graham D W, Knapp C W, Van Vleck E S, et al. Experimental demonstration of chaotic instability in

biological nitrification[J]. ISME J, 2007, 1(5): 385.

[479] Wertz S, Poly F, Le Roux X, et al. Development and application of a PCR-denaturing gradient gel

electrophoresis tool to study the diversity of Nitrobacter-like nxrA sequences in soil[J]. FEMS Microbiol

Ecol, 2008, 63(2): 261-271.

[480] Hohenegger C, Brockhaus P, Bretherton C S, et al. The soil moisture precipitation feedback in

simulations with explicit and parameterized convection[J]. J Climate, 2009, 22(19): 5003-5020.

[481] Zhu K, Chiariello N R, Tobeck T, et al. Nonlinear, interacting responses to climate limit grassland

production under global change[J]. PNAS, 2016, 113(38): 10589-10594.

[482] Ciais P, Sabine C, Bala G, et al., Carbon and other biogeochemical cycles, in Climate change 2013: the

physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change. 2014, Cambridge University Press. p. 465-570.

[483] Esquilín A E J, Stromberger M E, Massman W J, et al. Microbial community structure and activity in a

Colorado Rocky Mountain forest soil scarred by slash pile burning[J]. Soil Biol Biochem, 2007, 39(5):

1111-1120.



139

[484] Bissett J, Parkinson D. Long-term effects of fire on the composition and activity of the soil microflora of

a subalpine, coniferous forest[J]. Can J Botany, 1980, 58(15): 1704-1721.

[485] Kara O, Bolat I. Short-term effects of wildfire on microbial biomass and abundance in black pine

plantation soils in Turkey[J]. Ecol Indic, 2009, 9(6): 1151-1155.

[486] Pietikäinen J, Fritze H. Clear-cutting and prescribed burning in coniferous forest: comparison of effects

on soil fungal and total microbial biomass, respiration activity and nitrification[J]. Soil Biol Biochem,

1995, 27(1): 101-109.

[487] Neary D G, Klopatek C C, DeBano L F, et al. Fire effects on belowground sustainability: a review and

synthesis[J]. Forest Ecol Manag, 1999, 122(1-2): 51-71.

[488] DeBano L F, Neary D G, Ffolliott P F, Fire effects on ecosystems[M]: John Wiley & Sons, 1998.

[489] Xu W, Wan S. Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen

fertilization in a semiarid grassland in northern China[J]. Soil Biol Biochem, 2008, 40(3): 679-687.

[490] Vázquez F J, Acea M J, Carballas T. Soil microbial populations after wildfire[J]. FEMS Microbiol Ecol,

1993, 13(2): 93-103.

[491] Mabuhay J A, Isagi Y, Nakagoshi N. Microbial biomass, abundance and community diversity determined

by terminal restriction fragment length polymorphism analysis in soil at varying periods after occurrence

of forest fire[J]. Microbes Environ, 2004, 19(2): 154-162.

[492] Verhagen J H. Modeling phytoplankton patchiness under the influence of wind driven currents

inlakes[J]. Limnol Oceanogr, 1994, 39(7): 1551-1565.

[493] Tiedje J M, Denitrification, in Methods of soil analysis. Part 2. Agronomy Monograph No. 9, A. L. Page

R. H., Miller and D. R. Keeney Editors. 1982, American Society of Agronomy: Madison, Wisconsin. p.

1011-1026.

[494] Philippot L, Andert J, Jones C M, et al. Importance of denitrifiers lacking the genes encoding the nitrous

oxide reductase for N2O emissions from soil[J]. Global Change Biol, 2011, 17(3): 1497-1504.

[495] Graf D R, Jones C M, Hallin S. Intergenomic comparisons highlight modularity of the denitrification

pathway and underpin the importance of community structure for N2O emissions[J]. PLoS One, 2014,

9(12): e114118.

[496] Domeignoz-Horta L A, Putz M, Spor A, et al. Non-denitrifying nitrous oxide-reducing bacteria - An

effective N2O sink in soil[J]. Soil Biol Biochem, 2016, 103: 376-379.

[497] Bergner B, Johnstone J, Treseder K K. Experimental warming and burn severity alter soil CO2 flux and

soil functional groups in a recently burned boreal forest[J]. Global Change Biol, 2004, 10(12): 1996-2004.

[498] Baudoin E, Philippot L, Chèneby D, et al. Direct seeding mulch-based cropping increases both the

activity and the abundance of denitrifier communities in a tropical soil[J]. Soil Biol Biochem, 2009, 41(8):

1703-1709.



140

[499] Smith J M, Ogram A. Genetic and functional variation in denitrifier populations along a short-term

restoration chronosequence[J]. Appl Environ Microbiol, 2008, 74(18): 5615-5620.

[500] Papanikolaou N, Britton A J, Helliwell R C, et al. Nitrogen deposition, vegetation burning and climate

warming act independently on microbial community structure and enzyme activity associated with

decomposing litter in low-alpine heath[J]. Global Change Biol, 2010: 3120-3132.

[501] Samad M S, Bakken L R, Nadeem S, et al. High-resolution denitrification kinetics in pasture soils link

N2O emissions to pH, and denitrification to C mineralization[J]. PLoS One, 2016, 11(3): e0151713.



141

Supplementary

References reporting on effects of N addition on soil N dynamics, soil N-cycling microbial

abundances and soil N2O emissions in grassland/steppe ecosystems, used to build Fig. 39.

Barnard, R., Le Roux, X., Hungate, B., Cleland, E., Blankinship, J., Barthes, L., & Leadley, P. (2006). Several

components of global change alter nitrifying and denitrifying activities in an annual grassland. Functional

Ecology, 20, 557-564. https://doi.org/10.2307/3806603

Barnard, R., Leadley, P. W., & Hungate, B. A. (2005). Global change, nitrification, and denitrification: a review.

Global biogeochemical cycles, 19. https://doi.org/10.1029/2004GB002282

Brown, J. R., Blankinship, J. C., Niboyet, A., van Groenigen, K. J., Dijkstra, P., Le Roux, X., . . . Hungate, B. A.

(2012). Effects of multiple global change treatments on soil N2O fluxes. Biogeochemistry, 109, 85-100.

https://doi.org/10.1007/s10533-011-9655-2

Chen, Y. L., Hu, H. W., Han, H. Y., Du, Y., Wan, S. Q., Xu, Z. W., & Chen, B. D. (2014). Abundance and

community structure of ammonia-oxidizing archaea and bacteria in response to fertilization and mowing

in a t empera t e s t eppe in Inne r Mongo l i a . FEMS microb io logy eco logy, 89 , 67 -79 .

https://doi.org/10.1111/1574-6941.12336

Chen, Y. L., Xu, Z. W., Hu, H. W., Hu, Y.J., Hao, Z. P., Jiang, Y., & Chen, B. D. (2013). Responses of ammonia-

oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate

steppe in Inner Mongolia. Applied Soil Ecology, 68, 36-45. https://doi.org/10.1016/j.apsoil.2013.03.006

Di, H. J., Cameron, K. C., Shen, J. P., Winefield, C. S., O callaghan, M., Bowatte, S., & He, J. Z. (2009).

Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2,

621. https://doi.org/10.1038/ngeo613

Docherty, K. M., Balser, T. C., Bohannan, B. J., & Gutknecht, J. L. (2012). Soil microbial responses to fire and

interacting global change factors in a California annual grassland. Biogeochemistry, 109, 63-83.

https://doi.org/10.2307/41490545

Ducey, T. F., Ippolito, J. A., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2013). Addition of activated

switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied

Soil Ecology, 65, 65-72. https://doi.org/10.1016/j.apsoil.2013.01.006

Jones, C. M., Graf, D. R., Bru, D., Philippot, L., & Hallin, S. (2013). The unaccounted yet abundant nitrous oxide-

reducing microbial community: a potential nitrous oxide sink. The ISME journal, 7, 417.

https://doi.org/10.1038/ismej.2012.125



142

Hartmann, A. A., Barnard, R. L., Marhan, S., & Niklaus, P. A. (2013). Effects of drought and N-fertilization on N

cycling in two grassland soils. Oecologia, 171, 705-717. https://doi.org/10.1007/s00442-012-2578-3

Hartmann, A. A., & Niklaus, P. A. (2012). Effects of simulated drought and nitrogen fertilizer on plant

productivity and nitrous oxide (N2O) emissions of two pastures. Plant and Soil, 361, 411-426.

https://doi.org/10.1007/s11104-012-1248-x

Kastl, E. M., Schloter-Hai, B., Buegger, F., & Schloter, M. (2015). Impact of fertilization on the abundance of

nitrifiers and denitrifiers at the root soil interface of plants with different uptake strategies for nitrogen.

Biology and fertility of soils, 51, 57-64.

Le Roux, X., Poly, F., Currey, P., Commeaux, C., Hai, B., Nicol, G. W., . . . Klumpp, K. (2008). Effects of

aboveground grazing on coupling among nitrifier activity, abundance and community structure. The ISME

journal, 2, 221. https://doi.org/10.1038/ismej.2007.109

Long, X. E., Shen, J. P., Wang, J. T., Zhang, L. M., Di, H., & He, J. Z. (2016). Contrasting response of two

grassland soils to N addition and moisture levels: N2O emission and functional gene abundance. Journal

of Soils and Sediments, 17, 384-392. https://doi.org/10.1007/s11368-016-1559-2

Ma, W. B., Jiang. S. J., Assemien, F., Qin, M. S., Ma, B. B., Xie, Z., . . . Le Roux X. (2016). Response of

microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine

meadows. Soil Biology and Biochemistry, 101, 195-206.

Mosier, A., Parton, W., & Phongpan, S. (1998). Long-term large N and immediate small N addition effects on

trace gas fluxes in the Colorado shortgrass steppe. Biology and fertility of soils, 28, 44-50.

https://doi.org/10.1007/s003740050461

Mosier, A., Schimel, D., Valentine, D., Bronson, K., & Parton, W. (1991). Methane and nitrous oxide fluxes in

native, fertilized and cultivated grasslands. Nature, 350, 330-332.

Niboyet, A., Barthes, L., Hungate, B. A., Le Roux, X., Bloor, J. M., Ambroise, A., . . . Leadley, P. W. (2010).

Responses of soil nitrogen cycling to the interactive effects of elevated CO2 and inorganic N supply. Plant

and Soil, 327, 35-47. https://doi.org/10.1007/s11104-009-0029-7

Niboyet, A., Le Roux, X., Dijkstra, P., Hungate, B., Barthes, L., Blankinship, J., . . . Leadley, P. (2011). Testing

interactive effects of global environmental changes on soil nitrogen cycling. Ecosphere, 2, 1-24.

https://doi.org/10.1890/ES10-00148.1

Niklaus, P. A., Le Roux, X., Poly, F., Buchmann, N., Scherer-Lorenzen, M., Weigelt, A., & Barnard, R. L. (2016).

Plant species diversity affects soil atmosphere fluxes of methane and nitrous oxide. Oecologia, 181, 919

-930. https://doi.org/10.1007/s00442-016-3611-8

Ning, Q. S., Gu, Q., Shen, J. P., Lv, X. T., Yang, J. J., Zhang, X. M., . . . Xu, Z. H. (2015). Effects of nitrogen

deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate

grassland of northern China. Journal of Soils and Sediments, 15, 694-704. https://doi.org/10.1007/s11368-



143

015-1061-2

Peng, Y. F., Wang, G. Q., Li, F., Zhou, G. Y., Yang, G. B., Fang, K., . . . Yang, Y. H. (2018). Soil temperature

dynamics modulate N2O flux response to multiple nitrogen additions in an alpine steppe. Journal of

Geophysical Research: Biogeosciences.

Rich, J., Heichen, R., Bottomley, P., Cromack, K., & Myrold, D. (2003). Community composition and functioning

of denitrifying bacteria from adjacent meadow and forest soils. Applied and environmental microbiology,

69, 5974-5982.

Robson, T. M., Lavorel, S., Clement, J. C., & Le Roux, X. (2007). Neglect of mowing and manuring leads to

slower nitrogen cycling in subalpine grasslands. Soil Biology and Biochemistry, 39, 930-941.

Rotthauwe, J. H., Witzel, K. P., & Liesack, W. (1997). The ammonia monooxygenase structural gene amoA as a

functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and

environmental microbiology, 63, 4704-4712.

Simonin, M., Le Roux, X., Poly, F., Lerondelle, C., Hungate, B. A., Nunan, N., & Niboyet, A. (2015). Coupling

between and among ammonia oxidizers and nitrite oxidizers in grassland mesocosms submitted to

elevated CO2 and nitrogen supply.Microbial ecology, 70, 809-818.

Sun, Y. F., Shen, J. P., Zhang, C. J., Zhang, L. M., Bai, W. M., Fang, Y., & He, J. Z. (2017). Responses of soil

microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. Journal of

Soils and Sediments, 18, 762-774. https://doi.org/10.1007/s11368-017-1846-6

Throbäck, I. N., Enwall, K., Jarvis, Å., & Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and

nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS microbiology ecology, 49,

401-417. https://doi.org/10.1016/S0168-6496(04)00147-3

Tourna, M., Freitag, T. E., Nicol, G. W., & Prosser, J. I. (2008). Growth, activity and temperature responses of

ammonia oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 10, 1357-1364.

https://doi.org/10.1111/j.1462-2920.2007.01563.x



144

Postscript

In the fall of 2015, with passion and expectation, I was fortunately enough to pass the

assessment application of the Northeast Normal University to be a member of the Ph.D. In the

twinkling of an eye, the four valuable years passed away. Now, at the moment of approaching the

end of my Ph.D. study, the feeling of joy, affection, bitterness, and happiness are intertwined. This

moment of the complex emotions condenses the sweat and hardship during these four years, but

also contains too much care without expressing in words and dedication of too many people around

me. At the time of graduation, please allow me to express my gratitude in the simplest words.

First of all, I would like to thank my supervisors, Dr. Chunsheng MU and Dr. Xavier LE ROUX.

My achievement during these years' study is inseparable from the guidance of my supervisors. Dr.

Chunsheng MU is knowledgeable, rigorous and broad-minded. During my study, Dr. Chunsheng

MU devoted lots of effort. He not only taught me how to cultivate strong logical thinking but also

taught me the truth of being a man. He treats students like his own children. During the cultivation

and teaching, I not only experienced the fun of scientific research but also experienced the warmth

of life. Thanks to Dr. Mu's training and teaching during these years, I have the opportunity to step

into the path of realizing my own life and have a different kind of life. Dr. LE ROUX is an energetic

and enthusiast researcher. His enthusiasm and his rigorous academic attitude deeply influenced me.

Thank Xavier for his guidance during my Ph. D. study, especially guidance of the data analysis, the

way to present the results, manuscript writing and revisions, which are really very helpful and

constructive. Thanks to his help in work and also in life during the research career of my two years

abroad study, I had the precious time that I will never forget in my life. Best regards to my

supervisors, you are my lights on the way to be a contributable researcher.

I would also like to express my appreciation to my co-supervisors, Dr. Junfeng WANG and Dr.

Audrey NIBOYET. I am grateful to the two co-supervisors for their selfless help during my doctoral

career. Dr. WANG, like a brother, supervised me from my mater stage, when I knew little thing

about science. From the beginning of my research career, he tried his best to guide me the way to do

the experiment and the way to think step by step. He helped me to develop the ability of self-

independence. In the process of scientific research, Dr. Wang guided me to grasp the truth that

neither to become dizzy with success nor be discouraged by failure . Through the careful guidance

and support of Dr. Wang over these years, I am able to become a quasi-Doctor on the road of

scientific research. Dr. Audrey NIBOYET is my co-supervisor during my study in the French lab.

She is a passionate scientist, who is very diligent and works very hard. During my study in France,



145

she did me a great favor, especially during the process of data analysis and the preparation of the

thesis manuscript. In addition, Audrey s research enthusiasm and attitude towards research have

deep influence me.

My great appreciation to my motherland-People's Republic of China, who provided me the

precious opportunity and funded me to study abroad. I would like to thank the leaders and workers

of the China Scholarship Council. You do quiet efforts to create the convenience for the overseas

students to adapt the life and the culture quickly without worries. I am grateful to the workers of the

Embassy of the People s Republic of China in France, especially Mr. Chunqiao Wang. Thanks for

your help during my stay in France, you did a great favor for all of the Chinese student's study in

France. Best wishes to you!

I would also like to thank all the leaders and teachers of the Grassland Science Research

Institute of Northeast Normal University for their help. Thank Dr. Jiandong LI, Dr. Deli WANG, Dr.

Wei SUN, Dr. Jixun GUO, Dr. Yunfei YANG, Dr. Fu XING, Dr. Yingzhi GAO, Dr. Haijun YANG,

Dr. Zhijian LI, Dr. Liangjun HU, Dr. Ying GAO, Dr. Lei BA, Dr. Bangwei ZHOU, Dr. Zhenxing

ZHANG, Dr. Jushan LIU, Mrs Xiuquan YUE, Mr. Shicheng JIANG, Mrs Yanan LI and Mrs

Shuxin CHEN, who did me a great favor during my research and life. Thank Mr. Baotian ZHANG,

the teacher in the field station for the support and assistance in the field experiment. I would like to

thank all the people of the Microbial Ecology Laboratory in the University of Lyon, France, for

their support and help. Thank Thomas POMIER for his help and guidance, especially during the

functional gene diversity data analysis. Thank Alessandro FLORIO, you helped me a lot, from the

first day you picked me up from the airport and helped me to check in my apartment, to the

guidance of participating the ISME international conference in Germany, you are always acting as

my brother to help me and protect me, thanks again for your kind help, Aless, my college and friend!

In addition, my great appreciation to Amelie CANTAREL, Agnes RICHAUME-JOLION, Sonia,

Jonathan, Leslie, Cathine, Charline, Corrine and Leire, thanks for your help during the experiment

and during the academic discussion. Further, thank Dominique, Stephen, Eric, and Betty for your

help for the official documents and the funding procedures during my stay in our lab; Thank Audrey,

Danis and Danniel for your help each time before my presentation on the technique issues. I am

grateful to my French doctoral thesis review committee members, Jean THIOULOUSE, Jean-

Christophe CLEMENT and Bloor JULIETTE for your helpful suggestion and comments during the

evaluation of my Ph.D. study in France.

My special appreciation to Dr. Chris FIELD and Dr. Nona CHIARIELLO from Stanford

University, Dr. Bruce HUNGATE from Northern Arizona University, Dr. Jessica GUTKNECHT

from the University of Minnesota and Dr. Kathryn DOCHERTY from Western Michigan University.



146

Thank you, Chris and Nona, for sharing the long-term field experiment platform and giving

comments and suggestions during the data analysis and the way to present the results. Thank Bruce

for your helpful suggestion and the comments on the way to present the results. Thank Jessica and

Kathryn for sharing the data of the soil pH and soil BNPP in JRGCE. I wish you always to be the

lucky dog!

In addition, I would like to thank the team members in NENU. Special thanks to Jiayu HAN,

Yunna AO, Mengxing LIU, Jiao WANG, Donghao ZHOU, Shouzhi LI and Yanan LI. We have

experienced the hard work of field experiments and boring laboratory experiments. We witnessed

the smog before sunrise and the lamp in the dark together. Thanks to your great support and selfless

help, I can finally approach my destination of the Ph.D. work. I wish you all the best in scientific

research, good luck with your work, and a bright future! Thanks to the support and encouragement

of Jixiang LIN, Ying WANG, Yongguang MU, Zhanwu GAO, Zhuolin LI, Na ZHANG, Yuting

ZHANG, Luyao CHENG, Bing DU and Yanping CUI during my experiment and life. Thank Haibo

LIU, Jinwei ZHANG, Yu ZHENG, Dafu YU, Xiaotong LI , Yuheng YANG, Ming CAO, Chunyang

E, Rui WANG, Xiaoxia XI, Guangyin LI, Jiping SU, Yue XING, Ruonan WANG, Ge YAN, Siyu

HOU, Zihan ZHAO, Miao Wang, Dai Shuo, and Huichao PAN, you did me a great favor during the

experiment and during the life. Thank members in the French lab, Marine, Leire, Laura, Solène,

Lucas, William, Beatriz...you made me feel happy in the lab. I will never forget my life together

with you there!

In addition, thank Chen LIU, Qing CHANG, Xia YUAN, Baoru SUN, Xuan ZHAO, Xuxin

SONG, Yu ZHU, Xincheng LI, Xiaofei LI , Zhiwei ZHONG, Zhongnan WANG, Yunbo WANG,

Yuyang HAO et al., I wish you enjoy your happiness in family, success in work, and all the best!

Thank members in the same office in #513, Yinong LI, Wanling XU, Chen CHEN, Tongtong XU,

Hao SUN, Haiying CUI, Yingchao HU, we worked hard in the same office and we fight together to

get what we want and finally we will. You made my life more fulfilling and exciting. Best wishes to

all of you to have good papers and a bright future! Thank my colleges in the same grade, Xuechen

YANG, Jian GUO, Xue YANG, Jie LI, Hualiang ZHANG, and Hongwei XUN, we fight together

for the victory! Good luck to all of us to gain what we want! Thank my roommates Guojun PENG,

Na DENG, Xiaotong LI, Chen LIU, Dongshuang YANG, Hua CHAI, Yuning ZHU, Sitong LIU and

Zhongling SHI. Your company let me feel the warmth of home. Warm wishes to all of you!

Thank my friends in France during our study abroad, Yakun LUO, Shiheng ZHANG, Changbo

HE, Tingting YU, Li ZHONG, Shaoying WANG, Yuxin SONG, Sicheng DAI, Yaqi TANG, Qinqin

Xu, Jian WANG, Huan WEI and Wei CONG. We shared the unforgettable life experience together

in Lyon, France. You are my forever friends! Thank Changyi XU, my fellow-villager, you helped



147

me to solve lots of trouble during stay in France, best regards to you for your papers, your thesis

and all the things in your life. In addition, I also would like to thank Xiao LI, Lulu LIU, Luxiao

CHAI, Suisui, LIU, Lianxin Hu, Chao ZHANG, Jihua HAO, Lu PAN, Juehua WANG, Bomin FU,

Tian JIANG, Wei LIAO, Linger LOU and Yulan PENG. I will never forget the time we shared

together to have the forum involved both in life and in science, and also the time we had lunch

together in Domus. I wish you all the best, especially during the stay abroad. Take care, my sweats!

Thank my Indian friends, Nithya and Sathya, we shared happy experience in French class. Best

regards to you two and to Avyukth, the little boy!

Finally, I want to thank my parents, who gave me life and taught me the truth. Special thanks to

my great mother, you are the role model of my life. Over the years, you never complained with your

hard work. Your unyielding quality and spirit have deeply influenced me and this will be a precious

asset in my life. Thank my younger brother, your strong support and encouragement provided me an

environment without any worry during my study career; thank Mr. Yu, because of your help and

support, I never fell afraid on my way moving forward; thank for all support and encouragement

from my relatives, your selfless help and care encouraged me to run my life always with good luck!

At this moment, I will make a perfect point to end my study lasting for twenty-four years, and I

will open the next chapter of my life. Once again, I am grateful to all those who helped me, and I

wish you all the best! At last, I also would like to express great appreciation to myself with a big

hug: thank you for your hard work, darling, all the effort will be paid, continue to work hard and do

not miss the spring and your own! Good luck!

Yujie SHI 2019.11.8



148

List of Publication During Ph. D. study period

Title Journal Year Journal Type
Author
Order

Tradeoffs and synergies between
seed yield, forage yield and
regulation of nitrogen losses

disservices for a typical semi-arid
perennial grassland under different
nitrogen fertilization strategies

Biology of
Fertilized Soil

2019
SCI

(IF 4.829 top journal)
1

Fall nitrogen application increases
seed yield, forage yield and

nitrogen use efficiency more than
spring nitrogen application in

Leymus chinensis, a perennial grass

Field Crops
Research

2017
SCI

(IF 3.868 top journal)
1

Seed-germination response of
Leymus chinensis to cold
stratification in a range of

temperatures, light and low water
potentials under salt and drought

stresses

Crop & Pasture
Science

2017
SCI

(IF 1.804)
1

Long-term summer drought
decreases Leymus chinensis

productivity through constraining
the bud, tiller and shoot production

Journal of
Agronomy and
Crop Science

2019
SCI

IF 2.96 2

Strategies for lead distribution in
organs of Phragmites australis
(Cav.) Trin. ex Steud. (Common
reed) subjected to Pb pollution in
flood and drought environments.

Hydrobiologia 2018
SCI

IF 2.165
4

Salt-alkali tolerance during
germination and establishment of
Leymus chinensis, in the Songnen

Grassland of China.

Ecological
Engineering

2016
SCI

IF 3.406 3

The tolerance of growth and clonal
propagation of Phragmites

australis (common reeds) subjected
to lead contamination under
elevated CO2 condition.

Rsc Advances 2015
SCI

(IF 3.049)
7



149

Effects of water and fertilizer
treatment on pollen, germination
and seed setting rate of Leymus

Chinensis

Journal of
Northeast
Normal

University

2019
Chinese Core Journals

(In Chinese)
2

Microbial groups involved in soil
N cycling respond differently to a
fire disturbance under different

global change scenarios

17th ISME 2018 Conference 1

Effects of salt stress, storage time,
seed mass on seed germination rate
and germination vigor of Leymus

Chinensis

Ecological
Society of
China

2017 Conference 2

Ratio of seed yield to nitrogen loss,
an effective approach for assessing

nitrogen benefits and risks in
perennial grasses seed production

in semi-arid regions

International
Rangeland
Congress

2016 Conference 2

Relationships between nitrogen
fertilizer application and nitrous

oxide emission in Leymus
Chinensis grassland

The 5th China-
Japan-Korea
Grassland
Conference

2014 Conference 1

N addition modulates N2O
response to rainfall regimes in semi

-arid perennial grassland

Global Change
Biology

Submitting SCI 1

Fire disturbance effect on
abundance of soil (de)nitrifiers
under global change scenarios

- In preparation SCI 1



150

List of Research Funding During Ph. D. Study Period

Funding Title Funding Source Period Role

Study on key technologies for the
establishment of degraded and

desertified grassland

National Science and
Technology Plan Project

National Key R&D Program
2016YFC0500705

2016-2020 Major Participator

Effects of nitrogen-water
coupling effects on soil nitrous
oxide emission in grassland

Jilin Province Science and
Technology Department

Jilin Province Natural Science
Foundation Project
(20170101163JC)

2017-2019 Major Participator

Formation mechanism and
regulation pathway of
productivity of artificial
grassland, a key biological

mechanism for the formation of
typical grassland productivity

National Program on Key
Basic Research Project (973
Program) (2015CB150801)

2015-2016 Major Participator

The response mechanism of
nitrous oxide emission to nitrogen
deposition and rainfall regime in

Songnen grassland.

National Natural Science
Funds for Distinguished Young

Scholar (31300410)
2014-2016 Major Participator

Rainfall regime, nitrogen
deposition and coupling effects
on the trade-off between sexual
and clonal reproduction of

Leymus chinensis

National Natural Science
Foundation of China

(31370432)
2014-2017 Participator

Physiological and Molecular
Mechanisms of the birth time

development and spike formation
of Leymus chinensis daughter

shoots.

National Natural Science
Foundation of China

(31172259)
2012-2015. Participator



151
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During the period of my Ph. D study, I participated 3 times international Conference in

total. The details as follows:
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Yujie Shi, Audrey Niboyet, Nona Chiariello, Charline Creuzet des Chatelliers, Bruce Hungate, Chris Field,

Xavier Le Roux (2018) Microbial groups involved in soil N cycling respond differently to a fire disturbance

under different global change scenarios.

2) July 2017, International Congress of Ecology China Beijing-Oral Presentation

Junfeng Wang, Yunna Ao, Yujie Shi, Mengxing Liu, Donghao Zhou (2017). Effects of salt stress, storaged

time, seed mass on seed germination rate and germination vigor of Leymus Chinensis. Ecological Society of

China

3) August 2014, The 5th China-Japan-Korea Grassland Conference China Changchun-Poster Presentation

Yujie Shi, Song Gao, Yanping Cui, Junfeng Wang, Chunsheng Mu (2014) Relationships between nitrogen

fertilizer application and nitrous oxide emission in Leymus chenisis grassland. The 5th China-Japan-Korea

Grassland Conference
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