T. H. Kim and B. Ren, Genome-wide analysis of protein-DNA interactions, Annu Rev Genomics Hum Genet, vol.7, pp.81-102, 2006.

D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, Genome-wide mapping of in vivo protein-DNA interactions, Science, vol.316, pp.1497-502, 2007.

R. Thomas, S. Thomas, A. K. Holloway, and K. S. Pollard, Features that define the best ChIP-seq peak calling algorithms, Brief Bioinform, vol.18, pp.441-50, 2017.

S. Steinhauser, N. Kurzawa, R. Eils, and C. Herrmann, A comprehensive comparison of tools for differential ChIP-seq analysis, Brief Bioinform, vol.17, pp.953-66, 2016.

J. Merhej, A. Frigo, L. Crom, S. Camadro, J. Devaux et al., bPeaks: a bioinformatics tool to detect transcription factor binding sites from ChIPseq data in yeasts and other organisms with small genomes, Yeast, vol.31, pp.375-91, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01132624

M. A. Pfaller and D. J. Diekema, Epidemiology of invasive candidiasis: a persistent public health problem, Clin. Microbiol. Rev, vol.20, pp.133-163, 2007.

B. Goemaere, K. Lagrou, I. Spriet, M. Hendrickx, and P. Becker, Clonal spread of candida glabrata bloodstream isolates and uconazole resistance affected by prolonged exposure: a 12-year single-center study in Belgium, Antimicrob. Agents Chemother, vol.62, pp.591-609, 2018.

O. Epelbaum and R. Chasan, Candidemia in the intensive care unit, Clin. Chest Med, vol.38, pp.493-509, 2017.

B. Dujon, D. Sherman, G. Fischer, P. Durrens, S. Casaregola et al., Genome evolution in yeasts, Nature, vol.430, pp.35-44, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00104411

M. A. Pfaller, M. Castanheira, S. R. Lockhart, A. M. Ahlquist, S. A. Messer et al., Frequency of decreased susceptibility and resistance to echinocandins among uconazole-resistant bloodstream isolates of candida glabrata, J. Clin. Microbiol, vol.50, pp.1199-1203, 2012.

C. D. Pham, N. Iqbal, C. B. Bolden, R. J. Kuykendall, L. H. Harrison et al., Role of FKS Mutations in Candida glabrata: MIC Values, Echinocandin Resistance, and Multidrug Resistance, Antimicrob. Agents Chemother, vol.58, pp.4690-4696, 2014.

S. Vallabhaneni, A. A. Cleveland, M. M. Farley, L. H. Harrison, W. Schaffner et al., Epidemiology and Risk Factors for Echinocandin Nonsusceptible Candida glabrata Bloodstream Infections: Data From a Large Multisite Population-Based Candidemia Surveillance Program, Open Forum Infect. Dis, vol.2, p.163, 2008.

S. Brunke and B. Hube, Two unlike cousins: Candida albicans and C. glabrata infection strategies, Cell. Microbiol, vol.15, pp.701-708, 2013.

R. Sutak, E. Lesuisse, J. Tachezy, and D. R. Richardson, Crusade for iron: iron uptake in unicellular eukaryotes and its signi cance for virulence, Trends Microbiol, vol.16, pp.261-268, 2008.

J. Wang and K. Pantopoulos, Regulation of cellular iron metabolism, Biochem. J, vol.434, pp.365-381, 2011.

T. Nakamura, I. Naguro, and H. Ichijo, Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases, Biochim. Biophys. Acta Gen. Subj, vol.1863, pp.1398-1409, 2019.

G. Bairwa, W. H. Jung, and J. W. Kronstad, Iron acquisition in fungal pathogens of humans, Metallomics, vol.9, pp.215-227, 2017.

F. Gerwien, V. Skrahina, L. Kasper, B. Hube, and S. Brunke, Metals in fungal virulence, FEMS Microbiol. Rev, vol.42, 2018.

A. Thiébaut, T. Delaveau, M. Benchouaia, J. Boeri, M. Garcia et al., The CCAAT-binding complex controls respiratory gene expression and iron homeostasis in Candida Glabrata, Sci. Rep, vol.7, pp.1-10, 2017.

F. Gerwien, A. Safyan, S. Wisgott, F. Hille, P. Kaemmer et al., A novel hybrid iron regulation network combines features from pathogenic and nonpathogenic yeasts, Mbio, vol.7, pp.1782-1798, 2016.

F. Gerwien, A. Safyan, S. Wisgott, S. Brunke, L. Kasper et al., The fungal pathogen Candida glabrata does not depend on surface ferric reductases for iron acquisition, Front. Microbiol, vol.8, p.1055, 2017.

V. Sharma, R. Purushotham, and R. Kaur, The Phosphoinositide 3-Kinase Regulates Retrograde Traf cking of the Iron Permease CgFtr1 and Iron Homeostasis in Candida glabrata, J. Biol. Chem, vol.291, pp.24715-24734, 2016.

V. K. Srivastava, K. J. Suneetha, and R. Kaur, The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata, FEBS J, vol.282, pp.2142-2166, 2015.

V. K. Srivastava, K. J. Suneetha, and R. Kaur, A systematic analysis reveals an essential role for high-af nity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata, Biochem. J, vol.463, pp.103-114, 2014.

K. Seider, F. Gerwien, L. Kasper, S. Allert, S. Brunke et al., Immune evasion, stress resistance, and ef cient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages, Eukaryot. Cell, vol.13, pp.170-183, 2014.

N. Hosogaya, T. Miyazaki, M. Nagi, K. Tanabe, A. Minematsu et al., The heme-binding protein Dap1 links iron homeostasis to azole resistance via the P450 protein Erg11 in Candida glabrata, FEMS Yeast Res, vol.13, pp.411-421, 2013.

F. Devaux and A. Thiébaut, The regulation of iron homeostasis in the fungal human pathogen Candida glabrata, Microbiol. Read. Engl, vol.165, pp.1041-1060, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02337373

, NAR Genomics and Bioinformatics, vol.2, issue.2, 2020.

J. E. Cassat and E. P. Skaar, Iron in Infection and Immunity, Cell Host Microbe, vol.13, pp.509-519, 2013.

M. Nairz, A. Schroll, T. Sonnweber, and G. Weiss, The struggle for iron--a metal at the host-pathogen interface: Iron at the host-pathogen interface, Cell. Microbiol, vol.12, pp.1691-1702, 2010.

B. Yilmaz and H. Li, Gut microbiota and iron: the crucial actors in health and disease, Pharmaceuticals, p.98, 2018.

K. Pfrimer, R. F. Micheletto, J. S. Marchini, G. J. Padovan, J. C. Moriguti et al., Impact of aging on urinary excretion of iron and zinc, Nutr. Metab. Insights, vol.7, pp.47-50, 2014.

S. E. Van-raaij, S. K. Srai, D. W. Swinkels, and R. P. Van-swelm, Iron uptake by ZIP8 and ZIP14 in human proximal tubular epithelial cells, Biometals, vol.32, pp.211-226, 2019.

R. Abreu, F. Quinn, and P. K. Giri, Role of the hepcidin-ferroportin axis in pathogen-mediated intracellular iron sequestration in human phagocytic cells, Blood Adv, vol.2, pp.1089-1100, 2018.

T. Gabaldón, T. Martin, M. Marcet-houben, P. Durrens, M. Bolotin-fukuhara et al., Comparative genomics of emerging pathogens in the Candida glabrata clade, BMC Genomics, vol.14, p.623, 2013.

R. Edgar, M. Domrachev, and A. E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Res, vol.30, pp.207-210, 2002.

L. Marisa, J. Ichanté, N. Reymond, L. Aggerbeck, H. Delacroix et al., MAnGO: an interactive R-based tool for two-colour microarray analysis, Bioinform. Oxf. Engl, vol.23, pp.2339-2341, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167416

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., ) limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

M. Ringnér, What is principal component analysis?, Nat. Biotechnol, vol.26, pp.303-304, 2008.

B. Falissard, A spherical representation of a correlation matrix, J. Classif, vol.13, pp.267-280, 1996.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., Gene ontology: tool for the uni cation of biology. The Gene Ontology Consortium, Nat. Genet, vol.25, pp.25-29, 2000.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

M. S. Skrzypek, J. Binkley, G. Binkley, S. R. Miyasato, M. Simison et al., The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identi ers and visualization of high throughput sequencing data, Nucleic Acids Res, vol.45, pp.592-596, 2017.

E. I. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein et al., GO::TermFinder-open source software for accessing Gene Ontology information and nding signi cantly enriched Gene Ontology terms associated with a list of genes, Bioinform. Oxf. Engl, vol.20, pp.3710-3715, 2004.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-harel, M. B. Eisen et al., Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell, vol.11, pp.4241-4257, 2000.

J. Zhang, G. Vemuri, and J. Nielsen, Systems biology of energy homeostasis in yeast, Curr. Opin. Microbiol, vol.13, pp.382-388, 2010.

E. Eskes, M. Deprez, T. Wilms, and J. Winderickx, ) pH homeostasis in yeast; the phosphate perspective, Curr. Genet, vol.64, pp.155-161, 2018.

A. Ayer, C. W. Gourlay, and I. W. Dawes, Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae, FEMS Yeast Res, vol.14, pp.60-72, 2014.

J. B. Millar, A genomic approach to studying cell-size homeostasis in yeast, Genome Biol, vol.3, p.1028, 2002.

M. T. Martínez-pastor, G. Marchler, C. Schüller, A. Marchler-bauer, H. Ruis et al., The Saccharomyces cerevisiae zinc nger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE), EMBO J, vol.15, pp.2227-2235, 1996.

N. Conde-e-silva, I. R. Gonçalves, M. Lemaire, E. Lesuisse, J. M. Camadro et al., KlAft, the Kluyveromyces lactis ortholog of Aft1 and Aft2, mediates activation of iron-responsive transcription through the PuCACCC Aft-type sequence, Genetics, vol.183, pp.93-106, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419229

J. Ihrig, A. Hausmann, A. Hain, N. Richter, I. Hamza et al., Iron regulation through the back door: iron-dependent metabolite levels contribute to transcriptional adaptation to iron deprivation in Saccharomyces cerevisiae, Eukaryot. Cell, vol.9, pp.460-471, 2010.

W. G. Bao, B. Guiard, Z. A. Fang, C. Donnini, M. Gervais et al., Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis, Eukaryot. Cell, vol.7, pp.1895-1905, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00352672

L. Carreté, E. Ksiezopolska, E. Gómez-molero, A. Angoulvant, O. Bader et al., Genome comparisons of Candida glabrata serial clinical isolates reveal patterns of genetic variation in infecting clonal populations, Front. Microbiol, vol.10, 2019.

T. Léger, C. Garcia, M. Videlier, and J. Camadro, Label-free quantitative proteomics in yeast, Methods in molecular biology, pp.289-307, 2016.

M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, and B. Kuster, Quantitative mass spectrometry in proteomics: a critical review, Anal Bioanal Chem, vol.389, issue.4, pp.1017-1048, 2007.

K. A. Neilson, N. A. Ali, S. Muralidharan, M. Mirzaei, M. Mariani et al., Less label, more free: approaches in label-free quantitative mass spectrometry, Proteomics, vol.11, issue.4, pp.535-53, 2011.

J. Merhej, A. Thiebaut, C. Blugeon, J. Pouch, A. Chaouche et al., A network of paralogous stress response transcription factors in the human pathogen Candida glabrata, Front Microbiol, vol.7, p.645, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01323791

J. Merhej, T. Delaveau, J. Guitard, B. Palancade, C. Hennequin et al., Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication, Mol Microbiol, vol.96, issue.5, pp.951-72, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01262282

M. Benchouaia, H. Ripoche, M. Sissoko, A. Thiébaut, J. Merhej et al., Comparative transcriptomics highlights new features of the iron starvation response in the human pathogen Candida glabrata, Front Microbiol, vol.9, p.2689, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01944268

T. Léger, C. Garcia, M. Ounissi, G. Lelandais, and J. Camadro, The Metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans, Mol Cell Proteomics, vol.14, issue.1, pp.93-108, 2015.

T. Léger, C. Garcia, L. Collomb, and J. Camadro, A simple light isotope metabolic labeling (SLIM-labeling) strategy: a powerful tool to address the dynamics of proteome variations in vivo, Mol Cell Proteomics, vol.16, issue.11, pp.2017-2048, 2017.

G. Lelandais, T. Denecker, C. Garcia, N. Danila, T. Léger et al., Labelfree quantitative proteomics in Candida yeast species: technical and biological replicates to assess data reproducibility, pp.1-4125
URL : https://hal.archives-ouvertes.fr/hal-02389332

G. Lelandais, Label-free quantitative proteomics in Candida yeast species: technical and biological replicates to assess data reproducibility, vol.33349, p.49
URL : https://hal.archives-ouvertes.fr/hal-02389332

T. R. Fernandes, D. Segorbe, D. Prusky, D. Pietro, and A. , How alkalinization drives fungal pathogenicity, PLOS Pathog, vol.13, issue.11, p.1006621, 2017.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-674, 2011.

M. Macheret and T. D. Halazonetis, DNA replication stress as a hallmark of cancer, Annu. Rev. Pathol. Mech. Dis, vol.10, pp.425-448, 2015.

H. Técher, S. Koundrioukoff, A. Nicolas, and M. Debatisse, The impact of replication stress on replication dynamics and DNA damage in vertebrate cells, Nat. Rev. Genet, vol.18, pp.535-550, 2017.

V. Dileep, J. C. Rivera-mulia, J. Sima, and D. M. Gilbert, Large-scale chromatin structure-function relationships during the cell cycle and development: insights from replication timing, Cold Spring Harb. Symp. Quant. Biol, vol.80, pp.53-63, 2015.

J. C. Rivera-mulia and D. M. Gilbert, Replicating large genomes: divide and conquer, Mol. Cell, vol.62, pp.756-765, 2016.

T. Ryba, I. Hiratani, J. Lu, M. Itoh, M. Kulik et al., Evolutionarily conserved replication timing pro les predict long-range chromatin interactions and distinguish closely related cell types, Genome Res, vol.20, pp.761-770, 2010.

D. Cornacchia, V. Dileep, J. P. Quivy, R. Foti, F. Tili et al., Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells, EMBO J, vol.31, pp.3678-3690, 2012.

R. Desprat, D. Thierry-mieg, N. Lailler, J. Lajugie, C. Schildkraut et al., Predictable dynamic program of timing of DNA replication in human cells, Genome Res, vol.19, pp.2288-2299, 2009.

R. S. Hansen, S. Thomas, R. Sandstrom, T. K. Can-eld, R. E. Thurman et al., Sequencing newly replicated DNA reveals widespread plasticity in human replication timing, Proc. Natl Acad. Sci. U.S.A, vol.107, pp.139-144, 2010.

T. Ryba, D. Battaglia, B. D. Pope, I. Hiratani, and D. M. Gilbert, Genome-scale analysis of replication timing: from bench to bioinformatics, Nat. Protoc, vol.6, pp.870-895, 2011.

V. Dileep, R. Didier, and D. M. Gilbert, Genome-wide analysis of replication timing in mammalian cells: troubleshooting problems encountered when comparing different cell types, Methods, vol.57, pp.165-169, 2012.

C. Marchal, T. Sasaki, D. Vera, K. Wilson, J. Sima et al., Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq, Nat. Protoc, vol.13, pp.819-839, 2018.

N. Petryk, M. Kahli, Y. Aubenton-carafa, Y. Jaszczyszyn, Y. Shen et al., Replication landscape of the human genome, Nat. Commun, vol.7, pp.10208-10220, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01412672

H. Miura, S. Takahashi, R. Poonperm, A. Tanigawa, S. I. Takebayashi et al., Single-cell DNA replication pro ling identi es spatiotemporal developmental dynamics of chromosome organization, Nat. Genet, vol.51, pp.1356-1368, 2019.

C. Marchal, J. Sima, and D. M. Gilbert, Control of DNA replication timing in the 3D genome, Nat. Rev. Mol. Cell Biol, vol.20, pp.721-737, 2019.

I. Hiratani, T. Ryba, M. Itoh, T. Yokochi, M. Schwaiger et al., Global reorganization of replication domains during embryonic stem cell differentiation, PLoS Biol, vol.6, pp.2220-2236, 2008.

R. L. Armstrong, T. J. Penke, B. D. Strahl, A. G. Matera, D. J. Mckay et al., Chromatin conformation and transcriptional activity are permissive regulators of DNA replication initiation in Drosophila, Genome Res, vol.11, pp.1688-1700, 2018.

J. C. Siefert, C. Georgescu, J. D. Wren, A. Koren, and C. L. Sansam, DNA replication timing during development anticipates Downloaded from, 2017.

, 7 transcriptional programs and parallels enhancer activation, NAR Genomics and Bioinformatics, vol.2, issue.2, pp.1406-1416, 2020.

D. J. Massey, D. Kim, K. E. Brooks, M. B. Smolka, and A. Koren, Next-generation sequencing enables spatiotemporal resolution of human centromere replication timing, Genes (Basel), vol.10, p.269, 2019.

M. Krzywinski and N. Altman, Error bars, Nat Methods, vol.10, pp.921-922, 2013.

E. Afgan, D. Baker, B. Batut, . Van-den, M. Beek et al., The Galaxy platform for accessible, reproducible and collaborative biomedical analyses, vol.46, pp.537-544, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01360125

, Riccardo Sabatini nous présente son algorithme lors de la conférence TED How to read the genome and build a human being

, Ci-dessous un exemple de fichier GFF disponible sur la CGD2 19F 229 pour la levure C. glabrata Extension des fichiers : .gff Pour en savoir plus

W. Aalst and . Van-der, Process Mining: Data Science in Action. Process Mining: Data Science in Action, 2016.

A. Hei and . Va-e-i-,-sa-de-g-ee-a-d, Scie i Ri e agai Statistical Sig ifica ce. Nature, 2019.

. De-ge,

D. J. Benjamin, O. James, M. Berger, B. A. Johannesson, E. J. Nosek et al., Redefi e S a i ica Sig ifica ce, Nature Human Behaviour, vol.2, issue.1, p.10, 2018.

S. Berinato, Good Charts -The HBR Guide to Making Smarter, More Persuasive Data Visualizations, 2016.

, Archives de Sociologie Des Religions, vol.26, issue.1, pp.176-77

M. Bilotta, G. Tradigo, and P. Veltri, Bioinformatics Data Models, Representation and Storage. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, vol.1, p.3, 2018.

W. Chang and B. Bo-ge-ribei, , 2018.

W. Chang, J. Cheng, J. Allai-e,-yih-i-xie, and . Ha-mcphe, Shi : Web A ica i F a e f R, 2019.

H. Cha-if,-d,-a-d-j-r-l-b-.-;-m-porto, M. Roman, and . Vendruscolo, Se i R 1.0-2: A Contributed Package to the {R} Project for Statistical Computing Devoted to Bi gica Se e ce Re ie a a d A a i . I Structural Approaches to Sequence Evolution: Molecules, Networks, Populations, Biological and Medical Physics, vol.207, p.32, 2007.

B. Cha-de, D e, I f a i, 2009.

. Cherry, . Michael, L. Eurie, C. Hong, R. Amundsen et al., Saccha ce Ge e Da aba e : The Genomics Re ce f B ddi g Yea, Nucleic Acids Research, vol.40, pp.700-705, 2011.

. Ch and J. Ma-i, The H a Mic bi e: A he I e face f Hea h a d Di ea e, Nature Reviews Genetics, vol.13, issue.4, pp.260-70, 2012.

, Hemodialysis International

. De-a-,-f-d-ic,-a-d-a-i-thi-ba, The Reg a i f I H e a i in the F ga H a Pa h ge Ca dida G ab a a, Microbiology (United Kingdom), vol.165, issue.10, p.60, 1041.

W. J. Di-i and F. Ca-d-i, Bi i f a ic : A O e ie a d I A ica i, Genetics and Molecular Research, vol.16, issue.1, pp.1-21, 2017.

A. Doi, A. Mario, M. B. Pignatari, A. R. Edmond, L. Marra et al., E ide i g a d Mic bi gic Characterization of Nosocomial Candidemia from a Brazilian National Surveillance P g a, PLoS ONE, vol.11, issue.1, 2016.

G. Downing, F. Haseltine, B. Seto, and Y. Liu, NIH WORKING DEFINITION OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2000.

D. , M R e he I i ac f Ge e, Nature Reviews. Genetics, vol.11, issue.7, pp.512-536, 2010.

,

B. Dujon, D. Sherman, G. Fischer, P. Durrens, S. Casaregela et al., Ge e E i i Yea, Nature, vol.430, issue.6995, pp.35-44, 2004.

A. Dutta and . Kumar, Ragib Ha a . 2013. H M ch D e S age Rea C ? T a d, vol.29, p.43

R. O. Ebanks, K. Chisholm, S. Mckinnon, M. Whiteway, and D. M. Pi, P e ic A a i f Ca dida A bica Yea a d H ha Ce Wa and Associated Proteins, Proteomics, vol.6, issue.7, pp.2147-56, 2006.

I. Eidhammer and H. Barsnes, Geir Egil Eide, and Lennart Martens. 2013. Computational and Statistical Methods for Protein Quantification by Mass Spectrometry. Computational and Statistical Methods for Protein Quantification by Mass Spectrometry

S. El-gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani et al., The Pfa P ei Fa i ie Da aba e i 2019, Nucleic Acids Research, vol.47, issue.D1, pp.427-459, 2019.

N. Gehlenborg, U Se R: A M e Sca ab e A e a i e Ve a d E e Diagrams f Vi a i i g I e ec i g Se, 2019.

R. Gergondey, C. Garcia, V. Serre, J. M. Camadro, and F. Auchère, The Ada i e Metabolic Response Involves Specific Protein Glutathionylation during the Filamentation P ce i he Pa h ge Ca dida A bica, Biochimica et Biophysica Acta -Molecular Basis of Disease, vol.1862, issue.7, pp.1309-1332, 2016.

E. Gerts, Y. K. Michael, R. Yu, A. A. Agarwala, and S. F. Schäffer, A ch . 2006. C i i -Based Statistics and Translated Nucleotide Searches: Improving the TBLASTN Module f BLAST, BMC Biology, vol.4, pp.1-14

F. Gerwien, A. Safyan, S. Wisgott, S. Brunke, L. Kasper et al., The F ga Pa h ge Ca dida G ab a a D e N De e d Surface Ferric Reducta e f I Ac i i i, Frontiers in Microbiology, vol.8, 2017.

,

F. Gerwien, A. Safyan, S. Wisgott, F. Hille, and P. Kaemmer, Jörg Li de, Sa cha B e, L dia Ka e , a d Be ha d H be. 2016. A Novel Hybrid Iron Reg a i Ne C bi e Fea e f Pa h ge ic a d N a h ge ic Yea

, MBio, vol.7, issue.5

F. Gerwien, V. Skrahina, L. Kasper, B. Hube, and S. Brunke, Me a i F ga Vi e ce, FEMS Microbiology Reviews, vol.42, issue.1, pp.1-21, 2018.

, Ge a , Ma , a d Dieg de Ca i, 2011.

, R Journal, vol.3, issue.2, pp.40-44

J. D. Gibbons, The American Statisticia, vol.29, issue.1, pp.829-863, 1975.

. Go-fair, FAIR P i ci e, 2020.

D. G-a-j and . Id, Shi da hb a dP : Add M e Ad i LTE2 C e Shi da hb a d, 2019.

G. R. Grant, E. Manduchi, and C. J. , Current Protocols in Molecular Biology, 2007.

A. Mbengue, Fa -I B e Le Te de Sig ifica i S a i i e ? Management (France), vol.13, pp.99-127, 2010.

A. D. Mccall, U. Ruvini, A. Pathirana, P. J. Prabhakar, M. Cullen et al., Ca dida A bica Bi film Development Is Governed by Cooperative Attachment a d Adhe i Mai e a ce P ei, Npj Biofilms and Microbiomes, vol.5, issue.1, 2019.

,

D. Mccandless, Visual Miscellaneum_ The Bestselling Classic, Revised and Updated_ A Colo f l G ide o he Wo ld Mo Con eq en ial T i ia, 2000.

B. B. Mcshane, D. Gal, A. Gelman, C. Robert, and J. L. Tackett, Aba d S a i ica Sig ifica ce, American Statistician, vol.73, issue.sup1, pp.235-280, 2019.

, High igh Nega i e Re I e Scie ce, Nature, 2019.

. Me-de and . Eg, EXPERIMENTS IN PLANT HYBRIDIZATION, 1865.

J. Merhej, A. Frigo, S. L. Crom, J. Camadro, F. Devaux et al., BPea : A Bi i f a ic T De ec T a c i i Factor Binding Sites from ChIPseq Data in Yeasts and Other Organisms with, Small Ge e . Yeast, vol.31, issue.10, pp.375-91, 2014.

, I Che a i a The a for HIV and Mycobacterium Tuberculosis Coad, Current Pharmaceutical Design, vol.12, issue.16, p.47, 1943.

A. L. Mitchell, K. Teresa, P. C. Attwood, M. Babbitt, P. Blum et al., I e P i 2019: Improving Coverage, Classification and Access to Protein Sequence A a i, Nucleic Acids Research, p.47, 2019.

,

M. Nagi, K. Tanabe, H. Nakayama, K. Ueno, S. Yamagoe et al., Hidea i Oh , a d Y hi g Mi a a i. 2016. I -Depletion Promotes Mi hag Mai ai Mi ch d ia I eg i i Pa h ge ic Yea Ca dida G ab a a

, Autophagy, vol.12, issue.8, pp.1259-71

M. Nairz, A. Schroll, . Th-a-s-ebe, and . Wei, The S gg e for Iron -a Metal at the Host-Pa h ge I e face, Cellular Microbiology, vol.12, issue.12, p.1691, 2010.

,

F. Nakano, M. Kenji, C. Lietaert, and . Ven, Machi e Lea i g f Discovering Missing or Wrong Protei F c i A a i, BMC Bioinformatics, vol.20, 2019.

, Ensuring the Integrity, Accessibility, and Stewardship of Research Data in the Digital Age, 2009.

. Nemeth, M. S. Elizabeta, J. Tuttle, M. D. Powelson, A. Vaughn et al., He cidi Reg a e Ce a Ir Eff b Bi di g Fe i a d I d ci g I I e a i a i, Science, vol.306, issue.5704, pp.2090-93, 2004.

J. Ne-i-,-t-ac-,-a-d-de-i, Thie e. 2011. H I on Withholding Demands Siderophore Pathogens, vol.7, p.1001322

B. T. Nichio, R. Jeroniza-nunes-marchaukoski, and . Raittz, Ne T i O h g A a i : A B ief Re ie f P i i g Pe ec i e, Frontiers in Genetics, vol.8, p.12, 2017.

I. B. Rogozin, D. Managadze, S. A. Shabalina, and E. V. Koonin, , 2014.

, Genome Biology and Evolution, vol.6, issue.4, pp.754-62

A. S. Rose, R. Anthony, Y. Bradley, J. M. Valasatava, A. Duarte et al., NGL Vie e : Web-Based Molecular Graphics for Large C e e, Bioinformatics, vol.34, issue.21, pp.3755-58, 2018.

,

S. R-e,-a-e-a-de, NGL Vie e : A Web A ica i f M ec a Vi a i a i, Nucleic Acids Research, vol.43, issue.W1, pp.576-79, 2015.

H. Rosling, O. Rosling, and A. R. Rönnlund, Fac f lne : Ten Rea on We e W ong Abo he Wo ld and Wh Thing A e Be e Than Yo Think. Sceptre, 2018.

R. Rossoni, J. Dennis, S. Barbosa, and . Vilela, Antonio Olav Ca d J ge, a d J ia a Ca J ei a. 2013. C a i on of the Hemolytic Activity between C. Albicans and Non-A bica Ca dida S ecie, Brazilian Oral Research, vol.27, issue.6, pp.484-89

S. Rr, The Big Da a De ge i Bi g : Cha e ge a d S i, Journal of Informatics and Data Mining, vol.1, issue.2, 2016.

. Sa, A d a , a d Dea A a i. 2020. Shi c ade : Add CSS L adi g A i a i hi

A. L. Samuel, S e S die i Machi e Lea i g U i g he Ga e f Chec e . II-Rece P g e, vol.6, pp.1-36, 1959.

L. Santo and B. Li, P ei P a a i nal Modifications: Roles in Aging and Age-Re a ed Di ea e. Oxidative Medicine and Cellular Longevity, 2017.

G. C. Santos, C. C. De-oliveira, A. J. Vasconcelos, M. Lopes, S. De-sousa et al., Ca dida I fec i a d The a e ic S a egie : Mecha i in Microbiology, 2018.

C. Sasse, M. Hasenberg, M. Weyler, M. Gunzer, and J. M. Chh-e, Whi e-Opaque Switching of Candida Albicans Allows Immune Evasion in an Environment-De e de Fa hi, Eukaryotic Cell, vol.12, issue.1, pp.50-58, 2013.

E. L. Sonnhammer, T. Gabaldon, A. W. Sousa-da, M. Silva, M. Martin et al.,

, Big Da a a d O he Cha e ge i he Q e f O h g, Bioinformatics, vol.30, issue.21, pp.2993-98

W. Soon, M. Weijia, M. P. Hariharan, and . Snyder, Molecular Systems Biology, vol.9, issue.640, pp.1-14, 2013.

. S-i-a-a-a and K. Vi-e-k-a-,-k-i-i-j-hi-aj-s-ee-ha,-a-d-r-i-de, A S e a ic Analysis Reveals an Essential Role for High-Affinity Iron Uptake System, Haemolysin and CFEM Domain-Containing Protein in Iron Homoeostasis and Virulence in Candida G ab a a, Biochemical Journal, vol.463, issue.1, pp.103-117, 2014.

. De-hi, M. Da-id, and D. Ie, The M c bi a: I e ac i be ween C e a F gi a d he H I e S e, Nature Reviews Immunology, vol.14, issue.6, pp.405-421, 2014.

K. Velliyagounder, W. Alsaedi, W. Alabdulmohsen, K. Markowitz, and D. H. Fine, O a Lac fe i P ec agai E e i e a Ca didia i i Mice, Journal of Applied Microbiology, vol.118, issue.1, pp.212-233, 2015.

C. T. Walsh, S. Garneau, -. Di-a,-a-d-g-eg, and J. Ga, P ei Posttranslational Modifications: The Chemistry of Proteome Diver ifica i, Angewandte Chemie -International Edition, vol.44, issue.45, pp.7342-72, 2005.

T. Warren and A. Li-a-mctagga, Richa d , a d Sea X. Zha g. 2010. Ca dida Bracarensis Bloodstream Infection in an Immunocompro i ed Pa ie, Journal of Clinical Microbiology, vol.48, issue.12, pp.4677-79

S. Webb, Dee Lea i g f Bi g, Nature, vol.554, issue.7693, pp.555-57, 2018.

. Wic-ha and . Had-e, Re ha i g Da a i h he e ha e Pac age, Journal of Statistical Software, vol.21, issue.12, 2007.

, Monoclonal Antibody from Single-And Multiple-Dose Monkey Pharmacokinetic Studies U i g Ma S ec e, PLoS ONE, vol.14, issue.10, pp.1-26

A. D. Yates, W. Premanand-achuthan, J. Akanni, J. Allen, J. Allen et al., Nucleic Acids Research, vol.2020, issue.2020, pp.682-88

M. Zahn-zabal, P. A. Michel, A. Gateau, F. Nikitin, M. Schaeffer et al., The NeX P K edgebase in 2020: Data, Tools and Usabi i I e e, vol.48, pp.328-362, 2020.

. Zhou, C. L. Jian, K. Theesfeld, K. M. Yao, A. K. Chen et al., Dee Lea i g Se e ce-Based Ab Initio Prediction of Variant Effects on Expression and Disea e Ri, Nature Genetics, vol.50, issue.8, pp.1171-79, 2018.

M. Ziemann, Y. Eren, and A. El-o-a, , 2016.

, Genome Biology. BioMed Central Ltd

. Zi-f,-ge-ge-ki-g-e, The P ch -Biology of Language; an Introduction to Dynamic Phi g . Boston: Houghton Mifflin company, 1935.