L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, Recognition of doublestranded RNA and activation of NF-?B by Tolllike receptor 3, Nature, vol.413, pp.732-738, 2001.

L. Alías, S. Bernal, P. Fuentes-prior, M. J. Barceló, E. Also et al., Mutation update of spinal muscular atrophy in Spain: molecular characterization of 745 unrelated patients and identification of four novel mutations in the <Emphasis Type="Italic">SMN1</Emphasis> gene, Hum. Genet, vol.125, pp.29-39, 2009.

D. L. Allen, R. R. Roy, and V. R. Edgerton, Myonuclear domains in muscle adaptation and disease, Muscle Nerve, vol.22, pp.1350-1360, 1999.

Y. Ando, Y. Tomaru, A. Morinaga, A. M. Burroughs, H. Kawaji et al., Nuclear Pore Complex Protein Mediated Nuclear Localization of Dicer Protein in Human Cells, PLoS ONE, vol.6, 2011.

A. Araujo, Q. C. Prufer-de, M. Araujo, and K. J. Swoboda, Vascular Perfusion Abnormalities in Infants with Spinal Muscular Atrophy, J. Pediatr, vol.155, pp.292-294, 2009.

N. Armbruster, A. Lattanzi, M. Jeavons, L. Van-wittenberghe, B. Gjata et al., Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy, Mol. Ther. Methods Clin. Dev, vol.3, p.16060, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01487810

A. Arnold, M. Gueye, S. Guettier-sigrist, I. Courdier-fruh, G. Coupin et al., Reduced expression of nicotinic AChRs in myotubes from spinal muscular atrophy I patients, Lab. Invest, vol.84, pp.1271-1278, 2004.

W. D. Arnold, K. A. Sheth, C. G. Wier, J. T. Kissel, A. H. Burghes et al., , 2015.

, Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles, J. Vis. Exp. JoVE

M. Azzouz, T. Le, G. S. Ralph, L. Walmsley, U. R. Monani et al., Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy, J. Clin. Invest, vol.114, pp.1726-1731, 2004.

J. R. Bach, Medical Considerations of Long-Term Survival of Werdnig-Hoffmann Disease, Am. J. Phys. Med. Rehabil, vol.86, pp.200-209, 2007.

S. Balabanian, N. H. Gendron, and A. E. Mackenzie, Histologic and transcriptional assessment of a mild SMA model, Neurol. Res, vol.29, pp.413-424, 2007.

M. Barkats, Widespread Gene Delivery to Motor Neurons Using Peripheral Injection of Aav Vectors, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02823523

S. Baron-delage, A. Abadie, A. Echaniz-laguna, J. Melki, and L. Beretta, Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes, Mol. Med, vol.6, pp.957-968, 2000.

D. J. Battle, M. Kasim, J. Yong, F. Lotti, C. Lau et al., The SMN complex: an assembly machine for RNPs, Cold Spring Harb. Symp. Quant. Biol, vol.71, pp.313-320, 2006.

C. Baudet, E. Pozas, I. Adameyko, E. Andersson, J. Ericson et al., , 2008.

, Retrograde signaling onto Ret during motor nerve terminal maturation, J. Neurosci. Off. J. Soc. Neurosci, vol.28, pp.963-975

V. Baumann and J. Winkler, miRNAbased therapies: strategies and delivery platforms for oligonucleotide and nonoligonucleotide agents, Future Med. Chem, vol.6, pp.1967-1984, 2014.

L. Baumbach-reardon, S. J. Sacharow, and M. E. Ahearn, Spinal Muscular Atrophy, X-Linked Infantile, 2012.

D. Bäumer, S. Lee, G. Nicholson, J. L. Davies, N. J. Parkinson et al., Alternative Splicing Events Are a Late Feature of Pathology in a Mouse Model of Spinal Muscular Atrophy, PLOS Genet, vol.5, p.1000773, 2009.

R. Beck, M. Ravet, F. T. Wieland, and D. Cassel, The COPI system: Molecular mechanisms and function, FEBS Lett, vol.583, pp.2701-2709, 2009.

I. Behm-ansmant, J. Rehwinkel, T. Doerks, A. Stark, P. Bork et al., mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes, Genes Dev, vol.20, pp.1885-1898, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01738497

V. L. Bella, C. Cisterni, D. Salaün, and B. Pettmann, Survival motor neuron (SMN) protein in rat is expressed as different molecular forms and is developmentally regulated, Eur. J. Neurosci, vol.10, pp.2913-2923, 1998.

L. M. Bellamy, S. Joanisse, A. Grubb, C. J. Mitchell, B. R. Mckay et al., The acute satellite cell response and skeletal muscle hypertrophy following resistance training, PloS One, vol.9, 2014.

A. K. Bevan, K. R. Hutchinson, K. D. Foust, L. Braun, V. L. Mcgovern et al., Early heart failure in the SMN?7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery, Hum. Mol. Genet, vol.19, pp.3895-3905, 2010.

D. Bloemberg and J. Quadrilatero, Rapid Determination of Myosin Heavy Chain Expression in Rat, Mouse, and Human Skeletal Muscle Using Multicolor Immunofluorescence Analysis, PLOS ONE, vol.7, p.35273, 2012.

G. M. Borchert, W. Lanier, and B. L. Davidson, RNA polymerase III transcribes human microRNAs, Nat. Struct. Mol. Biol, vol.13, pp.1097-1101, 2006.

T. Bordet, P. Berna, J. Abitbol, R. M. Pruss, T. Bordet et al., Olesoxime (TRO19622): A Novel Mitochondrial-Targeted Neuroprotective Compound, Pharmaceuticals, vol.3, pp.345-368, 2010.

R. Bottinelli, M. Canepari, C. Reggiani, and G. J. Stienen, Myofibrillar ATPase activity during isometric contraction and isomyosin composition in rat single skinned muscle fibres, J. Physiol, vol.481, pp.663-675, 1994.

M. Bowerman, D. Shafey, and R. Kothary, Smn depletion alters profilin II expression and leads to upregulation of the RhoA/ROCK pathway and defects in neuronal integrity, J. Mol. Neurosci. MN, vol.32, pp.120-131, 2007.

M. Bowerman, C. L. Anderson, A. Beauvais, P. P. Boyl, W. Witke et al., , 2009.

P. Smn and . Iia, A link between the deregulation of actin dynamics and SMA pathogenesis, Mol. Cell. Neurosci, vol.3, pp.66-74

M. Bowerman, K. J. Swoboda, J. Michalski, G. Wang, C. Reeks et al., Glucose Metabolism and Pancreatic Defects in Spinal Muscular Atrophy, Ann. Neurol, vol.72, pp.256-268, 2012.

J. G. Boyer, M. Deguise, L. M. Murray, A. Yazdani, Y. De-repentigny et al., Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy, Hum. Mol. Genet, vol.23, pp.4249-4259, 2014.

H. Brahms, L. Meheus, V. De-brabandere, U. Fischer, and R. Lührmann, Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein, vol.7, pp.1531-1542, 2001.

J. E. Braun, E. Huntzinger, M. Fauser, and E. Izaurralde, GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets, Mol. Cell, vol.44, pp.120-133, 2011.

J. E. Braun, V. Truffault, A. Boland, E. Huntzinger, C. Chang et al., A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5' exonucleolytic degradation, Nat. Struct. Mol. Biol, vol.19, pp.1324-1331, 2012.

S. Braun, J. M. Warter, P. Poindron, B. Croizat, and M. C. Lagrange, Constitutive muscular abnormalities in culture in spinal muscular atrophy, The Lancet, vol.345, pp.694-695, 1995.

S. Braun, B. Croizat, M. Lagrange, P. Poindron, and J. Warter, , 1997.

, Degeneration of cocultures of spinal muscular atrophy muscle cells and rat spinal cord explants is not due to secreted factors and cannot be prevented by neurotrophins, Muscle Nerve, vol.20, pp.953-960

K. V. Bricceno, T. Martinez, E. Leikina, S. Duguez, T. A. Partridge et al., Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics, Hum. Mol. Genet, vol.23, pp.4745-4757, 2014.

M. B. Bromberg and K. J. Swoboda, , 2002.

, Motor Unit Number Estimation in Infants and Children with Spinal Muscular Atrophy, Muscle Nerve, vol.25, pp.445-447

J. C. Bruusgaard, I. B. Johansen, I. M. Egner, Z. A. Rana, and K. Gundersen, , 2010.

, Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.15111-15116

K. Burger, M. Schlackow, M. Potts, S. Hester, S. Mohammed et al., Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage, J. Cell Biol, vol.216, pp.2373-2389, 2017.

A. H. Burghes and C. E. Beattie, Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?, Nat. Rev. Neurosci, vol.10, pp.597-609, 2009.

L. Bürglen, S. Lefebvre, O. Clermont, P. Burlet, L. Viollet et al., Structure and organization of the human survival motor neurone (SMN) gene, Genomics, vol.32, pp.479-482, 1996.

L. Bürglen, J. Amiel, L. Viollet, S. Lefebvre, P. Burlet et al., Survival motor neuron gene deletion in the arthrogryposis multiplex congenita-spinal muscular atrophy association, J. Clin. Invest, vol.98, pp.1130-1132, 1996.

R. E. Burke, P. L. Strick, K. Kanda, C. C. Kim, and B. Walmsley, Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord, J. Neurophysiol, vol.40, pp.667-680, 1977.

D. J. Burkin and S. J. Kaufman, The ?7?1 integrin in muscle development and disease, Cell Tissue Res, vol.296, pp.183-190, 1999.

P. Burlet, C. Huber, S. Bertrandy, M. A. Ludosky, I. Zwaenepoel et al., The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy, Hum. Mol. Genet, vol.7, pp.1927-1933, 1998.

B. G. Burnett, E. Muñoz, A. Tandon, D. Y. Kwon, C. J. Sumner et al., Regulation of SMN Protein Stability, Mol. Cell. Biol, vol.29, pp.1107-1115, 2009.

B. G. Burnett, E. Muñoz, A. Tandon, D. Y. Kwon, C. J. Sumner et al., Regulation of SMN Protein Stability, Mol. Cell. Biol, vol.29, pp.1107-1115, 2009.

A. M. Burroughs, Y. Ando, M. J. De-hoon, Y. Tomaru, H. Suzuki et al., Deep-sequencing of human argonaute-associated small RNAs provides insight into miRNA sorting and reveals argonaute association with RNA fragments of diverse origin, RNA Biol, vol.8, pp.158-177, 2011.

A. N. Calder, E. J. Androphy, and K. J. Hodgetts, Small Molecules in Development for the Treatment of Spinal Muscular Atrophy, J. Med. Chem, vol.59, pp.10067-10083, 2016.

C. A. Cardasis and H. A. Padykula, , 1981.

, Ultrastructural evidence indicating reorganization at the neuromuscular junction in the normal rat soleus muscle, Anat. Rec, vol.200, pp.41-59

R. J. Cauchi, SMN and Gemins: "we are family" ? or are we?: insights into the partnership between Gemins and the spinal muscular atrophy disease protein SMN, 2010.

, BioEssays News Rev. Mol. Cell. Dev. Biol, vol.32, pp.1077-1089

F. Chali, C. Desseille, L. Houdebine, E. Benoit, T. Rouquet et al., Long-term exercise-specific neuroprotection in spinal muscular atrophylike mice, J. Physiol, vol.594, pp.1931-1952, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01306145

Y. B. Chan, I. Miguel-aliaga, C. Franks, N. Thomas, B. Trülzsch et al., Neuromuscular defects in a Drosophila survival motor neuron gene mutant, Hum. Mol. Genet, vol.12, pp.1367-1376, 2003.

J. Chen, E. M. Mandel, J. M. Thomson, Q. Wu, T. E. Callis et al., The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation, Nat. Genet, vol.38, pp.228-233, 2006.

Y. Chen, J. D. Zajac, and H. E. Maclean, , 2005.

, Androgen regulation of satellite cell function, J. Endocrinol, vol.186, pp.21-31

Y. Chen, J. Gelfond, L. M. Mcmanus, and P. K. Shireman, Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682, Physiol. Genomics, vol.43, pp.621-630, 2011.

T. P. Chendrimada, K. J. Finn, X. Ji, D. Baillat, R. I. Gregory et al., MicroRNA silencing through RISC recruitment of eIF6, Nature, vol.447, pp.823-828, 2007.

T. H. Cheung, N. L. Quach, G. W. Charville, L. Liu, L. Park et al., Maintenance of muscle stem cell quiescence by microRNA-489, Nature, vol.482, pp.524-528, 2012.

S. Cho and G. Dreyfuss, A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity, Genes Dev, vol.24, pp.438-442, 2010.

M. Christie, A. Boland, E. Huntzinger, O. Weichenrieder, and E. Izaurralde, Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins, Mol. Cell, vol.51, pp.360-373, 2013.

C. Chu, R. , and T. M. , Translation repression in human cells by microRNAinduced gene silencing requires RCK/p54, PLoS Biol, vol.4, p.210, 2006.

S. Ciciliot, A. C. Rossi, K. A. Dyar, B. Blaauw, and S. Schiaffino, Muscle type and fiber type specificity in muscle wasting, Int. J. Biochem. Cell Biol, vol.45, pp.2191-2199, 2013.

C. Cifuentes-diaz, T. Frugier, F. D. Tiziano, E. Lacène, N. Roblot et al., Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy, J. Cell Biol, vol.152, pp.1107-1114, 2001.

C. Cifuentes-diaz, S. Nicole, M. E. Velasco, C. Borra-cebrian, C. Panozzo et al., Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model, Hum. Mol. Genet, vol.11, pp.1439-1447, 2002.

A. L. Cook, C. L. Curzon, and A. S. Milazzo, An infant with hypoplastic left heart syndrome and spinal muscular atrophy, Cardiol. Young, vol.16, pp.78-80, 2006.

D. D. Coovert, T. T. Le, P. E. Mcandrew, J. Strasswimmer, T. O. Crawford et al.,

J. R. Coulson, S. E. Androphy, E. J. Prior, T. W. Burghes, and A. H. , The Survival Motor Neuron Protein in Spinal Muscular Atrophy, Hum. Mol. Genet, vol.6, pp.1205-1214, 1997.

C. J. Cortes, L. Spada, and A. R. , X-Linked Spinal and Bulbar Muscular Atrophy: From Clinical Genetic Features and Molecular Pathology to Mechanisms Underlying Disease Toxicity, Adv. Exp. Med. Biol, vol.1049, pp.103-133, 2018.

A. Courseaux, F. Richard, J. Grosgeorge, C. Ortola, A. Viale et al., , 2003.

, Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation, Genome Res, vol.13, pp.369-381

F. A. Court, T. H. Gillingwater, S. Melrose, D. L. Sherman, K. N. Greenshields et al., Identity, developmental restriction and reactivity of extralaminar cells capping mammalian neuromuscular junctions, 2008.

, J. Cell Sci, vol.121, pp.3901-3911

R. M. Crameri, H. Langberg, P. Magnusson, C. H. Jensen, H. D. Schrøder et al., , 2004.

, J. Physiol, vol.558, pp.333-340

T. O. Crawford and C. A. Pardo, The Neurobiology of Childhood Spinal Muscular Atrophy, Neurobiol. Dis, vol.3, pp.97-110, 1996.

T. O. Crawford, J. T. Sladky, O. Hurko, A. Besner-johnston, and R. I. Kelley, Abnormal fatty acid metabolism in childhood spinal muscular atrophy, Ann. Neurol, vol.45, pp.337-343, 1999.

C. G. Crist, D. Montarras, and M. Buckingham, Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules, Cell Stem Cell, vol.11, pp.118-126, 2012.

T. L. Cuellar, T. H. Davis, P. T. Nelson, G. B. Loeb, B. D. Harfe et al., Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.5614-5619, 2008.

S. Cullheim, J. W. Fleshman, L. L. Glenn, and R. E. Burke, Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons, J. Comp. Neurol, vol.255, pp.68-81, 1987.

S. K. Custer and E. J. Androphy, , 2014.

, Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy, Mol. Cell. Neurosci, vol.61, pp.133-140

S. K. Custer, A. G. Todd, N. N. Singh, and E. J. Androphy, Dilysine motifs in exon 2b of SMN protein mediate binding to the COPI vesicle protein ?-COP and neurite outgrowth in a cell culture model of spinal muscular atrophy, Hum. Mol. Genet, vol.22, pp.4043-4052, 2013.

E. Dachs, M. Hereu, L. Piedrafita, A. Casanovas, J. Calderó et al., Defective neuromuscular junction organization and postnatal myogenesis in mice with severe spinal muscular atrophy, J. Neuropathol. Exp. Neurol, vol.70, pp.444-461, 2011.

H. H. Dale and H. W. Dudley, The presence of histamine and acetylcholine in the spleen of the ox and the horse, J. Physiol, vol.68, pp.97-123, 1929.

K. C. Darr and E. Schultz, Exerciseinduced satellite cell activation in growing and mature skeletal muscle, J. Appl. Physiol. Bethesda Md, vol.63, pp.1816-1821, 1985.

M. Deguise, Y. De-repentigny, E. Mcfall, N. Auclair, S. Sad et al., Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice, Hum. Mol. Genet, vol.26, pp.801-819, 2017.

B. K. Dey, J. Gagan, and A. Dutta, miR-206 and -486 induce myoblast differentiation by downregulating Pax7, Mol. Cell. Biol, vol.31, pp.203-214, 2011.

G. Di-leva, M. Garofalo, and C. M. Croce, MicroRNAs in cancer, Annu. Rev. Pathol, vol.9, pp.287-314, 2014.

N. Didier, C. Hourdé, H. Amthor, G. Marazzi, and D. Sassoon, Loss of a single allele for Ku80 leads to progenitor dysfunction and accelerated aging in skeletal muscle, EMBO Mol. Med, vol.4, pp.910-923, 2012.

C. J. Didonato, X. Chen, D. Noya, J. R. Korenberg, J. H. Nadeau et al., Cloning, Characterization, and Copy Number of the Murine Survival Motor Neuron Gene: Homolog of the Spinal Muscular Atrophy-Determining Gene, Genome Res, vol.7, pp.339-352, 1997.

C. J. Didonato, R. J. Parks, and R. Kothary, Development of a gene therapy strategy for the restoration of survival motor neuron protein expression: implications for spinal muscular atrophy therapy, Hum. Gene Ther, vol.14, pp.179-188, 2003.

M. Dimitriadi, A. Derdowski, G. Kalloo, M. S. Maginnis, P. O&apos;hern et al., Decreased function of survival motor neuron protein impairs endocytic pathways, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.4377-4386, 2016.

G. J. Doherty and H. T. Mcmahon, Mechanisms of endocytosis, Annu. Rev. Biochem, vol.78, pp.857-902, 2009.

T. K. Doktor, L. D. Schrøder, H. S. Andersen, S. Brøner, A. Kitewska et al., , 2014.

E. Dominguez, T. Marais, N. Chatauret, S. Benkhelifa-ziyyat, S. Duque et al., Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice, Hum. Mol. Genet, vol.20, pp.681-693, 2011.

M. Doyle, L. Badertscher, L. Jaskiewicz, S. Güttinger, S. Jurado et al., The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal, RNA, vol.19, pp.1238-1252, 2013.

H. C. Dreyer, C. E. Blanco, F. R. Sattler, E. T. Schroeder, and R. A. Wiswell, , 2006.

, Satellite cell numbers in young and older men 24 hours after eccentric exercise, Muscle Nerve, vol.33, pp.242-253

V. Dubois, M. R. Laurent, M. Sinnesael, N. Cielen, C. Helsen et al., A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.28, pp.2979-2994, 2014.

S. Duque, B. Joussemet, C. Riviere, T. Marais, L. Dubreil et al., Intravenous administration of selfcomplementary AAV9 enables transgene delivery to adult motor neurons, Mol. Ther. J. Am. Soc. Gene Ther, vol.17, pp.1187-1196, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02666576

S. I. Duque, W. D. Arnold, P. Odermatt, X. Li, P. N. Porensky et al., A large animal model of Spinal Muscular Atrophy and correction of phenotype, Ann. Neurol, vol.77, pp.399-414, 2015.

A. Echaniz-laguna, P. Miniou, D. Bartholdi, and J. Melki, The Promoters of the Survival Motor Neuron Gene (SMN) and Its Copy (SMNc) Share Common Regulatory Elements, Am. J. Hum. Genet, vol.64, pp.1365-1370, 1999.

I. M. Egner, J. C. Bruusgaard, and K. Gundersen, Satellite cell depletion prevents fiber hypertrophy in skeletal muscle, Development, vol.143, pp.2898-2906, 2016.

M. Elkohen, G. Vaksmann, M. R. Elkohen, C. Francart, C. Foucher et al., , 1996.

. Arch, Coeur Vaiss, vol.89, pp.611-617

W. El-matary, S. Kotagiri, D. Cameron, and I. Peart, Spinal muscle atrophy type 1 (Werdnig-Hoffman disease) with complex cardiac malformation, Eur. J. Pediatr, vol.163, pp.331-332, 2004.

A. Emde, C. Eitan, L. Liou, R. T. Libby, N. Rivkin et al., Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS, EMBO J, vol.34, pp.2633-2651, 2015.

P. Errico, M. Boido, A. Piras, V. Valsecchi, E. D. Amicis et al., Selective Vulnerability of Spinal and Cortical Motor Neuron Subpopulations in delta7 SMA Mice, PLOS ONE, vol.8, 2013.

M. R. Fabian, G. Mathonnet, T. Sundermeier, H. Mathys, J. T. Zipprich et al., Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation, Mol. Cell, vol.35, pp.868-880, 2009.

M. R. Fabian, M. K. Cieplak, F. Frank, M. Morita, J. Green et al., miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT, Nat. Struct. Mol. Biol, vol.18, pp.1211-1217, 2011.

M. A. Farrar, S. Vucic, H. M. Johnston, D. Du-sart, and M. C. Kiernan, , 2013.

, Pathophysiological Insights Derived by Natural History and Motor Function of Spinal Muscular Atrophy, J. Pediatr, vol.162, pp.155-159

M. A. Farrar, S. B. Park, S. Vucic, K. A. Carey, B. J. Turner et al., Emerging therapies and challenges in spinal muscular atrophy, 2017.

, Ann. Neurol, vol.81, pp.355-368

S. Fayzullina and L. J. Martin, Skeletal Muscle DNA Damage Precedes Spinal Motor Neuron DNA Damage in a Mouse Model of Spinal Muscular Atrophy (SMA), PLoS ONE, vol.9, 2014.

W. Feldberg and M. Vogt, , 1948.

, Acetylcholine synthesis in different regions of the central nervous system, J. Physiol, vol.107, pp.372-381

U. Felderhoff-mueser, K. Grohmann, A. Harder, C. Stadelmann, K. Zerres et al., Severe spinal muscular atrophy variant associated with congenital bone fractures, J. Child Neurol, vol.17, pp.718-721, 2002.

M. Feldkötter, V. Schwarzer, R. Wirth, T. F. Wienker, and B. Wirth, Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy, Am. J. Hum. Genet, vol.70, pp.358-368, 2002.

Z. Feng, K. K. Ling, X. Zhao, C. Zhou, G. Karp et al., Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset, Hum. Mol. Genet, vol.25, pp.964-975, 2016.

A. Fidzia?ska and J. Rafalowska, Motoneuron death in normal and spinal muscular atrophy-affected human fetuses, Acta Neuropathol. (Berl.), vol.104, pp.363-368, 2002.

A. Fidzia?ska, H. H. Goebel, and I. Warlo, ACUTE INFANTILE SPINAL MUSCULAR ATROPHYMUSCLE APOPTOSIS AS A PROPOSED PATHOGENETIC MECHANISM, Brain, vol.113, pp.433-445, 1990.

R. Finkel, E. Bertini, F. Muntoni, E. Mercuri, E. Sma-workshop-study et al., 209th ENMC International Workshop: Outcome Measures and Clinical Trial Readiness in Spinal Muscular Atrophy, vol.25, pp.593-602, 2014.

R. S. Finkel, M. P. Mcdermott, P. Kaufmann, B. T. Darras, W. K. Chung et al., Observational study of spinal muscular atrophy type I and implications for clinical trials, Neurology, vol.83, pp.810-817, 2014.

R. S. Finkel, C. A. Chiriboga, J. Vajsar, J. W. Day, J. Montes et al., Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, openlabel, dose-escalation study, The Lancet, vol.388, pp.3017-3026, 2016.

S. Forss-petter, P. E. Danielson, S. Catsicas, E. Battenberg, J. Price et al., Transgenic mice expressing ?-galactosidase in mature neurons under neuron-specific enolase promoter control, Neuron, vol.5, pp.187-197, 1990.

K. D. Foust, X. Wang, V. L. Mcgovern, L. Braun, A. K. Bevan et al.,

S. , Nat. Biotechnol, vol.28, pp.271-274

K. L. Fox-walsh and K. J. Hertel, Splicesite pairing is an intrinsically high fidelity process, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.1766-1771, 2009.

A. Friese, J. A. Kaltschmidt, D. R. Ladle, M. Sigrist, T. M. Jessell et al., Gamma and alpha motor neurons distinguished by expression of transcription factor Err3, Proc. Natl. Acad. Sci, vol.106, pp.13588-13593, 2009.

T. Frugier, F. D. Tiziano, C. Cifuentes-diaz, P. Miniou, N. Roblot et al., Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy, Hum. Mol. Genet, vol.9, pp.849-858, 2000.

C. S. Fry, J. D. Lee, J. R. Jackson, T. J. Kirby, S. A. Stasko et al., , 2014.

, FASEB J, vol.28, pp.1654-1665

C. S. Fry, B. Noehren, J. Mula, M. F. Ubele, P. M. Westgate et al., Fibre type-specific satellite cell response to aerobic training in sedentary adults, J. Physiol, vol.592, pp.2625-2635, 2014.

C. S. Fry, J. D. Lee, J. Mula, T. J. Kirby, J. R. Jackson et al., Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia, Nat. Med, vol.21, pp.76-80, 2015.

C. S. Fry, T. J. Kirby, K. Kosmac, J. J. Mccarthy, and C. A. Peterson, Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy, Cell Stem Cell, vol.20, pp.56-69, 2017.

A. Garcera, N. Bahi, A. Periyakaruppiah, S. Arumugam, and R. M. Soler, Survival motor neuron protein reduction deregulates autophagy in spinal cord motoneurons in vitro, Cell Death Dis, vol.4, p.686, 2013.

M. A. García-cabezas, A. García-alix, Y. Martín, M. Gutiérrez, C. Hernández et al., Neonatal spinal muscular atrophy with multiple contractures, bone fractures, respiratory insufficiency and 5q13 deletion, Acta Neuropathol. (Berl.), vol.107, pp.475-478, 2004.

C. Gard, G. Gonzalez-curto, Y. E. Frarma, .. Chollet, E. Duval et al., Pax3-and Pax7-mediated Dbx1 regulation orchestrates the patterning of intermediate spinal interneurons, Dev. Biol, vol.432, pp.24-33, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01545854

T. O. Gavrilina, V. L. Mcgovern, E. Workman, T. O. Crawford, R. G. Gogliotti et al., Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect, Hum. Mol. Genet, vol.17, pp.1063-1075, 2008.

M. Gennarelli, M. Lucarelli, F. Capon, A. Pizzuti, L. Merlini et al.,

B. Dallapiccola, Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients, Biochem. Biophys. Res. Commun, vol.213, pp.342-348, 1995.

D. Germain-desprez, T. Brun, C. Rochette, A. Semionov, R. Rouget et al., The SMN genes are subject to transcriptional regulation during cellular differentiation, Gene, vol.279, pp.109-117, 2001.

M. C. Gibson and E. Schultz, The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles, Anat. Rec, vol.202, pp.329-337, 1982.

T. Giesemann, S. Rathke-hartlieb, M. Rothkegel, J. W. Bartsch, S. Buchmeier et al., A Role for Polyproline Motifs in the Spinal Muscular Atrophy Protein SMN PROFILINS BIND TO AND COLOCALIZE WITH SMN IN NUCLEAR GEMS, J. Biol. Chem, vol.274, pp.37908-37914, 1999.

J. J. Glascock, M. Shababi, M. J. Wetz, M. M. Krogman, and C. L. Lorson, Spinal Muscular Atrophy, Biochem. Biophys. Res. Commun, vol.417, pp.376-381, 2012.

V. F. Gnocchi, R. B. White, Y. Ono, J. A. Ellis, P. S. Zammit et al., Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells, PloS One, vol.4, 2009.

, MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis, Proc. Natl. Acad. Sci, vol.108, pp.11936-11941

S. E. Gombash, C. J. Cowley, J. A. Fitzgerald, C. C. Iyer, D. Fried et al., SMN deficiency disrupts gastrointestinal and enteric nervous system function in mice, Hum. Mol. Genet, vol.24, pp.3847-3860, 2015.

I. Gonçalves, C. G. Brecht, J. Thelen, M. P. Rehorst, W. A. Peters et al., Neuronal activity regulates DROSHA via autophagy in spinal muscular atrophy, Sci. Rep, vol.8, p.7907, 2018.

T. Gordon and J. E. De-zepetnek, Motor unit and muscle fiber type grouping after peripheral nerve injury in the rat, Exp. Neurol, vol.285, pp.24-40, 2016.

T. Gordon, J. F. Yang, K. Ayer, R. B. Stein, and N. Tyreman, Recovery potential of muscle after partial denervation: A comparison between rats and humans, Brain Res. Bull, vol.30, pp.477-482, 1993.

T. Gordon, J. Hegedus, and S. L. Tam, Adaptive and maladaptive motor axonal sprouting in aging and motoneuron disease, Neurol. Res, vol.26, pp.174-185, 2004.

L. Gorza, Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies, J. Histochem. Cytochem, vol.38, pp.257-265, 1990.

R. I. Gregory, T. P. Chendrimada, N. Cooch, and R. Shiekhattar, Human RISC couples microRNA biogenesis and posttranscriptional gene silencing, Cell, vol.123, pp.631-640, 2005.

S. J. Grice and J. Liu, Survival Motor Neuron Protein Regulates Stem Cell Division, Proliferation, and Differentiation in Drosophila, PLOS Genet, vol.7, p.1002030, 2011.

M. Grimmler, L. Bauer, M. Nousiainen, R. Körner, G. Meister et al., Phosphorylation regulates the activity of the SMN complex during assembly of spliceosomal U snRNPs, EMBO Rep, vol.6, pp.70-76, 2005.

S. Guettier-sigrist, G. Coupin, S. Braun, J. Warter, and P. Poindron, Muscle could be the therapeutic target in SMA treatment, J. Neurosci. Res, vol.53, pp.663-669, 1998.

S. Guettier-sigrist, G. Coupin, S. Braun, D. Rogovitz, I. Courdier et al., On the possible role of muscle in the pathogenesis of spinal muscular atrophy, Fundam. Clin. Pharmacol, vol.15, pp.31-40, 2001.

S. Guettier-sigrist, B. Hugel, G. Coupin, J. Freyssinet, P. Poindron et al., Possible pathogenic role of muscle cell dysfunction in motor neuron death in spinal muscular atrophy, Muscle Nerve, vol.25, pp.700-708, 2002.

U. Van-haelst, An electron microscopic study of muscle in Werdnig-Hoffmann's disease, Virchows Arch. A, vol.351, pp.291-305, 1970.

C. E. Hall, M. A. Jakus, and F. O. Schmitt, An investigation of cross striations and myosin filaments in muscle, Biol. Bull, vol.90, pp.32-50, 1946.

G. Hamilton and T. H. Gillingwater, Spinal muscular atrophy: going beyond the motor neuron, Trends Mol. Med, vol.19, pp.40-50, 2013.

J. Han, Y. Lee, K. Yeom, J. Nam, I. Heo et al., Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex, Cell, vol.125, pp.887-901, 2006.

K. Han, D. Foster, E. W. Harhaj, M. Dzieciatkowska, K. Hansen et al., Monoubiquitination of survival motor neuron regulates its cellular localization and Cajal body integrity, Hum. Mol. Genet, vol.25, pp.1392-1405, 2016.

Y. Han, P. C. Geiger, M. J. Cody, R. L. Macken, and G. C. Sieck, ATP consumption rate per cross bridge depends on myosin heavy chain isoform, J. Appl. Physiol, vol.94, pp.2188-2196, 2003.

L. T. Hao, P. Q. Duy, J. D. Jontes, M. Wolman, M. Granato et al., Temporal requirement for SMN in motoneuron development, Hum. Mol. Genet, vol.22, pp.2612-2625, 2013.

Y. Harada, R. Sutomo, A. H. Sadewa, T. Akutsu, Y. Takeshima et al., Correlation between <Emphasis Type="Italic">SMN2</Emphasis> copy number and clinical phenotype of spinal muscular atrophy: three <Emphasis Type="Italic">SMN2</Emphasis> copies fail to rescue some patients from the disease severity, J. Neurol, vol.249, pp.1211-1219, 2002.

S. Haramati, E. Chapnik, Y. Sztainberg, R. Eilam, R. Zwang et al., miRNA malfunction causes spinal motor neuron disease, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.13111-13116, 2010.

A. Harding, T. , and P. , Hereditary distal spinal muscular atrophy. A report on 34 cases and a review of the literature, J Neurol Sci, vol.45, pp.337-348, 1980.

S. Hayashi and A. P. Mcmahon, , 2002.

, Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse, Dev. Biol, vol.244, pp.305-318

M. Hayhurst, A. K. Wagner, M. Cerletti, A. J. Wagers, and L. L. Rubin, A cellautonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein, Dev. Biol, vol.368, pp.323-334, 2012.

Z. He, R. Bottinelli, M. A. Pellegrino, M. A. Ferenczi, and C. Reggiani, ATP Consumption and Efficiency of Human Single Muscle Fibers with Different Myosin Isoform Composition, Biophys. J, vol.79, pp.945-961, 2000.

C. R. Heier, R. Satta, C. Lutz, and C. J. Didonato, Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice, Hum. Mol. Genet, vol.19, pp.3906-3918, 2010.

J. Hoffmann, Ueber chronische spinale Muskelatrophie in Kindesalter auf familiar Basis, Dtch Z Nervenheilkd, vol.3, p.427, 1893.

K. Honda, S. Sakaguchi, C. Nakajima, A. Watanabe, H. Yanai et al., Selective contribution of IFN-?/? signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection, Proc. Natl. Acad. Sci, vol.100, pp.10872-10877, 2003.

S. Hosseinibarkooie, M. Peters, L. Torres-benito, R. H. Rastetter, K. Hupperich et al., The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype, Am. J. Hum. Genet, vol.99, pp.647-665, 2016.

H. M. Hsieh-li, J. Chang, Y. Jong, M. Wu, N. M. Wang et al., A mouse model for spinal muscular atrophy, Nat. Genet, vol.24, pp.66-70, 2000.

H. Y. Hu, Z. Yan, Y. Xu, H. Hu, C. Menzel et al., Sequence features associated with microRNA strand selection in humans and flies, BMC Genomics, vol.10, p.413, 2009.

Y. Hua, K. Sahashi, F. Rigo, G. Hung, G. Horev et al., , 2011.

, Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model, Nature, vol.478, pp.123-126

Y. Hua, Y. H. Liu, K. Sahashi, F. Rigo, C. F. Bennett et al., Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models, Genes Dev, 2015.

Z. Huang, X. Chen, B. Yu, J. He, C. et al., MicroRNA-27a promotes myoblast proliferation by targeting myostatin, Biochem. Biophys. Res. Commun, vol.423, pp.265-269, 2012.

D. T. Humphreys, B. J. Westman, D. I. Martin, and T. Preiss, MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.16961-16966, 2005.

E. Huntzinger and E. Izaurralde, Gene silencing by microRNAs: contributions of translational repression and mRNA decay, Nat. Rev. Genet, vol.12, pp.99-110, 2011.

K. Inagaki, S. Fuess, T. A. Storm, G. A. Gibson, C. F. Mctiernan et al., Robust Systemic Transduction with AAV9 Vectors in Mice: Efficient Global Cardiac Gene Transfer Superior to That of AAV8, Mol. Ther. J. Am. Soc. Gene Ther, vol.14, pp.45-53, 2006.

A. Irintchev, M. Zeschnigk, A. Starzinski-powitz, and A. Wernig, Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles, Dev. Dyn, vol.199, pp.326-337, 1994.

H. Ishizu, H. Siomi, and M. C. Siomi, Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines, Genes Dev, vol.26, pp.2361-2373, 2012.

Y. Ito, S. Kumada, A. Uchiyama, K. Saito, M. Osawa et al., Thalamic lesions in a longsurviving child with spinal muscular atrophy type I: MRI and EEG findings, Brain Dev, vol.26, pp.53-56, 2004.

H. Iwahashi, Y. Eguchi, N. Yasuhara, T. Hanafusa, Y. Matsuzawa et al., Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy, Nature, vol.390, pp.413-417, 1997.

H. Iwakawa and Y. Tomari, The Functions of MicroRNAs: mRNA Decay and Translational Repression, Trends Cell Biol, vol.25, pp.651-665, 2015.

S. Jablonka, B. Schrank, M. Kralewski, W. Rossoll, and M. Sendtner, Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III, Hum. Mol. Genet, vol.9, pp.341-346, 2000.

S. Jablonka, B. Holtmann, G. Meister, M. Bandilla, W. Rossoll et al., Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.10126-10131, 2002.

J. R. Jackson, T. J. Kirby, C. S. Fry, R. L. Cooper, J. J. Mccarthy et al., , 2015.

R. J. Jackson, C. U. Hellen, and T. V. Pestova, The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol, vol.11, pp.113-127, 2010.

B. J. Jasmin, R. K. Lee, and R. L. Rotundo, Compartmentalization of acetylcholinesterase mRNA and enzyme at the vertebrate neuromuscular junction, Neuron, vol.11, pp.467-477, 1993.

R. A. Jones, C. Harrison, S. L. Eaton, M. Hurtado, L. C. Graham et al., Cellular and Molecular Anatomy of the Human Neuromuscular Junction, Cell Rep, vol.21, pp.2348-2356, 2017.

P. Joshi, T. M. Greco, A. J. Guise, Y. Luo, F. Yu et al., The functional interactome landscape of the human histone deacetylase family, Mol. Syst. Biol, vol.9, p.672, 2013.

B. Kablar, K. Krastel, S. Tajbakhsh, and M. A. Rudnicki, Myf5 and MyoD activation define independent myogenic compartments during embryonic development, Dev. Biol, vol.258, pp.307-318, 2003.

K. C. Kanning, A. Kaplan, and C. E. Henderson, Motor neuron diversity in development and disease, Annu. Rev. Neurosci, vol.33, pp.409-440, 2010.

M. Karakaya, M. Storbeck, E. A. Strathmann, A. D. Vedove, I. Hölker et al., Targeted sequencing with expanded gene profile enables high diagnostic yield in non-5q-spinal muscular atrophies, Hum. Mutat, p.0, 2018.

S. Kariya, G. Park, Y. Maeno-hikichi, O. Leykekhman, C. Lutz et al., , 2008.

, Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy, Hum. Mol. Genet, vol.17, pp.2552-2569

L. Kassar-duchossoy, B. Gayraud-morel, D. Gomès, D. Rocancourt, M. Buckingham et al., Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice, Nature, vol.431, pp.466-471, 2004.

T. Kawamata, H. Seitz, and Y. Tomari, Structural determinants of miRNAs for RISC loading and slicer-independent unwinding, Nat. Struct. Mol. Biol, vol.16, pp.953-960, 2009.

T. Kawamata, M. Yoda, and Y. Tomari, Multilayer checkpoints for microRNA authenticity during RISC assembly, EMBO Rep, vol.12, pp.944-949, 2011.

A. C. Keefe, J. A. Lawson, S. D. Flygare, Z. D. Fox, M. P. Colasanto et al., Muscle stem cells contribute to myofibers in sedentary adult mice, Nat. Commun, vol.6, p.7087, 2015.

A. M. Kelly, Perisynaptic satellite cells in the developing and mature rat soleus muscle, Anat. Rec, vol.190, pp.891-903, 1978.

T. E. Kelly, K. Amoroso, M. Ferre, J. Blanco, P. Allinson et al., Spinal muscular atrophy variant with congenital fractures, Am. J. Med. Genet, vol.87, pp.65-68, 1999.

D. Kernell, Principles of force gradation in skeletal muscles, Neural Plast, vol.10, pp.69-76, 2003.

D. Kernell, R. Bakels, and J. C. Copray, Discharge properties of motoneurones: how are they matched to the properties and use of their muscle units?, J. Physiol. Paris, vol.93, pp.87-96, 1999.

L. E. Kernochan, M. L. Russo, N. S. Woodling, T. N. Huynh, A. M. Avila et al.,

C. J. Sumner, The role of histone acetylation in SMN gene expression, Hum. Mol. Genet, vol.14, pp.1171-1182, 2005.

M. Khairallah, J. Astroski, S. K. Custer, E. J. Androphy, C. L. Franklin et al., SMN deficiency negatively impacts red pulp macrophages and spleen development in mouse models of spinal muscular atrophy, Hum. Mol. Genet, vol.26, pp.932-941, 2017.

I. A. Khatri, U. S. Chaudhry, M. G. Seikaly, R. H. Browne, and S. T. Iannaccone, , 2008.

, Low bone mineral density in spinal muscular atrophy, J. Clin. Neuromuscul. Dis, vol.10, pp.11-17

K. Khawaja, W. T. Houlsby, S. Watson, K. Bushby, and T. Cheetham, , 2004.

, Hypercalcaemia in infancy; a presenting feature of spinal muscular atrophy, Arch. Dis. Child, vol.89, pp.384-385

V. N. Kim, J. Han, and M. C. Siomi, Biogenesis of small RNAs in animals, Nat. Rev. Mol. Cell Biol, vol.10, pp.126-139, 2009.

T. J. Kirby and J. J. Mccarthy, , 2013.

, MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radic, Biol. Med, vol.64, pp.95-105

J. Kirschner, E. Dessaud, C. André, B. Scherrer, R. Pruss et al., Results of a Phase II Study to Assess Safety and Efficacy of Olesoxime (TRO19622) in 3-to 25-Year-Old Spinal Muscular Atrophy Patients, Neuropediatrics, vol.45, p.26, 2014.

S. J. Kolb and J. T. Kissel, Spinal Muscular Atrophy, Neurol. Clin, vol.33, pp.831-846, 2015.

D. Komander and M. Rape, The Ubiquitin Code, Annu. Rev. Biochem, vol.81, pp.203-229, 2012.

L. Kong, X. Wang, D. W. Choe, M. Polley, B. G. Burnett et al., Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice, J. Neurosci. Off. J. Soc. Neurosci, vol.29, pp.842-851, 2009.

J. Krol, K. Sobczak, U. Wilczynska, M. Drath, A. Jasinska et al., Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design, J. Biol. Chem, vol.279, pp.42230-42239, 2004.

T. T. Kummer, T. Misgeld, and J. R. Sanes, Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost, Curr. Opin. Neurobiol, vol.16, pp.74-82, 2006.

P. B. Kwak and Y. Tomari, The N domain of Argonaute drives duplex unwinding during RISC assembly, Nat. Struct. Mol. Biol, vol.19, pp.145-151, 2012.

S. C. Kwon, T. A. Nguyen, Y. Choi, M. H. Jo, S. Hohng et al., Structure of Human DROSHA. Cell, vol.164, pp.81-90, 2016.

M. J. Kye, E. D. Niederst, M. H. Wertz, I. Gonçalves, C. G. Akten et al., SMN regulates axonal local translation via miR-183/mTOR pathway, Hum. Mol. Genet, vol.23, pp.6318-6331, 2014.

L. Larsson, A. , and T. , Effects of ageing on the motor unit, Prog. Neurobiol, vol.45, pp.397-458, 1995.

T. T. Le, D. D. Coovert, U. R. Monani, G. E. Morris, and A. H. Burghes, The survival motor neuron (SMN) protein: effect of exon loss and mutation on protein localization, Neurogenetics, vol.3, pp.7-16, 2000.

T. T. Le, L. T. Pham, M. E. Butchbach, H. L. Zhang, U. R. Monani et al., SMN?7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN, Hum. Mol. Genet, vol.14, pp.845-857, 2005.

R. C. Lee, R. L. Feinbaum, A. , and V. , The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, pp.843-854, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

Y. Lee, M. Kim, J. Han, K. Yeom, S. Lee et al., MicroRNA genes are transcribed by RNA polymerase II, EMBO J, vol.23, pp.4051-4060, 2004.

Y. Lee, M. Mikesh, I. Smith, M. Rimer, and W. Thompson, , 2011.

, Dev. Biol, vol.356, pp.432-444

S. Lefebvre, L. Bürglen, S. Reboullet, O. Clermont, P. Burlet et al., Identification and characterization of a spinal muscular atrophy-determining gene, Cell, vol.80, pp.155-165, 1995.

C. Lepper, S. J. Conway, and C. Fan, Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements, Nature, vol.460, pp.627-631, 2009.

C. Lepper, T. A. Partridge, and C. Fan, An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Development, vol.138, pp.3639-3646, 2011.

A. Lewelt, K. J. Krosschell, G. J. Stoddard, C. Weng, M. Xue et al., Resistance strength training exercise in children with spinal muscular atrophy, Muscle Nerve, vol.52, pp.559-567, 2015.

H. Li, S. K. Custer, T. Gilson, L. T. Hao, C. E. Beattie et al., ?-COP binding to the survival motor neuron protein SMN is required for neuronal process outgrowth, Hum. Mol. Genet, vol.24, pp.7295-7307, 2015.

K. K. Ling, M. Lin, B. Zingg, Z. Feng, and C. Ko, Synaptic Defects in the Spinal and Neuromuscular Circuitry in a Mouse Model of Spinal Muscular Atrophy, PLoS ONE, 2010.

W. Liu and J. V. Chakkalakal, The Composition, Development, and Regeneration of Neuromuscular Junctions, Curr. Top. Dev. Biol, vol.126, pp.99-124, 2018.

J. Liu, M. A. Carmell, F. V. Rivas, C. G. Marsden, J. M. Thomson et al., , 2004.

, Argonaute2 Is the Catalytic Engine of Mammalian RNAi, Science, vol.305, pp.1437-1441

N. Liu, B. R. Nelson, S. Bezprozvannaya, J. M. Shelton, J. A. Richardson et al., Requirement of MEF2A, C, and D for skeletal muscle regeneration, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.4109-4114, 2014.

W. Liu, L. Wei-lapierre, A. Klose, R. T. Dirksen, and J. V. Chakkalakal, Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions, 2015.

W. Liu, A. Klose, S. Forman, N. D. Paris, L. Wei-lapierre et al., Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration, 2017.

C. L. Lorson, J. Strasswimmer, J. M. Yao, J. D. Baleja, E. Hahnen et al., SMN oligomerization defect correlates with spinal muscular atrophy severity, Nat. Genet, vol.19, pp.63-66, 1998.

C. L. Lorson, E. Hahnen, E. J. Androphy, and B. Wirth, A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.6307-6311, 1999.

F. Lotti, W. L. Imlach, L. Saieva, E. S. Beck, L. T. Hao et al., An SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function, Cell, vol.151, pp.440-454, 2012.

F. M. Love, Y. Son, and W. J. Thompson, Activity alters muscle reinnervation and terminal sprouting by reducing the number of schwann cell pathways that grow to link synaptic sites, J. Neurobiol, vol.54, pp.566-576, 2003.

A. Luchetti, S. A. Ciafrè, M. Murdocca, A. Malgieri, A. Masotti et al., A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA), Int. J. Mol. Sci, vol.16, pp.18312-18327, 2015.

C. M. Lutz, S. Kariya, S. Patruni, M. A. Osborne, D. Liu et al., Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy, J. Clin. Invest, vol.121, pp.3029-3041, 2011.

J. R. Lytle, T. A. Yario, and J. A. Steitz, Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5? UTR as in the 3? UTR, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.9667-9672, 2007.

A. L. Mackey, M. Kjaer, N. Charifi, J. Henriksson, J. Bojsen-moller et al., Assessment of satellite cell number and activity status in human skeletal muscle biopsies, Muscle Nerve, vol.40, pp.455-465, 2009.

I. J. Macrae, K. Zhou, and J. A. Doudna, Structural determinants of RNA recognition and cleavage by Dicer, Nat. Struct. Mol. Biol, vol.14, pp.934-940, 2007.

K. L. Madsen, R. S. Hansen, N. Preisler, F. Thøgersen, M. P. Berthelsen et al., Training improves oxidative capacity, but not function, in spinal muscular atrophy type III, Muscle Nerve, vol.52, pp.240-244, 2015.

M. M. Mannaa, M. Kalra, B. Wong, A. P. Cohen, and R. S. Amin, Survival Probabilities of Patients With Childhood Spinal Muscle Atrophy, J. Clin. Neuromuscul. Dis, vol.10, p.85, 2009.

E. Martí, L. Pantano, M. Bañez-coronel, F. Llorens, E. Miñones-moyano et al., A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing, Nucleic Acids Res, vol.38, pp.7219-7235, 2010.

É. Martineau, A. Di-polo, C. Vande-velde, and R. Robitaille, Dynamic neuromuscular remodeling precedes motorunit loss in a mouse model of ALS, vol.7, p.41973, 2018.

T. L. Martinez, L. Kong, X. Wang, M. A. Osborne, M. E. Crowder et al., Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy, J. Neurosci. Off. J. Soc. Neurosci, vol.32, pp.8703-8715, 2012.

R. Martínez-hernández, C. Soler-botija, E. Also, L. Alias, L. Caselles et al., The Developmental Pattern of Myotubes in Spinal Muscular Atrophy Indicates Prenatal Delay of Muscle Maturation, J. Neuropathol. Exp. Neurol, vol.68, pp.474-481, 2009.

R. Martínez-hernández, S. Bernal, L. Alias, and E. F. Tizzano, Abnormalities in Early Markers of Muscle Involvement Support a Delay in Myogenesis in Spinal Muscular Atrophy, J. Neuropathol. Exp. Neurol, vol.73, pp.559-567, 2014.

A. Mauro, SATELLITE CELL OF SKELETAL MUSCLE FIBERS, J. Biophys. Biochem. Cytol, vol.9, pp.493-495, 1961.

A. Mayeuf-louchart, D. Hardy, Q. Thorel, P. Roux, L. Gueniot et al., MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool, Skelet. Muscle, vol.8, p.25, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01926223

J. J. Mccarthy, J. Mula, M. Miyazaki, R. Erfani, K. Garrison et al., Effective fiber hypertrophy in satellite cell-depleted skeletal muscle, Development, vol.138, pp.3657-3666, 2011.

J. V. Mcgivern, T. N. Patitucci, J. A. Nord, M. A. Barabas, C. L. Stucky et al., Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production, Glia, vol.61, pp.1418-1428, 2013.

H. A. Meijer, E. M. Smith, and M. Bushell, Regulation of miRNA strand selection: follow the leader?, Biochem. Soc. Trans, vol.42, pp.1135-1140, 2014.

G. Meister, Argonaute proteins: functional insights and emerging roles, Nat. Rev. Genet, vol.14, pp.447-459, 2013.

G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng et al., , 2004.

, Human Argonaute2 Mediates RNA Cleavage Targeted by miRNAs and siRNAs, Mol. Cell, vol.15, pp.185-197

J. Melki, P. Sheth, S. Abdelhak, P. Burlet, M. F. Bachelot et al., Mapping of acute (type I) spinal muscular atrophy to chromosome 5q12-q14, The Lancet, vol.336, pp.271-273, 1990.

J. R. Mendell, S. Al-zaidy, R. Shell, W. D. Arnold, L. R. Rodino-klapac et al., Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy, N. Engl. J. Med, vol.377, pp.1713-1722, 2017.

L. A. Menke, B. T. Poll-the, S. Clur, C. M. Bilardo, A. C. Van-der-wal et al., Congenital heart defects in spinal muscular atrophy type I: a clinical report of two siblings and a review of the literature, Am. J. Med. Genet. A, vol.146, pp.740-744, 2008.

G. Z. Mentis, D. Blivis, W. Liu, E. Drobac, M. E. Crowder et al., Early Functional Impairment of Sensory-Motor Connectivity in a Mouse Model of Spinal Muscular Atrophy, Neuron, vol.69, pp.453-467, 2011.

E. Mercuri, R. S. Finkel, F. Muntoni, B. Wirth, J. Montes et al., , 2018.

, Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care, Neuromuscul. Disord, vol.28, pp.103-115

J. P. Merlie and J. R. Sanes, Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres, Nature, vol.317, pp.66-68, 1985.

J. Messéant, A. Dobbertin, E. Girard, P. Delers, M. Manuel et al., MuSK Frizzled-Like Domain Is Critical for Mammalian Neuromuscular Junction Formation and Maintenance, J. Neurosci, vol.35, pp.4926-4941, 2015.

K. Meyer, L. Ferraiuolo, L. Schmelzer, L. Braun, V. Mcgovern et al., Improving Single Injection CSF Delivery of AAV9-mediated Gene Therapy for SMA: A Dose-response Study in Mice and Nonhuman Primates, Mol. Ther, vol.23, pp.477-487, 2015.

T. M. Michaelidis, M. Sendtner, J. D. Cooper, M. S. Airaksinen, B. Holtmann et al., Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development, Neuron, vol.17, pp.75-89, 1996.

M. Michaud, T. Arnoux, S. Bielli, E. Durand, Y. Rotrou et al., Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy, Neurobiol. Dis, vol.38, pp.125-135, 2010.

I. Miguel-aliaga, E. Culetto, D. S. Walker, H. A. Baylis, D. B. Sattelle et al., The Caenorhabditis Elegans Orthologue of the Human Gene Responsible for Spinal Muscular Atrophy Is a Maternal Product Critical for Germline Maturation and Embryonic Viability, Hum. Mol. Genet, vol.8, pp.2133-2143, 1999.

R. Miledi and C. R. Slater, On the degeneration of rat neuromuscular junctions after nerve section, J. Physiol, vol.207, pp.507-528, 1970.

T. Miyashita and J. C. Reed, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, vol.80, pp.293-299, 1995.

A. J. Modzelewski, R. J. Holmes, S. Hilz, A. Grimson, and P. E. Cohen, AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline, Dev. Cell, vol.23, pp.251-264, 2012.

P. Mohaghegh, N. R. Rodrigues, N. Owen, C. P. Ponting, T. T. Le et al., Analysis of mutations in the tudor domain of the survival motor neuron protein SMN, Eur. J. Hum. Genet. EJHG, vol.7, pp.519-525, 1999.

P. Møller, N. Moe, O. D. Saugstad, K. Skullerud, M. Velken et al., Spinal muscular atrophy type I combined with atrial septal defect in three sibs, Clin. Genet, vol.38, pp.81-83, 1990.

U. R. Monani, Spinal Muscular Atrophy: A Deficiency in a Ubiquitous Protein; a Motor Neuron-Specific Disease, Neuron, vol.48, pp.885-895, 2005.

U. R. Monani, M. Sendtner, D. D. Coovert, D. W. Parsons, C. Andreassi et al., The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy, Hum. Mol. Genet, vol.9, pp.333-339, 2000.

U. R. Monani, M. T. Pastore, T. O. Gavrilina, S. Jablonka, T. T. Le et al., A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy, J. Cell Biol, vol.160, pp.41-52, 2003.

D. A. Monks, J. A. Johansen, K. Mo, P. Rao, B. Eagleson et al., , 2007.

, Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease, Proc. Natl. Acad. Sci, vol.104, pp.18259-18264

S. Moore, V. Ribes, J. Terriente, D. Wilkinson, F. Relaix et al., Distinct Regulatory Mechanisms Act to Establish and Maintain Pax3 Expression in the Developing Neural Tube, PLOS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01612192

E. Morency, M. Sabra, F. Catez, P. Texier, and P. Lomonte, A novel cell response triggered by interphase centromere structural instability, J Cell Biol, vol.177, pp.757-768, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00179318

Z. Mourelatos, J. Dostie, S. Paushkin, A. Sharma, B. Charroux et al., miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs, Genes Dev, vol.16, pp.720-728, 2002.

P. Mourikis, R. Sambasivan, D. Castel, P. Rocheteau, V. Bizzarro et al., A Critical Requirement for Notch Signaling in Maintenance of the Quiescent Skeletal Muscle Stem Cell State, STEM CELLS, vol.30, pp.243-252, 2011.

R. J. Mullen, C. R. Buck, and A. M. Smith, NeuN, a neuronal specific nuclear protein in vertebrates, Development, vol.116, pp.201-211, 1992.

W. M. Mulleners, C. M. Van-ravenswaay, F. J. Gabreëls, B. C. Hamel, A. Van-oort et al., Spinal muscular atrophy combined with congenital heart disease: a report of two cases, Neuropediatrics, vol.27, pp.333-334, 1996.

T. L. Munsat and K. E. Davies, International SMA consortium meeting, Neuromuscul. Disord. NMD, vol.2, pp.423-428, 1992.

T. L. Munsat, L. Skerry, B. Korf, B. Pober, Y. Schapira et al., Phenotypic heterogeneity of spinal muscular atrophy mapping to chromosome 5q11.2-13.3 (SMA 5q), Neurology, vol.40, pp.1831-1831, 1990.

M. M. Muqit, J. Moss, C. Sewry, and R. J. Lane, Phenotypic variability in siblings with type III spinal muscular atrophy, J. Neurol. Neurosurg. Psychiatry, vol.75, pp.1762-1764, 2004.

K. A. Murach, A. L. Confides, A. Ho, J. R. Jackson, L. S. Ghazala et al., Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice, J. Physiol, vol.595, pp.6299-6311, 2017.

K. A. Murach, C. S. Fry, T. J. Kirby, J. R. Jackson, J. D. Lee et al., Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation, Physiol. Bethesda Md, vol.33, pp.26-38, 2018.

M. Murdocca, S. A. Ciafrè, P. Spitalieri, R. V. Talarico, M. Sanchez et al., SMA Human iPSC-Derived Motor Neurons Show Perturbed Differentiation and Reduced miR-335-5p Expression, Int. J. Mol. Sci, vol.17, 2016.

M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon, , 2011.

, Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration, Dev. Camb. Engl, vol.138, pp.3625-3637

M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, and L. Luo, A global doublefluorescent Cre reporter mouse, Genesis, vol.45, pp.593-605, 2007.

H. Nakazaki, A. C. Reddy, B. L. Mania-farnell, Y. Shen, S. Ichi et al., Key basic helix-loop-helix transcription factor genes Hes1 and Ngn2 are regulated by Pax3 during mouse embryonic development, Dev. Biol, vol.316, pp.510-523, 2008.

N. A. Naryshkin, M. Weetall, A. Dakka, J. Narasimhan, X. Zhao et al., SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy, Science, vol.345, pp.688-693, 2014.

T. A. Nguyen, M. H. Jo, Y. Choi, J. Park, S. C. Kwon et al., Functional Anatomy of the Human Microprocessor, vol.161, pp.1374-1387, 2015.

S. Nicole, C. C. Diaz, T. Frugier, and J. Melki, Spinal muscular atrophy: Recent advances and future prospects, Muscle Nerve, vol.26, pp.4-13, 2002.

S. Nicole, B. Desforges, G. Millet, J. Lesbordes, C. Cifuentes-diaz et al., Intact satellite cells lead to remarkable protection against Smn gene defect in differentiated skeletal muscle, J. Cell Biol, vol.161, pp.571-582, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02289336

C. L. Noland and J. A. Doudna, Multiple sensors ensure guide strand selection in human RNAi pathways, RNA, vol.19, pp.639-648, 2013.

A. Nölle, A. Zeug, J. Van-bergeijk, L. Tönges, R. Gerhard et al., The spinal muscular atrophy disease protein SMN is linked to the rho-kinase pathway via profilin, Hum. Mol. Genet, vol.20, pp.4865-4878, 2011.

G. Novelli, L. Calzà, P. Amicucci, L. Giardino, M. Pozza et al., Expression Study of Survival Motor Neuron Gene in Human Fetal Tissues, Biochem. Mol. Med, vol.61, pp.102-106, 1997.

S. Ogino, D. G. Leonard, H. Rennert, W. J. Ewens, and R. B. Wilson, Genetic risk assessment in carrier testing for spinal muscular atrophy, Am. J. Med. Genet, vol.110, pp.301-307, 2002.

M. Ohanian, D. T. Humphreys, E. Anderson, T. Preiss, and D. Fatkin, A heterozygous variant in the human cardiac miR-133 gene, MIR133A2, alters miRNA duplex processing and strand abundance, BMC Genet, vol.14, p.18, 2013.

Y. Ohkawa, C. G. Marfella, and A. N. Imbalzano, Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1, EMBO J, vol.25, pp.490-501, 2006.

H. C. Olguin and B. B. Olwin, Pax-7 upregulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal, Dev. Biol, vol.275, pp.375-388, 2004.

A. Omar, S. S. Bhimji, G. E. Oprea, S. Kröber, M. L. Mcwhorter et al., Plastin 3 Is a Protective Modifier of Autosomal Recessive Spinal Muscular Atrophy, StatPearls, (Treasure Island (FL): StatPearls Publishing), vol.320, pp.524-527, 2008.

M. Osborne, D. Gomez, Z. Feng, C. Mcewen, J. Beltran et al., of SMA mouse models, Hum. Mol. Genet, vol.21, pp.4431-4447, 2012.

E. W. Ottesen, M. D. Howell, N. N. Singh, J. Seo, E. M. Whitley et al., Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy, Sci. Rep, vol.6, 2016.

X. Paez-colasante, B. Seaberg, T. L. Martinez, L. Kong, C. J. Sumner et al., Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons, PloS One, vol.8, p.75866, 2013.

J. Palacino, S. E. Swalley, C. Song, A. K. Cheung, L. Shu et al., SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice, Nat. Chem. Biol, vol.11, pp.511-517, 2015.

O. Pansarasa, D. Rossi, A. Berardinelli, and C. Cereda, Amyotrophic Lateral Sclerosis and Skeletal Muscle: An Update, Mol. Neurobiol, vol.49, pp.984-990, 2014.

G. Park, Y. Maeno-hikichi, T. Awano, L. T. Landmesser, and U. R. Monani, , 2010.

, Reduced Survival of Motor Neuron (SMN) Protein in Motor Neuronal Progenitors Functions Cell Autonomously to Cause Spinal Muscular Atrophy in Model Mice Expressing the Human Centromeric (SMN2) Gene, J. Neurosci, vol.30, pp.12005-12019

J. S. Parker, S. M. Roe, and D. Barford, Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex, Nature, vol.434, pp.663-666, 2005.

D. W. Parsons, P. E. Mcandrew, S. T. Iannaccone, J. R. Mendell, A. H. Burghes et al., Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number, Am. J. Hum. Genet, vol.63, pp.1712-1723, 1998.

M. A. Passini, J. Bu, A. M. Richards, C. M. Treleaven, J. A. Sullivan et al., Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy, Hum. Gene Ther, vol.25, pp.619-630, 2014.

K. Peeters, T. Chamova, and A. Jordanova, Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies, Brain, vol.137, pp.2879-2896, 2014.

L. Pelkmans and A. Helenius, , 2002.

, Endocytosis via caveolae, Traffic Cph. Den, vol.3, pp.311-320

A. Periyakaruppiah, S. De-la-fuente, S. Arumugam, N. Bahí, A. Garcera et al., Autophagy modulators regulate survival motor neuron protein stability in motoneurons, Exp. Neurol, vol.283, pp.287-297, 2016.

C. J. Peter, M. Evans, V. Thayanithy, N. Taniguchi-ishigaki, I. Bach et al.,

G. J. Bassell, W. Rossoll, C. L. Lorson, and Z. Bao, The COPI vesicle complex binds and moves with survival motor neuron within axons, Hum. Mol. Genet, vol.20, pp.1701-1711, 2011.

S. Petri, A. Dueck, G. Lehmann, N. Putz, S. Rüdel et al., Increased siRNA duplex stability correlates with reduced off-target and elevated ontarget effects, RNA, vol.17, pp.737-749, 2011.

R. S. Pillai, S. N. Bhattacharyya, C. G. Artus, T. Zoller, N. Cougot et al., Inhibition of translational initiation by Let-7 MicroRNA in human cells, Science, vol.309, pp.1573-1576, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02262259

J. A. Powell, J. Molgó, D. S. Adams, C. Colasante, A. Williams et al., IP3 Receptors and Associated Ca2+ Signals Localize to Satellite Cells and to Components of the Neuromuscular Junction in Skeletal Muscle, J. Neurosci, vol.23, pp.8185-8192, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00188162

R. A. Powis and T. H. Gillingwater, Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy, J. Anat, vol.228, pp.443-451, 2016.

R. A. Powis, E. Karyka, P. Boyd, J. Côme, R. A. Jones et al., Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy, JCI Insight, vol.1, p.87908, 2016.

L. Qiu, E. K. Tan, and L. Zeng, microRNAs and Neurodegenerative Diseases, 2015.

, Adv. Exp. Med. Biol, vol.888, pp.85-105

A. Raffaello, P. Laveder, C. Romualdi, C. Bean, L. Toniolo et al., Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling, Physiol. Genomics, vol.25, pp.60-74, 2006.

P. Rajasethupathy, I. Antonov, R. Sheridan, S. Frey, C. Sander et al., A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity, Cell, vol.149, pp.693-707, 2012.

T. K. Rajendra, G. B. Gonsalvez, M. P. Walker, K. B. Shpargel, H. K. Salz et al., A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle, J. Cell Biol, vol.176, pp.831-841, 2007.

P. K. Rao, R. M. Kumar, M. Farkhondeh, S. Baskerville, and H. F. Lodish, , 2006.

, Myogenic factors that regulate expression of muscle-specific microRNAs, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.8721-8726

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, A Pax3/Pax7-dependent population of skeletal muscle progenitor cells, Nature, vol.435, pp.948-953, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00176824

H. Rindt, Z. Feng, C. Mazzasette, J. J. Glascock, D. Valdivia et al., Astrocytes influence the severity of spinal muscular atrophy, Hum. Mol. Genet, vol.24, pp.4094-4102, 2015.

W. C. Robertson, Y. Kawamura, and P. J. Dyck, Morphometric study of motoneurons in congenital nemaline myopathy and Werdnig-Hoffmann disease, Neurology, vol.28, pp.1057-1061, 1978.

C. Rochette, N. Gilbert, and L. Simard, <Emphasis Type="Italic">SMN</Emphasis> gene duplication and the emergence of the<Emphasis Type="Italic"> SMN2</Emphasis> gene occurred in distinct hominids:<Emphasis Type="Italic"> SMN2</Emphasis> is unique to<Emphasis Type="Italic"> Homo sapiens</Emphasis>, Hum. Genet, vol.108, pp.255-266, 2001.

N. R. Rodrigues, N. Owen, K. Talbot, J. Ignatius, V. Dubowitz et al., Deletions in the survival motor neuron gene on 5q13 in autosomal recessive spinal muscular atrophy, Hum. Mol. Genet, vol.4, pp.631-634, 1995.

A. Rodriguez, S. Griffiths-jones, J. L. Ashurst, and A. Bradley, Identification of mammalian microRNA host genes and transcription units, Genome Res, vol.14, pp.1902-1910, 2004.

M. Roos, A. Sarkozy, G. B. Chierchia, P. D. Wilde, E. Schmedding et al., , 2009.

, Malignant Ventricular Arrhythmia in a Case of Adult Onset of Spinal Muscular Atrophy (Kugelberg-Welander Disease), J. Cardiovasc. Electrophysiol, vol.20, pp.342-344

W. Rossoll, A. Kröning, U. Ohndorf, C. Steegborn, S. Jablonka et al., Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA, 2002.

. Mol and . Genet, , vol.11, pp.93-105

W. Rossoll, S. Jablonka, C. Andreassi, A. Kröning, K. Karle et al., Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons, J. Cell Biol, vol.163, pp.801-812, 2003.

N. Roy, M. S. Mahadevan, M. Mclean, G. Shutter, Z. Yaraghi et al., The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy, Cell, vol.80, pp.167-178, 1995.

S. Roy, V. Dubowitz, and L. Wolman, , 1971.

, Ultrastructure of muscle in infantile spinal muscular atrophy, J. Neurol. Sci, vol.12, pp.219-232

S. Rudnik-schöneborn, H. H. Goebel, W. Schlote, S. Molaian, H. Omran et al., Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy, Neurology, vol.60, pp.983-987, 2003.

S. Rudnik-schöneborn, S. Vogelgesang, S. Armbrust, L. Graul-neumann, C. Fusch et al., Digital necroses and vascular thrombosis in severe spinal muscular atrophy, Muscle Nerve, vol.42, pp.144-147, 2010.

M. Sabra, P. Texier, J. El-maalouf, and P. Lomonte, The Tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated lysine 79 of histone H3, J. Cell Sci, vol.126, pp.3664-3677, 2013.

Y. Saito, Muscle fibre type differentiation and satellite cell population in Werdnig-Hoffmann disease, J. Neurol. Sci, vol.68, pp.75-87, 1985.

L. Samaranch, E. A. Salegio, W. San-sebastian, A. P. Kells, K. D. Foust et al., Adeno-Associated Virus Serotype 9 Transduction in the Central Nervous System of Nonhuman Primates, Hum. Gene Ther, vol.23, pp.382-389, 2011.

R. Sambasivan, R. Yao, A. Kissenpfennig, L. V. Wittenberghe, A. Paldi et al., Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration, Development, vol.138, pp.3647-3656, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667781

J. R. Sanes and J. W. Lichtman, Induction, assembly, maturation and maintenance of a postsynaptic apparatus, Nat. Rev. Neurosci, vol.2, pp.791-805, 2001.

K. Sato, Y. Eguchi, T. S. Kodama, and Y. Tsujimoto, Regions essential for the interaction between Bcl-2 and SMN, the spinal muscular atrophy disease gene product, Cell Death Differ, vol.7, pp.374-383, 2000.

L. Schaeffer, A. De-kerchove-d&apos;exaerde, and J. P. Changeux, Targeting transcription to the neuromuscular synapse, Neuron, vol.31, pp.15-22, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00077622

S. Schiaffino and C. Reggiani, Fiber Types in Mammalian Skeletal Muscles, Physiol. Rev, vol.91, pp.1447-1531, 2011.

B. Schrank, R. Götz, J. M. Gunnersen, J. M. Ure, K. V. Toyka et al., Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos, Proc. Natl. Acad. Sci, vol.94, pp.9920-9925, 1997.

D. S. Schwarz, G. Hutvágner, T. Du, Z. Xu, N. Aronin et al., Asymmetry in the assembly of the RNAi enzyme complex, Cell, vol.115, pp.199-208, 2003.

M. Scoto, R. S. Finkel, E. Mercuri, and F. Muntoni, Therapeutic approaches for spinal muscular atrophy (SMA), Gene Ther, vol.24, pp.514-519, 2017.

P. Seale, L. A. Sabourin, A. Girgis-gabardo, A. Mansouri, P. Gruss et al., Pax7 is required for the specification of myogenic satellite cells, Cell, vol.102, pp.777-786, 2000.

K. See, P. Yadav, M. Giegerich, P. S. Cheong, M. Graf et al., SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy, Hum. Mol. Genet, vol.23, pp.1754-1770, 2014.

C. O. Seng, C. Magee, P. J. Young, C. L. Lorson, A. et al., The SMN structure reveals its crucial role in snRNP assembly, Hum. Mol. Genet, vol.24, pp.2138-2146, 2015.

C. O. Seng, C. Magee, P. J. Young, C. L. Lorson, A. et al., Retraction notice: the SMN structure reveals its crucial role in snRNP assembly, Hum. Mol. Genet, vol.25, pp.5516-5516, 2016.

J. Seo, N. N. Singh, E. W. Ottesen, B. M. Lee, and R. N. Singh, A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein, Sci. Rep, vol.6, 2016.

V. Setola, M. Terao, D. Locatelli, S. Bassanini, E. Garattini et al., , 2007.

-. Axonal and . Smn, a protein isoform of the survival motor neuron gene, is specifically involved in axonogenesis, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.1959-1964

M. Shababi, J. Habibi, H. T. Yang, S. M. Vale, W. A. Sewell et al., Cardiac defects contribute to the pathology of spinal muscular atrophy models, Hum. Mol. Genet, vol.19, pp.4059-4071, 2010.

S. A. Shabalina and E. V. Koonin, Origins and evolution of eukaryotic RNA interference, Trends Ecol. Evol, vol.23, pp.578-587, 2008.

D. Shafey, P. D. Côté, and R. Kothary, , 2005.

, Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology, Exp. Cell Res, vol.311, pp.49-61

S. Shanmugarajan, K. J. Swoboda, S. T. Iannaccone, W. L. Ries, B. L. Maria et al., Congenital bone fractures in spinal muscular atrophy: functional role for SMN protein in bone remodeling, J. Child Neurol, vol.22, pp.967-973, 2007.

S. Shanmugarajan, E. Tsuruga, K. J. Swoboda, B. L. Maria, W. L. Ries et al., Bone loss in survival motor neuron (Smn(-/-) SMN2) genetic mouse model of spinal muscular atrophy, J. Pathol, vol.219, pp.52-60, 2009.

A. Sharma, A. Lambrechts, L. Hao, T. T. Le, C. A. Sewry et al., A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells, Exp. Cell Res, vol.309, pp.185-197, 2005.

J. D. Shih, Z. Waks, N. Kedersha, and P. A. Silver, Visualization of single mRNAs reveals temporal association of proteins with microRNA-regulated mRNA, Nucleic Acids Res, vol.39, pp.7740-7749, 2011.

K. Shishikura, M. Hara, Y. Sasaki, and K. Misugi, A neuropathologic study of Werdnig-Hoffmann disease with special reference to the thalamus and posterior roots, Acta Neuropathol. (Berl.), vol.60, pp.99-106, 1983.

N. A. Shneider, M. N. Brown, C. A. Smith, J. Pickel, and F. J. Alvarez, Gamma motor neurons express distinct genetic markers at birth and require muscle spindlederived GDNF for postnatal survival, 2009.

C. R. Sibley and M. J. Wood, The miRNA pathway in neurological and skeletal muscle disease: implications for pathogenesis and therapy, J. Mol. Med. Berl. Ger, vol.89, pp.1065-1077, 2011.

G. Simic, D. Seso-simic, P. J. Lucassen, A. Islam, Z. Krsnik et al., , 2000.

, Ultrastructural Analysis and TUNEL Demonstrate Motor Neuron Apoptosis in Werdnig-Hoffmann Disease, J. Neuropathol. Exp. Neurol, vol.59, pp.398-407

A. M. Simon, P. Hoppe, and S. J. Burden, Spatial restriction of AChR gene expression to subsynaptic nuclei, Dev. Camb. Engl, vol.114, pp.545-553, 1992.

R. N. Singh, M. D. Howell, E. W. Ottesen, and N. N. Singh, Diverse role of survival motor neuron protein, Biochim. Biophys. Acta BBA -Gene Regul. Mech, vol.1860, pp.299-315, 2017.

I. Sinha-hikim, J. Artaza, L. Woodhouse, N. Gonzalez-cadavid, A. B. Singh et al., Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy, Am. J. Physiol.-Endocrinol. Metab, vol.283, pp.154-164, 2002.

I. Sinha-hikim, W. E. Taylor, N. F. Gonzalez-cadavid, W. Zheng, and S. Bhasin, Androgen Receptor in Human Skeletal Muscle and Cultured Muscle Satellite Cells: Up-Regulation by Androgen Treatment, J. Clin. Endocrinol. Metab, vol.89, pp.5245-5255, 2004.

P. Sintusek, F. Catapano, N. Angkathunkayul, E. Marrosu, S. H. Parson et al., , 2016.

, Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment, PloS One, vol.11, p.155032

P. M. Siu, Muscle apoptotic response to denervation, disuse, and aging, Med. Sci. Sports Exerc, vol.41, pp.1876-1886, 2009.

L. A. Skordis, M. G. Dunckley, B. Yue, I. C. Eperon, and F. Muntoni, Bifunctional antisense oligonucleotides provide a transacting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.4114-4119, 2003.

V. Smerdu, I. Karsch-mizrachi, M. Campione, L. Leinwand, and S. Schiaffino, Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle, Am. J. Physiol.-Cell Physiol, vol.267, pp.1723-1728, 1994.

M. H. Snow, A quantitative ultrastructural analysis of satellite cells in denervated fast and slow muscles of the mouse, Anat. Rec, vol.207, pp.593-604, 1983.

C. Soler-botija, I. Ferrer, I. Gich, M. Baiget, and E. F. Tizzano, Neuronal death is enhanced and begins during foetal development in type I spinal muscular atrophy spinal cord, Brain, vol.125, pp.1624-1634, 2002.

C. Soler-botija, I. Cuscó, L. Caselles, E. López, M. Baiget et al., Implication of Fetal SMN2 Expression in Type I SMA Pathogenesis: Protection or Pathological Gain of Function?, J. Neuropathol. Exp. Neurol, vol.64, pp.215-223, 2005.

E. Somers, Z. Stencel, T. M. Wishart, T. H. Gillingwater, and S. H. Parson, , 2012.

, Density, calibre and ramification of muscle capillaries are altered in a mouse model of severe spinal muscular atrophy, Neuromuscul. Disord, vol.22, pp.435-442

E. Somers, R. D. Lees, K. Hoban, J. N. Sleigh, H. Zhou et al., Vascular Defects and Spinal Cord Hypoxia in Spinal Muscular Atrophy, Ann. Neurol, vol.79, pp.217-230, 2015.

Y. J. Son and W. J. Thompson, Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells, Neuron, vol.14, pp.133-141, 1995.

L. Stevens, B. Bastide, C. A. Maurage, E. Dupont, V. Montel et al., Childhood spinal muscular atrophy induces alterations in contractile and regulatory protein isoform expressions, Neuropathol. Appl. Neurobiol, vol.34, pp.659-670, 2008.

G. J. Stienen, J. L. Kiers, R. Bottinelli, and C. Reggiani, Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence, J. Physiol, vol.493, pp.299-307, 1996.

N. Stifani, Motor neurons and the generation of spinal motor neuron diversity, Front. Cell. Neurosci, vol.8, p.293, 2014.

A. Stoykova and P. Gruss, Roles of Pax-genes in developing and adult brain as suggested by expression patterns, J. Neurosci. Off. J. Soc. Neurosci, vol.14, pp.1395-1412, 1994.

A. Stroynowska-czerwinska, A. Fiszer, and W. J. Krzyzosiak, The panorama of miRNA-mediated mechanisms in mammalian cells, Cell. Mol. Life Sci. CMLS, vol.71, pp.2253-2270, 2014.

Y. Sun, M. Grimmler, V. Schwarzer, F. Schoenen, U. Fischer et al., Molecular and functional analysis of intragenic SMN1 mutations in patients with spinal muscular atrophy, Hum. Mutat, vol.25, pp.64-71, 2005.

H. I. Suzuki, A. Katsura, T. Yasuda, T. Ueno, H. Mano et al., Small-RNA asymmetry is directly driven by mammalian Argonautes, Nat. Struct. Mol. Biol, vol.22, pp.512-521, 2015.

H. B. Szliwowski and P. Drochmans, , 1975.

, Ultrastructural aspects of muscle and nerve in Werdnig-Hoffmann disease, Acta Neuropathol. (Berl.), vol.31, pp.281-296

S. Tajbakhsh, Skeletal muscle stem cells in developmental versus regenerative myogenesis, J. Intern. Med, vol.266, pp.372-389, 2009.

M. Takaku, T. Tsujita, N. Horikoshi, Y. Takizawa, Y. Qing et al., Purification of the human SMN-GEMIN2 complex and assessment of its stimulation of RAD51-mediated DNA recombination reactions, Biochemistry, vol.50, pp.6797-6805, 2011.

Y. Takizawa, Y. Qing, M. Takaku, T. Ishida, Y. Morozumi et al., GEMIN2 promotes accumulation of RAD51 at double-strand breaks in homologous recombination, Nucleic Acids Res, vol.38, pp.5059-5074, 2010.

S. L. Tam, G. , and T. , Neuromuscular activity impairs axonal sprouting in partially denervated muscles by inhibiting bridge formation of perisynaptic Schwann cells, J. Neurobiol, vol.57, pp.221-234, 2003.

H. Tanaka, N. Uemura, Y. Toyama, A. Kudo, Y. Ohkatsu et al., Cardiac involvement in the Kugelberg-Welander syndrome, Am. J. Cardiol, vol.38, pp.528-532, 1976.

A. Termin and D. Pette, Changes in myosin heavy-chain isoform synthesis of chronically stimulated rat fast-twitch muscle, Eur. J. Biochem, vol.204, pp.569-573, 1992.

D. S. Tews and H. H. Goebel, DNA fragmentation and BCL-2 expression in infantile spinal muscular atrophy, Neuromuscul. Disord, vol.6, pp.265-273, 1996.

A. K. Thomson, E. Somers, R. A. Powis, H. K. Shorrock, K. Murphy et al., Survival of motor neurone protein is required for normal postnatal development of the spleen, J. Anat, vol.230, pp.337-346, 2017.

K. Tripsianes, T. Madl, M. Machyna, D. Fessas, C. Englbrecht et al., Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins, Nat. Struct. Mol. Biol, vol.18, pp.1414-1420, 2011.

M. S. Tsai, Y. T. Chiu, S. H. Wang, H. M. Hsieh-li, W. C. Lian et al., Abolishing Bax-Dependent Apoptosis Shows Beneficial Effects on Spinal Muscular Atrophy Model Mice, Mol. Ther, vol.13, pp.1149-1155, 2006.

E. Udina, C. T. Putman, L. R. Harris, N. Tyreman, V. E. Cook et al., Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III, J. Physiol, vol.595, pp.1815-1829, 2017.

E. Vaidla, I. Talvik, A. Kulla, H. Sibul, K. Maasalu et al., Neonatal spinal muscular atrophy type 1 with bone fractures and heart defect, J. Child Neurol, vol.22, pp.67-70, 2007.

C. F. Valori, K. Ning, M. Wyles, R. J. Mead, A. J. Grierson et al., Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy, Sci. Transl. Med, vol.2, pp.35-42, 2010.

V. Valsecchi, M. Boido, E. De-amicis, A. Piras, and A. Vercelli, Expression of Muscle-Specific MiRNA 206 in the Progression of Disease in a Murine SMA Model, PLoS ONE, vol.10, 2015.

M. Van-alstyne, C. M. Simon, S. P. Sardi, L. S. Shihabuddin, G. Z. Mentis et al., Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy, Genes Dev, vol.32, pp.1045-1059, 2018.

L. Viollet, S. Bertrandy, A. L. Brunialti, S. Lefebvre, P. Burlet et al., cDNA Isolation, Expression, and Chromosomal Localization of the Mouse Survival Motor Neuron Gene (Smn), Genomics, vol.40, pp.185-188, 1997.

J. M. Vitte, B. Davoult, N. Roblot, M. Mayer, V. Joshi et al., with iron overload, Am. J. Pathol, vol.165, pp.1731-1741, 2004.

C. Volonte, S. Apolloni, and C. Parisi, MicroRNAs: newcomers into the ALS picture, CNS Neurol. Disord. Drug Targets, vol.14, pp.194-207, 2015.

J. Vry, I. J. Schubert, O. Semler, V. Haug, E. Schönau et al., Wholebody vibration training in children with Duchenne muscular dystrophy and spinal muscular atrophy, Eur. J. Paediatr. Neurol, vol.18, pp.140-149, 2014.

S. Vyas, C. Béchade, B. Riveau, J. Downward, and A. Triller, Involvement of survival motor neuron (SMN) protein in cell death, Hum. Mol. Genet, vol.11, pp.2751-2764, 2002.

M. P. Walker, T. K. Rajendra, L. Saieva, J. L. Fuentes, L. Pellizzoni et al., SMN complex localizes to the sarcomeric Z-disc and is a proteolytic target of calpain, Hum. Mol. Genet, vol.17, pp.3399-3410, 2008.

L. Wan, D. J. Battle, J. Yong, A. K. Gubitz, S. J. Kolb et al., The Survival of Motor Neurons Protein Determines the Capacity for snRNP Assembly: Biochemical Deficiency in Spinal Muscular Atrophy, Mol. Cell. Biol, vol.25, pp.5543-5551, 2005.

B. Wang, A. Yanez, and C. D. Novina, , 2008.

, MicroRNA-repressed mRNAs contain 40S but not 60S components, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.5343-5348

C. H. Wang, R. S. Finkel, E. S. Bertini, M. Schroth, A. Simonds et al., Consensus statement for standard of care in spinal muscular atrophy, J. Child Neurol, vol.22, pp.1027-1049, 2007.

M. S. Watihayati, H. Fatemeh, M. Marini, A. B. Atif, W. M. Zahiruddin et al., Combination of SMN2 copy number and NAIP deletion predicts disease severity in spinal muscular atrophy, Brain Dev, vol.31, pp.42-45, 2009.

G. Werdnig, T. Van-wessel, A. De-haan, W. J. Van-der-laarse, and R. T. Jaspers, Two early infantile hereditary cases of progressive muscular atrophy simulating dystrophy, but on a neural basis, Eur. J. Appl. Physiol, vol.706, pp.665-694, 1891.

D. R. Westbury, A comparison of the structures of alpha and gamma-spinal motoneurones of the cat, J. Physiol, vol.325, pp.79-91, 1982.

E. White, M. Schlackow, K. Kamieniarz-gdula, N. J. Proudfoot, and M. Gullerova, Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA, Nat. Struct. Mol. Biol, vol.21, pp.552-559, 2014.

A. H. Williams, G. Valdez, V. Moresi, X. Qi, J. Mcanally et al., MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice, Science, vol.326, pp.1549-1554, 2009.

C. Winkler, C. Eggert, D. Gradl, G. Meister, M. Giegerich et al., Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy, Genes Dev, vol.19, pp.2320-2330, 2005.

J. Winter and S. Diederichs, , 2013.

, Argonaute-3 activates the let-7a passenger strand microRNA, RNA Biol, vol.10, pp.1631-1643

B. Wirth, L. Brichta, B. Schrank, H. Lochmüller, S. Blick et al., Mildly affected patients with spinal muscular atrophy are partially protected by an increased <Emphasis Type="Italic">SMN2</Emphasis> copy number, Hum. Genet, vol.119, pp.422-428, 2006.

T. M. Wishart, J. P. Huang, .. Murray, L. M. Lamont, D. J. Mutsaers et al., SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy, Hum. Mol. Genet, vol.19, pp.4216-4228, 2010.

T. M. Wishart, C. A. Mutsaers, M. Riessland, M. M. Reimer, G. Hunter et al., Dysregulation of ubiquitin homeostasis and ?-catenin signaling promote spinal muscular atrophy, J. Clin. Invest, vol.124, pp.1821-1834, 2014.

J. H. Wokke, C. J. Van-den-oord, G. J. Leppink, and F. G. Jennekens, Perisynaptic satellite cells in human external intercostal muscle: a quantitative and qualitative study, Anat. Rec, vol.223, pp.174-180, 1989.

M. Wong and L. J. Martin, Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice, Hum. Mol. Genet, vol.19, pp.2284-2302, 2010.

E. Workman, L. Saieva, T. L. Carrel, T. O. Crawford, D. Liu et al., A SMN missense mutation complements SMN2 restoring snRNPs and rescuing SMA mice, Hum. Mol. Genet, vol.18, pp.2215-2229, 2009.

C. Wu, A. Curtis, Y. S. Choi, M. Maeda, M. J. Xu et al., Identification of the phosphorylation sites in the survival motor neuron protein by protein kinase A, Biochim. Biophys. Acta BBA -Proteins Proteomics, vol.1814, pp.1134-1139, 2011.

M. Xie, M. Li, A. Vilborg, N. Lee, M. Shu et al., Mammalian 5'-capped microRNA precursors that generate a single microRNA, Cell, vol.155, pp.1568-1580, 2013.

H. Yin, F. Price, and M. A. Rudnicki, , 2013.

, Satellite Cells and the Muscle Stem Cell Niche, Physiol. Rev, vol.93, pp.23-67

Q. Ymlahi-ouazzani, O. J. Bronchain, E. Paillard, C. Ballagny, A. Chesneau et al., Reduced levels of survival motor neuron protein leads to aberrant motoneuron growth in a <Emphasis Type="Italic">Xenopus</Emphasis> model of muscular atrophy, Neurogenetics, vol.11, pp.27-40, 2010.

P. J. Young, P. M. Day, J. Zhou, E. J. Androphy, G. E. Morris et al., A Direct Interaction between the Survival Motor Neuron Protein and p53 and Its Relationship to Spinal Muscular Atrophy, J. Biol. Chem, vol.277, pp.2852-2859, 2002.

Z. Zainul, Terminal Schwann Cells Lead Synapse Remodelling following Injury(1,2), 2014.

K. Zerres, S. Rudnik-schöneborn, E. Forrest, A. Lusakowska, J. Borkowska et al., A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients, J. Neurol. Sci, vol.146, pp.67-72, 1997.

K. Zerres, B. Wirth, and S. Rudnik-schöneborn, Spinal muscular atrophy-clinical and genetic correlations, Neuromuscul. Disord, vol.7, pp.202-207, 1997.

H. Zhang, L. Xing, W. Rossoll, H. Wichterle, R. H. Singer et al., , 2006.

, Multiprotein Complexes of the Survival of Motor Neuron Protein SMN with Gemins Traffic to Neuronal Processes and Growth Cones of Motor Neurons, J. Neurosci, vol.26, pp.8622-8632

H. Zhang, L. Xing, R. H. Singer, and G. J. Bassell, QNQKE targeting motif for the SMN-Gemin multiprotein complexin neurons, 2007.

, J. Neurosci. Res, vol.85, pp.2657-2667

Z. Zhang, F. Lotti, K. Dittmar, I. Younis, L. Wan et al., SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing, Cell, vol.133, pp.585-600, 2008.

Z. Zhang, A. M. Pinto, L. Wan, W. Wang, M. G. Berg et al., Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy, Proc. Natl. Acad. Sci, vol.110, pp.19348-19353, 2013.

X. Zhao, Z. Feng, K. K. Ling, A. Mollin, J. Sheedy et al., , 2016.

, Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy, Hum. Mol. Genet, vol.25, pp.1885-1899

C. Zhou, Z. Feng, and C. Ko, Defects in Motoneuron-Astrocyte Interactions in Spinal Muscular Atrophy, J. Neurosci, vol.36, pp.2543-2553, 2016.

H. Zhou, M. L. Arcila, Z. Li, E. J. Lee, C. Henzler et al., Deep annotation of mouse iso-miR and iso-moR variation, Nucleic Acids Res, vol.40, pp.5864-5875, 2012.