C. C. Aggarwal, A. Hinneburg, . Keim, and A. Daniel, On the surprising behavior of distance metrics in high dimensional space, Pages 420-434 of : International Conference on Database Theory, 2001.

. Agrawal, . Rakesh, . Srikant, and . Ramakrishnan, Fast algorithms for mining association rules, Pages 487-499 of : Proc. 20th int. conf. very large data bases, VLDB, vol.1215, 1994.

D. Ahn, The stages of event extraction, Pages 1-8 of : Proceedings of the Workshop on Annotating and Reasoning about Time and Events, 2006.

N. Aletras, D. Tsarapatsanis, . Preo?iuc-pietro, . Daniel, . Lampos et al., Predicting judicial decisions of the European Court of Human Rights : A Natural Language Processing perspective, PeerJ Computer Science, vol.2, p.93, 2016.

V. Aleven, Using Background Knowledge In Case-based Legal Reasoning : A Computational Model And An Intelligent Learning Environment, Artificial Intelligence, vol.150, issue.1-2, pp.183-237, 2003.

V. Aleven and K. D. Ashley, Evaluating A Learning Environment For Case-based Argumentation Skills, Pages 170-179 of : Proceedings of the 6th international conference on artificial intelligence and law (ICAIL), 1997.

R. Alfred, L. Leong, . Chin, C. On, . Kim et al., Malay named entity recognition based on rule-based approach, International Journal of Machine Learning and Computing, vol.4, issue.3, p.300, 2014.

R. Amami, D. Ayed, . Ben, and N. Ellouze, Practical Selection of SVM Supervised Parameters with Different Feature Representations for Vowel Recognition, International Journal of Digital Content Technology and its Applications (JDCTA), vol.7, issue.9, 2013.

S. Amarappa and S. V. Sathyanarayana, Kannada named entity recognition and classification (NERC) based on multinomial naïve bayes (MNB) classifier, International Journal on Natural Language Computing (IJNLC), vol.4, issue.4, 2015.

P. Ancel, Les décisions d'expulsion d'occupants sans droit ni titre -Connaissance empirique d'un contentieux hétérogène, 2003.

J. Andrew, . Jeyafreeda, and X. Tannier, Automatic Extraction of Entities and Relation from Legal Documents. Pages 1-8 of, Proceedings of the Seventh Named Entities Workshop, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02407016

. Arora, . Sanjeev, Y. Liang, . Ma, and . Tengyu, Simple But Toughto-beat Baseline For Sentence Embeddings, Proceedings of 5th International Conference on Learning Representations, 2017.

K. D. Ashley, Modeling Legal Arguments : Reasoning With Cases And Hypotheticals, 1990.

K. D. Ashley and S. Brüninghaus, Automatically classifying case texts and predicting outcomes, Artificial Intelligence and Law, vol.17, issue.2, pp.125-165, 2009.

D. Bakkelund, An LCS-based string metric. Olso, Norway : University of Oslo, 2009.

R. Balabantaray, . Chandra, . Sarma, . Chandrali, and M. Jha, Document Clustering Using K-means And K-medoids, 2015.

B. Baldwin, . Io, B. Bio, and . Bmewo+, Coding chunkers as taggers, 2009.

D. L. Bandalos, . Boehm-kaufman, and R. Meggen, Four common misconceptions in exploratory factor analysis. Pages 81-108 of : Statistical and methodological myths and urban legends, 2010.

A. Baraldi and P. Blonda, A survey of fuzzy clustering algorithms for pattern recognition. I, IEEE Transactions on Systems, Man, and Cybernetics, vol.29, issue.6, pp.778-785, 1999.

E. Barthe, Arrêts des cours d'appel : la base JU-RICA enfin en service chez Lexbase, 2010.

C. Bazzoli and S. Lambert-lacroix, Classification based on extensions of LS-PLS using logistic regression : application to clinical and multiple genomic data, BMC bioinformatics, vol.19, issue.1, p.314, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01405101

A. Ben-hur and J. Weston, A User's Guide to Support Vector Machines, Data Mining Techniques for the Life Sciences, vol.13, pp.223-239, 2010.

T. J. Bench-capon, Arguing With Cases. Pages 85-100 of, Proceedings of The Tenth Conference of The Foundation for Legal Knowledge Systems (JURIX'97), 1997.

P. Berka, NEST : A Compositional Approach to Rule-Based and Case-Based Reasoning, Advances in Artificial Intelligence, p.15, 2011.

J. C. Bezdek, R. Ehrlich, . Full, and . William, FCM : The fuzzy c-means clustering algorithm, Computers & Geosciences, vol.10, issue.2-3, pp.191-203, 1984.

D. M. Blei, A. Y. Ng, . Jordan, and I. Michael, Latent Dirichlet Allocation. the Journal of Machine Learning Research, vol.3, pp.993-1022, 2003.

M. Bommarito, . James, D. Katz, . Martin, and E. Detterman, LexNLP : Natural Language Processing and Information Extraction For Legal and Regulatory Texts, 2018.

J. Bray, . Roger, . Curtis, and T. John, An ordination of the upland forest communities of southern Wisconsin, Ecological monographs, vol.27, issue.4, pp.325-349, 1957.

L. Breiman, Random Forests. Machine Learning, vol.45, pp.5-32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Statistics/Probability Series. Belmont, California, 1984.

R. D. Brown, Selecting and weighting n-grams to identify 1100 languages, Pages 475-483 of : International Conference on Text, Speech and Dialogue, 2013.

S. Brüninghaus and K. D. Ashley, Improving the representation of legal case texts with information extraction methods, Pages 42-51 of : Proceedings of the 8th international conference on Artificial intelligence and law, 2001.

S. Bruninghaus and K. D. Ashley, Predicting outcomes of case based legal arguments. Pages 233-242 of, Proceedings of the 9th international conference on Artificial intelligence and law, 2003.

J. F. Burrows, Not unles you ask nicely : The interpretative nexus between analysis and information, Literary and Linguistic Computing, vol.7, pp.91-109, 1992.

C. Cardellino and M. Teruel, A Low-cost, Highcoverage Legal Named Entity Recognizer, Classifier And Linker. Pages 9-18 of : Proceedings of the 16th edition of the International Conference on Articial Intelligence and Law, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541446

Y. Chang, . Sung, and . Yun-hsuan, Applying name entity recognition to informal text, 2005.

D. Charlet and G. Damnati, Simbow at semeval-2017 task 3 : Soft-cosine semantic similarity between questions for community question answering. Pages 315-319 of, Proceedings of the 11th International Workshop on Semantic Evaluation, 2017.

D. Charlet and G. Damnati, Similarité textuelle pour l'association de documents journalistiques, 15e Conférence en Recherche d'Information et Applications (CORIA), 2018.

M. Chau, J. J. Xu, . Chen, and . Hsinchun, Extracting Meaningful Entities From Police Narrative Reports. Pages 1-5 of, Proceedings of the 2002 annual national conference on Digital government research, 2002.

L. Chiticariu, . Krishnamurthy, . Rajasekar, . Li, . Yunyao et al., Domain adaptation of rule-based annotators for named-entity recognition tasks, Pages 1002-1012 of : Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, 2010.

J. Cohen, A coefficient of agreement for nominal scales. Educational and psychological measurement, vol.20, pp.37-46, 1960.

C. Cortes and V. Vapnik, Support-vector networks. Machine Learning, vol.20, pp.273-297, 1995.

T. Cover and P. Hart, Nearest Neighbor Pattern Classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.

L. Cretin, L'opinion des Français sur la justice, p.125, 2014.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, Indexing By Latent Semantic Analysis, Journal Of The American Society For Information Science, vol.41, issue.6, pp.391-407, 1990.

. Dila, Base de données CAPP, 2019.

Y. -. Dong, . Shi, . Han, and . Ke-song, Boosting SVM classifiers by ensemble, Pages 1072-1073 of : Special Interest Tracks And Posters Of The 14th International Conference On World Wide Web, 2005.

C. Dozier, . Kondadadi, . Ravikumar, . Light, . Marc et al., Named entity recognition and resolution in legal text. Pages 27-43 of : Semantic Processing of Legal Texts, 2010.

R. O. Duda and P. E. Hart, Pattern Classification And Scene Analysis, vol.3, 1973.

S. T. Dumais, G. W. Furnas, T. K. Landauer, . Deerwester, . Scott et al., Using Latent Semantic Analysis To Improve Access To Textual Information. Pages 281-285 of, Proceedings of the SIGCHI conference on Human factors in computing systems, 1988.

G. Durif, . Modolo, . Laurent, J. Michaelsson, J. E. Mold et al., High dimensional classification with combined adaptive sparse PLS and logistic regression, Bioinformatics, vol.34, issue.3, pp.485-493, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01587360

J. L. Elman, Finding Structure In Time, Cognitive science, vol.14, issue.2, pp.179-211, 1990.

M. Ester, . Kriegel, . Hans-peter, . Sander, . Jörg et al., A Density-based Algorithm For Discovering Clusters In Large Spatial Databases With Noise, Pages 226-231 of : KDD, vol.96, 1996.

A. Fang, . Macdonald, . Craig, . Ounis, . Iadh et al., Using word embedding to evaluate the coherence of topics from twitter data, Pages 1057-1060 of : Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, 2016.

J. Finkel, . Rose, . Grenager, . Trond, and C. Manning, Incorporating Non-local Information Into Information Extraction Systems By Gibbs Sampling. Pages 363-370 of, Proceedings of the 43rd annual meeting on association for computational linguistics, 2005.

R. A. Fisher, The use of multiple measurements in taxonomic problems, Annals of Eugenics, vol.7, issue.2, pp.179-188, 1936.

E. Forgey, Cluster analysis of multivariate data : Efficiency vs. interpretability of classification, Biometrics, vol.21, issue.3, pp.768-769, 1965.

E. Frank, . Hall, A. Mark, . Witten, and H. Ian, The WEKA workbench. Fourth edn, 2016.

K. Frantzi, . Ananiadou, . Sophia, . Mima, and . Hideki, Automatic recognition of multi-word terms :. the c-value/nc-value method, International journal on digital libraries, vol.3, issue.2, pp.115-130, 2000.

L. Galavotti, . Sebastiani, . Fabrizio, and M. Simi, Experiments on the use of feature selection and negative evidence in automated text categorization, Pages 59-68 of : International Conference on Theory and Practice of Digital Libraries, 2000.

M. Genesereth, Computational Law : The Cop in the Backseat. The standford Center for Legal Informatics hosted the third annual FutureLaw, 2015.

. Ghojogh, . Benyamin, and M. Crowley, Linear and quadratic discriminant analysis : Tutorial, 2019.

E. Grave, T. Mikolov, A. Joulin, and P. Bojanowski, Bag of tricks for efficient text classification, Pages 427-431 of : Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, vol.2, pp.3-7, 2017.

R. Grishman and B. Sundheim, Message understanding conference-6 : A brief history, The 16th International Conference on Computational Linguistics, vol.1, 1996.

L. Guttman, Some necessary conditions for common-factor analysis, Psychometrika, vol.19, issue.2, pp.149-161, 1954.

M. Halkidi, Y. Batistakis, . Vazirgiannis, and . Michalis, On clustering validation techniques, Journal of intelligent information systems, vol.17, issue.2-3, pp.107-145, 2001.

D. Hanisch, . Fundel, and . Katrin, ProMiner : rule-based protein and gene entity recognition, BMC bioinformatics, vol.6, issue.1, p.14, 2005.

. Harispe, . Sébastien, . Ranwez, . Sylvie, . Janaqi et al., The semantic measures library and toolkit : fast computation of semantic similarity and relatedness using biomedical ontologies, Bioinformatics, vol.30, issue.5, pp.740-742, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01059329

. Harispe, . Sébastien, . Ranwez, . Sylvie, . Janaqi et al., Semantic similarity from natural language and ontology analysis, Synthesis Lectures on Human Language Technologies, vol.8, issue.1, pp.1-254, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01288380

R. J. Hathaway, J. W. Davenport, . Bezdek, and C. James, Relational duals of the c-means clustering algorithms, Pattern recognition, vol.22, issue.2, pp.205-212, 1989.

D. S. Hirschberg, Algorithms For The Longest Common Subsequence Problem, Journal of the ACM (JACM), vol.24, issue.4, pp.664-675, 1977.

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation, vol.9, pp.1735-1780, 1997.

A. Huang, Similarity measures for text document clustering, Pages 9-56 of : Proceedings of the sixth new zealand computer science research student conference (NZCSRSC2008), vol.4, 2008.

L. Hubert, . Arabie, and . Phipps, Comparing partitions, Journal of classification, vol.2, issue.1, pp.193-218, 1985.

C. Im, . Jong, . Mandl, and . Thomas, Text Classification for Patents : Experiments with Unigrams, Bigrams and Different Weighting Methods, International Journal of Contents, vol.13, issue.2, 2017.

P. Jaccard, Etude comparative de la distribution florale dans une portion des Alpes et des Jura, Bulletin de la Société Vaudoise Sciences Naturelles, vol.37, pp.547-579, 1901.

B. Jeandidier, . Ray, and . Jean-claude, Pensions alimentaires pour enfants lors du divorce -Les juges appliquent-ils implicitement un calcul fondé sur le coût de l'enfant, Revue des politiques sociales et familiales, vol.84, pp.5-18, 2006.

K. Jones, . Sparck, . Walker, . Steve, . Robertson et al., A Probabilistic Model Of Information Retrieval : Development And Comparative Experiments, Information Processing & Management, vol.36, issue.6, pp.809-840, 2000.

M. I. Jordan, Serial Order : A Parallel Distributed Processing Approach, 1985.

H. F. Kaiser, The application of electronic computers to factor analysis, Educational and psychological measurement, vol.20, issue.1, pp.141-151, 1960.

D. Katz, . Martin, M. Bommarito, . James, and J. Blackman, Predicting the behavior of the supreme court of the united states : A general approach, 2014.

D. Katz, . Martin, I. I. Bommarito, J. Michael, and J. Blackman, A general approach for predicting the behavior of the Supreme Court of the United States, PloS one, vol.12, issue.4, p.174698, 2017.

L. Kaufman, . Rousseeuw, and J. Peter, Clustering By Means Of Medoids, Statistical Data Analysis Based on the L1-Norm, pp.405-416, 1987.

J. Kim, . Ohta, . Tomoko, . Tsuruoka, . Yoshimasa et al., Introduction to the bio-entity recognition task at JNLPBA. Pages 70-75 of, Proceedings of the international joint workshop on natural language processing in biomedicine and its applications. Association for Computational Linguistics, 2004.

F. Kitoogo, . Edward, . Baryamureeba, and . Venansius, A methodology for feature selection in named entity recognition. Strengthening the Role of ICT in Development, p.88, 2007.

J. Kittler, M. Hater, . Duin, and P. W. Robert, Combining classifiers, Pages 897-901 of : Proceedings of 13th international conference on pattern recognition, vol.2, 1996.

J. Kittler, . Hatef, . Mohamad, . Duin, P. W. Robert et al., On combining classifiers. IEEE transactions on pattern analysis and machine intelligence, vol.20, pp.226-239, 1998.

R. Klinger and C. M. Friedrich, Feature subset selection in conditional random fields for named entity recognition. Pages 185-191 of, Proceedings of the International Conference RANLP-2009, 2009.

M. Konkol, . Konopík, and . Miloslav, Segment representations in named entity recognition. Pages 61-70 of : International Conference on Text, Speech, and Dialogue, 2015.

R. Krishnapuram, . Joshi, . Anupam, . Nasraoui, . Olfa et al., Low-Complexity Fuzzy Relational Clustering Algorithms For Web Mining, IEEE transactions on Fuzzy Systems, vol.9, issue.4, pp.595-607, 2001.

. Kríz, . Vincent, . Hladká, . Barbora, J. Dedek et al., Statistical Recognition of References in Czech Court Decisions. Pages 51-61 of : Gelbukh, Human-Inspired Computing and Its Applications : 13th Mexican International Conference on Artificial Intelligence, vol.2014, 2014.

C. N. Kroll, . Song, and . Peter, Impact of multicollinearity on small sample hydrologic regression models, Water resources research, vol.49, issue.6, pp.3756-3769, 2013.

. Kumar, . Sushanta, . Reddy, . Krishna, . Reddy et al., Similarity analysis of legal judgments, Proceedings of Compute 2011 -Fourth Annual ACM Bangalore Conference, vol.17, 2011.

L. I. Kuncheva, Combining pattern classifiers : methods and algorithms, 2004.

M. Kusner, . Sun, . Yu, . Kolkin, . Nicholas et al., From word embeddings to document distances, Pages 957-966 of : International Conference on Machine Learning, 2015.

T. O. Kvalseth, Entropy and correlation : Some comments, IEEE Transactions on Systems, Man, and Cybernetics, vol.17, issue.3, pp.517-519, 1987.

A. Lacroux, Les avantages et les limites de la méthode «Partial Least Square »(PLS) : une illustration empirique dans le domaine de la GRH, Revue de gestion des ressources humaines, vol.80, pp.45-64, 2011.

J. Lafferty, A. Mccallum, . Pereira, and C. N. Fernando, Conditional random fields : probabilistic models for segmenting and labeling sequence data, International Conference on Machine Learning, 2001.

V. Lamanda, Discours du Premier Président de la Cour de Cassation Vincent Lamanda lors de l'audience solennelle de début d'année, 2010.

G. Lample, . Ballesteros, . Miguel, . Subramanian, . Sandeep et al., Neural architectures for named entity recognition, 2016.

M. Lan, C. Tan, . Lim, . Su, . Jian et al., Supervised and traditional term weighting methods for automatic text categorization, IEEE transactions on pattern analysis and machine intelligence, vol.31, pp.721-735, 2009.

E. Langlais and N. Chappe, Analyses économiques du droit : principes, méthodes, résultats. Editions de Boeck Université. Chap. 4. Analyse économique de la résolution des litiges, 2009.

, ACE (Automatic Content Extraction) English Annotation Guidelines for Events. 5.4.3 edn. Linguistic Data Consortium, LDC, 2005.

, ACE (Automatic Content Extraction) English Annotation Guidelines for Relations. 6.2 edn. Linguistic Data Consortium, LDC, 2008.

Q. Le and T. Mikolov, Distributed Representations of Sentences and Documents. Pages 1188-1196 of, Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol.32, 2014.

P. Leith, The rise and fall of the legal expert system, European Journal of Law and Technology, vol.1, issue.1, pp.179-201, 2010.

J. Li, . Zhao, . Shenhe, . Yang, . Jijiang et al., WCP-RNN : a novel RNNbased approach for Bio-NER in Chinese EMRs, The Journal of Supercomputing, pp.1-18, 2018.

Y. Li, . Zaragoza, . Hugo, R. Herbrich, J. Shawe-taylor et al., The perceptron algorithm with uneven margins, Pages 379-386 of : ICML, vol.2, 2002.

D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical programming, vol.45, issue.1, pp.503-528, 1989.

H. Liu, . Motoda, and . Hiroshi, Feature selection for knowledge discovery and data mining, vol.454, 2012.

J. Liu, . Pasupat, . Panupong, . Cyphers, . Scott et al., AS-GARD : A Portable Architecture For Multilingualdialogue Systems, Pages 8386-8390 of : 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.

Y. Liu and W. Rayens, PLS and dimension reduction for classification, Computational Statistics, vol.22, issue.2, pp.189-208, 2007.

K. Llewellyn and . Nickerson, Jurisprudence : Realism in Theory and Practice, 1962.

N. Love and M. Genesereth, Computational law. Pages 205-209 of : Proceedings of the 10th international conference on Artificial intelligence and law, 2005.

Y. Ma, . Zhang, . Peng, and J. Ma, An Efficient Approach to Learning Chinese Judgment Document Similarity Based on Knowledge Summarization, 2018.

B. Mandal, . Arpan, . Ghosh, . Kripabandhu, . Bhattacharya et al., Overview of the FIRE 2017 IRLeD Track : Information Retrieval from Legal Documents. Pages 63-68 of : FIRE (Working Notes), 2017.

C. D. Manning, . Raghavan, . Prabhakar, . Schütze, and . Hinrich, Flat clustering, of : Introduction to information retrieval, vol.16, pp.349-375, 2009.

C. D. Manning, . Raghavan, . Prabhakar, . Schütze, and . Hinrich, Scoring, term weighting and the vector space model, of : Introduction to information retrieval, vol.6, pp.109-133, 2009.

L. A. Marascuilo, Large-sample multiple comparisons, Psychological bulletin, vol.65, issue.5, p.280, 1966.

J. Martineau and T. Finin, Delta TFIDF : An Improved Feature Space for Sentiment Analysis, Third International AAAI Conference on Weblogs and Social Media (ICWSM), 2009.

A. Mccallum and . Kachites, MALLET : A Machine Learning for Language Toolkit, 2012.

W. S. Mcculloch, . Pitts, and . Walter, A Logical Calculus Of The Ideas Immanent In Nervous Activity. The bulletin of mathematical biophysics, vol.5, pp.115-133, 1943.

G. J. Mclachlan, Discriminant analysis and statistical pattern recognition, 1992.

M. Medvedeva, . Vols, . Michel, and M. Wieling, Judicial Decisions of the European Court of Human Rights : Looking into the Crystal Ball, Proceedings of the Conference on Empirical Legal Studies, 2018.

A. Mikheev, . Moens, . Marc, and C. Grover, Named entity recognition without gazetteers, Proceedings of the ninth conference on European chapter of the Association for Computational Linguistics, 1999.

T. Mikolov, . Chen, . Kai, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, Proceedings of the International Conference on Learning Representations, 2013.

R. Mochales and M. Moens, Study on the structure of argumentation in case law, Pages 11-20 of : Proceedings of the 2008 Conference on Legal Knowledge and Information Systems, 2008.

M. Moens, What information retrieval can learn from case-based reasoning. Pages 83-91 of : Legal Knowledge and Information Systems, for Jurix 2002 : The Fifteenth Annual Conference, 2002.

M. Moens, . Boiy, . Erik, R. Palau, . Mochales et al., Automatic detection of arguments in legal texts, Pages 225-230 of : Proceedings of the 11th international conference on Artificial intelligence and law, 2007.

F. Muhlenbach and I. Sayn, Artificial Intelligence and Law : What Do People Really Want ? : Example of a French Multidisciplinary Working Group. Pages 224-228 of, Proceedings of the 17th International Conference on Artificial Intelligence and Law, 2019.

S. Mussard and F. Souissi-benrejab, Gini-PLS Regressions, Journal of Quantitative Economics, pp.1-36, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02187582

D. Nadeau, . Sekine, and . Satoshi, A survey of named entity recognition and classification, Lingvisticae Investigationes, vol.30, pp.3-26, 2007.

A. M. Nair, R. Wagh, and . Sunil, Similarity Analysis of Court Judgements Using Association Rule Mining on Case Citation Data -A Case Study, International Journal of Engineering Research and Technology, vol.11, issue.3, pp.373-381, 2018.

R. Nallapati, . Surdeanu, . Mihai, and C. Manning, Blind domain transfer for named entity recognition using generative latent topic models. Pages 281-289 of, Proceedings of the NIPS 2010 Workshop on Transfer Learning Via Rich Generative Models, 2010.

A. Nazarenko and A. Wyner, Legal NLP Introduction. Traitement automatique de la langue juridique / Legal Natural Language Processing -Revue TAL, vol.58, pp.7-19, 2017.

S. Nefti and M. Oussalah, Probabilistic-fuzzy clustering algorithm. Pages 4786-4791 of, IEEE International Conference on Systems, Man and Cybernetics, vol.5, 2004.

H. Ng, . Tou, W. Goh, . Boon, K. Low et al., Feature selection, perceptron learning, and a usability case study for text categorization, Pages 67-73 of : ACM SIGIR Forum, vol.31, 1997.

T. Nguyen, . Huu, . Cho, . Kyunghyun, and R. Grishman, Joint Event Extraction via Recurrent Neural Networks. Pages 300-309 of, 2016.

. Nigam, . Kamal, J. Lafferty, and A. Mccallum, Using maximum entropy for text classification, Pages 61-67 of : IJCAI-99 Workshop on Machine Learning for Information Filtering, vol.1, 1999.

I. Olkin and S. Yitzhaki, Gini regression analysis. International Statistical Review/Revue Internationale de Statistique, pp.185-196, 1992.

P. Paatero, . Tapper, and . Unto, Positive matrix factorization : A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, vol.5, issue.2, pp.111-126, 1994.

M. Pagliardini, . Gupta, . Prakhar, and M. Jaggi, Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features. Pages 528-540 of, Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics : Human Language Technologies (NAACL), vol.1, 2018.

R. Palm, . Berg, . Hovy, . Dirk, F. Laws et al., Endto-End Information Extraction without Token-Level Supervision, Proceedings of the Workshop on Speech-Centric Natural Language Processing, 2017.

D. D. Palmer, . Day, and S. David, A statistical profile of the named entity task, Pages 190-193 of : Proceedings of the fifth conference on Applied natural language processing, 1997.

G. Paltoglou and M. Thelwall, A study of information retrieval weighting schemes for sentiment analysis, Pages 1386-1395 of : Proceedings of the 48th annual meeting of the association for computational linguistics, 2010.

F. Pedregosa, G. Varoquaux, A. Gramfort, and V. Michel, Scikitlearn : Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

J. Pennington, R. Socher, and C. Manning, Glove : Global vectors for word representation, Pages 1532-1543 of : Proceedings Of The 2014 Conference On Empirical Methods In Natural Language Processing (EMNLP), 2014.

C. Persson, Machine Learning for Tagging of Biomedical Literature, 2012.

J. Polifroni, . Mairesse, and . François, Using Latent Topic Features for Named Entity Extraction in Search Queries, 2011.

D. Poole and A. Mackworth, Artificial Intelligence : Foundations of Computational Agents, 2017.

P. J. Price, Evaluation Of Spoken Language Systems : The ATIS Domain, Pages 91-95 of : Proceedings of the Speech and Natural Language Workshop of the Human Language Technology Conference, 1990.

A. Prysiazhniuk, Application Web permettant la recherche d'information dans les décisions de justice -Stage Master1 au LGI2P/IMT Mines Alès, 2017.

P. Pudil, J. Novovi?ová, and J. Kittler, Floating search methods in feature selection, Pattern recognition letters, vol.15, issue.11, pp.1119-1125, 1994.

J. Quinlan and . Ross, C4.5 : Programming for machine learning, vol.38, p.48, 1993.

L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, vol.77, pp.257-286, 1989.

B. Raman, . Ioerger, and R. Thomas, Enhancing learning using feature and example selection, Texas A&M University, 2003.

W. M. Rand, Objective criteria for the evaluation of clustering methods, Journal of the American Statistical association, vol.66, issue.336, pp.846-850, 1971.

S. Raschka, Naive Bayes and Text Classification I : Introduction and Theory, 2014.

R. Kumar, V. Raghuveer, and K. , Legal documents clustering using latent dirichlet allocation, International Journal of Applied Information Systems (IJAIS), vol.2, issue.6, pp.34-37, 2012.

R. Reh??ek and P. Sojka, Software Framework for Topic Modelling with Large Corpora, Pages 45-50 of : Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, 2010.

I. Rish, An Empirical Study Of The Naive Bayes Classifier. Pages 41-46 of : IJCAI, Workshop On Empirical Methods In Artificial Intelligence, vol.3, 2001.

F. Rosenblatt, The Perceptron : A Probabilistic Model For Information Storage And Organization In The Brain, Psychological Review, vol.65, issue.6, p.386, 1958.

P. J. Rousseeuw, Silhouettes : A Graphical Aid To The Interpretation And Validation Of Cluster Analysis, Journal Of Computational And Applied Mathematics, vol.20, pp.53-65, 1987.

N. H. Ruparel, N. M. Shahane, . Bhamare, and P. Devyani, Learning from small data set to build classification model : A survey, Internationla Journal of Computer Applications, vol.975, issue.8887, pp.23-26, 2013.

A. Sabzi, . Farjami, . Yaghoub, . Zihayat, and . Morteza, An Improved Fuzzy K-medoids Clustering Algorithm With Optimized Number Of Clusters, Pages 206-210 of : Proceedings of the 11th International Conference on Hybrid Intelligent Systems (HIS), 2011.

G. Salton and C. Buckley, Term-weighting, Approaches In Automatic Text Retrieval. Information Processing & Management, vol.24, issue.5, pp.513-523, 1988.

G. Salton, . Mcgill, and J. Michael, Introduction To Modern Information Retrieval, 1983.

G. Salton, A. Wong, and C. Yang, A Vector Space Model For Automatic Indexing, Communications of the ACM, vol.18, issue.11, pp.613-620, 1975.

S. Salvador and P. Chan, Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. Pages 576-584 of, 16th IEEE International Conference on Tools with Artificial Intelligence, 2004.

E. Schechtman and S. Yitzhaki, A family of correlation coefficients based on the extended Gini index, The Journal of Economic Inequality, vol.1, issue.2, pp.129-146, 2003.

H. Schmid, TreeTagger -a part-of-speech tagger for many languages, Proceedings of International Conference on New Methods in Language Processing, vol.154, 1994.

. Schütze, . Hinrich, . Hull, A. David, and . Pedersen, A comparison of classifiers and document representations for the routing problem, Pages 229-237 of : Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, 1995.

R. Sharnagat, Named entity recognition : A literature survey, 2014.

J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE Transactions On Pattern Analysis And Machine Intelligence, vol.22, issue.8, pp.888-905, 2000.

O. Shulayeva, . Siddharthan, . Advaith, and A. Wyner, Recognizing cited facts and principles in legal judgements, Artificial Intelligence and Law, vol.25, issue.1, pp.107-126, 2017.

G. Sidorov, A. Gelbukh, H. Gómez-adorno, and D. Pinto, Soft similarity and soft cosine measure : Similarity of features in vector space model, Computación y Sistemas, vol.18, issue.3, pp.491-504, 2014.

P. Siniakov, GROPUS an Adaptive Rule-based Algorithm for Information Extraction, 2008.

S. Sohangir and D. Wang, Improved sqrt-cosine similarity measurement, Journal of Big Data, vol.4, issue.1, p.25, 2017.

S. Jones and K. , A statistical interpretation of term specificity and its application in retrieval, Journal of Documentation, vol.28, issue.1, pp.11-21, 1972.

A. Strehl, . Ghosh, . Joydeep, and R. Mooney, Impact of similarity measures on web-page clustering. Page 64 of : Workshop on artificial intelligence for web search, vol.58, 2000.

O. Sulea, M. Zampieri, . Malmasi, . Shervin, . Vela et al., Exploring the Use of Text Classification in the Legal Domain, Proceedings of Bibliographie 2nd Workshop on Automated Semantic Analysis of Information in Legal Texts. ASAIL'2017, 2017.

O. Sulea, M. Zampieri, . Vela, . Mihaela, and J. Van-genabith, Predicting the Law Area and Decisions of French Supreme Court Cases. Pages 716-722 of, Proceedings of the International Conference on Recent Advances in Natural Language Processing, 2017.

M. Tenenhaus, La régression PLS : théorie et pratique, Editions TECHNIP, 1998.

M. Tenenhaus, La regression logistique PLS, Modèles statistiques pour données qualitatives. Editions Technip, vol.12, pp.263-276, 2005.

D. Thakker, . Osman, . Taha, and P. Lakin, GATE JAPE Grammar Tutorial, 2009.

D. Thenmozhi, . Kannan, . Kawshik, and C. Aravindan, A Text Similarity Approach for Precedence Retrieval from Legal Documents, Pages 90-91 of : Proceedings of Forum for Information Retrieval Evaluation -FIRE (Working Notes), 2017.

R. L. Thorndike, Who belongs in the family ?, Psychometrika, vol.18, issue.4, pp.267-276, 1953.

T. Kim-sang, E. F. De-meulder, and F. , Introduction to the CoNLL-2003 Shared Task : Language-independent Named Entity Recognition. Pages 142-147 of, Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, vol.4, 2003.

. Tulyakov, . Sergey, . Jaeger, . Stefan, . Govindaraju et al., Review of classifier combination methods. Pages 361-386 of : Machine learning in document analysis and recognition, 2008.

V. Tumonis, LEGAL REALISM & JUDICIAL DECISION-MAKING. Jurisprudencija, vol.19, 2012.

S. Ulmer and . Sidney, Quantitative analysis of judicial processes : Some practical and theoretical applications, Law and Contemporary Problems, vol.28, issue.1, pp.164-184, 1963.

. Van-asch and . Vincent, Macro-and micro-averaged evaluation measures, Computational Linguistics & Psycholinguistics (CLiPS), 2013.

V. N. Vapnik, The Nature of Statistical Learning Theory, 1995.

A. J. Viera and J. M. Garrett, Understanding interobserver agreement : the kappa statistic, Family Medicine, vol.37, issue.5, pp.360-363, 2005.

M. K. Vijaymeena and K. Kavitha, A survey on similarity measures in text mining, Machine Learning and Applications : An International Journal, vol.3, issue.2, pp.19-28, 2016.

N. Vinh, . Xuan, J. Epps, and J. Bailey, Information theoretic measures for clusterings comparison : Variants, properties, normalization and correction for chance, Journal of Machine Learning Research, vol.11, pp.2837-2854, 2010.

. Vinyals, . Oriol, . Fortunato, . Meire, . Jaitly et al., Pointer networks. Pages 2692-2700 of, Advances in Neural Information Processing Systems, 2015.

A. Viterbi and . James, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Transactions on Information Theory, vol.13, issue.2, pp.260-269, 1967.

V. Luxburg and U. , A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

H. M. Wallach, Conditional Random Fields : An Introduction, 2004.

B. Waltl, . Matthes, . Florian, . Waltl, . Tobias et al., LEXIA -A Data Science Environment for Semantic Analysis of German Legal Texts, IRIS : Internationales Rechtsinformatik Symposium. Salzburg, 2016.

B. Waltl, . Landthaler, . Jörg, . Scepankova, . Elena et al., Automated extraction of semantic information from German legal documents, IRIS : Internationales Rechtsinformatik Symposium, 2017.

B. Waltl, . Bonczek, . Georg, . Scepankova, . Elena et al., Predicting the Outcome of Appeal Decisions in Germany's Tax Law, Pages 89-99 of : International Conference on Electronic Participation, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01703326

B. Waltl, G. Bonczek, and F. Matthes, Rule-based Information Extraction : Advantages, Limitations, And Perspectives. Jusletter IT, 2018.

F. Wang and J. Sun, Survey on distance metric learning and dimensionality reduction in data mining, Data Mining and Knowledge Discovery, vol.29, issue.2, pp.534-564, 2015.

S. Wang, . Manning, and D. Christopher, Baselines and bigrams : Simple, good sentiment and topic classification, Pages 90-94 of : Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics : Short Papers, vol.2, 2012.

L. R. Welch, Hidden Markov models and the Baum-Welch algorithm, IEEE Information Theory Society Newsletter, vol.53, issue.4, pp.10-13, 2003.

H. Wold, Estimation of principal components and related models by iterative least squares, Multivariate Analysis, pp.391-420, 1966.

H. Wu, . Gu, . Xiaodong, and Y. Gu, Balancing between overweighting and under-weighting in supervised term weighting. Information Processing & Management, vol.53, pp.547-557, 2017.

H. Wu and G. Salton, A comparison of search term weighting : term relevance vs. inverse document frequency. Pages 30-39 of, ACM SIGIR Forum, vol.16, 1981.

A. Wyner and W. Peters, Lexical Semantics and Expert Legal Knowledge towards the Identification of Legal Case Factors, Pages 127-136 of : JURIX, vol.10, 2010.

A. Wyner, . Mochales-palau, . Raquel, M. Moens, and D. Milward, Approaches to text mining arguments from legal cases. Pages 60-79 of : Semantic Processing of Legal Texts : where the Language of Law Meets the Law of Language, 2010.

A. Z. Wyner, Informatica e Diritto : special issue on legal ontologies and artificial intelligent techniques, vol.19, pp.9-18, 2010.

R. Xiao, Corpus Creation, Handbook of Natural Language Processing, pp.146-165, 2010.

P. Xie, . Xing, and P. Eric, Integrating document clustering and topic modeling, Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013), 2013.

V. Yadav and S. Bethard, A Survey on Recent Advances in Named Entity Recognition from Deep Learning models, Pages 2145-2158 of : Proceedings of the 27th International Conference on Computational Linguistics, 2018.

B. Yang and T. Mitchell, Joint Extraction of Events and Entities within a Document Context. Pages 289-299 of, Proceedings of NAACL-HLT, 2016.

Y. Yang and . Pedersen, A comparative study on feature selection in text categorization, Pages 412-420 of : ICML, vol.97, 1997.

X. Zeng, . Wang, . Ming-wen, . Nie, and . Jian-yun, Text classification based on partial least square analysis. Pages 834-838 of, Proceedings of the 2007 ACM symposium on Applied computing, 2007.

X. Zhu, Conditional Random Fields. CS769 Spring 2010 Advanced Natural Language Processing, 2010.

V. Zolotov and D. Kung, Analysis and optimization of fasttext linear text classifier, 2017.