R. M. Acornley and D. A. Sear, Sediment transport and siltation of brown trout (Salmo trutta L.) spawning gravels in chalk streams, Hydrol. Process, vol.13, p.447, 1999.

D. Agut and J. C. Moreno-garcía, L'Égypte des pharaons : de Narmer à Dioclétien, 3150 av, 2016.

B. Amann, S. Lobsiger, D. Fischer, W. Tylmann, A. Bonk et al., Spring temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake ?abi?skie, north-eastern Poland, Glob. Planet. Change, vol.123, pp.86-96, 1907.

. Arasan, The Relationship between the Fractal Dimension and Shape Properties of Particles, KSCE J. Civ. Engi Neering, vol.15, pp.1219-1225, 2011.

. Bagheri, On the characterization of size and shape of irregular particles, Powder Technol, vol.270, pp.141-153, 2014.

D. R. Barclay and M. J. Buckingham, On the shapes of natural sand grains, J. Geophys. Res. Solid Earth, vol.114, 2009.

C. Bartos, Á. Kukovecz, R. Ambrus, G. Farkas, N. Radacsi et al., Comparison of static and dynamic sonication as process intensification for particle size reduction using a factorial design, Chem. Eng. Process. Process Intensif, vol.87, pp.26-34, 2015.

N. D. Bégénat, BéGéNAT : préparations pour l'enseignement des Sciences de la Vie et de la Terre

S. Blott and K. Pye, Gradistat : A grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surf. Process. Landf, vol.26, pp.1237-1248, 2001.

,

. Bodycomb, Are we there yet? How many particles do you need for Image Analysis ?, 2013.

E. C. Bonniwell, G. Matisoff, and P. J. Whiting, Determining the times and distances of particle transit in a mountain stream using fallout radionuclides, Geomorphology, vol.27, pp.75-92, 1999.

, , pp.91-100

, Nouvelle-Calédonie | BRGM [WWW Document, BRGM, 2018.

. Brown, The global loss of topsoil, J. Soil Water Conserv, vol.39, pp.162-165, 1984.

. Brown, Eroding the Base of Civilization, EPA J, vol.7, p.10, 1981.

J. Buffle, H. P. Leeuwen, and . Van, Environmental particles, vol.1, 1992.

W. A. Burns, P. J. Mankiewicz, A. E. Bence, D. S. Page, and K. R. Parker, A principal-component and leastsquares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources, Environ. Toxicol. Chem, vol.16, pp.1119-1131, 1997.

. Cadogan, Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and characterization, Int. Biodeterior. Biodegrad, vol.95, pp.232-240, 2014.

A. Cailleux, Distinction des sables marins et fluviatiles, Bull. Société Géologique Fr. S5-XIII, pp.125-138, 1943.

I. Campaña, A. Benito-calvo, A. Pérez-gonzález, J. M. Bermúdez-de-castro, and E. Carbonell, Assessing automated image analysis of sand grain shape to identify sedimentary facies, Gran Dolina archaeological site, Sediment. Geol, vol.346, pp.72-83, 2016.

,

C. Erba-reagents and N. D. , Sand purified RS -For flash chromatography

J. E. Carter, P. N. Owens, D. E. Walling, and G. J. Leeks, Fingerprinting suspended sediment sources in a large urban river system, Sci. Total Environ, issue.03, pp.71-79, 2003.

M. J. Cashman, A. Gellis, L. G. Sanisaca, G. B. Noe, V. Cogliandro et al., Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed, River Res. Appl, vol.34, pp.1032-1044, 2018.

P. Casin, L'analyse en composantes principales généralisée, Rev. Stat. Appliquée, vol.44, pp.63-81, 1996.

J. Castella-müller, C. Antoine, S. Knispel, and E. Castella, Physico-chemical and sediment characteristics of small water bodies in a fringing wetland, SIL Proc. 1922-2010, vol.27, pp.3438-3439, 1998.

. Chedeville, Étude de la variabilité du fonctionnement hydro-sédimentaire des karsts de l'Ouest du Bassin de Paris à partir de la comparaison des remplissages sédimentaires karstiques anciens, actuels et du signal turbide des eaux souterraines, 2015.

D. Chessel and M. Hanafi, Analyses de la co-inertie de K-nuages de points, Rev. Stat. Appliquée, vol.44, pp.35-60, 1996.

. Clark, Quantitative Shape Analysis: A Review, Math. Geol, vol.13, pp.303-320, 1981.

R. Cojan, , 2013.

A. Collins and D. Walling, Selecting Fingerprint Properties for Discriminating Potential Suspended Sediment Sources in River Basins, J. Hydrol, vol.261, pp.218-244, 2002.

A. Collins, Y. Zhang, D. Mcchesney, D. Walling, S. Haley et al., Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling, Sci. Total Environ, vol.414, pp.301-318, 2011.

,

A. L. Collins, D. E. Walling, and G. J. Leeks, Use of the geochemical record preserved in floodplain deposits to reconstruct recent changes in river basin sediment sources, Geomorphology, vol.19, pp.151-167, 1997.

A. L. Collins, D. E. Walling, and G. J. Leeks, Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique, CATENA, vol.29, issue.96, pp.64-65, 1997.

A. L. Collins, D. E. Walling, H. M. Sichingabula, and G. J. Leeks, Suspended sediment source fingerprinting in a small tropical catchment and some management implications, Appl. Geogr, vol.21, pp.13-16, 2001.

A. L. Collins, Y. Zhang, D. Mcchesney, D. E. Walling, S. M. Haley et al., Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling, Sci. Total Environ, vol.414, pp.301-317, 2012.

,

Y. Copard, F. Eyrolle, O. Radakovitch, A. Poirel, P. Raimbault et al., Badlands as a hot spot of petrogenic contribution to riverine particulate organic carbon to the Gulf of Lion, POC flux from badlands to the NW Mediterranean sea, vol.43, pp.2495-2509, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01953481

G. W. Corder, D. I. Foreman, and . Coulon, Morpho-granular approach to characterize harbour sediments and their agglomeration/dispersion behaviour, Powder Technol, vol.275, pp.139-151, 2014.

E. P. Cox, A Method of Assigning Numerical and Percentage Values to the Degree of Roundness of Sand Grains, J. Paleontol, vol.1, pp.179-183, 1927.

G. , Culture Collection of Algae (SAG) -Georg-August-Universität Göttingen, Culture Collection of Algae (SAG)

. Czajkowska, Determination of coating thickness of minitablets and pellets by dynamic image analysis, Int. J. Pharm, vol.495, pp.347-353, 2015.

M. Danger, B. Allard, M. B. Arnous, J. Carrias, J. Mériguet et al., Effects of foodweb structure on the quantity and the elemental quality of sedimenting material in shallow lakes, Hydrobiologia, vol.679, pp.251-266, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00819129

. Das, Modeling 3D shape of sand grains using discrete element method, 2007.

C. M. Davis and J. F. Fox, Sediment Fingerprinting: Review of the Method and Future Improvements for Allocating Nonpoint Source Pollution, J. Environ. Eng, vol.135, pp.490-504, 2009.

M. Debret, D. Sebag, M. Desmet, W. Balsam, Y. Copard et al., Spectrocolorimetric interpretation of sedimentary dynamics: The new "Q7/4 diagram, Earth-Sci. Rev, vol.109, pp.1-19, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00615505

S. Dolédec and D. Chessel, Co-inertia analysis: an alternative method for studying species-environment relationships, Freshw. Biol, vol.31, pp.277-294, 1994.

J. Dominik, D. Burrus, and J. Vernet, Transport of the environmental radionuclides in an alpine watershed, Earth Planet. Sci. Lett, vol.84, pp.165-180, 1987.

G. Donaldson, J. Goff, C. Chagué, P. Gadd, and D. Fierro, The Waikari River tsunami: New Zealand's largest historical tsunami event, Sediment. Geol, vol.383, pp.148-158, 2019.

,

S. Dray, D. Chessel, and J. Thioulouse, Co-Inertia analysis and the linking of ecological data tables, Ecology, vol.84, pp.3078-3089, 2003.

I. G. Droppo, Rethinking what constitutes suspended sediment, Hydrol. Process, vol.15, pp.1551-1564, 2001.

P. Du and D. Walling, Fingerprinting surficial sediment sources: Exploring some potential problems associated with the spatial variability of source material properties, J. Environ. Manage, vol.194, 2016.

J. Dupont and R. Lafite, Importance et role du materiel organique vivant et inerte dans les suspensions de la Baie de Seine, ResearchGate. Presented at the La Baie de Seine (GRECO-MANCHE), IFREMER. Actes de Colloques n, vol.4, pp.155-162, 1986.

. Dur, The relationship between particle-size distribution by laser granulometry and image analysis by transmission electron microscopy in a soil clay fraction, Eur. J. Soil Sci, vol.55, pp.265-270, 2004.

. Duran, Approches physique, conceptuelle et statistique du fonctionnement hydrologique d'un karst sous couverture, 2015.
URL : https://hal.archives-ouvertes.fr/tel-02174004

. ?uri?, Optimal pixel resolution for sand particles size and shape analysis, Powder Technol, vol.302, pp.177-186, 2016.

L. Dussart, T. Jouenne, N. Massei, T. Lerch, H. Wang et al., Physiological modifications of bacteria fixed on suspended material as hydrological tracers ?, New Approaches Charact. Groundw. Flow, 2001.

M. D. Eggers and R. N. Ehrlich, CHANGES OF FINE QUARTZ SANDS IN GLACIAL AND INTERGLACIAL INTERVALS OF THE FENI AND GARDAR DRIFTS, vol.1, 2006.

D. Eisma, T. Schuhmacher, H. Boekel, J. Van-heerwaarden, H. Franken et al., A camera and image-analysis system for in situ observation of flocs in natural waters, Neth. J. Sea Res, vol.27, pp.43-56, 1990.

T. E. Essington and S. R. Carpenter, Mini-Review: Nutrient Cycling in Lakes and Streams: Insights from a Comparative Analysis, Ecosystems, vol.3, pp.131-143, 2000.

O. Evrard, J. Némery, N. Gratiot, C. Duvert, S. Ayrault et al., Sediment dynamics during the rainy season in tropical highland catchments of central Mexico using fallout radionuclides, Geomorphology, vol.124, pp.42-54, 2010.
URL : https://hal.archives-ouvertes.fr/insu-00563598

,

O. Evrard, J. Poulenard, J. Némery, S. Ayrault, C. Duvert et al., Tracing sediment sources in a tropical highland catchment of central Mexico by using conventional and alternative fingerprinting methods, Hydrol. Process, vol.27, 2013.

M. Fettweis, M. Baeye, B. J. Lee, P. Chen, and J. C. Yu, Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea). Geo-Mar, Lett, vol.32, pp.123-137, 2012.

B. Flury, Proportionality of $k$ covariance matrices, Stat. Probab. Lett, vol.4, pp.29-33, 1986.

R. L. Folk, Toward Greater Precision in Rock-Color Terminology, GSA Bull, vol.80, pp.725-728, 1969.

W. Folk, A study in the significance of grain size parameters, J. Sediment. Petrol, vol.27, pp.3-26, 1957.

D. Ford and P. Williams, Karst Hydrogeology and Geomorphology, 2013.

I. D. Foster, J. A. Lees, P. N. Owens, and D. E. Walling, Mineral magnetic characterization of sediment sources from an analysis of lake and floodplain sediments in the catchments of the Old Mill reservoir and Slapton Ley, Process. Landf, vol.23, pp.685-703, 1998.

. Fournier, Analyses granulométriques -principes et méhodes, 2012.

. Fournier, Application de nouveaux outils statistiques d'analyse des données aux système du Hannetôt, 2006.

M. Fournier, N. Massei, B. J. Mahler, M. Bakalowicz, and J. P. Dupont, Application of multivariate analysis to suspended matter particle size distribution in a karst aquifer, Hydrol. Process, vol.22, pp.2337-2345, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00487001

M. Fournier, A. Motelay-massei, N. Massei, M. Aubert, M. Bakalowicz et al., Investigation of Transport Processes inside Karst Aquifer by Means of STATIS, Ground Water, vol.47, pp.391-400, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00440268

F. Franco, L. A. Pérez-maqueda, and J. L. Pérez-rodr??guez, The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite, J. Colloid Interface Sci, vol.274, pp.107-117, 2004.

A. C. Gellis, C. C. Fuller, P. Van-metre, C. T. Filstrup, M. D. Tomer et al., Combining sediment fingerprinting with age-dating sediment using fallout radionuclides for an agricultural stream, J. Soils Sediments, vol.19, pp.3374-3396, 2019.

A. C. Gellis and L. G. Sanisaca, Sediment Fingerprinting to Delineate Sources of Sediment in the Agricultural and Forested Smith Creek Watershed, JAWRA J. Am. Water Resour. Assoc, vol.54, pp.1197-1221, 2018.

L. E. Gorman-sanisaca, A. C. Gellis, and D. L. Lorenz, Determining the sources of fine-grained sediment using the Sediment Source Assessment Tool (Sed_SAT) (USGS Numbered Series, Open-File Report. U.S. Geological Survey, 1062.

D. L. Grimshaw and J. Lewin, Source identification for suspended sediments, J. Hydrol, vol.47, pp.151-162, 1980.

. Grosjean, Enumeration, measurement, and dentification of net zooplankton samples using the ZOOSCAN digital imaging system, J. Mar. Sci, vol.61, pp.518-525, 2004.

,

K. E. Gruszowski, I. D. Foster, J. A. Lees, and S. M. Charlesworth, Sediment sources and transport pathways in a rural catchment, Process, vol.17, pp.2665-2681, 2003.

,

A. Haddadchi, J. Olley, and P. Laceby, Accuracy of mixing models in predicting sediment source contributions, Sci. Total Environ, pp.139-152, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02648460

A. Haddadchi, D. Ryder, O. Evrard, and J. Olley, Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing models, Int. J. Sediment Res, vol.28, pp.560-578, 2013.
URL : https://hal.archives-ouvertes.fr/cea-02615645

C. Hallin, B. Almström, M. Larson, and H. Hanson, Longshore Transport Variability of Beach Face Grain Size: Implications for Dune Evolution, J. Coast. Res, vol.35, pp.751-764, 2019.

N. Hawley, J. A. Robbins, and B. J. Eadie, The partitioning of 7beryllium in fresh water, Geochim. Cosmochim. Acta, vol.50, issue.86, pp.90393-90398, 1986.

H. He, L. Courard, E. Pirard, and F. Michel, SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE, Image Anal. Stereol, vol.35, pp.159-166, 2016.

Q. He and D. E. Walling, Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments, J. Environ. Radioact, vol.30, pp.89275-89282, 1996.

P. E. Helland, P. Huang, and R. F. Diffendal, SEM Analysis of Quartz Sand Grain Surface Textures Indicates Alluvial/Colluvial Origin of the Quaternary "Glacial" Boulder Clays at Huangshan (Yellow Mountain), East-Central China, Quat. Res, vol.48, pp.177-186, 1997.

M. O. Hill and A. J. Smith, Principal Component Analysis of Taxonomic Data with Multi-State Discrete Characters, Taxon, vol.25, pp.249-255, 1976.

P. S. Hill, J. P. Syvitski, E. A. Cowan, and R. D. Powell, In situ observations of floc settling velocities in Glacier Bay, Alaska. Mar. Geol, vol.145, pp.85-94, 1998.

F. Hjulström, Studies of the morphological activity of rivers as illustrated by the River Fyris. Inaugural dissertation, 1935.

A. J. Horowitz, primer on sediment-trace element chemistry, 1991.

J. Husson and . Pages, Principal component methods -hierarchical clustering -partitional clustering: why would we need to choose for visualizing data?, 2010.

. Ilic, Size and shape particle analysis by applying image analysis and laser diffraction of Inhalable dust in a dental laboratory, Measurement, vol.66, pp.109-117, 2015.

, International Humic Substances Society | IHSS, n.d. Source Materials for IHSS Samples

I. O. Iso and S. For, ISO 9276-6 Representation of particle Size -descriptive and quantitative representation of particle shape and morphology, 2008.

I. O. Iso and S. For, ISO 13322-1 Particle size analysis -Image analysis methods -Static image analysis methods, 2004.

Y. Jia, X. Liu, S. Zhang, H. Shan, J. Zheng et al., Wave-Forced Sediment Erosion and Resuspension in the Yellow River Delta, pp.123-162, 2019.

I. T. Jolliffe, Principal Component Analysis and Factor Analysis, in: Principal Component Analysis, Springer Series in Statistics, pp.115-128, 1986.

Z. Kapui, A. Kereszturi, K. Kiss, Z. Szalai, G. Újvári et al., Fluvial or aeolian grains? Separation of transport agents on Mars using earth analogue observations, Planet. Space Sci., Interdisciplinary observation and understanding of the Solar System, vol.163, pp.56-76, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01966147

L. Kaufman and P. J. Rousseeuw, Partitioning Around Medoids (Program PAM), in: Finding Groups in Data, pp.68-125, 1990.

S. K. Kennedy and R. Ehrlich, Origin of shape changes of sand and silt in a high-gradient stream system, J. Sediment. Res, vol.55, pp.57-64, 1985.

A. J. Koiter, P. N. Owens, E. L. Petticrew, and D. A. Lobb, The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins, Earth-Sci. Rev, vol.125, pp.24-42, 2013.

A. Krein, E. Petticrew, and T. Udelhoven, The use of fine sediment fractal dimensions and colour to determine sediment sources in a small watershed, CATENA, vol.53, pp.165-179, 2003.

, , pp.21-24

B. Kronvang, A. Laubel, S. E. Larsen, and N. Friberg, Pesticides and heavy metals in Danish streambed sediment, Hydrobiologia, vol.494, pp.93-101, 2003.

. Krumbein, Measurement and Geological Significance of Shape and Roundness of Sedimentary Particles, J. Sediment. Res, vol.11, 1941.

W. Krumbein and F. Pettijohn, Manual of Sedimentary Petrography, 1938.

M. Lacroix, J. Rodet, H. Q. Wang, N. Masséi, and J. Dupont, Origine des matières en suspension dans un système aquifère karstique : apports de la microgranulométrie, Comptes Rendus Académie Sci. -Ser, 2000.

, IIA -Earth Planet. Sci, vol.330, pp.347-354

R. Lal, Soil erosion and the global carbon budget, Environ. Int, vol.29, pp.192-199, 2003.

J. Lamba, K. G. Karthikeyan, and A. M. Thompson, Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting, Geoderma, vol.239, issue.240, pp.25-33, 2015.

C. Lavit, Y. Escoufier, R. Sabatier, and P. Traissac, The ACT (STATIS method), Comput. Stat. Data Anal, vol.18, pp.97-119, 1994.

,. Le-cloarec, P. Bonté, I. Lefèvre, J. Mouchel, and S. Colbert, Distribution of 7Be, 210Pb and 137Cs in watersheds of different scales in the Seine River basin: Inventories and residence times, Sci. Total Environ, vol.375, pp.125-139, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00711610

L. Gall, M. Evrard, O. Foucher, A. Laceby, P. Salvador-blanes et al., Quantifying sediment sources in a lowland agricultural catchment pond using 137Cs activities and radiogenic 87Sr/86Sr ratios, Sci. Total Environ, pp.968-980, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01691249

J. J. Le-roux, P. D. Sumner, S. A. Lorentz, and T. Germishuyse, Connectivity aspects in sediment migration modelling using the Soil and, Water Assessment Tool. Geosciences, vol.3, pp.1-12, 2013.

B. J. Lee, M. Fettweis, E. Toorman, and F. J. Molz, Multimodality of a particle size distribution of cohesive suspended particulate matters in a coastal zone, J. Geophys. Res. Oceans, vol.117, 2012.

P. Legendre, Encyclopedia of Ecology, pp.487-493, 2019.

C. Legout, J. Poulenard, J. Nemery, O. Navratil, T. Grangeon et al., Quantifying suspended sediment sources during runoff events in headwater catchments using spectrocolorimetry, J. Soils Sediments, vol.13, pp.1478-1492, 2013.
URL : https://hal.archives-ouvertes.fr/halsde-00864710

. Leibrandt, Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications, J. Volcanol. Geotherm. Res, vol.297, pp.11-27, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01170135

H. Lemma, J. Nyssen, A. Frankl, J. Poesen, E. Adgo et al., Bedload transport measurements in the Gilgel Abay River, Lake Tana Basin, Ethiopia. J. Hydrol, vol.577, 2019.

M. Lepillier, Le système karstique de Villequier (Seine Maritime) -étude hydrogéologique, hydrochimique et sédimentologique d'une circulation souterraine typique du Crétacé supérieur normand, 1975.

. Leroy, Optical analysis of particle size and chromite liberation from pulp samples of a UG2 ore regrinding circuit, Miner. Eng, vol.24, pp.1340-1347, 2011.

J. Li, W. Ye, G. Zhang, L. Zhu, Y. Jiang et al., Grain Size Evidence of Multiple Origins of Red Clays in the Jinhua, Pedosphere, vol.23, pp.60061-60063, 2013.

K. Lim, J. Choi, K. Kim, M. Sagong, and B. A. Engel, Development of Sediment Assessment Tool for Effective Erosion Control (SATEEC) in Small Scale Watershed, Mag. Korean Soc. Agric. Eng, vol.45, pp.85-96, 2003.

. Liu, Optimising shape analysis to quantify volcanic ash morphology, GeoResJ, vol.8, pp.14-30, 2015.

M. Mosquera-fernández, Quantitative image analysis to characterize the dynamics of Listeria monocytogenes biofilms, Int. J. Food Microbiol, vol.236, pp.130-137, 2016.

,

, A basic guide to particle characterization, 2015.

N. Martínez-carreras, T. Udelhoven, A. Krein, F. Gallart, J. F. Iffly et al., The Use of Sediment Colour Measured by Diffuse Reflectance Spectrometry to Determine Sediment Sources: Application to the Attert River Catchment (Luxembourg), J. Hydrol, pp.49-63, 2010.

. Massei, Transport de particules en suspension dans l'aquifère crayeux karstique et à l'interface craiealluvions, 2001.

N. Massei, M. Fournier, C. Lattelais, and . Dupont, , 2019.

J. Mazzullo, R. Ehrlich, and O. H. Pilkey, Local and distal origin of sands in the Hatteras Abyssal Plain, Mar. Geol, vol.48, pp.75-88, 1982.

P. Mccully, Silenced Rivers: The Ecology and Politics of Large Dams: Enlarged and Updated Edition, 2001.

P. E. Mckight and J. Najab, Kruskal-Wallis Test, The Corsini Encyclopedia of Psychology, pp.1-1, 2010.

P. A. Meyers, Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes, Org. Geochem, vol.34, pp.261-289, 2003.

, , pp.168-175

P. A. Meyers and R. Ishiwatari, Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments, Org. Geochem, vol.20, pp.867-900, 1993.

. Mikkelsen, In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera, Cont. Shelf Res, vol.25, pp.1959-1978, 2005.

. Milligan, SlTU PARTICLE (FLOC) SIZE MEASUREMENTS WITH THE BENTHOS 373 PLANKTON SILHOUETTE CAMERA, J. Sea Res, vol.36, pp.93-100, 1996.

J. D. Milliman and R. H. Meade, World-Wide Delivery of River Sediment to the Oceans, J. Geol, vol.91, pp.1-21, 1983.

. Mingard, A National Measurement Good Practice Guide : Improving the consistency of particle size measuring, 2009.

E. Molinaroli, S. Guerzoni, A. Sarretta, A. Cucco, and G. Umgiesser, Links between hydrology and sedimentology in the Lagoon of Venice, Italy. J. Mar. Syst, vol.68, pp.303-317, 2007.

J. A. Motha, P. J. Wallbrink, P. B. Hairsine, and R. B. Grayson, Unsealed roads as suspended sediment sources in an agricultural catchment in south-eastern Australia, J. Hydrol, vol.286, pp.1-18, 2004.

R. Mukundan, D. E. Walling, A. C. Gellis, M. C. Slattery, and D. E. Radcliffe, Sediment Source Fingerprinting: Transforming From a Research Tool to a Management Tool1, JAWRA J. Am. Water Resour. Assoc, vol.48, pp.1241-1257, 2012.

A. H. Munsell, A Color Notation, 1905.

F. Murtagh and P. Legendre, Ward's Hierarchical Clustering Method: Clustering Criterion and Agglomerative Algorithm, J. Classif, vol.31, pp.274-295, 2014.

C. P. Newcombe and J. O. Jensen, Channel Suspended Sediment and Fisheries: A Synthesis for Quantitative Assessment of Risk and Impact. North Am, J. Fish. Manag, vol.16, pp.693-727, 1996.

J. M. Olley, A. S. Murray, D. H. Mackenzie, and K. Edwards, Identifying sediment sources in a gullied catchment using natural and anthropogenic radioactivity, Water Resour. Res, vol.29, pp.1037-1043, 1993.

. Olson, Archaeology: Lessons on future soil use, J. Soil Water Conserv, vol.36, pp.261-264, 1981.

. Olson, Particle shape factors and their use in image analysis -part1 : theory, J. GXP Compliance, vol.15, pp.85-96, 2011.

E. D. Ongley and M. C. Bynoe, Physical and geochemical characteristics of suspended solids, Hydrobiologia 91-92, pp.41-57, 1982.

L. Palazón, B. Latorre, L. Gaspar, W. H. Blake, H. G. Smith et al., Comparing catchment sediment fingerprinting procedures using an auto-evaluation approach with virtual sample mixtures, Sci. Total Environ, vol.532, pp.456-466, 2015.

. Passega, Texture as Characteristic of Clastic Deposition, 1957.

E. Patault, Analyse multi-échelle des processus d'érosion hydrique et de transferts sédimentaires en territoire agricole : exemple du bassin versant de la Canche (France), 2018.

E. Patault, C. Alary, C. Franke, and N. Abriak, Quantification of tributaries contributions using a confluence-based sediment fingerprinting approach in the Canche river watershed (France), Sci. Total Environ, vol.668, pp.457-469, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02062245

L. A. Pérez-maqueda, A. Duran, and J. L. Pérez-rodríguez, Preparation of submicron talc particles by sonication, Appl. Clay Sci., EUROCLAY, vol.28, pp.245-255, 2003.

. Perugini, Application of fractal fragmentation theory to natural pyroclastic deposits: Insights into volcanic explosivity of the Valentano scoria cone (Italy), J. Volcanol. Geotherm. Res, vol.202, pp.200-210, 2011.

J. D. Phillips and D. A. Marion, Residence times of alluvium in an east Texas stream as indicated by sediment color, CATENA, vol.45, pp.49-71, 2001.

J. M. Phillips, M. A. Russell, and D. E. Walling, Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments, Hydrol. Process, vol.14, pp.2589-2602, 2000.

E. -d-pirard, Morphométrie Euclidienne des Figures Planes -Application à l'analyse des matériaux granulaires, vol.14, 1993.

. Pirard, Sensitivity of particle size and shape parameters with respect to digitization, 2005.

. Pleuvret, Etude D'environnement Préalable À La Définition Des Périmètres de Protection Du Captage de Norville, 1997.

. Podczeck, A shape factor to assess the shape of particles using image analysis, Powder Technol, vol.93, pp.47-53, 1997.

A. L. Poli, T. Batista, C. C. Schmitt, F. Gessner, and M. G. Neumann, Effect of sonication on the particle size of montmorillonite clays, J. Colloid Interface Sci, vol.325, pp.386-390, 2008.

,

D. F. Post, R. B. Bryant, A. K. Batchily, A. R. Huete, S. J. Levine et al., Correlations Between Field and Laboratory Measurements of Soil Color. Soil Color sssaspecialpubl, pp.35-49, 1993.

J. Poulenard, Y. Perrette, B. Fanget, P. Quetin, D. Trevisan et al., Infrared Spectroscopy Tracing of Sediment Sources in a Small Rural Watershed (French Alps), Sci. Total Environ, vol.407, pp.2808-2827, 2009.
URL : https://hal.archives-ouvertes.fr/halsde-00369904

S. Pulley, A. Goubet, I. Moser, S. Browning, and A. L. Collins, The sources and dynamics of fine-grained sediment degrading the Freshwater Pearl Mussel (Margaritifera margaritifera) beds of the River Torridge, UK. Sci. Total Environ, vol.657, pp.420-434, 2019.

,

. Rabinski, Dynamic digital image analysis: emerging technology for particle characterization, Water Sci. Technol, vol.50, pp.19-26, 2004.

. Rinne, Particle Characterisation Using Image Analysis Tools -Improving and developing methods for polyolefin catalysts, 2015.

. Ripley, Linear discriminant analysis, Pattern Recognition and Neural Networks | Computational Statistics, Machine Learning and Information Science, pp.91-120, 1996.

J. Rodet, S. Chedeville, and B. Laignel, Contraintes hydro-karstiques et dynamique sédimentaire associée. Presented at the 17èmes Journées de Spéléologie Scientifique, 2013.

. Rodriguez, Particle Shape Quantities and Measurement Techniques-A Review, Electron. J. Geotech. Eng, vol.18, 2013.

M. A. Russell, D. E. Walling, and R. A. Hodgkinson, Suspended sediment sources in two small lowland agricultural catchments in the UK, J. Hydrol, vol.252, issue.01, pp.388-390, 2001.

P. J. Sánchez-soto, M. Haro, C. J. De, L. A. Pérez-maqueda, I. Varona et al., Effects of Dry Grinding on the Structural Changes of Kaolinite Powders, J. Am. Ceram. Soc, vol.83, pp.1649-1657, 2000.

G. Saporta, Probabilités, analyse des données et statistique. editions technip, 2011.

K. M. Saunders, C. Kamenik, D. A. Hodgson, S. Hunziker, L. Siffert et al., Late Holocene changes in precipitation in northwest Tasmania and their potential links to shifts in the Southern Hemisphere westerly winds, Glob. Planet. Change, vol.92, pp.82-91, 2012.

T. Schmid, M. Rodríguez-rastrero, P. Escribano, A. Palacios-orueta, E. Ben-dor et al., Characterization of Soil Erosion Indicators Using Hyperspectral Data From a Mediterranean Rainfed Cultivated Region, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, vol.9, pp.845-860, 2016.

V. Sellier, O. Navratil, J. P. Laceby, M. Allenbach, I. Lefèvre et al., Investigating the use of fallout and geogenic radionuclides as potential tracing properties to quantify the sources of suspended sediment in a mining catchment in New Caledonia, South Pacific, J. Soils Sediments, vol.20, pp.1112-1128, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02399278

Y. Shang, A. Kaakinen, C. J. Beets, and M. A. Prins, Aeolian silt transport processes as fingerprinted by dynamic image analysis of the grain size and shape characteristics of Chinese loess and Red Clay deposits, Sediment. Geol, vol.375, pp.36-48, 2018.

,

. Shen, Coagulation behaviors and in-situ flocs characteristics of composite coagulants in cyanidecontaining wastewater: Role of cationic polyelectrolyte, Sci. CHINA Chem, vol.56, pp.1765-1774, 2013.

S. C. Sherriff, S. W. Franks, J. S. Rowan, O. Fenton, and D. Ó'huallacháin, Uncertainty-based assessment of tracer selection, tracer non-conservativeness and multiple solutions in sediment fingerprinting using synthetic and field data, J. Soils Sediments, vol.15, pp.2101-2116, 2015.

G. Sinawi and D. Walling, The characteristics of composite suspended sediment particles transported during storm events in the river Exe, Géomorphologie Relief Process. Environ, vol.2, pp.29-40, 1996.

S. Slimani, Les Fonctionnements hydrologiques de l'aquifère karstifié de la Craie de Haute-Normandie : conséquences des contextes morphologiques et structuraux (thesis), 2009.

H. G. Smith, O. Evrard, W. H. Blake, and P. N. Owens, Preface-Addressing challenges to advance sediment fingerprinting research, J. Soils Sediments, vol.15, pp.2033-2037, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01806080

. Sochan, Selection of shape parameters that differentiate sand grains, based on the automatic analysis of two-dimensional images, Sediment. Geol, vol.327, pp.14-20, 2015.

,

I. Stanimirova, B. Walczak, D. L. Massart, V. Simeonov, C. A. Saby et al., STATIS, a three-way method for data analysis. Application to environmental data, Chemom. Intell. Lab. Syst, vol.73, pp.219-233, 2004.

M. Stone and M. C. English, Geochemical composition, phosphorus speciation and mass transport of finegrained sediment in two Lake Erie tributaries, Proceedings of the Third International Workshop on Phosphorus in Sediments, Developments in Hydrobiology, pp.17-29, 1993.

M. Sundborg, . Pemberton, . Romanovsky, and . White, Sedimentation problems in river basins, International Hydrological Programme UNESCO, 1982.

. Tafesse, Evaluation of image analysis methods used for quantification of particle angularity, Sedimentology, vol.60, pp.1100-1110, 2013.

P. Theuring, A. Collins, and M. Rode, Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia, Sci. Total Environ, vol.526, pp.77-87, 2015.

,

T. Tiecher, L. Caner, J. Gomes-minella, and D. Rheinheimer-dos-santos, Combining visible-based-color parameters and geochemical tracers to improve sediment source discrimination and apportionment, Sci. Total Environ. 527, vol.528, pp.135-149, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01365373

J. Tyler, Y. Kashiyama, N. Ohkouchi, N. Ogawa, Y. Yokoyama et al., Tracking aquatic change using chlorine-specific carbon and nitrogen isotopes: The last glacialinterglacial transition at Lake Suigetsu, Japan. Geochem. Geophys. Geosystems, vol.11, 2010.

D. Tysmans, P. Claeys, L. Deriemaeker, D. Maes, R. Finsy et al., Size and Shape Analysis of Sedimentary Grains by Automated Dynamic Image Analysis, Part. Part. Syst. Charact, vol.23, pp.381-387, 2006.

D. Tysmans, P. Haesaerts, F. Bogemans, P. Claeys, R. Finsy et al., Loess in the Danube Region and Surrounding Loess Provinces: The Marsigli Memorial, Quat. Int, vol.198, pp.195-203, 2009.

T. Udelhoven and W. Symader, Particle characteristics and their significance in the identification of suspended sediment sources, Tracer Technol. Hydrol. Syst, pp.153-162, 1995.

. Ulusoy, Dynamic image based shape analysis of hard and lignite coal particles ground by laboratory ball and gyro mills, Fuel Process. Technol, vol.126, pp.350-358, 2014.

,

. Ulusoy, Dynamic image analysis of calcite particles created by different mills, Int. J. Miner. Process, vol.133, pp.83-90, 2014.

W. G. Van-der-bilt, B. Rea, M. Spagnolo, D. L. Roerdink, S. L. Jørgensen et al., Novel sedimentological fingerprints link shifting depositional processes to Holocene climate transitions in East Greenland, Glob. Planet. Change, vol.164, pp.52-64, 2018.

A. Van-exem, M. Debret, Y. Copard, C. Verpoorter, G. De-wet et al., New source-to-sink approach in an arctic catchment based on hyperspectral core-logging (Lake Linné, Svalbard), Quat. Sci. Rev, vol.203, pp.128-140, 2019.

. Van-leussen, THE UNDERWATER VIDEO SYSTEM VIS, J. Sea Res, vol.36, pp.77-81, 1996.

A. A. Velichko and S. N. Timireva, Morphoscopy and morphometry of quartz grains from loess and buried soil layers, GeoJournal, vol.36, pp.143-149, 1995.

D. Walling, J. Woodward, and A. P. Nicholas, A multi-parameter approach to fingerprint suspendedsediment sources, Tracers Hydrol. Proc Int. Symp. Yokohama, p.215, 1993.

D. E. Walling, The evolution of sediment source fingerprinting investigations in fluvial systems, J. Soils Sediments, vol.13, pp.1658-1675, 2013.

D. E. Walling, P. N. Owens, and G. J. Leeks, Fingerprinting suspended sediment sources in the catchment of the River, Process, vol.13, pp.955-975, 1999.

D. E. Walling and J. C. Woodward, Use of radiometric fingerprints to derive information on suspended sediment sources, Eros. Sediment Transp. Monit. Programme River Basin, vol.12, 1992.

G. Wang, B. Wu, and Z. Wang, Sedimentation problems and management strategies of, Water Resour. Res, vol.41, 2005.

. Ward, Hierarchical Grouping to Optimize an Objective Function, J. Am. Stat. Assoc, vol.58, pp.236-244, 1963.

H. E. Wittmeier, J. Bakke, K. Vasskog, and M. Trachsel, Reconstructing Holocene glacier activity at Langfjordjøkelen, Arctic Norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments, Quat. Sci. Rev, vol.114, pp.78-99, 2015.

. Zölls, Flow Imaging Microscopy for Protein Particle Analysis-A Comparative Evaluation of Four Different Analytical Instruments, AAPS J, vol.15, pp.1200-1211, 2013.

. Protocole-d'utilisation-du and . Morphogranulometre, ANNEXE, vol.3

, Allumer le boitier d'alimentation puis le morphogranulomètre. Lancer l'ordinateur et le logiciel Callisto (l'appareil doit être déjà allumé pour que le logiciel le reconnaisse)

G. Utilisation and . Morphogranulometre, Chaque analyse du morphogranulomètre suit une POS (Procédure d'Opération Standard, « SOP » en anglais) qui correspond à la paramétrisation de l'appareil. L'utilisateur peut soit utiliser une POS préexistante (par défaut : calibration MF) ou créer une POS personnalisée

, Déroulement d'une analyse

, Rincer manuellement l'erlenmeyer relié à l'appareil

, Cliquer sur « calcul-> Réaliser une correction de fond->Exécuter » en faisant passer de l'eau du robinet avec la pompe en mode « MAN

, Lorsque la correction de fond est terminée, remettre en mode « AUTO » et vider l'erlenmeyer

. Cliquer-sur-«-calcul->-exécuter-le-pos-»-ou-sur-le-raccourci-«-lancer-une-analyse,

, Choisir la POS (par défaut, choisir calibration MF), nommer l'analyse

«. Auto-» and «. On-», Injecter l'échantillon dans l'erlenmeyer, régler le potentiomètre de la pompe entre 5 et 10 (par défaut, 10, pour permettre les particules les plus massives d'être entraînées). Les interrupteurs doivent être sur « ON

I. Affichages and . Formes-analysees,

, Pour cela, aller dans « paramètres->affichage » et décocher toutes les cases sauf « longueur de parcours ». Ensuite, en alternant entre les raccourcis « afficher l'image » et « afficher la particule analysée » (Figure 154), on peut voir les différences entre la forme réelle sur la photographie et la forme des pixels analysées

J. Refaire-l'analyse-sur, . Une, . Provenant-d'une-analyse, and . Precedente,

, Si l'on veut observer la forme des particules analysées, il faut retrouver l'image dans le dossier correspondant et l'ouvrir avec le logiciel en faisant « fichier->Ouvrir une image » puis en cliquant sur « calcul-> analyser une image courante ». L'analyse d'image sera alors effectuée sur la photographie ouverte, Toutes les analyses sont sauvegardées dans « C:/occhiofiles/ » au format « .oph

, Lorsque le disque dur est plein. Les fichiers et dossiers de « C:/occhiofiles » sont transférés sur « X:\Recherche\M2C\MorphoGranulometre

, ) pollen avec un seul ballonnet et (5) diatomée, ) argile et pollen avec plusieurs ballonnets

, Avec une Analyse en Composante Principale (ACP) afin de réduire l'information et la synthétiser, il est possible d'identifier quels paramètres permettent la discrimination des différents groupes

, Les autres groupes se situent entre ces deux extrêmes. L'axe 2 est principalement lié aux paramètres de forme décrivant le contour des particules (émoussé, dureté, solidité, linéarité, etc) et permet de distinguer les diatomées (Pinnularia Neomajor) avec leur forme rectangulaire aux angles marqués, des quatre autres groupes aux particules plus arrondies. Parmi les autres groupes, les argiles sont relativement plus irrégulières tandis que les sables et pollens sont les plus émoussés. L'axe 3 montre de forte corrélation avec les paramètres de forme décrivant l'élongation, le ratio largeur/longueur (élongation, ratio de Feret, L'analyse montre que ces groupes varient selon trois dimensions (90% de la variation totale) : L'axe 1 est principalement corrélé avec les paramètres de taille (diamètre du cercle d'air équivalente

, Elle s'effectue majoritairement selon 3 dimensions regroupant les 36 paramètres de taille et de forme mesurés par l'appareil. Des corrélations fortes entre paramètres sont confirmées par un test de colinéarité. Réduire le jeu de paramètres vers un nombre plus faible semble pertinent

, Pour une représentation graphique simplifié, 3 paramètres parmi les douze sélectionnés permettent d'observer graphiquement la discrimination des groupes identifiés par la classification

, Straightness) et en Z l'émoussé (Bluntness), la Figure 157 illustre la capacité du morphogranulomètre à discriminer les échantillons selon leur nature et leur préparation