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Université Paris-Diderot et Université de
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Introduction and Summary

The development of holographic duality [6] [93] has been highly effective and substantial in
addressing major problems in theoretical particle physics. The significance of this development
relies on the establishment of the connection between weakly and strongly coupled theories. This
fact allows the study of long standing questions on quantum gravitational phenomena , gives
access to the strong coupling regime of quantum field theories, while it allows for the study of
non-perturbative string theory through weakly coupled gauge theories.

Regarding quantum field theory, enormous progress has been achieved with the use of powerful
computational techniques based on supersymmetry which allow for obtaining exact results for
supersymmetric observables. One of the leading exact result methods in gauge theories is the one
of supersymmetric localization [114] [99], which relies on reducing an infinite dimensional path
integral to a finite-dimensional integral. This method has found application in supersymmetric
gauge theories in various dimensions with some notable mentions being the two-dimensional
N = (2, 2) theories (partition function on round and squashed S2 [27][60][70]), three-dimensional
N = 2 theories [79] (supersymmetric Wilson loops in Chern-Simons matter theories) and the
four-dimensional N = 2 theories (Localization on round S4[99], Nekrasov partition function
[96]).

The theoretical background of this work is the holographic duality between three-dimensional
N = 4 superconformal theories and type IIB supergravity on the warped background AdS4 ×w
M6 , where the six-dimensional manifold is comprised by two two-spheres wraped over a two-
dimensional Riemann surface: S2 × Ŝ2 × Σ(2). Both the supergravity solutions and this class
of superconformal theories have been subjects of intensive study and offer a rich ground for
exploring various directions such as interesting dualities or new approaches to important questions
in quantum gravity. This correspondence has been developed in [12][13] and has been tested
throughout [14]. In the present work, we study specific questions in the theories of both sides of
the aforementioned duality.

The first main axis of this work regards the solutions of the gravitational side of the correspondence
and in particular the study of massive N = 4 (super)gravity in four dimensional anti-de Sitter
space. Relativistic theories of massive gravity [47] [105] [76] [48], have received a great amount of
attention over the last years among other theories of modified gravity. The question that lies in
the core of these theories, is a long-standing one of theoretical physics and regards whether the
graviton can obtain a mass.

General relativity (GR), is an accurate and physically elegant theory of gravity at low ener-
gies. It is given in terms of the Einstein-Hilbert (EH) action and describes the non-linear self-
interactions of a massless spin-2 field. Modifications of gravity are mainly motivated by important
questions in cosmology [50] [37] , with the most significant being undoubtedly the cosmological
constant problem [112]. Well promising directions are the ones where gravity is modified at large
distances, or equivalently at low energies. An example of such an IR modification of gravity, is
a theory of massive gravity. Consistently modifying GR into a theory of massive gravity would
simply be based on adding a mass term for the graviton to the EH action so that in the limit
of vanishing graviton mass (m → 0), GR would be recovered. Nevertheless, this logic hides sig-
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nificant inconsistencies and pathologies. The first attempt of writing an action of a theory with
a massive graviton, was made in [63]. Indeed, in this case, in the limit of vanishing graviton
mass the predictions of the obtained theory are far from those of GR. A particular example , is
the case of the linear theory coupled to matter, in the work [111], the massless limit of which
gives a different prediction for light bending from the one GR gives. This is one of the typical
disagreements in physical predictions one confronts in theories of massive gravity in the massless
limit, a fact that is characterized as a van Dam-Veltman-Zakharov discontinuity [87][100] . The
source of this problem has to do with the degrees of freedom the mass term introduces. This
can be seen from the decomposition of the Pauli-Fierz mass term: the four-dimensional massive
graviton possesses five degrees of freedom out of which two correspond to the helicity-2 mode
(massless graviton), another two to the helicity-1 mode (massless vector) and finally one to the
helicity-0 mode (massless scalar). The scalar provides the coupling to matter, as it couples to the
trace of stress-tensor of the theory. In the massless limit, this coupling remains, and therefore,
the theory obtained in this limit is not GR but rather GR plus a massless scalar, which turns out
to be the source for the aforementioned physical parameter discontinuities.

The problem of such disconituities is resolved by the so called Vainshtein screening [109].
This concept suggests that a massive gravity theory becomes strongly coupled in the IR, in the
massless limit. Therefore the linear theory does not provide the complete description but rather
a first order description of a non-linear theory. These non-linearities which become dominant in
the massless limit, are the ones that finally compensate the discontinuities. However it has been
shown that the non-linear theories suffer from the presence of ghost-degrees of freedom. This
regards the work [33], where the studied non-linear theory appeared to possess instead of five
degrees of freedom, an extra one, which corresponds to a scalar with negative kinetic term, called
Boulware-Desser ghost. In flat background, this mode decouples but on the contrary around
non-trivial backgrounds its mass remains finite and hence it is a part of the theory.

Nevertheless, the attention this interesting subject has attracted has led to significant devel-
opments which provided solutions to certain of the aforementioned pathologies, at some extent.
These include developements in effective field theory [10][35][51][26][49] where regimes of validity
and properties of such theories have been studied and the constructions of non-linear extentions
of the Fierz-Pauli actions which are ghost free [48][74][36].

Questions regarding consistency and validity of these theories could be answered by embedding
massive gravity in string theory, which is ultraviolet (UV) complete. String theory is a consistent
theory and therefore it is expected that the effective four-dimensional theories obtained by the
embeddings studied in this work will be free of ghosts and other pathologies. An important detail
is that most of the problems that regard massive gravity theories, like the vDVZ discontinuity,
are absent in anti-de Siter space.[75][100][80] Therefore studies of string theory embeddings of
massive gravity in AdS space could be very promising, apart from the fact that are far from
realistic, apparently due to the negative cosmological constant and of supersymmetry.

A model that concerned four dimensional massive gravity in AdS space, is the one intrduced
by Karch and Randall [82][81]. This work regards the study of metric fluctuations in AdS5 in the
presence of a thin AdS4 brane on which the four dimensional graviton would be localized (two
slices of AdS5 glued along the thin AdS4 brane). It was shown that if the ratio of the AdS radii
of curvature is small (L5/L4 � 1), this result to a slightly massive graviton localized on the AdS4
brane along with two infinite towers of AdS5 modes. The string-theory embedding of the Karch-
Randall model is given by the exact solutions describing intersecting D3, D5 and NS5 branes
[52][54]. Nevertheless, this thin-brane approximation fails, as it is going to be explained in the
main text [20] and therefore the Kaluza-Klein scale, beyond which any effective four-dimensional
description breaks down, is the AdS4 radius (L4) and not the AdS5 (L5).

Other proposals regarding string theory embeddings of massive AdS gravity are based on
transparent boundary conditions in AdS [102] [101] [61] or on multitrace deformations of the dual
CFT [85][4] [86] and they share the characteristic that the graviton mass arises as a quantum
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effect.

The second main axis of this work regards the gauge theory side of the correspondence. Specifi-
cally, the objective is the study of exactly marginal deformations of the superconformal theories
at hand.

One way of deforming a given conformal field theory is by adding an appropriate term in its
action. The term is of the form δS0 = λ

∫
ddxO, where λ a coupling constant and O is a local

operator of the original theory. The study of deformations actually relies on the inspection of
the conformal multiplets of the theory: In particular the deforming local operator is a confor-
mal primary of the corresponding multiplet (and moreover a scalar so that Lorentz symmetry
is preserved). The type of deformation depends on the scaling dimension (∆O) of the local op-
erator. Irrelevant deformations are initiated in the case where ∆O > d and then the CFT is
an IR fixed point of the renormalization group flow along which the coupling λ flows to zero.
Relevant deformations are initiated if ∆O < d, where the original CFT is the UV fixed point
of the renormalization group flow and the coupling grows towards the IR . Apparently in both
above cases conformal symmetry is broken at leading order in the coupling. Finally, marginal
deformations are initiated in the case ∆O = d and preserve conformal invariance at leading order
in the coupling. Hence marginal deformations lead to a neighboring CFT. Next to leading order,
when the coupling receives corrections, these are divided into marginally irrelevant, marginally
relevant and exactly marginal, depending on whether conformal symmetry is broken at higher
order in λ or not.

In the case of superconformal field theories, the logic is similar: Superconformal deformations
are the ones that preserve supersymmetry. They are activated by conformal primaries that are
annihilated by (all) Poincaré supercharges, up to a total derivative. These operators are charac-
terized as ”top components” of the multiplet, in order to stress the difference between them and
the ”bottom component”-namely the superconformal primary of the multiplet -which does not
meet the above requirement of initiating a superconformal deformation. An important detail is
that top components may appear both at the top level of a multiplet (namely by the action of
all Q-supercharges on the conformal primary) but also at intermediate levels of a multiplet [38].
Therefore the enumeration of all possible superconformal deformations of a given theory boils
down to the enumeration of all possible top components, which demands a detailed inspection of
the superconformal multiplets of the theory. Regarding exactly marginal superconformal defor-
mations, the deforming operators are top components of short (absolutely protected A) multiplets
of the theory.

The observable which encodes all the information about the short multiplets of the theory, is
the superconformal index. First studied in [84] and [30], this object has the definition of a Witten
index variant in radial quantization (Hamiltonian definition), as a trace over the space of local
operators of the given theory, constructed to receive contributions only from short multiplets. This
fact indicates that the index is invariant under continuous deformations of the theory. Moreover,
the superconformal index has a definition as a partition function on Sd−1 × S1 (Lagrangian
definition) and can be computed using supersymmetric localization. This approach has been
quite successful in the computation of protected spectra of superconformal theories as well as in
the study of dualities in various dimensions [77] [83] [103].

The outline of this work is as follows. In the first chapter, we introduce in detail the three-
dimensional N = 4 superconformal theories. The starting point is the relevant supersymmetry
algebra and its superconformal extention. We then describe how the content of these theories
is organized in N = 2 multiplets and we write down the supersymmetric actions that describe
them. The theories considered in this work are linear quiver theories [65], whose structure is
explained in detail throughout this chapter. These theories can be understood as low-energy
limits of theories living in the worldvolume type-IIB string theory branes [73]: D3-branes ending
on NS5-branes and being intersected by D5-branes. The brane picture is very important for
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establishing the connection with the dual supergravity. The final section is devoted to the moduli
space of vacua and the symmetries of these theories [11][72][43]. We present the Higgs, Coulomb
and mixed branches, and comment on their structure. For selected examples of quiver theories,
the brane configurations that encode the information on their moduli space are presented. The
final addition to the section regards the global symmetry of the linear quiver theories and three-
dimesional Mirror symmetry [78]. It is explained how the mirror symmetry acts on the branches
of the moduli space of the theories and how the mirror dual of a theory can be obtained, using
the IIB string theory analogue of mirror symmetry, which is the S-duality. Finally, the full
global symmetry of these theories is presented, as the product of the unitary groups rotating the
fundamental hypermultiplets of the the theory.

The second chapter is devoted to the IIB dual supergravity solutions, which are the afore-
mentioned warped geometries. [52][54]. In the case where the Riemann surface Σ(2) is compact,
string theory on this background geometry provides a realization of four-dimensional quantum
gravity. In the first section of the chapter we provide a detailed presentation of these solutions.
They are parametrized by two harmonic functions on the Riemann surface, on the boundary of
which they have (admissible) singularities, interpreted as sources of D5 and NS5 branes. Addi-
tionally, the singularities carry D3 brane charge and therefore the supergravity solutions have a
brane description similar to the dual superconformal theories. Throughout the second section of
the chapter, we present the precise holographic dictionary developed in [12]. With this chapter,
we close Part I and we proceed to the main part of the work.

In Part II, we present some new proposals for top-down string theory embeddings of mas-
sive four-dimensional anti-de Sitter gravity and of corresponding bigravity models[22][21]. The
problem we encounter is to look for supergravity solutions that allow for the lowest-lying AdS4
graviton to acquire a small mass. The solutions are the ones presented in the first part, with
the difference that the six dimensional internal manifold is non-compact: semi-infinite throats of
Janus geometry are attached to the compact manifold and are the characteristics of the geometry
that lead to a slightly massive graviton. Although the main analysis is carried out in supergrav-
ity, the underlying holographic duality presented in Part I, provides instructive insights on the
Higgsing mechanism and motivates the construction of the supergravity solutions in question.
This is explained in the first section of Chapter 3, where the problem of the small graviton mass
is reformulated in field theory as the problem of the small anomalous dimension for the dual
stress tensor. The sections that follow include the main analysis, which relies on the study and
search of metric fluctuations, around the considered supergravity solutions, that can acquire a
small mass. The main result of this study is a quantized formula for the graviton mass, which
depends on the effective gravitational couplng of the compact manifold along with the quantized
charge of the semi-infinite throat and the variation of the dilaton throughout the throat.

The final chapter of Part II regards a more general setting, the one of an AdS4 bimetric theory.
Holographically this is motivated by the connection of two initially disjoint three-dimensional
linear quiver theories, by gauging of a common global symmetry. This corresponds to an extra
gauge node of low rank, connecting the two quivers. The two initially conserved stress-tensors of
the disjoint quivers eventually mix into a combination which remains conserved and one which is
not conserved and hence acquires a small anomalous dimension. The dual supergravity picture
is the one of two initially decoupled AdS4×M6 spacetimes, which are connected by a thin throat
with AdS5×S5 or Janus geometry, depending on whether the dilaton varies throughout the throat
or not. This depends on the characteristics of each of the two supergravity solutions. The two
initially massless gravitons mix and the final result is bigravity theory, which includes one massless
and one massive graviton. As in the previous chapter, the mass of the graviton is computed and
it depends as before on the effective gravitational couplings of the two spacetimes as well as on
the quantized charge of the throat and on the dilaton variation. The massive AdS4 gravity of the
previous chapter, turns out to be just a special case of this more general framework: In the limit
where one of the two effective gravitational couplings vanishes or when the AdS4 radius of one of
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the two spacetimes diverges, the massless graviton decouples and only the massive one remains,
verifying that for our solutions, the massive gravity is a special decoupling limit of the bigravity
theory.

The content of Part III is almost entirely focused on the three-dimensional linear quiver theo-
ries and their operator content [23] . The objective is to map out the superconformal manifold of
such theories, namely the family of such theories generated by superconformal (partially or fully
supersymmetry preserving) deformations that are exactly marginal. Therefore, we are focusing
on scalar top components of short N = 4 multiplets with scaling dimension ∆ = 3. However, top
components preserving N = 4 supersymmetry do not exist. The maximal supersymmetry that
allows the existence of such operators is N = 2. The first part of the analysis relies on ”detecting”
such exactly marginal operators by the analysis of representations of the superconformal algebra
in three dimensions with N = 2, 4 supersymmetry. In particular, after determining in which
representations these operators sit, they are extracted and counted with the help of the super-
conformal index. The index is computed via Coulomb branch localization, namely as a complex
multiple integral over the Coulomb branch, summed over monopole charges. The calculation is
given in full detail throughout section 4 of Chapter 5. Consequently the Coulomb branch integral
is re expressed in terms of superconformal characters, and in this way the relevant superconfor-
mal moduli are clearly identified. The main result is that the marginal (chiral) operators of the
T ρ̂ρ [SU(N)] theories, transform in the S2(AdjG,AdjĜ) representation of the electric and magnetic
flavor symmetry, plus length-4 strings modulo redundancies for linear quivers with abelian nodes.
In particular the the mixed marginal operators transform in the (Adj,Adj, 0) representation of
the global symmetry (5.1.4), up to some overcounting the quivers of have abelian gauge nodes.
The last addition to the chapter regards the holographic interpretation of the results.
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Part I

3dN = 4 Superconformal Theories
and type IIB Supergravity Duals
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Chapter 1

3dN = 4 Superconformal Theories

1.1 N = 4 supersymmetric gauge theories in three di-
mensions

In (2+1)-dimensions, the N = 4 supersymmetry algebra has 8 real Poincaré supercharges. This
fact renders it half-maximal, given that the maximal rank of supersymmetry in three-dimensions
is N = 8 which corresponds to 16 real supercharges. The algebra is written in terms of four real
spinors {QAα}:

{QAα ,QBβ } = 2σµαβδ
ABPµ + 2εαβZAB (1.1.1)

, with A,B = (1, 2, 3, 4) and µ = (0, 1, 2). This algebra is obtained through dimensional re-
duction from the N = 2 supersymmetry algebra in (3+1)-dimensions. The matrices σµ generate
the three-dimensional Clifford algebra, whereas the central term Z, is a real and antisymmetric
matrix, which commutes with the algebra generators. The superconformal extention of the al-
gebra is given by osp(4|4) and has in total 16 real supercharges, as it contains 8 additional real
conformal supercharges. Finally, the supercharges are rotated by the SO(4) ' SO(3)R×SO(3)R′
R-symmetry group.

The field content of a 3d N = 4 super Yang-Mills with gauge group G is organized in hy-
permultiplets (H) and a vector multiplet (V), defined in terms of N = 2 multiplets [7] [46]. A
3d N = 4 hypermultiplet is expressed in terms of two N = 2 chiral multiplets in conjugate
representations (R, R̄):

H : {φ, ψα, FΦ︸ ︷︷ ︸
ΦN=2
R

; φ̃, ψ̃α, F̃Φ̃︸ ︷︷ ︸
Φ̃N=2
R̄

} (1.1.2)

, with (φ, φ̃) and (FΦ, F̃Φ̃) being complex scalars and complex auxiliary scalars accordingly,
whereas (ψα, ψ̃α) are two-component complex spinors.

A N = 4 vectormultiplet is written in terms of an N = 2 chiral and N = 2 vector multiplet,
in the adjoint representation of the gauge group (AdjG):
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V : {Aµ, λα, σ, F︸ ︷︷ ︸
V N=2
Adj(G)

; φ̃, ξα, F̃︸ ︷︷ ︸
ΦN=2
Adj(G)

} (1.1.3)

One notable mention is that in three dimensions there is a duality between the abelian vector-
field and a real scalar field:

Fµν = εµνρ∂
ρϕ (1.1.4)

This scalar is refered to as dual photon and is real and periodic (ϕ ∼ ϕ+ g).
TheN = 2 vectormultiplets and chiral multiplets in terms of which theN = 4 vectormultiplets

nd hypermultiplets are expressed, can be introduced in the form of vector (V) and chiral (Φ)
superfields, accordingly:

V = −θασµαβ θ̄
βAµ − θθ̄σ + iθ2θ̄λ̄− iθ̄2θλ+ 1

2θ
2θ̄2F

Φ = φ+
√

2θψ + θ2FΦ, D̄αΦ = 0

The supersymmetric action- in flat space- for a three-dimensional N = 4 gauge theory is
comprised of the pieces for the N = 4 vector and hypermultiplets. These can be written in terms
of the above superfields. The first piece is the action for the vector multiplet:

SN=4
V = SN=2

V + 1
g2S

N2
Φ = 1

g2

∫
d3xd2θd2θ̄T r

(
W 2
α − Φ†e2VΦ

)
+ h.c (1.1.5)

, with Wα = −1/4D̄D̄e−VDαe
V , being the chiral field strength and g the three-dimensional

coupling. The two pieces of the expression written in component form read:

SN=2
V = 1

2g2
YM

∫
d3xTr

(1
2FµνF

µν +DµσD
µσ +D2 + iλ̄γµDµλ+ iλ̄[σ, λ]

)
SN2

Φ = −
∫
d3x

(
Dµφ̄D

µφ+ φ̄σ2φ+ F̄F − iψ̄γµDµψ + iψ̄σψ + iψ̄ + ψ̄λφ− iφ̄λ̄ψ
)

The second block of the total supersymmetric action is the one regarding the matter content,
namely hypermultiplets:

SN=4
H = −

∫
d3xd2θd2θ̄

∑
{φ}

(
Φ†e2VΦ + Φ̃†e−2VΦ̃

)
(1.1.6)
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,with the two chiral superfields in conjugate representations and the sum over the matter
content ({φ}) of the theory. The last piece is the action for the N = 4 superpotential, WN=4
which reads:

SWN=4 = −i
√

2
∫
d3xd2θ

∑
{φ}

(
φ̃Φφ

)
+ h.c (1.1.7)

The final addition to this section regards the deformations of the above supersymmetric
actions. For each abelian factor of the gauge group there can be a Fayet-Iliopoulos term. The
three real parameters transform as a SU(2)R-triplet and they can be considered as the bottom
components of a background N = 4 abelian vector multiplet Ṽ0 coupled to the topological
currents Jt associated with the abelian factors of the gauge group.

SFI,N=4 =
∫
d3xd2θd2θ̄Tr(

∑
VFI) +

∫
d3d2θTr(ΦΦFI + h.c) (1.1.8)

, here the deformed Lagrangian is obtained by VFI ∼ ηθ̄θ and ΦFI = 0:

SFI ∼ ηFI
∫
d3xD (1.1.9)

For the hypermultiplets there can be real and complex mass terms. In this case the three real
parameters transform as a triplet of SU(2)R′ and can be considered as the bottom components of
a background N = 4 abelian vector multiplet Ṽ0 coupled to the flavor symmetry currents Jflav:

Sm,N=4 = −
∫
d3xd2θd2θ̄

∑
{φ}

(φ†e2Vmφ+ φ̃†e2Vm φ̃)− i
√

2
∫
d3xd2θ

∑
{φ}

(φ̃Φmφ) + h.c (1.1.10)

Here, m stands for the real mass parameter, the complex mass is rotated to zero and the
deformed Lagrangian is obtained by setting |φm = 0 and Vm ∼ mθ̄θ. It then reads in component
form:

Sm,N=4 = SN=2(φ,m) + SN=2(φ̃,−m) =

=
∫
d3x(Dµφ̄D

µφ+m2φ̄φ+ F̄ΦFΦ − iψ̄γµDµψ + imψ̄ψ) (1.1.11)
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1.2 Linear quivers and their Brane Realizations
1.2.1 T ρρ̂ [SU(N)] theories

In this work we are interested in a specific class of three-dimensional N = 4 theories [73] . These
theories arise as non-trivial infrared (IR) fixed-points of the renormalization group (RG) flow
of linear quiver theories [65]. Designated as T ρρ̂ [SU(N)], with ρ, ρ̂ being integer partitions of N ,
these theories under certain conditions which will be presented shortly, flow in the IR to 3d N = 4
super Yang-Mills theory with gauge group SU(N).

The full information on the gauge and matter content of these theories is conveniently pack-
aged in a quiver diagram, as it is going to be explained in detail below. The gauge group G of
the T ρρ̂ [SU(N)] theories is a product of unitary groups:

G = U(N1)× U(N2)× ...× U(Nk̂−1) (1.2.1)

To each unitary factor U(Ni) corresponds a N = 4 vector multiplet and Nf,i-N = 4 hyper-
multiplets in the fundamental representation of the gauge group. On top of that, there is a N = 4
hypermultiplet transforming in the bi-fundamental representation of each U(Ni)×U(Ni+1) prod-
uct. In the quiver notation, a node is assigned to each unitary group, a box contains the number
Mi of the hypermultiplets transforming in the fundamental of U(Ni) and finally a horizontal
segment connecting two nodes represents a bi-fundamental hypermultiplet

N1 N2 · · · Nk̂−1

M1 M2 Mk̂−1

The above data that characterize the gauge theory, are completely determined by the three
labels (ρ, ρ̂;N) for which:

ρ : (l1, l2, ..., lk), N =
k∑
i=1

li

ρ̂ : (l̂1, l̂2, ..., l̂k̂), N =
k̂∑
î=1

l̂̂i

, where the integers {li} and {l̂̂i} are ordered so that li ≥ li+1 and l̂̂i ≤ l̂̂i+1, a fact that has a
particular meaning as we will see in what follows. The two partitions apparently correspond to
two Young diagrams, with N -boxes each. The ith row of the ρ-diagram is of length li whereas
the length of the îth is l̂̂i. Apart from these two Young diagrams, it is instrumental at this point
to introduce also the transpose diagrams ρT , ρ̂T , as it will be useful for later analysis. Regarding
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the ρT Young diagram, the length of its ĵth row is denoted as lT
ĵ

whereas the length of the jth

row of the ρ̂T Young diagram is denoted as l̂Tj . The notation we use for the transposed diagrams
is carefully chosen; the meaning of this will become clear soon.

The most substantial part of this analysis regards to the IR-fixed point of the RG flow itself.
It is to be made precise that not all of T ρρ̂ [SU(N)] theories flow to a non-trivial fixed point in
the IR. Some of them flow to theories with decoupled sectors with free hypermultiplets or free
vector multiplets. On the contrary, we focus on the class of theories which have no such decoupled
sectors in the IR. In [65] it has been conjectured that such theories have a non-trivial IR fixed
point if and only if each unitary gauge group factor U(Ni) of G has at least 2Ni fundamental
hypermultiplets:

Nf,i ≥ 2Ni (1.2.2)

where Nf,i stands for the total number of flavors/hypermultiplets of the U(Ni) node, which
for a quiver diagram is translated to:

Ni−1 +Nf,i +Ni+1 ≥ 2Ni (1.2.3)

When this condition is met for each node of a linear quiver, the gauge symmetry group of the
theory can be fully Higgsed a fact that corresponds, as introduced above, to the existence of a
non-trivial IR fixed point. Theories which exhibit this trait are characterized as ‘good’. Theories
for which the inequality is satisfied, are called ‘balanced’ and more will be presented about them
in the discussion of the moduli space of the theories in question, in following chapters. On the
contrary, when this condition is not met, the corresponding theory is called ‘bad’ and does not
have a non-trivial fixed point in the IR. A last type of theories are the ones for which Nf = 2Ni−1,
that are called ‘ugly’: these flow on the IR to a free twisted hypermultiplet. The present work
though, mostly regards ‘good’ theories ; the rest is mentioned for consistency.

This IR-flow condition has an analogue expression in terms of the two integer partitions ρ, ρ̂
of N which completely determine the quiver data, as it will be immediately presented in what
follows. In [65] the condition on the partitions is translated to be:

ρT > ρ̂ (1.2.4)

and the equivalent of this condition is that the rank of each of the unitary gauge groups in
the quiver, is positive: {Ni} ≥ 0.In what follows, we will see how the above partitions are defined
and how the this inequality is obtained by the brane configuration from which we can read-off a
linear quiver theory.

11



1.2.2 Brane Configurations

The theories we just introduced are realized as low-energy limits of brane configurations involving
D3−D5 and NS5 branes. It will become clear how the ‘good’ theory conditions can be obtained
from such brane pictures. In order to retain N = 4 supersymmetry, the branes extend in the
various spacetime directions as dictated in the table below:

0 1 2 3 4 5 6 7 8 9
D3 � � � �
D5 � � � � � �
NS5 � � � � � �

Let us explain gradually and in detail, how a simple quiver is obtained from such a configura-
tion. Consider a U(N) theory with M -fundamental hypermultiplets, as in Figure 1.1. The U(N)
theory is the one living in the worldvolume of N -coincident D3 branes, which have an infinite ex-
tent along the (012)-directions while being suspended between two NS5’s along the (3)-direction.

Figure 1.1: A U(N) theory with M-fundamental hypermultiplets. The U(N) theory lives in
worldvolume of the D3 branes and the hypermultiplets are provided by the strings stretched
between the D3 and the M-D5 branes.

In the low energy limit, this finite separation becomes irrelevant in comparison to the large
wavelengths we consider and hence, effectively the theory becomes three-dimensional. The M -
hypermultiplets in the fundamental of U(N) are obtained by the strings stretched between the
D3 and the M −D5 branes intersecting them (3-5 strings). This is generalized to longer quivers,
by considering consequent NS5-D3,5-NS5 ”blocks” as shown below, in Figure 1.2.

12



Figure 1.2: A general linear quiver and the corresponding brane configuration

In this case, the above fields are supplemented by hypermultiplets transforming in the bifun-
damental hypermultiplet of U(Ni) × U(Ni+1), which correspond to strings stretched from the
Ni − D3 brane stack to the neighboring Ni+1 − D3 brane stack. Since in the low energy limit
the (3)-direction becomes irrelevant, we can consider horizontal moves of the D5 branes along
this direction, the result any of which, describes the same quiver theory. However, these brane
moves involve some non-trivial string dynamics: each time a D5 brane crosses an NS5, a new
D3 brane is created between them. This is known as a Hanany-Witten transition [73]. Such
brane configurations can be encoded in a way invariant under these moves, in terms of D5 and
NS5-brane linking numbers. These quantities are defined in the following way:

li = −ni,# +RNS5
i (1.2.5)

l̂i = n̂j,# + LD5
j (1.2.6)

, where with ni,# and n̂j,# we denote the net number of D3’s ending on the ith D5 and
on the jth NS5 brane accordingly, where RNS5

i and LD5
j denote the number of NS5 branes on

the right of the ith D5 and the number of D5 branes on the left of jth NS5. There are two
details which should be taken into account regarding this labeling. First, by convention the D5
branes are labeled from left to right whereas the NS5 ones are labeled conversely. Moreover, the
linking numbers are non-increasing, with all the D5 ones having the extra trait that are always
non-negative, while automatically l̂k̂ = Nk̂−1:

li ≥ li+1 ; l̂j ≥ l̂j+1 (1.2.7)

Now, let’s see what information does the inequality satisfied by the NS5 linking numbers gives
us. If we consider the linear quiver of the picture above the inequality for the linking numbers
of the jth and (j + 1)th NS5 branes results to the conjectured relation presented above for the
existence of a non-trivial IR fixed point. Note that in terms of the brane picture, the bifundamen-
tal hypermultiplets of U(Ni)× U(Ni+1) and U(Ni+1)× U(Ni+2), are Ni+2 +Ni hypermultiplets
transforming in the fundamental of U(Ni+1).

Moving gradually all the D5 branes of the above configuration on the right of all NS5 ones,
by taking simultaneously into account the D3 brane creation at each crossing with a D5, results
to a final configuration with a total number of N − D3 branes, being suspended between NS5
on the left and D5s on the right. Then:

13



Figure 1.3: The resulting brane picture after moving all the D5 branes on the right
of the NS5 branes. The linking numbers of the fivebranes comprise the partitions
ρ and ρ̂ of N, where N is the total number of D3 branes suspended between the
fivebranes.

k∑
i=1

li =
k̂∑
j=1

l̂j = N (1.2.8)

and hence the five-brane linking numbers define the two ordered integer partitions of N , (ρ, ρ̂),
introduced in the previous section, which correspond to two Young diagrams. The number of
fundamental hypermultiplets is then given, according to their definition, by the multiplicity of
each integer in ρ and ρ̂:

ρ = l1 + l2 + ...+ lk̂+1

= 1 + ..+ 1︸ ︷︷ ︸
M1

+ 2 + ..+ 2︸ ︷︷ ︸
M2

+...

ρ̂ = l̂1 + l̂2 + ...+ l̂k+1

= 1 + ..+ 1︸ ︷︷ ︸
M̂1

+ 2 + ..+ 2︸ ︷︷ ︸
M̂2

+...

,where M̂ĵ are the number of fundamental hypermultiplets of the magnetic (mirror dual)
quiver, which will be introduced in one of the following sections.
These are exactly the brane configurations that realize the T ρρ̂

[
SU(N)

]
theories.

Before we turn on two interesting examples, now that we have described the notion of the
linking numbers, we return to the general linear quiver of the above figure and its brane picture,
in the form where the fivebranes are factorized, as shown in Figure 1.3: The brane configuration
corresponding to any (good) linear quiver can be brought to the form where D3 branes end up
on a number of NS5 branes on the left and on a number of D5 branes on the right. Excatly from
this picturewe read directly the labels (ρ, ρ̂, N) of the theory.
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Figure 1.4: Quiver diagram and brane configurations of T (3,3,1,1)
(2,2,2,2) [SU(8)]

We study the move of each D5 brane, towards the left, starting with the innermost one and by
taking into account the vanishing of a D3 brane each time a D5 crosses an NS5. Supersymmetry
requires that no more than one D3 branes can suspend between a D5 and an NS5: this is the so
called s-rule. As shown in detail in [12], respecting the s-rule results to a number of inequalities
for the linking numbers which are actually the ‘good’ IR flow conditions in terms of the two
partitions of N/Young tableaux, in a weaker form than the one given in (1.2.4).

ρ̂T ≥ ρ (1.2.9)

We close this section with a simple example of a linear quiver. Consider T (3,3,1,1)
(2,2,2,2) [SU(8)], which

is a good theory. From the partitions, we have that the brane picture includes four D5s with
linking numbers (2,2,2,2) and four NS5s, with linking numbers (3,3,1,1). The brane configuration
is given in Figure 1.4. Moving the D5s until the net number of D3s ending on them is zero, we
obtain the quiver diagram, displayed at the lower part of Figure 1.4. Note that from the brane
picture found at the upper part of Figure 1.4 one reads directly (ρ, ρ̂, N), whereas from the one
at the lower-left part of the same figure, the quiver diagram is directly extracted.
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1.3 Moduli Space and Symmetries
1.3.1 Moduli space of vacua: Higgs, Coulomb and Mixed branches

Three-dimensional N = 4 gauge theories have a moduli space which is parametrized by the
vacuum expectation values (vevs) of the vector multiplet scalars 〈σ, ϕ〉 and hypermultiplet scalars
〈φ, φ̃〉. There are three distinct cases of parametrization. The first is the one where the vevs of
the vector multiplet scalars vanish while the ones of the hypermultiplet scalars are non-zero, the
latter parametrize the so called Higgs (CH) branch of the moduli space. In the opposite case,
when the vevs of the hypermultiplet scalars vanish and the ones of the vectormultiplet scalars are
non zero, then the latter parametrize the Coulomb (CC) branch. Finally, apart from purely Higgs
or Coulomb branches, there also exist the ones that are parametrized by vevs from both sets of
scalar fields and those are called Mixed branches. A general description of the the full moduli
space of a three-dimensional N = 4 theory with gauge group U(N) is as a union of these mixed
branches [106]:

M =
⋃
r

CH,r × CC,r (1.3.1)

We start by the description of the Higgs branch of a theory with Nf flavors. The bosonic fields
of the hypermultiplets are pairs of complex scalars Qα = (φα, φ̃α†)T with α = 1, 2, ..., Nf , which
transform as SU(2)R doublets. The vevs of these scalars parametrize the Higgs branch and they
satisfy a triplet of D-term equations Tr[QQ†σi] = 0 modulo gauge transformations, which defines
the Higgs branch as a hyper-Kähler quotient. The gauge group is completely broken at the Higgs
branch and the theory in the IR is that of free hypermultiplets. On the contrary, when complete
Higgsing is not possible, the low-energy theory contains also free vector multiplets. Finally the
Higgs branch is classically exact, it does not receive any quantum corrections and hence can
be studies from the classical Lagrangian of the theory. This is implied from the fact that once
the gauge coupling is promoted to a superfield the scalars of the superfield are SU(2)R singlets,
transform only under the SU(2)H and so they appear only in the Coulomb branch [78].

The Coulomb branch is a hyper-Kähler manifold, parametrized by the vevs of the vector
multiplet scalars. These are diagonal matrices breaking the gauge group to its maximal torus,
U(1)r, with r = rankG. The matter fields are massive and the IR theory is the one of free (abelian)
vector multiplets. On the contrary with the Higgs branch, the Coulomb branch receives quantum
corrections that modify the geometry of its classical descritpion. The quantum corrections are
induced by monopole operators. These operators that belong to the general category of defect
operators, are extra chiral (with respect to an N = 2 subalgebra of the N = 4) operators subject
to quantum relations not derived from a superpotential. They are defined by the prescription
of singular boundary conditions in the path integral. Specifically the insertion of a monopole
operator Vm(x) at point x, corresponds to performing the path integral over the gauge field
configurations with a Dirac monopole singularity at x: A± ∼ m

2 (±1 − cosθ)dφ, where we use
the spherical coordinates (r, θ, φ) and A± denotes the gauge connection on the two patches of
a two-sphere enclosing the monopole insertion point x. The monopole singularity is given by
an embedding U(1) ↪→ G, determined by the monopole charge, taking values in the weight
lattice GNO dual group modulo Weyl reflections, m ∈ ΓGV /W, alongwith the Dirac quantization
condition e2πim = 1G.

In order for the monopole operator to preserveN = 2 supersymmetry, the boundary condtition
is imposed for the N = 2 vectormultiplet scalar: σ ∼ m/2r, (r → 0). In this way the inserted
operator is a 1

2 -BPS monopole operator sitting in a chiral multiplet of the theory, and therefore
they are counted along with the other chiral multiplets of the theory.
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Having already introduced the Higgs and Coulomb branches we now focus on the mixed
branches. These subregions of the moduli space are generated when scalars from both the vector
multiplets and hypermultiplets acquire non-vanishing vacuum expectation values. The description
of the mixed branches can be given in terms of type-IIB brane configurations [34] , as the ones
introduced in previous section.

One important detail regarding the brane configurations in this discussion, is to specify the
boundary conditions of the bosonic fields living on a D3 brane which ends on either kind of
fivebrane. A three-dimensional scalar can obey either Dirichlet boundary conditions and vanish
at the boundary, or Dirichlet, where its value at the boundary is free. For the three dimensional
vector, we have to take into account the dimensional reduction from four dimensions: he vector in
four dimensions reduced to a three-dimensional vector , which is set to zero by Neuman boundary
conditions and a scalar, vanishing for Dirichlet boundary conditions. On the D3 branes the
effective three-dimensional theory includes a scalar plus the fluctuations along three transverse
directions as the bosonic massless modes of the N = 4 hypermultiplet and finally the three-
dimensional vector and the fluctuations along the rest of the transverse directions as the bosonic
part of the N = 4 vectormultiplet. Therefore, the boundary conditions imposed when a D3 brane
ends on a D5 brane, set to zero the bosonic part of the vector multiplet and the only surviving
modes are the hypermultiplet scalars. On the contrary, the vectormultiplet scalars are the only
ones surviving when a D3 brane is suspended between two NS5 branes.

This information can be combined with the discussion of the previous section regarding Higgs
and Coulomb branches. D3 branes suspended between two NS5 branes and moving freely along
the NS5 directions, correspond different values of the vectormultiplet scalars and namely to
Coulomb branch moduli. On the other hand, motions of D3 branes along the D5 directions (while
being suspended between them) correspond to different values for the hypermultiplet scalars and
hence to Higgs branch moduli. Finally, and D3 brane suspended between a D5 and an NS5 , has
no moduli as half of them are set to zero by Dirichlet and the other half of them by Neuman
boundary conditions. In a given brane construction, by counting the number of mobile D3 branes
per case one can determine the dimension of a Coulomb or Higgs branch of the theory.

The mixed branches are determined by a partition

λ = (λ1, ..., λk) ;
k∑
i=1

λi = N

the entries of which determine the number of D3 branes ending on each D5 of the brane
configuration describing our theory. Moreover,the “good” theory condition holds: ρ̂T ≥ λ ≥ ρ.
The case ρ̂T = λ is the full Higgs branch of our theory, whereas λ = ρ corresponds to the full
Coulomb branch. The intermediate λ-partitions correspond to the various mixed branches of the
theory. In this sense, the full moduli space of vacua of a 3d N = 4 theory is:

M =
⋃

ρ̂T≥λ≥ρ
Cλ ×Hλ

M =
⋃

ρ̂T≥λ≥ρ
Cλ × CλT ; M =

⋃
ρ̂T≥λ≥ρ

HλT ×Hλ

where the second line just uses the fact that the two branches are exchanged by mirror
symmetry, which characterizes superconformal theories in three dimensions and will be explained
in detail in the following section. Therefore, the Higgs branch of a theory the mixed branch of
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Figure 1.5: The quiver diagram and the brane configuration of T (1,...,1)
(4,2,2) [SU(8)] .

The linking numbers of the fivebranes are specified in the parentheses above each
brane.

which is determined by the partition λ is mapped to the Coulomb branch of the theory the mixed
branch of which is determined by the partition dual to λ (which is its transpose).

We can proceed to an example and answer two questions:

• For a particular λ, which is the theory whose full Coulomb branch coincides with the
Coulomb branch part of the above mixed branch, Cλ? Accordingly for the Higgs branch.

• Can we determine the dimensions of the Coulomb and Higgs branches?

Example: Mixed branches of T (1,...,1)
(4,2,2) [SU(8)]

The quiver diagram and the brane configuration of this theory are found in Figure 1.5. As
indicated by the linking numbers above the fivebranes, this theory is labelled by two partitions
ρ = (1, .., 1) and ρ̂ = (4, 4, 2), whereas ρT = (8) and ρ̂T = (3, 3, 1, 1). The various branches
can be given by integer partitions of 8 obeying ρ̂T ≥ λ ≥ ρ. As noted above, the marginal cases
correspond to full Coulomb and full Higgs branches, so here we can pick an intermediate partition
to study the case of a mixed branch.

λ = (2, 2, 1, 1, 1, 1) λT = (6, 2)

In this case, two D3 branes are frozen on the innermost D5, another two on the next one and so
on. The mixed branch brane configuration is the following:

The Coulomb branch part of the mixed branch is generated by the mobile D3 branes (red),
stretched between the NS5 branes and the Higgs branch part of the mixed branch is generated
by the mobile D3 branes (blue), between the D5s. The D3 branes suspended between the two
different kinds of fivebranes have no moduli, as explained in the previous paragraph.

By giving infinitely large vevs to the Higgs branch moduli, namely by moving the blue D3
branes to infinity, we can read off the quiver theory the full Coulomb brnch of which coincides
exactly with the Coulomb branch part of the above mixed branch. We get the quiver theory
below which is labeled by the partitions λ and ρ̂.
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Figure 1.6: The brane configuration corresponding to the mixed branch λ =
(2, 2, 1, 1, 1, 1) λT = (6, 2) of T (1,...,1)

(4,2,2) [SU(8)]

We see that the full Coulomb branch of this theory is exactly the Coulomb branch part of the
Mixed branch labeled by λ and therefore Cλ ≡ C[T λρ̂ ] .

Acting accordingly for the Higgs branch, we see that it coincides with the full Higgs branch
of the theory with gauge group U(2) and eight fundamental hypermultiplets, labeled by the
partitions ρ and λT . Therefore Hλ ≡ H[T ρ

λT
] and finally:

M =
⋃

ρ̂T≥λ≥ρ
Cλ ×Hλ =

⋃
ρ̂T≥λ≥ρ

C[T λρ̂ ] ×H[T ρ
λT

] =
⋃

ρ̂T≥λ≥ρ
C[T λρ̂ ] × C[T λTρ ] =

Given that we know the partitions which label the theories the full Coulomb and Higgs
branches of which coincide with the corresponding factors of the Mixed branch of the initial
theory, we can directly compute their dimensions.

• dC[Tλρ̂ ] = 1
2
∑
i

(ρ̂T2
i − λ2

i )

• dH[T ρ
λT

] = dC[TλTρ ] = 1
2
∑
i

(ρT2
i − λT2

i )
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For the above cases, we obtain the correct results, namely (dC[Tλρ̂ ] ,dC[TλTρ ] ) = (4, 12) and
these are exactly the number of mobile D3 branes per case.

1.3.2 Mirror and Global Symmetry

Three-dimensional N = 4 theories are characterized by Mirror symmetry [78] [45]. This is
a particular symmetry which exchanges the Higgs with the Coulomb branch of two theories,
exchanges the Fayet-Iliopoulos and mass parameters and finally the SU(2)R and SU(2)R′ of the
SO(4) R-symmetry. Regarding the above brief discussion regarding the moduli space of vacua,
we see that the Coulomb branch of a theory, which is in pronciple difficult to study due to the fact
that receives quantum corrections, can be studied from the classical Higgs branch of the mirror
theory.

Regarding the linear quivers studied in this work, mirror symmetry exchanges the integer
partitions ρ and ρ̂. Of course this implies that we have another IR flow condition which should
be satisfied in order for the mirror symmetric quiver to have a non trivial fixed point in the IR:

T ρρ̂
[
SU(N)

]
↔ T ρ̂ρ

[
SU(N)

]
, ρT > ρ̂↔ ρ̂T > ρ (1.3.2)

Specifically, both theories of the mirror pair flow in the IR to the same fixed point. Apart
from mirror symmetry, these theories are characterized by additional global symmetries, which
are determined by ρ and ρ̂. From the previous discussion on the general linear quivers, these
global symmetries correspond to the ones rotating the fundamental hypermultiplets of the theory:
Hρ =

∏
i U(Mi) and Hρ̂ =

∏
i U(M̂i) for the mirror theory. Therefore at the fixed point, the total

global symmetry is expected to be:

Hρ ×Hρ̂ (1.3.3)

Mirror symmetry is realized as S-duality in type IIB string theory. We can go back to the
brane description of the quiver theories and apply S-duality. Such action exchanges D5 with NS5
branes while leaving the D3 branes intact. Since the the 5 brane data (linking numbers) are
encolded in the Young diagrams ρ and ρ̂, it is obvious that S-duality acts actually by exchanging
them. In this way, by starting from a given quiver (e.g electric/magnetic), we can obtain its
mirror dual (e.g magnetic/electric).

At this point all of the above can be summarized in an instructive example. The first step to
start from a given (electric) linear quiver. By writing down its brane picture and factorizing the
5 branes as explained througout the text, we can retrieve its full data, in terms of the two integer
partitions.
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Figure 1.7: Quiver diagram of T (6,1,1)
(1,..1) [SU(8)] along with the brane construciton

with the fivebrane-linking numbers indicated

This is a theory with eight fundamental hypermultiplets provided by the eight D5 branes
intersecting the second set of D3s. The linking numbers are computed using the definition given
in the previous section and are given in parentheses for each type of five-brane (under each NS5
and above each one of the D5s). Below the data that identify this quiver theory are given; it can
be verified that the good- theory conditions are automatically satisfied:

(ρ, ρ̂, N) :
{
, , 8

}
(1.3.4)

After having identified the electric theory, the next step is to proceed to obtaining the magnetic
theory. The first step is to break all the D3 branes between the D5s and then apply S-duality,
which, as stated above, exchanges D5 with NS5 branes while keeping D3 branes invariant. Finally,
by moving the (converted) D5s towards the interior of the brane configuration until there are no
D3 branes attached on them, gives the picture from which the magnetic quiver can be obtained.
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This is the magnetic theory, which is of course good and flows to the same fixed point in the IR
as the electric theory does. From the brane configuration one can verify that the integer partitions
that label the magnetic theory are the exchanged partitions of the electric theory. In Part III of
this work, the discussion on the moduli space is continued, with focus on mixed branches of dual
pairs of such linear quiver theories.
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Chapter 2

Holographic Duals: IIB Supergravity
on AdS4 × S2 × Ŝ2 n Σ(2)

2.1 The supergravity solutions
The second part of the correspondence regards a particular class of solutions of type IIB su-
pergravity whose global structure was developed in [12]. The local solutions preserving osp(4|4)
superconformal symmetry were constructed as holographic duals to BPS domain walls in four-
dimensional N = 4 super Yang-Mills theory [52][54] [1]. The solutions were constructed to have
OSp(4|4) symmetry, by imposing that the type IIB Killing spinor equations are solved by Killing
spinors generating this symmetry. The global solutions which be discussed in the main part of
the chapter, where constructed in [12], and an exact holographic dictionary was developed. We
start with presenting the local solutions. The first step of the construction is that the bosonic
part of the symmetry group is encoded in the following metric ansatz:

ds2
10d = L2

4ds
2
AdS4 + f2ds2

S2 + f̂2ds2
Ŝ2 + 4ρ2dzdz̄ (2.1.1)

which describes an AdS4 fibration over the six-dimensional manifold S2 × Ŝ2 n Σ(2), where
Σ2 stands for a two-dimensional Riemann surface with the topology of a disk. In this analysis we
focus on solutions with Σ(2) being the infinite strip:

Σ(2) = {z = x+ iy ∈ C|0 ≤ Imz ≤ π

2 } (2.1.2)

In this way, indeed, the SO(2, 3) × SO(3) × SO(3) bosonic part of OSp(4|4) is given as
the AdS4 isometries times the isometry groups of the two-spheres. The scale factors L4, f, f̂ , ρ,
are real functions of the local complex coordinates (z, z̄), which parametrize the strip and are
expressed in terms of two real harmonic functions: h(z, z̄) and ĥ(z, z̄). Along with these, their
dual functions are defined, which will be necessary in determining the gauge potentials of the
setup, as we will see in what follows.
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h(z, z̄) = −i(A− Ā), ĥ(z, z̄) = Â+ ¯̂A

hD(z, z̄) = A+ Ā, ĥD(z, z̄) = i(Â − ¯̂A)

,where A, Â are holomorphic and analytic in the interior of the Riemann surface. Below it
will be seen that they may have singularities on the two boundaries of the strip, the nature of
which will be explained in detail. The explicit expressions for the metric factors are:

L8
4 = 16UÛ

W 2 , ρ8 = UÛW
2

h4ĥ4
(2.1.3)

f8 = 16h8 ÛW 2

U3 , f̂8 = 16ĥ8UW 2

Û3
(2.1.4)

where U , Û and W , are auxiliary functions defined as:

U = 2hĥ|∂zh|2 − h2W, Û = 2hĥ|∂zĥ|2 − ĥ2W, where W = ∂z∂z̄(hĥ) (2.1.5)

The solutions include non-vanishing R-R and NS-NS three-form field strengths:

F(3) = ω̂(2) ∧ db2, H(3) = ω(2) ∧ db1 (2.1.6)

where ω̂(2), ω(2) stand for the volume forms of Ŝ2, S2 and the b1,2 are one forms which depend
on the harmonic functions. The remaining components of the supergravity solution are the R-R
5-form and the dilaton:

F5 = −4L4
4ω(4) ∧ F + 4f2f̂2ω(2) ∧ ω̂(2) ∧ (?(2)F), e4φ = Û

U
(2.1.7)

,with ω(4) being the AdS4-volume form and F being a 1-form on the infinite strip with the
property that the quantity L4

4F is closed. It is straightforward to prove the following identities
that hold between the metric factors and the dilaton: L2

4f
8 = 4e2φh2, L2

4f̂
8 = 4e−2φĥ2 and

ρ6f2f̂2 = 4W 2. These will be important for the analysis in Part II, where metric fluctuations
around these solutions will be studied. The details of most of the above functions are given
throughout [12][52][54] but are not of practical use and in terms of simplicity, are not mentioned
in this text.

The regularity of the solutions is ensured by the fact that the harmonic functions h, ĥ obey
particular boundary conditions on the two strip-boundaries. The first harmonic function van-
ishes on the lower boundary along with the normal derivative of the second harmonic function

24



while the converse holds for the upper boundary. In this sense the Σ(2)-boundary is realized in
terms of divisions:

h|y=0 = ∂⊥ĥ|y=0 = 0 and ĥ|y=π
2

= ∂⊥h|y=π
2

= 0 (2.1.8)

The above conditions imply that the f -factor vanishes in the lower strip-boundary whereas
the f̂ -factor vanishes on the upper strip-boundary. This, in turn, corresponds to the fact that the
radius of the S2 vanishes on the lower strip boundary and accordingly the radius of the Ŝ2 vanishes
on the upper boundary. Therefore, the points on the Σ(2)-boundary are interior points of the
full ten-dimensional geometry; the only boundary in this framework is the conformal boundary
of AdS4.

These conditions, along with the requirement that both the dilaton and the metric factors be
regular in the interior of Σ(2) but divergent at isolated points of the boundaries, form a set of
global consistency conditions that severely constrain the supergravity solutions and directly the
form of the harmonic functions (h, ĥ). Regarding the aforementioned isolated points of the Σ(2)
boundary, there are three kinds of admissible singularities for the harmonic functions, interpreted
to be sourced by type IIB branes: D5, NS5 and D3 branes. The ones interpreted as fivebranes, are
logarithmic-cut singularities and in what follows we will see that they also carry D3 brane charge.
As regards the ones interpreted purely as D3 brane sources, they are square-root singularities[52].

We can proceed to the detailed description of the simplest solution which contains brane
singularities. The form of the two harmonic functions is given below:

h = −iαsinh(z − β)− γlog
[
tanh

( iπ
4 −

z − δ
2

)]
+ c.c (2.1.9)

ĥ = α̂cosh(z − β̂)− γ̂log
[
tanh

(z − δ̂
2

)]
+ c.c (2.1.10)

The two harmonic functions are labelled by two sets of four real parameters, (α, β, γ, δ) and the
corresponding hatted ones. The underlined part of the expressions corresponds to the fivebrane
singularities: δ and δ̂ are the positions of the D5 and NS5 sources on the upper and lower strip-
boundaries. Obviously this solution describes just one stack of D5 branes on the upper boundary
at z = δ+ iπ

2 and one of NS5s on the lower boundary, at z = δ̂. Except of these singular points, all
the rest of the boundary belongs to the interior of the full ten-dimensional geometry. Regarding
the rest of the parameters, we will see that (β, b̂) determine the dilaton and in particular the
dilaton variation between the two asymptotic region of the strip. This is explained in detail in
the corresponding Appendix A, but also through the Part II of this work. The parameters (α, α̂)
and (γ, γ̂) play an important role in the physics and the geometry of our setup and are going to
be explained below. It is notable that they are assumed to be all non-negative [52].

Let us now examine the physics in the vicinity of the D5 branes. Recall that the two sphere Ŝ2

shrinks to zero radius on the upper boundary. Consider a segment I surrounding the singularity
at z = δ̂+ iπ

2 and the fibration of the Ŝ2 over this segment: I×Ŝ2 is a non-contractible three-cycle.
It has topology of a three-sphere given the fact that on the upper boundary the second harmonic
function and the second two-sphere form factor vanish (ĥ = f̂ = 0). It can be verified that this
three cycle supports a non-vanishing RR three-form flux, which corresponds to the total number
of the D5 branes at the particular point (or equivalently to the total D5 brane charge).
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Figure 2.1: Solution with one D5 and one NS5 brane: The indicated three-cycles
at the region of each point singularity, are non-contractible and support R-R and
NS-NS three-form fluxes, as explained in the text. The boundary conditions for the
harmonic functions are specified, along with the asymptotic AdS5/Z2 × S5 regions.

Accordingly, focusing on the lower-boundary singularity, we have the non-contractible three-
cycle I ′ × S2obtained as a fibration of S2 two-sphere over a segment I ′, which surrounds the
singularity at z = δ̂. This three-cycle (which also has the topology of a three-sphere as on the
lower boundary h = f = 0) supports non-vanishing NS-NS three-form flux, which counts the
total number of NS5 branes at that point (or equivalently the total NS5 brane charge).

ND5 = 1
4π2α′

∫
I×Ŝ2

F(3) = 4
α′
γ, NNS5 = 1

4π2α′

∫
I′×S2

H(3) = 4
α′
γ̂ (2.1.11)

, from where the meaning of the real parameters γ, γ̂ becomes evident: they count (in ap-
propriate normalization) the number of fivebranes per stack. Moreover, it should be noted that
the fivebrane charge is quantized in units of 2κ0T5, with 2κ2

0 = (2π)7α′4 being the gravitational
coupling, and with the fivebrane tension being T5 = 1

(2π)5α′3 , while since the dilaton is being kept
arbitraty, one has the freedom to choose for the string coupling gs = 1 which renders the tensions
of the two fivebrane types equal.

What remains to be presented regarding the singularities is the D3 brane charge of these
solutions. First of all, the aforementioned singularities carry D3 brane charge, apart from the
fivebrane charge already described. Focusing on the upper-boundary supporting singularities,
except from the F3 flux supported by the three-cycle I×Ŝ2, there is also a five-form flux threading
the non-contractible five-cycle which is obtained as a fibration of the S2 over the above three-
cycle: (I × Ŝ2) × S2. A significant detail is that this five-form is not just simply the R-R F5,
but rather the five-form F̃5 = F5 − B2 ∧ F3, with B2 being the gauge potential of the NS-NS
three-form. Accordingly, regarding the lower-boundary singularities, except from the H3 flux
supported by the three-cycle I ′×S2, there is also a five-form flux threading the non-contractible
five-cycle which is obtained as a fibration of the Ŝ2 over the above three-cycle: (I ′ × S2) × Ŝ2.
The five-form here is the gauge-variant combination F̃ ′5 = F5 +C2 ∧H3, with C2 being the gauge
potential of the R-R three-form:
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Figure 2.2: Compactification limit: As α, α̂→∞, the asymptotic regions close and
are replaced by regions homeomorphic to AdS4 ×M6. Here, solutions with multiple
fivebrane singularities are depicted.

ND5
D3 =

∫
(I×Ŝ2)×S2

F5 −B2 ∧ F3

NNS5
D3 =

∫
(I′×S2)×Ŝ2

F5 + C2 ∧H3

The above D3 charges are called Page charges. This subtlety in defining the D3 brane charge
is explained in detail in [12]. Briefly, it turns out that in the presence of the two kinds of
fivebranes, the RR five-form, which is gauge-invariant, corresponds to a non-conserved current
generating a non-conserved D3-brane charge. However, a particular definition, of a gauge-variant
this time, five form as a combination of the RR fiveform and the gauge potentials for the RR
and NS NS three-forms, results to a local, conserved and quantized but gauge-variant D3 brane
charge, which is called Page charge. in this setup, there are two ways to define such a five-form,
respecting the criterion of which out of the two gauge potentials can be globally defined on each
of the non-contractible five-cycles in introduced above. Apart from being supported on fivebrane
singularities, D3 brane charge can also be found at the asymptotic regions of the strip.

In the figure above, there is a new piece of information regarding the geometry of the asymp-
totic regions. Substituting the form of the harmonic functions introduced above in the metric,
results to asymptotic regions with geometry AdS5×S5. The details of the solution, are explained
in the corresponding Appendix B . AdS5 × S5 is the near horizon geometry of a number of D3
branes and therefore there is also charge associated with these regions. Nevertheless, this charge
will not play any role, given that the focus is given to the case where these asymptotic AdS5×S5

regions are capped-off. The limit of interest in the presented solutions is the one where α, α̂→∞,
which is smooth. In this limit the asymptotic AdS5×S5 regions cap-off and the points at infinity
become regular interior points of the full ten-dimensional geometry. This has been given in detail
in [12] The harmonic functions that describe this setting are introduced below:

h = −
q∑
i=1

γilog
[
tanh

( iπ
4 −

z − δi
2

)]
+ c.c, ĥ = −

q̂∑
j=1

γ̂j log
[
tanh

(z − δ̂j
2

)]
+ c.c (2.1.12)

, where for the positions of the singularities have opposite ordering. This choice of harmonic
functions corresponds to the compact geometry AdS4 ×M6 as it can be verified by substituting
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them into the metric ansatz. Regarding the fivebrane charges, we still have that the number
of D5 (NS5) branes at each stack is proportional (or equal, depending on normalization) to the
corresponding γi (γ̂j)-parameter of the solution: N

(i)
D5 ∼ γi and N

(j)
NS5 ∼ γ̂j . Finally, the D3

brane charge is obtained by the expressions for the page charges defined above, for which the
substitution of the two harmonic functions gives:

N
(i)
D3 = N

(i)
D5

q̂∑
j=1

N
(j)
NS5

2
π

arctan(eδ̂j−δi), N
(j)
D3 = N

(j)
NS5

q∑
i=1

N
(i)
D5

2
π

arctan(eδ̂j−δi) (2.1.13)

These expressions show that the particular solutions have the description of near horizon
geometries of a brane configuration involving D3 branes being suspended between stacks of NS5
branes and D5 branes. This brane picture is of paramount importance for establishing the duality
between these solutions and the three dimensional theories presented in the previous chapter:
Recall that all the data that label a linear quiver theory can be obtained by the exactly same
type of brane configuration.

2.2 Holographic Dictionary
The conjectured duality presented in [12] is between the IR limit of three-dimensional N = 4
theories and type IIB supergravity on AdS4×M6. A common description of these holographically
dual theories, is in terms of the specific type-IIB brane configurations described above. Regarding
the three dimensional theories, the brane picture is comprised by N-D3 branes, suspended between
k-D5 branes and k̂-NS5 branes. In the supergravity side, these quantities are related to the
numbers of fivebranes per point singularity on the strip boundaries and to the corresponding
charge of D3 branes emanating from or ending on each stack:

{
k =

∑q
i=1N

(i)
D5

k̂ =
∑q̂
j=1N

(j)
NS5

N =
q∑
i=1

N
(i)
D3 = −

(q̂)∑
j=1

N
(j)
D3 (2.2.1)

, with the relation on the right hand side implying charge conservation. The labels that
remain are the integer partitions of N ,namely ρ and ρ̂. The linking numbers for the fivebranes,
defined in the first chapter, give the net number of D3 branes attached on each one of them. In
the supergravity side, the partitions are given in terms of the usual linking numbers, which are
now defined as the ratios:

l(i) = N i
D3

N i
D5

=
q̂∑
j=1

N
(j)
NS5

2
π

arctan(eδ̂j−δi), ρ = (

N
(1)
D5︷ ︸︸ ︷

l(1), ..., l(1), ......,

N
(p)
D5︷ ︸︸ ︷

l(p), ..., l(p))

l̂(j) = − N
(j)
D3

N
(j)
NS5

=
q∑
i=1

N
(i)
D5

2
π

arctan(eδ̂j−δi) ρ̂ = (l̂(1), ...l̂(1)︸ ︷︷ ︸
N

(1)
NS5

, ......, l̂(p̂), ..., l̂(p̂)︸ ︷︷ ︸
N

(p̂)
NS5

)
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, where here the linking number l(i) stands for the number of D3 branes ending on each
D5 brane of the ith brane stack and accordingly l̂(j) gives the number of D3 branes emanating
from each NS5 of the jth brane stack. These quantities should be integer and this imposes that
the parameters δi, δ̂j are quantized. With this addition, the two integer partitions of N in the
supergravity side, are written above. We see that the theories at both sides of the correspondence
are practically labeled by the following : number of D5 branes per stack (N (i)

D5), number of NS5
branes per stack (N (j)

NS5) and the linking numbers l(i), l̂(j). From the form of the partitions we see
that the number of D5 branes per stack matches with the number of fundamental hypermultiplets
per gauge node of the T ρρ̂

[
SU(N)

]
while the number of NS5 branes per stack matches with the

number of fundamental hypermultiplets per gauge node of the mirror theory, T ρ̂ρ
[
SU(N)

]
.

N
(i)
D5 = Mi, N

(j)
NS5 = M̂j (2.2.2)

This, along with the charge conservation condition given in the beginning of this section, gives
an overall matching of parameters between the theories in the two sides of the correspondence.

Furthermore, the inequalities ρT > ρ̂ that are necessary to be met in order for the three-
dimensional theory to have a non-trivial IR fixed point, are also satisfied in the supergravity side
by the defined linking numbers, so there is also s matching of constraints.

Finally, the duality map is completed by the matching of symmetries. The starting point is
the three-dimensional theories: first of all, the superconformal symmetry OSp(4|4) the bosonic
symmetries of which, SO(2, 3) × SO(3) × SO(3) are realized as isometries of AdS4 × S2 × Ŝ2,
as stated in the beginning of this chapter. Moreover, in the final section of the previous chap-
ter, it was explained that in the IR these theories have a global symmetry given by the prod-
uct of the groups that rotate the fundamental hypermultiplets of the dual pair of theories:
Hρ×Hρ̂ =

∏
i U(Mi)×

∏
j U(M̂j). In holographic duality, the global symmetries of the boundary

theory, correspond to gauge symmetries of the bulk theory. The supergravity solutions presented
in this chapter, are characterized by singularities interpreted as fivebranes in string theory. The
gauge theory that lives in the worldvolume of a stack of N (i)

D5 D5 branes is U(N (i)
D5) and accord-

ingly for a stack of N (j)
NS5 branes, U(N (j)

NS5). Therefore, the full gauge symmetry in the bulk
reads:

∏
i U(N (i)

D5)×
∏
j U(N (j)

NS5). Combining this with the parameter matching of the previous
paragraph, we have that indeed the full global symmetry of the three-dimensional theory matches
the gauge symmetry of the bulk supergravity:

Hρ ×Hρ̂ =
∏
i

U(N (i)
D5)×

∏
j

U(N (j)
NS5) (2.2.3)

With this final section we close the Part I, which was a presentation of the theoretical back-
ground on which the work introduced throughout the following chapters is based. Some important
individual parts are left as Appendices (Elements of Representation theory for three-dimensional
N = 2 and N = 4 theories, AdS5 × S5 and its Janus deformation) as they are used in all the
chapters that follow.
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Part II

String Theory embeddings of Massive
AdS4 Gravity and Bimetric Models
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Chapter 3

Massive AdS4 gravity from String
Theory

3.1 The holographic viewpoint
The holographic duality described in the first part of this work, is instrumental for the treatment
of the problem of the AdS4 graviton Higgsing, the details of which have been introduced in the
corresponding part of the general introduction. Although the main analysis is carried out in the
gravitational side of the holographic correspondence, starting the study of the problem from the
point of view of the dual sCFT3 is instructive regarding the construction of the massive AdS4
supergravity solutions.

The question of the presence of a bulk massive graviton is related to the energy-momentum
conservation in the dual boudary CFT. Holographically the AdS4 graviton is dual to the stress
tensor of the dual sCFT3, the scaling dimension of which is related to the graviton mass [6]:

m2L2
4 = ∆(∆− 3) (3.1.1)

, with L4 being the AdS4 radius and ∆ the scaling dimension of the stress-tensor. The represen-
tation of the three-dimensional conformal algebra so(2, 3) which contains Tαβ and its conformal
descendants, is actually short, due to the conservation of the stress-tensor which results to three
null states (null descendants). The scaling dimension of the conserved stress-tensor does not
receive quantum corrections and hence it is canonical: ∆ = 3. From the above holographic ex-
pression, it becomes obvious that a conserved stress tensor of the boundary three-dimensional
CFT corresponds to a massless AdS4 graviton. Therefore, a slightly massive graviton would
correnspond to a non-conserved stress-tensor.

In this case, its scaling dimension would receive quantum corrections in the form of a small
anomalous dimension [5], ε� 1, which would then correspond to a small graviton mass:

m2L2
4 ∼ O(ε) (3.1.2)

The above scenario can be realised in a setup where the three-dimensional theory is a boundary
of a four-dimensional one. The bulk theory is a N = 4 super Yang-Mills SU(N) theory.

The conservation of the stress-tensor fails, due to its non-zero component along the extra
dimension. Indeed, in this case there is no shortening condition and the stress-tensor acquires
an anomalous dimension, which corresponds to a mass for the dual graviton. A similar physical
setting is the one where the initial three-dimensional theory is a defect of a four-dimensional one
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and accordingly we have two contributions of anomalous dimensions, from the left and the right
of the defect. Both cases are depicted below, along with their generic quiver form:

Nevertheless, we are interested in a slightly massive graviton, and hence in a small anomalous
dimension. This requirement suggests that the stress tensor should dissipate weakly in the extra
dimension. Weak dissipation is ensured by the scarcity of the degrees of freedom of the four-
dimensional theory in comparison to the three dimensional boundary one. A direct way to see
this is from the corresponding brane configurations. The above linear quivers can be read off
from the brane diagrams below. The conditions {(Ni,Mi)} � NR and {(Ni,Mi)} � NR, NL ,
where NL,R is the number of semi-infinite D3 branes attached on the leftmost and rightmost NS5
branes (in the world-volume of which the 4d theories live), are the ones which finally guarantee
the weak dissipation of the stress tensor, a fact which as explained above corresponds to a small
anomalous dimension and hence to a small graviton mass. In the final part of the analysis we will
see a more concrete way to realise the weak dissipation of the stress tensor, which involves the
expression of the anomalous dimension in terms as a ratio of free energies of the four-dimensional
and three-dimensional theories.

From the brane picture and from what we already know regarding the dual supergravity
solutions from Part I, we can comment on the geometry of the solutions with a massive graviton:
The semi-infinite D3 branes corresonding to the four-dimensional theories, have an AdS5 × S5

near horizon geometry, whereas the three-dimensional theory is dual to an AdS4 space fibered
over a six-dimensional compact manifold, M6. Therefore we already got a hint for the gravity
side from the dual CFT picture.
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Apart from the above discussed mechanism, there is another physical setup which can eventu-
ally lead to a slightly massive AdS4-graviton. This would be the case where two initially decoupled
three-dimensional theories are coupled weakly while comformal symmetry is preserved[22]. The
coupling is mediated by messenger degrees of freedom. The gravity dual of this picture is a
connection of two initially decoupled AdS4 universes, with two initially masseless gravitons, via
a thin throat of particular geometry. The result is a bimetric AdS4 theory, where a massless
and a massive graviton are both included. This possibility will be examined in detail in the final
chapter of this section.

3.2 Higgsing in Representation theory
Before moving to geometry, let us discuss the Higgsing from the point of view of representation
theory. The notation and the conventions, along with selected aspects of representation theory
for three-dimensional N = 2 and N = 4 theories are given in the Appendix A

Let D(∆, s) denote a unitary highest-weight representation of so(2, 3) with conformal primary of
spin s and scaling dimension ∆. Massive gravitons belong to long representations of the algebra.
The decomposition of a long spin-s representation at the unitarity threshold reads [101]

D(s+ 1 + ε; s)
ε→0
−−−−→ D(s+ 1; s)⊕D(s+ 2; s− 1) . (3.2.1)

Thus the AdS4 graviton (s = 2) acquires a mass by eating a massive Goldstone vector. In the
10d supergravity this vector must be the combination of off-diagonal components of the metric
and tensor fields that is dual to the CFT operator Ta4.

Since we will here deal with N = 4 backgrounds, fields and dual operators fit in represen-
tations of the larger superconformal algebra osp(4|4). These have been all classified under mild
assumptions [59][39]. In the notation of [39] (slightly retouched in [19]) the supersymmetric
extension of the above decomposition reads

L[0](0;0)
1+ε

ε→0
−−−−→ A2[0](0;0)

1 ⊕B1[0](1;1)
2 , (3.2.2)

where L denotes a long representation, Ai (Bi) a short representation that is marginally (ab-
solutely) protected, and [s](j;j

′)
∆ denotes a superconformal primary with spin s, scaling dimension

∆ and so(4) R-symmetry quantum numbers (j; j′). The above decomposition (or recombination)
describes the Higgsing of the N = 4 graviton multiplet in AdS4. That this is at all possible
is not automatic. For instance N = 4 supersymmetry forbids the Higgsing of ordinary gauge
symmetries because conserved vector currents transform in absolutely protected representations
of osp(4|4) [90][38].

The bosonic field content of the above N = 4 multiplets is as follows:
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A2[0](0;0)
1 = [0](0;0)

1 ⊕ [0](0;0)
2 ⊕ [1](1;0)⊕(0;1)

2 ⊕ [2](0;0)
3 ⊕ fermions , (3.2.3)

B1[0](1;1)
2 = [0](1;1)

2 ⊕ [1](1;1)⊕(1;0)⊕(0;1)
3 ⊕ [0](2;0)⊕(0;2)⊕(1;0)⊕(0;1)⊕(1;1)⊕(0;0)

3

⊕[1](0;0)⊕(1;0)⊕(0;1)
4 ⊕ [0](1;1)⊕(0;0)

4 ⊕ [0](0;0)
5 ⊕ fermions . (3.2.4)

The supergraviton multiplet A2 has in addition to the spin-2 boson, six vectors and two
scalar fields, making a total of 16 physical states. The eaten Goldstone multiplet B1 contains
112 physical bosonic states and as many fermions. These latter include massive spin-3/2 states
which are not part of the spectrum of gauged 4d supergravity [19]. Higgsing with that much
supersymmetry is thus necessarily a higher dimensional process.
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3.3 Massive spin-2 on AdS4 ×M6

The main analysis regards in confronting the problem of the AdS4−graviton Higgsing in the
gravitational side of our holographic framework. This problem is hence going to be considered
in the supergravity background which was introduced in detail in the previous section. Working
in a collective approach as regards the base manifold M6 = (S2 × Ŝ2) n Σ(2), we start with the
metric of our warped geometry:

ds2
10 = L2

4(Y )ḡµν(X)dXµdXν + gij(Y )dY idY j (3.3.1)

where L4(Y ) is the radius of the AdS4−fiber at a point-Y of M6, the coordinates X,Y
parametrize AdS4 and M6 respectively, while µ, ν : {0, 1, 2, 3} and (i, j) : {4, 5, 6, 7, 8, 9}. Note
that the base manifold, can be either compact (M̄6) or non-compact (M6). In the first case,
AdS4 × M̄6 is a standard compactification, where the string spectrum contains a massless spin-
2 mode. On the contrary, in the following we will see how a non-compact internal manifold,
corresponds to the case where the lowest-lying graviton acquires a small mass. In this case,
M6 is comprised by semi-finite throats of radius L5, attached to a central compact ‘bag’ of size
L‘bag′ � L5, which are the ones contributing to the small graviton-mass, as we will see from what
follows. The typical size of the bag, is parametrically bound to the AdS4 radius, L’bag’ L4. This
is a general characteristic property of AdSd×MD warped backgrounds, widely known as the scale
non-separation problem [108][67], where the size of the internal manifold if of the same order as
the radius of the AdSd space.

Figure 3.1: The manifold described in the text, is comprised by one (or two at most)
semi-infinite AdS5 × S5 or Janus throat of radius L5 attached on a compact ‘bag’ of typical
size L‘bag’ ∼ L4 � L5.

The full ten-dimensional geometry of the semi-infinite throats is AdS5 × S5, or its supersym-
metric Janus generalization. Both geometries are presented in detail in the Appendix B. While
in the AdS5 × S5 case the dilaton remains constant throughout the throat,the Janus solution
includes a dilaton whose value interpolates between two constant ones: the one at the refion
where the throats attache on the bag, φbag and the value at infinity, φ∞. Therefore, the variation
∆φ = φ∞ − φbag of the dilaton is a parameter which characterizes the throat, along with its
radius, L5.

We are interested in metric perturbations around our AdS4 vacua, which have a small mass
and are of factorized form:
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ds2
10 = L2

4(Y )(ḡµν(X) + hµν(X,Y )︸ ︷︷ ︸
=hλ(X)ψλ(Y )

)dXµdXν + gij(Y )dY idY j (3.3.2)

where ψλ(Y ) is the internal-space wavefunction and hλ(X) is a solution of the Pauli-Fierz
equations for a massive spin-2 mode in AdS4:

(2(2)
X − λ)hµν;λ = 0 (3.3.3)

∇µhµν;λ = 0 = ḡµνhµν;λ (3.3.4)

,where 2(2)
X is the Lichnerowicz-Laplace operator, acting on two-index tensors in AdS4 whereas

from the last two equations it is evident that these spin-2 excitations are transverse and traceless.
Finally, the eigenvalue λ is related to the invariant square mass.

λ+ 2 = m2(Y )L2
4(Y ) (3.3.5)

It is significant to note that while both the mass and the AdS4 radius may vary along the
internal space, their product is constant, and this is a characteristic of warped solutions. A
substitution of the mass eigenstates hµν(X,Y ) along with the Pauli-Fierz relations, in the lin-
earised Einstein equations according to [20], results to a second order differential equation for the
wavefunction:

−L
−2
4 (Y )
√
g

(∂i
√
ggijL4

4(Y )∂j)ψλ(Y )︸ ︷︷ ︸
M2

= (λ+ 2)ψλ(Y )→

→M2ψλ(Y ) = m2(Y )L2
4(Y )ψλ(Y ) (3.3.6)

, with M2 being the Laplace-Beltrami operator on M6. It is notable that the above spin-2
eigenmode equation depends only on geometric data and not on details of matter field back-
grounds, in contrast with the case of lower-spin modes, the linearized equations of which do not
depend on metric details of the background fields.

A complete definition of the spectral problem, recquires the introduction of a norm for the
wavefunctions, which is obtained from its Kaluza-Klein reduction from ten dimensions:

〈ψ1|ψ2〉 =
∫
M6

d6Y
√
gL2

4ψ
∗
1ψ2 (3.3.7)
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The last two relations, summarize the full spin-2 mass-eigenvalue problem in the considered
geometry. A significant detail is that the mass-squared operator is hermitean and that its eigen-
value is non-negative, a fact that can be easily checked with an integration by parts:

〈ψ,M2ψ〉 =
∫
M6

d6Y
√
gL4

4∂iψ
∗∂iψ ≥ 0 (3.3.8)

Nevertheless, the ultimate goal is not the solution of the full eigenvalue problem -which is
a highly complicated project- but rather the computation of the mass of the lowest lying AdS4
graviton, namely the computation of the minimal eigenvalue of the mass-squared operator.

As we will see in detail in the following analysis, the contributions to the graviton mass are
only made by the regions of the semi-infinite throats. Recall that the warped background of
interest is dual to a three-dimensional linear quiver theory. This suggests, as explained in the
previous chapter, that this theory can be coupled as a boundary to a four-dimensional theory, or
can be a defect, separating two four-dimensional theories. Holographically, this corresponds to
at most two semi-infinite throats attached to the compact ’bag‘. This can of course change for
other cases of theories, such as for backgrounds dual to star-shaped quivers, where more than
two throats may be attached and hence contribute to the graviton mass.

The strategy therefore is to concentrate to the computation of the smallest eigenvalue of
the mass squared operator. This is computed by the minimization of the expression (3.3.8)
complemented by the normalization condition for the norm:

m2
0L

2
4 = minψ

[ ∫
M6

d6Y
√
gL4

4(gij∂iψ∗∂jψ)
]

(3.3.9)∫
M6

d6Y
√
gL2

4|ψ|2 = 1 (3.3.10)

Since in the case where the internal manifold is compact (M̄6) the lowest-lying graviton is
massless and hence it is described by a constant wavefunction. Once the semi-infinite throats are
introduced, a distinction has to be made and the wavefunction in the ’bag‘ will be designated as
ψbag. Minimizing the mass in the ‘bag’ region sets the wavefunction to a constant :

ψ0(Y ) ≡ ψbag =
[ ∫

M̄6
d6Y
√
gL2

4
]− 1

2 = const. (3.3.11)

A crucial point is that once the semi-infinite throats are introduced, the integral which de-
scribes the norm of the wavefunction diverges and hence the wavefunction is non-normalizable.
This fact implies that the wavefunction has to vanish inside the throats. This should happen
though in accordance with the minimization of the mass eigenvalue.

This can be indeed quantified. We go back to the variational problem and start from the
expression for the mass eigenvalue. Specifically, we focus on the region of the throats and hence
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our initial problem which regards the full internal manifold, is reduced to the one regarding only
the throat region, the geometry of which is the Janus one B.

Given that for the scalar wave operator we have gij∂i∂j = ρ−2∂̄∂:

∫
M6

d6Y
√
gL4

4g
ij∂iψ

∗∂jψ =
∫
M6

d6Y
√
gL4

4ρ
−2|∂ψ|2 (3.3.12)

The metric on the strip is 4ρ2dzdz̄ and hence the volume element reads 4ρ2dxdy = √gdzdz̄,
while for the two-spheres we have dΩdΩ̂f2f̂2:∫

M6
d6Y
√
gL4

4ρ
−2|∂ψ|2 = 4 · (4π)2

∫
dxdyL4

4f
2f̂2|∂ψ|2 (3.3.13)

Moreover, by using the definitions (2.1.3) and the corresponding identities we have L4
4f

2f̂2 =
16h2ĥ2. Finally by combining the two parts:

√
gL4

4ρ
−2 = L4

4f
2f̂2 = 16h2ĥ2 (3.3.14)

We now turn to the quantity which characterizes the norm of the wavefunction,√gL2
4. The

above identities are used, along with the form of the Janus harmonic functions and the fact that
the radius of the throat is given by L5 = 2cosh

1
4 (δφ) (throughout the analysis we have set for

convenience α = α̂ = 1). It is straightforward in this context to obtain the expression for 16h2ĥ2:

16h2ĥ2 = 16sin2(2y)(cosh(2x) + cosh(δφ))2 = L8
5

16 sin2(2y)G(x), (3.3.15)

G(x) :=
∣∣∣hĥ
W

∣∣∣2 =
(cosh(2x) + cosh(cosh)(δφ)

cosh(δφ)
)2 (3.3.16)

Therefore for the quantity of interest we have:

√
gL2

4 = 16h2ĥ2 ρ

L2
4

= L8
5

16 sin2(2y)G(x)
∣∣∣hĥ
W

∣∣∣ (3.3.17)

and hence we see that in the region of the throats it reaches the minimum value L5, while it
blows up at infinity. Therefore as claimed above, the graviton wavefunction has to vanish inside
the throat in order to be normalizable. In particular, this should happen in the region where
the quantity which characterizes the mass eigenvalue, √gL4

4, becomes minimal. The above are
summarized in the the following plot, where the AdS4 radius L4 and the graviton wavefunction
which minimizes the mass are plotted as functions of the Janus coordinate x.
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Figure 3.2: The AdS4 radius, L4 becomes minimal inside the throat and diverges at
infinity, where the full ten dimensional geometry asymptotes to AdS5/Z2×S5. The graviton
wavefunction is constant in the compact region and vanishes exponentially at infinity

Starting from the ‘bag’ part of M6, we have a nearly constant value for the AdS4 radius
(dashed line) which, due to the non-separation of scales, is parametrically bound to the size of
the ‘bag’, L‘bag’ ∼ L4. The region where the throat is attached to the ‘bag’ is the one circled in the
plot and there √gL2

4 vanishes exponentially fast. Finally, in the throat region , the wavefunction
vanishes exponentially fast, in the region of minimal √gL4

4. The AdS4 radius reaches a minimum
of L5 in the throat, while it diverges at infinity. Therefore, only the throat contributes to the
graviton mass whereas in leading order to L5/L4 only the ‘bag’-region contributes to the norm
of the wavefunction.

In what follows we will derive the form of the minimizing wavefunction and an expression for
the mass of the lowest-lying. The variational problem in the Janus geometry reads:

m2
0L

2
4 =' minψ

[ ∫
throats

d6Y
√
gL4

4g
ij∂iψ

∗∂jψ
]
, ψ →

{
ψ‘bag’ in matching region
0 at infinity

(3.3.18)

Integrating over the two-spheres gives:

m2
0L

2
4 ' minψ

[π3

4 L
8
5

∫ ∞
xc

dxG(x)
(dψ
dx

)2]
, ψ →

{
ψ‘bag’ x = xc
0 x→∞ (3.3.19)

The cutoff value xc is just a large negative value, at the boundary of the matching region, in
other case it could be replaced by −∞. The result is independent of this value and its role is
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just to remind us that the wavefunction would have been non-normalizable in the complete Janus
geometry.

The expression for the wavefunction which minimizes the mass inside the throats is obtained
by solving the above variational problem.

Specifically, the analysis followed in [20] regarding the spin-2 spectrum provides a significant
simplification in Janus geometry: the graviton wavefunction can be expanded in a basis of spher-
ical harmonics on the two-spheres. Therefore, the first step is to substitute the wavefunction in
its expanded form in the eigenmode equation. Choosing (l1, l2) = (0, 0) since we are focused on
the lowest lying graviton, the eigenvalue equation is reduced to the form (6.1) of [20] :

− 1
2cosh(δφ)

[ d2

dx2 − 4(n+ 1)2
]
(cosh(δφ) + cosh(2x))ψ(x) = (2 +m2)ψ(x) (3.3.20)

, where in the above expression n is the relic of the Y-dependent piece of the wavefunction,
decomposed in a basis of trigonometric functions [20] . Demanding the lowest-lying graviton to
be nearly massless, we impose the condition (m,n) = (0, 0) and the above expression takes the
form:

− 1
4cosh(δφ)

( d2

dx2 − 4
)
(cosh(δφ) + cosh(2x))ψ(x) = ψ(x) (3.3.21)

For δφ = 0, the obtained solution is the minimized wavefunction inside a semi-infinite AdS5×
S5 throat. This will be presented in the next chapter and here the attention is given only in the
Janus case. The differential equation for δφ 6= 0 finally boils down to:

d

dx

(
G(x)

(dψ0
dx

))
→ ψ0(x) = c1 + c2

∫ x

0

dx′

G(x′) (3.3.22)

with c1, c2 being integration constants whose form is fixed by the boundary conditions of the
problem. By performing the integral analytically while setting cosh(δφ) = α and by fixing the
lower integration limit so that the integral is an odd function of x, we finally obtain:

I(x, α) :=
∫ x

0

α2dx′

(cosh(2x′) + a)2 =

= α3

2(α2 − 1)3/2 log
[√α+ 1 +

√
α− 1tanh(x)√

α+ 1−
√
α− 1tanh(x)

]
− α2

(α2 − 1)
tanh(x)

[(α+ 1)− (α− 1)tanh2(x)]
(3.3.23)

And hence the expression for the minimizing wavefunction in the throat region reads:

ψ0(x, α) ' 1
2ψ‘bag’

[
1− I(x, α)

I(∞, α)
]

(3.3.24)
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The integral approaches its limiting values exponentially. Therefore up to exponentially small
corrections ψ0(xc) ' ψ‘bag’. Regarding the the norm and the mass, this result indicates that the
contribution of this wavefunction to the norm can be neglected in comparison to the one of the
ψ‘bag’, while it is a dominating contribution to the mass.

Having obtained the expression for the wavefunction, the next step is to plug it back in the
mass eigenmode equation. Taking into account that the integrand is actually a total derivative
and moreover that G(x)dψ0dx = −ψ‘bag’/2I(∞, α) and [ψ0]∞xc = −ψ‘bag’, we obtain:

m2
0L

2
4 '

π3

8 L
8
5

∫ ∞
xc

dxG(x)
(dψ0
dx

)2
= π3

4 L
8
5

[
G(x)dψ0

dx
ψ0
]∞
xc

= (3.3.25)

= π3

4 L
8
5
ψ‘bag’
I(∞, α) → m2

0L
2
4 '

3π3

4 L8
5ψ

2
‘bag’J(α) (3.3.26)

We have finally obtained the main result of this analysis: a new formula for the mass of the
lowest-lying AdS4 graviton, with dependence on the parameters of the throat (radius L5 and
dilaton variation δφ) and on the size of the internal manifold, through ψ‘bag’.

The function J(α) in the above result, is actually a correction factor that reflects the effect
of the Janus geometry in the value of the mass:

J(α)−1 := 6I(∞, α) = 3α3

(α2 − 1)3/2 log
[
α+

√
α2 − 1

]
− 3α2

(α2 − 1) (3.3.27)

The behaviour of this function is given in the plot below and indicates that as the dilaton
variation increases, the graviton mass is suppressed. Of course its effect becomes trivial in the
case where the geometry of the throats is AdS5 × S5 and the value of the dilaton does not vary
throughout the throat (δφ = 0)

Regarding the the value of the dilaton at the matching region (entrance of the throat), it is
fixed by the parameters of the bag. The value at infinity, determines the coupling constant (gYM )
of the dual 4d N = 4 super Yang-Mills theory. The limit |δφ| → ∞ corresponds to the limit
where the four-dimensional theory decouples from the three-dimensional one gYM → 0, which
results to the restoration of the conservation of the stress-tensor Tαβ and to a vanishing graviton
mass. Nevertheless, as shown both numerically and analytically in [20] in this limit the low-lying
mass spectrum becomes discrete and hence no continuous Higgsing can be achieved.

A final insertion to this section is the rewriting of the obtained expression of the graviton
mass in terms of other physical parameters of the solutions.

We start from the minimizing wavefuntion in the ‘bag’ region, which can be re-expressed in
terms of the AdS4 radius and the volume of the ‘bag’:

ψ−2
‘bag’ =

∫
M̄6

d6Y
√
gL2

4 =
∫
M̄6

d6Y
√
gL2

4∫
M̄6

d6Y
√
g

∫
M̄6

d6Y
√
g → ψ−2

‘bag’ = 〈L2
4〉‘bag’V6 (3.3.28)
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Figure 3.3: The Janus correction factor, J(δφ)

Substituting this to the obtained result for the graviton mass, we get an expression in terms
of geometric data:

m2
0L

2
4 '

3π3L8
5

4V6〈L2
4〉‘bag’

× J(cosh(δφ)) (3.3.29)

This rewriting indeed gives an interesting result. First it should be noted that due to the non-
separation of scales - explained in the beginning of the chapter - the six-dimensional volume can
be rewritten as V 1/3

6 ∼ L2
bag ∼ 〈L2

4〉‘bag’, which indicates that the graviton mass is suppressed by
(L5/L4)8. This is the main difference in comparison to the result obtained from the Karch-Randall
model, which is the ratio of the radii in the second instead of the eighth power, m2 ∼ (L5/L4)2

[82] and is a hint of the failure of the thin-brane approximation followed in that context.
Another way to rewrite the result (3.3.25), involves - apart from the above rewriting of ψ‘bag’-

the compactification volume and the four-dimensional effective gravitational coupling. Using the
expressions for the ten-dimensional gravitational coupling in terms of the above parameters as
well as of the string coupling (λs) and Regge slope (α′)

{
κ2

10 = V6κ
2
4

2κ10 = (2π)7α′4λ2
s

m2
0L

2
4 '

3L8
5

28π4α′4λ2
s

κ2
4

〈L2
4〉‘bag’

(3.3.30)

Now, inserting the expression for the radius of the Janus throat B L4
5 = 4πα′2λsn, with n

being the D3 brane charge of the throat, the above expression takes the form:
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m2
0L

2
4 '

3n2

16π2
κ2

4
〈L2

4〉‘bag’
× J(cosh(δφ)) (3.3.31)

The important information this expression provides, is that the mass is quantized, since it is
proportional to the quantized D3 brane charge. Therefore, Higgsing is not a continuous process.
Moreover, this expression is similar to the one obtained in [101]. It is interesting as the approach
followed in those works regards the graviton mass as a quantum effect, whereas in our approach
tha mass is rather obtained from a small-fluctuation analysis around our classical supergravity
solution.

This section closes with a rewritting of the main result for the graviton mass, this time within
the framework of the dual CFT. In particular, the concept of interest is the degrees of freedom of
both the three-dimensional theory and the bulk four-dimensional one. In the first section of this
chapter, it was explained that the weak dissipation of the three-dimensional stress tensor into the
fourth dimension -and hence the appearance of small anomalous dimension which holographically
corresponds to a small graviton mass- is ensured by the scarcity of the degrees of freedom of the
four-dimensional CFT with respect to the ones of the three-dimensional one. The quantity that
measures the degrees of freedom in three dimensions is the free energy on the S3. The calculation
for arbitrary dimension [69] is given below, along with the specialization to four dimensions and
the free energy in three dimensions ( holographic computation [14] and CFT computation [28]
[97]):

 F̃d = sin
(
πd
2
)
logZ(Sd)→ F̃4 = απ

2
F̃3 = 4π2〈L2

4〉
κ2

4

(3.3.32)

Finally, working out the main result gives:

3ε ' m2
0L

2
4 '

6π3F̃4

F̃3
× J(cosh(δφ)) (3.3.33)

The anomalous dimension is thus proportional to the ration of the degrees of freedom of the
bulk theory over the ones of the three-dimensionsal defect. The weak dissipation corresponds to
ε� 1 from which we obtain:

F̃4 � F̃3 (3.3.34)

,which is exactly the argued condition. In practice this can be realized as a small number
of semi infinite D3 branes attached on the outtermost NS5 brane of a configuration involving a
much larger number of D3 branes suspended between NS5s and intersected by a large number of
D5 branes.
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3.4 Conclusions and perspectives
In this section we proposed a top-down string theory embedding of massive AdS4 gravity, with
the main results of the analysis being:

• that Massive AdS4 gravity lies in the string landscape, namely this theory can be successfully
embedded in string theory

• a new quasi-universal quantized formula for the mass of the lowest-lying AdS4-graviton
,obtained by studying metric fluctuations around classical supergravity solutions (3.3.25)

the fact that such theory can be embedded in a UV-complete theory like string theory, in-
dicates that the corresponding four-dimensional gravity theory will be free of pathologies, such
ghosts or physical parameter discontinuities. The relevant energies in which one could compare
the effective theory with the already introduced ghost-free actions, lie between the lowest-lying
graviton mass and the inverse AdS4 radius, at which the effective theory is considered to break
down. This is connected with the non-separation of scales in AdS compactifications, due to which
the AdS radius-as explained in the first section of the chapter-is bound parametrically to the size
of the internal space and to the Kaluza-Klein scale.

Nevertheless, it is highly non-trivial to write down an effective action from string theory. One
possible strategy could be to exploit the remarkable fact that the massive N = 4 supergraviton,
has the same degrees of freedom as the massless N = 8 supergraviton. This suggests that the
above Higgsing process could be described in four dimensions as an N = 4 deformation of the
maximal N = 8 of Cremmer, Julia and Scherk [40]. Note that since the Goldstone multiplet
B1[0](1;1)

2 contains extra gravitini, it is not part of the spectrum of the usual N = 4 (gauged)
supergravity in four dimensions. Extra degrees of freedom could be alternatively introduced by
adding N = 4 higher-derivative terms as in [62]. The authors of this reference analyzed the
massive spectrum in Minkowski spacetime and found it to contain ghosts. It could be interesting
to repeat their analysis in Anti-de Sitter spacetime, especially if the hierarchy m0 � L−1

4 can be
achieved.

Apart from the problem of pinning down the effective action for the already studied embed-
ding, there are more open questions in this direction.

First, given that apparently the main study of the problem took place in the gravitational
side of the holographic duality. Therefore an interesting task would be to perform the calculation
purely on the CFT side, namely compute the small anomalous dimension of the almost-conserved
three-dimensional stress tensor and match with our result for the graviton mass.

A third open direction, is the study of embeddings of AdS massive gravity in other dimensions
and with other amounts of supersymmetry. This is a priori constrained though [18] : Many exact
AdSD solutions with D > 4 and half-maximal supersymmetry are known by now, for instance
for AdS7 [9], for AdS6 [56] [57] [8], and for AdS5 [64]. But among them there are cases where
the stress tensor belongs to protected supermultiplets and hence cannot receive an anomalous
dimension, ruling out in this way the corresponding massive gravity. An example is the AdS7
supergravity, whose dual 6d N = 1 theory possesses a stress tensor that belongs to a protected
B-series multiplet Thus massive AdS7 supergravity is a priori excluded. The same holds for
AdS6 with N = 1 , and for supergravities that are dual to theories with more-than-half-maximal
supersymmetry such as N〉2 in 4d and N〉4 in 3d. However, a situation with no protection
is N = 2, AdS5 and hence it would be interesting to search for embeddings of massive AdS
supergravity in this case.

44



Chapter 4

Stringy AdS4 Bigravity

This chapter includes the article ”Quantum Gates to other Universes” by C. Bachas and the
author [22]. The additional features are minimal modifications regarding the notation of the two
last sections as well as an addition of an extra final section.

Abstract
We present a microscopic model of a bridge connecting two large Anti-de-Sitter Universes. The
Universes admit a holographic description as three-dimensional N = 4 supersymmetric gauge
theories based on large linear quivers, and the bridge is a small rank-n gauge group that acts as a
messenger. On the gravity side, the bridge is a piece of a highly-curved AdS5×S5 throat carrying
n units of five-form flux. We derive a universal expression for the mixing of the two massless
gravitons: M2 ' 3n2(κ2

4 + κ′ 24 )/16π2, where M is the mass splitting of the gravitons, κ2
4, κ
′ 2
4 are

the effective gravitational couplings of the AdS4 Universes, and n is the quantized charge of the
gate. This agrees with earlier results based on double-trace deformations, with the important
difference that the effective coupling is quantized. We argue that the apparent non-localities of
holographic double-trace theories are resolved by integrating-in the (scarce) degrees of freedom
of the gate.

4.1 Introduction
One of the tantalizing aspects of General Relativity is the possibility of connecting disjoint Uni-
verses. Most of the attention has been captured by wormholes which are pointlike contacts
between Universes. But one can in principle consider a wormbrane or Wp-brane, that is a bridge
whose entry and exit are of spacetime dimension p+ 1. In this language the usual wormholes are
W (−1)-branes.

When the Universes are AdSd+1, holographic duality offers a different perspective of such
objects as bridges between two decoupled d-dimensional field theories. Consistency requires
that non-traverseable wormholes correspond to pure entanglement of the theories [92], while
traverseable bridges must also involve a Hamiltonian coupling [66]-[110]. The generic deformation
is given by a double-trace coupling

δL ∼
∫
dpζ O(x(ζ))O′(x′(ζ))K(x, x′) , (4.1.1)

where O,O′ are single-trace operators in the two theories, x(ζ) and x′(ζ) parametrize the
boundary submanifolds sewed together by the coupling, and K(x, x′) is an interaction kernel. If
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one insists on conformal invariance the coupling will extend at all scales, and the bridge will have
codimension (d− p) both in the boundary and in the bulk. 1 This excludes the case p = −1. In
this paper we will focus on the other extreme, p = d, where the entry and the exit of the bridge
are the entire AdS spacetime. From a higher-dimensional perspective on the other hand, they
look like entries to localized defects.

Double-trace deformations were introduced in [3]-[29] and used to model two or more inter-
acting gravitons in [102]-[86]. Because of the absence of the van Dam-Veltman-Zakharov (DVZ)
discontinuity in Anti-de-Sitter spacetime [87][100] a linear combination of the massless gravitons
can obtain an arbitrarily-small mass M . An interesting feature of these double-trace models is
that M comes from a one-loop quantum-gravity effect. However, although double-trace deforma-
tions have been understood as boundary conditions in the supergravity limit [115], their status
in string theory is less clear. Their presence seems to introduce non-localities both in the target
spacetime and on the worldsheet [3][29].

The gates presented in this paper share one key feature with these earlier models: M is
suppressed by two powers of the effective gravitational coupling κd+1. Contrary, however, to
double-trace models, our gates have a good semiclassical limit and are perfectly local when viewed
both from the boundary and from the bulk. The price to pay (as usual) for locality is that the
continuous double-trace coupling must be traded for an integer charge.

The basic idea is illustrated in figure 4.5 . One starts with two large-quiver gauge theories
that are dual to two large AdS4 spacetimes. The number of degrees of freedom in these quivers
is measured by the inverse-squared effective couplings, κ−2

4 and κ′ −2
4 . The bridge is then an

additional ‘messenger’ node representing a small gauge group with rank n� κ−2
4 , κ′ −2

4 . We here
consider quivers corresponding to ‘good’ 3d N = 4 supersymmetric gauge theories at the origin of
their Higgs or Coulomb branches [73, 65] for which a detailed holographic dictionary is available
[12]-[19] . The idea is however more general. When n� 1 (but still much smaller than κ−2

4 , κ′ −2
4 )

the bridge admits a smooth gravitational description as a AdS5×S5 throat of radius L ∼ n1/4.
This had been noticed already in [12][13]. Excising the throat is equivalent to integrating out
the messenger degrees of freedom leading to two effective descriptions of the bridge, either as the
gluing of two AdS4 spacetimes or as a multitrace deformation of the boundary theories. In our
example both these effective descriptions are highly non-local because one integrates out massless
fields. But it should be obvious that this apparent non-locality is a red herring.

To make the field-theory deformation quasi-local one may give mass to the hypermultiplets
represented by the two links that join the U(n) node to the quivers. The dual geometry should now
exhibit a characteristic scale below which the bridge between the Universes disappears. Taking
the formal m→∞ limit makes the double-trace deformation local, but the geometry is singular.
This explains the tension between locality in field theory and in string theory. To resolve it one
must simply integrate back-in the gate fields.

Quivers like those of figure 4.5 actually make sense for any p ≤ d (including p = −1) and
can serve as definitions of Wp-branes. In most cases the dual geometries are singular, and the
problem is further complicated by infrared divergences. The question of what constitutes a ‘weak
link’ (as opposed to a full-fledged interface) must be in particular carefully reexamined. These
issues will be discussed elsewhere.

The plan of the present paper is as follows: In section 4.2 we review some relevant features
of the 3d N = 4 quiver gauge theories that we need. We recall in particular how the data
for good quivers can be repackaged efficiently in an ordered pair of Young diagrams (ρ, ρ̂). In
section 4.3 we describe the microscopic gate of figure 4.5 as the rearrangement of n boxes in

1In general, after taking account of the backreaction the bridge will be fat rather than delta-function localized
in the transverse dimensions. Its worldvolume can be either Euclidean or Lorentzian.
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n

 quiver 1  quiver 2

Figure 4.1: Two large quivers corresponding to two large AdS Universes joined by a gate
which is a low-rank gauge theory coupling via bifundamental matter to the quivers.

the Young diagrams. In section 4.4 we present the dual type-IIB supergravity solutions before
and after the construction of the bridge. The mixing of the gravitons due to the introduction of
the gate is calculated in the semiclassical limit 1 � n � κ−2

4 , κ′ −2
4 in section 4.5, and shown to

agree parametrically with the double-trace models of [102]-[86]. One can interpret our result as
a rule of quantization of the double-trace coupling. Finally, in section 4.7 we comment on future
directions.

4.2 Partitions for good quivers
The field theories of our holographic setup are three-dimensional N = 4 gauge theories that can
be engineered with D3-branes suspended between D5-branes and NS5-branes [73]. Let A,N, N̂
be respectively the number of these three types of brane. To define the gauge theory one must
give two ordered partitions of A in N or N̂ positive integers

A = l1 + l2 + · · ·+ lN = l̂1 + l̂2 + · · · l̂N̂ , (4.2.1)

where li ≥ li+1 and l̂̂i ≥ l̂̂i+1. These describe the distribution of the D3-branes among NS5-branes
on the left and D5-branes on the right. Equivalently, the partitions define two Young diagrams,
ρ and ρ̂, both with the same number A of boxes. The diagram ρ has li boxes in the ith row,
and ρ̂ has l̂ĵ boxes in the ĵ th row. We label the rows of the transposed Young diagram ρT (i.e.
the columns of ρ) by hatted Latin letters, and the rows of the transposed Young diagrams ρ̂T by
unhatted letters. The reason for this notation will soon be clear. The length of the ĵth row in ρT
is l T

ĵ
, and the length of the jth row in ρ̂T is l̂ Tj .

Quivers whose gauge symmetry can be entirely Higgsed correspond to pairs obeying the
ordering condition ρT > ρ̂. It was conjectured by Gaiotto and Witten [65] that at the origin
of their Higgs branch such ‘good theories’ flow to strongly-coupled supersymmetric CFTs that
are irreducible with no free-field factors. We can put the ordering condition in compact form by
introducing the integrated row lengths
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⇢
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Figure 4.2: The Young diagram ρ and its transpose ρT inscribed in their respective grids.

Lj =
j∑
i=1

li , LT
ĵ

=
ĵ∑
î=1

l T
î

, L̂ĵ =
ĵ∑
î=1

l̂̂i , L̂T
j =

j∑
i=1

l̂ Ti , (4.2.2)

which count the total number of boxes in the first j or ĵ rows of the corresponding diagrams.
The condition ρT > ρ̂ is then equivalent to the following set of strict inequalities

LT
ĵ
> L̂ĵ for all ĵ = 1, 2 · · · , N̂ − 1 . (4.2.3)

In words, the first ĵ rows of ρT contain more boxes than the first ĵ non-empty rows of ρ̂, for
all ĵ. The mirror statement ρ̂T > ρ can be shown to be mathematically equivalent.

The first of the above inequalities implies that N > l̂1, while its mirror statement is N̂ > l1.
It follows that the Young diagrams ρT and ρ̂ are contained in a N̂ × N grid, and the diagrams
ρ and ρ̂T are both contained in a N × N̂ grid, see figure 4.2 . This justifies our use of the same
labelling for the rows of ρT and ρ̂, and also for the rows of ρ and ρ̂T . When viewed as directed
walks ρ and ρ̂ end at the lower left corner of their respective grids, while the transposed walks
begin at the upper right corner of their grids.

The linear-quiver theories defined by such partitions are called T ρ̂ρ [SU(A)] ≡ T ρρ̂ [SU(A)] where
‘≡’ denotes mirror symmetry. Their quivers are shown in figure 4.3 . We call electric the quiver
with N̂ − 1 nodes (for which the gauge group is realized on D3-branes suspended on
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NS5-branes) and magnetic the quiver with N − 1 nodes (with the D3-branes suspended on D5-
branes). To minimize the occurence of hatted symbols we choose to show here the magnetic
quiver. The ranks nj and mj of the gauge and the flavor groups can be read from the row-lengths
of ρ and ρ̂T via the relations

ni = L̂Tj − Lj , mj = l̂ Tj − l̂ Tj+1 (j = 1, · · · , N − 1) . (4.2.4)

The ordering condition ρ̂T > ρ ensures that all gauge-group factors have positive rank, while
for the flavor groups this is automatic. The dual electric quiver can be expressed likewise in terms
of the row lengths of ρT and ρ̂.

Besides mirror symmetry which exchanges ρ and ρ̂, good pairs of Young diagrams admit one
other involution (C) which replaces ρ by its complement ρc inside the N × N̂ grid, and ρ̂ by its
compliment ρ̂c inside the N̂×N grid, as in figure 4.4 . The lengths of the rows in the transformed
diagrams are

lcj = N̂ − lN−j and l̂ c
ĵ

= N − l̂N̂−ĵ . (4.2.5)

The reader is invited to check that this operation amounts to a reflection of the electric and
magnetic quivers. In the underlying string theory this flips the orientation of the suspended
D3-branes. Since the N = 4 gauge theories are not chiral, C is a symmetry of the problem. 2

m 12
m m

n n n
12

nj = L̂T
j � Lj

mj = l̂ T
j � l̂ T

j+1

N�1

N�1

Figure 4.3: The magnetic quiver for the ordered pair of partitions (ρ, ρ̂). The gauge-group
ranks nj and the flavor-group ranks mj can be expressed in terms of the row lengths of ρ and
ρ̂T . The inequality ρ̂T > ρ guarantees the positivity of all nj .

2C changes A to (NN̂ −A), in apparent violation of the D3-brane charge. It is however known that this latter
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N

N̂

C

⇢ ⇢c

Figure 4.4: The operation C that replaces ρ by its complement inside the N × N̂ grid,
and ρ̂ by its complement inside the N × N̂ grid. C changes black to white and rotates the
diagram by 180o.

4.3 Quantum gates as box moves
Consider now two decoupled theories, described by the good pairs (ρ1, ρ̂1) and (ρ2, ρ̂2). We
assume that all the brane charges are large, so that the dual AdS4 spacetimes can be described
accurately by type-IIB supergravity. We would like to couple these theories weakly, as shown in
the figure below. ‘Weak’ means that the node joining the quivers has a gauge group of low rank
n. The weakest bridge has n = 1. When the quivers in the picture are magnetic, we call this an
‘elementary magnetic bridge’ between theory 1 and theory 2. Since we may join either of the two
ends of each quiver, there exist four different magnetic bridges between two theories, and also
four different electric bridges.

Before describing the bridge, let us first construct the partition pair (ρ, ρ̂) in the decoupled
case, n = 0. Together the two quivers have (N1 +N2) D5-branes and (N̂1 + N̂2) NS5-branes, so
the grid containing ρ must have dimensions (N1 +N2)×(N̂1 +N̂2), and the grid containing ρ̂ must
have dimensions (N̂1 + N̂2)× (N1 +N2). The partitions corresponding to the product theory are
shown in figure 4.5 . Their Young diagrams contain all the boxes in the black upper-left blocks of
the grids, and none of the boxes in the white lower-right blocks. The off-diagonal blocks contain
the diagrams of theory 1 and 2, as shown in the figure.

To construct the magnetic quiver of the composite theory one looks at eqs. (4.2.4). The first
(N1− 1) nodes reproduce the quiver of theory 1, but at the next node one finds a gauge group of
zero rank, nN1 = L̂TN1

− LN1 = 0. The remaining nodes, j > N1, reproduce the quiver of theory
2. The fact that the bridge has n = 0 rank means that the partitions ρ and ρ̂ fail to obey strict
ordering at the N th

1 node where the theories decouple. 3

is only defined modulo large gauge transformations, and can be shifted by NN̂ . This shift changes the charge to
−A consistently with the fact that C reverses the orientation of the D3-branes.

3If n were negative, the corresponding node would have anti-D3 branes breaking supersymmetry.
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N̂2

N̂1

N1

N2N̂2

N̂1

N1

⇢ ⇢̂

Figure 4.5: The Young diagrams (ρ, ρ̂) corresponding to two decoupled theories (ρ1, ρ̂1)
and (ρ2, ρ̂2).

It should now be clear how to create a bridge. We must crank up the rank of the N th
1 gauge-

group factor by rearranging a few boxes of these diagrams. The rearrangement should restore the
strict inequalities ρT > ρ̂ that characterize irreducible quivers. To visualize the construction of
the bridge let us assume that the Young diagrams of the original theories are rectangular blocks. 4

It will soon become clear that the construction is general and does not depend on this simplifying
assumption. For now take ρp (p = 1, 2) to be rectangular Np × l1,p blocks, and ρ̂p rectangular
N̂p × l̂1,p blocks, where l1,p and l̂1,p are the sizes of the longest rows, i.e. with our simplifying
assuption of all rows. Recall that these lengths are bounded respectively by N̂p and Np.

Figure 4.6 shows the Young diagrams ρ and ρ̂T before and after the construction of a bridge.
The initial diagrams have the general form of figure 4.5 . A magnetic bridge can be constructed
by moving n boxes of the diagram ρ from the N th

1 to the (N1 + 1)th row. This increases the
rank of the N th

1 node from 0 to n, leaving all other quantum numbers in the magnetic quiver
unchanged, see equations (4.2.4). The rank of the gauge group at the connecting node is bounded
by

2n ≤ N̂2 − l1,2 + l1,1 . (4.3.1)

Since the right-hand-side is at least equal to 2, elementary bridges are always allowed. For
n > 1 there exist several rearrangements of the boxes that respect the strict ordering. They all
look indistinguishable at leading order in n/NN̂ as will become clear in the following sections.
The elementary n = 1 bridge requires the rearrangement of a single box and can be considered
as the quantum of a gate.

The reader can easily convince herself that the simplifying assumption of rectangular Young
diagrams plays no role, and that elementary magnetic bridges between good theories always
exist. It is also straightforward to exhibit the electric quiver of the composite theory with a

4In the quiver theories, this assumption leads to single-factor flavor groups. In the dual type-IIB solutions, it
corresponds to single stacks of 5-brane sources of each type.
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N̂1

N̂2

N2

N1

N̂1

N̂2

N2

N1

l1,1

l1,2

l̂1,2

l̂1,1

⇢ ⇢̂T

Figure 4.6: The Young diagrams ρ and ρ̂T obtained by merging two single-stack quivers,
as discussed in the text. A magnetic bridge is created by moving n boxes from the red to
the blue positions in the diagram ρ, while leaving ρ̂ the same. [In this example N1 = N̂1 =
6, N2 = 10, N̂2 = 8 and l1,1 = l1,2 = l̂1,1 = 4, l̂1,2 = 5. The original diagrams contain A1 = 24
and A2 = 40 boxes, so for the merged diagrams A = 64] .

magnetic bridge, but its detailed form is not particularly illuminating. The new bridge has small
readjustments of both gauge-group and flavor-group ranks at several nodes of the originally-
decoupled electric quivers.

4.4 Geometry of the gates
The type IIB solutions dual to the N = 4 quiver theories were found in [12, 13]. The geometry
has the warped form (AdS4×S2 × Ŝ2)×wΣ, with Σ the infinite strip 0 ≤Imz ≤ π/2 [53, 55]. The
S2 fiber degenerates at the lower boundary of the strip and the Ŝ2 fiber degenerates at the upper
boundary, but these are mere coordinate singularities. Points where the AdS4 fiber degenerates,
on the other hand, are positions of 5-brane sources. The D5-branes which wrap the 2-sphere S2

are localized at z = δj + iπ
2 on the upper boundary of Σ, while the NS5-branes which wrap the

second sphere Ŝ2 are localized at z = δ̂ĵ on the lower boundary. The relation of the five-brane
positions to their linking numbers is [12]

lj =
N̂∑
ĵ=1

ϑ(δ̂ĵ − δj) , l̂ĵ =
N∑
j=1

ϑ(δ̂ĵ − δj) , (4.4.1)

where ϑ is the function

ϑ(u) = 2
π

arctan(e−u) (4.4.2)

which extrapolates between 1 and 0 as u goes from −∞ and ∞, and the five-brane singularities
have been labeled in clockwise order in order to respect our convention that {lj} and {l̂ĵ} are
non-increasing sequences.
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Rectangular Young diagrams correspond to solutions with a single stack of N D5-branes all
at the same position z = δ+ iπ/2, and a single stack of NS5-branes all at the same position z = δ̂.
In this case (4.4.1) reduce to two equations

l = N̂ ϑ(δ̂ − δ) , l̂ = N ϑ(δ̂ − δ) , (4.4.3)

which are related by the conservation law Nl = N̂ l̂. Requesting that both linking numbers be
integers can make this system of equations overconstrained. The general solution is of the form

l = N̂m

gcd , l̂ = Nm

gcd , where 0 < m < gcd (4.4.4)

and gcd is the greatest common divisor of N and N̂ . If N and N̂ are relatively prime there is
no solution whatsoever, if gcd(N, N̂) = 2 there is a unique isolated solution m = 1⇐⇒ δ̂ = δ etc
etc. The fact that the solutions to (4.4.3) depend on detailed arithmetic properties of N and N̂ is
physically unreasonnable, and is actually an artifact of the assumption of single-stack five-branes.
By allowing the stacks to split one finds a large number of nearby solutions when the five-brane
charges N and N̂ are large.

Let us assume now that we have found a solution of (4.4.3) with δ − δ̂ = u0. To describe
two decoupled quiver theories we take two copies of the above five-brane stacks with infinite
separation along the Rez axis as in figure 4.7 . To simplify the calculation, we take the symmetric
arrangement shown in the figure: two stacks of N D5-branes are separated by ξ − u0, and two
stacks of N̂ NS5-branes are separated by ξ+u0, so that the entire configuration is invariant under
reflection of the Rez- axis.
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Figure 4.7: The initial geometry (upper part of the figure) which is dual to the two
decoupled quiver theories has singularities separated by ξ =∞. The quantum bridge obtained
by the rearrangement of boxes in ρ shown in figure 4.6 corresponds to taking large but finite
ξ and making the moves shown in the lower part of the above figure. The entire NS5-brane
stacks, and one brane detached from each D5-brane stack, are respectively displaced by δû
and δu1 towards the center of the strip.

Using equations (4.4.1) one finds in the ξ =∞ limit

l1 = N̂(1 + ϑ0) , l2 = N̂(1− ϑ0) , l̂1 = N(2− ϑ0) , l̂2 = Nϑ0 . (4.4.5)

where ϑ0 = 2
π arctan(exp(−u0)). These linking numbers match those of the Young diagrams for

two decoupled quivers, see figure 4.6, if one identifies N1 = N2 = N , N̂1 = N̂2 = N̂ , and

l1,1 = N̂ϑ0 , l̂1,1 = Nϑ0 , l1,2 = N̂(1− ϑ0) , l̂1,2 = N(1− ϑ0) .

Notice that theory 2 is the C-transform of theory 1 defined in figure 4.4 . This is expected since
the two theories are obtained by Rez reflection from each other. Of course the N = 4 theory is
self-conjugate, so our choice of relative orientation just indicates by which ends we chose to join
the two decoupled quivers.

We want now to find a new solution obtained from this initial configuration by (i) taking ξ
large but finite, and (ii) making some small five-brane moves. The two moves that create the
elementary bridge of the previous section are shown in the lower part of figure 4.7 . The entire
NS5-brane stacks are displaced by δû towards the center of the figure, while only a single D5-brane
is detached from each D5-brane stack and displaced by δu1 in the same direction. To match the
Young diagrams of figure 4.6, all linking numbers except those of the detached D5 branes should
stay the same after these moves, while the detached D5-branes should transfer n units of linking
number to each other. This gives three equation for the three unknown parameters (ξ, δû and
δu1) of the new solution

−N̂(δu1 − δû) sin πϑ0 ' −πn , N̂δû sin πϑ0 − 2N̂e−ξ ' 0 ,

Nδû sin πϑ0 − δu1 sin πϑ0 + 2Ne−ξ ' 0 , (4.4.6)

where we have neglected terms that are subleading in the limit N, N̂ � n. The solution of these
leading-order equations is

e−ξ ' πn

4NN̂
, δû ' πn

2NN̂ sin πϑ0
, δu1 '

πn

N̂ sin πϑ0
. (4.4.7)
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Note that all dispacements are proportional to the rank n of the additional gauge group in the
magnetic quiver, and that the displacement of the detached D5-branes is parametrically larger
than that of the NS5-branes in the large N, N̂ limit.

The metric of the ten-dimensional type-IIB solution is [53, 55]

4
α′
ds2 = L2

4 ds
2
AdS + f2 ds2

(1) + f̂2 ds2
(2) + 4ρ2 dzdz̄ , (4.4.8)

where ds2
(i) = dϑ2

i + sinϑ2
i dϕ

2
i are the metrics of the unit-radius 2-spheres, ds2

AdS is the metric of
the unit-radius AdS4 spacetime, α′ is the Regge slope parameter, and the four scale factors are
given by

L8
4 = 16 UÛ

W 2 , f8 = 16h8 ÛW 2

U3 , f̂8 = 16ĥ8 UW 2

Û3
, ρ8 = UÛW

2

h4ĥ4
. (4.4.9)

In the above expressions

W = ∂z∂z̄(hĥ) , U = 2hĥ|∂zh|2 − h2W , Û = 2hĥ|∂zĥ|2 − ĥ2W (4.4.10)

and h1, ĥ are harmonic functions on the z-strip obtained by summing, respectively, over the
D5-brane and the NS5-brane singularities. For the configuration of figure 4.7 these harmonic
functions read: [12]

h = −(N − 1) log tanh
(
iπ

4 −
z

2 + ξ − u0
4

)
− (N − 1) log tanh

(
iπ

4 −
z

2 −
ξ − u0

4

)

− log tanh
(
iπ

4 −
z

2 + ξ − u0
4 − δu1

2

)
− log tanh

(
iπ

4 −
z

2 −
ξ − u0

4 + δu1
2

)
+ c.c. ,

ĥ = −N̂ log tanh
(
z

2 −
ξ + u0

4 + δû

2

)
− N̂ log tanh

(
z

2 + ξ + u0
4 − δû

2

)
+ c.c. . (4.4.11)

The solutions also have a non-trivial dilaton

eΦ =
(
Û
U

)1/4

, (4.4.12)

55



Setting z = x + iy and expanding these harmonic functions near the center of the strip
(|x| � ξ) gives after a little calculation

h ' 8Ne−ξ/2 cosh x sin y , ĥ ' 8N̂e−ξ/2 cosh x cos y , (4.4.13)

where we dropped terms of order O(e−3|ξ−x|/2) which are subleading in the ξ → ∞ limit.
Plugging these expansions in (4.4.8)-(4.4.10) gives the AdS5×S5 metric expressed as an AdS4
foliation over x. The radius L and the constant dilaton Φ0 read

L4 = 4πα′ 2 n , eΦ0 =
(
N̂

N

)1/4

. (4.4.14)

As expected, the radius only depends on the number n of D3-branes that created the AdS5
throat/bridge. We are here working in units gs = 1 where the NS5-branes and the D5-branes
have equal tension. The AdS5 throat does not of course extend out to infinity, it is cut off at
x ∼ ±ξ/2 where the AdS5 boundary is capped.

4.5 Mixing of the gravitons
We will compute the mixing of the gravitons in the regime 1� n� NN̂ , in which the bridge is
thin compared to the AdS spacetimes on either side, but supergravity can be trusted. The general
expression for the spectrum of spin-2 excitations in any warped supergravity background was given
in [20]. The relevant eigenvalue problem depends only on the metric g(6) of the compact space
M6, and on the warp factor eA ≡ ρ4. The mass-squared operator and the norm of wavefunctions
read

M2 = − e
−2A
√
g(6)

∂a
√
g(6) e

4Agab∂b , ||ψ|| 2 =
∫
M6

√
g(6) e

2A ψ∗ψ , (4.5.1)

where ψ is a scalar wavefunction on M6. Here M2 is the dimensionless mass, which is the
eigenvalue of the Lichnerowicz Laplacian (the spin-2 wave operator) on the unit-radius AdS4
spacetime. It is related to the scaling dimension of the dual operator by the well-known formula
∆(∆− 3) = M2. For the case at hand M6 = (S2 × S2 ′)×w Σ, and using our expressions for the
scale factors we find:

||ψ|| 2 = (4π)2
∫

Σ
dxdy (4ρ2f2f̂2L2

4) |ψ|2 = 29π2
∫

Σ
dxdy hĥ |∂̄∂(hĥ)| |ψ|2 , (4.5.2)
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〈ψ|M2|ψ〉 = (4π)2
∫

Σ
dxdy (4f2ĥ2L4

4) (∂̄ψ∗)∂zψ = 210π2
∫

Σ
dxdy (h1h2)2 |∂zψ|2 . (4.5.3)

These expressions are valid for any of the AdS4 solutions in [12, 13], we will now specialize to
the nearly-factorized configurations (4.4.11).

Consider first the decoupling limit ξ →∞. Each AdS4 spacetime has a massless graviton with
constant wavefunction ψ0, and a tower of massive excitations with M ∼ O(1). The normalized
wavefunction of the massless graviton is

ψ0 = V
−1/2

6 with V6 = 29π2
∫

Σ
dxdy hĥ

∣∣∣∂∂̄(hĥ)
∣∣∣ := (NN̂)2v6 . (4.5.4)

Here v6 is a number ∼ O(1) that depends on the details of each decoupled theory, and whose
precise value is not important. It can be computed by keeping in h, ĥ only the five-branes near
x ∼ ξ/2 for the theory on the right of the bridge, or only those near x ∼ −ξ/2 for the theory on
the left. In the example the two theories are identical.

It is useful to express this compactification volume in terms of an effective four-dimensional
gravitational coupling. Following ref. [14] one defines a consistent truncation to four-dimensional
gravity with effective action Seff = −(1/2κ2

4)
∫
d4x
√
g(4) (R(4) + 6) which admits the unit-radius

AdS4 as solution. The relation of κ4 to V6 is

κ2
4 = κ2

10 V
−1

6 (α
′

4 )−4 , where 2κ2
10 = (2π)7(α′)4 (4.5.5)

is the type-IIB gravitational coupling. This parametrization is particularly convenient when
comparing the on-shell supergravity action with the free energy of the quiver gauge theory on the
3-sphere [14]. 5

Let us consider next the configuration with a bridge. The two previously massless gravitons
will now mix, so that the graviton with constant wavefunction ψ0 remains massless, while the
orthogonal combination ψ1 obtains a small mass. To find these new wavefunctions, note that
the AdS5×S5 bridge makes a parametrically-small contribution to the compactification volume.
Indeed, cutting off the throat at x = ±x0 we find

Volume(throat) ∼ L8
∫ x0

−x0
cosh4 x dx ∼ n2e4x0 , (4.5.6)

5When comparing to [14] and to earlier references, note that we have here rescaled the harmonic functions by
α′/4, so that the coefficients of the log tanh contributions are integer.
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which should be compared to the volume of the five-brane regions ∼ (NN̂)2. From (4.4.7) one
sees that the two volumes are of the same order if x0 ' ξ/2, i.e. when the AdS5 cutoff reaches the
five-brane regions, as should be expected. Here we take ξ/2� x0 � 1 so that the throat volume
stays parametrically small and can be ignored. The two wavefunctions at this leading order are
then given by

ψ0 ' (2V6)−1/2 , ψ1 '


(2V6)−1/2 for x > x0 ,

ψ1(x) for − x0 < x < x0 ,

−(2V6)−1/2 for x < −x0 .

(4.5.7)

Here ψ1(x) is an interpolating function in the throat region which must be chosen so as to
minimize the mass. Note that under reflection x → −x, ψ0 is even and ψ1 is odd as in the
double-well potential of quantum mechanics.

From (4.5.3) it follows that the only contribution to the mass of the ψ1 state comes from the
throat region where the geometry is approximately AdS5×S5,

L−2ds2 ' dx2 + cosh2 x ds2(AdS4) + ds2(S5) .

The function ψ1 that minimizes the mass in this cut-off AdS5 throat is a solution to the differential
equation

d

dx

(
cosh4 x

dψ1
dx

)
= 0 =⇒ ψ1(x) ' 3

2
(
tanh x− 1

3 tanh3 x
)
(2V6)−1/2 . (4.5.8)

In infinite AdS5 spacetime this would have been a non-normalizable solution, but in our capped
off geometry it is normalized by imposing a smooth interpolation between the two asymptotic val-
ues ±(2V6)−1/2. Inserting this wavefunction in (4.5.3) and using the harmonic functions (4.4.13)
leads to the following expression for the mass

〈ψ1|M2|ψ1〉 ' 216π3(NN̂e−ξ)2
∫ x0

−x0
dx cosh4 x(dψ1

dx
)2 ' 216π3(NN̂e−ξ)2 × 3

2V6
. (4.5.9)

Using finally (4.4.7) and the relation (4.5.5) of V6 to the effective gravitational coupling we
arrive at the main result of this paper:

M2 = 3
8π2 κ

2
4 n

2 (n = 1, 2, · · · ) . (4.5.10)

If one restores the AdS4 radius R in this formula, one finds M2 = (3GN/πR4)n2, where GN
is the four-dimensional Newton’s constant.
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It is straightforward to extend this calculation to the case of a bridge connecting AdS4 Uni-
verses of unequal size. The properly normalized wavefunction orthogonal to the massless graviton
in this case reads

N−1ψ1(x) ' 3
4(V ′6 + V6)(tanh x− 1

3 tanh3 x) + 1
2(V ′6 − V6) ,

where N−1 =
√
V6V ′6(V6 + V ′6) (4.5.11)

and V ′6 (V6) is the compactification volume of the Universe on the left (right) side of the bridge.
Note that this wavefunction extrapolates between N V ′6 at x → ∞, and −N V6 at x → −∞.
Inserting it in the expression for the mass gives

M2 = 3
16π2 (κ2

4 + κ′ 24 )n2 , (4.5.12)

where κ4 an d κ′4 are the effective gravitational couplings for the two theories. For identical
Universes this reduces to (4.5.10). Note that for unequal Universes the mixing is dominated by
the smaller Universe whose effective Newton’s constant is the strongest.
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4.6 Bimetric and Massive AdS4 gravity
In this section, we will initially present a generalization of the main result of this chapter, based
on the work carried out in the previous chapter. In particular, we will consider the case where
the two AdS4 ×M6 spacetimes are connected through a Janus semi-infinite throat insted of an
AdS5 × S5 one. Finally, it is going to be verified for our solutions that the massive AdS4 gravity
can be obtained from bigravity in a spacial decoupling limit.

We consider The manifold M6 now consists of a Janus throat capped-off on both sides by two
bags, M6 and M ′

6 . For economy of notation we introduce the parameters

v :=
∫

M6

√
g L2

4 and v′ :=
∫

M′6

√
g L2

4 .

Note that v is just a short-hand for the parameter V6〈L2
4〉bag = ψ

−1/2
bag of the previous chapter.

Using the inner product 〈ψ1|ψ2〉 =
∫

M6

√
g L2

4 ψ
∗
1ψ2 one finds easily two orthogonal, low-lying

spin-2 states. A massless state with constant wavefunction throughout M6 (which is normalizable
because M6 is now compact), and a massive state whose wavefunction is approximately constant
in the bags,

ψ0(x) ' (v + v′)−1/2 ×
{ √

v′/v in M6,

−
√
v/v′ in M′6 .

(4.6.1)

Since the throat makes a subleading contribution to the inner product, the above wavefunction
is clearly orthogonal to the constant one, i.e. to the wavefunction of the massless graviton. This
second mode is necessarily massive because ψ0 is forced to vary inside the Janus throat in order
to extrapolate between the above values at the exits.

By repeating the calculation carried out in the previous chapter regarding the minimizing
wavefunction in the Janus throat, with the only difference in the boundary conditions, we obtain
the result:

ψ0 '
1

2
√
vv′(v − v′)

[
(v′ − v)− (v′ + v) I(x, a)

I(∞, a)

]
, (4.6.2)

where I(x, a) has been defined in eq. (3.3.23). Inserting the above wavefunction in (3.3.25),
and reexpressing v and v′ in terms of radii and effective couplings gives

m2
g L

2
4 = 3n2

16π2

[
κ2

4
〈L2

4〉bag
+ κ2 ′

4
〈L2

4〉bag′

]
× J(cosh δφ) . (4.6.3)
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Figure 4.8: Two universes, AdS4 ×M6 and AdS4 ×M ′
6 connected via a thin throat with

Janus or AdS5 × S5 geometry. When initially decoupled, each spacetime includes a massless
low-lying graviton. After the coupling, the two gravitons mix, resulting to one massive and
one massless combination.

This result agrees with the one of the previous section, if we go back to the AdS5 × S5 case by
setting the dilaton variation to zero and hence for J(cosh(δφ) = 0). Moreover, in this calculation
we have reintroduced the warp factor L4 in the formulae, as throughout the previous sections of
this chapter we chose to work in units of L4 = 1 and absorbed 〈L2

4〉 in the definition of κ2
4.

Apparently how this result reduces to the formula for the graviton mass (3.3.25) in the decou-
pling limit κ′4 → 0 or equivalently 〈L2

4〉bag′ →∞. In this limit the massless graviton has vanishing
wavefunction and decouples, whereas ψ0 is concentrated entirely in the (unprimed) bag M6 and
in the throat.

From the perspective of the dual field theory, these bigravity solutions are not 4d defect CFTs,
but rather 3d CFTs of a special kind. They are superconformal gauge theories based on linear
quivers with a low-rank ‘weak’ node [22]. Removing this node breaks the quiver into two disjoint
quivers. One could in principle integrate out the scarce messenger fields, thereby generating multi-
trace couplings between disjoint theories in the spirit of [85][4]. In contrast with these references,
the couplings are however non-local (they are generated by massless messengers) and exactly
scale invariant (the AdS4 symmetry is manifest). Conversely, integrating back in the messenger
fields restores the interpretation of the multitrace couplings in terms of a classical supergravity
background, and resolves the conflicts with string-theory locality discussed in refs. [3][2].

Similar comments apply to the relation of our models with the transparent boundary condi-
tions of [101][61]. These could conceivably mimic the effects of the semi-infinite throats, but they
are obscuring the issues of locality and scale invariance. It is nevertheless interesting that they
lead to the same parametric dependence of mg on the effective gravitational coupling κ4.
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4.7 Concluding Remarks
We may compare our result for graviton mixing with the one obtained by Aharony et al [4] in
the double-trace deformation model. Their field theory calculation gives a mass that depends
on a continuous double-trace coupling h (in which we reabsorbed numerical factors) and on the
central charges of the two theories via the combination

M2 = h2( 1
c1

+ 1
c2

) . (4.7.1)

This is of the same form as (4.5.11) if one notes that the central charges c1, c2, defined as the
coefficients in the two-point function of the energy-momentum tensors, can be identified with κ−2

4
and κ′ −2

4 . The important difference is that in our model h is quantized. It would be interesting to
see if this quantization rule can be also found by studying RG flows in the space of double-trace
coupling. Note that if one views the quantum bridge as the minimal allowed coupling between two
mutually-hidden sectors of a theory, the quantization of charge ensures that the mixing cannot
be weaker than ∼ κ4κ

′
4, in harmony with the general spirit of the weak gravity conjecture.

To an observer in Universe 1 the gate looks like a D3-brane with AdS worldvolume. By
conservation of five-form flux, the exit looks like an anti-D3 brane in Universe 2. Since the two
Universes are invariant under charge-conjugation, only an observer travelling through the throat
can compare the charges of entry and exit.

The D3-branes are special because they have a regular extremal horizons, but other defects
can serve as entries and exits of a bridge. The simplest case is that of a D-instanton, which
was identified as a wormhole solution of type-IIB supergravity in [68] and should be revisited in
the light of our present discussion. Another interesting question was raised by the recent paper
which counted the number of conserved energy-momentum tensors in class-S theories by means
of an index. It would be interesting to find a way of counting the number of nearly conserved
energy-momentum tensors, i.e. of the dual spin-2 gravitons with mass much below the mass gap
of O(1).

Finally an obvious question is whether, like D-branes, quantum gates can also be described on
the string worldsheet by a modification of the rules of string perturbation theory. Ideas include
sigma models that flow to topological theories in the infrared [17], zero size worm-holes in the 2d
gravity of the worldsheet [3], or worldsheets with conformal interfaces [24]. Viewing the gates as
weak quiver links may give a new breadth to these earlier efforts.
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Part III

T ρ̂ρ [SU(N)] Superconformal Manifolds
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Chapter 5

Exactly marginal Deformations

This chapter includes the article ”Marginal Deformations of 3d N = 4 Linear Quiver Theories”
by C. Bachas, Bruno Le Floch and the author [23], along with an extra appendix E.1.

Abstract We study superconformal deformations of the T ρ̂[SU(N)]
ρ theories of Gaiotto-Hanany-

Witten, paying special attention to mixed-branch operators with both electrically -and magnetically-
charged fields. We explain why all marginal N = 2 operators of an N = 4 CFT3 can be extracted
unambiguously from the superconformal index. Computing the index at the appropriate order
we show that the mixed moduli in T ρ̂[SU(N)]

ρ theories are double-string operators transforming in
the (Adj,Adj) representation of the electric and magnetic flavour groups, up to some overcount-
ing for quivers with abelian gauge nodes. We comment on the holographic interpretation of the
results, arguing in particular that gauged supergravities can capture the entire moduli space if,
in addition to the (classical) parameters of the background solution, one takes into account the
(quantization) moduli of boundary conditions.

5.1 Introduction
Superconformal field theories (SCFT) often have continuous deformations preserving some super-
conformal symmetry. The space of such deformations is a Riemannian manifold (the ‘supercon-
formal manifold’) which coincides with the moduli space of supersymmetric Anti-de Sitter (AdS)
vacua when the SCFT has a holographic dual. Mapping out such moduli spaces is of interest
both for field theory and for the study of the string-theory landscape.

In this paper we will be interested in superconformal manifolds in the vicinity of the ‘good’
theories T ρ̂ρ [SU(N)] whose existence was conjectured by Gaiotto and Witten [65]. These are
three-dimensional N = 4 SCFTs arising as infrared fixed points of a certain class of quiver gauge
theories introduced by Hanany and Witten [73]. Their holographic duals are four-dimensional
Anti-de Sitter (AdS4) solutions of type-IIB string theory [12]-[91]. Our main motivation in this
work was to extract features of these moduli spaces not readily accessible from the gravity side.
We build on the analysis of ref. [19] which we complete and amend in significant ways.

Superconformal deformations of a d-dimensional theory T? are generated by the set of marginal
operators {Oi} that preserve some or all of its supersymmetries. 1 The existence of such operators
is constrained by the analysis of representations of the superconformal algebra [38]. In particular,
unitary SCFTs have no moduli in d = 5 or 6 dimensions, whereas in the case d = 3 of interest
here moduli preserve at most N = 2 supersymmetries. Those preserving only N = 1 belong
to long (‘D-term’) multiplets whose dimension is not protected against quantum corrections.

1One exception to this general rule is the gauging of a global symmetry with vanishing β function in four
dimensions.
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The existence of such N = 1 moduli (and of non-supersymmetric ones) is fine tuned and thus
accidental. For this reason we focus here on the N = 2 moduli.

The general local structure of N = 2 superconformal manifolds in three dimensions (and of
the closely-related case N = 1 in d = 4) has been described in [89]-[71]. These manifolds are
Kähler quotients of the space {λi} of marginal supersymmetry-preserving couplings modded out
by the complexified global (flavor) symmetry group Gglobal,

MSC ' {λi}/GC
global ' {λi|Da = 0}/Gglobal . (5.1.1)

The meaning of this is as follows: Marginal scalar operators Oi fail to be exactly marginal if
and only if they combine with conserved-current multiplets of Gglobal to form long (unprotected)
current multiplets. Requesting this not to happen imposes the moment-map conditions

Da = λiT aij̄ λ̄
j̄ +O(λ3) = 0 , (5.1.2)

where T a are the generators of Gglobal in the representation of the couplings. The second
quotient by Gglobal in (5.1.1) identifies deformations that belong to the same orbit. The complex
dimension of the moduli space is therefore equal to the difference

dimMSC = #{Oi} − dimGglobal . (5.1.3)

In the dual gauged supergravity (when one exists) the fields dual to Oi are N = 2 hypermul-
tiplets, and Da = 0 are D-term conditions [44].

The global flavour symmetry of the T ρ̂ρ [SU(N)] theories, viewed as N = 2 SCFTs, is a product

Gglobal = G× Ĝ× U(1) , (5.1.4)

where G and Ĝ are the flavour groups of the electric and magnetic theories that are related
by mirror symmetry, and U(1) is the subgroup of the SO(4)R symmetry which commutes with
the unbroken N = 2. To calculate the local moduli space we must then list all marginal super-
symmetric operators and the Gglobal-representation(s) in which they transform. Many of these
deformations are standard superpotential deformations involving hypermultiplets of either the
electric theory or its magnetic mirror. Some marginal operators involve, however, both kinds of
hypermultiplets and do not admit a local Lagrangian description. We refer to such deformations
as ‘mixed’. They are specific to three dimensions, and will be the focus of our paper.

Marginal deformations belong to three kinds of N = 4 superconformal multiplet [19]. The
electric and magnetic superpotentials belong, respectively, to spin-2 representations of SO(3)H
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and SO(3)C , where SO(3)H × SO(3)C ' SO(4)R is the N = 4 R symmetry. 2 The mixed
marginal operators on the other hand transform in the (JH , JC) = (1, 1) representation. In
the holographic dual supergravity the (2, 0) and (0, 2) multiplets describe massive N = 4 vector
bosons, while the (1, 1) multiplets contain also spin-3

2 fields. These latter are also special for
another reason: they are Stueckelberg fields capable of rendering the N = 4 graviton multiplet
massive [22][21]. In representation theory they are the unique short multiplets that can combine
with the conserved energy-momentum tensor into a long multiplet. This monogamous relation
will allow us to identify them unambiguously in the superconformal index.

More generally, one cannot distinguish in the superconformal index the contribution of the
N = 2 chiral ring, which contains scalar operators with arbitrary (JH , JC), from contributions of
other short multiplets. Two exceptions to this rule are the pure Higgs- and pure Coulomb-branch
chiral rings whose R-symmetry quantum numbers are (JH , 0) and (0, JC). The corresponding
multiplets are absolutely protected, i.e. they can never recombine to form long representations of
the N = 4 superconformal algebra [39]. These two subrings of the chiral ring can thus be unam-
biguously identified. Their generating functions (known as the Higgs-branch and Coulomb-branch
Hilbert series [72]-[41]) are indeed simple limits of the superconformal index [104]. Arbitrary el-
ements of the chiral ring, on the other hand, are out of reach of presently-available techniques. 3

Fortunately this will not be an obstacle for the marginal (1, 1) operators of interest here.
The result of our calculation has no big surprises. As we will show, the mixed marginal

operators transform in the (Adj,Adj, 0) representation of the global symmetry (5.1.4), up to
some overcounting when (and only when) the quivers of T ρ̂ρ [SU(N)] have abelian gauge nodes.
More generally, the set of all marginal N = 2 operators is of the form

S2(AdjG+ Adj Ĝ) + [length− 4 strings] − redundant , (5.1.5)

where S2 is the symmetrized square of representations, the ‘length-4 strings’ correspond to
quartic superpotentials made out of the hypermultiplets of the electric or the magnetic theory
only, while redundancies arise exclusively from the F -term conditions at abelian gauge nodes.
Calculating these redundancies is the main technical result of our paper. On the way, we will
provide also some new checks of 3d mirror symmetry.

Our calculation settles one issue about the dual AdS moduli that was left open in ref. [19].
As is standard in holography, the global symmetries G and Ĝ of the SCFT are realized as
gauge symmetries on the gravity side. The corresponding N = 4 vector bosons live on stacks of
magnetized D5-branes and NS5-branes which wrap two different 2-spheres (S2

H and S2
C) in the

ten-dimensional spacetime [12]. The R-symmetry spins JH and JC are the angular momenta on
these spheres. As was explained in [19], the Higgs-branch superconformal moduli correspond to
open-string states on the D5-branes: either non-excited single strings with JH = 2, or bound
states of two JH = 1 strings. The Coulomb branch superconformal moduli correspond likewise to
open D-string states on NS5-branes. For mixed moduli ref. [19] suggested two possibilities: either
bound states of a JH = 1 open string on the D5-branes with a JC = 1 D-string from the NS5
branes, or single closed-string states that are scalar partners of massive gravitini. Our results
here seem to rule out the second possibility, at least for the solutions dual to linear quivers. 4

2SO(3)H and SO(3)C act on the chiral rings of the pure Higgs and pure Coulomb branches of the theory,
whence their names. They are exchanged by mirror symmetry.

3Though there do exist some interesting suggestions [43][34] on which we will comment at the end of this paper.
4Of course the uncharged open-string states mix in the interacting theory with closed strings. A more precise

statement is that, for linear quivers, the latter do not contribute new states to the ∆ = 2 chiral ring.
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It was also noted in ref. [19] that although gauged N = 4 supergravity can in principle
account for the (2, 0) and (0, 2) moduli that are scalar partners of spontaneously-broken gauge
bosons, it has no massive spin-3

2 multiplets to account for single-particle (1, 1) moduli. But if all
(1,1) moduli are 2-particle states, they can be in principle accounted for by modifying the AdS4
boundary conditions along the lines of [115][29]. The dismissal in ref. [19] of gauged supergravity,
as not capturing the entire moduli space, is therefore premature. Note however that changing the
boundary conditions does not affect the classical AdS solution but only the fluctuations around
it. Put differently these moduli show up only upon quantization. The analysis of AdS moduli
spaces in gauged supergravity [44] must be extended to incorporate such ‘quantization moduli.’

This paper is organized as follows: Section 5.2 reviews some generalities about good T ρ̂ρ [SU(N)]
theories, and exhibits their superconformal index written as a multiple integral and sum over
Coulomb-branch moduli and monopole fluxes. Our aim is to recast this expression into a sum of
superconformal characters with fugacities restricted as pertaining to the index. These restricted
characters and the linear relations that they obey are derived in section 5.3 . We also explain
in this section why the ambiguities inherent in the decomposition of the index as a sum over
representations do not affect us for the problem at hand.

Section 5.4 contains our main calculation. We first expand the determinants so as to only
keep contributions from operators with scaling dimension ∆ ≤ 2, and then perform explicitly the
integrals and sums. The result is reexpressed as a sum of characters of OSp(4|4) × G × Ĝ in
section 5.5 . We identify the superconformal moduli, comment on their holographic interpreta-
tion (stressing the role of a stringy exclusion principle) and conclude. Some technical material
is relegated to appendices. Appendix ?? sketches the derivation of the superconformal index
as a localized path integral over the Coulomb branch. This is standard material included for
the reader’s convenience. In appendix C we prove a combinatorial lemma needed in the main
calculation. Lastly a closed-form expression for the index of T [SU(2)], which is sQED3 with two
‘selectrons’, is derived in appendix E.2 . This renders manifest a general property (which we do
not use in this paper), namely the factorization of the index in holomorphic blocks [98]-[25].

5.2 Superconformal index of T ρ̂ρ [SU(N)]
5.2.1 Generalities on T ρ̂ρ [SU(N)]
We consider the 3d N = 4 gauge theories [73] based on the linear quivers of the figure. Circle
nodes in these quivers stand for unitary gauge groups U(Ni), squares designate fundamental
hypermultiplets and horizontal links stand for bifundamental hypermultiplets. One can generalize
to theories with

N1 N2 · · · Nk

M1 M2 Mk

orthogonal and symplectic gauge groups and to quivers with non-trivial topology, but we will
not consider such complications here. We are interested in the infrared limit of ‘good theories’
[65] for which Nj−1 + Nj+1 + Mj ≥ 2Nj ∀j. These conditions ensure that at a generic point of
the Higgs branch the gauge symmetry is completely broken.
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The theories are defined in the ultraviolet (UV) by the standard N = 4 Yang-Mills plus matter
3d action. All masses and Fayet-Iliopoulos terms are set to zero and there are no Chern-Simons
terms. We choose the vacuum at the origin of both the Coulomb and Higgs branches, where
all scalar expectation values vanish. Thus the only continuous parameters of the theory are the
dimensionful gauge couplings gi, which flow to infinity in the infrared.

Every good linear quiver has a mirror which is also a good linear quiver and whose discrete
data we denote by hats, {N̂ĵ , M̂ĵ , k̂}. A useful parametrization of both quivers is in terms of an
ordered pair of partitions, (ρ, ρ̂) with ρT > ρ̂, see appendix C . The SCFT has global (electric and
magnetic) flavour symmetries,

G× Ĝ =
(∏
j

U(Mj)
)
/U(1) ×

(∏
ĵ

U(M̂ĵ)
)
/U(1) , (5.2.1)

with rankG = k̂ and rank Ĝ = k. In the string-theory embedding the flavour symmetries are
realized on (k̂ + 1) D5-branes and (k + 1) NS5-branes [73]. The symmetry G is manifest in
the microscopic Lagragian of the electric theory, as is the Cartan subalgebra of Ĝ which is the
topological symmetry whose conserved currents are the dual field strengths tr∗F(j). The non-
abelian extension of Ĝ is realized in the infrared by monopole operators [32][31].

In addition to G × Ĝ the infrared fixed-point theory has global superconformal symmetry.
The N = 4 superconformal group in three dimensions is OSp(4|4). It has eight real Poincaré
supercharges transforming in the (1

2 ,
1
2 ,

1
2) representation of SO(1, 2) × SO(3)H × SO(3)C . The

two-component 3d Lorentzian spinors can be chosen real. The marginal deformations studied
in this paper leave unbroken a N = 2 superconformal symmetry OSp(2|4) ⊂ OSp(4|4). This is
generated by two out of the four real SO(1, 2) spinors, so modulo SO(4)R rotations the embedding
is unique. Let Q(±±) be a complex basis for the four Poincaré supercharges, where the superscripts
are the eigenvalues of the diagonal R-symmetry generators JH3 and JC3 . Without loss of generality
we can choose the two unbroken supercharges to be the complex pair Q(++) and Q(−−), so that
the N = 2 R-symmetry is generated by JH3 + JC3 and the extra commuting U(1) by JH3 − JC3 .
We use this same basis in the definition of the superconformal index.

5.2.2 Integral expression for the index

There is a large literature on the N = 2 superconformal index in three dimensions, for a partial
list of references see [30]-[113]. The index is defined as a weighted sum over local operators of the
SCFT, or equivalently over all quantum states on the two-sphere,

ZS2×S1 = TrHS2 (−1)F q
1
2 (∆+J3)tJ

H
3 −J

C
3 e−β(∆−J3−JH3 −J

C
3 ) . (5.2.2)

In this formula F is the fermion number of the state, J3 the third component of the spin, ∆
the energy, and q, t, e−β are fugacities. Only states for which ∆ = J3 + JH3 + JC3 contribute to
the index which is therefore independent of the fugacity β.

The non-abelian R symmetry guarantees (for good theories) that the U(1)R of the N = 2
subalgebra is the same in the ultraviolet and the infrared. We can therefore compute ZS2×S1

in the UV where the 3d gauge theory is free. The index can be further refined by turning on
fugacities for the flavour symmetries, and background fluxes on S2 for the flavour groups In our
calculation we will include flavour fugacities but set the flavour fluxes to zero.
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The superconformal index eq. (5.2.2) is the appropriately twisted partition function of the
theory on S2×S1. It can be computed by supersymmetric localization of the functional integral,
for a review see ref. [113]. For each gauge-group factor U(Nj) there is a sum over monopole
charges {mj,α} ∈ ZNj and an integral over gauge fugacities (exponentials of gauge holonomies)
{zj,α} ∈ U(1)Nj . The calculation is standard and is summarized in appendix ?? . The result is
most conveniently expressed with the help of the plethystic exponential (PE) symbol,

ZS2×S1 =
k∏
j=1

[
1
Nj !

∑
mj∈ZNj

∫ Nj∏
α=1

dzj,α
2πizj,α

]{
(q

1
2 t−1)∆(m)

k∏
j=1

[ Nj∏
α=1

w
mj,α
j

Nj∏
α 6=β

(1− q
1
2 |mj,α−mj,β |zj,βz

−1
j,α)

]

× PE
(

k∑
j=1

Nj∑
α,β=1

q
1
2 (t−1 − t)

1− q q|mj,α−mj,β |zj,βz
−1
j,α

+ (q
1
2 t)

1
2 (1− q

1
2 t−1)

1− q

k∑
j=1

Mj∑
p=1

Nj∑
α=1

q
1
2 |mj,α|

∑
±
z∓1
j,αµ

±1
j,p

+ (q
1
2 t)

1
2 (1− q

1
2 t−1)

1− q

k−1∑
j=1

Nj∑
α=1

Nj+1∑
β=1

q
1
2 |mj,α−mj+1,β |

∑
±
z∓1
j,αz

±1
j+1,β

)}
.

(5.2.3)

Here zj,α is the S1 holonomy of the U(Nj) gauge field and mj,α its 2-sphere fluxes (viz.
the monopole charges of the corresponding local operator in R3) with α labeling the Cartan
generators; µj,p are flavour fugacities with p = 1, · · · ,Mj , and wj is a fugacity for the topological
U(1) whose conserved current is tr ∗F(j) . The plethystic exponential of a function f(v1, v2, · · · )
is given by

PE(f) = exp
( ∞∑
n=1

1
n
f(vn1 , vn2 , · · · )

)
. (5.2.4)

Finally m denotes collectively all magnetic charges, and the crucial exponent ∆(m) reads

∆(m) = −1
2

k∑
j=1

Nj∑
α,β=1

|mj,α −mj,β|+
1
2

k∑
j=1

Mj

Nj∑
α=1
|mj,α|+

1
2

k−1∑
j=1

Nj∑
α=1

Nj+1∑
β=1
|mj,α −mj+1,β| . (5.2.5)

Note that the smallest power of q in any given monopole sector is 1
2∆(m). Since the contri-

bution of any state to the index is proportional to q
1
2 (∆+J3), we see that ∆(m) is the Casimir

energy of the ground state in the sector m, or equivalently the scaling dimension [and the SO(3)C
spin] of the corresponding monopole operator [32][31]. As shown by Gaiotto and Witten [65] this
dimension is strictly positive for all the good theories that interest us here. cf equations (2.16-17)
in Gaiotto-Witten

We would now like to extract from the index (5.2.3) the number, flavour representations and
U(1) charges of all marginal N = 2 operators. To this end we need to rewrite the index as a sum
over characters of the global OSp(4|4)×G× Ĝ symmetry,

ZS2×S1 =
∑

(R,r,̂r)
IR(q, t)χr(µ)χr̂(µ̂) (5.2.6)
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where the sum runs over all triplets of representations (R, r, r̂), χr and χr̂ are characters of G
and Ĝ, and IR are characters of OSp(4|4) with fugacities restricted as pertaining for the index.
To proceed we must now make a detour to review the unitary representations of the N = 4
superconformal algebra in three dimensions.

5.3 Characters of OSp(4|4) and Hilbert series
5.3.1 Representations and recombination rules

All unitary highest-weight representations of OSp(4|4) have been classified in refs. [59][39]. As
shown in these references, in addition to the generic long representations there exist three series
of short or BPS representations:

A1[j](j
H , jC)

1+j+jH+jC (j > 0) , A2[0](j
H , jC)

1+jH+jC , and B1[0](j
H , jC)

jH+jC . (5.3.1)

We follow the notation of [39] where [j](j
H , jC)

δ denotes a superconformal primary with energy
δ, and SO(1, 2)×SO(3)H×SO(3)C spin quantum numbers j, jH , jC . 5 We use lower-case symbols
for the quantum numbers of the superconformal primaries in order to distinguish them from those
of arbitrary states in the representation. The subscripts labelling A and B indicate the level of
the first null states in the representation.

The A-type representations lie at the unitarity threshold (δA = 1+j+jH +jC) while those of
B-type are separated from this threshold by a gap, δB = δA − 1. Since for short representations
the primary dimension δ is fixed by the spins and the representation type, we will from now on
drop it in order to make the notation lighter.

The general character of OSp(4|4) is a function of four fugacities, corresponding to the eigen-
values of the four commuting bosonic generators J3, J

H
3 , J

C
3 and ∆. For the index one fixes the

fugacity of J3 and then a second fugacity automatically drops out. More explicitly

IR(q, t) = χR(eiπ, q, t, eβ)
where χR(w, q, t, eβ) = TrRw2J3q

1
2 (∆+J3)tJ

H
3 −J

C
3 e−β(∆−J3−JH3 −J

C
3 ) . (5.3.2)

Although general characters are linearly-independent functions, this is not the case for indices.
The index of long representations vanishes, and the indices of short representations that can
recombine into a long one sum up to zero. This is why, as is well known, ZS2×S1 does not
determine (even) the BPS spectrum of the theory unambiguously. Fortunately, we can avoid this
difficulty for our purposes here, as we will now explain.

In any 3d, N = 4 SCFT the ambiguity in extracting the BPS spectrum from the index can
be summarized by the following recombination rules [39]

5A small difference from [39] is that we use spins rather than Dynkin labels.
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L[0](jH, jC) → A2[0](jH, jC) ⊕ B1[0](jH+1, jC+1) , (5.3.3a)

L
[1
2
](jH, jC) → A1

[1
2
](jH, jC) ⊕ A2[0](jH+ 1

2 , j
C+ 1

2 ) , (5.3.3b)

L[j ≥ 1](jH, jC) → A1[j](jH, jC) ⊕ A1
[
j − 1

2
](jH+ 1

2 , j
C+ 1

2 )
. (5.3.3c)

The long representations on the left-hand side are taken at the unitarity threshold δ → δA.
From these recombination rules one sees that the characters of the B-type multiplets form a basis
for contributions to the index. Simple induction indeed gives

(−)2j I
A1[j](jH, jC ) = I

A2[0](jH+j, jC+j) = −I
B1[0](jH+j+1, jC+j+1) . (5.3.4)

We need therefore to compute the index only for B-type multiplets. The decomposition of
these latter into highest-weight representations of the bosonic subgroup SO(2, 3)×SO(4) can be
found in ref. [39]. Using the known characters of SO(2, 3) and SO(4) and taking carefully the
limit w → eiπ leads to the following indices

IB1[0](0,0) = 1 , (5.3.5a)

I
B1[0](jH>0,0) = (q

1
2 t)jH (1− q

1
2 t−1)

(1− q) , (5.3.5b)

I
B1[0](0,jC>0) = (q

1
2 t−1)jC (1− q

1
2 t)

(1− q) , (5.3.5c)

I
B1[0](jH>0,jC>0) = q

1
2 (jH+jC)tj

H−jC (1− q
1
2 (t+ t−1) + q)
(1− q) . (5.3.5d)

Note that all superconformal primaries of type B are scalar fields with δ = jH + jC , so
one of them saturates the BPS bound δ = j3 + jH3 + jC3 and contributes the leading power
q

1
2 (jH+jC) to the index. Things work differently for type-A multiplets whose primary states have
δ = 1+j+jH +jC > j3 +jH3 +jC3 , so they cannot contribute to the index. Their descendants can
however saturate the BPS bound and contribute, because even though a Poincaré supercharge
raises the dimension by 1

2 , it can at the same time increase J3 + JH3 + JC3 by as much as 3
2 .

5.3.2 Protected multiplets and Hilbert series

General contributions to the index can be attributed either to a B-type or to an A-type multiplet.
There exists, however, a special class of absolutely protected B-type representations which do not
appear in the decomposition of any long multiplet. Their contribution to the index can therefore
be extracted unambiguously. Inspection of (5.3.3) gives the following list of multiplets that are
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absolutely protected : B1[0](jH ,jC) with jH ≤ 1
2 or jC ≤ 1

2 . (5.3.6)

Consider in particular the B1[0](jH ,0) series. 6 The highest-weights of these multiplets are
chiral N = 2 scalar fields that do not transform under SO(3)C rotations. This is precisely the
Higgs-branch chiral ring consisting of operators made out of N = 4 hypermultiplets of the electric
quiver. It is defined entirely by the classical F -term conditions. Likewise the highest-weights of
the B1[0](0,jC) series, which are singlets of SO(3)H , form the chiral ring of the Coulomb branch
whose building blocks are magnetic hypermultiplets. Redefine the fugacities as follows

x± = q
1
4 t±

1
2 . (5.3.7)

It follows then immediately from (5.3.5) that in the limit x− = 0 the index only receives contri-
butions from the Higgs-branch chiral ring, while in the limit x+ = 0 it only receives contributions
from the chiral ring of the Coulomb branch.

The generating functions of these chiral rings, graded according to their dimension and quan-
tum numbers under global symmetries, are known as Hilbert series (HS). In the context of 3d
N = 4 theories elegant general formulae for the Higgs-branch and Coulomb-branch Hilbert series
were derived in refs. [72]-[42], see also [41] for a review. It follows from our discussion that

ZS2×S1

∣∣∣
x−=0

= HSHiggs(x+) and ZS2×S1

∣∣∣
x+=0

= HSCoulomb(x−) . (5.3.8)

These relations between the superconformal index and the Hilbert series were established in
ref. [104] by matching the corresponding integral expressions. Here we derive them directly from
the N = 4 superconformal characters.

What about other operators of the chiral ring ? The complete N = 2 chiral ring consists
of the highest weights in all B1[0](jH ,jC) multiplets of the theory. 7 As seen, however, from
eq. (5.3.4) the mixed-branch operators (those with both jH and jC ≥ 1) cannot be extracted
unambiguously from the index. This shows that there is no simple relation between the Hilbert
series of the full chiral ring and the superconformal index. The Hilbert series is better adapted
for studying supersymmetric deformations of a SCFT, but we lack a general method to compute
it (see however [43][34] for interesting ideas in this direction). Fortunately these complications
will not be important for the problem at hand.

The reason is that marginal deformations exist only in the restricted set of multiplets:

marginal : B1[0](jH ,jC) with jH + jC = 2 . (5.3.9)

6The representations B1[0](j
H , 1

2 ) and B1[0]( 1
2 , j

C) only appear in theories with free hypermultiplets and play
no role for good theories.

7The A-type multiplets do not contribute to the chiral ring, since none has scalar states that saturate the BPS
bound (i.e. ∆ = JH3 + JC3 and J = 0).
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These are in the absolutely protected list (5.3.6) with the exception of B1[0](1,1), a very
interesting multiplet that contains also four spin-3/2 fields in its spectrum. This multiplet is not
absolutely protected, but it is part of a ‘monogamous relation’: its unique recombination partner
is A2[0](0,0) and vice versa. Furthermore A2[0](0,0) is the N = 4 multiplet of the conserved energy-
momentum tensor [39], 8 which is unique in any irreducible SCFT. As a result the contribution
of B1[0](1,1) multiplets can be also unambiguously extracted from the index.

A similar though weaker form of the argument actually applies to all N = 2 SCFT. Marginal
chiral operators belong to short OSp(2|4) multiplets whose only recombination partners are the
conserved N = 2 vector-currents. We already alluded to this fact when explaining why the
3d N = 2 superconformal manifold has the structure of a moment-map quotient [71]. If the
global symmetries of the SCFT are known (which may not be always easy), one can extract
unambiguously its marginal deformations from the index.

5.4 Calculation of the index
We turn now to the main calculation of this paper, namely the expansion of the expression (5.2.2)
in terms of characters of the global symmetry OSp(4|4) × G × Ĝ. Since we are only interested
in the marginal multiplets (5.3.9) whose contribution starts at order O(q), it will be sufficient
to expand the index to this order. In terms of the fugacities x± we must keep terms up to
order O(x4). As we have just seen, each of the terms in the expansion to this order can be
unambiguously attributed to a OSp(4|4) representation.

We will organize the calculation in terms of the magnetic Casimir energy eq. (5.2.5). We start
with the zero-monopole sector, and then proceed to positive values of ∆(m).

5.4.1 The zero-monopole sector

In the m = 0 sector all magnetic fluxes vanish and the gauge symmetry is unbroken. The
expression in front of the plethystic exponential in (5.2.2) reduces to

k∏
j=1

[
1
Nj !

∫ Nj∏
α=1

dzj,α
2πizj,α

Nj∏
α 6=β

(1− zj,βz−1
j,α)

]
. (5.4.1)

This can be recognized as the invariant Haar measure for the gauge group
∏k
j=1 U(Nj). The

measure is normalized so that for any irreducible representation R of U(N)

1
N !

∫ N∏
α=1

dzα
2πizα

N∏
α 6=β

(1− zβz−1
α )χR(z) = δR,0 . (5.4.2)

Thus the integral projects to gauge-invariant states, as expected. We denote this operation
on any combination, X, of characters as X

∣∣
singlet .

8In the dual gravity theory, this recombination makes the N = 4 supergraviton massive. Thus B1[0](1,1) is a
Stueckelberg multiplet for the ‘Higgsing’ of N = 4 AdS supergravity [22][21].
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Since we work to order O(q) we may drop the denominators (1 − q) in the plethystic expo-
nential. The contribution of the m = 0 sector to the index can then be written as

Zm=0
S2×S1 = PE

(
x+(1− x2

−)X + (x2
− − x2

+)Y
)∣∣∣

singlet
+O(x5) (5.4.3)

with

X =
k∑
j=1

(
�j�

µ
j + �j�

µ
j

)
+
k−1∑
j=1

(
�j�j+1 + �j�j+1

)
and Y =

k∑
j=1

�j�j . (5.4.4)

The notation here is as follows: �j denotes the character of the fundamental representation
of the jth unitary group, and �j that of the anti-fundamental. To distinguish gauge from global
(electric) flavour groups we specify the latter with the symbol of the corresponding fugacities µ,
while for the gauge group the dependence on the fugacities z is implicit. The entire plethystic
exponent can be considered as a character of G ×G×U(1)×R+, where G is the gauge group and
U(1)×R+ ⊂ OSp(4|4) are the superconformal symmetries generated by JH3 −JC3 and by ∆ +J3.
The “singlet” operation projects on singlets of the gauge group only.

The plethystic exponential is a sum of powers Skχ of characters, where Sk is a multiparticle
symmetrizer that takes into account fermion statistics. For instance

S2(a+ b− c− d) = S2a+ ab+ S2b− (a+ b)(c+ d) + Λ2c+ cd+ Λ2d (5.4.5)

where Sk and Λk denote standard symmetrization or antisymmetrization. Call Ω the exponent
in eq. (5.4.3) . To the quartic order that we care about we compute

S2Ω = x2
+S2X + x+(x2

− − x2
+)XY + x4

−S2X + x4
+Λ2Y − x2

+x
2
−
(
X2 + Y 2) ,

S3Ω = x3
+S3X + x2

+(x2
− − x2

+)Y S2X ,

S4Ω = x4
+S4X .

(5.4.6)

Upon projection on the gauge-invariant sector one finds

X
∣∣
singlet= XY

∣∣
singlet= 0 and Y

∣∣
singlet= k . (5.4.7)

Second powers of Y also give (µ-independent) pure numbers,

Y 2
∣∣∣
singlet

= S2Y
∣∣∣
singlet

+ Λ2Y
∣∣∣
singlet
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with

S2Y
∣∣∣
singlet

= 1
2k(k + 1) +

k∑
j=1

δNj 6=1 , Λ2Y
∣∣∣
singlet

= 1
2k(k − 1) . (5.4.8)

The remaining terms in the expansion require a little more work with the result

X2
∣∣∣
singlet

= 2 S2X
∣∣∣
singlet

= 2
(
k − 1 +

k∑
j=1

�
µ
j�

µ
j

)
,

S3X
∣∣∣
singlet

=
k−1∑
j=1

(
�µ
j�

µ
j+1 + �

µ
j�

µ
j+1
)
,

Y S2X
∣∣∣
singlet

= k2 + k − 2 + δN1=1 + δNk=1 +
k∑
j=1

[
(k + δNj 6=1)�µ

j�
µ
j − 2δNj=1

]
,

(5.4.9)

and finally (and most tediously)

S4X
∣∣∣
singlet

=
k−1∑
j=2

δNj 6=1 +
k−1∑
j=1

δNj 6=1δNj+1 6=1 + (k − 1)k
2 +

k−2∑
j=1

(
�µ
j�

µ
j+2 + �

µ
j�

µ
j+2
)

+
k∑
j=1

δNj 6=1(2− δj=1 − δj=k)|�µ
j |

2 + (k − 1)
k∑
j=1
|�µ

j |
2

+
k∑

j<j′

|�µ
j |

2|�µ
j′ |

2 +
k∑
j=1
|��µ

j |
2 +

k∑
j=1

δNj 6=1
∣∣∣ µ

j

∣∣∣2
(5.4.10)

where in the last equation we used the shorthand |R|2 for the character of R⊗R, and denoted
the (anti)symmetric representations of U(Mj) by Young diagrams.

Let us explain how to compute the singlets in Y S2X. One obtains gauge-invariant contribu-
tions to that term in three different ways: the product of a gauge-invariant from Y and one from
S2X, or the product of an SU(Nj) adjoint in Y with either a fundamental and an antifundamental,
or a pair of bifundamentals, coming from S2X. This gives three terms:

Y S2X
∣∣∣
singlet

= k

(
k−1+

k∑
j=1
|�µ

j |
2
)

+
( k∑
j=1

δNj 6=1|�µ
j |

2
)

+
(
−δN1 6=1−δNk 6=1+

k∑
j=1

2δNj 6=1

)
(5.4.11)

where we used that the SU(Nj) adjoint is absent when Nj = 1, and that the outermost nodes
have a single bifundamental hypermultiplet rather than two. After a small rearrangement, this
is the same as the last line of (5.4.9).

For S4X|singlet we organized terms according to how many bifundamentals they involve. First,
four bifundamentals can be connected in self-explanatory notation as or or { 2} . Next,
two bifundamentals and two fundamentals of different gauge groups can be connected as ,
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while for the same group they can be either connected as or , or disconnected as a pair
of bifundamentals and a flavour current (see below). When the node is abelian the first
two terms are already included in the third and should not be counted separately. Finally, four
fundamental hypermultiplets can form two pairs at different nodes, or if they come from the same
node they should be split in two conjugate pairs, Qpj,αQrj,β and Q̃p̄j,αQ̃r̄j,β, with each pair separately
symmetrized or antisymmetrized. When the gauge group is abelian the antisymmetric piece is
absent.

5.4.2 Higgs-branch chiral ring

As a check, let us use the above results to calculate the Hilbert series of the Higgs branch. We
have explained in section 5.3.2 that this is equal to the index evaluated at x− = 0. Non-trivial
monopole sectors make a contribution proportional to x2∆(m)

− and since ∆(m) > 0 they can be
neglected. The Higgs-branch Hilbert series therefore reads

HSHiggs(x+) = Zm=0
S2×S1

∣∣∣
x−=0

. (5.4.12)

Setting x− = 0 in eqs. (5.4.3) and (5.4.6) we find

HSHiggs(x+) = 1 + x2
+
(
S2X − Y

)∣∣∣
singlet

+ x3
+S3X

∣∣∣
singlet

+x4
+
(
S4X+Λ2Y − Y S2X

)∣∣∣
singlet

+ O(x5
+) .

(5.4.13)

Inserting now (5.4.7)-(5.4.10) gives after some straightforward algebra

HSHiggs(x+) = 1 + x2
+
( k∑
j=1
|�µ

j |
2 − 1

︸ ︷︷ ︸
AdjG

)
+ x3

+

k−1∑
j=1

(
�µ
j�

µ
j+1 + �

µ
j�

µ
j+1
)

︸ ︷︷ ︸
length=3 strings

+x4
+

[
k∑

j<j′

|�µ
j |

2|�µ
j′ |

2 +
k∑
j=1

(
|��µ

j |
2 + δNj 6=1

∣∣∣ µ
j

∣∣∣2 − |�µ
j︸ ︷︷ ︸

double−string operators

|2
)

+
k−1∑
j=2

(
�µ
j−1�

µ
j+1 + �

µ
j−1�

µ
j+1 + (1− δNj=1)|�µ

j |
2
)
− ∆nH︸ ︷︷ ︸

length=4 strings

]
+ O(x5

+) .
(5.4.14)

where

∆nH = 1 +
k−1∑
j=2

δNj=1 −
k−1∑
j=1

δNj=1δNj+1=1 . (5.4.15)
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This agrees with expectations. Recall that the Higgs-branch Hilbert series counts chiral
operators made out of the scalar fields, Qpj and Q̃p̄j , of the (anti)fundamental hypermultiplets,
and the scalars of the bifundamental hypermultiplets Qj,j+1 and Q̃j+1,j (the gauge indices are
here suppressed). Gauge-invariant products of these scalar fields can be drawn as strings on
the quiver diagram [19], and they obey the following matrix relations derived from the N = 4
superpotential,

Qj,j+1Q̃j+1,j + Q̃j,j−1Qj−1,j +
Mj∑
p,p̄=1

Qpj Q̃
p̄
jδpp̄ = 0 ∀j = 1, · · · , k . (5.4.16)

The length of each string gives the SO(3)H spin and scaling dimension of the operator, and
hence the power of x+ in the index. Since good theories have no free hypermultiplets there are
no contributions at order x+. At order x2

+ one finds the scalar partners of the conserved flavour
currents that transform in the adjoint representation of G. Higher powers come either from single
longer strings or, starting at order x4

+, from multistring ‘bound states’. One indeed recognizes
the second line in (5.4.14) as the symmetrized product of strings of length two,

S2χAdjG = S2(
k∑
j=1
|�µ

j |
2 − 1) , (5.4.17)

modulo the fact that for abelian gauge nodes some of the states are absent. These and the
additional single-string operators of length 3 and 4 can be enumerated by diagrammatic rules,
we refer the reader to [19] for details. Note also that the correction term ∆nH is the number of
disjoint parts of the quiver when all abelian nodes are deleted. For each such part one neutral
length-4 operator turns out to be redundant by the F -term conditions.

The quartic term of the Hilbert series counts marginal Higgs-branch operators. When the
electric flavour-symmetry group G is large, the vast majority of these are double-string operators.
Their number far exceeds the number (dimG) of moment-map constraints, eq. (5.1.2), so generic
T ρ̂ρ theories have a large number of double-string N = 2 moduli.

5.4.3 Contribution of monopoles

Going back to the full superconformal index, we separate it in three parts as follows

ZS2×S1 = −1 + HSHiggs(x+, µ) + HSCoulomb(x−, µ̂) + Zmixed(x+, x−, µ, µ̂) (5.4.18)

where the remainder Zmixed vanishes if either x− = 0 or x+ = 0. The Higgs-branch Hilbert
series only depends on the electric-flavour fugacities µj,p, and the Hilbert series of the Coulomb
branch only depends on the magnetic-flavour fugacities wj . To render the notation mirror-
symmetric these latter should be redefined as follows
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wj = µ̂jµ̂
−1
j+1 . (5.4.19)

Note that since the index (5.2.3) only depends on ratios of the µ̂j , the last fugacity µ̂k+1 is
arbitrary and can be fixed at will. This reflects the fact that a phase rotation of all fundamental
magnetic quarks is a gauge rather than global symmetry.

Mirror symmetry predicts that HSCoulomb is given by the same expression (5.4.14) with x+
replaced by x− and all other quantities replaced by their hatted mirrors. We will assume that
this is indeed the case 9 and focus on the mixed piece Zmixed.

As opposed to the two Hilbert series, which only receive contributions from B-type primaries,
Zmixed has contributions from both A-type and B-type multiplets, and from both superconformal
primaries and descendants. Let us first collect for later reference the terms of the m = 0 sector
that were not included in the Higgs-branch Hilbert series. From the results in section 5.4.1 one
finds

Zm=0
S2×S1 −HSHiggs =

[
x2
−Y + x4

−S2Y + x2
+x

2
−
(
Y S2X −X2 − Y 2)]

singlet

= x2
−k + x4

−

(1
2k(k + 1) +

k∑
j=1

δNj 6=1
)

+ x2
+x

2
−

( k∑
j=1

(k − 1− δNj=1)|�µ
j |

2 − 2k −
k∑
j=1

δNj=1 + δN1=1 + δNk=1
)

+O(x5) .

(5.4.20)

The two terms in the second line contribute to the Coulomb-branch Hilbert series, while the
third line is a contribution to the mixed piece.

We turn next to non-trivial monopole sectors whose contributions are proportional to x
2∆(m)
− .

At the order of interest we can restrict ourselves to sectors with 0 < ∆(m) ≤ 2 . Finding which
monopole charges contribute to a generic value of ∆(m) is a hard combinatorial problem. For
the lowest values ∆(m) = 1

2 , 1 and for good theories it was solved in ref. [65].
Fortunately this will be sufficient for our purposes here since, to the order of interest, the

sectors ∆(m) = 2 and ∆(m) = 3
2 only contribute to the Coulomb-branch Hilbert series, not

to the mixed piece. This is obvious for ∆(m) = 2, while for ∆(m) = 3
2 subleading terms in

(5.2.3) with a single additional power of q1/4 have unmatched gauge fugacities zj,α, and vanish
after projection to the invariant sector (see below). In addition, good theories have no monopole
operators with ∆(m) = 1

2 . Such operators would have been free twisted hypermultiplets, and
there are none in the spectrum of good theories. This leaves us with ∆(m) = 1.

The key concept for describing monopole charges is that of balanced quiver nodes, defined as
the nodes that saturate the ‘good’ inequality Nj−1 +Nj+1 +Mj ≥ 2Nj . Let Bξ denote the sets of
consecutive balanced nodes, i.e. the disconnected parts of the quiver diagram after non-balanced
nodes have been deleted. As shown in [65] each such set corresponds to a non-abelian flavor

9It is straightforward to verify the assertion at the quartic order computed here. Mirror symmetry of the
complete index can be proved by induction (I. Lavdas and B. Le Floch, work in progress).
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group U(|Bξ| + 1) in the mirror magnetic quiver. 10 Monopole charges in the sector ∆(m) = 1
are necessarily of the following form:

mj1,α1 = mj1+1,α2 = · · · = mj1+`,α` = ±1 with [j1, j1 + `] ⊆ Bξ (5.4.21)

for one choice of color indices at each gauge node, and for one given set of balanced nodes,
Bξ. Up to permutations of the color indices we can choose α1 = α2 = · · · = α` = 1.

Define j1 + ` ≡ j2, and let Γ be the sequence of gauge nodes Γ = {j1, j1 + 1, · · · j1 + ` ≡ j2}.
To calculate the contribution of (5.4.21) to the index, we first note that the above assignement
of magnetic fluxes breaks the gauge symmetry down to

GΓ =
∏
j /∈Γ

U(Nj)×
∏
j∈Γ

[U(Nj − 1)× U(1)] . (5.4.22)

Let us pull out of the integral expression (5.2.3) the fugacities
∏
j∈Γw

±
j and the overall factor

x2
−. Setting q = 0 everywhere else and summing over equivalent permutations of color indices

gives precisely the invariant measure of GΓ, normalized so that it integrates to 1. To calculate all
terms systematically we must therefore expand the integrand in powers of q1/4, and then project
on the GΓ invariant sector. To the order of interest we find

Z∆(m)=1
S2×S1 = x2

−
∑
Bξ

∏
Γ⊆Bξ

(
∏
j∈Γ

wj +
∏
j∈Γ

w−1
j ) PE

(
x+X

′ + (x2
− − x2

+)Y ′
)∣∣∣∣∣
GΓ singlet

+O(x5) (5.4.23)

where

X ′ =
k∑
j=1

(�µ
j�
′
j + �µ

j�
′
j) +

k−1∑
j=1

(�′j�′j+1 + �′j�
′
j+1) +

∑
j,j+1∈Γ

(zj,1z−1
j+1,1 + z−1

j,1 zj+1,1) ,

Y ′ =
k∑
j=1

�j�j =
k∑
j=1

�
′
j�
′
j + (j2 − j1 + 1) ,

(5.4.24)

and in these expressions �′j denotes the fundamental of U(Nj−1) if j ∈ Γ, and the fundamental
of U(Nj) if j /∈ Γ . By convention �′j = 0 when N ′j = Nj − 1 = 0.

Performing the projection onto GΓ singlets gives

X ′|GΓ singlet = 0 , Y ′|GΓ singlet = (j2 − j1 + 1) +
k∑
j=1

δN ′j 6=0 ,

10As a result ξ ranges over the different components of the magnetic flavour group, i.e. the subset of gauge
nodes (ĵ = 1, · · · k̂) in the mirror quiver of the magnetic theory for which M̂ĵ > 1.
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and

S2X ′|GΓ singlet =
k∑
j=1

δN ′j 6=0 �
µ
j�

µ
j + (j2 − j1) +

k−1∑
j=1

δN ′j 6=0δN ′j+1 6=0 . (5.4.25)

Collecting and rearranging terms gives

Z∆(m)=1
S2×S1 =

∑
Bξ

∏
[j1,j2]⊆Bξ

(µ̂j1 µ̂−1
j2+1 + µ̂−1

j1
µ̂j2+1)

[
x2
− + x4

−(k +
∑
j∈Γ

δNj 6=1)

+ x2
−x

2
+

( k∑
j=1

δN ′j 6=0 �
µ
j�

µ
j +

k−1∑
j=1

δN ′j 6=0δN ′j+1 6=0 −
k∑
j=1

δN ′j 6=0 − 1
)]

+ O(x5) .

(5.4.26)

The terms that do not vanish for x+ = 0 are contributions to the Hilbert series of the Coulomb
branch. For a check let us consider the leading term. Combining it with the one from eq. (5.4.20)
gives the adjoint representation of Ĝ, as predicted by mirror symmetry

HSCoulomb = 1 + x2
−

[
k +

∑
Bξ

∏
j1,j2∈Bξ

(µ̂j1 µ̂−1
j2+1 + µ̂−1

j1
µ̂j2+1)

︸ ︷︷ ︸
AdjĜ

]
+ O(x3

−) .
(5.4.27)

Note that the k Cartan generators of Ĝ (those corresponding to the topological symmetry)
contribute to the index in the m = 0 sector. The monopole operators that enhance this symmetry
in the infrared to the full non-abelian magnetic group enter in the sector ∆(m) = 1.

5.4.4 The mixed term

Let us now put together the mixed terms from eqs. (5.4.20) and (5.4.26). If the quiver has no
abelian nodes all Nj > 1 and all N ′j > 0, and our expressions simplify enormously. The last
line in eq. (5.4.20) collapses to (k − 1)

∑
j |�

µ
j |2 − 2k, and the last line of (5.4.26) collapses to∑

j |�
µ
j |2 − 2. Combining the two gives the following result for quivers with

No abelian nodes :

Zmixed = x2
+x

2
−

[
(
∑
j

|�µ
j |

2 − 2)
(
k − 1 +

∑
Bξ

∑
ε=±

∏
[j1,j2]⊆Bξ

(µ̂j1 µ̂−1
j2+1)ε

)
− 2

]
+ O(x5)

= x2
+x

2
−

[
(χAdjG − 1)(χAdjĜ − 1)− 2

]
+ O(x5) .

(5.4.28)

We will interpret this result in the following section. But first let us consider the corrections
coming from abelian nodes.
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The µ-dependent correction in the m = 0 sector, eq. (5.4.20), is a sum over all abelian gauge
nodes of |�µ

j |2 which should be subtracted from the above result. We expect, by mirror symmetry,
a similar subtraction for abelian gauge nodes of the magnetic quiver. To see how this comes about
note first that N ′j = 0 in (5.4.26) implies that j is an abelian balanced node in Γ = [j1, j2] ⊆ Bξ.
Now an abelian balanced node has exactly two fundamental hypermultiplets, so it is necessarily
one of the following four types:

· · · 1 1 1 · · ·

(a)

1 1 · · ·

1

(b)

1 2 · · ·

(c)

1

2

(d)

The balanced node is drawn in red, and the dots indicate that the [good] quiver extends
beyond the piece shown in the figure, with extra flavour and/or gauge nodes. The set Bξ may
contain several balanced nodes, as many as the rank of the corresponding non-abelian factor of
the magnetic-flavour symmetry. Notice however that abelian nodes of type (c) cannot coexist in
the same Bξ with abelian nodes of the other types. So we split the calculation of the ∆(m) = 1
sector according to whether Bξ contains abelian nodes of type (a) and/or (b), or nodes of type
(c). The case (d) corresponds to a single theory called T [SU(2)] and will be treated separately.

Replacing δN ′j 6=0 by 1−δN ′j=0 in the last line of (5.4.26) and doing the straightforward algebra
leads to the following result for the x2

+x
2
− piece:

k∑
j=1

δN ′j 6=0�
µ
j�

µ
j +

k−1∑
j=1

δN ′j 6=0δN ′j+1 6=0 −
k∑
j=1

δN ′j 6=0 − 1 =
k∑
j=1

�
µ
j�

µ
j − 2−

{
1 (a) + (b)
0 (c)

(5.4.29)

The term in front of the ‘cases’ on the right-hand side was already accounted for in (5.4.28).
The extra subtraction vanishes when Bξ is of type (c), and equals -1 when Bξ is of type (a)
and/or (b). This is precisely what one expects from mirror symmetry. Indeed, as shown in
appendix C , the two cases in eq. (5.4.29) correspond to the M̂ξ = |Bξ|+1 magnetic flavours being
charged under a non-abelian, respectively abelian gauge group in the magnetic quiver (N̂ξ > 1,
respectively N̂ξ = 1). In the first case there is no correction to (5.4.28), while in the second
summing over all monopole-charge assignements in Bξ reconstructs, up to a fugacity-independent
term equal to the rank, the adjoint character of the non-abelian magnetic-flavour symmetry.

Putting everything together we finally get for

Arbitrary quivers :

Zmixed = x2
+x

2
−

[(
χAdjG(µ)− 1

)(
χAdjĜ(µ̂)− 1

)
− 2

−
∑

j|Nj=1
|�µ

j |
2 −

∑
ĵ|N̂ĵ=1

|�µ̂

ĵ
|2 + ∆nmixed

]
+ O(x5) ,

(5.4.30)
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where the fugacity-independent correction reads

∆nmixed =
∑

ĵ|N̂ĵ=1

M̂ĵ + δN1=1 + δNk=1 −
k∑
j=1

δNj=1 . (5.4.31)

We leave it as an exercise for the reader to show that ∆nmixed is (like the rest of the expression)
mirror symmetric, albeit not manifestly so.

For completeness we give finally the result for T [SU(2)], the theory described by the quiver
(d). This is a self-dual abelian theory with global symmetry SU(2)× SÛ(2). In self-explanatory
notation the result for this case reads

T[SU(2)] : Zmixed = x2
+x

2
− (−3− µ− µ−1 − µ̂− µ̂−1) + O(x5) . (5.4.32)

It turns out that for this theory the full superconformal index can be expressed in closed form,
in terms of the q-hypergeometric function. This renders manifest a general property of the index,
its factorization in holomorphic blocks [98]-[25]. Since we are not using this feature in our paper,
the calculation is relegated to appendix E.2 .

This completes our calculation of the mixed quartic terms of the superconformal index. We
will next rewrite the index as a sum of characters of OSp(4|4) and interpret the result.

5.5 Counting the N = 2 moduli
The full superconformal index up to order O(q) ∼ O(x4) is given by (5.4.18) together with
expressions (5.4.14)-(5.4.15) for the Higgs branch Hilbert series, their mirrors for the Coulomb
branch Hilbert series, and expressions (5.4.30)-(5.4.31) for the mixed term. Collecting everything
and using also (5.3.5) for the indices of individual representations of the superconformal algebra
OSp(4|4) leads to the main result of this paper

ZS2×S1 =1 + x2
+(1− x2

−)︸ ︷︷ ︸
I
B1[0](1,0)

χAdjG + x2
−(1− x2

+)︸ ︷︷ ︸
I
B1[0](0,1)

χAdjĜ + x3
+︸︷︷︸

I
B1[0](3/2,0)

χ
`=3 + x3

−︸︷︷︸
I
B1[0](0,3/2)

χ̂
`=3

+ x4
+︸︷︷︸

I
B1[0](2,0)

(
S2χAdjG + χ

`=4 −∆χ(2,0)) + x4
−︸︷︷︸

I
B1[0](0,2)

(
S2χAdjĜ + χ̂

`=4 −∆χ(0,2))

+ x2
+x

2
−︸ ︷︷ ︸

I
B1[0](1,1)

(
χAdjG χAdjĜ −∆χ(1,1)) + (−x2

+x
2
−)︸ ︷︷ ︸

I
A2[0](0,0)

+ O(x5) .

(5.5.1)
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where χ
`=n counts independent single strings of length n = 3, 4 on the electric quiver, χ̂

`=n
counts likewise single strings on the magnetic quiver, and the correction terms coming from
abelian (electric and magnetic) gauge nodes are given by

∆χ(2,0) =
k∑
j=1

δNj=1
∣∣∣ µ

j

∣∣∣2 , ∆χ(0,2) =
k̂∑
ĵ=1

δN̂ĵ=1

∣∣∣ µ̂

ĵ

∣∣∣2 ,

and ∆χ(1,1) =
∑

j|Nj=1
|�µ

j |
2 +

∑
ĵ|N̂ĵ=1

|�µ̂

ĵ
|2 −∆nmixed .

(5.5.2)

Notice that we have used here the fact that the SCFT has a unique energy-momentum ten-
sor which is part of the A2[0](0,0) multiplet, and that all the other OSp(4|4) multiplets can be
unambiguously identified at this order.

5.5.1 Examples and interpretation

The marginal N = 2 deformations are the terms enclosed in boxes in (5.5.1). Those in the second
line are standard quartic superpotentials involving only the N = 4 hypermultiplets of the electric
quiver, or only their twisted cousins of the magnetic quiver. The electric superpotentials (counted
in the Higgs-branch Hilberts series) are of two kinds: (i) single strings of length 4 that transform
in the adjoint of each gauge-group factor U(Mj), or in the bifundamental of next-to-nearest
neighbour flavour groups U(Mj) × U(Mj+2); and (ii) double-string operators in the S2(AdjG)
representation. If there are abelian gauge nodes some of these operators are absent. The same
statements of course hold for magnetic superpotentials and the mirror quiver.

The more interesting deformations, the ones made out of both types of hypermultiplets, are
in the third line of (5.5.1). For quivers with no abelian nodes, these mixed operators are all
possible |AdjG| × |AdjĜ| gauge-invariant products of two fundamental hypermultiplets and two
fundamental twisted hypermultiplets 11

O(p̄,r; ¯̂p,r̂)
j;ĵ = (Q̃p̄jQ

r
j)
( ˜̂
Q

¯̂p
ĵ Q̂

r̂
ĵ

)
, (5.5.3)

where hats denote the scalars of the (twisted) hypermultiplets.
Some of the above operators can be identified with superpotential deformations involving

both hypermultiplets and vector multiplets. Consider, in particular, the following gauge-invariant
chiral operators of the electric theory

O(p̄,r)
j,j′ = (Q̃p̄jQ

r
j) tr(Φj′) , (5.5.4)

where Φj is the N = 2 chiral field in the N = 4 vector multiplet at the jth gauge-group node.
It can be easily shown that tr(Φj) is the scalar superpartner of the jth topological U(1) current,

11More precisely, all but the overall combination
∑

j

∑
p,p̄
Qpj Q̃

p̄
j δpp̄ and its mirror. These are the scalar partners

of the two missing U(1) flavour symmetries that are gauged.
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so that the operators (5.5.4) are the same as the operators (5.5.3) when these latter are restricted
to the Cartan subalgebra of Ĝ. Similarly, projecting (5.5.3) onto the Cartan subalgebra of G
gives mixed superpotential deformations of the magnetic Lagrangian. The remaining (|AdjG| −
rankG) × (|AdjĜ| − rankĜ) deformations involve both charged hypermultiplets and monopole
operators and have a priori no Lagrangian description.

We can also understand why some mixed operators are absent when the quiver has abelian
nodes. Recall that the N = 4 superpotential reads

W =
k∑
j=1

(
Qj,j−1ΦjQ̃j,j−1 + Q̃j,j+1 ΦjQj,j+1 +

Mj∑
p,p̄=1

Q̃p̄j ΦjQ
p
jδpp̄

)
, (5.5.5)

from which one derives the following F -term conditions : Q̃p̄j Φj = ΦjQ
p
j = 0 for all j, p and

p̄. Note that Φj is an Nj × Nj matrix, while Qp̄j and Qpj = 0 are bra and ket vectors. If (and
only if) j is an abelian node, these conditions imply O(p̄,r)

j,j = 0 so that these operators should be
subtracted. This explains the first of the three terms in the subtraction δχ(1,1), eq. (5.5.2). The
second is likewise explained by the F -term conditions at abelian nodes of the magnetic quiver.
Finally ∆nmixed corrects some overcounting in these abelian-node subtractions.

We may summarize the discussion as follows:

Marginal chiral operators of T ρ̂ρ [SU(N)] transform in the S2(AdjG + AdjĜ) repre-
sentation of the electric and magnetic flavour symmetry, plus strings of length 4
(in either adjoints or bifundamentals of individual factors), modulo redundancies for
quivers with abelian nodes.

Note that the above logic could be extended to chiral operators of arbitrary dimension ∆ = n.
Operator overcounting arises, however, in this case at electric or magnetic gauge nodes of rank
≤ n− 1, making the combinatorial problem considerably harder.

We now illustrate these results with selected examples:

sQCD3: The electric theory has gauge group U(Nc) with Nc ≥ 2, and Nf ≥ 2Nc fundamental
flavours. Its electric and magnetic quivers are drawn below. The magnetic quiver with Nf = 2Nc

(upper right figure) differs from the one for Nf > 2Nc (lower right figure). Both have Nf − 1
balanced nodes, corresponding to the electric SU(Nf ) flavour symmetry, but their magnetic
symmetry is, respectively, SU(2) and U(1):

Nc

Nf

1 2 · · · Nc · · · 2 1

2

1 2 · · · Nc · · · Nc · · · 2 1

1 1

Nf − 2Nc + 1
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The Nf > 2Nc theories have 1
2N

2
f (N2

f − 1) electric, one magnetic, and (N2
f − 1) mixed marginal

operators from 2-string states. There are no extra marginal operators from length-4 strings,
except in the special case Nf = 2Nc + 1, and no abelian-node redundancies. The number of
D-term conditions is N2

f + 1, so that the complex dimension of the superconformal manifold is
dimMSC = 1

2N
2
f (N2

f − 1)− 1. When Nf = 2Nc the number of electric operators is the same, but
there are now six magnetic operators, 3(N2

f − 1) mixed ones, three length-4 strings, and N2
f + 3

D-term conditions.

sQED3: This is a U(1) theory with Nf > 2 charged hypermultiplets. The magnetic quiver
has Nf − 1 abelian balanced nodes and one charged hypermultiplet at each end of the chain:

1

Nf 1

1 1 · · · 1 · · · 1 1

1

This theory has 1
4N

2
f (Nf+1)2 marginal electric operators (because the antisymmetric combination

Q[pQr] vanishes), one magnetic operator, and no mixed ones. To prove this latter assertion
one computes ∆nmixed = 3 from eq. (5.4.31) [checking in passing that the expression is mirror
symmetric]. In the special case Nf = 4 there is in addition a length-4 magnetic string. Note that
for Nf � 1 the dimension of the superconformal manifold of sQED3 is reduced by a factor two
compared to the superconformal manifold of sQCD3.

T[SU(N)]: This theory is defined by the self-dual fully-balanced quiver shown below.

1 2 · · · N − 1 N

For N ≥ 3 there are 1
2N

2(N2− 1) electric operators, as many magnetic operators, and (N2− 1)2

mixed ones. The dimension of the superconformal manifold is dimMSC = (N2−1)(2N2−3)−1.
The case T [SU(2)] was discussed already separately.

5.5.2 The holographic perspective

In this last part we discuss the relation to string theory and sketch some directions for future
work.

As discussed in the introduction, the T ρ̂ρ [SU(N)] theories are holographically dual to type
IIB string theory in the supersymmetric backgrounds of refs. [12][13]. The geometry has a
AdS4×S2

H×S2
C fiber over a basis which is the infinite strip Σ. The SO(2, 3)× SO(3)H × SO(3)C

symmetry of the SCFT is realized as isometries of the fiber. The solution features singularities
on the upper (lower) boundary of the strip which correspond to D5-brane sources wrapping S2

H

(NS5-brane sources wrapping S2
C). These two-spheres are trivial in homology, yet the branes are

stabilized by non-zero worldvolume fluxes that counterbalance the negative tensile stress [16].
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There is a total of k+1 NS5-branes and k̂+1 D5-branes. Their position along the boundary of
the strip is a function of their linking number, which increases from left to right for D5-branes and
decrease for NS5-branes [12]. Branes with the same linking number overlap giving non-abelian
flavour symmetries. The linking number of a fivebrane can be equivalently defined as

• the D3-brane charge dissolved in the fivebrane ;

• the worldvolume flux on the wrapped two-sphere;

• the node of the corresponding quiver, for instance the îth D5-brane provides a fundamental
hypermultiplet at the l̂̂i = i node of the electric quiver (see appendix C).

The R-symmetry spins JH , JC are the angular momenta of a state on the two spheres. Given
the above dictionary, can we understand the results of this paper from the string-theory side?

Consider first the Higgs-branch chiral ring which consists of the highest weights of allB1[0](jH ,0)

multiplets. When decomposed in terms of conformal primaries these multiplets read [39]

B1[0](j
H ,0)

jH
= [0](j

H ,0)
jH

⊕ [0](j
H−1,1)

jH+1 ⊕ [1](j
H−1,0)

jH+1 ⊕ fermionsjH+ 1
2
. (5.5.6)

Note that the top component includes a vector boson with scaling dimension ∆ = jH+1. This
is a massless gauge boson in AdS4 for jH = 1 (‘conserved current’ multiplet) and a massive gauge
boson for jH > 1. As explained in ref. [19], both massless and massive vector bosons are states of
fundamental open strings on the D5-branes. Their vertex operators include a scalar wavefunction
on S2

H with angular momentum JH = jH − 1. Consider such an open string stretching between
two D5-branes with linking numbers ` and `′. Since these latter are magnetic-monopole fields
on S2

H , the open string couples to a net field (` − `′). Its wavefunction is therefore given by the
well-known monopole spherical harmonics with 12

jH − 1 = 1
2 |`− `

′|+ N (5.5.7)

where N are the natural numbers. Recalling that the linking numbers also designate the nodes
of the electric quiver, we understand why the Higgs-branch chiral ring includes strings of minimal
length |` − `′| + 2 transforming in the bi-fundamental of U(M`) × U(M`′) for all k ≥ `′ > ` > 0
[19]. The bifundamental strings of length 3 and 4 in eq. (5.4.14) are of this kind.

The ∆ = 2 chiral ring also includes strings of length 4 in the adjoint of U(Mj) for all k > j > 1,
see (5.4.14). The corresponding open-string vector bosons on the ith stack of D5-branes do not
feel a monopole field (` = `′ = i) but have angular momentum jH − 1 = 1. Notice however that

12This celebrated result goes back to the early days of quantum mechanics [107]. We have used it implicitly
when expressing determinants as q-Pochammer symbols. For an amusing real-time manifestation of the effect see
[15] .
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these length-4 operators are missing at the two ends of the quiver, i.e. for i = 1 and for i = k.
How can one understand this from the string theory side ?

A plausible explanation comes from a well-known effect dubbed ‘stringy exclusion principle’
in ref. [94]. The relevant setup features K NS5-branes and a set of probe D-branes ending on
them. The worldsheet theory in this background has an affine algebra su(2)K 13 and D-branes
(Cardy states) labelled by the set of dominant affine weights λ = 0, 1, · · · ,K − 1. The ground
states of open strings stretched between two such D-branes have weights ν in the interval[

|λ− λ′|,min(λ+ λ′, 2K − λ− λ′)
]

and in steps of two [58]. Translating λ = `− 1 (see [15]), µ = 2(jH − 1) and K = k+ 1 (the total
number of NS5-branes) gives in replacement of (5.5.7)

jH − 1 = 1
2 |`− `

′| , 1
2 |`− `

′|+ 1 , · · · ,min
(1

2(`+ `′ − 2) , k − 1
2(`+ `′)

)
. (5.5.8)

The intuitive understanding of the upper cutoff is that a string cannot remain in its ground
state if its angular momentum exceeds the size of the sphere. It follows that for ` = `′ = 1 or k,
only the jH = 1 states survive, in agreement with our findings for the Higgs-branch chiral ring.

To be sure this is just an argument, not a proof, because in the solutions dual to T ρ̂ρ [SU(N)]
the 3-sphere threaded by the NS5-brane flux is highly deformed by the strong back reaction of
the D-branes. The perfect match with the field theory side suggests, however, that the detailed
geometry does not matter when it comes to the above stringy effect.

The superconformal index brings to light other exclusion effects associated to abelian gauge
nodes of the electric and magnetic quivers, as summarized in eqs. (5.5.1) and (5.5.2). For higher
elements of the chiral ring, these effects are more generally related to the finite ranks of the gauge
groups. This is a ubiquitous phenomenon in holography – McGreevy et al coined the name ‘giant
graviton’ for it in the prototypical AdS5×S5 example [95]. We did not manage to find a simple
explanation for giant-graviton exclusions in the problem at hand. Part of the difficulty is that,
as opposed to the 5-brane linking numbers, the gauge group ranks have a less direct meaning on
the gravitational side of the AdS/CFT correspondence. 14

We conclude our discussion of the AdS side with a remark about gauged N = 4 supergravity.
In addition to the graviton, this has n vector multiplets and global SL(2)× SO(6, n) symmetry,
part of which may be gauged. Insisting that the gauged theory have a supersymmetric AdS4
vacuum restricts the form of the gauge group to be GH × GC × G0 ⊂ SO(6, n), where the
(generally) non-compact GH and GC contain the R-symmetries SO(3)H and SO(3)C [90].

The vector bosons of spontaneously-broken gauge symmetries belong to B-type multiplets
with (jH , jC) = (2, 0) or (0, 2). These can describe the length-4 marginal operators in the Higgs-
branch or Coulomb-branch chiral rings. As noted on the other hand in ref. [19], there is no room
for elementary (1, 1) multiplets in N = 4 supergravity, because such multiplets have extra spin-3

2
fields. But we have just seen that linear-quiver theories have no single-string (1, 1) operators,
so the above limitation does not apply. All mixed marginal deformations correspond to double-
string operators that can be described effectively by modifying the boundary conditions of their
single-string constituents [115][29]. Note that boundary conditions change the quantization, not
the solution. So

13The bosonic subalgebra has level K − 2 and an extra factor 2 is added by fermions.
14Note that two theories with the same flavour symmetry, i.e. the same disposition of five-branes, can have very

different gauge-group ranks. This feature (called ‘fine print’ in ref. [19]) is best illustrated by sQCD3 with a fixed
number of flavours, Nf , but an arbitrary number of colors Nc ∈ (2, [Nf/2]− 1), see section 5.5.1.
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Gauged N = 4 supergravity has the necessary ingredients to describe the complete
moduli space of the T ρ̂ρ [SU(N)] theories, provided one considers both classical and
quantization moduli.

This quells, at least for linear quivers, the concern raised in [19] that reduction of string theory
to gauged 4d supergravity may truncate away part of the moduli space.

5.5.3 One last comment

We end with a remark about the Hilbert series of T ρ̂ρ [SU(N)] theories. As we explained in section
5.3, the full chiral ring consists of the highest-weights of all B-type multiplets in the theory with
arbitrary (jH , jC). The relevant and marginal operators can be identified unambiguously in the
index, as can the entire Higgs-branch and Coulomb-branch subrings. But general mixed elements
(with jH , jC > 1) cannot be extracted unambiguously. A calculation that does not rely on the
superconformal index would therefore be of great interest.

A natural conjecture for the full Hilbert series [34] is that it is the coordinate ring of the union
of all branches Bσ (for the T ρ̂ρ theory, σ ranges over partitions between ρ and ρ̂T ),

HS
(⋃
σ

Bσ

∣∣∣∣ x+, x−

)
=
∑
Λ

(−1)|Λ|−1 HS
( ⋂
σ∈Λ

Bσ

∣∣∣∣ x+, x−

)
(5.5.9)

where Λ runs over all non-empty subsets of the branches of the theory. In words, the full
Hilbert series would be the sum of Hilbert series of every branch, minus corrections due to
pairwise intersections and so on. It can be checked that this conjecture is consistent with the
Higgs branch and Coulomb branch limits (q1/4t∓1/2 → 0 with q1/4t±1/2 fixed). One can also
compare the number of B1[0](1,1) multiplets suggested by this conjecture to the number extracted
from the index. In the limited set of examples that we checked [with zero or one mixed branch] we
found an exact match. Finding a better way to confirm or falsify this conjecture is an interesting
problem.
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Appendix A

Elements of representation theory for
3d N = 2 and N = 4 theories

In this appendix, we present some basic aspects of representation theory for three-dimensional
N = 2 and N = 4 theories. A classification of unitary representations of the various supercon-
formal algebras has been done in [39], the notation of which is followed.

The three-dimensional superconformal algebra with N amount of supersymmetry is osp(N|4),
with its maximal bosonic subalgebra being the direct product of the conformal algebra in three-
dimensions and of the the R-symmetry algebra:

osp(N|4) ⊃ so(3, 2)× so(N )R (A.0.1)

and hence for the N = 2, 4 theories:

osp(2|4) ⊃ so(3, 2)× so(2)r, so(2)r ∼ u(1)r (A.0.2)
osp(4|4) ⊃ so(3, 2)× so(4)R, so(4)R ∼ su(2)R × su(2)R′ (A.0.3)

A superconformal multiplet is completely determined by the quantum numbers of its su-
perconformal primary operator, namely the one with the lowest scaling dimension, which is
annihilated by the generators of superconformal boosts (S,∆S = −1

2) and of special conformal
transformations (Kµ,∆Kµ = −1). The rest of the operators comprising the superconformal mul-
tiplet, are obtained by the action on the superconformal primary by the supercharges Q,∆Q = 1

2
and are called superconformal descendant operators. A descendant obtained by the action of
l-supercharges on the superconformal primary, is at the level-l of the multiplet.

Heighest-weight states of a given representation of the osp(2|4) or osp(4|4) are denoted as [j]r∆
and [j]R,R

′

∆ , with j being the spacetime spin, r ,(R,R′) being the R-symmetry spins and of course
∆ being the scaling dimension. The requirement for unitarity is that all operators comprising
a superconformal multiplet have non-negative norm this condition is expressed in the form of
unitarity bounds for the scaling dimension, ∆ ≥ f(j, R). When the bound is saturated, the
multiplet includes descendants with vanishing norm, called null states, which can be consistently
removed.
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Multiplets for which the inequality is strict, are called Long multiplets, all states have pos-
itive norm and they are denoted by L[j]R,R

′

∆ , where the labels are the quantum numbers of the
superconformal primary.

Multiplets containing null states are called short. There is a distinction between short mutli-
plets at the threshold where the above unitarity bound is saturated and isolated short multiplets,
which are separated from the other types of multiplets, that have the same quantum numbers,
by a gap. These two categories of short multiplets are denoted as follows:

Al[j]
{R}
∆A

, short at threshold (A.0.4)

Xl[j]
{R}
∆X

, isolated short (A.0.5)

where X ∈ (B,C,D) (different kinds of isolated short multiplets), with ∆A > ∆B > ∆C >
∆D and l, as stated above, denotes the level where the first null state appears. Finally, it is
important to present the concept of recombination of representations. In the limit where the
scaling dimension of a long multiplets approaches the unitarity bound from above, it breaks into
an Al[j]

{R}
∆A

multiplet plus another short multiplet that can be either short of the same kind or
an isolated one, which contains the null states of the prior short multiplet. In this sense the two
short multiplets recombine into the long one at the unitarity threshold:

L[j]{R}∆L→∆A
→ Al[j]

{R}
∆A
⊕Xl[j]

{R}
∆X

(A.0.6)

, where here X ∈ (A,B,C,D) and the multiplets that contribute to the recombination have
the same Lorentz and R-symmetry quantum numbers. Note that there are certain kinds of short
multiplets that are never involved in such recombinations: these are called absolutely protected
multiplets.

Below, we present the multiplet content and the shortening conditions for the N = 2 and
N = 4 theories.

Starting from the N = 2 theories, the four independent Poincaré supercharges are labeled by
the projections of the spacetime spin and the R-symmetry spin:

{Q = [±1
2](−1), Q̄ = ±1

2](1)} (A.0.7)

The unitary superconformal multiplets, are obtained by imposing independent shortening
conditions for the above supercharges. The shortening conditions and the a full list of the su-
perconformal multiplets are given in [39]. Here we refer to some of the characteristic N = 2
multiplets:

91



LB̄1[0](r>0)
r = [0](r)r ⊕ [12 ](r−1)

r+ 1
2
⊕ [0](r−2)

r+1 (A.0.8)

A1Ā1[1](0)
2 = [1](0)

2 ⊕ [32 ](±1)
5
2
⊕ [2](0)

3 (A.0.9)

A2Ā2[0](0)
1 = [0](0)

1 ⊕ [12 ](±1)
3
2
⊕ [0](0)

2 ⊕ [1](0)
2 (A.0.10)

the first is the superpotential multiplet, the second the stress-tensor multiplet and the last
one the vector current multiplet.

Regarding finally the N = 4 multiplets, again the shortening conditions and the full list of
multiplets, is found in [39]. There are eight independent Poincaré supercharges:

{[±1
2](1,1)

1/2 , [±
1
2](1,−1)

1/2 , [±1
2](−1,1)

1/2 , [±1
2](−1,−1)

1/2 } (A.0.11)

and the short superconformal multiplets are of the short-at-threshold, which can be involved
in recombinations and of B-short-isolated type, which are absolutely protected:

A1[j](R,R
′)

1+j+R+R′(j > 0), A2[0]R,R
′

1+R+R′ , B1[0]R,R
′

R+R′ (A.0.12)

These are the objects of interest throughout Part III.
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Appendix B

The supersymmetric Janus solution

In the second chapter of Part I, we have introduced the pair of harmonic functions h, ĥ, which
gave a solution of the supergravity equations on AdS4 ×M6 with AdS5 × S5 aymptotic regions
and point singularities supporting fivebrane and threebrane charge. Here we will present the pure
AdS5 × S5 solution and its Janus generalization.

Setting γ = γ̂ = 0 along with β = β̂ = 0, results to the simple form for the harmonic functions:

h = −iαsinh(z) + c.c (B.0.1)
ĥ = α̂cosh(z) + c.c (B.0.2)

This solution is characterized by the absence of fivebrane charges as well as by a constant
dilaton (δφ = 0) and a non-vanishing five-form background. Substituting h, ĥ in the metric ansatz
by computing the various metric factors of the solution, results to the AdS5 × S5 metric:

ds2
(10) = L2

5

(
cosh2(x)ds2

AdS4 + (dx2 + dy2) + sin2(y)ds2
S2 + cos2(y)ds2

Ŝ2

)
(B.0.3)

Its radius is given in terms of the only parameters of the solution, L5 = 2(αα̂)1/4.
Reintroducing the parameters β, β̂ in the above solution, accounts for the deformation which

results to its so-called supersymmetric Janus generalization:

h = −iαsinh(z − β) + c.c (B.0.4)
ĥ = α̂cosh(z − β̂) + c.c (B.0.5)

,where the deformation corresponds to a translation along the strip Σ(2) which preserves
the boundary conditions of the two harmonic functions. This is a supersymmetric domain wall
between two asymptotic regions with AdS5×S5 geometry. The dilaton interpolates between two
constant values at the asymptotic regions (φ+, φ− at ±∞) and the above parameters denote the
difference between these values :β = − ˆβ = δφ/2. The radius of the Janus solution depends now
on the dilaton variation, just by a rescaling by a factor cosh1/4(δφ): L5 = 2(αα̂cosh(δφ))1/4,
whereas the dilaton in the two asymptotic regions is given by e2φ = α̂e±δφ/α.
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The plot at the left hand side presents the dilaton, plotted for different asymptotic values, as
a function of the horizontal strip coordinate. The right hand side plot, is the one of the AdS4
warp factor for the set of dilaton variations of the left plot (δφ = 0, 1, 2 for the blue, magenta
and purple curves accordingly). Both plots are along y = π/4. As the dilaton variation increases,
the warp factor broadens and flattens. Finally, in the limit of large dilaton variation, δφ → the
geometry approaches AdS4 ×R [20]
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Appendix C

Combinatorics of linear quivers

We collect here formulae for the different parametrizations of the discrete data of the good linear
quivers, and we establish a lemma used in section 5.4.4 of the main text.

The mirror-symmetric parametrization of the quiver is in terms of two partitions (ρ, ρ̂) with
an equal total number N of boxes, if these partitions are viewed as Young diagrams. We label
entries of these partitions and of their transposes as

ρ = (l1, l2, . . . , lk+1) with l1 ≥ l2 ≥ · · · ≥ lk+1 ≥ 1,
ρT = (lT1 , lT2 , . . . , lTl1) with lT1 ≥ lT2 ≥ · · · ≥ lTl1 ≥ 1,
ρ̂ = (l̂1, l̂2, . . . , l̂k̂+1) with l̂1 ≥ l̂2 ≥ · · · ≥ l̂k̂+1 ≥ 1,

ρ̂T = (l̂T1 , l̂T2 , . . . , l̂Tl̂1) with l̂T1 ≥ l̂T2 ≥ · · · ≥ l̂Tl̂1 ≥ 1,

(C.0.1)

where we used the fact that the number of rows of ρT is given by the longest row l1 of ρ, we
denoted the number of rows of ρ as lT1 = k+1 ≥ 2, and likewise for hatted quantities. To simplify
formulae, the sequences (lj), (lT̂ ), (l̂̂), (l̂Tj ) are extended with zeros when j or ̂ goes beyond the
last entry. The total number of boxes is

∑
j lj =

∑
̂ l
T
̂ =

∑
̂ l̂̂ =

∑
j l̂
T
j = N .

In the string-theory embedding ρ and ρ̂ describe how N D3-branes end on two sets of five-
branes: on k + 1 NS5-branes to the left and on k̂ + 1 D5-branes to the right. 1 The number of
D3-branes ending on the jth NS5-brane (or its linking number which is invariant under brane
moves) is lj , and likewise for the hatted quantities A useful alternative parametrization of these
partitions is in terms of the numbers of their same-length rows

ρ = (1 + · · ·+ 1︸ ︷︷ ︸
M̂1

+ · · ·+ `+ · · ·+ `︸ ︷︷ ︸
M̂`

+ · · ·+ k̂ + · · ·+ k̂︸ ︷︷ ︸
M̂k̂

) ,

ρ̂ = (1 + · · ·+ 1︸ ︷︷ ︸
M1

+ · · ·+ `+ · · ·+ `︸ ︷︷ ︸
M`

+ · · ·+ k + · · ·+ k︸ ︷︷ ︸
Mk

) ,
(C.0.2)

where we used the good property ρ̂T > ρ which implies that l1 ≤ k̂ and l̂1 ≤ k. Note that
here some of the M` and M̂` may vanish, when there are no fundamental hypermultiplets at the
corresponding gauge-group nodes. Note also that the label ξ for groups of balanced nodes in

1In some of the earlier literature, especially ref. [12], ρ designated the partition of D3-branes among D5-branes
and ρ̂ the partition among NS5-branes. Our flipped convention here is chosen so as to remove all hats from the
data of the electric quiver, defined as the theory whose manifest flavour symmetry is realized on D5-branes. Note
in particular that in the parametrization (C.0.2) the number of same-length rows of ρ̂ runs over j = 1, · · · , k.
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section 5.4.4 runs over stacks of NS5-branes with M̂` > 1, i.e. over nodes in the magnetic quiver
with non-abelian flavour groups.

The electric and magnetic gauge groups are
∏k
j=1 U(Nj) and

∏k̂
̂=1 U(N̂̂):

N1 N2 · · · Nk

M1 M2 Mk

Nj = Nj−1 + l̂Tj − lj with N0 = 0,

Mj = l̂Tj − l̂Tj+1,

N̂1 N̂2 · · · N̂k̂

M̂1 M̂2 M̂k̂

N̂̂ = N̂̂−1 + lT̂ − l̂̂ with N̂0 = 0,

M̂̂ = lT̂ − lT̂+1.

(C.0.3)

The full 3dN = 4 flavour group isG×Ĝ withG =
(∏k

j=1 U(Mj)
)
/U(1) and Ĝ =

(∏k
̂=1 U(M̂̂)

)
/U(1).

By definition of transposition, l̂Tj counts rows of ρ̂ with at least j boxes, so the following difference
counts rows of ρ̂ with exactly j boxes:

Mj = l̂Tj − l̂Tj+1 = #{ı̂ | l̂̂ı = j},
and likewise M̂̂ = lT̂ − lT̂+1 = #{i | li = ̂}.

(C.0.4)

We restrict our attention to good theories: those with all Nj ≥ 1 and N̂̂ ≥ 1. In particular,
1 ≤ N̂1 = lT1 − l̂1 = k + 1− l̂1, namely l̂1 ≤ k. Likewise, l1 ≤ k̂.

An important quantity is the balance of a node. It takes a very simple form in terms of the
partitions:

Nj+1 +Nj−1 +Mj − 2Nj = (Nj+1 −Nj)− (Nj −Nj−1) +Mj

= l̂Tj+1 − lj+1 − l̂Tj + lj + l̂Tj − l̂Tj+1 = lj − lj+1.
(C.0.5)

The node j is balanced if this vanishes. An interval B ⊆ [1, k] of balanced nodes of the electric
quiver thus corresponds to |B| + 1 consecutive lj equal to the same value ̂. In terms of the
transposed partition, this means M̂̂ = lT̂ − lT̂+1 = |B| + 1. This is the well-known SU(|B| + 1)
flavour symmetry enhancement.
Lemma C.0.1

If the electric quiver has a balanced abelian node Nj = 1 then one of the following possibilities
holds:

1. 1 < j < k and Mj = 0 and Nj−1 = Nj+1 = 1;

2. j = k = 1 and M1 = 2 (this is the T [SU(2)] theory);

3. j = 1 and M1 = 1 and N2 = 1;

4. j = k and Mk = 1 and Nk−1 = 1;

5. j = 1 and M1 = 0 and N2 = 1;

6. j = k and Mk = 0 and Nk−1 = 2.

The corresponding magnetic gauge group (at position ̂ := lj) is abelian in the first four cases
and nonabelian in the last two.

96



Proof: The balance condition reads Nj−1 + Nj+1 + Mj = 2Nj = 2. This implies that
(Nj−1,Mj , Nj−1) are (1, 0, 1), (0, 2, 0), (0, 1, 1), (1, 1, 0), (0, 0, 2) or (2, 0, 0). For each case where
Nj−1 = 0 we deduce j = 1 because all nodes in [1, k] have non-zero rank. Similarly, Nj+1 = 0
implies j = k. We then work out the rank of the magnetic gauge group in each case.

Case 1. From Nj−Nj−1 = 0 and Mj = 0 and Nj+1−Nj = 0 we see that lj = l̂Tj = l̂Tj+1 = lj+1
(we denote this ̂). Thus the intersection of ρ (drawn in blue below) and ρ̂T (drawn in red and
dashed) includes a (j+ 1)× ̂ rectangle (drawn as thick black lines), and the two partitions share
a boundary

ρ

ρ̂T1

j

j + 1
row length lj = l̂Tj = ̂

row length lj+1 = l̂Tj+1 = ̂

By definition, N̂̂ counts boxes in rows 1 through ̂ of ρT , minus those in the same rows of ρ̂.
Removing the common rectangle, this compares the numbers of boxes of the two partitions below
the rectangle. Since the total numbers of boxes in both partitions are the same, it is equivalent
to comparing boxes above the lower edge of the rectangle, hence N̂̂ = Nj+1 = 1.

Case 2. T [SU(2)] is self-mirror and abelian.
Cases 3. and 5. N1 = 1 gives l̂T1 = l1 + 1. Thus, N̂l1 counts boxes of ρT (this partition has

l1 rows) minus all boxes of ρ̂ except its last (l̂T1 -th) row. Since |ρT | = |ρ̂|, we conclude that the
rank we care about is N̂l1 = l̂l̂T1

. This in turn is equal to the number of entries of ρ̂T equal to l̂T1 .
Note now that l̂T1 = l̂T2 + M1. If M1 > 0 (case 3) then l̂T2 < l̂T1 so N̂l1 = 1. If M1 = 0 (case 5)
then l̂T2 = l̂T1 so N̂l1 ≥ 2.

Cases 4. and 6. Nk = 1 (and Nk+1 = 0) gives lk+1 = l̂Tk+1 + 1, while balance gives lk = lk+1.
On general grounds, 1 ≤ N̂1 = lT1 − l̂1 = k + 1− l̂1 so the number of rows l̂1 of ρ̂T is ≤ k, hence
in particular l̂Tk+1 = 0. From all this we deduce that lk = lk+1 = 1 and that we want to know
N̂1. Now use l̂Tk = l̂Tk+1 + Mk. If Mk = 0 then this vanishes so ρ̂T has at most k − 1 rows, so
N̂1 = k + 1− l̂1 ≥ 2. If Mk > 0 then ρ̂T has k rows, namely N̂1 = k + 1− l̂1 = 1.
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Appendix D

Index and plethystic exponentials

The twisted partition function on S2 × S1 of the T ρ̂ρ theory is given by a multiple sum over
monopole charges and a multiple integral over gauge fugacities, see e.g. [113]

ZS2×S1 =
k∏
j=1

[
1
Nj !

∑
mj∈ZNj

∫ Nj∏
α=1

dzj,α
2πizj,α

]{
k∏
j=1

Nj∏
α=1

w
mj,α
j Zvec,diag

j,α

k∏
j=1

Nj∏
α 6=β

Zvec,off-diag
j,α,β

k∏
j=1

Mj∏
p=1

Nj∏
α=1

Z fund,hyp
j,p,α

k−1∏
j=1

Nj∏
α=1

Nj+1∏
β=1

Zbifund,hyp
j,α,j+1,β

} (D.0.1)

where

Zvec,diag
j,α = (q

1
2 t; q)∞

(q
1
2 t−1; q)∞

(D.0.2a)

Zvec,off-diag
j,α,β = (q

1
2 t−1)−

1
2 |mj,α−mj,β |(1− q

1
2 |mj,α−mj,β |zj,βz

−1
j,α)

×
(tq

1
2 +|mj,α−mj,β |zj,βz

−1
j,α ; q)∞

(t−1q
1
2 +|mj,α−mj,β |zj,βz

−1
j,α ; q)∞

(D.0.2b)

Z fund,hyp
j,p,α = (q

1
2 t−1)

1
2 |mj,α|

(t−
1
2 q

3
4 + 1

2 |mj,α|z±1
j,αµ

∓1
j,p ; q)∞

(t
1
2 q

1
4 + 1

2 |mj,α|z∓1
j,αµ

±1
j,p ; q)∞

(D.0.2c)

Zbifund,hyp
j,α,j+1,β = (q

1
2 t−1)

1
2 |mj,α−mj+1,β |

(t−
1
2 q

3
4 + 1

2 |mj,α−mj+1,β |z±1
j,αz

∓1
j+1,β ; q)∞

(t
1
2 q

1
4 + 1

2 |mj,α−mj+1,β |z∓1
j,αz

±1
j+1,β ; q)∞

. (D.0.2d)

The expressions (D.0.2) are the one-loop determinants of the N = 4 multiplets of T ρ̂ρ , namely
the Cartan and charged vector multiplets, and the fundamental and bifundamental hypermulti-
plets. The variables q, t are the fugacities defined in eq. (5.2.2), zj,α (where α labels the Cartan
generators) are the S1 holonomies of the U(Nj) gauge field and mj,α its 2-sphere fluxes, viz.
the monopole charges of the corresponding local operator in R3 . Furthermore µj,p are flavor
fugacities, wj is a fugacity for the topological U(1) symmetry whose conserved current is tr ∗F(j)
, while the q-Pochhammer symbols (a; q)∞ are defined by
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(a; q)∞ =
∞∏
n=0

(1− aqn) and (. . . a±1b∓1; q)∞ = (. . . ab−1; q)∞(. . . a−1b; q)∞ . (D.0.3)

Compared to the expressions in ref. [113] we have here replaced the background flux coupling
to any given multiplet by its absolute value. This is allowed because the N = 4 multiplets are
self-conjugate, so their one-loop determinants are insensitive to the sign of the flux. The theory
is also free from parity anomalies, so that the overall signs are unambiguous. 1

At leading order in the q expansion, the contribution of each monopole sector m = {mj,α} to
the superconformal index is (q

1
2 t−1)∆(m), where

2∆(m) =
k∑
j=1

Nj∑
α,β=1

−|mj,α −mj,β|+
k∑
j=1

Mj

Nj∑
α=1
|mj,α|+

k−1∑
j=1

Nj∑
α=1

Nj+1∑
β=1
|mj,α −mj+1,β|. (D.0.4)

The sphere Casimir energy ∆(m) is the scaling dimension [and the SO(3)C spin] of the
corresponding monopole operator [32][31]. It is known that in N = 4 theories monopole-operator
dimensions are one-loop exact, and that they are strictly positive for good linear quivers [65].
The index (D.0.1) admits therefore an expansion in positive powers of q.

It is useful to rewrite the superconformal index in terms of the plethystic exponential (PE)
which is defined, for any function f(v1, v2, · · · ) of arbitrarily many variables, by the following
expression

PE(f) = exp
( ∞∑
n=1

1
n
f(vn1 , vn2 , · · · )

)
. (D.0.5)

The reader can verify the following simple identities:

PE(f + g) = PE(f) PE(g) , PE(−v) = (1− v) , PE
(
(a, q)∞

)
= PE

(
− a

1− q
)
. (D.0.6)

Using these identities one can bring the index to the following form

ZS2×S1 =
k∏
j=1

[
1
Nj !

∑
mj∈ZNj

∫ Nj∏
α=1

dzj,α
2πizj,α

]{
(q

1
2 t−1)∆(m)

k∏
j=1

[Nj∏
α

w
mj,α
j

Nj∏
α 6=β

(1− q
1
2 |mj,α−mj,β |zj,βz

−1
j,α)

]

× PE
(

k∑
j=1

Nj∑
α,β=1

q
1
2 (t−1 − t)

1− q q|mj,α−mj,β |zj,βz
−1
j,α

+ (q
1
2 t)

1
2 (1− q

1
2 t−1)

1− q

k∑
j=1

Mj∑
p=1

Nj∑
α=1

q
1
2 |mj,α|

∑
±
z∓1
j,αµ

±1
j,p

+ (q
1
2 t)

1
2 (1− q

1
2 t−1)

1− q

k−1∑
j=1

Nj∑
α=1

Nj+1∑
β=1

q
1
2 |mj,α−mj+1,β |

∑
±
z∓1
j,αz

±1
j+1,β

)}
.

(D.0.7)
1There exists a subtle sign (−)e·m related to the change of spin of dyonic states with charges (e,m). The T ρ̂ρ

theory has no Chern-Simons terms, so the flux ground states have no electric charge, e, and contribute with plus
signs to the index. For excited states in the flux background this sign can be absorbed in the fugacities zj,α; it is
in the end irrelevant since the zj,α integrations project to gauge-invariant states.
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This is equation (5.2.3) in the main text. Notice that after extracting some factors, the
contributions of vector, fundamental and bifundamental multiplets add up in the argument of
the plethystic exponential, as they would in the standard exponential function.

The usefulness of the above rewriting can be illustrated with a simple example, that of a free
hypermultiplet whose superconformal index is

Z free hyp
S2×S1 = (t−

1
2 q

3
4µ∓1 ; q)∞

(t
1
2 q

1
4µ±1 ; q)∞

= PE
(

(q
1
4 t

1
2 − q

3
4 t−

1
2 )

1− q (µ+ µ−1)
)
. (D.0.8)

One recognizes in the PE exponent the contributions of the charge-conjugate N = 2 chiral
multiplets, each contributing to the index with one scalar (∆ = JH3 = 1

2 and J3 = JC3 = 0) and
one fermionic state (with ∆ = 1, JH3 = 0 and J3 = JC3 = 1

2). As for the factor of (1 − q), this
sums up descendant states obtained by the action of the derivative that raises both ∆ and J3 by
one unit. Multiparticle states (created by products of fields) are taken care of by the plethystic
exponential, the informaiton in them is in this simple case redundant.

Of course in interacting theories supersymmetric multiparticle states may be null, due for
example to F -term conditions. The plethystic exponent must in this case be interpreted appro-
priately, as we discuss in the main text.
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Appendix E

Superconformal index of T [SU(2)]

E.1 Analytical computation of the index
In the main text, it has been described in detail how one can obtain the superconformal index
for ‘good’ 3d N = 4 theories, in terms of the relevant fugacities of the theory as well as in terms
of a supercharacter expansion. A last addition to this already rich picture, is an exact, analytical
computation of the S2 × S1 partition function, which gives a closed form result. This is realized
by a brute-force evaluation of the contour integrals by employing q-special function techniques
[88] and is of course doable for all the theories presented above.

A simple and interesting theory to work out at this point is T [SU(2)]. T [SU(2)] is special
in the sense that both the electric and the magnetic flavor currents are non-abelian symmetry
currents, a trait that is not observed in Nf ≥ 3 SQED theories, as one can easily check ,there are
relations we cannot deduce from the F-term conditions.

Here we present all three approaches to the superconformal index with focus on the analytical
calculation and in the next section of this appendix we display the factorization property of the
T [SU(2)] index which also characterizes 3d N = 2 theories.

The expression for the superconformal index of this theory reads:

ZT [SU(2)]
S2×S1 =

∑
m∈Z

∮
S1(1)

dz

2πiz
(q

1
2 t; q)∞

(q
1
2 t−1; q)∞

(q1/2t−1)|m|
2∏
j=1

(t−
1
2 q

3
4 + |m|2 z±µ∓j ; q)∞

(t
1
2 q

1
4 + |m|2 z∓µ±j ; q)∞

(E.1.1)

,with the compact notation for the q-Pochhammer symbols: (a±; q)∞ = (a; q)∞(a−1; q)∞ and
µj as the electric flavor fugacity.

The first approach is based on summing over monopole charges and expanding the integrand
into q and z-series. In particular we expand the integrand around q = 0 to first order, then
expand around z = 0 and finally pick the corresponding z-series coefficient. The result reads:

ZT [SU(2)]
S2×S1 = 1 + q

1
2 (3t+ 3t−1) + q(5t2 − 7 + 5t−2) +O(q3/2) (E.1.2)

The expression is manifestly mirror symmetric, namely symmetric under the inversion t→ t−1,
as expected (and this has been checked up to O(q10)). A more informative form of this result is
obtained by rewriting this expression in terms of supercharacters, using directly the relations given
in the main text. In this way one can clearly extract the representation content for T [SU(2)]:
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ZT [SU(2)]
S2×S1 = 1 + 3(χ

B1[0](1,0)
1

+ χ
B1[0](0,1)

1
) + 5(χ

B1[0](2,0)
2

+ χ
B1[0](0,2)

2
)− χ

B1[0](1,1)
2

+ ... (E.1.3)

We observe that the index indeed enumerates the absolutely protected B-type multiplets which
contain the sought for marginal operators. The rest of the terms in the expansion correspond to
the mixed branch and are just products of characters of the above B-type multiplets.

Of course, the term of interest is the q-coefficient, which contains for a given quiver theory
all products of electric and magnetic flavor currents along with corrections coming from complet-
ing the expressions for the B1[0](1,0),(0,1)

1 characters, the contribution from the stress-tensor and
corrections from F-term relations. This coefficient comes partly from the zero monopole sector
(P (m) = 0) and partly from the P (m) = 2 sector and is obtained by following the procedure
of analytically studying contributions to the index from each monopole sector. The result for
T [SU(2)] reads:

ZT [SU(2)]
S2×S1 |q = −3− µ− µ−1 − w̃ − w̃−1 (E.1.4)

, where µ, w̃ stand for the electric and magnetic flavor fugacities. At this point we see that
this matches exactly with the q-term in the above result.

We can now proceed and display the procedure which leads to a closed form result for the
index of T [SU(2)]. The integration contour is the maximal torus of the gauge group and hence
in our case this corresponds to the unit circle. Since |q| < 1 and by assuming that the same holds
for the R-symmetry fugacity t, it follows that the contribution to the poles comes only from the
(t

1
2 q

1
4 + |m|2 z−1µ; q)∞ and (t

1
2 q

1
4 + |m|2 z−1µ−1; q)∞ denominators of (E.2.1) and therefore:

ZT [SU(N)]
S2×S1 =

∞∑
j=0

Res[zj = t
1
2µq

1
4 + |m|2 +j ] +

∞∑
ĵ=0

Res[zĵ = t
1
2µ−1q

1
4 + |m|2 +ĵ ] (E.1.5)

These infinite sets of residues correspond to the infinite first order poles from the products in
the denominators.
By working out the first few pole contributions, we produce the expression for the fist infinite
sum, which can be easily brought to the form

(q
1
2 t; q)∞

(q
1
2 t−1; q)∞

(t−1q
1
2µ−2; q)∞

(tq
1
2 +|m|µ2; q)∞

· (q1+|m|; q)∞
(q; q)∞

· (t−1q
1
2 ; q)∞

(tq
1
2 +|m|; q)∞

· (q1+|m|µ2; q)∞
(µ−2; q)∞ 3φ4

[
tµ2q

1
2 , tµ2q

1
2 +|m|, tq

1
2 , tq

1
2 +|m|

q1+|m|, µ2q1+|m|, µ2q
; q, t−2q

]
(E.1.6)

where along the way we have used the expression for the finite q-Pochhammer symbol:
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(z; q)n =
{

1, n = 0∏n−1
i=0 (1− zqi), n > 0 (E.1.7)

as well as the definition of the q-hypergeometric series:

rφr+1

[
a1, ..., ar+1
b1, ..., br

; q, z
]

=
∞∑
n=0

(a1, ..., ar+1; q)n
(q, b1, ..., br; q)n

zn (E.1.8)

and the expression for the first set of residues reads:

∑
m∈Z

(q
1
2 t; q)∞

(q
1
2 t−1; q)∞

(t−1q
1
2 )|m| (t

−1q
1
2µ−2; q)∞

(tq
1
2 +|m|µ2; q)∞

· (q1+|m|; q)∞
(q; q)∞

· (t−1q
1
2 ; q)∞

(tq
1
2 +|m|; q)∞

· (q1+|m|µ2; q)∞
(µ−2; q)∞

∞∑
n=0

(tµ2q
1
2 , tµ2q

1
2 +|m|, tq

1
2 , tq

1
2 +|m|; q)n

(q, q1+|m|, µ2q1+|m|, µ2q; q)n
(t−2q)n (E.1.9)

At this point we proceed by rearranging the sums and working out the expression by using
the property:

(Azm; q)n = (Azm; q)∞
(Azm+n)∞

(E.1.10)

What one achieves in this way is to incorporate the sum over monopole charges in defining
q-hypergeometric series. The process after some work finally gives:

∞∑
n=0

(q
1
2 t; q)∞

(q
1
2 t−1; q)∞

(t−1q
1
2 )n (tµ2q

1
2 ; q)n

(q; q)n
(tq

1
2 ; q)n

(µ2q; q)n
(t−1µ−2q

1
2 ; q)∞

(µ−2; q)∞
(t−1q

1
2 ; q)∞

(tµ2q
1
2 ; q)∞

(µ2q; q)∞
(tq

1
2 ; q)∞

2φ1

[
tµ2q

1
2 , tq

1
2

µ2q
; q, t−1q

1
2

]
(E.1.11)

Apparently the first few terms of the above expression, correspond to the same q-hypergeometric
series. Therefore the final result for the first set of residues reads:

(q
1
2 t; q)∞

(q
1
2 t−1; q)∞

(t−1µ−2q
1
2 ; q)∞

(µ−2; q)∞
(t−1q

1
2 ; q)∞

(tµ2q
1
2 ; q)∞

(µ2q; q)∞
(tq

1
2 ; q)∞

2φ1

[
tµ2q

1
2 , tq

1
2

µ2q
; q, t−1q

1
2

]2

(E.1.12)
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We have therefore the final expression for the first set of residues. The second and last set,
differs only by the fact that instead of the fugacity µ, its expression include the inverse fugacity
µ−1. Finally the full result for the superconformal index of T [SU(2)] reads:

ZT [SU(2)]
S2×S1 = (t−1µ−2q

1
2 ; q)∞

(tµ2q
1
2 ; q)∞

(µ2q; q)∞
(µ−2; q)∞ 2φ1

[
tµ2q

1
2 , tq

1
2

µ2q
; q, t−1q

1
2

]2

+
(
µ→ µ−1

)
(E.1.13)

Of course, expanding around q = 0 leads us directly back to (E.1.2) and hence everything is
consistent. Although this expression is practically mirror symmetric, this fact is not manifest in
the expression and perhaps is a relic of (E.2.1).

Finally, an interesting trait of this result is its factorized form, similar to the one encountered
in 3dN = 2 theories. In that case, superconformal indices (as well as sphere partition functions)
are written as sums of products of basic building blocks, refered to as holomorphic blocks, which
are partition functions on D2 × S1. This is introduced in the following section.
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E.2 T [SU(2)] index as holomorphic blocks
As well-known from the study of 3d N = 2 theories [98]-[25] (see also [104] for the N = 4 case),
superconformal indices (and various other partition functions) are bilinear combinations of basic
building blocks, refered to as (anti)holomorphic blocks, which are partition functions on D2×S1.
We here work out this factorization for T [SU(2)], and then verify that the resulting closed-form
expression (E.2.8) reproduces our expansion of the superconformal index at order O(q). The
structure generalizes but we did not find it useful in concrete calculations, because for generic
theories this factorized form contains a large number of terms.

The expression for the full superconformal index of T [SU(2)] reads:

ZT [SU(2)]
S2×S1 = (q

1
2 t; q)∞

(q
1
2 t−1; q)∞

∑
m∈Z

(q
1
2 t−1)|m|wm

∮
S1

dz

2πiz

2∏
p=1

∏
±

(t−
1
2 q

3
4 + |m|2 z±µ∓p ; q)∞

(t
1
2 q

1
4 + |m|2 z∓µ±p ; q)∞

, (E.2.1)

where m is the unique monopole charge, and z runs over the unit circle in the classical
Coulomb branch C. The integrand has poles at1

z = zs,j := µst
1
2 q

1
4 + |m|2 +j and z = µs

(
t

1
2 q

1
4 + |m|2 +j)−1 for s = 1, 2 and integer j ≥ 0. (E.2.2)

We calculate the index as an expansion in powers of q, hence |q| < 1, with |t| = |µs| = 1. The
poles that we named zs,j thus lie inside the |z| = 1 contour and other poles outside.

To warm up, compute the contribution to ZT [SU(2)]
S2×S1 from the pole at zs,0 for m = 0:

Cs :=
∏
p 6=s

(qµsµ−1
p ; q)∞

(µ−1
s µp; q)∞

(q
1
2 t−1µ−1

s µp; q)∞
(q

1
2 tµsµ

−1
p ; q)∞

. (E.2.3)

Before moving on to other residues, we note that the identity

(
iq

1
8a

1
2
)|m| (q

3
4 + |m|2 a; q)∞

(q
1
4 + |m|2 a−1; q)∞

=
(
iq

1
8a

1
2
)m (q

3
4 +m

2 a; q)∞
(q

1
4 +m

2 a−1; q)∞
(E.2.4)

allows us to replace |m| → m throughout (E.2.1). The resulting expression involves both
positive and negative powers of q, which would make our lives harder if we wanted to expand
in powers of q, but leads to nicer residues. We compute the contribution from the zs,j pole for
any m:

1At first sight there is also a pole at z = 0, but in fact the q-Pochhammer factors tend to zero there.
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(q
1
2 t; q)∞

(q
1
2 t−1; q)∞

(q
1
2 t−1w)m

2∏
p=1

(q1+j+ |m|+m2 µsµ
−1
p ; q)∞(q

1
2−j−

|m|−m
2 t−1µ−1

s µp; q)∞(
(q−j−

|m|−m
2 µ−1

s µp; q)∞
)′(q 1

2 +j+ |m|+m2 tµsµ
−1
p ; q)∞

= Cs (q
1
2 t−1w)k+−k−

2∏
p=1

(q
1
2 tµsµ

−1
p ; q)k+(q

1
2−k−t−1µ−1

s µp; q)k−
(qµsµ−1

p ; q)k+(q−k−µ−1
s µp; q)k−

(E.2.5)

where the prime in the first line denotes the removal of the vanishing factor in the q-
Pochhammer symbol for p = s, and we then used finite q-Pochhammer (a; q)k = (a; q)∞/(aqk; q)∞
and changed variables to k± := j + |m|±m

2 ≥ 0. Altogether

ZT [SU(2)]
S2×S1 =

2∑
s=1

Cs
∏
±

( ∑
k±≥0

(q
1
2 t−1w±1)k±

2∏
p=1

(q
1
2 tµsµ

−1
p ; q)k±

(qµsµ−1
p ; q)k±

)
. (E.2.6)

We recognize here the q-hypergeometric series

2φ1

[
a, b
c

∣∣∣∣ q, z] :=
∑
k≥0

(a; q)k(b; q)k
(q; q)k(c; q)k

zk. (E.2.7)

In terms of µ := µ1µ
−1
2 and µ̂ := w

ZT [SU(2)]
S2×S1 = (qµ; q)∞

(µ−1; q)∞
(q

1
2 t−1µ−1; q)∞
(q

1
2 tµ; q)∞

∏
±

(
2φ1

[
q

1
2 t, q

1
2 tµ

qµ

∣∣∣∣ q, q 1
2 t−1µ̂±1

])
+
(
µ↔ µ−1). (E.2.8)

This is the factorized form of the index. It is possible to show, using complicated identities
obeyed by q-hypergeometric series, that this result is mirror-symmetric

To compare with the main text we expand in powers of q and organize the series in terms of
supercharacters so as to extract the representation content:

ZT [SU(2)]
S2×S1 = 1 + q

1
2 tχ3(µ) + q

1
2 t−1χ3(µ̂) + qt2χ5(µ) + qt−2χ5(µ̂)− q

(
1 + χ3(µ) + χ3(µ̂)

)
+O(q

3
2 )

= 1 + χ3(µ) I(1,0) + χ3(µ̂) I(0,1) + χ5(µ) I(2,0) − I(1,1) + χ5(µ̂) I(0,2) +O(q
3
2 )

(E.2.9)

where χ3(µ) := µ+ 1 +µ−1 and χ5(µ) := µ2 +µ+ 1 +µ−1 +µ−2 are characters of SU(2), and we
used the short-hand notation for the superconformal indices I(JH ,JC) := I

B1[0](JH,JC )(q, t). This
agrees with eq. (5.4.32) of section 5.4.

As explained in the paper the following BPS multiplets can be unambiguously identified:
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• 1: the identity;

• χ3(µ)I(1,0): the SU(2) electric-flavour currents;

• χ3(µ̂)I(0,1): the SÛ(2) magnetic-flavour currents;

• χ5(µ)I(2,0): products of two electric currents;

• χ5(µ̂)I(0,2): products of two magnetic currents;

• −I(1,1): the energy-momentum tensor multiplet A2[0](0,0).

The bottom component Q̃p̄Qr of an electric-current multiplet is the product of an antifunda-
mental and a fundamental chiral scalar (the F -term condition imposes Q̃1Q1 + Q̃2Q2 = 0). Since
the gauge group is abelian, Q̃p̄Qr has rank 1 hence zero determinant. This removes one of the
six products of two electric currents, thus explaining why there are only five such products in
(E.2.9).

Altogether we see that the T [SU(2)] theory has no mixed marginal (or relevant) chiral oper-
ators. All exactly-marginal deformations are purely electric or purely magnetic superpotentials.
After imposing the D-term conditions the supeconformal manifold has dimension 10− 7 = 3.
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RÉSUMÉ

Dans le cadre de la dualité holographique entre une vaste famille de vides 1/2-maximalement supersymétriques Anti-de Sitter à quatre
dimensions (AdS4) et des théories des champs superconformes N=4 supersymétriques à trois dimensions (sCFT3), nous étudions
des questions théoriques majeures de gravité quantique et de théories de jauge. Ce travail a deux directions principales: La premiere
partie est consacrée aux mécanismes par lesquels le graviton AdS4 peut acquérir une petite masse, tandis que la seconde partie
concerne la cartographie de la variété superconforme des sCFT3 considérées. En ce qui concerne la question du mecanisme de Higgs
pour le graviton d’AdS4, nous proposons un nouveau mécanisme qui repose sur le couplage ”faible” de deux sCFT3s, initialement
découplées, en jaugent une symmétrie globale commune. Les deux tenseurs de stress initialement conservés se mélangent et le
résultat est une combinaison conservée et une combinaison orthogonale, dont la dimension acquiert une petite dimension anormale.
Holographiquement, cette configuration correspond à la connexion de deux univers AdS4 initialement découplés via un AdS5 × S5

fin, autrement appelé une “gorge” de Janus. Le résultat est une théorie AdS4-bimétrique, avec un graviton sans masse et un graviton
massif, dont la petite masse correspond à la dimension anormale de la combinaison duale de tenseurs de stress. Nous calculons
la masse du graviton, qui est exprimée en termes de données géométriques de la ”gorge” de Janus et de l’univers AdS4 considéré.
Une limite particulière de découplage de cette théorie, où le couplage gravitationnel effectif à quatre dimensions de l’un des deux
univers tend vers zéro, résulte en une théorie de gravité massive dans AdS4. En ce qui concerne la deuxième direction de ce travail,
les déformations superconformes des sCFT3s considérées qui génèrent la variété superconformale sont des déformations préservant
N = 2 supersymétrie, générées par des opérateurs exactement marginaux. Nous présentons comment tous ces opérateurs peuvent
être systématiquement extraits de l’index superconforme. Les opérateurs de branche de Coulomb et de Higgs sont pris en compte, tandis
qu’une attention particulière est accordée aux opérateurs mixtes. On montre que les modules de branches mixtes de ces théories sont
des opérateurs à double-corde qui se transforment dans la représentation (Adj, Adj) des groupes de saveurs électriques et magnétiques,
modulo un surcomptage pour les quivers avec des nœuds de jauge abéliens. Enfin, nous commentons sur l’interprétation holographique
des résultats, en affirmant que les supergravités mesurées peuvent capturer l’espace des modules tout entier si, outre les paramètres
de la solution d’arrière-plan, les modules de quantification des conditions aux limites sont également pris en compte.

MOTS CLÉS

Theorie des cordes, Theories superconformes des champs, Dualité Holographique, Gravité Massive, Localization Super-
symetrique, Indice superconforme, theories quiver, varieté superconforme

ABSTRACT

Based on the holographic duality between a large class of half-maximally supersymmetric four-dimensional Anti-de Sitter (AdS4) vacua

and three-dimensionalN = 4 superconformal field theories (sCFT3), we study quantum gravitational and gauge theoretic questions. This

work has two main directions: The first part is devoted to the mechanisms through which the low-lying AdS4-graviton can acquire a small

mass whereas the second part regards the mapping of the superconformal manifold of the considered sCFT3s. Regarding the question

of the graviton Higgsing in AdS4, we propose a new mechanism which relies on ”weakly” coupling two initially decoupled sCFT3s,

by gauging a common global symmetry. The two initially conserved stress tensors mix and the result of this mixing is a conserved

combination and an orthogonal combination, the scaling dimension of which acquires a small anomalous dimension. Holographically,

this setup is dual to connecting two initially decoupled AdS4 universes via a thin AdS5 × S5 or Janus ”throat”. The result is an AdS4-

bimetric theory, with one massless and one massive graviton, the small mass of which corresponds to the anomalous dimension of the

dual stress tensor combination. We compute the mass of the graviton, which is expressed in terms of the geometric data of the Janus

”throat” and of the considered AdS4 universe. A special decoupling limit of this theory, where the effective four-dimensional gravitational

coupling of one of the two universes vanishes, results to an AdS4-Massive gravity theory. Regarding the second direction of this

work, superconformal deformations of the considered sCFT3s which generate the superconformal manifold, are N = 2 supersymmetry

preserving deformations, generated by exactly marginal operators. We present how all these operators can be consistently extracted

from the superconformal index. Coulomb and Higgs branch operators are considered, while particular attention is payed to mixed-

branch operators. It is shown that the mixed-branch moduli of these theories are double-string operators transforming in the (Adj,Adj)

representation of the electric and magnetic flavour groups, up to overcounting for quivers with abelian gauge nodes. Finally, we comment

on the holographic interpretation of the results, arguing that gauged supergravities can capture the entire moduli space if, in addition to

the parameters of the background solution, quantization moduli of boundary conditions are also taken into account.

KEYWORDS

String Theory, Superconformal field theories, Holographic Duality, Massive Gravity, Supersymmetric Localization, Super-
conformal Index, Quiver theories, Superconformal Manifold
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