, Décret n°2003-296 du 31 mars 2003 relatif à la protection des travailleurs contre les dangers des rayonnements ionisants 2. Médecins, infirmières, techniciens

, RX, la filtration du faisceau, la taille de champ, le temps de fluoroscopie et le nombre d'images de scopie, -la géométrie de l'irradiation : la position et la rotation de l'arceau, la position de la table d'opération et la position du personnel dans la salle, -l'utilisation des équipements de protection : les écrans/rideaux plombés, les vêtements de protection et les lunettes plombées, -la morphologie du patient L'étude de l'apparition des tumeurs chez les praticiens interventionnels menée par Roguin et al. [220] a montré que dans 85% des cas de cancers du cerveau des cardiologues interventionnels la tumeur est située dans l'hémisphère gauche du cerveau, côté le plus proche de la source de rayonnement lors des procédures. Plusieurs données dosimétriques doivent être surveillées chez le personnel médical afin de, L'exposition du personnel médical en radiologie interventionnelle est influencée par plusieurs facteurs

, Exposition des extrémités Concernant l'exposition des mains du praticien, certaines procédures (drainage biliaire, injections spinales, . . . ) imposent une manipulation d'instruments dans le faisceau primaire de rayons X, ainsi une attention particulière doit être portée afin d'éviter une exposition directe de leurs mains, vol.45

, Sans dispositif de protection, l'exposition des mains durant les procédures d'angiographie peut varier de 120 à 710 µSv par opération. Pour les autres procédures interventionnelles l'exposition des mains s'échelonne de 50 à 630 µSv par procédure. Si aucune protection blindée n'est utilisée la dose reçue aux pieds du praticien excède celle reçue aux mains de celui-ci, ces doses varient de 320 à 2640 µSv par procédure. L'exposition durant les procédures de cardiologie interventionnelle varie, pour les mains de 260 à 350 µSv par procédure

, Durant les procédures de drainage biliaire l'exposition des jambes est inférieure à celle des mains indépendamment de l'utilisation des protections radiologiques. Si aucun équipement de protection n'est utilisé durant les procédures de pose de stent, d'embolisation et d'angioplastie, l'exposition des jambes du personnel est deux à trois fois supérieure à l'exposition des mains

, La grande variété d'exposition des extrémités du personnel entre les procédures souligne l'importance de l'utilisation d'équipement de protection et d'une formation adaptée du personnel

, L'extrapolation des valeurs de doses sur une année de la plupart des études montre que la dose aux extrémités reste sous les limites annuelles recommandées [221]. Cependant des études ont montré que l'exposition des épaules du praticien serait plus haute que la limite annuelle et que lors d'opérations lourdes les doses aux mains du praticien peuvent elles aussi approcher la

, Pour la plupart des procédures la zone la plus irradiée de la main du praticien se

, Si les équipements de protection sont correctement utilisés durant les procédures la dose aux extrémités

, Seuil d'apparition d'effets radiobiologiques Plusieurs études épidémiologiques sur les cataractes radio-induites ont montré que la dose seuil d'apparition est plus basse qu'estimée jusqu'à présent, p.228

, L'exposition du cristallin du praticien est dépendante de sa charge de travail ainsi que de l'utilisation des équipements de radioprotection. Aujourd'hui, la limite actuelle de 150 mSv sur douze mois consécutif n'est que rarement atteinte. L'application de la limite réglementaire de dose au cristallin de 20 mSv/an, va avoir pour conséquence un dépassement du seuil plus fréquent

A. Le-tableau, 5 synthétise les données de la littérature sur l'exposition du cristallin pour les procédures de cardiologie interventionnelle

A. Table, 5 -Synthèse des données d'exposition du cristallin du praticien pour les procédures de cardiologie interventionnelle

. Antic, , pp.121-84, 2013.

. Donadille, , pp.52-77, 2011.

. Kim, , pp.170-439, 2008.

. Vañó, , pp.170-53, 1998.

. Efstathopoulos, , p.13, 2003.

. Bor, , pp.32-107, 2009.

. Martin, , pp.66-71, 2011.

S. Pratt, , pp.15-53, 1993.

. Lie, , p.44, 2008.

. Vanhavere, , p.40, 2011.

. Szumska, , pp.73-74, 2016.

, Exposition de la thyroïde Chez les jeunes individus la glande thyroïde est sensible aux cancers radio-induits. Le risque de cancer diminue fortement après l'âge de 30 ans pour les hommes et 40 ans pour les femmes, vol.235

, L'utilisation conjointe d'un protège thyroïde et d'un tablier plombé réduit la dose efficace d'environ 50% comparé à l'utilisation d'un tablier plombé seul, vol.39

, L'utilisation correcte d'un écran blindé suspendu

, L'exposition de la thyroïde des praticiens par procédure de cardiologie interventionnelle est en moyenne de 88 µSv, vol.226

, Arrêté du 15 mai 2006 relatif aux conditions de délimitation et de signalisation des zones surveillées et contrôlées et des zones spécialement réglementées ou interdites compte tenu de l'exposition aux rayonnements ionisants, ainsi qu'aux règles d'hygiène, de sécurité et d'entretien qui y sont imposées

, Association d'une diode silicium et d'une chambre d'ionisation

, Education and Training in Radiological Protection for Diagnostic and Interventional Procedures, ICRP. ICRP Publication, vol.113, issue.5, 2009.

P. Healthcare, Philips Allura Xper FD20 System Specifications, 2010.

P. Healthcare, Azurion -Instructions for Use, 2016.

, Allura Xper FD20 Series -Intruction For Use, 2007.

D. Stueve, Management of pediatric radiation dose using Philips fluoroscopy systems DoseWise: perfect image, perfect sense, Pediatr. Radiol, vol.36, issue.S2, pp.216-220, 2006.

C. Jimonet, Personne compétente en radioprotection, 2007.

J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential Physics of Medical Imaging, 2012.

R. Deslattes, E. Kessler, P. Indelicato, and L. De-billy, X-ray Transition Energies Database (version 1.2). National Institute of Standards and Technology, 2005.

, ORAMED: Optimization of Radiation Protection of Medical Staff, 2012.

R. Behlig, Modern Diagnostic X-ray Sources, 2016.

P. Lanzer, Catheter-Based Cardiovascular Interventions, 2013.

V. Rana, K. Gill, S. Rudin, and D. R. Bednarek, Significance of including field non-uniformities such as the heel effect and beam scatter in the determination of the skin dose distribution during interventional fluoroscopic procedures, Proc. SPIE Med. Imaging, vol.8313, p.83131, 2012.

, Dosimetry in Diagnostic Radiology: An International Code of Practice, 2007.

, Equipement de diagnostic médical à rayonnement X -Conditions de rayonnement pour utilisation dans la détermination des caractéristiques, IEC, vol.61267, 2005.

, Quality Assurance measurement procedures explained. Xper Allura FD10 and FD20. What we measure, how we measure, Philips Medical Systems, 2011.

G. Poludniowski, G. Landry, F. Deblois, and P. M. Evans, SpekCalc: a program to calculate photon spectra from tungsten anode x-ray tubes, Phys. Med. Biol, vol.54, issue.19, pp.433-438, 2009.

N. Iqeilan, Entrance Skin Dose Measurement Using GafChromic Dosimetry Film for Patients Undergoing Coronary Angiography (CA) and Percutaneous Transluminal Coronary Angiography (PTCA) Procedures. Thesis for master of science in medical radiation physics, 2006.

W. J. Garzón, Estimativa Da Dose No Paciente E Na Equipe, 2016.

W. J. Garzón, R. Kramer, H. J. Khoury, and V. De-barros, Estimation of organ doses to patients undergoing hepatic chemoembolization procedures, J. Radiol. Prot, vol.35, issue.3, pp.629-647, 2015.

S. Suzuki, I. Yamaguchi, T. Kidouchi, and A. Yamamoto, Evaluation of Effective Dose During Abdominal Three-Dimensional Imaging for Three Flat-Panel-Detector Angiography Systems, Cardiovasc. Intervent. Radiol, vol.34, issue.2, pp.376-382, 2011.

G. Messaris, I. Abatzis, G. C. Kagadis, and A. P. Samartzis, Hysterosalpingography using a flat panel unit: Evaluation and optimization of ovarian radiation dose, Med. Phys, vol.39, issue.7Part1, pp.4404-4413, 2012.

A. Omar, R. Bujila, A. Fransson, and P. Andreo, A framework for organ dose estimation in x-ray angiography and interventional radiology based on dose-related data in DICOM structured reports, Phys. Med. Biol, vol.61, issue.8, pp.3063-3083, 2016.

E. Wemmert, Comparison of two Fluoroscopic Systems used for EVAR Procedures: an Approach to Analyze X-ray Image Quality Limited to Tube Output. Master of science thesis in medical engineering, 2014.

A. J. Gislason, B. Hoornaert, A. G. Davies, and A. R. Cowen, Allura Xper Cardiac System Implementation of Automatic Dose Rate Control, 2011.

D. R. Dance, S. Christofides, I. D. Mclean, and K. H. Ng, Diagnostic Radiology Physics. IAEA, 2014.

, Reference Air Kerma (rate) for Allura Xper FD20, 2006.

, DICOM Standards Committee Working Group 6. Supplement 94: Diagnostic X-Ray Radiation Dose Reporting (Dose SR, 2005.

, IEC 60601-2-43 : Appareils électromédicaux -Partie 2-43: Exigences particulières pour la sécurité de base et les performances essentielles des appareils à rayonnement X lors d'interventions procedures, IEC, 2010.

. Iec and . Iec, 61910-1 : Appareils électromédicaux -Documentation sur la dose de rayonnement -Partie 1: Rapports structurés sur la dose de rayonnement pour la radiographie et la radioscopie, 2014.

H. Wyckoff, . Allisy, . Fränz, W. Jennings, A. Kellerer et al., Radiation Quantities and Units. J. ICRU, vol.33, issue.2, 1980.

D. Cullen, J. Hubbell, and L. Kissel, EPDL97: the evaluated photo data library '97 version, vol.6, pp.1-35, 1997.

R. Antoni and L. Bourgois, Physique appliquée à l'exposition externe: Dosimétrie et radioprotection, 2013.

S. M. Seltzer, D. T. Bartlett, D. T. Burns, and G. Dietze, Fundamental Quantities And Units For Ionizing Radiation (Revised), J. ICRU, vol.85, issue.1, pp.1-35, 2011.

F. Glenn and . Knoll, Radiation Detection and Measurement, 2010.

L. Katz and A. S. Penfold, Range-Energy Relations for Electrons and the Determination of Beta-Ray End-Point Energies by Absorption, Rev. Mod. Phys, vol.24, issue.1, pp.28-44, 1952.

, ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs -Threshold Doses for Tissue Reactions in a Radiation Protection Context, ICRP. ICRP Publication, vol.118, issue.1-2, pp.1-322, 2012.

. Icrp and . Icrp, Publication 103: Recommendations of the ICRP, Radiat. Prot. Dosimetry, vol.129, issue.4, pp.500-507, 2007.

, Radiological protection in cardiology, ICRP. ICRP Publication, vol.120, issue.1, pp.1-125, 2013.

, ICRP. Statement on Tissue Reactions, 2011.

, Radiological Protection in Fluoroscopically Guided Procedures Performed Outside the Imaging Department, ICRP. ICRP Publication, vol.117, issue.6, pp.1-102, 2010.

, Société Française de Physique Médicale, Dosimétrie des explorations diagnostiques en radiologie, 2014.

C. M. Ma and J. P. Seuntjens, Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage x-ray beams, Phys. Med. Biol, vol.44, issue.1, pp.131-143, 1999.

D. R. Dance, U. Kingdom, G. Drexler, and R. D. Janeiro, Patient Dosimetry for X Rays used in Medical Imaging, J. ICRU, vol.74, issue.2, 2005.

, Radiation Dose Management for Fluoroscopically -Guided Interventional Medical Procedures. National Council on Radiation Protection and Measurements, NCRP. NCRP Report, issue.168, 2010.

N. Petoussi-henss, M. Zankl, G. Drexler, and W. Panzer, Calculation of backscatter factors for diagnostic radiology using Monte Carlo methods, Phys. Med. Biol, vol.43, issue.8, pp.2237-2250, 1998.

, Recommendations of the International Commission on Radiological Protection, ICRP. ICRP Publication, vol.60, issue.1-3, 1990.

, Recommandations 2007 de la Commission internationale de protection radiologique, ICRP. CIPR Publication, vol.103, issue.2-4, pp.1-417, 2007.

A. Allisy, W. A. Jennings, A. M. Kellerer, and J. W. Müller, ICRU Report 51: Quantities and Units in Radiation Protection Dosimetry, J. Int. Comm. Radiat. Units Meas, vol.26, issue.2, 1993.

A. Pin, Evaluation dosimétrique -Formation enseignants BTS Environnement Nucléaire -CEA -INSTN, 2015.

, RadCal. Ion Chambers, 2016.

, IEC 61674 -Medical electrical equipment -Dosimeters with ionization chambers and/or semiconductor detectors as used in X-ray diagnostic imaging, IEC, 2012.

F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, 2004.

, Communauté Européenne de l'Énergie Atomique, 2013.

, US Food and Drug Administration, International Organization for Medical Physics, 2012.

S. Balter, D. L. Miller, E. Vano, O. Lopez, and P. , A pilot study exploring the possibility of establishing guidance levels in x-ray directed interventional procedures, Med. Phys, vol.35, issue.2, pp.673-80, 2008.

, US Food and Drug Administration. Performance Standard for Diagnostic X-ray Systems and their Major Components, 2005.

, ANSM. Décision du 21 novembre 2016 fixant les modalités du contrôle de qualité des installations de radiodiagnostic utilisées pour des procédures interventionnelles radioguidées, 2016.

D. W. Fletcher, D. L. Miller, S. Balter, and M. A. Taylor, Comparison of four techniques to estimate radiation dose to skin during angiographic and interventional radiology procedures, J. Vasc. Interv. Radiol, vol.13, issue.4, pp.391-397, 2002.

D. L. Miller, S. Balter, P. E. Cole, and H. T. Lu, Radiation Doses in Interventional Radiology Procedures: The RAD-IR Study Part II: Skin Dose, J. Vasc. Interv. Radiol, vol.14, issue.8, pp.977-990, 2003.

D. L. Miller, S. Balter, L. K. Wagner, and J. Cardella, Quality Improvement Guidelines for Recording Patient Radiation Dose in the Medical Record, J. Vasc. Interv. Radiol, vol.15, issue.5, pp.423-429, 2004.

T. J. O'dea, R. A. Geise, and E. R. Ritenour, The potential for radiation-induced skin damage in interventional neuroradiological procedures: A review of 522 cases using automated dosimetry, Med. Phys, vol.26, issue.9, pp.2027-2033, 1999.

D. L. Miller, S. Balter, P. E. Cole, and H. T. Lu, Radiation Doses in Interventional Radiology Procedures: The RAD-IR Study Part I: Overall Measures of Dose, J. Vasc. Interv. Radiol, vol.14, issue.6, pp.711-727, 2003.

S. Balter, B. A. Schueler, D. L. Miller, and P. E. Cole, Radiation Doses in Interventional Radiology Procedures: The RAD-IR Study Part III: Dosimetric Performance of the Interventional Fluoroscopy Units, J. Vasc. Interv. Radiol, vol.15, issue.9, pp.919-926, 2004.

S. Van-de-putte, F. Verhaegen, Y. Taeymans, and H. Thierens, Correlation of patient skin doses in cardiac interventional radiology with dose-area product, Br. J. Radiol, vol.73, issue.869, pp.504-513, 2000.

J. C. Waite and M. Fitzgerald, An assessment of methods for monitoring entrance surface dose in fluoroscopically guided interventional procedures, Radiat. Prot. Dosimetry, vol.94, issue.1-2, pp.89-92, 2001.

, 59 -Establishing Guidance Levels in X Ray Guided Medical Interventional Procedures : A Pilot Study, International Atomic Energy Agency, 2009.

T. Moritake, Y. Matsumaru, T. Takigawa, and K. Nishizawa, Dose Measurement on Both Patients and Operators during Neurointerventional Procedures Using Photoluminescence Glass Dosimeters, Am. J. Neuroradiol, vol.29, issue.10, pp.1910-1917, 2008.

M. Hayakawa, T. Moritake, F. Kataoka, and T. Takigawa, Direct measurement of patient's entrance skin dose during neurointerventional procedure to avoid further radiation-induced skin injuries, Clin. Neurol. Neurosurg, vol.112, issue.6, pp.530-536, 2010.

T. Moritake, M. Hayakawa, Y. Matsumaru, and T. Takigawa, Precise mapping system of entrance skin dose during endovascular embolization for cerebral aneurysm, Radiat. Meas, vol.46, issue.12, pp.2103-2106, 2011.

D. Glennie, B. L. Connolly, and C. Gordon, Entrance skin dose measured with MOSFETs in children undergoing interventional radiology procedures, Pediatr. Radiol, vol.38, issue.11, pp.1180-1187, 2008.

D. D'alessio, C. Giliberti, A. Soriani, and L. Carpanese, Dose evaluation for skin and organ in hepatocellular carcinoma during angiographic procedure, J. Exp. Clin. Cancer Res, vol.32, issue.1, p.81, 2013.

M. J. Safari, J. Wong, K. H. Ng, and W. L. Jong, Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures, Med. Phys, vol.42, issue.5, pp.2550-2559, 2015.

E. Vano, L. Gonzalez, J. I. Ten, and J. M. Fernandez, Skin dose and dose-area product values for interventional cardiology procedures, Br. J. Radiol, vol.74, issue.877, pp.48-55, 2001.

S. Delle-canne, A. Carosi, A. Bufacchi, and T. Malatesta, Use of GAFCHROMIC XR type R films for skin-dose measurements in interventional radiology: Validation of a dosimetric procedure on a sample of patients undergone interventional cardiology, Phys. Medica, vol.22, issue.3, pp.105-110, 2006.

L. D'ercole, L. Mantovani, F. Z. Thyrion, and M. Bocchiola, A study on maximum skin dose in cerebral embolization procedures, AJNR. Am. J. Neuroradiol, vol.28, issue.3, pp.503-510, 2007.

. Icrp and . Icrp, Publication 74: Conversion Coefficients for use in Radiological Protection against External Radiation, Ann. ICRP, 1990.

D. Bor, T. Ol?ar, T. Toklu, and A. Ça?lan, Patient doses and dosimetric evaluations in interventional cardiology, Phys. Medica, vol.25, issue.1, pp.31-42, 2009.

J. Greffier, G. Moliner, F. Pereira, and L. Cornillet, Assessment of Patient's Peak Skin Dose Using Gafchromic Films During Interventional Cardiology Procedures: Routine Experience Feedback, Radiat. Prot. Dosimetry, vol.174, issue.3, pp.395-405, 2016.

E. Vaño, E. Guibelalde, J. M. Fernández, and L. González, Patient dosimetry in interventional radiology using slow films, Br. J. Radiol, vol.70, pp.195-200, 1997.

. Bibliographie,

E. R. Giles and P. H. Murphy, Measuring Skin Dose with Radiochromic Dosimetry Film in the Cardiac Catheterization Laboratory, Health Phys, vol.82, issue.6, pp.875-880, 2002.

J. Farah, A. Trianni, O. Ciraj-bjelac, and I. Clairand, Characterization of XR-RV3 GafChromic® films in standard laboratory and in clinical conditions and means to evaluate uncertainties and reduce errors, Med. Phys, vol.42, issue.7, pp.4211-4226, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02570476

F. Boujan, N. Clauss, E. Santos, and S. Boon, A new method of real-time skin dose visualization. Clinical evaluation of fluoroscopically guided interventions, Neuroradiology, vol.56, issue.11, pp.971-976, 2014.

R. M. Sanchez, E. Vano, J. M. Fernandez, and J. Escaned, Evaluation of a real-time display for skin dose map in cardiac catheterisation procedures, Radiat. Prot. Dosimetry, vol.165, issue.1-4, pp.240-243, 2015.

C. Bordier, R. Klausz, and L. Desponds, Patient dose map indications on interventional X-ray systems andvalidation with Gafchromic XR-RV3 film, Radiat. Prot. Dosimetry, vol.163, issue.3, pp.306-318, 2014.

C. Bordier, R. Klausz, and L. Desponds, Accuracy of a dose map method assessed in clinical and anthropomorphic phantom situations using Gafchromic films, Radiat. Prot. Dosimetry, vol.165, issue.1-4, pp.244-249, 2015.

V. Rana, S. Rudin, and D. R. Bednarek, Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures, vol.8313, p.831343, 2012.

V. K. Rana, S. Rudin, and D. R. Bednarek, Updates in the real-time Dose Tracking System (DTS) to improve the accuracy in calculating the radiation dose to the patients skin during fluoroscopic procedures, Proc. SPIE-the Int, vol.8668, p.86683, 2013.

V. K. Rana, S. Rudin, and D. R. Bednarek, Improved-Resolution, Real-Time Skin-Dose Mapping for Interventional Fluoroscopic Procedures, SPIE Med. Imaging, vol.9033, issue.903340, pp.1-7, 2014.

V. K. Rana, S. Rudin, and D. R. Bednarek, A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system, Med. Phys, vol.43, issue.9, pp.5131-5144, 2016.

K. Robinette, H. Daanen, and E. Paquet, The CAESAR project: a 3-D surface anthropometry survey, Second Int. Conf. 3-D Digit. Imaging Model. (Cat. No.PR00062), pp.380-386, 1999.

L. Matthews, M. Dixon, N. Rowles, and G. Stevens, A practical method for skin dose estimation in interventional cardiology based on fluorographic DICOM information, Radiat. Prot. Dosimetry, vol.168, issue.3, pp.1-7, 2015.

J. Greffier, C. Van-ngoc-ty, G. Bonniaud, and G. Moliner, Assessment of peak skin dose in interventional cardiology: A comparison between Gafchromic film and dosimetric software em, dose. Phys. Medica, vol.38, pp.16-22, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01893718

Y. Khodadadegan, M. Zhang, W. Pavlicek, and R. G. Paden, Automatic Monitoring of Localized Skin Dose with Fluoroscopic and Interventional Procedures, J. Digit. Imaging, vol.24, issue.4, pp.626-639, 2011.

P. B. Johnson, D. Borrego, S. Balter, and K. Johnson, Skin dose mapping for fluoroscopically guided interventions, Med. Phys, vol.38, issue.10, pp.5490-5499, 2011.

, Ionizing Radiation Exposure of the Population of the United States, National Council on Radiation Protection and Measurements, issue.160, 2009.

A. Bozkurt and D. Bor, Simultaneous determination of equivalent dose to organs and tissues of the patient and of the physician in interventional radiology using the Monte Carlo method, Phys. Med. Biol, vol.52, pp.317-330, 2007.

A. L. Manninen, J. M. Isokangas, A. Karttunen, and T. Siniluoto, A Comparison of Radiation Exposure between Diagnostic CTA and DSA Examinations of Cerebral and Cervicocerebral Vessels, Am. J. Neuroradiol, vol.33, issue.11, pp.2038-2042, 2012.

D. A. Broadhead, C. L. Chapple, K. Faulkner, and M. L. Davies, The impact of cardiology on the collective effective dose in the North of England, Br. J. Radiol, vol.70, issue.833, pp.492-497, 1997.

S. L. Mcfadden, R. B. Mooney, and P. H. Shepherd, X-ray dose and associated risks from radiofrequency catheter ablation procedures, Br. J. Radiol, vol.75, issue.891, pp.253-265, 2002.

E. P. Efstathopoulos, S. S. Makrygiannis, S. Kottou, and E. Karvouni, Medical personnel and patient dosimetry during coronary angiography and intervention, Phys. Med. Biol, vol.48, issue.18, pp.3059-3068, 2003.

V. Stisova, Effective dose to patient during cardiac interventional procedures (Prague workplaces), Radiat. Prot. Dosimetry, vol.111, issue.3, pp.271-274, 2004.

G. Compagnone, P. Ortolani, S. Domenichelli, and V. Ovi, Effective and equivalent organ doses in patients undergoing coronary angiography and percutaneous coronary interventions, Med. Phys, vol.38, issue.4, pp.2168-2175, 2011.

B. J. Mcparland, A study of patient radiation doses in interventional radiological procedures, Br. J. Radiol, vol.71, issue.842, pp.175-185, 1998.

R. Ropolo, O. Rampado, P. Isoardi, and G. Gandini, Evaluation of patient doses in interventional radiology, Radiol. Med, vol.102, pp.384-90, 2001.

, The Phantom Laboratory. The RANDO® Phantom, vol.100, p.110, 2004.

X. Xu and K. Eckerman, Handbook of anatomical models for radiation dosimetry, 2010.

M. Tapiovaara and T. Siiskonen, PCXMC-a Monte Carlo Program for calculating patient doses in medical X-ray examinations, STUK-A231. November, 2008.

R. Kramer, H. J. Khoury, and J. W. Vieira, CALDose_X-a software tool for the assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology, Phys. Med. Biol, vol.53, issue.22, pp.6437-6459, 2008.

M. Cristy, Mathematical phantoms representing children of various ages for use in estimates of internal dose, 1980.

M. C. Seidenbusch, D. Harder, D. F. Regulla, and K. Schneider, Conversion factors for determining organ doses received by paediatric patients in high-resolution single slice computed tomography with narrow collimation, Z. Med. Phys, vol.24, issue.2, pp.123-137, 2014.

L. Storm and H. I. Israel, Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100. At. Data Nucl. Data Tables, vol.7, pp.565-681, 1970.

R. Birch, M. Marshall, G. M. Ardran, and H. Group, Catalogue of Spectral Data for Diagnostic X-rays, Hospital Physicists' Association, 1979.

D. R. White, R. V. Griffith, and I. J. Wilson, ICRU Report 46: Photon, Electron, Proton and Neutron Interaction Data for Body Tissues, J. ICRU, vol.24, issue.1, 1992.

M. Foerth, M. C. Seidenbusch, M. Sadeghi-azandaryani, and U. Lechel, Typical exposure parameters, organ doses and effective doses for endovascular aortic aneurysm repair: Comparison of Monte Carlo simulations and direct measurements with an anthropomorphic phantom, Eur. Radiol, vol.25, issue.9, pp.2617-2626, 2015.

E. Karavasilis, A. Dimitriadis, H. Gonis, and P. Pappas, Effective dose in percutaneous transhepatic biliary drainage examination using PCXMC2.0 and MCNP5 Monte Carlo codes, Phys. Medica, vol.30, issue.4, pp.432-436, 2014.

D. Borrego, D. A. Siragusa, S. Balter, and W. E. Bolch, A hybrid phantom system for patient skin and organ dosimetry in fluoroscopically guided interventions, Med. Phys, vol.44, issue.9, pp.4928-4942, 2017.

A. M. Geyer, S. O'reilly, C. Lee, and D. J. Long, The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults-application to CT dosimetry, Phys. Med. Biol, vol.59, issue.18, pp.5225-5242, 2014.

. Icrp and . Icrp, Publication 73: Radiological Protection and Safety in Medicine, Ann. ICRP, vol.26, issue.2, 1996.

, Communauté Européenne de l'Énergie Atomique, 1997.

J. L. Georges, L. Belle, C. Etard, and J. B. Azowa, Radiation Doses to Patients in Interventional Coronary Procedures-Estimation of Updated National Reference Levels by Dose Audit, Radiat. Prot. Dosimetry, vol.175, issue.1, pp.1-9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02551290

C. Etard, E. Bigand, C. Salvat, and V. Vidal, Patient dose in interventional radiology: a multicentre study of the most frequent procedures in France, Eur. Radiol, vol.27, issue.10, pp.4281-4290, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01896513

, SFPM. Rapport SFPM n°32 : Niveaux de référence en radiologie interventionnelle, 2017.

, Diagnostic Reference Levels in Medical Imaging, ICRP. ICRP Publication, vol.135, issue.1, pp.1-144, 2017.

L. T. Dauer, R. Thornton, Y. Erdi, and H. Ching, Estimating Radiation Doses to the Skin from Interventional Radiology Procedures for a Patient Population with Cancer, J. Vasc. Interv. Radiol, vol.20, issue.6, pp.782-788, 2009.

T. Deschler, N. Arbor, F. Carbillet, and S. Higueret, A Monte Carlo Framework for Estimating Staff and Patient Dosimetric Quantities in Interventional Radiology Procedures, IEEE Med. Imaging Conf, 2016.

N. Metropolis and S. Ulam, The Monte Carlo Method, J. Am. Stat. Assoc, vol.44, issue.247, pp.335-341, 1949.

N. Metropolis, The beginning of the Monte Carlo method, Los Alamos Sci, vol.15, pp.125-130, 1987.

J. Seco and F. Verhaegen, Monte Carlo Techniques in Radiation Therapy, 2013.

O. N. Vassiliev, Monte Carlo Methods for Radiation Transport, Biological and Medical Physics, 2017.

D. H. Lehmer, Mathematical Methods in Large Scale Computing Units, In Ann. Comp. Lab. Harvard Univ, vol.26, pp.141-146, 1951.

M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. Model. Comput. Simul, vol.8, issue.1, pp.3-30, 1998.

B. Walters, I. Kawrakow, and D. Rogers, History by history statistical estimators in the BEAM code system, Med. Phys, vol.29, issue.12, pp.2745-2752, 2002.

R. L. Ford and W. R. Nelson, The EGS code system: Computer programs for the Monte Carlo simulation of electromagnetic cascade showers, 1978.

W. R. Nelson, H. Hirayama, and D. W. Rogers, The EGS4 Code System. SLAC-265. Stanford Linear Accelerator Center, 1985.

I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version, Med. Phys, vol.27, issue.3, pp.485-498, 2000.

S. Agostinelli, J. Allison, K. Amako, and J. Apostolakis, Geant4-a simulation toolkit, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, vol.506, issue.3, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

J. Allison, K. Amako, J. Apostolakis, and H. Araujo, Geant4 developments and applications, IEEE Trans. Nucl. Sci, vol.53, issue.1, pp.270-278, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00069212

J. Allison, K. Amako, J. Apostolakis, and P. Arce, Recent developments in Geant 4, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, vol.835, pp.186-225, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01412626

J. S. Hendricks and J. F. Briesmeister, Recent MCNP Developments, IEEE Trans. Nucl. Sci, vol.39, issue.4, pp.1035-1040, 1992.

F. Brown, B. Kiedrowski, J. Bull, and T. Goorley, Advances in the Development & Verification of MCNP5 & MCNP6, 2011.

J. Baró, J. Sempau, J. Fernández-varea, and F. Salvat, PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.100, issue.1, pp.31-46, 1995.

F. Salvat, J. M. Fernandez, J. Sempau, and . Penelope, A Code System for Monte Carlo Simulation of Electron and Photon Transport, Work. Proceedings, Spain, pp.4-7, 2011.

F. Salvat, The penelope code system. Specific features and recent improvements, Ann. Nucl. Energy, vol.82, pp.98-109, 2015.

S. Jan, G. Santin, D. Strul, and S. Staelens, GATE: a simulation toolkit for PET and SPECT, Phys. Med. Biol, vol.49, issue.19, pp.4543-4561, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00021834

D. Sarrut, M. Bardiès, N. Boussion, and N. Freud, A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, Med. Phys, vol.41, issue.6Part1, p.64301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015819

S. Jan, D. Benoit, E. Becheva, and T. Carlier, GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Phys. Med. Biol, vol.56, issue.4, pp.881-901, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00559709

D. Sarrut and L. Guigues, Region-oriented CT image representation for reducing computing time of Monte Carlo simulations, Med. Phys, vol.35, issue.4, pp.1452-1463, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00631160

I. J. Chetty, M. Rosu, M. L. Kessler, and F. Ba, Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning, Int. J. Radiat. Oncol. Biol. Phys, vol.65, issue.4, pp.1249-1259, 2006.

D. Cullen, . Bnl, and L. Iaea, EPICS2014: Electron Photon Interaction Cross Sections, International Atomic Energy Agency, 2015.

S. T. Perkins, D. E. Cullen, and S. M. Seltzer, Tables and graphs of electron interaction cross-sections from 10-eV to 100-GeV derived from the LLNL evaluated electron data library (EEDL), pp.1-100

S. T. Perkins, D. E. Cullen, M. H. Chen, and J. Rathkopf, Tables and graphs of atomic subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL), 1991.

. Scofield-j.-radiative and . Transitions, At. Inn. Process, vol.1, pp.265-292, 1975.

M. J. Berger, J. Coursey, M. Zucker, C. J. Estar, P. et al., Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions, 2017.

F. Baldacci, . Mittone-a, . Bravin-a, and P. Coan, A track length estimator method for dose calculations in low-energy x-ray irradiations: implementation, properties and performance, Z. Med. Phys, vol.25, issue.1, pp.36-47, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015846

H. Elazhar, T. Deschler, J. M. Létang, and A. Nourreddine, Neutron track length estimator for GATE Monte Carlo dose calculation in radiotherapy, Phys. Med. Biol, vol.63, issue.12, p.125018, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01912041

W. Schneider, T. Bortfeld, and W. Schlegel, Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions, Phys. Med. Biol, vol.45, issue.2, pp.459-478, 2000.

V. Hubert-tremblay, L. Archambault, D. Tubic, and R. Roy, Octree indexing of DICOM images for voxel number reduction and improvement of Monte Carlo simulation computing efficiency, Med. Phys, vol.33, issue.8, pp.2819-2831, 2006.

H. Jiang and H. Paganetti, Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data, Med. Phys, vol.31, issue.10, pp.2811-2818, 2004.

X. G. Xu, An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history, Phys. Med. Biol, vol.59, issue.18, pp.233-302, 2014.

, Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms, ICRP. ICRP Publication, vol.110, issue.2, pp.1-164, 2009.

H. Fisher and W. S. Snyder, Variation of dose delivered by 137Cs as a function of body size from infancy to adulthood, 1966.

H. Fisher and W. Snyder, Distribution of dose in the body from a source of gamma rays distributed uniformly in an organ, 1967.

R. Kramer, M. Zankl, G. Williams, and G. Drexler, The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods. Part I: The Male (ADAM) and Female (EVA) Adult Mathematical Phantoms, 1982.

M. Stabin, E. Watson, C. M. Ryman, and J. , Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy, 1995.

H. Schlattl, M. Zankl, and N. Petoussi-henss, Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures, Phys. Med. Biol, vol.52, issue.8, pp.2123-2145, 2007.

N. Petoussi-henss, M. Zankl, U. Fill, and D. Regulla, The GSF family of voxel phantoms, Phys. Med. Biol, vol.47, issue.1, pp.89-106, 2002.

M. Zankl, U. Fill, N. Petoussi-henss, and D. Regulla, Organ dose conversion coefficients for external photon irradiation of male and female voxel models, Phys. Med. Biol, vol.47, issue.14, pp.2367-2385, 2002.

M. Zankl, J. Becker, U. Fill, and N. Petoussi-henss, GSF male and female adult voxel models representing ICRP Reference Man-the present status, 2005.

. Icrp and . Icrp, Publication 116: The first ICRP/ICRU application of the male and female adult reference computational phantoms, Phys. Med. Biol, vol.59, issue.18, pp.5209-5224, 2014.

W. P. Segars, Developement and application of the new dynamic nurbs-based cadiac-torso (NCAT) phantom, 2001.

W. P. Segars and B. Tsui, MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research, Proc. IEEE, vol.97, issue.12, pp.1954-1968, 2009.

W. P. Segars, G. Sturgeon, S. Mendonca, and J. Grimes, 4D XCAT phantom for multimodality imaging research, Med. Phys, vol.37, issue.9, pp.4902-4915, 2010.

W. P. Segars, J. Bond, J. Frush, and S. Hon, Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization, Med. Phys, vol.40, issue.4, p.43701, 2013.

H. A. Kramers and . Xciii, On the theory of X-ray absorption and of the continuous X-ray spectrum, Philos. Mag. Ser, vol.6, issue.275, pp.836-871, 1923.

R. Birch and M. Marshall, Computation of bremsstrahlung X-ray spectra and comparison with spectra measured with a Ge(Li) detector, Phys. Med. Biol, vol.24, issue.3, p.2, 1979.

D. M. Tucker, G. T. Barnes, and D. P. Chakraborty, Semiempirical model for generating tungsten target x-ray spectra, Med. Phys, vol.18, issue.2, pp.211-218, 1991.

K. Cranley, B. J. Gilmore, G. Fogarty, and L. Desponds, Catalogue of Diagnostic X-Ray Spectra and Other Data, Institute of Physics and Engineering in Medicine, 1997.

J. M. Boone and J. A. Seibert, An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV, Med. Phys, vol.24, issue.11, pp.1661-1670, 1997.

G. G. Poludniowski and P. M. Evans, Calculation of x-ray spectra emerging from an x-ray tube. Part I. Electron penetration characteristics in x-ray targets, Med. Phys, vol.34, issue.6Part1, pp.2164-2174, 2007.

G. G. Poludniowski, Calculation of x-ray spectra emerging from an x-ray tube. Part II. X-ray production and filtration in x-ray targets, Med. Phys, vol.34, issue.6Part1, pp.2175-2186, 2007.

A. M. Hernandez and J. M. Boone, Tungsten anode spectral model using interpolating cubic splines: Unfiltered x-ray spectra from 20 kV to 640 kV, Med. Phys, vol.41, issue.4, p.42101, 2014.

M. Bontempi, L. Andreani, P. L. Rossi, and A. Visani, Monte Carlo simulator of realistic x-ray beam for diagnostic applications, Med. Phys, vol.37, issue.8, pp.4201-4209, 2010.

T. Deschler, N. Arbor, F. Carbillet, and A. Nourreddine, Dose calculations in heterogeneous volumes with the GATE Monte Carlo software for radiological protection, Accepté pour publication), 2018.

G. Mora, T. Pawlicki, A. Maio, and C. M. Ma, Effect of Voxel Size on Monte Carlo Dose Calculations for Radiotherapy Treatment Planning, Physics, Part. Transp. Simul. Appl, pp.549-554, 2001.

A. Yi-can, W. Sheng-xiang, T. Jiang-hui, and Z. , Effect of CT Image-Based Voxel Size On Monte Carlo Dose Calculation, Conf. Proc. IEEE Eng. Med. Biol. Soc, vol.6, pp.6449-6451, 2005.

T. Deschler, N. Arbor, F. Carbillet, and A. Nourreddine, Dosimetry for interventional radiology, OpenGATE Collab. Meet, issue.Vienna, 2015.

T. Deschler, F. Carbillet, N. Arbor, and S. Higueret, Monte Carlo program for radioprotection of patients and medical staff in interventional radiology, Phys. Medica, vol.44, p.12, 2017.

. Offis, . Dcmtk--dicom, and . Toolkit, , 2018.

, Content Mapping Resource, vol.16, 2016.

, DICOM Conformance Statement Allura Xper Release 8.2. Tech. rep., Philips Medical Systems Nederland B, Philips Medical Systems, 2013.

, National Electrical Manufacturers Association. C.8.7.5 XA Positioner Module, 2017.

P. Sievers, J. Klammer, T. Michel, and O. Hupe, Improving the spectral resolution of a highly pixelated detector by applying a pixel-by-pixel energy calibration for investigating the spectral properties of the anode heel effect, J. Instrum, vol.7, issue.07, pp.7011-07011, 2012.

P. Russo, Handbook of X-ray Imaging : Physics and Technology, 2017.

D. R. White, J. Booz, R. V. Griffith, and J. J. Spokas, Tissue Substitutes in Radiation Dosimetry and Measurement, J. ICRU, vol.44, issue.1, 1989.

, Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values, ICRP. ICRP Publication, vol.89, issue.3-4, pp.1-277, 2002.

, Report of the task group on reference man, vol.23, 1975.

, Human Alimentary Tract Model for Radiological Protection, ICRP. ICRP Publication, vol.100, 2006.

A. N. Khan and J. M. Howat, Small-Bowel Obstruction Imaging, 2016.

T. Fernandes, M. I. Oliveira, R. Castro, and B. Araújo, Bowel wall thickening at CT: simplifying the diagnosis, Insights Imaging, vol.5, issue.2, pp.195-208, 2014.

. Raysafe, Raysafe Xi Classic Specification, 2015.

. Afnor and . Norme, NF ISO 4037-1 : Rayonnement X et gamma de référence pour l'étalonnage des dosimètres et des débitmètres, et pour la détermination de leur réponse en fonction de l énergie des photons -Partie 1 : Caractéristiques des rayonnements et méthodes de prod, 1998.

. Radcal, , 2011.

A. Charraud and H. Valdelièvre, La taille et le poids des Français, Econ. Stat, vol.132, issue.1, pp.23-38, 1981.

T. J. Wood, C. S. Moore, J. R. Saunderson, and A. W. Beavis, Validation of a technique for estimating organ doses for kilovoltage cone-beam CT of the prostate using the PCXMC 2.0 patient dose calculator, J. Radiol. Prot, vol.35, issue.1, pp.153-163, 2015.

G. Bartal, E. Vano, G. Paulo, and D. L. Miller, Management of patient and staff radiation dose in interventional radiology: Current concepts, Cardiovasc. Intervent. Radiol, vol.37, issue.2, pp.289-298, 2014.

D. L. Miller, E. Vañó, G. Bartal, and S. Balter, Occupational Radiation Protection in Interventional Radiology: A Joint Guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology, J. Vasc. Interv. Radiol, vol.21, issue.5, pp.607-615, 2010.

C. Koukorava, E. Carinou, P. Ferrari, and S. Krim, Study of the parameters affecting operator doses in interventional radiology using Monte Carlo simulations, Radiat. Meas, vol.46, issue.11, pp.1216-1222, 2011.

L. Donadille, E. Carinou, M. Brodecki, and J. Domienik, Staff eye lens and extremity exposure in interventional cardiology: Results of the ORAMED project, Radiat. Meas, vol.46, issue.11, pp.1203-1209, 2011.

J. P. Mccaffrey, H. Shen, and B. Downton, Mainegra-Hing E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments, Med. Phys, vol.34, issue.2, pp.530-537, 2007.

E. Vaño, L. Gonzalez, J. M. Fernandez, and F. Alfonso, Occupational radiation doses in interventional cardiology: a 15-year follow-up, Br. J. Radiol, vol.79, issue.941, pp.383-388, 2006.

D. Nikodemová, M. Brodecki, E. Carinou, and J. Domienik, Staff extremity doses in interventional radiology. Results of the ORAMED measurement campaign, Radiat. Meas, vol.46, issue.11, pp.1210-1215, 2011.

R. H. Thornton, L. T. Dauer, J. P. Altamirano, and K. J. Alvarado, Comparing Strategies for Operator Eye Protection in the Interventional Radiology Suite, J. Vasc. Interv. Radiol, vol.21, issue.11, pp.1703-1707, 2010.

C. Koukorava, J. Farah, L. Struelens, and I. Clairand, Efficiency of radiation protection equipment in interventional radiology: A systematic Monte Carlo study of eye lens and whole body doses, J. Radiol. Prot, vol.34, issue.3, pp.509-528, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02641728

E. Vano, L. Gonzalez, J. M. Fernandez, and C. Prieto, Influence of patient thickness and operation modes on occupational and patient radiation doses in interventional cardiology, Radiat. Prot. Dosimetry, vol.118, issue.3, pp.325-330, 2006.

S. Ba, T. J. Vrieze, H. Bjarnason, and A. W. Stanson, An Investigation of Operator Exposure in Interventional Radiology, RadioGraphics, vol.26, issue.5, pp.1533-1541, 2006.

F. Vanhavere, E. Carinou, J. Domienik, and L. Donadille, Measurements of eye lens doses in interventional radiology and cardiology: Final results of the ORAMED project, Radiat. Meas, vol.46, issue.11, pp.1243-1247, 2011.

I. Pantos, C. Koukorava, E. Nirgianaki, and E. Carinou, Radiation exposure of the operator during cardiac catheter ablation procedures, Radiat. Prot. Dosimetry, vol.150, issue.3, pp.306-311, 2012.

A. Roguin, J. Goldstein, O. Bar, and J. A. Goldstein, Brain and Neck Tumors Among Physicians Performing Interventional Procedures, Am. J. Cardiol, vol.111, issue.9, pp.1368-1372, 2013.

F. Vanhavere, E. Carinou, L. Donadille, and M. Ginjaume, An overview on extremity dosimetry in medical applications, Radiat. Prot. Dosimetry, vol.129, issue.1-3, pp.350-355, 2008.

J. Damilakis, M. Koukourakis, A. Hatjidakis, and S. Karabekios, Radiation exposure to the hands of operators during angiographic procedures, Eur. J. Radiol, vol.21, issue.1, pp.72-75, 1995.

E. Vañó, L. González, E. Guibelalde, and J. M. Fernández, Radiation exposure to medical staff in interventional and cardiac radiology, Br. J. Radiol, vol.71, issue.849, pp.954-960, 1998.

C. J. Martin and M. Whitby, Application of ALARP to extremity doses for hospital workers, J. Radiol. Prot, vol.23, issue.4, pp.405-421, 2003.

L. Donadille, E. Carinou, M. Ginjaume, and J. Jankowski, An overview of the use of extremity dosemeters in some European countries for medical applications, Radiat. Prot. Dosimetry, vol.131, issue.1, pp.62-66, 2008.

C. J. Martin, Personal dosimetry for interventional operators: when and how should monitoring be done?, Br. J. Radiol, vol.84, pp.639-648, 1003.

E. Vano, L. Gonzalez, J. M. Fernández, and Z. J. Haskal, Eye Lens Exposure to Radiation in Interventional Suites: Caution Is Warranted, Radiology, vol.248, issue.3, pp.945-953, 2008.

F. Vanhavere, M. Ginjaume, E. Carinou, and G. Gualdrini, International Workshop on Optimization of Radiation Protection of Medical Staff, ORAMED 2011, Radiat. Meas, vol.46, issue.11, pp.1195-1196, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02962941

A. Szumska, R. Kope?, and M. Budzanowski, Occupational doses of medical staff and their relation to patient exposure incurred in coronary angiography and intervention, Radiat. Meas, vol.84, issue.2, pp.34-40, 2016.

V. Antic, O. Ciraj-bjelac, M. Rehani, and S. Aleksandric, Eye lens dosimetry in interventional cardiology: results of staff dose measurements and link to patient dose levels, Radiat. Prot. Dosimetry, vol.154, issue.3, pp.276-284, 2013.

K. P. Kim, D. L. Miller, S. Balter, and R. A. Kleinerman, Occupational Radiation Doses to Operators Performing Cardiac Catheterization Procedures, Health Phys, vol.94, issue.3, pp.211-227, 2008.

D. Bor, T. Olgar, E. Onal, and A. Caglan, Assessment of radiation doses to cardiologists during interventional examinations, Med. Phys, vol.36, issue.8, pp.3730-3736, 2009.

T. A. Pratt and A. J. Shaw, Factors affecting the radiation dose to the lens of the eye during cardiac catheterization procedures, Br. J. Radiol, vol.66, issue.784, pp.346-350, 1993.

O. O. Lie, G. U. Paulsen, and T. Wohni, Assessment of effective dose and dose to the lens of the eye for the interventional cardiologist, Radiat. Prot. Dosimetry, vol.132, issue.3, pp.313-318, 2008.

, Health Risks from Exposure to Low Levels of Ionizing Radiation, 2006.

K. Perisinakis, G. Solomou, J. Stratakis, and J. Damilakis, Data and methods to assess occupational exposure to personnel involved in cardiac catheterization procedures, Phys. Medica, vol.32, issue.2, pp.386-392, 2016.

R. Sanchez, E. Vano, J. M. Fernandez, and J. J. Gallego, Staff Radiation Doses in a Real-Time Display Inside the Angiography Room, Cardiovasc. Intervent. Radiol, vol.33, issue.6, pp.1210-1214, 2010.

E. Vano, J. Fernandez, and R. Sanchez, Occupational dosimetry in real time. Benefits for interventional radiology, Radiat. Meas, vol.46, issue.11, pp.1262-1265, 2011.

V. Sandblom, T. Mai, A. Almén, and H. Rystedt, Evaluation of the impact of a system for real-time visualisation of occupational radiation dose rate during fluoroscopically guided procedures, J. Radiol. Prot, vol.33, issue.3, pp.693-702, 2013.

M. Baptista, C. Figueira, P. Teles, and G. Cardoso, Assessment of the occupational exposure in real time during interventional cardiology procedures, Radiat. Prot. Dosimetry, vol.165, issue.1-4, pp.304-309, 2015.

L. K. Wagner and J. J. Pollock, Real-time portal monitoring to estimate dose to skin of patients from high dose fluoroscopy, Br. J. Radiol, vol.72, pp.846-855, 1999.

J. Servomaa-a,-karppinen, The dose-area product and assessment of the occupational dose in interventional radiology, Radiat. Prot. Dosimetry, vol.96, issue.1-3, pp.235-241, 2001.

M. Whitby and C. J. Martin, Radiation doses to the legs of radiologists performing interventional procedures: are they a cause for concern?, Br. J. Radiol, vol.76, issue.905, pp.321-327, 2003.

A. Trianni, R. Padovani, C. Foti, and E. Cragnolini, Dose to cardiologists in haemodynamic and electrophysiology cardiac interventional procedures, Radiat. Prot. Dosimetry, vol.117, issue.1-3, pp.111-115, 2005.

, Avoidance of radiation injuries from medical interventional procedures, ICRP. ICRP Publication, vol.85, issue.2, pp.7-67, 2000.

. Ncrp, . Ncrp-report, and . No, Use of Personal Monitors to Estimate Effective Dose Equivalent and Effective Dose to Workers for External Exposure to Low-LET Radiation, National Council on Radiation Protection and Measurements, vol.122, 1995.

L. Struelens, E. Carinou, I. Clairand, and L. Donadille, Use of active personal dosemeters in interventional radiology and cardiology: Tests in hospitals -ORAMED project, Radiat. Meas, vol.46, issue.11, pp.1258-1261, 2011.

I. Clairand, J. M. Bordy, J. Daures, and J. Debroas, Active personal dosemeters in interventional radiology: tests in laboratory conditions and in hospitals, Radiat. Prot. Dosimetry, vol.144, issue.1-4, pp.453-458, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02924817

I. Clairand, J. M. Bordy, E. Carinou, and J. Daures, Use of active personal dosemeters in interventional radiology and cardiology: Tests in laboratory conditions and recommendations -ORAMED project, Radiat. Meas, vol.46, issue.11, pp.1252-1257, 2011.

S. Chiriotti, M. Ginjaume, E. Vano, and R. Sanchez, Performance of several active personal dosemeters in interventional radiology and cardiology, Radiat. Meas, vol.46, issue.11, pp.1266-1270, 2011.

P. Bilski, J. M. Bordy, J. Daures, and M. Denoziere, The new EYE-D? dosemeter for measurements of HP(3) for medical staff, Radiat. Meas, vol.46, issue.11, pp.1239-1242, 2011.

M. Wagner, K. Dresing, W. Ludwig, and C. A. Ahrens, SIScaR-GPU: Fast simulation and visualization of intraoperative scattered radiation to support radiation protection training, Stud. Health Technol. Inform, vol.180, pp.968-972, 2012.

M. Baptista, P. Teles, G. Cardoso, and P. Vaz, Assessment of the dose distribution inside a cardiac cath lab using TLD measurements and Monte Carlo simulations, Radiat. Phys. Chem, vol.104, pp.163-169, 2014.

M. Zankl and A. Wittmann, The adult male voxel model "Golem" segmented from whole-body CT patient data, Radiat. Environ. Biophys, vol.40, issue.2, pp.153-162, 2001.

Z. Alnewaini, E. Langer, P. Schaber, and M. David, Real-time, ray casting-based scatter dose estimation for c-arm x-ray system, J. Appl. Clin. Med. Phys, vol.18, issue.2, pp.144-153, 2017.

A. Ladikos, C. Cagniart, R. Ghotbi, and M. Reiser, Estimating radiation exposure in interventional environments, Med. Image Comput. Comput. Assist. Interv, vol.13, pp.237-281, 2010.

A. Ladikos, S. Benhimane, and N. Navab, Real-time 3D reconstruction for collision avoidance in interventional environments, Med. Image Comput. Comput. Assist. Interv, vol.11, issue.2, pp.526-560, 2008.

A. Laurentini, The visual hull concept for silhouette-based image understanding, IEEE Trans. Pattern Anal. Mach. Intell, vol.16, issue.2, pp.150-162, 1994.

A. Badal, F. Zafar, H. Dong, and A. Badano, A real-time radiation dose monitoring system for patients and staff during interventional fluoroscopy using a GPU-accelerated Monte Carlo simulator and an automatic 3D localization system based on a depth camera, Proc. SPIE, vol.8668, p.866828, 2013.

N. Loy-rodas and N. Padoy, Seeing is believing: increasing intraoperative awareness to scattered radiation in interventional procedures by combining augmented reality, Monte Carlo simulations and wireless dosimeters, Int. J. Comput. Assist. Radiol. Surg, vol.10, issue.8, pp.1181-1191, 2015.

N. Loy-rodas, F. Barrera, and N. Padoy, See It With Your Own Eyes: Markerless Mobile Augmented Reality for Radiation Awareness in the Hybrid Room, IEEE Trans. Biomed. Eng, vol.64, issue.2, pp.429-440, 2017.