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Thèse n° 2019SACLL018

Thèse de Doctorat
de l’Université Paris-Saclay,
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Spécialité : Informatique

Par

Sophie Dramé-Maigné
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Résumé

Appareils électroménagers intelligents, traqueurs d’activités, voitures connectées, etc. L’Internet des
Objets (IdO) est en train de devenir partie intégrante de nos vies. Mais les applications de l’IdO vont
au-delà des gadgets intelligents. La domotique peut contribuer à réduire notre impact environnemental.
Les réseaux électriques intelligents promettent une meilleure intégration des sources d’énergies renou-
velables. Les appareils de télé-santé assurent un meilleur suivi des patients à un coût réduit. Les villes
intelligentes pourraient changer notre façon de construire et de vivre la ville. Les appareils de l’IdO peu-
vent aider à prédire les opérations de maintenance, et, ce faisant, à économiser de l’argent aux entreprises
créant par la même occasion un environnement de travail plus sûr.

Les objets de l’IdO peuvent prendre plusieurs formes. Fondamentalement, ce sont des objets physiques
équipés de capteurs, de logiciels, et autres équipements électroniques qui échangent des données entre
eux, ou permettent aux utilisateurs d’agir sur l’environnement voisin de l’objet. Contraints par nature,
les appareils de l’IdO manquent de mémoire et de puissance de calcul. Ils sont déployés dans des em-
placements potentiellement difficiles à atteindre et jouissent d’un accès au réseau limité. Ils couvrent des
cas d’usages variés aux besoins variés et utilisent des protocoles variés. Cela pose de nombreux défis tels
que la planification des opérations de maintenance ou la fédération de différents systèmes. Mais le défi
le plus important dans l’IdO aujourd’hui est sans doute la sécurité.

La sécurité de l’IdO est l’affaire de tous. Depuis les patients équipés d’un pacemaker connecté,
jusqu’aux familles vivant dans les villes intelligentes, même jusqu’à ceux de l’autre côté de la planète
qui n’utilisent pas cette technologie. Les risques de sécurité de l’IdO menacent la sécurité des utilisateurs,
la vie privée de tous, et représentent des ressources potentielles pour des acteurs malveillants. Une fois
compromises, ces ressources peuvent être utilisées dans des attaques à large échelle contre d’autres
systèmes tels que l’interruption de services de sites web populaires.

Cette thèse examine et propose des solutions de contrôle d’accès pour l’IdO. Restreindre l’accès aux
informations confidentielles et aux fonctions sensibles est la première étape vers la sécurisation d’un
système. Les systèmes de contrôle d’accès dictent les règles régissant l’accès et les moyens par lesquels
il peut être obtenu. Nous proposons quatre contributions, dont trois liées au contrôle d’accès.

Tout d’abord, nous examinons l’état de l’art pour déterminer l’influence de l’architecture sur les
propriétés d’une solution et nous proposons une taxonomie du contrôle d’accès dans l’IdO en fonction
de l’architecture.

Ensuite, nous proposons un ensemble de bibliothèques pour aider les développeurs à intégrer les
mécanismes de contrôle d’accès dans leurs produits. Ces bibliothèques gèrent l’émission, le stockage, et
la vérification de jetons d’autorisation. Ces jetons matérialisent l’autorisation d’accès et sont transportés
d’une entité centrale située dans le cloud jusqu’à l’objet connecté via une application mobile sur le
téléphone de l’utilisateur.

La blockchain est un registre distribué qui enregistre et ordonne les transactions. Elle est utilisée dans
notre troisième contribution pour gérer les attributs des utilisateurs, les politiques de contrôle d’accès, et
la confiance entre les différentes entités. Ce faisant, elle fournit un système de contrôle d’accès flexible

v



et décentralisé dans lequel les décisions sont prises directement par l’appareil IdO.
Notre quatrième contribution élargit le spectre de la sécurité de l’IdO et se concentre sur la propriété

des appareils. Au cours de sa vie, un appareil IdO est susceptible d’être revendu ou affecté à différents
projets ou gestionnaires au sein d’une même entreprise. Nous fournissons un système de suivi des
propriétaires d’un appareil ainsi qu’une preuve de propriété indépendante qui peut être utilisée lors de
la revente de l’appareil. De plus, nous proposons un système de gestion des secrets liés aux appareils
et un mécanisme de publication des propriétés dynamiques des appareils qui pourraient intéresser des
utilisateurs potentiels.

Mots-clés: Internet des Objets, IdO, contrôle d’accès, blockchain, propriété, attributs, capacités, jetons.
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Abstract

Smart appliances, fitness trackers, connected cars, etc. The Internet of Things (IoT) is rapidly be-
coming part of our everyday life. But IoT applications go beyond smart gadgets. Smart homes and smart
buildings can help reduce our environmental impact. Smart grids promise to better integrate renewable
energy sources. eHealth devices provide a better monitoring and lower patient’s costs. Smart cities might
reshape the way we build and live. IoT devices can help predict maintenance operation, thus saving the
company money and creating a safer work environment in the process.

The things of the IoT can take many forms. At their core, they are physical objects fitted with
sensors, softwares, and other types of electronics that send data to one another or let users interact
with the environment surrounding the object. Constrained by nature, IoT devices lack memory and
computational power. They are deployed in locations that may be hard to reach and have limited network
coverage. They cover varying use cases with varying requirements and use various protocols. This poses
a lot of challenges such as the planning of maintenance operations or the federation of different systems.
But arguably the most important challenge in the IoT today is security.

IoT security concerns everyone. From the patients with a connected pacemaker to the families that
live in a smart city, even to people on the other side of the planet that don’t use that technology. The
security risks of the IoT threaten the safety of users, the privacy of everyone, and represent potential
resources for malicious actors. Once compromised, these resources can be used to mount large scale
attacks on other systems such as the disruption of popular websites.

This thesis examines and proposes access control solutions for the IoT. Restricting access to private
information and sensitive functionality is the first step towards securing a system. Access control sys-
tems dictate the rules governing access and the means by which it can be obtained. We propose four
contributions, among which three are related to access control.

First, we survey the state of the art to determine the influence of architecture on the properties of a
solution and we propose an architecture-based taxonomy of IoT access control.

Second, we propose a set of libraries to help developers integrate access control mechanisms into
their products. These libraries handle the issuance, storing, and verification of authorization tokens.
These tokens materialize authorization and carry it from a central entity located in the cloud to the
enforcement mechanism on the IoT device, through a mobile application on the user’s phone.

The blockchain is a distributed ledger that registers and orders transactions. It is used in our third
contribution to manage user’s attributes, access control policies, and trust, providing a decentralized and
flexible access control system where decisions are taken directly by the IoT device.

Our forth contribution broadens the specter of IoT security and focuses on device ownership. Through-
out its life, an IoT device is likely to be re-sold or affected to different projects or managers within a com-
pany. We provide an ownership tracking system as well as an independent proof of ownership that can
be used when re-selling one’s device. Additionally, we propose a management system for device-related
secret and a mechanism for publishing dynamic device properties that might interest potential users.

Keywords: Internet of Things, IoT, access control, blockchain, ownership, attribute-based access con-
trol, capability-based access control, tokens.
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1.1 The Internet of Things (IoT)

In 1982, a modified Coke machine was introduced at Carnegie Mellon University. It could report its
inventory and comment on the temperature of newly loaded drinks. This machine was the first Internet-
connected appliance. The Internet of Things (IoT) truly blossomed in the early 2000s when advances
in different technologies such as wireless communications, the Internet, and micro-electromechanical
systems finally caught up to its ambitions.

The IoT provides physical objects with sensors, software and electronics, that enable the transmission
of data between them or other entities without any human intervention. This integration of the digital in
the physical promises to improve the efficiency, accuracy, and economic value of a system. In August
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2018, IoT Analytics1 projected the number of active IoT devices to 21.5 billions in 2025, not including

mobile phones, tablets, laptops and the likes. Their statistics are reproduced in Figure 1.1.

Figure 1.1

1.1.1 Its many applications

Application domains for the IoT are numerous and diverse. Below are the six main area of applications.

Smart Gadgets The IoT device that we are probably the most familiar with is the fitness tracker: a

bracelet that counts our steps, monitors our heartbeats, detects when we are exercising, and sends all that

data to our phone to provide us with numerous graphs. There are a number of IoT devices that, like fitness

trackers, can be categorized as smart gadgets: connected plushies that kids and parents can use to send

each other messages, smart shoes with sensors embedded in the sole, sex toys that can be activated from

anywhere in the world, etc. These objects are often used in isolation via a vendor-provided application.

Usability is the main requirement for such products.

1https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-
devices-now-7b/, Last checked: July 10th, 2019
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eHealth A Bluetooth-enabled insulin pump. An at-home kit containing a scale or electrodes that the
patient can use themselves, and that send the result directly to their physician. A cloud-connect pace-
maker that makes doctor appointment on your behalf and sends data necessary for follow up. The eHealth
is composed of connected medical devices, systems that store and manage medical data, and the services
that can be built using both. Privacy is a concern for patients but is also often mandated by law.

Smart Home There are much improvements that can be gain in our houses from the integration of IoT
devices. Convenience is the first example: From a fridge that shops on its own, to lights that turn on
and off automatically, or a stove top that turns itself off when users have been away for too long. Smart
homes, as they are called, can also help reduce energy consumption by running the washing machine or
refilling the battery of your electric car in the middle of the day, as the sun shines on the solar panels
on the roof. Sensors can also help monitor air quality, smoke, carbon monoxide levels, etc. Automatic
doors and other smart appliances can greatly improve the quality of life for the elderly and disabled.
Smart homes are characterized by the inclusion of IoT devices into an overall system where devices can
be connected to one another and work in tandem, or at least can be operated from a central interface.

Smart Building The equivalent of smart homes for the private sector is smart buildings: offices with
blinds that go down automatically when sunshine hits the window, access controlled by smart locks,
cameras that can detect potential threats and inform the security officer, etc. If the technology deployed
here can be similar to the devices used in smart homes, the scale, the requirements, and the threat model
differ in crucial ways. The number of expected users for instance is drastically different. Revocation is
a rare occurrence in a smart home where family members are constant while it is fairly common for a
company with temporary employees, or within a building that rents out offices to start ups and smaller
companies. The energy requirements are much higher, the lifetime of devices is shorter, etc.

Smart City and infrastructure Moving up the scale once more, smart cities offer yet another land-
scape for the IoT. Garbage pick up can be optimized to not interfere with the circulation, traffic signals
can operate differently throughout the day to accommodate a bigger pedestrian traffic, the city can better
identify where new equipment such as public benches or restroom should be deployed, etc. IoT devices
can also be deployed over other kind of infrastructure such as forests, alerting the authorities at the first
signs of fire, highways, to monitor traffic, accidents, and maintenance operation, or electric grids (smart
grids), to optimize energy production according to the demand. The latter example would help integrate
more renewable energy sources into the network as the existing infrastructure is not built to operate with
varying inputs that are inherent to solar panels for instance.

Industry 4.0 The industrial sector has been leading the automation effort for many decades. The IoT is
the next step in this evolution. IoT devices can be used to predict maintenance operation, track inventory
along the supply chain, and move decision making closer to the machines. In this sector, device to devices
communication is expected to be more prevalent than in user-facing domains such as smart homes. These
devices will operate in more sensitive environments where safety and resilience matter most.
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1.1.2 Its many users

With applications as diverse as those mentioned in the previous section, the IoT is bound to have hetero-

geneous users. We take a look at what these users might be. In this particular context, user will refer

to anybody that is affected by a service, either because they use it directly, because it stores information

about them, or because it affects their environment.

With that definition in mind, we separate users between voluntary and involuntary users.

Figure 1.2: Several types of IoT users

Voluntary Users These are the people that chose to use IoT device, introduced smart appliances into

their house, wear a fitness tracker, etc. They care most about usability. Within this category, there are

those who use their device in their personal life and those we use it in the context of work.

Within the industry in particular, the requirements can vary widely depending on the type of activity:

manufacturer, service provider, user-facing business, business-to-business, ...

Involuntary User By nature of applications such as smart cities and smart buildings, some users may

be confronted to IoT devices involuntarily. This affects the private sphere as is happening in France

with Linky2, the connected electric meter that is being deployed country-wide to the displeasure of many

individuals. Users can also be exposed to the IoT in public spaces. London is known for its many security

cameras. On a work day, the average London citizen is believed to step in front of around 300 cameras3

operated by a mixture of private and public entities. These systems generate information that can be of a

sensitive nature. Privacy is therefore a big concern.

1.2 IoT and challenges

Though they have great potential, IoT solutions face a number of challenges, summarized in Figure 1.3.

These challenges are faced while developing an IoT product but also by the IoT sector as a whole that

2https://www.fournisseurs-electricite.com/guides/compteur/linky/refuser, Link in French,

Last checked: July 8th, 2019
3https://www.cctv.co.uk/how-many-cctv-cameras-are-there-in-london/, Last Checked:

08/07/2019
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must come together to try and solve them. This section dives into the resource efficiency, longevity, and
business model issues. Security is the topic of Section 1.3.

Figure 1.3: The challenges of the IoT

1.2.1 Resource Efficiency

The defining challenge of the IoT is its lack of resources: power consumption, memory use, bandwidth,
all must be used sparingly. There is a need for tools and protocols that can work in constrained environ-
ments. Technological advances can somewhat mitigate this issue.

Apart from the code running on the device itself, larger scale methods can be employed to distribute
requests amongst devices, optimize the consumption of resources throughout the network, etc.

Resource usage has a direct influence not only on cost, but also on a device’s availability. A solar-
powered device for instance only has a finite amount of energy available. After it has been spent, the
device will power down until the next ray of sunshine. A device with a full memory will not be able to
store sensed data after that point, thus failing to complete its purpose.

1.2.2 Longevity

The life-cycle of a system is an issue that must be addressed before its deployment: How long is the
system expected to function for? How will it be maintained? To what extent can it be modified? How
will the end of life be handled? The maintainability of an IoT solution can be divided into two aspects :
hardware and software.

Some IoT systems require the deployment of a number of devices over many locations. In smart grids
for instance, sensors must cover the entirety of the electricity grid. They can be installed in hard-to-reach
places. It is certainly too costly and too slow to visit each device for a manual maintenance operation.
Being deployed in the wild, IoT devices also have to take into account physical threats such as natural
disasters or acts of vandalism. The life expectancy and durability of the underlying hardware is therefore
an important issue.

When physical maintenance is not an option, one must turn to remote software updates. The avail-
ability of the device can then become an issue. Some devices are indeed highly constrained energy-wise
and will turn themselves off when not in use. Others simply operate with lower range protocols and
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cannot be reached remotely. Devices may become unavailable during the update, which might be unac-
ceptable depending on the device’s purpose. Update deployment is therefore a tricky topic in the IoT.

Another important aspect of the longevity of a solution is its forward compatibility. Requirements
change, standards evolve, hardware can be re-purposed, etc. IoT solutions should be adaptable. Espe-
cially to achieve high life expectancy in the face of high deployment and maintenance costs. Furthermore,
the IoT is still an emerging domain. Use cases and user demands are likely to evolve in unpredictable
ways over the next decade. Deployed solutions should be able to evolve as well or they will soon become
obsolete.

Where traditional solutions operate with static requirements and a low user turnover, some IoT use
cases require dynamic user addition, involve mobile targets, and ever-changing requirements. Scalability
(up and down) is therefore an important component in IoT applications.

1.2.3 Business model

As we have seen in Section 1.1.1, IoT use cases are incredibly diverse. The IoT market can be fragmented
in roughly three segments: Consumer IoT, serving individuals, Commercial IoT, for professional use,
and Industrial IoT, for industrial applications. Each segment comes with its own set of challenges and
requirements. The Industrial IoT in particular, must integrate to an environment made up of very old,
proprietary systems that are costly to replace.

With so many pieces in play and so many diverging interests, it can be hard to work toward a common
goal to advance the IoT domain as a whole. Nonetheless, standards are slowly starting to emerge. But
the landscape remains highly heterogeneous, thus compromising interoperability. Regulations are also
emerging to control things like privacy options.

1.3 IoT and security

Security is probably the biggest challenge facing the IoT today. The rapid expansion of the field came at
the expense of security as vendors rushed to get their product to market. The security model differs from
classical system as threats that were mainly digital are moving to the physical world.

The security incidents that routinely hit the IoT are making headlines in mainstream newspapers and
eroding user’s trust, thus slowing down user adoption. Securing the IoT is a vital step in its future growth.

Impact on voluntary users The majority of devices are in the hands of non-tech-savvy users that are
notably bad at keeping software up-to-date. When in use, IoT devices might not be connected to the
Internet. The challenges in deploying security patches extend the life of IoT vulnerabilities that can be
exploited almost forever. And the trend is not receding4.

The most immediate consequence is the risk that information transiting through such systems might
be stolen or modified. The sensitivity of that information can be obvious, i.e. in eHealth services, but
seemingly harmless devices, such as a smart watch, can reveal more than the users might be comfortable

4https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/, Last checked:
February 26th, 2019
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with: location, sleeping pattern, habits, etc.. Devices that can be acted upon (actuators) pose another
class of risks, ranging from discomfort to dangerous: The Air Conditioning of a smart building can be
made to turn the workplace into a fridge, a home owner can be locked out by his smart lock, a corrupted
car5 can cause a lethal accident on the highway.

Impact on involuntary and non-users The lack of user protection in regulations can cause individuals
to be forced into using IoT devices: in the US for instance, connected pacemakers can be implanted
without patient consent6. The security and privacy of such systems becomes even more important then
as users cannot opt out of their use. It is also the case for large scale systems that optimize resource
use by analyzing user behaviour. In Europe, legislation such as the General Data Protection Regulation
(GDPR) has been introduced to protect individuals. However compliance can be technically difficult if
these requirements are not taken into account early enough in the development process.

The scope of the threat extends even to non-users: the Mirai Botnet [Antonakakis et al., 2017] used
a network of corrupted IoT devices to launch Distributed Denial of Service (DDoS) attacks 7 8 that
noticeably disturbed internet traffic on a large scale.

Unprotected IoT devices constitute an extraordinary resource for malicious actors. IoT security is
therefore everyone’s business.

1.3.1 Access control in IoT

Authorized access is a requirement that stands at the heart of any system. Access control (AC), which
purpose is to determine who can access what, in what manner, and according to what rules, is therefore
an important part of a system’s protective arsenal.

There are two concurrent approaches to designing an access control solution for the IoT. One can try
and adapt existing solutions, or start anew. Indeed, the IoT paradigm departs from classical systems in
significant ways.

As with everything in the IoT, the first issue concerns resources. Most classical access control so-
lutions are performed in a client-server model. In this model, the objects are stored on a server that is
expected to have a fair amount of resources at its disposal: memory to store all the clients information
and access rules, maybe even log access requests, computational power to run the decision engine and
deal with concurrent client requests, bandwidth to serve a great number of clients. The server should
also be available at all time.

In IoT use cases, the target of access requests are hosted on constrained devices that cannot perform
the traditional server role. Additionally, requestors can be device themselves and suffer the same resource
constraints. Classical access control solutions therefore cannot be used in their current state, and need

5https://medium.com/s/new-world-crime/a-brief-history-of-hacking-internet-
connected-cars-and-where-we-go-from-here-5c00f3c8825a, Last checked: March 4th, 2019

6https://www.theatlantic.com/technology/archive/2018/01/my-pacemaker-is-tracking-
me-from-inside-my-body/551681/, Last checked: July 8th, 2019

7https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet,
Last checked: March 4th, 2019

8https://krebsonsecurity.com/2018/05/study-attack-on-krebsonsecurity-cost-iot-
device-owners-323k/, Last checked: March 4th, 2019
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to be adapted or abandoned entirely. These modifications can make legacy solutions cumbersome and
ill-fitted.

Sometimes, security simply takes space that the device cannot afford. In this case, access control has
to be performed outside of the device, often by a centralized server, which poses its own security issues.

Where to take the access control decision is the subject of another debate dividing the IoT access
control community. Centralized systems have the advantages of erasing most of the resource constraint
issues and are capable of implementing legacy solutions. They however present a single point of attack
that makes a juicy target for attackers. Distributed solutions are harder to deploy but offer more resilience
and flexibility. Recently, the blockchain has emerged as a good candidate for distributing access control
systems. The expressivity of such system remains limited.

Some IoT use cases, while they allow a bootstrap phase, require access control to only involve local
entities. This is the case for instance of a connected car that can be open with one’s phone, which should
still be possible in a subterranean parking lot with no network coverage. The question of offline access
is therefore an alley that needs exploring regardless of architectural choice.

1.3.2 Lifecycle and ownership

When re-selling a computer, a phone, or a tablet, most users understand that some steps must be taken
to ensure that the new owner will not get access to their data. Consumer IoT devices are as likely to
get re-sold as any other appliance. Devices can also be re-purposed within a company and need to be
assigned to a new project or administrator.

Not many solutions exist to handle this change in ownership. It is part of the lifecycle of IoT devices
all the same. In the academic literature, the transfer of ownership is addressed at the device level [Osaka
et al., 2008, Ray et al., 2018]. Ownership transfer is defined [Rekleitis et al., 2014] as “the capability
to pass ownership of a tag to a third party without compromising backward untraceability for the said
party or forward untraceability for the previous owner.” The focus is on key management and domain
boundaries. The devices that are concerned by these protocols are RFID (Radio Frequency IDentication)
tags. No record is kept of past owners.

Some solutions implement ownership tracking via a blockchain. On the Bitcoin blockchain, Colored
Coins [Rosenfeld, 2012] can be used to track asset exchanges. On the Ethereum blockchain [Buterin
et al., 2013, Wood, 2014], smart contracts [Szabo, 1997] can be programmed to do similar things. Other
blockchains such as NXT9 provide a native asset exchange. There are also front-end applications1011

that bridge several blockchains together to facilitate interoperation. These implementations are not IoT-
specific but their general-purpose tokens are IoT-compatible.

1.4 Problem Statement

From the previous discussion, we extract the following research questions that we try to answer through-
out this thesis:

9NXT: https://nxtplatform.org, Last Checked: July 28th, 2019
10Melonport: https://melonport.com, Last Checked: July 28th, 2019
11Exodus: https://www.exodus.io, Last Checked: July 28th, 2019
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1.4. Problem Statement

Question 1 What are the main remaining challenges of access control in the IoT?
We have mentioned a few challenges faced while designing access control solutions for the IoT,

namely resource constraints, adaptation of existing solutions, and decentralization. These issues are the
ones that arise naturally when discussing the topic. The research community has been tackling them for
more than a decade. We wonder how successful that process has been, what challenges were discovered
in the process, and where the future of access control solutions for the IoT lies.

Question 2 What role does architecture play in the existing access control solutions?
Centralization is used to mitigate resource constraints. Distribution is used to mitigate the scalabil-

ity and security issues associated with centralization. The ideal architecture for access control is still
being debated. Definitions of what exactly constitute a centralized or distributed solution vary. Other
architectures exist between these two extremes that could benefit the debate and constitute an acceptable
compromise. We would like to identify properties, benefits, and disadvantages associated to different
architecture to better navigate this issue.

Question 3 Can access control logic be deported to edge node to enable serverless authorization deci-
sions?

IoT networks are layered. At the edge of the network are the devices themselves. These devices are
often associated to a local gateway with more resources that can help manage the device, and relay infor-
mation to other layers. The local gateway can communicate with a local server that itself communicates
with a cloud platform, etc. Information is usually processed at the center of the network, on servers with
a lot of storage space, computation power, high network connectivity, etc. But some use cases call for
information to be processed on the devices, i.e. on the edge of the network. For various reasons such as
low connectivity, high time sensitivity, to lower the amount of data transmitted to or stored in the cloud,
the device may be required to make an access control decision without the help of a central server.

Question 4 How can we increase security usability?
Security is not commonly used not only in the IoT but in the digital world in general. The general

public tends to see it as an hindrance. So security solutions are only as useful as they are used. Usability
is therefore paramount to the success and adoption rate of a solution. Usability should target two popula-
tions. The first is the end-user of a product. But the second is arguably more important: it is IoT device’s
vendors and developers. Indeed, if the security mechanisms are not implemented in a product, there is
no need to convince individuals and companies to use it. So the question is, can we tackle the problem
at the design phase by making security integration easier for developers.

Question 5 Can the blockchain be leveraged for decentralizing access control while maintaining ex-
pressivity and offline access?

The blockchain has emerged as a tool to decentralize and distribute trust. It has evolved past crypto-
currencies and is now used for many other applications. IoT devices may not possess the capacities
necessary to work in such a demanding ecosystem. We wonder what kind of information can be posted
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on the blockchain, the level of flexibility and expressivity that can be maintained through the use of smart
contracts, as well as the possibility of operating without a continuous access to the blockchain network.

Question 6 Using the blockchain, can we tackle other IoT issues such as the lifecycle of devices?
IoT devices hold a peculiar place in the digital space. They have access to very personal data and can

be used to infiltrate private networks. But they are also everyday objects that are unassuming to users.
The security paradigm is fundamentally different than with servers, laptops, or even phones. Indeed,
IoT devices are bought or sold second-hand, given to friends and family, discarded without care. In the
industry, the volume of expected devices is dizzying. Similarly, they are bound to change hands, be
affected to different projects or locations, as tend to happen with company assets. Their ownership status
and lifecycle is therefore an important subject that the blockchain could help tackle. The possibilities
offered by the blockchain are plentiful. Asset transfer is one of its core applications. Can this be used to
facilitate the management of devices’ lifecycle ?

1.5 Contributions

This thesis is made up of four distinct contributions, three of which pertain to access control.

Contribution 1: Survey of access control solution for the IoT Our first contribution is a survey on ex-
isting access control solutions for the IoT. We define classical access control architectures using the four
core functions of access control (PEP, PDP, PAP, PIP). The strengths and weaknesses of each architecture
are discussed in details. Solutions from the literature are provided to illustrate each architecture. Each
reference is analyzed in details and evaluated on objective and qualitative criteria. An architecture-based
taxonomy of IoT access control is proposed. Finally, potential future research direction are presented.

This contribution answers questions 1, 2, 3, and 5.

Contribution 2: Token libraries for serverless access control Our second contribution is a set of
libraries used to issue, store, and interpret authorization tokens. They are aimed at developers and focus
on usability and ease of integration. Each library is to be used by a different actor: a cloud platform,
a mobile application, and an IoT device. The solution is serverless with local conditions evaluated on
the device at access time. It is also designed for flexibility and modularity. Several types of tokens are
proposed to accommodate the capacities of different devices as well as different use cases. We offer a
thorough security analysis of the proposal as well as a Proof of Concept implementation illustrating the
high usability of our solutions for developers and users alike. A live coding video demonstration has
been shot to showcase the ease of integration of our libraries.

This contribution answers questions 3 and 4.

Contribution 3: Attribute-based access control over the blockchain The third contribution presents
a second IoT access control solution. It is based on attributes that are stored on the blockchain and can
be endorsed by any willing entity. User identities are blockchain-based and user-controlled. They can be
used to separate attributes in accordance with each user’s wishes. Our attribute endorsement system is
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independent of any single entity. As such, it resists operational changes such as the disappearance of a
company, or the introduction of new actors in the ecosystem. The blockchain additionally hosts a trusted
entities management system enabling administrative changes throughout the life of IoT devices, and a
distributed policy management system with generic policies based on attributes. The trust level of an
attribute is computed based on the reputation of the entities that endorsed it. This trust level is used to
parametrized access control policies. This defines an overall user-centric access control system enabling
interoperability and flexibility.

This contribution answers questions 3 and 5.

Contribution 4: Blockchain-based transfer of ownership Our last contribution departs from access
control and takes a look at IoT device ownership. It defines an independent proof of ownership based
on blockchain transactions, desintermediates and decentralizes ownership records. A key management
system is proposed to handle the transmission of the security context from one owner to the next. Finally,
the same system can be used to advertise dynamic device properties to potential users.

This contribution answers questions 4 and 6.

1.6 Organization

Definition of acronyms can be found in Table B.1, in Annex. The reminder of this thesis is organized as
follows:

Chapter 2 introduces the blockchain: the underlying cryptographic primitives, its basic concepts,
the main security issues, limitations both in its functioning and security-wise. The adequacy of the
blockchain with IoT application is questioned. The purpose of this initial chapter is to get all the
blockchain questions out of the way, acquainting the reader with a concept that is unfamiliar to many.
The blockchain will be used as a tool in latter chapters. Readers should therefore be aware of its strength
and shortcomings.

Chapter 3 surveys access control solutions in the IoT. Their architecture is used to classify them: cen-
tralized, distributed, but also hierarchical and federated architectures are defined, examined, illustrated,
and compared. This chapter provides an extensive review of the state of the art as well as future research
directions in the field. This chapter presents our first contribution.

Chapter 4 presents our token-based access control libraries. This project sets out to provide IoT de-
velopers with pre-packaged access control to increase its usability and therefore adoption. Our solution
enables offline access. Two types of token are presented to accommodate many IoT use cases. One
uses symmetric cryptography, the other uses asymmetric keys. Our Proof of Concept implementation is
presented as well as improvements for a second version of the libraries. This chapter presents our second
contribution.

11
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Chapter 5 uses the blockchain to distribute attribute endorsements. The chapter discusses the merits of
Attribute-Based Access Control. The issuance and management of attributes is presented as well as the
management of access control policies. A detailed security analysis is provided to validate our proposal.
This chapter presents our third contribution.

Chapter 6 departs from access control and focuses on ownership records. The blockchain is used to
track ownership changes, and provide independent proofs of ownership. An extension allows users to
manage device’s credentials, while another lets the owner share its device configuration for potential
device to device interactions. This chapter presents our fourth contribution.

Chapter 7 concludes this thesis. We summarize our journey and reflect on its success at answering the
research questions presented in the previous section. Perspectives for the future are broached.
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2.1. Introduction

2.1 Introduction

The story of the blockchain starts with Bitcoin [Nakamoto, 2008], a cryptocurrency introduced in 2008
in a paper signed by a Satoshi Nakamoto. The first implementation was released a few month later in
2009. Bitcoin’s goal is to replace trust, which is the foundation of a centralized system such as a bank,
with a crypto-reliant system that makes fraud computationally hard. The attractiveness of this system
resides in its distributed and public nature. In short, each node maintains a complete replica of a public
ledger in which every transaction is written down. This eliminates the need for a third party and enables
direct interactions between payers and payees, thus reducing the cost of a transaction. Anybody can join
at any time.

Recent years have seen the blockchain leave the realm of cryptocurrency and take a life of its own.
The blockchain technology is seen as really promising by many outside of the financial world. Ethereum
kicked off the rise of the Blockchain 2.0 by introducing smart contracts and turning the blockchain into
a world computer were any program can run, implementing a number of use cases. It is considered for
numerous applications such as digital voting, supply chain management, grocery stores loyalty programs,
digital identities, etc.

Concurrently, a new permissioned model has grown to satisfy the interest of the private sector in
privacy and trade secrets. On permissioned blockchains, the right to perform operations can be restricted
to a smaller number of entities. There is still a need for public blockchains however and both model
co-exist happily in the ecosystem.

As a tool for decentralization, the blockchain shows promising applications in the IoT. It provides
interesting properties such as desintermediation, transparency, and auditability. The blockchain can re-
duce deployment and maintenance cost, and provide a shared space for all kinds of applications IoT
applications. This would enable the large IoT world to move as one. Access control in particular, could
benefit from the flexibility and openness offered by the blockchain. It could be the tool to distribute
authorization decision while sparing the low resources of edge devices.

The emergence of the blockchain also provides a new and exciting research area: the security and
robustness of the protocol, consensus mechanisms, incentive systems, resource optimization, ... Many
topics are just beginning to be explored and many more are yet to be discovered.

The goal of this chapter is to provide the reader with an introduction to blockchain concepts, security,
and limitations. In particular, we discuss its legitimacy for IoT applications.

Organization Section 2.2 introduces the cryptographic primitives behind the blockchain. Section 2.3
presents the basic concepts one must get acquainted with in order to understand the blockchain. Sec-
tion 2.4 proposes a formal definition of distributed ledgers. Section 2.5 discusses three of the main
blockchain implementations, namely Bitcoin, Ethereum, and Hyperledger. Section 2.6 details several
consensus protocols, their strengths and weaknesses. Section 2.7 addresses the complicated subject of
governance in an open, public, and dynamic ecosystem. Section 2.8 presents blockchain attacks such as
the famous double spending and 51% attacks. Section 2.9 discusses the current limitations of the tech-
nology from a security standpoint. Section 2.10 examines the pertinence of IoT blockchain applications.
Finally, Section 2.11 concludes this chapter.
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2.2 Cryptographic primitives

This section briefly presents the cryptographic primitives behind the blockchain. For a more in-depth

presentation of hash functions and digital signatures, interested readers are referred to Chapter 9 and

11 of the Handbook of applied cryptography [Menezes et al., 1996], from which the following defini-

tions are taken. Readers interested in Merkle trees are directed to Ralf Merkle’s seminal paper on the

topic [Merkle, 1980].

2.2.1 Cryptographic hash functions

Figure 2.1: Hash function

Hash functions are widely used in computer systems.

Definition 2.2.1 (Hash function). A hash function is a function h with the following properties

• Compression - h maps an input x of arbitrary finite length, to an output h(x) of fixed length n.

• Ease of computation - Given h and an input x, h(x) is easy to compute

The output of such function is called a hash. Figure 2.1 illustrates the compression property of hash

functions. In Definition 2.2.1, easy is purposefully left undefined as its meaning is context-dependent. It

can be defined with regards to time, number of operations, or complexity for instance.

In practice, hash functions also require the following property: a difference in input, however small,

should lead to noticeably different outputs. Figure 2.2 uses MD5, a common hash function, to showcase

the impact that a one-letter difference (between the first and third inputs) has on a message’s hash. This

enhances usability by allowing humans to easily spot the hash difference.

So a hash function yields an easy to compute, short, fixed-length representation of the input data.

These hashes can be used to compare files, find duplicate records, or accelerate data lookups. They are

also used in cryptography.

Cryptographic hash functions are at the heart of modern cryptography. They are used to guarantee

data integrity and message authentication. As such, they require stronger properties than simple hash

functions.
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Figure 2.2: Applying MD5 to different inputs

Property 2.2.1. Let h be a hash function. We define the following properties:

1. Preimage resistance - For any pre-specified output y it is computationally unfeasible to find an
input x such that h(x) = y.

2. 2nd-preimage resistance - Given an input x, it is computationally unfeasible to find any x′ �= x
such that h(x) = h(x′).

3. Collusion resistance - It is computationally unfeasible to find any two inputs x �= x′ such that
h(x) = h(x′).

Here again, the term computationally unfeasible is context-dependent. Hash functions that are both

preimage and 2nd-preimage resistant are called one-way hash functions or weak hash functions. Hash

functions that are both 2nd-preimage and collusion resistant are called collusion resistant functions or

strong hash functions. Note that collusion resistance does not imply preimage resistance. The identity

function for instance, is both 2nd-preimage resistant and collusion resistant but finding a preimage is

trivial. However, in practice, collusion resistant hash functions are constructed to be preimage resistant

as well.

One-way hash functions and collusion resistant hash functions are cryptographic hash functions.

In the reminder of this thesis, we will generally use cryptographic hash functions to refer to collusion

resistant hash functions.

These properties guarantee that, given a hash, an adversary cannot produce an input that is different

from the original message while still hashing to the same output. It is also really hard to find two

messages that yield the same hash. A hash can therefore be considered as a unique representation of the

input message, giving us a short, fixed-length pointer to data of any size.

This representation, or digest, can then be used for digital signature.
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2.2.2 Digital Signatures

Digital signatures are the equivalent of the handwritten signature one might find at the bottom of a

document. Like their paper-based counterparts, digital signatures must be:

• Unforgeable - No one must be able to produce a valid signature for an entity S but S themselves,

• Verifiable - Anyone with the correct information must be able to associate a signature with its

emitter,

• Non-repudiable - A signer S cannot successfully dispute the origin of their signature.

Figure 2.3: Digital Signature

A digital signature scheme is composed of three algorithms:

• Key generation algorithm - A method for generating a public/private key pair used for signing.

• Signing algorithm - A method for producing a digital signature.

• Verification algorithm - A method for verifying that a digital signature is authentic (i.e., was

indeed created by the specified entity).

To be used in practice, a signature should be easy to compute by the signer, easy to verify by anyone,

and have a security level appropriate to the expected time relevance of the signature: when signing a

testament, the signature needs a high level of security as the authenticity of the document will be relevant

in a matter of years (hopefully), when signing a message fixing a meeting in a weeks time, the signature

looses relevance once the meeting has passed or even when the meeting has been arranged.
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Key generation A digital signature scheme requires two keys. The first is private and used to sign the
message. The second is public and used to verify the signature. In order to produce a verifiable signature,
a signer S must therefore first generate a key pair (privS , pubS) and make the public key available to
those who will later verify their signature.

Anyone that comes into possession of S’s private key can sign in their name. The security of the
scheme then rests on the security of the private key.

Signature As illustrated in Figure 2.3, a signing algorithm takes two inputs, the message and the private
key, and outputs a signature. An example of signature scheme is to encrypt the cryptographic hash of
the message with the private key. Anyone with the public key can decrypt the signature, recompute the
message’s hash, and compare the two.

Verification As illustrated in Figure 2.3, the verification algorithm takes the public key and the signa-
ture as inputs and outputs a boolean. Some schemes enable the retrieval of the original message from
the signature. When it is not the case, the verification algorithm requires the original message as an
additional input.

The verification process confirms that the message has indeed been signed by the private key as-
sociated to the inputted public key. Ownership of these keys however must be proven through other
means.

2.2.3 Merkle trees

In a Merkle tree [Merkle, 1980], also called hash tree, each leaf is labelled with the cryptographic hash
of a data block. The tree is then constructed by labelling each non-leaf node with the cryptographic hash
of its child nodes. A tree is usually smaller than the data it represents thanks to the compression property
of hash functions. Hash trees also encode data in a privacy-preserving fashion as no information from
the original data can be recovered from the tree thanks to the preimage resistance of cryptographic hash
functions.

Figure 2.4 illustrates the encoding of data into a Merkle tree. The original data blocs (in lighter blue)
are not part of the tree. A data block can represent part of a larger file, or be an element in a set. Both
cases are explored in the following use cases.

Use Case 1 - Peer to peer file sharing Merkle trees are used to verify the integrity or authenticity
of documents. Let us take the example of Alexander that is trying to retrieve a file from a peer to peer
system. In this system, a hash tree is computed for the file by breaking it down into data blocks, that are
then hashed to form the leafs. These data blocks also correspond to the blocks that will be received from
peers when downloading the file. The root of the tree is then added to the file’s metadata.

Before requesting the file, Alexander retrieves the corresponding Merkle tree root from a trusted
peer, Belinda. He then retrieves the file broken down into data blocks from untrusted peers. Upon
reception, Alexander computes the Merkle tree of the file and compares its root to the hash he obtained
from Belinda.
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Figure 2.4: Merkle tree

Figure 2.5 shows how any modification of an original data block impacts the root of the tree, as well

as intermediary nodes. If the roots do not match, Alexander concludes that the file he downloaded is not

the one he wanted. This may be due to malice, or to errors during transfer. In any case, Alexander can

contact another peer and try again.

Merkle trees enable the verification of partial data: by retrieving intermediary nodes of the Merkle

tree in addition to the root, Alexander can verify data blocks are legitimate without downloading the

whole file. This is illustrated by the next example.

Use case 2 - Election verification A Merkle tree can also be used to provide a proof of membership.

Let us consider an election. A voter should be able to verify that their vote has been tallied up. But no

one should have access to another person’s vote. Figure 2.6 shows how encoding votes in a Merkle tree

answers both requirements.

When the election is over, each vote is added to the tree and the root is publicly posted as a repre-

sentation of the election. Now Daniel wants to verify that their vote is included in the tree. The entity

in charge of the election isolates the path from D to the root and sends the corresponding intermediary

nodes to Daniel (in green in Figure 2.6). From his vote, Daniel computes HD. Using the provided HC ,

Daniel computes HCD, and so on until he reaches the root that can now be compared to the value that

has been publicly advertised.

To successfully cheat, an adversary would need to produce a fake path in the tree that would hash to

the same root. The preimage resistance of cryptographic hash functions ensures that the adversary cannot

compute a valid preimage from the root. Collusion resistance ensures that the tree does not contain a

data block X such that HX = HD. The adversary therefore cannot create such a path.

Data blocks that are no longer relevant can also be removed from the tree without affecting the
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Figure 2.5: Merkle tree: modifying a data block

membership verification process if intermediary hashes are kept. This is used in the blockchain to limit

the size of the blockchain history.

2.3 Basic Blockchain Concepts

A blockchain is a shared ledger compiling transactions (tx). Blockchain is the name given to both the

peer-to-peer network and the records it creates. Figure 2.7 provides an overview of the steps taken to

integrate a transaction into a blockchain. The steps are as follows:

• Panel 1: A new transaction is created and broadcasted to the network.

• Panel 2: Miner nodes (a.k.a miners) verify the transaction. If valid, miners collect the transaction

and add it to their pool of valid but yet-to-be-approved transactions.

• Panel 3: Miners work on creating a block (see Section 2.6 for consensus protocols) including the

transactions in their transaction pool.

• Panel 4: A new block is proposed, verified, and propagated in the network.

• Miners start collecting transactions and working on the next block.

The present section introduces basic terms and concepts necessary to understand the blockchain.

They will be used throughout this thesis.
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Figure 2.6: Merkle tree: proof of membership

2.3.1 Transactions

In essence, a blockchain is a transaction ordering mechanism. These transactions can describe a transfer

of assets (cryptocurrency or other), or an interaction with a smart contract. Transactions must always

be signed by their emitter. They can be prepared offline and are then broadcasted to the peer-to-peer

network that composes the blockchain. Miners will verify them, before bundling them into a block. A

transaction is refused if its digital signature is invalid, if it conflicts with the blockchain history, or if it

otherwise breaks blockchain rules. Their specific format is implementation-dependent.

2.3.2 Addresses

In order to send or be the recipient of transactions, a user must have a blockchain address. To create

an address, a public/private key pair is generated for the user. The public key is hashed to create the

user’s blockchain address. The private key is used to sign outgoing transactions. One can create as many

addresses as they want. Each new address acts as a new pseudonym. This increases the user’s privacy by

making it more difficult for people to trace their activity.

Smart contracts have addresses that are used to invoke their functions.

2.3.3 Miners

Some nodes in the network dedicate resources to verifying transactions and maintaining the security of

the blockchain. They are called miners. Miners are paid by block rewards. For each new block, a block

reward is awarded to a single miner or a small group of them. This reward system is the only way new
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Figure 2.7: Overview of the blockchain

coins can be created in the system. Transactions can (and usually do) include a transaction fee. The sum

of all of the block’s transaction fees included in a block are added to that block’s reward.

The specifics of block rewards are implementation-dependent. In Bitcoin for instance, the block

reward was originally of 50 BTC per block and halves every 210 000 blocks, which take roughly 4 years

to mine. At the moment, it is therefore down to 12.5 BTC per block. Transactions fees supplement

this lost in income. In Ethereum, miners also have to run smart contracts. Users must include a fee

proportional to the difficulty of the operation. Block rewards are only a few ETH, but blocks are produced

every few seconds rather than every 10 minutes.

Miners compete to receive the reward by participating in the consensus protocol. The more miners

participate, the more overall resources are poured into the consensus, the harder it is for an individual to

single-handedly match that and gain too much influence over the blockchain.

2.3.4 Blocks

A block is an assembly of ordered transactions. It is composed of a header, and a body. The body

contains the transactions and a Merkle tree formed by their hashes. The header contains the block’s meta

data, including the root of the Merkle tree.

Blocks are linked together to form a chain. The first block is called the genesis block or block 0.

Blocks are identified either by the hash of their header, or by their height, i.e. the distance between them

and the genesis block. The chain is created by including the hash of block n − 1 in the header of block

n. So in Figure 2.8, block 11’s header contains the hash of block 10 while block 12 contains the hash of

block 11.

Any modification of the content of a block modifies its hash. If an attacker modifies the block i, its

23



Chapter 2. Background: The Blockchain

Figure 2.8: Blocks

hash no longer equates the value stored within block i + 1. One can therefore notice the modification

occurred by comparing the two values. To hide this, the attacker needs to also modify block i + 1, which

would force them to modify block i + 2 to replace the now modified hash, and so on, and so forth, until

they reach the most recent block. Blockchains are set up so that producing a valid block is hard. For each

block stacked on top, the task becomes even harder for an attacker. This is the heart of the tamper-proof

nature of the blockchain, along with its distributed architecture.

A transaction is considered as verified when it has been included in a block. Because the last few

blocks are subject to modification (see Section 2.8.1), users should wait until a transaction is buried under

several blocks before considering it as definitively integrated into the blockchain. Each new block added

to the chain on top of a given block diminishes the chances that this block will be removed.

2.3.5 Smart Contracts

The term smart contract was coined by Nick Szabo in the 1990s. In a paper from 1997 [Szabo, 1997], he

takes the vending machine as the example of an archaic smart contract : The machine enforces a contract

between the buyer and the vendor and makes the breach of this contract prohibitively expensive in terms

of engaged efforts, as breaking the machine is far more complicated than simply paying a few euros.

This is the essence of smart contracts. They are programs or protocols that facilitate the enforcement of a

contract. This contract might have legal value but can also be taken in the simpler sense of an agreement.

Ethereum [Buterin et al., 2013] was the first blockchain to implement smart contracts.

One key aspect of blockchain smart contracts is their immutability. Once deployed, their code is

written down in the common ledger. As such, they cannot be unilaterally modified unless they were

designed to authorize updates. Everyone with a copy of the blockchain can therefore consult the smart

contract’s code and verify its execution.

A user can interact with a smart contract in two ways : by making a call or by sending a transaction.

A call does not modify the blockchain state. It is a read operation and can be executed offline. If the user

wishes to modify the blockchain state, a blockchain transaction must be sent out to the network. As with

every transaction, miners will verify it by running the corresponding code and, if successful, update the

blockchain state.
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To illustrate this separation, we take the example of an election implemented using a smart contract. It

presents two functions: vote and seeResult. Voting will modify the state of the blockchain. A transaction

must be sent out and verified by the miners before a vote can be taken into account. Viewing the result

of the election however, does not. A simple call to one’s local version of the ledger will do.

Miners use computational power to run transactions on smart contracts. A fee is therefore required

that is proportional to the work they entail. If the fee contained within the transaction is not enough

to complete the execution, the execution stops but the money is not returned. This acts as a protection

against Denial of Service (DoS) attacks where an attacker would, for instance, try to run an infinite loop,

thus mobilizing all of the miners resources. Storage of data into a smart contract must also be paid for in

proportion with the requested memory space. This cost is paid by the user that sends the transaction and

not by the user that deployed the smart contract in the first place.

2.3.6 Forks & Longest Chains

Sometimes, two miners will find a block at roughly the same time. These two valid blocks have the same

parent block and therefore correspond to the same place in the chain. There is often no logical reason

to prefer one over the other. The network is therefore presented with two alternate but equally valid

versions of history. This is called a fork.

This is where the notion of longest chain comes into play. Rather than a chain, a blockchain is

effectively a tree with the genesis block as its root. Miners only work on the longest path (or longest

chain) from root to leaf and it is the only valid version of the blockchain history. The definition of

longest chain varies with the blockchain and the consensus protocol it uses. It can simply be the path

with the most blocks, or, for Proof of Work (see Section 2.6.1), additionally take the puzzle difficulty of

each block into account.

Figure 2.9: Blockchain fork

Forks are solved over time. When the next block is created, the block it chooses as its ancestor

becomes part of the longest chain and the concurrent blocks are dropped. This is illustrated in Figure 2.9.

Forks occurrence rate and resolution time depend on the block rate, network size (see Section 2.9.3), and

consensus protocol.
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2.4 Formal definition

For the scientific community, the blockchain is some kind of oddity. Nakamoto did not give a formal
definition in the original paper and many argue that it shouldn’t work. And yet it does. This absence of a
theoretical model makes for a complicated analysis of the system, including its security. Pass et al [Pass
et al., 2017] propose an abstract definition of the blockchain and show that Nakamoto’s blockchain fits
this definition.

Authors define the blockchain as an interactive protocol where each participant receives inputs they
try to include in their local chain. The following properties are required :

Property 2.4.1. Let T be a positive natural number.

1. Consistency - With overwhelming probability (in T ), at any point, the chains of two honest partic-
ipants can only differ in the last T blocks.

2. Future self-consistency - With overwhelming probability (in T ), at any two points in time r, s, the
chains of any honest participant at r and s differ only in blocks within the last T blocks.

3. g-chain-growth - With overwhelming probability (in T ), at any point in the execution, the chain
of honest participants grew by at least T messages in the last T

g rounds, where g is called the
chain-growth of the protocol.

4. µ-chain-quality - With overwhelming probability (in T ), for any T consecutive messages in any
chain held by some honest participant, the fraction of messages that were contributed by honest
participants is at least µ.

The first property, consistency, is somewhat obvious. It ensures that, natural forks aside, the network
is in agreement and was formalized by Garay et al [Garay et al., 2015]. The second property, future
self-consistency, ensures that the chain cannot be drastically modified overnight. The counter-example
taken by Pass et al [Pass et al., 2017] is an application that keeps switching between two chains. Future
self-consistency forbids such behaviour and ensures consistency over time. The third property, g-chain-
growth, ensures that the chain keeps growing at a steady rate, allowing new transactions to be included. It
was considered in both Sompolinsky and Zohar [Sompolinsky and Zohar, 2015] and Garay et al. [Garay
et al., 2015]. Finally, the last property ensures that honest participants still control a known fraction of
the process. It was first discussed on the Bitcoin forum and later formalized by Garay et al. [Garay et al.,
2015].

Pass et al. [Pass et al., 2017] show that verifying these properties is enough to implement a public
ledger.

2.5 Blockchain Implementations

The blockchain exists in many forms. In this section, we present three of the most famous blockchain
implementations: Bitcoin, Ethereum, and Hyperledger Fabric. We dwelve into the details of their inner
working to see how they differ and what each of them brings to the table.
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2.5.1 Bitcoin

Launched in 2009 by the mysterious Satoshi Nakamoto, Bitcoin remains the most popular blockchain to

date. Bitcoin is both the name of the protocol and that of the currency, which symbol is BTC. The seminal

paper [Nakamoto, 2008] explaining its general concepts was originally published on a cryptography

mailing list. Bitcoin benefits from an active community of developers and contributors that helped refined

the concepts even in the early days.

2.5.1.1 Transaction-based model

Figure 2.10: Bitcoin transaction model

Bitcoin’s goal is to replicate cash. As such, no account balance is kept. Instead, transactions are

linked to each other as the output of one becomes the input of another and so on. The same way a bill

exchanges hands and gets split into smaller denominations as it makes its way through the economy.

So the question is never "How much do you have in your bank account?" but rather "Can you produce

enough bills to pay for this?".

Let us consider the following case. Alice has 4 BTC. Figure 2.10 illustrates how these coins can

be exchanged. Alice needs to pay 1 BTC to Béatrice. She does so by referencing the transaction that

originally gave her the 4 BTC (as an input), and gives 1 of them to Béatrice, the rest to herself as change.

That transaction has one input and two outputs. A transaction must always consume the entirety of

the original balance. If not null, the difference between input and output is given away to miners as

compensation.

BTC can be broken down as illustrated by Béatrice’s payment to Charles (in red in Figure 2.10). The

smallest accepted denomination is the satoshi, which corresponds to 10−8 BTC. A transaction can also

accept any number of inputs, as illustrated by Charles transaction (in green in Figure 2.10). It takes two

inputs (Béatrice’s and Alice’s transaction outputs) and generates one output to David. Inputs can come

from different addresses, as long as each is signed by the corresponding key. There is no limit on the

number of outputs nor recipients.

To spend bitcoins, one must be able to produce Unspent Transaction Outputs (UTXO) addressed to
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them. Once an output has been named as an input in a transaction, that output is considered spent. Any
transaction that references it will be deemed invalid. The bill has changed hands.

Note that no one ever actually holds anything. Bitcoins only exists as the result of transactions in
the ledger. Users are merely pointing at the shared ledger, saying "See, that guy gave 2 BTC to me. I’m
giving them to this other guy. Mark it down !".

2.5.1.2 Wallets

Wallets hold the public/private key pair necessary to spend UTXO. They are not part of the core protocol
and theoretically optional. Many different options exist on different platforms or devices. They can be
physical devices holding the user’s private key in a smartcard, mobile applications that require a QR code
to be scanned, a computer software with a password, a service provided by a trusted third party, etc.

They can be used to generate multiple addresses from a single master key, thus increasing the user’s
privacy by providing several pseudonyms for them. Wallets are also a simpler way to keep track of one’s
UTXO.

Weaknesses in wallet software have been used to steal cryptocurrencies in the past.

2.5.1.3 Scripts

UTXO are locked by scripts. They describe the conditions one must fulfill to spend the corresponding
output. When creating a transaction, the payer specifies a script for each output. This script contains, for
instance, the blockchain address of the recipient. When referencing a UTXO in a new transaction, the
user must provide the correct arguments for the script to terminate successfully.

The most common example requires the user to prove they own the private key associated to a specific
Bitcoin address. For this, the user provides:

1. A public key, that hashes to the specified Bitcoin address,

2. A valid signature to prove ownership of the associated private key.

Bitcoin scripting language is stack-based, and is intentionally not Turing complete. It provides flex-
ibility. A script can, for instance, require multiple signatures to be unlocked, freeze funds for a specific
time, make the money unspendable, require the spender to solve a puzzle, etc.

2.5.1.4 Alt-coins

Altcoin (for alternative coin) is the name given to any cryptocurrency that is not Bitcoin. There are a
number of them. Some are included in Figure 2.11. Bitcoin is open source. Anyone can therefore create
their own cryptocurrency based on Bitcoin’s code, with any alteration they would like.

Dogecoin for instance, was introduced in 2013 as a joke. It takes its name from an internet meme
featuring a breed of Japanese dog renamed Doge by the Internet. A key difference with Bitcoin would be
the total number of coin in circulation: Bitcoin will cap at 21 millions coins, Dogecoin over 100 billions.

28



2.5. Blockchain Implementations

Figure 2.11: Logos of various cryptocurrencies, including Doge coin

2.5.2 Ethereum

Launched in 2015, Ethereum is the first blockchain to introduce smart contracts. Its associated cryptocur-
rency is the Ether (ETH). The workings of Ethereum are exposed in its white and yellow papers [Buterin
et al., 2013, Wood, 2014], written respectively by Vitalik Buterin and Gavin Wood, its co-creators. It
presents itself as a blockchain with a Turing-complete programming language, Solidity. The blockchain
is seen as a state transition system where each valid transaction represents a state transition function.
This departs from Bitcoin model where no state is kept.

In Ethereum, the block time averages 15 seconds, though it uses the same kind of consensus as
Bitcoin (namely Proof of Work). The block reward is constant. Ethereum’s development was crowd
funded. This resulted in 72 millions ETH coins being distributed to early investors when the blockchain
launched. In 2019, this still accounts for more than half of the total circulating supply.

2.5.2.1 Accounts

Two kinds of accounts exist : externally owned accounts and contract accounts. The latter are held by
smart contracts and controlled by their code while the former corresponds to blockchain users and are
controlled by private keys. Both are associated with an ether balance. The account corresponding to a
contract also holds the code of this contract and a storage. An account is created if it is the recipient of a
transaction and does not yet exist.

2.5.2.2 Messages and Transactions

In Ethereum, we differentiate between transactions and messages. Transactions are sent from externally
owned accounts and lead to the sending of a message. They are signed with the sender’s private key.
Transactions can be used to send funds, deploy smart contracts, or execute their functions.

When a contract account receives a message, its code is executed accordingly. It might lead to the
contract sending a message of its own to another contract. A message contains an optional data field
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that will be interpreted by the recipient according to its specification. This field is used, for instance, to
provide arguments to a smart contract’s function.

Another difference between messages and transactions is that messages will not be stored in the
blockchain, only transactions will. Messages only exist during execution. This means that when a
transaction triggers a chain of messages between smart contracts, it might be hard to trace the incurring
modifications back to the original transaction.

2.5.2.3 Crypto-fuel

The ether (ETH) is designed to be used as a crypto-fuel, or gas. This fuel pays for the execution of code.
Which is why a message contains a STARTGAS value corresponding to the maximum amount of gas
available for any computation that may occur as a result. Each atomic instruction such as a comparison,
or storing a value, costs a fixed amount of gas. This is to prevent infinite execution. Indeed, running an
infinite loop would require an infinite amount of gas. All execution is therefore bound to halt.

Data sent along with a message also cost gas. When a contract runs out of gas and the code is not
done executing, all changes are reverted and the engaged ether is lost. If the execution consumed less
gas than what was provided, the excess is returned to the sender.

Gas prices can vary. Transactions include a GASPRICE field for the sender to indicate the price they
are willing to pay by computational step. The idea is to force an eventual attacker to pay proportionally
to the resources it uses. It also allows the network to react to attacks by momentarily raising the price
of gas, thus influencing the cost of said attack. Finally, gas price can adapt to the fluctuations of the
ETH value, providing miners with a consistent rate. If the sender doesn’t have the necessary funds in its
accounts, the call will fail.

The fees that are paid for gas will be added to the block reward.

2.5.2.4 The Ethereum Virtual Machine (EVM)

Ethereum contracts are written in a high level language such as Solidity and are then compiled into
bytecode before being deployed in the blockchain through a transaction. The Ethereum Virtual Machine
is in charge of running that code. It is stack-based. During execution, the code is stored either on the
stack, in memory or in the contract account storage. The first two will be whipped clean after the process
ends.

Code execution is part of transaction validation. The code is therefore executed by all nodes that
validate transactions. The state of the system, which contains all accounts, is stored in the blocks.

2.5.3 Hyperledger Fabric

The Hyperledger project is an open source initiative by the Linux Foundation started in 2015 to enable
cross-industry collaboration in developing blockchain applications and their surrounding tools. The goal
is to address the scalability and reliability limitations of existing blockchain solutions to facilitate their
adoption for industrial applications.

Hyperledger Fabric [Androulaki et al., 2018] is one of many projects under the Hyperledger umbrella.
It was originally proposed by IBM in 2016. Where Bitcoin and Ethereum are both public blockchains,
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Hyperledger Fabric enables restrictions on operations such as reading the blockchain state or sending a
transaction. It supports smart contracts (called chaincodes), several consensus protocols, and member-
ship services.

Fabric is built for modularity, to better adapt to the needs of various industrial use cases. This
translates to switchable consensus protocol and a flexibility in chaincode development. Contrary to
Ethereum that uses its own language for smart contracts, Fabric supports general-purpose programming
languages for its chaincodes. Furthermore, Fabric does not have a backing cryptocurrency. This is mostly
due to its permissioned model (see Section 2.7).

2.5.3.1 Membership

Nodes must enroll to use Fabric. Enrollment is handled by the Membership Service. A node can be one
of three things : a client, a peer, or an orderer. Some peers can also act as endorsing peers (or endorsers)
depending on the transaction.

Clients act on behalf of users and submit transaction proposals. Transactions revolve around de-
ploying or calling chaincodes. Peers execute and validate these proposals. For each transaction, the
associated chaincode determines which subset of peers can validate the proposal. Those who do are
called endorsers. Orderers collectively form the ordering service. They are in charge of running the
consensus protocol that establishes the total order of transactions.

The Membership Service is built to support different implementations. At the moment, the default
is a Public Key Infrastructure (PKI). Fabric offers support for federation where several organizations use
the same network and operate their own Membership Service. Credentials can be distributed online or
offline.

2.5.3.2 Channels

Fabric is divided into channels. One channel corresponds to a ledger. A node can have access to any
number of channels and maintain a separate ledger for each.

Let us take the example of an apple company selling to different grocery stores. The company sets
different prices for each store, based on the volume purchased, the history between the two companies, or
any other reason. Using a public blockchain, each store can see how much the others are paying, leading
them to renegotiate their prices. This is not to the apple company’s advantage. Using channels however,
each price can be set on a private channel. The rest of the operation such as shipping, deliveries, and so
on can be on a larger channel containing every store.

This information separation enhances user privacy and opens the door for industrial applications with
privacy requirements.

2.5.3.3 Execute-Order-Validate

Another difference between Fabric and the other two is the order in which the flow of transaction vali-
dation operations occurs. In Bitcoin and Ethereum, transactions are pre-executed by miners, compiled
into a block, and propagated throughout the network to be executed again by all peers in order. For a
given miner that did not produce the block, the order may differ from its own. Transaction A therefore
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can yield a different result when applied after being enclosed in a block from when it was first received
by the miner and pre-executed to check its validity. The transaction remains valid, but the resulting state
might differ. This is defined as the Order-Execute Architecture.

In Fabric, the steps are reversed. Transaction validation can be broken down into three phases :
Execution, Ordering, Validation.

Execution Phase A client that wants to invoke a chaincode makes a transaction proposal. The proposal
is then submitted to that chaincode’s endorsers. Endorsing requirements vary between chaincodes. All
endorsers may be required to endorse, or only a portion of them (5 out of 15 for instance), etc. There is
a great deal of liberty here.

Let us consider the following scheme: each endorser is given a share such that the sum of all shares
is 100. A transaction proposal is valid if it is endorsed by at least 50% of the shares. Now a has 20% of
the shares, b and c each have 10, d has 25, e and f have 15 each, finally g has 5. (a, d, g), (b, c, e, f), and
(a, b, c, f, g) are all valid endorsement sets.

When contacted, an endorser checks the proposal’s signature. It simulates its execution and endorses
the proposal by apposing its signature. The value of the input at the time of execution (as read from the
channel) as well as the channel state after the execution are part of the returned endorsement.

The strategy of which endorsers to contact and in what order is left to the client’s appreciation. Once
enough endorsements have been gathered, the client forms a transaction assembling its proposal and the
endorsements, and submits it to the ordering service.

Ordering Phase The Ordering Service does not verify the validity of the transaction it receives. It
simply provides a total order for transactions on a per channel basis. Transactions are grouped by blocks
and broadcasted to nodes of their respective channels. A block is identified by its sequence number. It
contains a list of transactions and a hash chain value h that corresponds to the cryptographic hash of the
previous block. Nodes can query the Ordering Service to retrieve past blocks.

The Ordering Service guarantees the following properties [Androulaki et al., 2018]:

• Agreement - Two blocks delivered by correct peers with the same sequence numbers are equal.

• Hash chain integrity - If the blocks Bs and Bs+1 are both delivered by correct peers then it holds
that h′ = H(Bs), where h′ is the hash chain of Bs+1 and H(.) is the cryptographic hash function.

• No skipping - If a correct peer delivers a block with number s > 0, then this peer has already
delivered a block for all i such that 0 ≤ i < s.

• No creation - When a correct peer delivers a block, all transactions contained within have been
submitted by some client.

Additionally, for liveness-sake, the following property is desirable :

• Validity - If a correct client submits a transaction to the Ordering Service, then every correct peer
will eventually deliver a block that contains it.
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A No Duplication property is also desirable though optional. The Ordering Service may perform
access control checks to verify whether a client is allowed to submit and broadcast a transaction, or
receive blocks from a given channel.

Any consensus protocol that verifies these properties can be implemented in Hyperldger Fabric. The
ordering method can even be switched over the life of the blockchain. It does not maintain the blockchain
state nor does it control the validity of the ordered transactions.

Validation Phase After being ordered, transactions are broadcasted to their corresponding channels
where they are validated by peers. The validation process consists in three steps :

1. The endorsements are checked against each chaincode’s endorsement policy.

2. Endorsed inputs are checked against current values as read from the ledger.

3. The ledger is updated.

If step 1 or 2 fails, the transaction is marked as invalid. It is still included in the ledger but does not
modify the channel’s state.

2.6 Consensus protocols

One of the most important challenges of the blockchain is to keep the different copies of the ledger
consistent with one another. This is achieved through a consensus algorithm.

There exist two main types of such protocols currently in use: Proof of Work (PoW) and Proof
of Stake (PoS). All aim at electing a leader that will propose the next block to the network. Other
propositions have some merits such as hybriding PoW and PoS to mitigate the shortcomings of both, or
basing the protocols on social interactions. All of these protocols are explained below. The quest for the
optimal consensus process is still underway [Vukolić, 2015].

2.6.1 Proof of Work (PoW)

Proof of Work is the consensus mechanism used in Bitcoin and was summarized in the original paper as
"one CPU, one vote". It is the most mature solution to date and is based on hash functions. PoW is hard
to produce, but easy to verify.

How it works Miners try to solve a computational puzzle: In addition to the root of the transaction tree
and the hash of the previous block, a block’s header contains a nonce. The nonce value is chosen such
that the block’s header hashes to a value smaller than a specified target. The first miner to find a valid
nonce propagates their now valid block throughout the network. Upon reception, nodes verify the block
by hashing it, which is easy by Definition 2.2.1. They then verify all transactions contained within. If all
checks pass, miners advertise the new block to their neighbours and the propagation continues until all
the nodes have received it. This block becomes the new head of the blockchain and miners start working
on the next one.
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Based on the preimage resistance of hash functions (see Property 2.2.1), the PoW puzzle can only
be solved by brute force, i.e. trying nonces until one works. The more computational power an entity
dedicates to solving this puzzle, the greater its chances. The first to find a solution collects the reward.
The difficulty of the puzzle adapts to the number of participants: if the puzzle is becoming too easy,
its difficulty will increase. When fewer miners participate and the puzzle is too hard, the difficulty will
lower. In Bitcoin, this re-evaluation occurs every 2016 blocks, which corresponds to roughly 2 weeks.

The more miners participate in the PoW, the more computational power is invested and the more
difficult the puzzle. An attacker would need more computational power of its own to compete against
honest miners. A block containing invalid transactions will be rejected even with a valid nonce.

Figure 2.12: Estimation of computing power distribution in Bitcoin amongst the largest mining pools
Estimation over 24 hours, captured 05/06/2019 on blockchain.com12

Centralization In the early days of Bitcoin, people were mining with their own computer. But the
required computing power rose with the value of bitcoins and soon, casual mining became impossible.
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First CPU mining was trumped by GPU mining. Mining farms started appearing: Warehouses full
of servers mining non stop. In 2013, specialized hardware called ASIC (Application-Specific Integrated
Circuits) 13 was introduced14. But this solution requires quite an investment. In addition, this specialized
hardware is really good at mining but happens to be bad at everything else. Including keeping up with the
blockchain state. So to better their odds, people started organizing themselves into mining pools15. Fig-
ure 2.12 shows the distribution of computing power amongst the different pools. Unknown corresponds
to block where the origin of the miner could not be determined. Nowadays, the chances of mining a
block when operating outside of a pool are abysmal.

Each pool is organized in a different manner but for the most parts, pool participants share their
computing power and divide earnings in proportion to their contribution. This causes several problems.
Mainly, it pushes the blockchain towards a re-centralized model based on trust. Wannabe miners need to
trust that the person running the pool will actually redistribute the earnings. They also need to trust the
owner’s intentions.

In the eyes of the network, a pool acts as a single node. If a pool were to aggregate more than
50% of the network computing power, its owner could mount a successful attack on said blockchain (see
Section 2.8.4). Because participants in pool not only mine in its name, they also get the block information
from it, including the previous block.

Even if no single pool reaches the dreaded 50%, collusion amongst pool owner is a strong possibility.
Bitcoin blocks mined in 2018 could be attributed for more than half of them to the four most popular
mining pools: 21.7% for BTC.com, 14.4% for AntPool, 11% for Slush, and 10.7% for ViaBTC16.

Obviously, pool being a sum of individuals and not one entity, miners are free to leave a pool if they
believe it misbehaves or is dangerous to the security of the network as a whole. In Bitcoin history, a
single mining pool has reached more than 50% of the network power in three occasions. And every time
people left the pool until it was back to an acceptable level. But there is no guarantee this will always
be the case, because being part of the biggest pool means more revenue. When bitcoins are not mined
by individuals passionate about the new technology but by corporation for instance, this self-regulating
behaviour is unlikely to continue.

2.6.2 Proof of Stake (PoS)

Proof of Stake has been introduced in an effort to move away from the computationally taxing PoW.
There are several variants but he main idea behind it is: the more stakes one holds, the more they have to
loose and therefore the more trustworthy they are. The first PoS coin, Peercoin17, was released in August
2012.

13Bitcoin Wiki: List of Bitcoin ASICs. https://en.bitcoin.it/wiki/List_of_Bitcoin_mining_ASICs,
Last Checked: July 28th, 2019

14https://bitcoinmagazine.com/articles/avalon-ships-bitcoins-first-consumer-asics-
1358905223, Last Checked: July 28th, 2019

15Bitcoin wiki: Pooled mining. https://en.bitcoin.it/wiki/Pooled_mining, Last Checked: July 28th, 2019
16Information extracted from https://bitcoinchain.com/pools, from 31/12/2017 to 31/12/2018
17PeerCoin: https://peercoin.net, Last Checked: July 28th, 2019
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How it works In its most basic form, PoS works as a lottery. Each second, each account has a certain
probability to be chosen to mine a new block that is proportional to its balance. To mine a block, one
must simply sign it. Letting a single participant sign is dangerous as we want a system that a single
player cannot dominate. PoS therefore requires p validators per block. The lottery system selects more
than p winners as some winners may not be online at that moment, or the key associated to the selected
funds may have been lost.

This method has some advantages over PoW. First, it is more eco-friendly. Secondly, PoS addresses
PoW’s centralization concerns evoked above. The block generation can be much faster in PoS. The
scheme can arguably be considered more secure as a 51% attack (see Section 2.8.4) requires owning
51% of the currency. But it cannot be used in this simplest form as many issues need to be addressed.

Nothing at stake Blockchain forks are bad for the network. They introduce uncertainty and negatively
affect the value of the currency and the trust of participants in the system. Transactions valid in one
might not be in the other and may end up being cancelled, since only one will eventually remain. It is
therefore in the network’s best interest to limit the number of forks and resolve them rapidly when they
arise.

When a fork occurs, nodes must decide which chain to contribute to. With PoW, the best strategy
is to mine on the chain that is most likely to win. Dividing computing power between the two chains
is not in the miner best interest as it lowers its chances to mine a valid block on either. Furthermore,
if the miner chooses the wrong chain, all its efforts are lost. It is also increasingly unlikely that blocks
will keep being found at the same rate on both chains. So the fork will rapidly be resolved as one chain
becomes longer.

With PoS, voting is costless. The best strategy is therefore to vote on both chains so that whichever
chain wins in the end, the reward can be claimed. This is called the Nothing at Stake problem. This
behaviour causes forks to go unresolved and two alternate chains to exist concurrently for a long period
of time.

One might believe that, knowing this behaviour undermines the value of the currency, people with
stakes in the system would not be inclined to indulge in it, i.e. they would not vote on both chains in
the event of a fork. But it is in every participant’s best interest to do so, thus increasing personal gain
over the interest of the network as a whole. Hence many participant are likely to do it. This is called the
Tragedy of the Commons, a situation where individuals acting in their own self-interest cause the ruin of
a shared resource.

Mitigating short range attack To solve the Nothing at Stake problem, Kwon [Kwon, 2014] demands
a warranty from the voters. Before being able to vote, participants have to put down a security deposit,
coins are then said to be bound. In this case, the voting power no longer depends on the balance of an
account but on the amount committed in the security deposit. Every block needs to be validated by at
least 2

3 of the voters (in actuality, a fraction of voters that holds at least 2
3 of the bound coins). A fork

therefore demands at least 1
3 of the voters to double vote.

Somebody witnessing two blocks of the same height signed by the same participant can publish a
transaction with both signatures and expose the voter. If the double voter is caught, the security deposit
is lost. The voter having no more committed stakes loses its ability to vote in addition to the amount that
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was committed. The participant that produces the evidence might even get the deposited amount. This
incentivises good behaviour from the voters but also enforcing of this behaviour by all participants.

Security deposits however, cannot be locked forever. If the funds are never returned, they are as good
as lost and no longer act as a deterrent from bad behaviour. The cost of entry would also be prohibitive
for many. Therefore, honest voters must be able to recover their deposit after some mandatory lock up
time.

Attacks involving a fork can be separated into short and long range attacks. The short range attacks
try to fork from a recent block. The PoS as presented by Kwon [Kwon, 2014] punishes this kind of
attack. Indeed, if the attack lasts less than the mandatory lock up period of the funds, any attempted
attack can be punished in the way described above.

A minimal cost can even be imposed. Let n be the number of expected participants and m the
minimal amount to be committed by each of them. The total amount of coins committed for this PoS is
at least n ∗m. A successful attack requires at least 1

3 of the overall voting power to double vote. This
will result in at least n∗m

3 coins being destroyed in the aftermath. By approximating n and tuning m
accordingly, we can decide on a minimal cost.

But what of the long range attacks, where an alternative chain starts from an old block?

Weak subjectivity The problem of double voting is not limited to the resolution of short-range forks.
With PoW, creating a block is expensive, so the idea of starting a fork really far back is absurd. In PoS,
not so much. Since voting on a block is free, trying to rewrite the blockchain going 1000 or even more
blocks in the past, possibly all the way to the genesis block, can work.

In an entry posted on the Ethereum blog [Buterin, 2014], a slight change to the security model is
proposed that would solve the problem of long-range attacks: Weak Subjectivity. The author divides
consensus algorithms into two categories. The first, the objective algorithms, require new nodes joining
the network to be aware of only two things: the protocol definition and the set of all published blocks.
With this information alone, one can be aware of the current state of the system. PoW falls into this
category.

In the second one, subjective algorithms, different stable states can cohabit and nodes can come to
different conclusions. Additional information is required to fully understand the operating of the system.
It is for example the case of reputation systems where social information play an important role. The
author then proposes a new denomination for PoS, namely weakly subjective. A new node joining the
network would require knowledge of the protocol, the set of all published blocks, and additionally a valid
state from n blocks ago. This essentially forbids to go back more than n blocks. Long-range attacks are
no longer possible. The security deposits would have to stay locked up for a minimum of n blocks during
which double voting can be properly punished. Honest voters can retrieve their deposit after the lock-up
time. For an attack to be successful, it must last more than n blocks.

There is however one problem with weak subjectivity: where do new nodes get their stable state
from? Nodes that connect at least once every n blocks are not concerned. But new participants or nodes
that have been absent for a while need some external help to update. We therefore need blockchain
explorers or other means of bringing people up to date with the system.
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Exponential subjective scoring In the same entry, another method is proposed under weak subjectiv-

ity: exponential subjective scoring. Simply put, each block has a score that depends on that of its parent

block but also on when it was first seen. When a node first sees a block from another chain, it penalizes

the late comer by assigning it a lower score. How low a score depends on how far in the chain the node

needs to go back to find the first common ancestor. The further, the lower. Each node calculates this

score for itself. The longest chain is now considered in terms of cumulative scores.

Figure 2.13: An example of fork attempts with exponential subjective scoring

Figure 2.13 provides an example of both short and long range forks under that method. When no fork

is occurring, each block’s score is calculated by adding 1 to the score of its parent block: the score of the

genesis block is 0, it is 1 for the block of height 1, 2 for the block of height 2, etc. When a fork occurs

at recent height, the block that is seen second is given a slightly lower score. We take the example of a

naturally occurring fork. When the second block arrives, the main chain is only one block ahead (so up

to block 11). The score for the new chain is calculated by adding 0.91 = 0.9 to each new block instead

of 1. So the second chain has a slight disadvantage. But as time progresses, the second chain produces

block faster than the main chain. After 3 blocks, the second chain has caught up. It becomes the longest

chain and the fork is resolved.

In the case of a long range fork however, the difference between the scores of the two chains will

grow exponentially, every slight difference adding up to a significant gap in scores. In our example, the

second chain starts 10 blocks behind. The score for this chain is computed by adding 0.910 = 0.3 to

each new block instead of 1. It will therefore take a lot more blocks to catch up to the score of the main

chain. And the furthest you start your fork, the harder it will be. This mitigates long-range attacks.
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2.6.3 Other methods

Neither PoW nor PoS are perfect and there are a number of proposal with varying degrees of maturity
that aim to replace them. Here we focus on two of them.

The first, Proof of Activity (PoA), is a hybrid between PoW and PoS. Proposed by Bentov et al. [Ben-
tov et al., 2014], the motivation for PoA comes out of concerns over the attack environment of cryptocur-
rencies after the original money supply has been distributed and the only reward for block creation comes
from transaction fees. In Bitcoin, new coins are introduced by mining new blocks, and the block reward
is designed to half periodically until it becomes null. Bentov et al. find that PoW miners might not have
a strong enough incentive to maintain the security of the network after that, as coins they mine might
be exchanged for other currency and mining hardware can be re-purposed for other cryptocurrencies.
Stakeholders are more invested in the system. Hence their proposal.

The second, Ripple’s consensus protocol [Schwartz et al., 2014], is centered around behaviour and
can be boiled down to a reputation system. The security model it offers is significantly different from
PoW or PoS. Ripple is arguably not a blockchain but is a consensus-driven network.

2.6.3.1 Proof of Activity (PoA)

Bentov et al. [Bentov et al., 2014] propose to extend PoW with PoS. The power required to mine a block
is much lower than with classic PoW but so is the reward. Because mining a block is not enough, the
block then needs to be signed in a PoS fashion. The combination of the two methods is called Proof of
Activity (PoA). PoA requires more rounds of communication and more involvement from the miners,
hence its name.

Authors identify three ways in which PoW mining will be subject to the Tragedy of the Commons
after the fixed supply of coin has been mined, and miners solely rely on transaction fees for payment. The
Tragedy of the Commons refers to a situation where individuals acting in their own self-interest cause the
ruin of a shared resource.

The first concerns the willingness of users to pay transaction fees. Even if everybody agrees they
must be paid to incentivize miners, it is in everyone best interest not to pay too high a fee themselves.
The solution to this is to not include transactions with low fees in mined blocks. Which brings us to the
second contradiction.

It is in the miners best interest to agree on a minimum fee. If they did, people would have to pay or
their transactions would never be included. However, miners that do not follow the rules will increase
their profit as they will include more transactions in their blocks. A proposed solution is to add some
protocol-enforced rules such as capping the number of transactions per block. This way, miners only
include the transactions with the highest fees which would force users to pay them. The system must
remain attractive to miners as the blockchain security level is directly dependent on the number of miners
participating in the consensus protocol. But this cost might be more than the users are willing to pay.

The last problem is that the fees are only paid to the miner that created the block. But the cost of
running the network are also in propagation, verification, and storage and are shared amongst all the
nodes. And these operations are not being compensated. This could encourage miners to stop propagat-
ing the transactions to keep the reward for themselves, a problem is discussed in Section 2.8.7 A solution
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would be to limit the allowed size of a block, that way miners cannot possibly include all their withheld
transactions in one block, especially the longer ones that tend to come with a higher fee.

The protocol involves two types of actors: miners and signers. Miners produce empty PoW blocks
(no transactions included). The empty block is used to deterministically derives n pseudo-random val-
ues. A special function called follow-the-satoshi uses these pseudo-random values to select n satoshis18

amongst all the coins created from the genesis block to the most current one. It does so by assigning
a number to each satoshi, starting from 0 for the first coin ever mined. The pseudo-random values are
normalized to fit inside the interval and point to a specific coin. The life of the coin is traced from origin
to the hand of its current owner. Each satoshi selects one signer.

The first n− 1 signers simply sign the PoW block. The nth one creates the final block by including
the PoW block, transactions, signatures from previous signers, and finally their own. The longest chain
is still considered in terms of PoW. The fees are divided unequally among the miner, the signers and the
final block creator. PoW is used mainly to slow down the block creation process. It is a reward system
rather than a punitive one. It incentivizes people to run full nodes and participate actively in the network.

2.6.3.2 Ripple

Ripple’s consensus [Schwartz et al., 2014] is somewhat different from what we have seen and involves
more trust. The network is divided into Unique Node Lists (UNL). Each participant has their own set
of nodes that they trust collectively to reach consensus. During the consensus process, a node will only
interact with and consider transactions proposed by members of its own UNL. The number of nodes in
each participant UNL must be such that the sets have a non void intersection (to avoid a fork). This
intersection must be at least a fifth of the size of the bigger set.

The set of transactions the network agrees on is stored in the Last Closed Ledger. Each node main-
tains its own Open Ledger that contains unconfirmed transactions. The process is comprised of several
rounds, each containing the following steps:

1. Proposal - Each node assembles the valid transactions that have not been validated by the network
yet, constitutes a candidate set, and makes it public.

2. Vote - Each node collects the candidate sets of all nodes in its UNL and votes on whether to accept
each transaction contained within.

3. Results - Transactions that are deemed valid by more than a certain percentage of the voters
continue to the next round while the others are dropped. They can be proposed again in the next
consensus iteration. The percentage of positive vote needed to move to the next round is supposed
to increase from round to round. The number of rounds is not fixed by the protocol. However, the
final round must require an acceptance level of 80%.

This protocol, when the UNL sets composition verifies some properties, is resistant to up to n−1
5

dishonest or faulty participants, where n is the total number of participants. This bound is lower that
some other protocols but its rapid convergence and flexibility are properties that other protocols lack.

18The satoshi is the lowest division of the Bitcoin. 1BTC = 108 satoshis
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Ripple also verifies three important properties. Correctness guarantees that the system can differenti-
ate between valid and invalid transactions. For instance, a transaction from Belinda transferring 5 dollars
to Camille will not be accepted if Belinda’s account does not hold these 5 dollars.

Agreement guarantees that all nodes in the system have the same history and state for it. Among other
things, it prevents double spending (see Section 2.8.1). Belinda’s account holds only 5 dollars and she
tries to transfer 5 dollars to both Camille and Devlin. Each transaction taken alone is valid as Belinda’s
balance allows for the transfer. But both cannot be applied. This is why agreement is needed on which
transaction to apply in what order.

Utility can be defined as the usefulness of the system. As with a user interface, responsiveness is key.
A system that is sure to reach consensus but does so in an unpredictable or a very long amount of time
will never find real life application. Utility here is therefore taken to mean that the consensus is reached
rather quickly. All three properties hold only when the number of malicious nodes are beyond the above
mentioned bound.

Each node can decide to kick another node out of its UNL. A node that keeps proposing invalid
transactions or consistently votes to discard all transactions for example would be dropped. Nodes that
are too low and slow down the consensus process can also be dropped to ensure utility. It is in that sense
that the Ripple Consensus Protocol leverages behaviour.

2.7 Governance

Blockchains can assume several types of governance. As we have seen, Bitcoin and Ethereum are reso-
lutely open, allowing anybody to join at any time. Applications outside of cryptocurrencies however run
into some liability and privacy issues that require a different approach. Hence permissioned blockchains,
such as Hyperledger Fabric, where the rights of the participants can be restricted.

Even beyond that classic divide, the blockchain governance is a complicated subject. Who writes
the original code? Who owns it? Who decides on an update to the software or to the protocol? Can we
correct a mistake once the blockchain has been launched? Does everybody’s voice truly carry the same
weight in debate? What is the cost of openness on maintainability? Many questions that we explore
below, after presenting the differences between public and permissioned blockchain.

2.7.1 Public vs Permissioned

Regardless of the permission model, a blockchain is always a distributed network which participants
maintain a shared, append-only ledger. Transactions are ordered through a consensus protocol. The
network provides some guarantees of immutability despite faulty or malicious nodes. Where they differ
is in who is allowed to participate in the network and in what ways.

Public blockchains In a public blockchain, all operations are available to all users. There is no need
for registration. Identities can be generated by the participants themselves. Users can join the network
dynamically. No access control need to be implemented.

The fundamental network rules are defined by the community and can only be changed if the com-
munity agrees. No one can unilaterally impose revisions to them. There is no oversight on what can and
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cannot be part of the ledger (except if mentioned explicitly in the rules). Transactions cannot be censored
unless it is the wish of the community at large.

A public blockchain also enables cost sharing amongst individuals, giving them access to a higher
level of security than they could achieve on their own.

On the flip side, miners need to be incentivized to secure the network. The more miners participate
in the consensus, the more secure the blockchain. But all these people are not gonna spend money and
energy to do so out of the goodness of their hearts. Hence the cryptocurrency to back up the blockchain
and reward the miners. But, the more miners, the more computationally taxing or complex the consensus
protocol.

Finally, this openness leads to privacy compromises. But not every use case requires privacy. Let
us consider the parliament of an imaginary country where new laws are voted using the blockchain. In
this instance, the vote of every representative should be public knowledge as people are allowed to know
how their representative votes on each issue. A smart contract tallies up the votes, ensuring transparency
in the matter. The code for this smart contract is publicly available and verifiable. That way, no one can
vote for absent colleagues, manipulate the results, change or bury the record of their individual vote after
the fact, etc.

It is important to note that even on a public blockchain, permission restriction can be enacted: only
the intended recipient can spend a bitcoin, smart contracts can be coded to only accept calls from the
owner’s address, etc. But there are cases where this is not enough and a public blockchain is not suited
for the job.

Permissioned blockchains In a permissioned setting, some operations such as mining a block, pub-
lishing a transaction, or even reading the blockchain can be subject to permissions. Hyperledger Fabric
is an example of such a blockchain. In order to perform a restricted operation, users need to register,
authenticate, and be granted privileges. An access control system must be deployed. A small number of
individuals possess the power to change the rules of operation which can lead to censorship.

As participants are vetted before joining the network, security can be more easily achieved. Further-
more, participants have built-in interest and may not require an incentive to participate in the consensus
protocol. However, the re-centralization of power can lead to an arguably less secure model.

We differentiate between two types of permissioned blockchains : private blockchains, and consor-
tium blockchains.

Private blockchains are run by a single entity that can unilaterally enact changes to the system. An
example for such a blockchain can be a large company that wants to track the supply chain from its
subcontractors. The company sets the rules and can for instance decide that a contractor is no longer able
to participate in the network after its contract has ended. The blockchain can help the company track its
supply all the way down the chain of subcontractors. Records can be open to outside audit agencies as
the need arises.

Consortium blockchains are run by a small number of entities. They may have different stakes in the
system and its activity, but they all decide on how it operates. Let us take the example of electricity com-
panies operating over different geographical locations. These companies want to buy and sell electricity
to one another. Electricity produced by themselves but also by individuals residing within their domain.
No one is willing to assume the cost and the liability of operating the shared system. A consortium
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blockchain answers this conundrum. The companies can decide if they will all have equal voting power,
under what conditions the blockchain can be modified, and so on. Once they agree, individuals can post
their production on the blockchain for every one to bid on.

2.7.2 Governance models

This section applies mostly to public blockchains and consortium blockchains to a lesser degree. Private
blockchains are controlled by a single entity and can decide to unilaterally enact changes. For the others,
governance is a delicate subject.

Over the course of its life, a blockchain development faces three kinds of challenges:

1. Fixing bugs and vulnerabilities,

2. Thwarting and ultimately repairing damages from attacks,

3. Upgrading.

A blockchain ecosystem is made up of three types of actors: Network nodes (including miners)
keep the system running, users are the reason the system exists, and developers tend to the system.
Additionally, the value of a cryptocurrency has a direct impact on its blockchain’s ecosystem. Exchange
platforms can therefore be included as a fourth external actor. These actors have different interests. Yet
they must agree on how the blockchain should work.

When operated properly, a governance system should ensure reactivity against attacks, continued
involvement of the different actors, and competitiveness over other applications. One of the appeal
of the blockchain paradigm is its decentralized nature. Nowadays, users are being dictated terms and
conditions that they cannot argue. The blockchain can be a way for them to claim back that power
and shape applications that fit their needs and beliefs. Which is why governance is so fundamental to
blockchain applications. The upgrade proposal process should also be as intuitive as possible as to no
hinder creativity and innovation in developpers.

Above all, the governance process should be transparent with thresholds and requirements clearly
stated: the vote is only valid if at least 35% of actors participate, this proposal requires the approval
of the lead developer to go through, a proposal should be backed by at least 50 people before it can
be brought up for discussion, and so on. Rules and guidelines should include a process to modify the
governance system itself.

When devising a blockchain governance system, two choices can be considered: off or on the
blockchain.

Off-chain Governance In this first model, an external platform is required to debate system modifica-
tion. Bitcoin and Ethereum have both opted for that option. In both cases, Improvement Proposals (BIP19

and EIP20) are suggested by groups or individuals and then debated. If accepted, they are integrated to
softwares and protocols.

19https://github.com/bitcoin/bips, Last checked: July 8th, 2019
20https://github.com/ethereum/EIPs, Last checked: July 8th, 2019
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This method is susceptible to centralization as some actors hold more sway in the ecosystem than
others. In Ethereum for instance, the Ethereum Foundation has been accused of being too present in
the debates. In Bitcoin, mining pools and core developers have a disproportionate impact on decisions.
Some actors may also be restricted by their technological know how or financial means.

Off-chain governance is slow by nature as a consensus needs to be reached by social means. It has
however worked nicely in the past. When a change has to be enacted, users have to actively opt in by
upgrading their blockchain clients or changing their configuration. As such users hold the cards in the
end.

On-chain Governance On-chain governance is a more recent development. There is not enough hind-
sight to draw any meaningful conclusions yet. On principle though, on-chain governance uses smart
contracts to automate governance processes, thus implementing direct democracy.

Coming up with a code that is bug free and implements an efficient governance system tailored to
one’s need is a gargantuan task. Let alone on a first try. Smart contracts have shown time and time again
that the more complex they are, the more likely it is that they can be abused. By nature, they cannot be
modified. This is therefore a dangerous thing to automate. Roll back processes should be put in place as
we are in an exploratory phase at the moment.

The fear with the one token, one vote system that usually goes along with on-chain governance is
the disproportionate power that is given to the richest in the community. This replicates existing systems
that have left many disenfranchised.

Finally, in this model, upgrades are passive. This lessens the power of blockchain users as well as
their incentives to be active participants in the process.

The case of the DAO An excellent exercise in blockchain governance is the infamous DAO incident.
The DAO (Decentralized Autonomous Organization) was an Ethereum-based venture which goal was to
use the blockchain to enable a direct and transparent management of its funds by the investors. No board
of directors, no manager, just a smart contract. The DAO was crowdfunded in May 2016 and collected
more than 150 million USD from over 11 000 investors21, collecting just shy of 14% of the total number
of ether issued at the time.

Its code had been publicly posted and reviewed. Some vulnerabilities were discovered and investors
were urged to hold off until they were resolved. However, in June of 2016, a vulnerability in the code
was used to siphon the equivalent of 3,6 million USD, around a third of the funds stored in the DAO
smart contract at the time.

This situation caused a fundamental debate in the Ethereum community. Some consider the hack to
be valid behaviour as it operated within the rules. They argue that the blockchain immutability comes
first. Others suggested to rollback the clock and re appropriate the funds. This establishes a precedent
of the community collectively rewriting history. Others yet called for the dissolution of the DAO. In the
end, this resulted in a network split, also known as a fork.

21https://www.americanbanker.com/news/the-dao-might-be-groundbreaking-but-is-it-
legal, Last checked: June 11th, 2019
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2.7.3 Forks

Regardless of the governance model, updating a blockchain presents some challenges. A blockchain is
always live. Rebooting it is contrary to its seminal principle of persistence.

A modification to blockchain rules causes a fork in the system: until it is resolved, nodes are working
with different sets of rules. Transactions that are valid for one, may not be for another. This splits and
weakens the system until the dust settles and the fork can be resolved.

The forks we mention here are different from the one described in Section 2.3.6. They are mostly
voluntary and pertain to protocol changes. The forks of Section 2.3.6 occur naturally and are accidental.
In this latter case, the choice of which chain to continue is mostly inconsequential whereas in the former
case, the success of the fork has deep implications for the development of its blockchain.

Regardless of the debates that preceded it, a fork’s success depends on its adoption. Two kinds of
nodes are particularly influential in this matter: miners and full nodes.

Nodes in the network can choose to maintain a local version of the whole blockchain, or simply keep
the parts that interest them and query the rest when necessary. The former are called full nodes. Only full
nodes can verify transactions as they have the entire history at their disposal to compare them to. Users
that do not run a full node rely on them to access blockchain history.

Miners can be full nodes themselves or trust another node to provide them with valid transactions
to bundle in their blocks. Likewise, full nodes can be miners or lack the computing power (or fund, or
interest) to join in the consensus protocol.

Forks can be soft, or hard, depending on the compatibility of the new network with the old one. We
present both cases below.

Soft fork After a soft fork, blocks produced under the new rules are still considered valid by the old
software. In that, a soft fork is backward compatible. Old blocks however are considered invalid by the
new system. Or rather only a subset of previously valid transactions remain so.

An example of Bitcoin soft fork would be Pay to Script Hash (P2SH). Prior to this, Bitcoin transac-
tions were sent to an address hash that simply specified the recipient. With P2SH, users can specify a
script instead. As detailed in Section 2.5.1.3, the recipient must then provide a script matching the hash,
as well as data that will make it evaluate to true in order to unlock their funds.

A soft fork can be activated either by miners that will start enforcing the new rules, or by full nodes
that will drop block including newly invalid transactions. It is not in the interest of miners to have their
blocks dropped as they loose out on the block reward. Miners therefore have an incentive to fall in line
with the full nodes.

For a soft fork to be successful, half of the miners (or half of the power behind the consensus) need to
switch to the new rules. Miners that do not make the switch weaken the network for two reasons: First,
this lowers the total power behind the consensus as blocks produced by these miners will be dropped
by the majority and therefore not make it into the blockchain, effectively removing these miners and
their resources from the block creation race. Second, this opens the network to the fake confirmation
vulnerability.

To illustrate this attack, let us consider a malicious characterM and an honest victim V . M produces
a transaction transferring money to V . The transaction is purposefully not new-rule-compliant. It is
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however valid for pre-fork miners and ends up in a block. This block will not be accepted by the network
at large. More than half of the miners deem it invalid and will not build on top of it. However some full
nodes that are yet to switch over may add it to their chain. V can then be tricked into thinking that the
transaction has been accepted.

Soft forks can also be used to undo accidental hard forks.

Hard fork After a hard fork, new blocks are considered invalid by the old software. This essentially
creates a new chain and splits the network forever. Out of the two chains, the winner will be the one
adopted by the majority. This majority is defined in terms of miners and full nodes of course, but also
users, developers, and even cryptocurrency exchange platforms.

In 2016, the Ethereum blockchain operated a hard fork to undo the DAO hack. Since then, two
chains have co-existed: the main chain that is still maintained by the Ethereum foundation and remains
the official carrier of the ETH currency accepted to undo the hack. Those who didn’t keep with the
original chain and created a new currency called Ethereum Classic (ETC). At the time of writing22, ETC
is valued at $8,25 against $245,46 for ETH.

Readers interested in the history of blockchain forks are directed to an article by McCorry et al. [Mc-
Corry et al., 2017].

2.8 Blockchain security: attacks

In this section we discuss blockchain vulnerabilities. Vulnerabilities can stem from the blockchain con-
cept itself, each blockchain’s own protocol, or client implementation. We address all three aspects,
though the security and limitations of consensus protocol have been addressed in Section 2.6.

2.8.1 Double spending

Great efforts have gone into making paper money difficult to forge: type of paper, design, watermarks,
serial numbers, etc. In a digital setting where tokens can be easily replicated, we face the same issue:
How do we prevent users from duplicating their tokens and using them multiple times. Figure 2.14 illus-
trates this process called Double Spending. It is the main ordeal digital currency must overcome in order
to be usable. Indeed, if double spending is possible in your system, when you have any amount of money,
you have an infinite amount of it, rendering the whole system meaningless. Outside of cryptocurrency,
double spending can be interpreted as reversing any type of transaction.

In centralized settings, tokens must be presented to the bank that checks their validity and records
transactions. This requires trust, creates a bottleneck, and a single point of failure.

The blockchain did away with central authorities by making all transactions public so that everyone
can check for themselves whether a token has already been spent. In this setting, if not trivial, double
spending is still a threat. We detail two ways they can happen and how to protect against it.

22June 11th, 2019
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Figure 2.14: Double Spending

Unconfirmed transactions As seen in Figure 2.7 of Section 2.3, transactions are issued, broadcasted,

and validated before being included in a block. The delay between transaction issuance, validation, and

integration into the blockchain can be pretty long. A transaction that has been validated but is yet to be

included in a block is called an unconfirmed transaction. One could expect that all valid transactions will

eventually make their way into the blockchain. It is not the case.

When one wants to pay for a direct service, such as a cup of coffee, or a hair cut, it becomes tempting

to accept unconfirmed transactions as the client is unlikely to sit there until the transaction goes through.

This opens up a double spending opportunity: Placing ourselves in the Bitcoin model, imagine a client

paying for a fancy haircut. They issue a blockchain transaction to the hairdresser with a low transaction

fee. The transaction is validated by full nodes and the client goes on its merry way. As soon as they

leave the salon however, the client issues a transaction to themselves, using the same UTXO as inputs,

with a higher fee. The first transaction is not yet part of the blockchain. This second transaction is

therefore considered valid by full nodes. A block cannot contain both transactions however and miners

are incentivized to choose the transaction with the highest fee to maximize their profit. The second

transaction is more likely to win and eventually cancel the other one.

Recipient should never accept an unconfirmed transaction as proof of payment. But confirmation is

not enough.

Naturally occurring forks We have seen in Section 2.3.6 that blockchain forks were a naturally occur-

ring phenomenon. In this event and for a brief moment, the network is split. This is another opportunity

for a double spent.

Maleficent issues two transactions txA and txB to Alexander and Belinda respectively. The trans-

actions are such that they contradict one another and cannot coexist. She sends them to the network
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through different nodes, ideally on opposite sides of the network so that roughly half of the network sees
txA first, and the other half receives txB first. Now, in the event of a fork, chances are that candidate
block B1 includes txA and candidate block B2 includes txB . Maleficient can now produce a valid block
including txA to Alexander and do the same for Belinda.

Naturally occurring forks cannot be predicted. Their rates varies depending on the blockchain. The
chances of this attack being successful are somewhat slim. A natural fork will resolve itself over time. To
protect against this, users are encouraged to only consider a transaction as definitively embedded in the
blockchain if the block that contains it is buried under at least n blocks, where n is blockchain dependent.
For Bitcoin, n = 6.

Consider a transaction tx0 embedded in block Bi. If an attacker can produce an alternative chain
starting from block Bi−1 that is both valid and longer than the main chain, tx0 would be reversed. The
chances of success depend on the underlying consensus protocol (see Section 2.6). In general, the longer
the alternative chain, the slimmer the chances.

The odds change when the attacker takes over the consensus process. This case is treated in Sec-
tion 2.8.4.

2.8.2 Key security

On the blockchain, one’s private key is one’s identity. If a key is accidentally lost, the associated funds
cannot be recovered, smart contracts cannot be accessed, there is no built-in insurance or protection
mechanism. If a key is stolen and an illicit transaction is accepted, that transaction cannot be reversed.
This is the pendant of decentralization: there are no authority to mitigate conflicts and protect users.

Key security is therefore central to blockchain security. One approach is to focus on one private key
and deploy heavy protection mechanisms. Another is to mitigate the risks by lowering your dependency
on any single key.

Hot and cold storage Private keys can be stored either on a support that has Internet access, this is
called a hot storage, or on a support that does not, which is called a cold storage. The choice is one of
security versus usability.

Hot storage options are evidently less secure as their Internet access exposes them to any and all
attacks. They are recommended for keys that are used regularly. Taking the case of a smart meter
reporting a consumer’s electricity consumption to a smart contract set up by the electricity company,
only hot storage will do. Otherwise, an operator would need to physically plug and unplug the key each
time a report is to be sent out.

Cold storage options sacrifice usability for security. They are suited for key that are barely used
or which security is paramount. Taking the same use case, the key that deployed the smart contract in
question and that is the only one allowed to invoke administrative functions or modify the contract should
be stored in a cold storage.

Wallets As evoked in Section 2.5.1.2, wallets can be used to store private keys. Aptly named, a hot
wallet should only be used to unlock small amounts or invoke limited functions. This is not where you
keep your savings or your master key.
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Cloud and other online wallets should be avoided as they make a juicy target for attackers and do not
necessarily have the security to match. A wallet should always be backed to protect against human or
computer failure. Multi-factor authentication is available to increase the security level. Patches should
always be applied as many blockchain hacks do not target the protocol but wallet implementations.

Multi-signature wallets are an elegant solution to protect against theft. They can be used to protect
an important company account (3 out of 5 accountants must sign off on a purchase), or to split one’s keys
on multiple devices such as one on a computer and one on the phone.

One key, one use A long standing adage in cryptography is "One key, one use", meaning that you
should use different keys for different purposes. This is especially true on the blockchain. Funds should
be split amongst different addresses, different keys used to deploy and administer different smart con-
tracts, etc.

2.8.3 Sybil attacks

On the blockchain, every one can have as many identities as they’d like and run as many nodes as
they’d like. A Sybil attack is defined by an individual creating numerous identities that appear to be
disconnected for nefarious goals. Blockchain consensus protocols are built to resist Sybil attacks and rest
on costly resources that cannot be artificially inflated. The blockchain network however is not immune.

The importance of full nodes The blockchain has a number of systems in place to prevent tampering.
Those systems are only efficient if users take advantage of them. For instance, assume that an attacker
modifies block n by removing a transaction. The hash of the block no longer corresponds to the value
stored in block n+ 1. However, if users do no check for discrepancies, they can be easily abused.

Some users don’t have the necessary resources to run a full node. They simply request information
from those who do. This makes them vulnerable to Sybil attacks. An attacker can pause as a legitimate
full node and send them false information. To take advantage of the distributed nature of the system,
users should always cross check information obtained from several nodes, preferably including a few
that they trust.

Isolating a target An attacker can attempt to flood the network with their own nodes in order to isolate
their target. Once the target is only connected to the attacker’s nodes, the attacker is able to shape the
information that reaches its target. This can be used as a stepping stone from other attacks. If successful,
an attacker can:

• block out every block or transaction, effectively disconnecting the target from the network,

• only relay their own blocks, effectively putting the target on a separate blockchain controlled by
them where it is trivial to mount a double spending attack,

• censor blocks and transactions, which also facilitates a double spending attack.
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Additionally, the attacker can analyze the transactions sent from the target’s node, thus breaking
pseudonymity by identifying them as the sender. Observing the rate at which blocks are created can
help spot the second attack. Another way to protect against them is for a user to ensure the IPs they are
connecting to are nicely spread out.

2.8.4 The 51% attack

In Bitcoin, generating a valid block requires a lot of computation. The longest chain therefore represents
the decision of the majority since the most work went into it. Honest nodes will work on extending it
while malicious nodes try to create another version of history. Nakamoto [Nakamoto, 2008] claims this
alternative version of events will not catch up to the longest chain unless the attackers hold more than
50% of the computing power of the network. This is called the 51% attack. If such an attack was to be
successful, its author would be able to:

1. Only acknowledge its own blocks - With more than half of the power of the network, the attacker
will mine most of the blocks. If the attacker is not the only one mining, it may happen that someone
else creates a valid block. The attacker can simply ignore it, refusing to mine on top of any block
that isn’t hers. Since she mines more efficiently, her chain will eventually be the longest and win
in the end. This is the essence of this attack as it allows the attacker to control history.

2. Monopolize block reward - A natural consequence of the previous point and even a motivation
for it is that the attacker can keep all the block rewards for herself.

3. Censor transactions: Since she mines the majority of the blocks, the attacker can decide which
transactions to include, and also which to leave out. This can cause delay in the confirmation of a
transaction or even cause a transaction to not be included at all. This attack however is visible to
the network. Controlling the process of block creation does not allow the attacker to prevent the
propagation of valid transactions before they are included into a block.

4. Reverse transactions - This last point is at the heart of what digital currencies try to prevent:
successful double spending. The attacker wants to purchase an item. She sends a transaction with
tx0 as input that is included in the blockchain as part of the block B of height h. She then waits
a few blocks for the transaction to be confirmed and for the item to be exchanged. Finally, she
starts a new chain from B’s parent block, so at height h − 1, that doesn’t include the previous
transaction and may even include a transaction from herself to herself using tx0 as an input. This
will ensure that the previous transaction can never be included in the blockchain again since its
input has already been used, rendering it invalid. Once this chain becomes the longest one, the
whole network will switch to it. The transaction has effectively been reversed and the attacker
disposes of the same amount to be spent once more.

Such an attack would have terrible consequences on the trust people put in the system. But it does
not give an attacker all powers. A successful attack would not allow an attacker to:
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1. Forge fake transactions - A transaction will not be considered valid unless signed with the private
key corresponding to the public key of the owner of the input. Without it, the network will not
accept the transaction. Producing a valid signature means either having access to the private key
of the owner of the coins or being able to break the underlying cryptographic primitives. None of
this is implied by owning 51% of the network computing power.

2. Steal coins - Coins are really only transaction outputs. Stealing a coin therefore means producing
a transaction that takes said coins as input and has the attacker as the recipient of the output. Since
transactions cannot be forged, coins cannot be stolen.

3. Change the block reward - The amount of coins a miner is rewarded with is part of the protocol
and is shared by everyone. The attacker cannot change the protocol.

The 51% attack is not limited to Bitcoin. All blockchains are subject to it, regardless of their block
creation system. All blockchains’ consensus processes are based on the holding of a resource, be it
computation power or stakes. Holding more than half of the total amount available in the network allows
for such an attack. This attack is not only theoretical, smaller crypto currencies have effectively been
attacked 23, including Ethereum Classic, the post DAO spin off of Ethereum 24.

2.8.5 Code vulnerabilities

Vulnerabilities arise not only from blockchain protocols but also from the software that implements them.
No code is without bug. Blockchain wallets in particular have been at the heart of several "blockchain
hacks" and mishaps.

Wallet hacks In November 2017, around 280 millions ETH were frozen when an attacker poking
around triggered a bug in the wallet software25.

In August 2018, Bitfi, an "unhackable" wallet retracted their claim after researchers Saleem Rashid
and Ryan Castellucci ran an exploit that allowed funds to be siphoned from the wallet, claiming that the
flaw could not be fixed with a firmware update26.

In September of the same year, Monero announced that their official chrome extension was compro-
mised and allowed attackers to extract keys and password for other websites 27.

In June 2019, Komodo preemptively exploited a vunerability in its own wallets to secure at-risk funds
from potential attacks28.

23http://bitcoinist.net/hackers-holding-small-blockchains-hostage-by-51-attacking-
them/, Last checked: July 8th, 2019

24https://www.theverge.com/2019/1/9/18174407/ethereum-classic-hack-51-percent-
attack-double-spend-crypto, Last checked: July 8th, 2019

25https://btcmanager.com/ethereum-wallets-hacked-not-buggy/?q=/ethereum-wallets-
hacked-not-buggy, Last checked: July 8th, 2019

26https://ambcrypto.com/john-mcafee-bitfi-wallet-hacked-to-remove-unhackable-tag-
from-marketing/, Last checked: July 8th, 2019

27https://ambcrypto.com/monero-xmr-wallets-compromised-as-hackers-target-mega-
chrome-extension/, Last checked: July 8th, 2019

28https://btcmanager.com/komodo-wallet-hacks-secure-13-million/?q=/komodo-wallet-
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Security patch Wallets are not the only one with flaws. Client software, the thing that allows users to
connect to the blockchain and run a node, has also shown signs of weakness. The developer community
is usually quick to react to vulnerability disclosures and put out a patch. But blockchain users are no
different from the users in more classical ecosystem and patches are not being applied, leaving the system
vulnerable.

In February 2019 for instance, a DoS vulnerability in Parity (an Ethereum client) was discovered
by a team at the Security Research Labs. More than a month later, a third of the nodes had yet to be
patched29.

Smart contracts Smart contracts are another type of code running around the blockchain ecosystem.
They are made to be immutable with publicly available code that will be scrutinized. This makes cod-
ing mistakes particularly unforgiving. The DAO (see Section 2.7.2) is a good example of an attacker
exploiting smart contract vulnerabilities.

A possibility is to formally prove smart contracts before deploying them. This can be a lengthy
process but should remove some of the vulnerabilities. Note nonetheless that a formal proof simply
ensures that the code is behaving as it should. It does not mean that the way it is behaving is without
flaws.

2.8.6 Denial of Service (DoS)

Denial of Service attacks flood networks or servers with a high volume of traffic, rendering them un-
able to operate normally. All networks have to deal with the threat of DoS attacks. Every blockchain
has built-in mechanisms to counter them. These fail-safe are implemented at two levels: protocol and
implementation.

A list of DoS mitigation in Bitcoin can be found on its wiki30. A few of them are:

• Double spent transactions are not forwarded

• A block is only forwarded once per peer

• Misbehaving IP are temporarily banned

• There is a limit to the acceptable script size

• There is a size limit for block

In Ethereum, as we have already mentioned, the cost of operations can vary to regulate traffic. Fur-
thermore, there is a limit on the total amount of gas that can be consumed per block, thus limiting the
amount per transaction. This limit can be slowly raised but should prevent malicious users from running
infinite loops.

DoS attacks have certainly happened in the past31 and will again in the future.

hacks-secure-13-million, Last checked: July 8th, 2019
29https://srlabs.de/bites/blockchain_patch_gap/, Last checked: July 8th, 2019
30https://en.bitcoin.it/wiki/Weaknesses, Last checked: July 8th, 2019
31https://cointelegraph.com/news/ethereum-is-under-ddos-attack-miners-are-alerted,

Last checked: July 8th, 2019
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2.8.7 Withholding attacks

An attacker can gain advantages over the other participants by withholding information. This class of
attacks benefits from a well connected node that can intercept blocks and transactions and broadcast
efficiently their own blocks. Withholding attacks are of two kinds.

2.8.7.1 Withholding transactions

Transactions sometimes include transaction fees. When creating a block, these fees are added to the block
reward. In Bitcoin, the decrease in block reward pushes the miners to rely more heavily on transaction
fees to sustain their efforts.

The number of transactions in a block is limited. Users can include a higher fee to encourage miners
to include their transaction over less lucrative ones. But another behaviour can be for miners to not
forward transactions with a high fee. That way, fewer nodes know about the transaction and it is less
likely to be included in a block by someone else. This leaves the miner in question plenty of time to craft
the block with the highest fee possible and maximize profit. This is the equivalent of making sure that
the price is at its highest when playing the lottery.

2.8.7.2 Withholding blocks

Eyal et al. [Eyal and Sirer, 2014] exposed a strategy they call Selfish Mining. Its effect is to allow a
colluding minority organized in a pool to produce blocks more often than they should be able to given the
fraction of the computing power they hold. The idea is to force the honest majority to waste computation
power on blocks that will not end up in the chain.

Because of propagation delays, finding a block gives a tiny advantage over the other participants as
one can start working on the next block with a small advance. Pushing this reasoning, keeping blocks
private can lead to an even bigger advantage. By holding on to the mined blocks, the colluding minority
wastes other miner’s resources on a block that has already been solved. This attack of course requires
that the colluding minority is able to mine at least one block before it can be launched.

Let m be the colluding minority and M be the honest majority. Both sides are working on finding
the block of height h. m finds the block at time t and holds on to it. At time t+ 1, m starts working on
the block of height h+ 1 while M is still working on block h. This continues until t+ 5 at which point
m releases their block h. From t+ 1 to t+ 5, M has been wasting their computation power. This attack
therefore lowers the effective computing power of the network. The loss only affects M , the honest
majority.

There is a chance that M finds a valid block between t+ 1 and t+ 5. In this case, a Sybil attack can
increase the odds of m: By spawning numerous nodes, the group can better control the propagation of
information in the network. This allows m to slow down the propagation of any concurrent block, giving
it time to substitute its own. In the Bitcoin protocol and many others, the block that was first received
takes precedence which further worsen the effect of the attack.

For every bloc, M is more likely to mine it first. It is however unlikely that M will mine all the
blocks. m will therefore get a chance to mount the attack over time. Conversely, if m holds only 1% of
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the network’s computation power, the attack is unlikely to succeed as a few extra seconds working on a
block will not cover the gap in computation power.

2.9 Blockchain security: limitations

Beyond attacks and vulnerabilities, the blockchain presents a number of limitation that are worth keep-
ing in mind. They are presented below. The limitations stem from technical issues that are yet to be
solved, from protocol constructions that will likely remain unchanged, and also from the politic and
legal framework that surrounds the blockchain.

2.9.1 Bootstrap

A successful crypto-currency (or blockchain to an extent) rests on three pillars : Value of the currency,
trust in the system and nodes engaging in the block creation process. The problem is, the three are
heavily linked. For participants to engage in securing the network, the value of the currency (which
they are rewarded with) must be sufficient and stable. For the currency to be stable, the system must be
perceived as secure. For the system to be secure, participants must engage in its protection.

Because they are so clearly linked, building a new crypto currency from scratch and getting it of the
ground is difficult. You must have participants willing to secure the network either by ideology as it has
been the case in the early days of Bitcoin, or in the hope that the investment will be fruitful as it happens
with alt-coins.

2.9.2 Privacy

Most blockchains guarantee pseudonymity: users hide behind pseudonyms (blockchain addresses). The
link between a user and their pseudonym is not trivial. But each pseudonym can be linked to its activity
as everything is public, including the transactions, their emitters and beneficiaries. A number of manual
workaround exist. For example, several transactions can be bundled into one by assembling all their
inputs and outputs in order to mask who is paying who.

Another solution is to owned multiple addresses. This way, transactions made from each cannot
be linked. This has the added advantage of increasing security as loosing access to one address is less
damaging if it does not contain all our funds. Some people even advocate to use each address only once
to break usage patterns that could lead to de-pseudonymisation, such as often sending transactions to the
same addresses, or invoking the same smart contract.

Reid et al. [Reid and Harrigan, 2013] have shown that pseudonymity in the Bitcoin network can be
lifted by observing transactions and crossing that information with external sources. In consequence,
users should be wary of what they publish on the blockchain. Also, pseudonymity is not to be confused
with anonymity where no link can be drawn between operations made by a single user.

ZeroCoin [Miers et al., 2013] uses zero-knowledge to convert bitcoins into anonymous coins called
Zerocoin. Zero-knowledge is a class of proofs by which no information can be gained except for the truth
of the object of the proof. Coins are first committed through a mint transaction. Ownership of the coins
can then be proven in a zero-knowledge fashion, keeping private the value of each coin and the address
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of their owner. Imagine a blackboard to which people stick bills. When they want to pay for something,

they must prove that they have stuck a bill up. They then can take whatever bill they want and pay for

their purchase. That way, the used bill cannot be traced to the person that stuck it on the board, nor can

it be linked to the person that unstuck it. It is simply coming from the blackboard.

Dash [Duffield and Diaz, 2015] is another example of privacy-focused coin.

2.9.3 Propagation delay

As we have seen, the most famous attack on the Bitcoin blockchain requires the attacker to hold more

than 50% of the network computing power. Decker et al [Decker and Wattenhofer, 2013] show that this

hypothesis might be a little optimistic. The article takes a closer look at the propagation of information

on the Bitcoin network and reveals that blocks can take longer than 40 seconds to reach the edge-nodes,

10 minutes being the average time between two blocks. This propagation delay is responsible for a higher

number of forks, which threaten the integrity of the blockchain.

Bitcoin forms a random graph, the topology of which cannot be controlled since nodes constantly

leave and enter the network. Some nodes might therefore be really hard to reach. For that reason, they

receive blocks after everyone else. In the meantime, they keep trying to solve the puzzle. This increases

the chance that they will find a viable candidate, thus causing a fork.

Figure 2.15: Propagation delay leading to a fork

Imagine the following pathological situation illustrated in Figure 2.15: the network is made up of

two disjoint clusters of nodes bridged by a single edge. When a block is found in cluster A, it has to

reach that one special node in order to be broadcasted in cluster B and then reach all the nodes in that

cluster. Because of the delay, when it finally arrives, cluster B has produced a block of its own. Hence a

fork. For the next block, the situation is similar. Once again, each cluster finds its own block.
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Each block has been found thanks to half of the network computing power. If an attacker were to
join cluster A, the power they would need to take over the consensus process would be half of cluster A
computing power, which is half of the network’s power, so only 25%. As long as the fork stands, 50%
of the network is wasting power: Only one chain can survive.

Of course this topology is not realistic. Forks still affect the network to a lesser degree while delays
in block propagation increase the likelihood of a fork. According to the authors, at the time of publication
49,1% of the computing power of the network would have been enough to mount a successful attack. The
increase in Bitcoin and blockchain popularity is likely to further worsen this problem as it will increase
the size of the graph and with it the propagation delay.

2.9.4 Transaction rate

One major limitation of blockchain adoption is its throughput. Bitcoin averages around 4 transactions
per second 32. Ethereum can validate 25 transactions per second. The visa network validates 45 000
transactions per second. The contrast is stark.

2.9.5 Legislation

Bitcoin is not own by any country. This does not mean that Bitcoin is free from nations’ influence. In
February 2019, Datalight published an infographic revealing the distribution of Bitcoin nodes around the
world (see Figure 2.16). We learn that ten countries host just under three quarter of the nodes, while
the top three (the United States, Germany, and France) account for over 50% of the nodes (5339 out of
10579).

Similarly, the mining pool landscape is dominated by China. Decisions from the Chinese government
have had drastic effect on Bitcoin’s operation in the past34. The censorship of Bitcoin conferences or
workshop in the country as well as the ban of Bitcoin-related accounts by a handful of Chinese banks led
to a market crash.

At the moment, blockchains evolve in a politic and legislative fog. The concept is only ten years
old. Mainstream interest is even more recent and we are far from mainstream adoption. Evolution in
the matter is complicated to predict. Legislation could shape the future of blockchains, their use, and
adoption.

Legal framework Blockchains are in their infancy. It is fair to assume that they will evolve a lot in the
coming years. Early legislation could hinder the development of the technology. Countries could also
end up with legal definitions that do not match realistic applications and are barely usable. This explains
the void around the topic in many countries.

A few countries including France and the United States have started to recognize and tax crypto-
curencies 35. Some others are trying it out. Sweden for instance, has launched a blockchain-based land

32https://www.blockchain.com/en/charts/transactions-per-second, Last checked: July 8th, 2019
34https://www.ccn.com/china-now-controls-bitcoin-thats-just-beginning, Last checked: July

8th, 2019
35https://www.thebalance.com/how-bitcoins-are-taxed-3192871, Last checked: July 8th, 2019
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Figure 2.16: Bitcoin Nodes around the world33

registry project that is in its demonstration phase36.
Despite these first steps, blockchain applications evolve in an uncertain legal framework. They can

also be in conflict with existing laws. The General Data Protection Regulation (GDPR) has recently
become enforceable (since May 2018). It is designed to protect the rights of European citizen with
regards to data collection. In particular, it contains a provision that enables citizens to request their private
data be erased. But by design, transactions on the blockchain are immutable. Another requirement of the
GDPR is for European data to remain in Europe. That can cause another headache for public blockchain
applications where the location of nodes are unknown and unrestricted.

36https://www.coindesk.com/sweden-demos-live-land-registry-transaction-on-a-
blockchain, Last checked: July 8th, 2019
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Developing blockchain applications under GDPR is shaping up to be quite tricky37. Research efforts
will likely concentrate on zero knowledge proof, homomorphic encryption and other privacy preserving
mechanisms that could be added to the blockchain. As we have seen in Section 2.7, their integration to
existing blockchains will not be painless.

User Protection On the other side of the coin, few protections exist for blockchain users. The blockchain
community wants above all to prevent regulators from getting involved. This was part of the argument
for the DAO’s hard fork: the disaster was big enough and people lost enough money that regulators might
want to intervene. So the community reversed the hack.

But people lose their keys, fall for scams, or are abused in other ways all the time on a smaller scale
with no recourse. It is the cost of autonomy: nobody will catch you when you fall. What to do if a bug
in a smart contract ends up overcharging me? The answer lays outside of the blockchain. Including real
life contracts into smart contract can be a way to make them legally binding.

Until blockchains have matured and laws are put in place though, it seems like users and developers
alike will have to navigate in the dark.

2.10 Blockchain & IoT

We have presented the blockchain, plunged into its inner workings, taken a look at some implemen-
tations, and analyzed its security. Armed with this knowledge, we can now discuss the blockchain
compatibility with IoT use cases.

Christidis et al. [Christidis and Devetsikiotis, 2016] and Fernandez et al. [Fernández-Caramés and
Fraga-Lamas, 2018] have specifically studied this question in their respective papers. The present section
summarizes their conclusions and adds our own.

There are several arguments for mixing blockchain and IoT:

• Decentralization - One of IoT’s current challenges is the departure from centralized models and
a migration toward edge intelligence where gateways and devices are given a bigger role, reduc-
ing dependencies to cloud servers. The blockchain offers resilience, availability, resistance from
tampering, and all other advantages that come with decentralization.

• Desintermediation - Blockchains do away with our reliance on trusted third parties. They allow
users and developers to evolve on a platform that belongs to them and define the terms of their
interactions themselves. IoT devices can interact directly with one another in a secure manner.
Users can create and manage their own identities and regain some ownership over their data.

• Transparency - There is a demand from users for more transparency. They want to know what is
being done with their data. The blockchain also enables the tracking of IoT devices’ activity, thus
ensuring correctness.

37https://medium.com/wearetheledger/the-blockchain-gdpr-paradox-fc51e663d047, Last
checked: July 8th, 2019
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• Reduced operation cost - The blockchain offers a shared architecture with built-in security and,
for some, a billing service. The lack of intermediary decreases operation costs. Lengthy workflow
can be verifiably automated.

• Auditability - In the event of an attack, blockchain data are available for a forensic analysis.

2.10.1 Use Cases

The advantages offered by the blockchain do not come free. In particular, there are performance limita-
tions that one must consider before deploying a blockchain-based application. Fernandez et al. [Fernández-
Caramés and Fraga-Lamas, 2018] provides a useful decision tree to determine whether a blockchain is a
good choice for a given application. We reproduce it as Figure 2.17.

The following use cases illustrate the benefits we have identified above.

Use Case 1 - Software Update Let us consider n car manufacturers that regularly rolls out updates for
their products. Currently, the manufacturer has to maintain a server where the software can be down-
loaded. If someone maliciously takes over the server, there is no way for devices or users to know that
the file they are downloading is incorrect until the breach is revealed.

Using the blockchain, the manufacturer puts up a notice for the latest software update and embeds
its hash in the transaction. Clients can then download the file and compare its hash to the value stored
in the blockchain. Cars can also request the update from each other, waiting for the light to turn green.
Now the vendor only needs to get the software update to enough clients in the beginning and let them
take care of the rest. If the manufacturer goes out of business or if its server is taken down, clients can
still get the updates in a secure manner.

Use Case 2 - Supply Chain Let us consider a clothes company with many subcontractors. Currently,
the company trust their subcontractors to be responsible for the product they order and have no visibility
on the potential subcontractors they themselves hire. There is a demand for more transparency from the
clients, in particular with regards to the conditions the clothes were made into.

The blockchain can be used to track the product’s journey. Every actor in the chain is given a
blockchain address and a device to automatically register the change in ownership. Trucks are given
the same. When devices from two different actors and the truck are in range, they sign a blockchain
transaction transferring ownership of the truck and its content to the next person in the chain. That
transaction is only valid if signed by the three party. It can also contain the current state of the shipment,
or any other relevant information.

Use Case 3 - Electricity Market Place Let us consider individuals with solar panels. Their panels
produce more energy than they consume. Currently, individuals must sell this energy to the electricity
company that then resells it to other costumers.

Using the blockchain, individuals could sell directly to other individuals and pay a portion of the
profit to the electricity company for the use of their delivery network. There is no need to implement a
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payment system. Individuals advertising false bids can be sanctioned. The cost of entry is minimal for
the participants.

Figure 2.17: Should you use a blockchain? Taken from [Fernández-Caramés and Fraga-Lamas, 2018]
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2.10.2 Limitations

If blockchains and IoT seem like a good match, let us take a step back and present some counter argu-
ments to this marriage. The following topics require some work from the community:

• Scalability - As we have seen in Section 2.9.3, the propagation delay induced by the network
topology is a security risk. More nodes will only worsen the problem. Additionally, the transaction
rate is limited which is a real hindrance to scalability.

• Transaction validation time - The blockchain offers no guarantees in terms of transaction valida-
tion time. Time sensitive use cases should not be considered.

• Resource Efficiency - IoT devices cannot host blockchain nodes at the moment. The bandwidth
requirements, the storage space required, the type of cryptography that is used, ... All of these are
not IoT friendly. A delegated or closely related gateway can be used however to mitigate this.

• Stability - Applications need a stable cryptocurrency in order to actually use the blockchain as a
billing system. The price volatility also complicates the cost estimation for vendors. A more stable
ecosystem would be preferable. Standardization would be a great help in the matter. It would also
help with adoption as actors are currently highly fragmented.

• Privacy - As we have seen in Section 2.9.2, privacy can be a real concern on the blockchain.

• Usability - Blockchain application are not always the most user friendly. A discovery service or a
DNS to make blockchain addresses humanly readable would be an improvement.

• Test environment - Developers need a stable testing environment. Not all blockchains provide
that today. Ethereum for instance has a test network where smart contract can be tester before
being deployed and mining is easy enough for tests to be cheap to run.

• Censorship - Miners have a huge impact on a blockchain. They can choose to censor transactions.
Special attention should be taken when choosing miners.

2.11 Conclusion

In order to efficiently use a tool, one must first understand it. In this chapter, we have presented the
fundamentals of the blockchain technology and its complicated governance model. We have reviewed
security issues and potential limitations. Based on this information, we have discussed the relevance of
the blockchain for IoT applications.

The blockchain is still an emerging technology. As such, it comes with a host of issues that may
or may not be resolved in the coming years. However, the blockchain community has shown that solu-
tions can be devised and problems circumvented. Amongst these issues, an IoT-optimized blockchain
that would enable devices to connect to the blockchain without the need of a server or gateway is yet to
emerge. Despite this, the blockchain offers a host of properties that can be interesting for IoT applica-
tions.
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3.1 Introduction

The goal of this chapter is to present and analyze access control solutions for IoT applications proposed
in the literature. It is based on a survey currently under review by the journal ACM Computing Surveys38.

Contributions The contributions of this chapter can be summarized as follows:

• Definition of classical access control architectures based on the four core functions of access con-
trol (PEP, PDP, PAP, PIP)

• Highlight of each reference architecture’s strengths and shortcomings

• In-depth review of the literature organized by architecture

• Highlight of each reference’s strengths and weaknesses

• Evaluation of solutions based on both objective and comparative criteria

• Guide for the reader to choose an architecture adapted to their needs

• An architecture-oriented taxonomy of access control solutions

• Potential future research direction for access control in the IoT

Related Surveys IoT security has been a subject of interest in the academic community for around
a decade. There are therefore a few surveys covering the topic. If some papers [Sain et al., 2017,
Ouaddah et al., 2015] present a short summary of trends and challenges faced when devising access
control solutions for the IoT, the majority does not focus on access control.

Roman et al [Roman et al., 2013], Sicari et al. [Sicari et al., 2015], and Tourani et al. [Tourani et al.,
2016] cover some of the main security issues facing the research community, amongst which authentica-
tion, confidentiality, privacy, trust, policy enforcement, and access control. Yang et al. [Yang et al., 2017]
analyze IoT security from the perspective of the different layers: perception, network, transport, and ap-
plication. Here access control is mentioned once again without being focused on. Ammar et al. [Ammar
et al., 2018] are interested in the overall security of commonly used frameworks such as AWS, Azure,

38Originally submitted in February 2018, resubmitted after a major revision request in March 2019

64



3.1. Introduction

or ARM mbed IoT. It tackles their hardware and software dependencies, their use of industry standards,
their handling of device-to-cloud and cloud-to-user communication, their security-related functionality,
and their efficiency at protecting user’s data which involves access control. Khan et al. [Khan and Salah,
2018] categorize IoT threats and challenges according to their severity and puts forwards states of the art
solutions for each identified issue. A few access control solutions are mentioned as a means of mitigating
common attacks such as DDoS and achieving end-to-end security.

Kouicem et al. [Kouicem et al., 2018] are interested in examining the impact of new emerging tech-
nologies that are the blockchain and Software Defined Networking (SDN) on security solutions in con-
trast with more classical cryptography-based techniques. Access control is presented as a security mech-
anism among others needed to ensure availability.

Access control is the specific subject of Zhang et al. [Zhang et al., 2018a] but the paper’s scope is
limited to fog computing. Ouaddah et al. [Ouaddah et al., 2017b] presented the first in-depth survey
dedicated to access control solutions for the IoT. It structures its analysis around the OM-AM (Object,
Model, Architecture, Mechanism) authorization reference model [Sandhu, 2000]. Consequently, solu-
tions are separated according to what model or protocol they implement: Role-Based Access Control
(RBAC [Ferraiolo and Kuhn, 1992]), Attribute-Based Access Control (ABAC [Hu et al., 2013]), Usage
Control (UCON [Park and Sandhu, 2004]), Capability-Based Access Control (CapBAC), OAuth [Hardt,
2012], UMA [Maler et al., 2015], etc.

Bertin et al. [Bertin et al., 2019] take a similar approach. They articulate their reflexion around two
axis: access control abstractions (cf. section 3.2.1.1) - Discretionary AC, Mandatory AC, RBAC, ABAC,
etc - and standards - SAML, OAuth, ACE, UMA, etc.

Architectures Our proposed survey is focused on the architecture instead. The same choice was made
in 2013 by Roman et al. [Roman et al., 2013] for the generic topic of IoT security. However, a lot of work
has been published since. We also use different definitions for our architectures that are based around
the different sub-functions of access control.

We articulate our analysis around 4 classical architectures - centralized, hierarchical, federated, and
distributed.

Our architectures are built on the core most resource demanding function: the access control de-
cision (cf. section 3.2.1.5) which requires memory to store policies, computational power to run, and,
optionally, bandwidth to retrieve information required for the decision or to communicate said decision
to an enforcer. The localization of this function and its multiplicity therefore has a strong impact on the
efficiency and capacities of the system.

Analyzing existing solutions through that prism is advantageous for the following reasons. First, it
allows us to identify architecture-specific limitations or advantages that then transfer to standards and
protocols that adopts them. Second, it presents operators or integrators with a way of selecting access
control solutions suited for their own infrastructural needs regardless of the standards they implement.
Third, we contribute to the ongoing discussion of decentralization in the IoT by providing a precise
definition of different architectures, including hierarchical and federated, that are often overlooked, an in-
depth analysis of their theoretical benefits and disadvantages, and an overview of papers that implement
them.
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Organization The rest of this chapter is organized as follows. Section 3.2 introduces terms and notions
used throughout this thesis. Section 3.3 discusses the criteria used to compare access control solutions.
Section 3.4 presents centralized solutions from the literature. Section 3.5 reviews proposals with a hier-
archical architecture. Section 3.6 looks at federated architectures. Section 3.7 proposes three definitions
for distributed architectures. Section 3.8 provides an overall analysis of the previous sections, details our
taxonomy, and discusses future research directions. Finally, Section 3.9 concludes this chapter.

3.2 Background

The background presented below is relevant not only to this chapter but to the thesis as a whole. Addi-
tionally to fixing the definition of frequent terms, it takes a closer look at CapBAC and ABAC, that are
the basis of solutions presented in Chapter 4 and 5 respectively.

3.2.1 Access control glossary

In this section, we put forward precise definitions for the access control-related vocabulary used through-
out this thesis. We present the different abstraction levels involved in access control systems and illustrate
their differences with classic examples. We detail vocabulary used in formal model, the different actors,
delegation terminology, and the architectural blocks that make up access control systems. These blocks
will be used to define the architectures presented in Sections 3.4 to 3.7.

When no sources are cited, definitions are taken from the IETF Internet Security Glossary [Shirey,
2007].

3.2.1.1 Abstraction levels

Access control systems can be divided into three abstraction levels that correspond to different phases of
development. From the most abstract to the most concrete: policies, models, and mechanisms. Consid-
ering each level independently leads to a greater freedom in designing the system: security proofs can
be done separately and according to each level’s requirements, different models can be used to represent
the same set of policies, mechanisms can be changed throughout the system’s life, etc. That last point
is especially important for a system’s longevity and adaptability. If some mechanisms are constructed
with specific models in mind or seem more adapted to others, the most popular policies, models, and
mechanisms are orthogonal to one another. Finally, real-life systems will often mix several solutions to
better fit their requirements.

Access control policy An access control policy is defined [Shirey, 2007] as a plan or course of action
that is stated for a system or organization and is intended to affect and direct the decisions and deeds of
that entity’s components or members. Access control policies are therefore most often defined by organi-
zations or applications and pertain to who should access what, based on logics that are usage-dependent.
They define the (high-level) rules according to which access control must be regulated [Samarati and
de Vimercati, 2000]. Examples of well-known access control policies include Discretionary Access
Control (DAC [Qiu et al., 1985]) and Mandatory Access Control (MAC [Qiu et al., 1985]).
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In DAC, resources belong to their creators that have full discretion over the permissions that should
be associated to them. This type of policy is for example used in classical file systems. We take the
example of a medical file in a hospital. Under DAC, the doctor that originally wrote the file owns it and
fixes its access conditions. DAC is highly flexible and user-centric. However, no safeguards are in place
to protect owners against mistakes they might make and administration can get tricky. This is particularly
true when permissions need to be revoked. When a doctor leaves the hospital for instance, they should
loose access to a patient’s medical information.

MAC on the other hand imposes centrally-defined policies on all resources in the system. The
historical use case for MAC is the military sector. Taking our medical file example, under MAC the
hospital decides who can access and modify each file. MAC is better suited to organizations. However, it
is really rigid and requires rules to be set centrally and in advance for all resources that may be considered
in the system.

Access control model Access control models [Samarati and de Vimercati, 2000] provide a formal
representation of the access control policy and its workings. This formal representation provides the
framework to prove security properties of the designed access control system. Policies can evolve over
time to adapt to new requirements or changes in organization. Models should support these changes. Ex-
amples of well-known access control models include RBAC [Ferraiolo and Kuhn, 1992] and ABAC [Hu
et al., 2013].

In RBAC, a subject’s permissions depend on the role it is affected to. The hospital’s staff would
likely be assigned roles corresponding to their function (doctor, nurse, janitor). A subject is then allowed
to access medical files if it is a doctor. Grouping subjects increases manageability. It is also a natural
way of translating roles within an organization/company into the system. Consequently, the burden of
security is put on role definition, a tricky process that represents a big entry cost. For that reason, role
are generally defined to be static. When fine-grained permissions are required, roles need to be more
fine-tuned. This can lead to an over-complication and role proliferation.

ABAC takes authorization decisions based on attributes of subjects, objects, actions, or environ-
ment. A doctor is given an attribute IDENTITY of value john_dorian and a PROFESSION attribute of
value doctor. The file is given two attributes DATA_CLASS:medical and REFERRING_PHYSICIAN:
john_dorian so that one must not only be a doctor to modify it, it must also be the patient’s own refer-
ring physician. As with RBAC, the definition of access rules represent a high set up cost for any ABAC
system. Yet, attributes enable more flexibility as they can be applied not only to subjects but to objects,
environment variables, and actions. Entities can have several concurrent attributes that can be issued
or revoked over time, leading to more granularity. This may however require complex rules and heavy
computations. Conflicts may also arise when two rules come to a different access control decision. The
resolution of such situations adds another layer of complexity to the system design. ABAC is explored
in more details in Section 3.2.3.

Access control mechanism Access control mechanisms [Samarati and de Vimercati, 2000] define the
low level (software and hardware) functions that implement the controls imposed by the policy and for-
mally stated in the model. Examples of well-known access control mechanisms include Access Control
Lists (ACL [Van Tilborg, 2014]) and capabilities [Dennis and Van Horn, 1966].
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ACL associate subjects, objects, and permissions in a static manner. Each subject/resource pair
must have an associated entry. The lists are organized per object. In practice, ACL can be defined
using groups of either subjects (roles) or objects. Using ACL to authorize Dr Dorian to modify the
medical file of a Patrick Jones would look like this: (DrDorian, patrick_jones.doc, write). If M.
Jones changes doctor, a new ACL is required. They are easy to implement and use. The revocation of
a single permission or the removal of an object from the system are simple operations. Granularity can
also be easily introduced. ACL however do not scale well. Nor are they adapted to systems with few
objects and many subjects. As ACL are made with a per object mindset, it is difficult to view or manage
the permissions associated to a subject.

Capabilities are tokens that carry objects and associated permissions. A single capability can hold
multiple privileges. Contrary to ACL that are stored within the access control system, capabilities are
given to subjects that must present them with their requests. In our case, Dr. Dorian would be given a
token containing the name of the file and the write permission. This token would be required for each
modification. Capabilities are explored in details in Section 3.2.2.

3.2.1.2 Formal model

An object is a system component that contains or receives information. We extend this definition to
include all entities that can be accessed or acted upon.

A subject is a system entity that causes information to flow among objects or affect changes to the
system state. A subject may itself be an object relative to some other subject; thus, the set of subjects
in a system is a subset of the set of objects. When the subject is a human, the term user is sometimes
preferred to subject throughout this document.

An operation [Hu et al., 2006] is an active process invoked by a subject. In the reminder of the
paper, the term action is sometimes used to refer to an operation.

An authorization is an approval that is granted to a subject to access an object. The words au-
thorization, permission and privilege are somewhat equivalent and interchangeable. Depending on the
context, one or the other might be preferred. Privilege, for instance, should be preferred in the context of
computer operating systems. In the reminder of this document, authorization, permission and privilege
are used interchangeably.

3.2.1.3 Actors

The owner of an object is the person or organization that has the final statutory and operational authority
over said object and the information it contains.

The issuer of a capability (see Section 3.2.2) is a system entity emitting that capacity. In order for
the capability to be valid, the issuer should have the authority required for authorization operations.

An administrator is a person that is responsible for configuring, maintaining, and managing the
system in a correct manner for optimizing security.

A security domain is an environment or a context that:

(a) includes a set of system resources and a set of system subjects that have the right to access the
resources.
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(b) is usually defined by a security policy, a security model, or a security architecture.

A "controlled interface" or "guard" is required to transfer information between domains that operate
under different security policies.

3.2.1.4 Delegation

Delegation is the process by which a subject transfers all or parts of its privileges to another subject.
The delegator is the subject which delegates its privileges.
The delegatee is the subject that receives new privileges through the delegation process.

3.2.1.5 Architectural Element

All access control solutions perform the same function: guard the system against unauthorized access.
They therefore all use the same fundamental building blocks. These blocks represent logical functions.
In practice, they can be hosted by the same system entity, such as a central server that perform access
control on its own, or they can be divided amongst several collaborating actors. Their logical separation
makes for an easily decentralized model. The way they are distributed amongst actors and the number of
times they are replicated is what we will use to define an architecture.

We refer to these blocks sometimes as architectural elements, sometimes as logical functions, and
sometimes as points, for system endpoint. The four elements and their interactions are depicted in
Figure 3.1.

Policy Decision Point (PDP) [Yavatkar et al., 2000] The point where policy decisions are made.

Policy Enforcement Point (PEP) [Yavatkar et al., 2000] The point where the policy decisions are
actually enforced.

Policy Information Point (PIP) [Hu et al., 2013] An entity that serves as the retrieval source of
attributes, or the data required for policy evaluation to provide the information needed by the PDP to
make the decisions. A PDP can query a number of different PIP to retrieve contextual information on
the subject, the object, the environment, or other components of the system, allowing for more complex
access control policies.

Policy Administration Point (PAP) [Westerinen et al., 2001] The system entity that creates a policy
or policy set.

Let us illustrate the interactions depicted in Figure 3.1 with a simple policy example: for all subject
s, if s is an employee, then s can open the parking door.

First, the PAP defines this rule and pushes it to the PDP. Assume it is Monday morning and Belinda is
coming to work. She presses her badge to the parking door, the PEP. The PEP first retrieves her identity
from her badge. It then interrogates a server somewhere in the building that acts as a PDP. The PDP
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Figure 3.1: Instance of access control request

queries a database acting as a PIP to ask whether Belinda is an employee. The PIP confirms that Belinda
is indeed an employee. A positive response is sent back to the PEP that opens the door for her.

In the above example, Belinda’s badge is a proof of her identity. In reality, her badge could be used
just as easily to prove her employee status as it was delivered by her employer. It could also be used to
directly store access rights to the parking door, her office, the cafeteria. The PEP would simply need to
validate that the permissions were issued by the employer. Her badge would then act as a capability.

3.2.2 Capability-based access control (CapBAC)

As the rest of this chapter will prove, the use of capabilities (often referred to as tokens) is really popular
in the IoT access control literature. Tokens are indeed well suited for IoT uses cases as they enable a clear
separation of the PEP and PDP functions. Additionally, they impose very few communication patterns
between entities and are compatible with serverless authorization. Our contribution on the topic of token
libraries is detailed in Chapter 4.

In this section, we present the concept of Capability-Based Access Control and discuss different
token formats.
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3.2.2.1 Concepts

The concept of capability was first introduced by Dennis and Van Horn in 1966 [Dennis and Van Horn,
1966]. It is defined as “a token, ticket, or key that gives the possessor permission to access an entity or
object in a computer system”.

A more formal definition [Van Tilborg, 2014] is as follows:

Definition 3.2.1 (Capability). An individual capability is a pair (o, (r1, . . . , rn)), where o is the object
and the ri are access rights for o.

Capabilities materialize an authorization. They are therefore issued by the PDP, and presented to
the PEP. In CapBAC, a capability must be presented with every access request. A request that does not
carry a capability or that carries a capability with inappropriate permissions is rejected. This guarantees
complete mediation [Saltzer and Schroeder, 1975], a property that requires every access request to be
checked for authority. This implies any request must be intercepted by the PEP, and authorized by the
PDP. The two events can happen in any order. Everyday-life is full of capabilities, as illustrated by the
two following situations.

We go back to Belinda that wants to enter a secure area at work. She holds a badge containing the
required permissions. Her photo is also on the badge. She scans it to the door. A security guard checks
if the picture corresponds. The badge is the capability. It must be presented with each access request,
contain the right permissions, and the right photo. Otherwise, access is denied. The photo is a reference
to physical characteristics that are unique to Belinda and can be used to identify her, linking her to the
capability.

Now the same Belinda wants to go backstage at a concert. Another security guard stands in her way.
She presents a VIP pass and is granted access. Here, the VIP pass is the capability. It does not contain a
reference to the subject. If the pass is stolen, the permissions it represents are transferred to the one that
stole it, which, in this case, is considered acceptable.

This touches on the first of a few properties of capabilities:

Property 3.2.1. Capabilities can require proof of ownership to be used.

Note that Definition 3.2.1 makes no reference to a subject. A capability needs not reference the
subject for which it was issued. In this case, privileges contained within are transferred to any subject
that holds the capability. Depending on the situation however, a link between capability and subject
might be desirable. Digital signatures can be used to create such a link. When no link exists, ciphering
of the communication channels, or storage in a smart card mitigates the risks of theft.

Property 3.2.2. Capability-Based Access Control has built-in support for delegation.

A capability can simply be transferred to delegate the rights within. The cost of this is that it is hard
to determine what subjects can access an object at any given time. It is complicated to get a per-object
view of the system. This causes the revocation of permissions to be a cumbersome process in the case of
serverless authorization.

Property 3.2.3. Capability-Based Access Control supports serverless authorization.

Capabilities can be used in such a way that after they are issued, no contact with the issuing authority
is needed to verify them. It is the case for both the VIP pass and the company badge.
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3.2.2.2 Token format: self-descriptive vs opaque

We can distinguish between two types of capabilities: self-descriptive and opaque. Choosing one or
the other impacts the mechanisms for issuing and using capabilities. The former offers support for
serverless authorization (Property 3.2.3) while the latter does not. Frameworks that use tokens such as
OAuth 2.0 [Hardt, 2012] do not usually specify a format for the token.

A self-descriptive capability is usually a signed string containing information such as the object,
the subject of the authorization, a set of operations, and the issuer of the capability. The token might
include any additional information pertaining to the access request. When presented with the capability,
the PEP needs to be able to check its authenticity. This might include checking the issuer’s signature,
and even performing some access control decision based on the conditions included in the token (see
Section 3.7). If the subject is mentioned, proof of identity might be required such as providing a valid
signature corresponding to the public key information included in the token.

Some standard formats exist for such tokens. JSON Web Tokens (JWT [Jones et al., 2015b]) in
particular are very popular, often used as a payload for either JWS (JSON Web Signature [Jones et al.,
2015a]) or JWE (JSON Web Encryption [Jones and Hildebrand, 2015]) tokens. If the token is simply
signed, then it carries information that can compromise the privacy of the users. If it is encrypted, a way
must be devised for the user to recover the key used for the encryption.

Revocation of self-descriptive tokens can be cumbersome. It might require maintaining a list of all
revoked capabilities. Updating this list can either be accomplished by the issuer pushing new revocation
notices or by regularly synchronizing the local list.

For that reason, self-descriptive tokens will often include a validity period. This period results from
a compromise between security and usability. If a capability is stolen, the time frame during which the
thief can use it is limited. In exchange, legitimate users need to renew their capabilities regularly. But no
revocation mechanism needs to be implemented. The revocation is implicit.

Opaque tokens need to be interpreted. The issuer chooses a random string to represent a key to the
information corresponding to the capability in its system. It has the advantages of not compromising the
user privacy but each use requires the issuer’s interpretation of the token. This increase in bandwidth
requirement may be unacceptable for some IoT applications.

Opaque tokens do not support serverless authorization. With opaque tokens however, revocation is
easy. When an access request is made, the issuer is contacted to verify the content of the token. The
issuer takes this opportunity to indicate that the token has been revoked. When contacted, the issuer may
even challenge the original requester to prove its identity or the possession of given attributes.

In the remainder of this document, the terms capability and token will be used interchangeably.

3.2.3 Attribute-based access control (ABAC)

ABAC is not the most popular IoT access control model. Its flexibility and built-in decentralization
however makes it compatible with federated IoT use cases. Chapter 5 presents our contribution on the
subject.
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3.2.3.1 Concept

ABAC is defined as A logical access control methodology where authorization to perform a set of oper-
ations is determined by evaluating attributes associated with the subject, object, requested operations,
and, in some cases, environment conditions against policy, rules, or relationships that describe the al-
lowable operations for a given set of attributes. [Hu et al., 2013]

In ABAC, two main functions need to be implemented : attribute retrieval and policy evaluation.
When an access request is processed, the PDP interrogates PIP to retrieve object’s and subject’s attributes,
along with potential environmental context. The policy is then evaluated on the bases of the retrieved
attributes.

First described in 2003, XACML [Moses et al., 2005] is one of the earliest example of Attribute-
Based Access Control. Earlier access control solutions tend to be based on the subject’s identity. This is
the case of RBAC.

3.2.3.2 ABAC vs RBAC

One of the disadvantage of using RBAC would be the inability to integrate multiple factors in the au-
thorization decision: An employee will most likely be given a role that corresponds to its job within
the company such as developer, human resources director, lawyer, etc. However, employees of different
positions work on the same project. A subject’s role is not enough in this situation to assess whether they
should be allowed to access a given project’s documentation.

A more granular definition of roles, such as developer on project A, will lead to role proliferation, one
of RBAC’s pitfall. Furthermore, roles are defined in a static manner. They are not meant to be updated
regularly. Similarly, subjects are assigned to roles in a long-term fashion. New subjects therefore need to
be enrolled. RBAC and other Id-based models do not fare well with dynamic users, which is an important
component of some IoT use cases.

In contrast, allowing policies to be based on several subject’s and object’s attributes, grants ABAC
more expressive power. The issuance of a new attribute to a subject does not affect other subjects, nor
does it affect its earlier permissions, unless the new attribute is directly involved in a policy. This allows
for more regular updates to the system, offering a greater flexibility.

In ABAC, policies can be defined without any reference to a subject nor to an object. The introduction
of either is a simple operation. Rules can therefore be defined without knowing subjects or objects, and
be as generic as one wishes. They can even apply to subjects from an outside organization, providing
attributes can be retrieved, thus increasing interoperability.

3.3 Comparison criteria

Designing for the IoT represents a challenge (see Section 1.2). The most notable one is the fact that
most of the nodes are constrained either memory-wise, computationally or power-wise, and can work
with intermittent network connectivity. Additionally, devices might be switched off and therefore not
available for long periods of time. This introduces a delay in update deployment. But most of all, the
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list of clients wishing to access a device is often dynamic. Furthermore, IoT devices are used for many
different use cases and different roles within each use case. This leads to an heterogeneous landscape.

The following 16 criteria try to capture the level to which each solution tackles these challenges.
They can be divided into two categories: objective and comparative. The latter are used in a compar-
ative capacity and help differentiate between solutions. The lack of easily accessible implementation
prevents the objective evaluation of criteria such as resource efficiency or scalability. We instead base
their evaluation on the authors description and commentary. They have no value on their own but must
be considered with regards to the evaluation score of other solutions.

Additionally and when applicable, solutions will be compared on their access control model, the
standards they use, specifically cryptography-wise, the use case they focus on, whether they provide an
authorization or authentication solution, and where they store their policies.

The importance of the metrics presented below are application-dependent. The weight that each
should be given will vary with the specifics of the use of the access control system. For smart home
devices and other user-centric applications, usability might be considered a more important feature than
scalability. On the other hand, the latter will be of highest importance for industrial IoT solutions.

Registration/Bootstrap (Objective) Before an access control solution can be deployed, secrets need
to be provisioned, users registered, policies defined, etc. This phase can be considered out of scope: in
token-based solution, the issuance phase is often disregarded. The complexity and usability of a solution
is however heavily impacted by these initial steps. This criterion notes whether a solution describes the
bootstrap process.

Resource efficiency (Comparative) This criterion looks at how the access control solution impacts
resource consumption. Its evaluation is based on three aspects: bandwidth (number of extra messages
sent and/or size of the messages), memory, and computation. This criterion is also to be considered for
all actors, namely the PEP, the PDP and the subject.

Resilience/Robustness (Comparative) This criterion wonders how well equipped the system is against
attacks such as DDoS attacks or the compromise of a device within a security domain.

Serverless authorization (Objective) When assessing solutions we look at how much of it can be
done offline. In cases where the authorization decision is taken by a PDP outside of the device, serverless
solutions do not require a connection to said PDP at access time. This enhances the autonomy, efficiency,
and availability of a solution.

Scalability (Comparative) IoT networks are expected to connect millions of objects. Access control
solutions on such system are obviously expected to scale. Scalability might concern: the number of
objects, the number of subjects and their requests, or the number of access control policies. This criterion
looks at how these changes affect the service and in particular its relative response time.
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Maintainability (Comparative) Ease of physical access, network quality, a device’s continuous work-
load, etc are aspects that can make updates and maintenance operation tricky, be they physical or remote.
For this reason, the maintenance of the access control solution should affect devices and services as few
as possible. Maintenance operations include deploying new keys, new certificates, associating a device
with a new manager, etc.

Permission Updates (Comparative) A device operating offline, a lossy or busy network, can delay
the application of a change in permissions. This criterion is interested in the steps needed to update
permissions, and in the time separating issuance and application. This time is expressed relatively to an
event such as an access request, or the issuance of a new token.

Usability (Comparative) Many IoT device are destined to be handled by owners that are not tech-
savvy. To ensure the access control solution will be used efficiently, usability is paramount. The addition
of security measures should not affect a user’s experience. For instance, if several endpoints are to be
contacted in order to perform an action, the user needs not know about the complexity of the under-
lying protocol. A user will prefer having to register once, and registration should be a straightforward
workflow. In short, when possible, the steps requiring an active human intervention should be kept to a
minimum.

Granularity (Objective) This criterion is concerned with the granularity of the authorization. Possible
levels of granularity include device-level, application-level, or resource-level.

Context-Awareness (Comparative) This criterion is concerned with the expressiveness of access con-
trol policies, namely the capacity of an access control decision to take into account some context variables
such as the subject’s identity, its history, the time at which the request was placed, the security context,
the network’s availability, or the device’s workload.

Revocation (Objective) Some access control solutions do not expose a revocation mechanism. It is
nonetheless an important step in the life-cycle of privilege attribution. Revocation can take two forms:
implicit or explicit. The former is a built-in system that does not require any intervention such as an
expiration date on a token. The latter requires an active operation. A device maintaining a revocation list
updated by an administrator is a good example of explicit revocation.

Delegation (Objective) This criterion looks at whether a delegation mechanism exists that would allow
a subject to pass its privileges along to another subject.

Auditability (Objective) When a system has been compromised, logging information are key in dis-
covering the source and timeline of the attack. We are interested in determining whether the system is
able to log access attempts, and the failed one in particular.
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Privacy (Comparative) This criterion looks at how much information about the system is leaked by

the access control process. Are cloud-stored data enrypted or in clear ? What do policies reveal about

the resources and subjects in question ?

Governance (Objective) An IoT system can range from a humble smart home with 5 devices to a

federated network of thousands of devices. That begs the question of who is able to take decisions

concerning the system and its security. We will qualify the first case a single-head governance as a

single person is administrating the network. In the case of a shared governance, the term multi-head will

be employed.

Maturity level (Objective) This criterion examines the conditions under which the solution has been

test: formal verification, simulation in a lab, deployment in a controlled environment or on a real system.

3.4 Centralized architecture

The centralized architecture is defined by a single PDP serving the requests of multiple PEP. A central

server will most often play the role of the PDP while IoT devices play the role of the PEP. For simplifi-

cation, we consider that the policy definition function is centralized as well. This translates to a single

PAP operated by a single administrator.

Figure 3.2: Centralized Architecture

Figure 3.2 presents the centralization of the functions of policy definition and access control decision,

defined by the unicity of the PAP and PDP respectively. Here, the grant or revocation of privileges is

decided by the administrator. The system contains many PEP and might contain any number of PIP.

Information pertaining to policies are generally stored within the PDP.

The obvious advantage of this approach, in the context of the IoT, is to externalize a potentially

memory and computationally costly process to a non-constraint environment. This enables the use of

traditional and complex methods of authentication and authorization. This architecture also offers an

easy administration of the system. Since the administrator is the only one authorized to affect privileges,

changes only need to be enacted in one place, thus increasing usability and simplifying governance. In
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addition, maintainability is increased as any change to the authorization policy only involves the central
server and does not require any modification be made to devices. Since this single PDP is involved with
all access requests, logs are easy to keep and audits easier to conduct.

Of course this centralization equates to a single point of failure. All information pertaining to access
control is stored in one place or can be changed with one set of credentials, the loss or corruption of
which would heavily compromise the security of the system. From a performance point of view, this
single entity represents a bottleneck, making the system more susceptible to DDoS attacks. This, coupled
with a central administration, can lead to scalability issues.

The central authority is additionally required to have access to the details of all access requests,
which can be considered as compromising users’ privacy. Trust in that authority is therefore required for
all actors.

The central PDP approach is not compatible with policies involving device-specific contextual infor-
mation, as the decision is taken outside of the device. To circumvent this issue, some solutions elect to
collect and centralize contextual information from edge devices. Such queries involve a whole new set
of permissions and might raise privacy issues, depending on the sensitivity of the required information,
opening a new attack vector. This also implies that the device can be queried.

More concerning is the relevance the information gathered at the time the request was placed will
hold by access time. The following example illustrates this issue: Let us consider a policy stating a
device should only serve a maximum of 5 concurrent requests. Two subjects request access. The PDP
queries the device and asks how many requests are being served. The device answers with 4, which holds
true at the time. Access is granted to both subjects. Both subjects then access the device at the same
time. The device is now serving 6 requests, thus violating the policy. Yet, the PDP cannot detect it, nor
can it resolve the issue.

A distinction can be made between centralized solutions according to the need for the PDP to be
accessible at request time. A first family of solutions, presented in Section 3.4.1, requires the PDP to
be online at all time as it will be reached for a decision with every single request. Another family of
solutions, reviewed in Section 3.4.2, uses capabilities or tokens to transmit the PDP’s decisions to PEP.
Unless this token is single-use, the subject will only need to contact the PDP again when its current token
becomes invalid.

This distinction influences a solution’s response to a number of criteria:

– With serverless authorization, scalability in the number of subject’s request is enhanced. Fewer
messages are being exchanged so bandwidth usage is lower. The system is also more usable as the
user does not experience any delay that would be due to the round trip to the PDP. The messages
are however bigger as they must contain the capability.

– On the other side, if the PDP is consulted before every access, revoking a permission is immediate.
The access logs can be stored in the PDP that is usually not as constrained. Context parameters
are evaluated at access time, allowing for the decision to be taken in a more meaningful context.
For instance, an access policy calling for proximity to the device requires a real time evaluation of
this parameter.

The following sections present references for each family of solutions.
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3.4.1 No serverless authorization

A classical illustration of centralized architectures is presented by Fernandez et al. [Fernández et al.,
2017]. Policies are stored outside of both the PAP and PDP, allowing for more flexibility. In a departure
from the most common IoT role attribution pattern, devices are here considered as subjects. Objects
are held by services, typically REST API. The Identity Provider acts as a PIP and stores the mapping
between devices and roles. Policies are defined using RBAC. Each service has its own PEP. The use of
a well-known protocol such as OAuth 2.0 and its Implicit Grant ensures interoperability with non-IoT
systems. The burden on the device is minimal: it must implement an OAuth 2.0 client and store OAuth
credentials. Access control is provided as-a-service to different applications, allowing data from IoT
sensors to be posted to the cloud. Registration is required. The authentication function is performed by
the Identity Provider and materialized by an opaque token. The PEP then contacts the Identity Provider
to verify this token and is returned public information identifying the requesting device along with its
assigned role.

This use of a token to materialize authentication is also used by Bandara et al. [Bandara et al., 2016].
Upon successful authentication, the Authentication Manager delivers a self-descriptive, digitally signed
token to the user that contains the method used for authentication and its strength. The strength param-
eter varies between 0 and 1, and is introduced to specify the confidence level that can be allotted to this
authentication. The most critical functions will only be accessible to users that have been strongly iden-
tified. Separating authentication and authorization into two different tokens increases usability. A user
will be more likely to use two-factor authentication or other involved methods if they stay authenticated
across multiple access request.

Ashibani et al.[Ashibani et al., 2017] also use confidence levels calculated using the method of au-
thentication, contextual information such as user’s profile, location or historical information. The ad-
ministrator can choose which of these parameters should take precedence depending on the use case.
For instance, when changing the temperature setting in a room, the user’s location is more important
than its profile. Contextual information are constantly being updated without the user’s intervention.
Permissions include a duration. Changes in context will also cause allotted permissions to be revoked.
The paper [Ashibani et al., 2017] includes results from a proof of concept evaluating the performance of
the different authentication methods. Combining them causes a slight overhead that is negligible when
the system is accessed from the Internet. The use of contextual information mitigates the risks of unau-
thorized access as unusual behavior or location would raise an alert. All access attempts are logged and
accounts can be locked. These results however are coming from a controlled simulation. Bandara et
al.’s solution [Bandara et al., 2016] was tested in a real smart building, the Daiwa Ubiquitous Computing
Research Building 39, hosting over 300 devices. Tests measuring response time indicates that beyond 50
simultaneous users, the delay in query processing becomes noticeable.

Another classical approach is to encrypt data and send them to a cloud. Access is then regulated by
delivering decryption keys. In order to decrypt CP-ABE (Cyphertext Policy Attribute-Based Encryption)
encrypted data, a subject must be in possession of a set of attributes that are specified in the policy and
delivered by an attribute authority. By looking at the policy however, one can gather information about
the nature of the data. Information can then be inferred about the subjects that would request such data,

39http://www.u-tokyo.ac.jp/en/whyutokyo/hongo_hi_003.html, Last Checked: March 8th, 2019
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compromising the privacy of both the data owner and data recipient. Hao et al. [Hao et al., 2019] solve
this information leakage by hiding policy attributes. A fuzzy attribute positioning mechanism based
on garbled bloom filters is then used to help legitimate users recover that information. This scheme
is secure against dictionary attacks, meaning that even an attacker knowing all of the system attributes
cannot guess which ones where used in a specific policy. In such a setting, the party that originally
encrypts the data is the PDP. The decryption algorithm is the PEP as it actually enforces the policy.

Yan et al.[Yan et al., 2019] takes a very similar approach of extracting data from devices, encrypting
them, and sending to the cloud. The scheme is focused on identity rather than attributes. The focus is
on privacy leakage in smart home frameworks with multifunctional devices. All subjects are considered
to be mobile applications. Traditionally, policies link device-wide permissions to the phone rather than
the application. That can be abused when the original app is compromised or by other malicious apps
running on the same phone. In this scheme, the gateway is both the PDP and the PEP. When a user first
installs an app, they set the permissions for the application on a per function basis instead of per device.
The gateway provides the application with a decryption key for each allowed function. At access time,
a challenge message is generated and encrypted. If the subject successfully decrypts it, data is retrieved
from the cloud or the request is passed along to the device. The paper lacks revocation mechanisms. The
pairing phase between apps and devices is not discussed. If having each user define their permissions
by hand at initialization is acceptable for a smart home use case, the solution has poor scalability and
maintainability.

3.4.2 Serverless authorization

Like Fernandez et al. [Fernández et al., 2017], Tamboli et al. [Tamboli and Dambawade, 2016] present
a solution where devices are subjects. Like in [Fernández et al., 2017], [Tamboli and Dambawade,
2016] separates authentication and authorization. But unlike [Fernández et al., 2017], [Tamboli and
Dambawade, 2016] uses self-descriptive authorization tokens with a built-in time out. Here lies the main
difference between the two types of architecture. Once the authorization token has been acquired, no
contact with the PDP is needed until it expires. The authentication token similarly carries an expiration
date. If the lifetime of the authentication token is longer than the lifetime of the authorization token, the
device will not need to re-authenticate. This solution uses Kerberos’s tickets [Neuman and Ts’o, 1994]
for authentication, CoAP [Shelby et al., 2014] for communication, and ECDSA [Johnson et al., 2001] for
signatures. No encryption scheme is proposed, even though token encryption is suggested to protect the
subject’s privacy. CoAP and ECDSA both have low resource requirements. The authors validate their
results with an implementation in a simulated environment.

First presented by Rotondi et al. [Rotondi et al., 2011] and later developed by Gusmeroli et al. [Gus-
meroli et al., 2013], the access control solution proposed by IoT@Work, a European project, exploits
the delegation support of CapBAC to its fullest extent. Each capability is part of a chain of authorization
going back to a root capability. At each stage, a new capability can be created to delegate privileges
contained within the parent capability. The delegator specify which rights they are willing to delegate,
whether these rights can be further delegated, and how many times. When presenting a capability to the
PEP, the subject should include the whole chain so that the PEP can verify the validity of the request.
Tokens include a validity period. No description of token issuance is given however. Tokens can be
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issued in a distributed fashion, when implementing a Discretionary policy (DAC).
Local policies can be applied to restrict permissions contained within capabilities. This however

requires the PDP be involved in every access attempt. The re-introduction of the PDP opens the door
for another feature: explicit revocation. The PDP presents an API that can be accessed by capability
issuers. They can submit a revocation capability that invalidates a capability they previously issued
and all children capabilities that it spawned. Privacy considerations are loosely addressed. Proposed
solutions are to encrypt capabilities to protect against eavesdropping, and to self-issue capabilities, using
a pseudonym to mask one’s identity.

Hummen et al. [Hummen et al., 2014] are focusing on devices too constrained to use public key
cryptography. The solution uses built-in features of DTLS (Datagram Transport Layer Security [Rescorla
and Modadugu, 2012]) to fall back on symmetric cryptography. Each device is paired with a gateway
that acts as the PDP. The gateway and the device are assumed to be operated by the same actor. First,
the gateway contacts a subject and establishes a DTLS connection on behalf of the device. Session
information are sent to the device, encrypted with the device’s master key. When the subject wishes to
interact with the device, it resumes the session established by the gateway. The symmetric session key
has already been exchanged and no recourse to public key cryptography is required. Several options
are discussed for revocation. A first option is for the device to keep a list of sessions that have been
revoked. That list is updated by the gateway. In the absence of implicit revocation, the list of active
sessions can grow to outweigh the memory available in a heavily constrained device. Moreover, for each
incoming connection the device is required to check whether that particular session is on the revocation
list, thus increasing the computational cost of establishing a connection over time. A second solution
is for the gateway to reset all open sessions. The gateway sends a new session information decryption
key to the device. As such, previous session information can no longer be decrypted, thus resetting all
the connections. For the sake of privacy, once session information has been pushed to the device, the
gateway deletes it. When resetting all the connections, the gateway must then contact all subjects that
held a valid session at reset time to start new sessions and generate new session keys.

Ray et al. [Ray et al., 2017] present a solution for Remote Health Care Monitoring. They argue
that RBAC is not enough to guarantee patients’ privacy. For a given patient, only her doctors should
be given access to her data. In case of an emergency, only paramedics at the scene should be given
access. A user’s role is therefore not enough to determine which information they should be able to
access. This is why ABAC, that enables more contextual policies, was preferred. XACML is generally
the default choice when using ABAC. The authors choose instead to use NIST Next Generation Access
Control (NGAC) [INCITS, 2013, INCITS, 2016], for an easier policy management. The architecture is
comprised of 4 types of actors: the monitoring device, the patient’s cellphone, the cloud server, and the
doctor’s device. The monitoring device transmits data by writing to the log file stored on the patient’s
smartphone. Data is written into either a normal or a critical log. At fixed intervals or when the data is
critical, the logs are sent to the cloud where the doctors can subscribe to the feed. The smart phone is
in charge of assessing the criticality of the data. The method that it uses is not discussed. It is not clear
where the policies are defined and where they are checked. The nature of the data however seems to
indicate that serverless authorization should be available.

Ahmad et al. [Ahmad et al., 2018] propose Access Control as a Service. They build their solution
on top of AWS IoT extending SecurePG to offer a single, more accessible PAP to enhance administrator
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Criteria [Fernández et al., 2017] [Bandara et al., 2016] [Ashibani et al., 2017] [Hao et al., 2019] [Yan et al., 2019]

Model RBAC RBAC - ABAC -
Crypto - RSA - CP-ABE, ECC IBE

Standards OAuth 2.0 OAuth 2.0, XACM,
HTTP, JWT - - -

Use Case - Smart Building Smart Home - Smart Home
AuthN or AuthZ authN & authZ authN & authZ authN & authZ authN & authZ authZ
Policy storage independent independent on PDP - -

Bootstrap phase yes no yes yes yes
Resource Efficiency fair fair high high high

Resilience very poor very poor very poor poor poor
Serverless no no no no no
Scalability poor fair poor poor poor

Maintainability fair high high high high
Permission Updates imm imm imm - -

Usability high high high high high
Granularity RL RL DL RL FL

Context-awareness very poor poor very high fair very poor
Revocation - impl impl - -
Delegation - - - - -
Auditable - possibly yes - -
Privacy poor poor very poor high high

Governance single-head single-head single-head multi-head single-head
Maturity Level Th RE CE SE CE

“-”: Not Mentioned or Not Applicable - DL: Device Level - RL: Resource Level - FL: Function Level - impl: implicit - authN: authentication - authZ:
authorization - imm: immediate - RE: real environment - SE: simulated environment - CE: controlled environment - Th: Theoritical

Table 3.1: Summary of solutions adopting a centralized architecture without serverless authorization

usability. Policies can be defined using a generic provider-independent language that supports ABAC.
Policies are then translated and sent to the Cloud Service Provider (CSP, here AWS). The PDP and
PEP function stay within the purview of the CSP, enabling the use of its automated policy verification
tools. Authors define 4 architectures to evaluate their proposal. The first two put PDP and PEP in the
cloud. The last two entrust the PDP and PEP function to a dedicated edge node that is not the device
itself. Architectures 2 and 4 enable stateless functions for unbounded attribute evaluation. Up to 80
attributes have been evaluated in the simulation. The solution is currently only available for AWS IoT
but the same principle can be applied to other CSP, thus allowing users to easily choose and change
provider. However simulation results show very poor scalability. The underlying framework is mostly
responsible as the number of concurrent access is limited by AWS (500) and packets are consistently lost
when approaching this upper bound (starting at 330). Additionally, problems linked to the chosen smart
lock use case are mentioned that are not addressed by the solution, namely the revocation, logging, and
update evasions induced by the absence of connectivity between the end-device and the server, rendering
the device dependent on clients to receive policy updates.

3.4.3 Conclusion

Table 3.1 and 3.2 show the properties of the different solutions presented in this section. All solutions are
at the mechanism level of abstraction. The majority of solutions that do not enable serverless authoriza-
tion address both authentication and authorization, indicating policies that are most likely to be ID-based
and require prior registration. In use cases such as smart homes or smart buildings where the expected
number of client is relatively small and behavior can be categorized, the choice of RBAC is relevant. In
use cases where actors interact outside of pre-established and fixed patterns however, ABAC and its flex-
ibility are more appropriate as the decision engine is situated in a non-constrained environment. ABAC
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Criteria [Tamboli and Dambawade, 2016] [Rotondi et al., 2011, Gusmeroli et al., 2013] [Hummen et al., 2014] [Ray et al., 2017] [Ahmad et al., 2018]

Model - - - ABAC ABAC
Crypto ECDSA - AES-128 - -

Standards CoAp, Kerberos SAML, XACML DTLS NGAC BLE, AWS IoT,
SecurePG

Use Case - - - eHealth Smart Lock
AuthN or AuthZ authN & authZ authZ authZ authZ authZ
Policy storage on PDP on PDP on PDP - Cloud/Device

Bootstrap phase yes no yes no yes
Resource Efficiency poor poor very high very high very high

Resilience poor fair poor poor poor
Serverless yes yes yes yes yes
Scalability fair fair fair fair poor

Maintainability high fair high fair high
Permission Updates LoT LoT imm - next access request

Usability high fair poor high high
Granularity AL RL DL RL RL

Context-awareness very poor poor very poor high very high
Revocation impl impl & expl expl mentioned impl & expl
Delegation - yes - - -
Auditable - - - no yes
Privacy fair very high fair poor poor

Governance single-head multi-head single-head single-head single-head
Maturity Level SE implementation CE Th SE

“-”: Not Mentioned or Non Applicable - DL: Device Level - AL: Application Level - expl: explicit - impl: implicit - authN: authentication - authZ: authorization - imm: immediate
- LoT: Lifetime of Token - RE: real environment - SE: simulated environment - CE: controlled environment - Th: Theoritical

Table 3.2: Summary of solutions adopting a centralized architecture with serverless authorization

might be too demanding for edge intelligence. When serverless authorization is disabled, revoking a
permission is equivalent to an update, which is immediately taken into account. With serverless autho-
rization however, means of revoking allotted permissions are necessary. Solutions using self-descriptive
capabilities only offer implicit revocation. Indeed in [Gusmeroli et al., 2013], the use of the revocation
service requires requests to be examined at access time, thus disabling serverless authorization. Delega-
tion is barely addressed. If the access control decision is taken outside the device, information such as
network or request context, i.e. communication protocol, request’s time or subject’s IP, can still be used
to qualify the authorization. Note that despite being the architecture best suited for storing access logs,
most of the solutions do not address auditability. In case of an incident, it is nonetheless a necessary tool
for analysis. A fair proportion of the examined solutions are backed by an implementation. They are
however, with the exception of [Bandara et al., 2016], simulating subjects and traffic, sometimes even
devices.

3.5 Hierarchical Architecture

We define a hierarchical architecture as a set of partially ordered security domains administered by a
single entity. That entity may defer the administration of sub-domains to trusted local administrators.
Let Si, Sj be security domains. If Si ≤ Sj then policies defined in Sj supersede policies in Si. Security
domains can represent a physical or logical separation. Let us examine two examples, both involving
smart buildings.

First, to illustrate physical separation, we take the case of a university. The first-level security domain
is the whole campus. An example of second-level security domain is the Computer Science department
buildings. A classroom or an office would be third-level security domains. Here, the domains represent
physical locations. Local administrators all answer to the same head administrator. Policies can be
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defined for each level but campus-wide policies supersede department-specific rules: if a student is no

longer allowed on campus, they should not be able to open a door or command window blinds in a

classroom.

The second example illustrates logical separation with the case of company’s offices fitted with many

IoT devices with different sensitivity levels. The first-level security domain regroups public devices that

can be accessed by guests: doors to meeting rooms, light switches, blinds, etc. Doors to restricted area

and offices, printers, local temperature controls and others devices reserved for employees belong to a

second security domain. Finally, the general temperature control, the server room lock or other sensitive

devices belong to a third security domain. Here, contrary to the previous example, a room can host

devices belonging to different security domains: a light switch and the temperature control. A user

with rights on second-level devices will have rights on first-level devices as well. Several second level

domains can co-exist as different teams have access to different devices.

Figure 3.3: Ordered PAP

The partial order of security domains can be translated on either PAP or PDP. In the first option,

policies are defined at higher levels and pushed downwards to local PDP that aggregate them. The

request is then handled locally according to them. Figure 3.3 breaks down this architecture into functional

entities. The head administrator is represented by the top PAP. It pushes policies to all PDP. Below, the

other administrators have fewer PDP under their supervision. One PDP still handles several PEP. The

PIP can be multiple and common to all PDP or PDP-dependent.

The second option is to have all requests intercepted by a high level PEP and be treated by a chain of

ordered PDP going down to the most local one. Policies are not pushed downwards but instead assessed

by the PDP of the domain where they have been defined. If a request fails to comply with a PDP’s local

policies, propagation of the request will stop and a negative response will be sent. Figure 3.4 illustrates

the different ways the request can be handled: the request can transit from PDP to PDP (1) or go through

PEP at each level (2).

Hierarchical architectures are highly relevant to the IoT: In classical IoT architectures, information

are collected by sensors. This information is then gathered by a local gateway that often has more

resources than the end-devices. The gateways then send this information to a cloud server and so on.
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Figure 3.4: Ordered PDP

Such an organization addresses the scalability issue of a centralized system by delegating parts of the

administration to more context-aware entities while still leaving the administrative tasks in the hand of a

few trusted entities.

It however introduces complexity. Rules must be introduced to handle conflicts between policies that

have been designed at different level. Which should take precedence might depend on the request.

Literature review Barka et al. [Barka et al., 2015] illustrate the physical separation of security do-

mains. They propose to adapt RBAC [Ferraiolo and Kuhn, 1992] to the Web of Things (WoT), IoT

restricted to Web protocols. They divide it into a hierarchy of Ambient Spaces [Mathew et al., 2011],

each representing the boundaries of a physical space such as rooms, buildings, neighborhoods, cities, etc.

They provide a template to easily organize and integrate new devices into the WoT by means of similarity

functions [Mathew, 2013]. Ambient Space Managers (ASM) are entry points into their respective spaces

and handle devices and possible embedded Ambient Spaces contained within. They encompass both the

function of PEP and PDP, implemented in different modules. Here, devices do not possess access control

logic of their own. They are instead accessed through the PEP contained within the ASM of the Ambient

Space they belong to. Authors recognize that RBAC is subject to role proliferation and mitigate this risk

with role parametrization[Abdallah and Khayat, 2004]. Because the definition of roles is often a static

process, we argue that this is not enough to make RBAC usable for the IoT. Revocation mechanisms are

not defined.

Ning et al. [Ning et al., 2015] present an authentication scheme for the Unit and Ubiquitous IoT

(U2IoT). They consider an industry-oriented scenario with the following actors: IoT Sensors (subjects),

IoT Targets (resources), unit Data Centers, industrial Data Centers and national Data Centers. The

scheme is made of two protocols: authentication for the Unit IoT and authentication for the Ubiqui-

tous IoT. The first protocol allows the sensor and target to mutually authenticate and be recognized by

the Data Center as legal entities. This requires only one message be sent from the target device, and

three from the sensor. The second protocol yields mutual authentication of the unit Data Center and

the industrial Data Center, both being authenticated to the national Data Center. The scheme ensures
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data confidentiality and integrity, forward unlinkability and the privacy of the targets’ identities. BAN
logic [Burrows et al., 1990] is used to provide a formal analysis of the protocols.

In 1983, Axl and Taylor [Akl and Taylor, 1983] devised a cryptographic solution to key distribu-
tion when subjects are organized in partially ordered classes, and sets of permissions are assigned by
class. Castiglione et al. [Castiglione et al., 2016] enhance this solution by introducing dynamicity into
the system: new subject, reorganization of the hierarchy, revocation of a subject’s privileges, etc. The
contribution of this paper is two-fold. It introduces both a construction for hierarchical key assignment
schemes supporting dynamic updates, using symmetric cryptography as a building block, and a mean to
formally prove its security with respect to key indistinguishability. The scheme is well-suited for the IoT
as it is made to minimize the impact on subjects. Memory-wise first: each subject only needs to store a
single secret value. Computation-wise then: the only operation needed for a subject to recover its key is
a single decryption. Bandwidth-wise finally: the only update operation that requires key redistribution
is the revocation of a subject. In this instance, a new key needs to be distributed to members of its for-
mer class in order for the revoked subject to be unable to decipher messages moving forward. All other
updates only impact public information.

Hsiao et al. [Hsiao et al., 2019] similarly build on Axl and Taylor [Akl and Taylor, 1983] by em-
bedding a validity period inside the key, thus enabling implicit revocation. They also use Elliptic Curve
Cryptography for its minimal memory requirements.

Conclusion Table 3.3 proposes a property summary of the different solutions presented in this section.
We first note that the research effort is less significant here than with centralized solutions and yields
no implementation. Yet, gateways are often indispensable in IoT scenarios to translate communication
protocols and mitigate devices constraints. This naturally translates to a 2-level hierarchy. The potential
for hierarchical solutions seems to be undervalued. The solutions presented here cover the whole ac-
cess control process: first, the actors’ bootstrap with key distribution, second, authentication and finally
authorization. Delegation of privileges is not addressed, neither is the auditability of the system.

3.6 Federated Architecture

A federated architecture is defined by multiple un-ordered security domains operated by different entities
interacting. We take the example of two companies collaborating on a smart grid project. Company A
is an electrical company and has deployed a network of sensors on its area of coverage. Company B is
tasked with gathering the information and computing usage profiles. Each company has its own security
domain but subjects of Company B must be able to access objects in Domain A in order to operate.
Privileges must therefore be granted across domain lines.

Figure 3.5 shows the building blocks of a federated system. Here, subject and object live in different
domains. Each domain must then present a PIP accessible to other domains’ PDP so that information
concerning a subject needs only be stored in one domain but remains accessible to all. Access might also
be granted to all subjects providing a proof they belong to a trusted domain. In which case, information
must be exchanged before-hand so that the proof can be verified.

The cost of most operations (i.e., new objects, new subjects, access requests) are spread across a
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Criteria [Barka et al., 2015] [Ning et al., 2015]
[Castiglione
et al., 2016] [Hsiao et al., 2019]

Model RBAC - - -
Crypto - symmetric symmetric ECC

Standards XML - - -
Use Case - U2IoT - -

AuthN or AuthZ authZ authN authZ (KA) authZ (KA)
Policy storage on PDP - - -

Bootstrap phase no no yes yes
Resource Efficiency very high high high high

Resilience poor poor poor poor
Serverless no - yes no
Scalability fair fair poor poor

Maintainability high poor fair fair
Permission Updates LoS - - -

Usability high fair high fair
Granularity RL - - files

Context-awareness fair very poor very poor very poor
Revocation impl - expl impl
Delegation - - - -
Auditable - - - -
Privacy fair very high high high

Governance single-head multi-head single-head single-head
Maturity Level Th FA Th Th

-: Non Applicable or Not Mentioned - RL: Resource Level - expl: explicit - impl: implicit - authN: authen-
tication - authZ: authorization - KA: Key Assignment - LoS: Lifetime of Session - Th: Theoretical - FA:
Formal Analysis

Table 3.3: Summary of solutions adopting a hierarchical architecture

number of security domains, thus providing better scalability. Each domain is free to locally adopt the
system that is best suited for it. Administrators control the flow of information and may implement
anonymity protocols, providing their users with a different pseudonym for each access. From a user’s
point of view, a single account can be used to interact with multiple providers. This is great for usability.

Complexity is however introduced by the requirements of inter domain communication that constrain
the changes one would want to unilaterally implement. This also introduces the additional issue of
controlling access to potentially sensitive subject information. Finally, context emanating from outside
the boundaries of the PDP’s domain might be harder to get.

Literature review Anggorojati et al. [Anggorojati et al., 2012] achieve federation through delegation.
In their proposal, CCAAC (Capability-based Context Aware Access Control model), a subject (the dele-
gatee) gains access to a resource outside of its own security domain by using the delegated privileges of
a subject from the resource’s original domain (the delegator). Each domain must provide an IoT Federa-
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Figure 3.5: Federated architecture

tion Manager to handle delegation requests and set up rules governing inter-domain access. If the request

is successful, a pair of internal and external capabilities is generated. The external capability is sent to

the delegator that is in charge of transmitting it to the delegatee. It contains the ID of the resource, a set

of privileges, and the ID of the delegatee.

An internal capability is also generated and sent to the device hosting the resource. It contains infor-

mation that will be used to validate the external capability when presented with an access request. The

IoT Federation Manager finally updates the propagation tree that keeps track of all delegated privileges.

This mitigates one of the main disadvantages of CapBAC, not being able to keep track of the different

privileges that have been granted. The external capability is a self-descriptive token that notably contains

a context field describing conditions to be checked at access time. There are several context types such as

time, location or authentication. Each can be evaluated against a constant. If the evaluation fails, access

is denied. This improves context-awareness, especially dynamic context that can be checked by the PEP.

The descriptivity of the token enables an access process that does not involve the PDP (here the IoT

Federation Manager). It however does not include a lifetime and no revocation protocols are described.

The delegation process assumes a pre-existing trust relationship between domains and subjects as no

discovery mechanism is described to match delegators and delegatees. The system by which a subject

requests access to a resource within its own domain is not discussed. No implementation is provided to

evaluate the feasibility of the solution.

Xu et al. [Xu et al., 2018b] similarly use capabilities and delegation for federation. It is however the

PAP and PDP functions that are delegated from a cloud-based central entity to more local ones, called

coordinators, taking advantage of both hierarchical and federated architecture. Periodical synchroniza-

tion between cloud-based and local PDP ensure policies and profiles stay consistent. The delegation of

privilege can be revoked, causing all capabilities issued by a coordinator to become invalid. The new

coordinator is tasked with propagating the revocation to all the edge devices. Subject’s permissions can

similarly be revoked. Capabilities are self-descriptive tokens and carry a condition field for access time

verification, validity period for implicit revocation, and the public key of the issuer. They are material-

ized by JSON strings. With multiple PAP, a policy conflict may occur. This possibility is not mentioned

by the authors.

Another approach to federation consists in mutualizing resources and entrusting each domain’s inter-
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domain access policies to a shared entity charged with governing access according to each domain’s
policies. This is the choice made by Liu et al. [Liu et al., 2017]. They propose a solution to the Autho-
rization Route Optimization Problem (AROP) in RBAC. There are a few problems that an administrator
might want to examine to ensure the efficiency of her policies: Safety analysis verifies that no privilege
is unintentionally given to an untrusted subject. The reachability problem validates that a specific role
can be given to a subject through the actions of the administrators starting from the initial policy. The
Authorization Route Planning Problem (ARPP) determines a sequence of actions that the administrators
can take to grant subject s a given set of privileges. The AROP extends on ARPP by trying to pro-
vide the best authorization route. As with all optimization issues, the definition of best depends on the
metric that is used. Finding a solution to this problem is both about gaining efficiency and therefore
scalability, and focusing the roles that should be given to a subject, thus abiding by the principle of least
privilege [Schneider, 2003]. This article touches on a subject that often goes unaddressed, namely how
administrators grant privileges in the first place.

Sharing of resources is also the option chosen by Uriarte et al. [Uriarte et al., 2016]. This paper
presents the Sensing Enabled Access Control (SEAC) concept that merges logical and physical access
control. IoT sensors are a gold mine of all sorts of information such as network congestion, a subject’s
location or a subject’s history, and can be integrated to the access control decision process as PIP. The
goal is to improve an existing system by increasing fluency and usability while keeping the same level of
security. Authorization decisions are taken by the PDP that uses the following sources: the identification
system provides physical identification mechanisms such as card readers, the contextual information sys-
tem gathers and cleans contextual information, the logical access control system provides digital means
of authentication such as credentials, the multi-domain security policy configuration system provides
domain-related information, the data analysis system’s goal is to detect threat and patterns, the geolo-
calisation system provides subject tracking across different domains and locations. The solution was
evaluated in the port of Valencia. This solution is compatible with legacy system. Its pitfall is the hard
balance to strike between usability and security. The inclusion of all these information sources requires
a lot of bandwidth and computation to aggregate the data. As this information and its processing are
centralized, scalability remains an issue. In a real-time application, security might have to be sacrificed
for usability.

Saadeh et al. [Saadeh et al., 2018] propose a solution based on a hierarchical elliptic curve identity
based signature protocol to authenticate devices moving around in a smart city and hence jumping be-
tween security domains. The scheme involves a single Root Private Key Generator (PKG), several sub
PKG, and gateways for each domain. During the initialization phase, public parameters are distributed
in the hierarchy and private keys are generated for all parties. Devices are paired with a gateway. A
client by selecting two sub PKG in the same security domain and obtains two partial private keys that
combine to create their private key. When a client tries to access a device, it transfers the request to its
gateway. If the client and the device belong to the same domain, the gateway already possesses all the
information necessary to authenticate the client. If not, the home root PKG of the client is contacted
through the gateway’s hierarchy (sub PKG to root PKG to home root PKG of the client and back). The
scheme is analyzed using BAN logic. The signature and subsequent verifications are handled by gate-
ways and PKG. The client and device only need to place one request each. Gateways and sub PKG can
be easily added to the system for scalability. The double PKG registration solves the key escrow problem
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in which malicious PKG use the private key they generated for the user without its permission (to falsely
authenticate a malicious user for instance). PKGs contain an Archive module. However it does not seem
to store connection information.

Sciancalepore et al. [Sciancalepore et al., 2018] present a non-canonical use of Cyphertext Policy -
Attribute-Based Encryption (CP-ABE): instead of encrypting data, authors propose to challenge request-
ing subjects with deciphering a random message encrypted with the policy applicable to the requested
resource. The scheme includes a single identity authority, and a pair of attribute authority (PIP) and
resource server (PEP) per domain. Subjects must first generate an ephemeral identity in congress with
the identity authority. They prevent the tracking of a client’s activity and implement an implicit revo-
cation mechanism as the identity itself has a built-in expiration time. Subjects then authenticate with
the relevant attribute authorities with domain-specific credentials to retrieve attributes for their new iden-
tity. The ephemeral identity is used to authenticate to the resource server. If the identity is still valid,
the resource server encrypts a random message using the requested resource’s policy. Only a subject in
possession of the required attributes can decipher the challenge. At this point, the resource server may
contact the identity authority to check whether the identity is still valid. Identity revocation replaces at-
tribute revocation for the purpose of this scheme. The temporary identity is the main contribution of this
proposal, enabling both enhanced user privacy and implicit revocation. Using CP-ABE on a challenge
message furthers user privacy as their attributes do not need to transit through the network. Serverless
authorization is available though it cannot be used while explicit revocation is enabled. The requirement
for users to register with each attribute authorities individually is a blow to usability. This results in
high bandwidth and storage requirements for the subject and scalability issues as clients are not divided
amongst domain but duplicated. We also note that although the privacy of users is protected, information
can be leaked by studying the cyphertext policies sent to users.

Criteria [Anggorojati et al., 2012] [Xu et al., 2018b] [Liu et al., 2017] [Uriarte et al., 2016] [Saadeh et al., 2018] [Sciancalepore et al., 2018]

Model - - RBAC RBAC - ABAC
Crypto - asymmetric - - ECC CP-ABE

Standards - JSON - - - JWT, TLS, X.509
Use Case - - Industry 4.0 - Smart City -

AuthN or AuthZ authZ authZ authZ auhtZ authN authN & authZ
Policy storage on PDP on PDPs independent on PDP - on PDP

Bootstrap phase no no no no yes yes
Resource Efficiency poor poor very poor very poor high poor

Resilience high high poor poor poor fair
Serverless yes yes - no no yes
Scalability high very high poor poor high poor

Maintainability high high fair fair high fair
Permission Updates LoT LoT + sync - imm - imm/LoId

Usability fair high high high high poor
Granularity RL RL - DL - RL

Context-awareness high high - very high - high
Revocation - impl & expl - - - impl & expl
Delegation yes of PAP/PDP - - no -
Auditable - - - yes no suggested
Privacy poor poor - poor fair high

Governance multi-head multi-head multi-head multi-head multi-head multi-head
Maturity Level Th SE Th RE FA SE

“-”: Not Mentioned or Non Applicable - DL: Device Level - RL: Resource Level -expl: explicit - impl: implicit - authN: authentication - authZ: authorization - imm: immediate -
LoT: Lifetime of Token - LoId: Lifetime of Identity - RE: real environment - SE: simulated environment - Th: Theoritical - FA: Formal Analysis

Table 3.4: Summary of solutions adopting a federated architecture
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Conclusion Table 3.4 shows the properties of the different solutions presented in this section. Both
Xu et al. [Xu et al., 2018b] and Saadeh et al. [Saadeh et al., 2018] present solution that use hierarchical
elements. As for hierarchical architecture, federation is not the focal point of the research community.
Collaboration is however bound to be an essential part of the IoT. Devices from different manufacturers
acting on behalf of different companies will have to work together to accommodate all use cases.

3.7 Distributed Architecture

In opposition to centralized systems where a single PDP serves all requests, in distributed systems the
PDP function is performed by several entities. We identify three families of distributed architectures.

In the first family of solutions, the PEP takes on part of the PDP function. This usually translates to
a semi-distributed model where a central entity takes part of the access control decision and leaves the
rest to the device itself. Those solutions are discussed in Section 3.7.1.

In the second family of solutions, several PDP are accessible to each PEP, potentially simultaneously.
Section 3.7.2 presents these proposals.

Finally, the third distributed architecture is based on the blockchain, where policies are stored. The
miners will often act as PDP by approving transactions representing access requests. These solutions are
detailed in Section 3.7.3.

3.7.1 PDP/PEP hybrid

Our first approach to PDP distribution is to leave part of the decision to the PEP. We will consider the PEP
to be included within the device itself. Authorizations are granted by the PDP under some conditions to
be evaluated by the device at the time of access. The device is no longer just a PEP and can choose to
allow or deny access if the conditions communicated by the PDP are not met. Figure 3.6 illustrates this
process.

The bigger advantage here is context-awareness. By placing the final decision as close as possible
to the object, local context can factor into it. The delay between condition evaluation and access is
considerably reduced. Conditions can be pushed from the PDP to the PEP using tokens. In which case,
serverless authorization is supported (see Section 3.2.2).

The impact on the device however, is significant. That type of solutions cannot be used with strongly
constrained devices. Computing resources are necessary to evaluate the local conditions. Furthermore,
this evaluation must be performed with every access, to be as up-to-date as possible, or the benefits of
context-awareness are lost. These solutions are not as scalable as multi PDP solutions.

Literature review Cerf [Cerf, 2015] provides no solution to the access control problem but rather
directions for future research that fit the hybrid architecture. The author proposes to move the AC logic
to the edge of the network by using capabilities. Each device is paired with a unique controller that
will be its only interlocutor. The device produces a capability consisting in a nonce encrypted with the
controller’s public key and signed with the device’s private key. When communicating, the nonce must
be returned encrypted with the device’s public key and signed with the controller’s private key. It is single
use. It is interesting to note that here the end-device is both a PDP and a PEP but not simultaneously.

90



3.7. Distributed Architecture

C
ri

te
ri

a
[H

em
di

an
d

D
et

er
s,

20
16

]
[B

er
na

be
et

al
.,

20
16

]
[H

us
se

in
et

al
.,

20
17

a]

[H
er

ná
nd

ez
-

R
am

os
et

al
.,

20
13

]
[C

er
f,

20
15

]
[S

ei
tz

et
al

.,
20

13
],

[C
he

rk
ao

ui
et

al
.,

20
14

]

M
od

el
A

B
A

C
A

B
A

C
,T

B
A

C
A

B
A

C
-

-
-

C
ry

pt
o

-
E

C
C

-
E

C
D

SA
as

ym
m

et
ri

c
A

E
S

St
an

da
rd

s
C

oA
P

C
oA

P,
JS

O
N

,
X

A
C

M
L

C
oA

P,
JS

O
N

C
oA

P,
JS

O
N

-
C

oA
P,

D
T

L
S,

X
A

C
M

L
,

SA
M

L
,J

W
E

U
se

C
as

e
-

-
-

-
-

-
A

ut
hN

or
A

ut
hZ

au
th

Z
au

th
Z

au
th

Z
au

th
Z

au
th

Z
au

th
Z

Po
lic

y
st

or
ag

e
on

de
vi

ce
on

PD
P

on
PD

P
-

on
de

vi
ce

on
PD

P
B

oo
ts

tr
ap

no
no

no
no

no
ye

s
R

es
ou

rc
e

E
ffi

ci
en

cy
ve

ry
po

or
ve

ry
po

or
po

or
ve

ry
po

or
ve

ry
po

or
ve

ry
po

or
R

es
ili

en
ce

fa
ir

hi
gh

hi
gh

fa
ir

fa
ir

po
or

Se
rv

er
le

ss
no

ye
s

ye
s

ye
s

no
no

Sc
al

ab
ili

ty
po

or
hi

gh
ve

ry
hi

gh
fa

ir
po

or
fa

ir
M

ai
nt

ai
na

bi
lit

y
po

or
fa

ir
hi

gh
hi

gh
po

or
fa

ir
Pe

rm
is

si
on

U
pd

at
es

im
m

L
oT

L
oT

L
oT

N
TR

N
TR

(s
in

gl
e

us
e)

U
sa

bi
lit

y
po

or
fa

ir
hi

gh
fa

ir
po

or
hi

gh
G

ra
nu

la
ri

ty
-

R
L

R
L

R
L

D
L

R
L

C
on

te
xt

-a
w

ar
en

es
s

fa
ir

ve
ry

hi
gh

hi
gh

hi
gh

ve
ry

po
or

hi
gh

R
ev

oc
at

io
n

-
im

pl
an

d
ex

pl
im

pl
an

d
ex

pl
im

pl
-

im
pl

D
el

eg
at

io
n

-
-

-
-

-
-

A
ud

ita
bl

e
ye

s
-

-
-

-
-

Pr
iv

ac
y

-
fa

ir
po

or
ve

ry
po

or
hi

gh
po

or
G

ov
er

na
nc

e
si

ng
le

-h
ea

d
si

ng
le

-h
ea

d
m

ul
ti-

he
ad

-
si

ng
le

-h
ea

d
m

ul
ti-

he
ad

M
at

ur
ity

L
ev

el
SE

SE
SE

SE
T

h
SE

“-
”:

N
on

M
en

tio
ne

d
or

N
on

A
pp

lic
ab

le
-D

L:
D

ev
ic

e
L

ev
el

-R
L:

R
es

ou
rc

e
L

ev
el

-e
xp

l:
ex

pl
ic

it
-i

m
pl

:i
m

pl
ic

it
-a

ut
hN

:a
ut

he
nt

ic
at

io
n

-a
ut

hZ
:a

ut
ho

ri
za

tio
n

-L
oT

:L
if

et
im

e
of

To
ke

n
-S

E
:s

im
ul

at
ed

en
vi

ro
nm

en
t-

N
TR

:N
ex

tT
ok

en
R

eq
ue

st
-T

h:
T

he
or

iti
ca

l

Ta
bl

e
3.

5:
Su

m
m

ar
y

of
so

lu
tio

ns
ad

op
tin

g
an

hy
br

id
di

st
ri

bu
te

d
ar

ch
ite

ct
ur

e

91



Chapter 3. Survey : Access control in the IoT

Figure 3.6: Access request in the hybrid architecture

The device must indeed decipher and check the validity of the nonce previously generated by itself. The

capability is opaque.

A few hypothesis are made on the devices’ abilities: they can generate their own keys, execute cryp-

tographic operations (symmetric or asymmetric) and resist physical tampering. Even when the controller

is assumed to change IP over time, it should still be possible to associate it with a unique identifier such

as a domain name. The association of the device with a unique controller departs from the classical

postulate that in the IoT, the list of subjects wishing to access a given object is dynamic, or at least large.

Seitz et al. [Seitz et al., 2013] present a generic authorization framework using JWE [Jones and

Hildebrand, 2015] tokens. XACML [Moses et al., 2005] policies are pushed to the PDP by the device

owner. Subjects can use a discovery system to request their token directly from the PDP. The appropriate

rule is partially evaluated by the PDP, leaving only local conditions to be verified. Session keys may be

delivered with the tokens to encrypt messages. To prevent replay attacks, the tokens can only be used for

a short time after issuance and only once. The device may also store recently used tokens. Consequently

permission updates take effect with only a small delay. This however represents an increase in the number

of required messages for subjects as each access require an exchange with the PDP as well as an access

request to the PEP. The solution is replay-resistant and requires both ends to mutually authenticate.

This solution is used as a frame of reference by Cherkaoui et al. [Cherkaoui et al., 2014] that focus

on the physical aspect of the IoT. It presents Physical Uncloneable Functions (PUF) [Pappu et al., 2002]

as a mean to generate and protect the keys used to secure communication. PUF uses the unique physical

characteristics of a device to produce a secret key that is unique, random, reliable and tamper resistant.

PUF are also a low cost solution. eSIM are introduced as a way to mitigate the discrepancy between

the life expectancy of a SIM and its IoT device. This article brings a solution to issues such as key

provisioning or resistance to physical tampering that appeared as requirements in [Seitz et al., 2013] but

were not solved.
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Hernandez-Ramoz et al. [Hernández-Ramos et al., 2013] propose a solution bearing a lot of similari-
ties with [Seitz et al., 2013]. The capability however can be used multiple times and carries an expiration
date for implicit revocation along with local conditions. Cryptographic operations are performed last to
minimize the computational burden on the device. The request is transmitted using CoAp [Shelby et al.,
2014]. Resources are designated by a unique URI. The process of issuing the token is unfortunately
considered out of scope.

Hemdi et Deters [Hemdi and Deters, 2016] propose to use attributes to identify users rather than
passwords or signatures alone as they consider users to be irresponsible with their credentials. By com-
bining numerous attributes - username, password, MAC address, access time, etc - the likelihood of
identity theft is considerably lowered. The emphasis is put on context. Their solution is mainly pre-
sented through its implementation. Special care has been taken to lower the computational burden on the
device.

The subject is a web application that uses CoAP to push its requests, in a JSON format. The request
is sent to a server running on a Rapsberry Pi 2 that exposes a RESTful service. Parsed attributes are then
compared with data stored in a MySQL database. All requests, successful or otherwise, are logged in the
database. If the request is valid, the server responds with a Hello World message. The only actors here
are the subject and the device. The latter then acts as both the PEP and PDP.

Here the access control logic is left entirely in the hands of the end-device. Enrollment of new
users and their devices (MAC address) is not addressed, neither is the provisioning of permissions or
their granularity. Revocation of attributed permissions or deletion of users is not discussed. Support for
delegation is not mentioned. Because the access control decision is taken on the device itself, there is
a potential for a high level of context-awareness, at least on the side of the end-device. However, the
example implementation does not embrace this potential. The device does keep track of access attempts.
But because of its limited storage capacities, a big number of failed attempts might fill its memory and
hinder its ability to function normally, opening a new attack vector. Finally, because the end-device itself
needs to be configured to accept new clients, the solution would not scale. Maintenance might require
the end-device to be made inaccessible which would interrupt the service. Users would need to not only
register with every end-device but also to register every new device used to access the service with every
one of them, making for poor usability. The authors have evaluated their solution by firing a number of
requests (25, 50 and 100) in a short time span (125 ms, 250 ms and 500 ms), using a varying number of
user (5 to 15 users). These numbers are not on scale with the load expected of most IoT systems.

Bernabe et al. [Bernabe et al., 2016] put trust at the center of the access decision. Several devices
are able to perform the same task. A discovery system allow subjects to obtain a list of equivalent
devices and contact the most trusted. Trust is calculated based on quality of service (availability, delay,
etc), security (communication protocol, network, etc), reputation according to other devices, and social
relationship [Atzori et al., 2012]. On constrained devices, the trust value is computed using fuzzy logic.
The Distributed Capability-Based Access Control framework (DCAPBAC) [Hernández-Ramos et al.,
2016] is used to implement CapBAC. Tokens carry an expiration date and local conditions including the
trust value the device should associate to the subject. Policies are modeled using ABAC and expressed
with XACML.

Following along the lines of Social IoT, Hussein et al. [Hussein et al., 2017a] introduce COCapBAC,
for COmmunity-driven Capability-Based Access Control. IoT devices are grouped to form communities

93



Chapter 3. Survey : Access control in the IoT

of heterogeneous devices that share a common goal. Within the community, the following roles are

distributed according to devices’ capacities: PIP certifying attributes, PDP issuing capabilities, and PEP

in charge of their validation. The latter are called Gatekeepers. Subjects contact PIP to get their attributes

certified and send them to the PEP along with their token request. The PEP forwards the request to the

PDP and returns the decision and eventual token containing a expiration time and potential conditions to

the subject. When accessing an object, it is not clear whether the subject should direct its request to the

Gatekeeper or to the device that holds the object. In the latter case, the device forwards the request to the

Gatekeeper. In the case where local conditions should be checked, the Gatekeeper acts as both the PDP

and PEP.

The solution has been implemented by the authors. If the format of the token and its issuance have

been described in details, the process of forming the community, role attribution, attributes verification,

delegation mechanisms or policy definitions are not discussed. In this solution, the subject does not

interact with the PDP. The number of messages exchanged by the PEP is therefore increased. The

subjects can be assumed to be devices themselves. Revocation of granted privileges can be achieved

implicitly by setting an expiration time in the token or explicitly by pushing revocation policies to the

Gatekeeper.

3.7.2 Multi PDP

A simpler approach to PDP distribution is to multiply the number of PDP. This can be achieved by either

letting the PEP be registered with several PDP at once or by providing an easy registration process that

lets the PEP switch PDP effortlessly, providing the PDP has rapid synchronization.

Figure 3.7: Multi PDP architecture

The first benefit is increased resilience. Indeed, if a PEP’s resources were registered with several PDP

simultaneously, requests can be redirected in case one of them is compromised or unavailable. Similarly,

resources can be registered with a new PDP if the configuration cost is minimal, though a delay might be

introduced. In the case where resources on the same device are split amongst different PDP, the PEP will

continue to be at least partially operational, making it more resilient. Splitting objects amongst several

PDP can hide the PEP’s purpose, thus increasing privacy.

Scalability is also increased as the load is balanced amongst several PDP instead of one. This means

each PDP can be taken offline with a limited incidence on operations. Maintenance is therefore made

easier.

94



3.7. Distributed Architecture

Multiplying PDP however introduces complexity in the following ways. First access control policies
have to be replicated across the different PDP. When a permission needs to be updated, propagation
may cause a significant delay. Asynchronous updates are required for PDP that were offline. Second, a
discovery system should be implemented. This system can be used either by the subjects that wish to
know which PDP they should contact, or by PEP to find new PDP available for registration. In addition,
this method does not increase context-awareness as decisions are still taken outside of the device.

Criteria [Wu et al., 2017] [Fotiou et al., 2016] [Patel et al., 2016]
Model - - -
Crypto - symmetric ECC

Standards - CoAP -
Use Case Smart Home - -

AuthN or AuthZ authZ authZ authN & authZ
Policy storage on PDP on PDP on PDP

Bootstrap phase yes yes no
Resource Efficiency high fair very high

Resilience fair very high very high
Serverless yes yes yes
Scalability fair very high high

Maintainability poor high high
Permission Updates LoT LoS LoT

Usability high poor fair
Granularity RL RL RL

Context-awareness poor poor -
Revocation impl impl impl
Delegation - - yes
Auditable - - -
Privacy fair high poor

Governance multi-head multi-head multi-head
Maturity Level SE SE Th

“-”: Non Mentioned or Non Applicable - RL: Resource Level - expl: explicit - impl:
implicit - authN: authentication - authZ: authorization - LoT: Lifetime of Token -
SE: simulated environment - LoS: lifetime of a session - Int BC: integration in the
blockchain - Th: Theoritical

Table 3.6: Summary of solutions adopting a distributed architecture with multiple PDP

Literature review Wu et al. [Wu et al., 2017] splis the role of the PDP between two entities: the
gateway and the device’s owner. When trying to access a resource, the subject first contacts the gateway
that examines the request and returns the address of the owner and a counter number. This pre-approval
step protects the owner’s privacy and works as a discovery system. If the owner grants the request,
they return a key k1 to the subject, and sign the provided counter number. The subject exchanges the
signed counter number against a key k2. Concatenating k1 and k2, the subject obtains a key the session
key k used to communicate with the device. A counter is used in lieu of a lifetime or expiration date
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as IoT devices cannot be assumed to have access to a synchronized clock. In these first steps, the
number of exchanged messages is important but none involve the device. The subject then forms it
own authorization token out of information retrieved from both the gateway and the owner, encrypts it
with k, and attaches it to its access request. The device deciphers the token, and validates the information
within.

Fotiou et al. [Fotiou et al., 2016] provide re-usable generic policies. Examples include allowing
access to all subjects belonging to a given company or making their request from a given location.
Policies are registered with a specific PDP. When configuring their devices, owners choose the policies
that are best suited for their resources. They then collect the URI of the desired policies and contact
the corresponding PDP to obtain a secret key generated from the device’s identity. Keys and URI are
provisioned to the device. To gain access to a resource, a subject sends an unauthorized request to the
device containing their ID - one per PDP. The device responds with an opaque token and the policy URI,
and derives its own symmetric key from the subject’s ID only using a HMAC. The subject determine
which PDP it should contact using the URI. The request it sends is PDP-specific but should contain
the subject’s ID, the device’s ID, the URI policy and the token. The PDP authenticates the subject and
evaluates its request. If access is to be granted, the PDP derives a key that should match the one derived
by the device and can be used to open a secure communication channel. The device will still check that
the resource in the authorized request matches the one used to obtain the session key and if the validity
of the session key has not expired. Once a transaction is completed, the key is removed from the device’s
memory. Every token is single-use. Different identifier can be used for each unauthorized request to
protect user privacy in regards to the device and any eavesdropper. The generic nature of policies enables
information about the subject to be hidden from the PDP. Alternatively, a resource can be associated to
an ordered list of policy URI. When making the authorized request, the subject should specify which
URI was used. The key can be derived from there.

Patel et al. [Patel et al., 2016] propose a mutual authentication protocol using a third party, called the
Coordination Node (CN). It is used by a subject s wishing to connect to a device d. The protocol uses
elliptic curves as they allow higher level of security with smaller keys. It is designed to minimize the
burden on d that is the most constrained of the three actors. The CN acts as a discovery system and can
hide changes in network topology. Prior to engaging in mutual authentication, the subject should acquire
a capability from a PDP. No details are given on the rules governing the issuance of that capability.
The token is self-descriptive and, besides an issuance and expiration time, it contains a delegability bit,
indicating whether the permissions within can be delegated to another subject, even though no delegation
mechanism is presented. A secret key is also generated and sent to s via a secure communication channel.
The authors use formal verification tools, namely AVISPA [Armando et al., 2005], to validate their
mutual authentication protocol.

3.7.3 Blockchain-based solutions

The blockchain is a recent addition to the portfolio of decentralization tools. The underlying blockchain
technology is the subject of Chapter 2. A number of solution explore its potential in access control
situations. Figure 3.8 illustrates the most recurring architecture. PAP push policies to the blockchain
where they are stored. Miners act as PDP by validating transactions. Devices act as PEP. They connect

96



3.7. Distributed Architecture

to the blockchain via a gateway.

Figure 3.8: Blockchain-based architecture

The blockchain can be used to store access rules, tokens, past transgressions, etc, thus providing

auditability. The availability of smart contract source code provides transparency regarding the access

decision process and the handling of information. This can cause a privacy issue however depending on

the blockchain model. Permissioned blockchain should be preferred when dealing with sensitive infor-

mation. By nature, the blockchain is a decentralized trustless network. This translates to an increased

resilience as any node can be contacted to retrieve the content of the ledger. Blockchain credentials can

be generated by users independently. This circumvents the key escrow problem: when a private key is

generated by a third party, users have to trust that said party will not pose as themselves or sell their

information. This problem is all the more important when a single entity holds the keys of a majority of

the participants. Actors can use the same keys and identities regardless of the PDP they address. This

greatly simplifies the configuration process. The blockchain protocol handles propagation of permission

updates.

On the flip side, the resource-demanding nature of the blockchain architecture leads to a number of

problems: how can we connect constrained devices to the blockchain without re-introducing centraliza-

tion? What level of trust can be put into the information extracted from the blockchain when the device

cannot possibly run a full node? With variable transaction validation time, how apt is the blockchain

to tackle time-sensitive use cases? The blockchain is a new paradigm that may yet lack the maturity
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required to tackle these issues. Also in question, the usability and user-friendliness of existing solutions.
The scalability of the blockchain itself remains a point of contention. As a result, the type of information
hosted and the specifics of the underlying blockchain have a strong impact on scalability. The number
of required smart contracts for instance can drastically drive up the cost of a solution. Maintenance is
also a concern: once deployed, smart contracts cannot be modified unless they were designed to be, new
contracts are given new blockchain addresses that need to be communicated to devices that are already
deployed, changes to the blockchain require community adoption and may not be backward compatible,
etc.

These issues are explored in details in Section 2.9 and Section 2.10.

Criteria [Zyskind et al., 2015] [Ouaddah et al., 2016a],
[Ouaddah et al., 2017a] [Novo, 2018] [Pinno et al., 2017] [Xu et al., 2018a] [Zhang et al., 2018b]

Model - - - - - -

Crypto encrypt: symmetric,
sign:ECDSA ECC asymmetric asymmetric - -

Standards Kademilia, LevelDB Bitcoin CoAp,
JSON-RPC - Ethereum,

JSON, SQLite Ethereum

Use Case Mobile user - - - - -
AuthN or AuthZ authN & authZ authN & authZ authZ authZ authN & authZ authZ

Policy storage on BC on BC on BC on BC on coordinator,
on Device on BC

Bootstrap phase yes yes yes no yes yes
Resource Efficiency poor poor high high fair fair

Resilience very high very high very high very high very high very high
Serverless no yes no - no yes
Scalability very poor high poor very high fair fair

Maintainability high high high high fair high
Permission Updates Int BC Int BC Int BC Int BC Int BC Int BC

Usability high fair high fair very high high
Granularity RL RL RL RL RL RL

Context-awareness very poor high very poor very high fair fair
Revocation expl expl impl & expl - impl & expl -
Delegation no yes - - yes -
Auditable yes yes yes yes yes yes
Privacy very high fair poor poor poor poor

Governance multi-head multi-head multi-head multi-head multi-head multi-head
Maturity Level Th SE SE Th SE SE

“-”: Non Mentioned or Non Applicable - RL: Resource Level - expl: explicit - impl: implicit - authN: authentication - authZ: authorization - LoT: Lifetime
of Token - SE: simulated environment - LoS: lifetime of a session - Int BC: integration in the blockchain - Th: Theoritical

Table 3.7: Summary of solutions adopting a blockchain-based architecture

Literature review Zyskind et al. [Zyskind et al., 2015] were the first to use the blockchain for access
control purposes. Their paper, though not specific to the IoT, aims at ensuring the privacy of a mobile
user’s data. Encrypted data are stored off-blockchain whereas the access rules are published to the
blockchain. Users have unlimited access to their own data and can modify or revoke granted permissions
by publishing a blockchain transaction. Applications wishing to access the data publish a request to the
blockchain, leaving a visible trace of every access request they make. This request is compared to the
stored policy, consisting in a list of resources a given service is able to access. Users can generate as many
pseudonymous identities as they wish in an independent fashion to protect their privacy. A compound
identity must be created for each user/service pair with an associated encryption key. This means that if
ten services require access to the same data, the user not only has to generate ten compound identities
but encrypt the same data ten times and send ten blockchain transactions, storing ten copies. Though this
is great for privacy, it is terrible for scalability.
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Ouaddad et al. [Ouaddah et al., 2017a] present a more feasible solution. Subjects must contact the
device owner that then publishes a blockchain transaction detailing the conditions under which access
is to be granted to the subject. Another blockchain transaction must be issued by the subject to prove
its compliance with the prescribed conditions and obtain a token. These operations must be repeated
before each access, leading to a slow process, especially considering the validation time for blockchain
transactions that range from an average of 10mn in Bitcoin to 12s in Ethereum. Validation time also
highly fluctuates over time and can depend on the fee associated to the transaction. The authors present
an implementation of their solution in [Ouaddah et al., 2016a].

Novo [Novo, 2018] uses a single smart contract to store the policies of all devices in his system.
This may cause scalability issues. IoT devices are paired with one or several PAP (managers) and access
the blockchain through management hubs. Retrieving policies at access time is a simple read operation
that does not suffer the limitations of blockchain transactions but still requires a live blockchain access.
The article focuses on feasibility rather than security so some issues such as revocation or bootstrap have
suggested solutions and are not included in the implementation.

Pinno et al. [Pinno et al., 2017] present a system that can accommodate ACL, attribute-based and
token-based schemes. Four types of information are registered on the blockchain: context, relationships,
rules, and accountability information. The context can either be registered automatically by sensors or
manually inputted. Relationships are a link between two entities with optional attributes. An example
would be a link between User A and User B with a friend attribute. Entities can be users, devices,
or groups. Each must be linked to an owner. When an access request is placed, the appropriate rules
are consulted. Besides access conditions, rules also define the information that is to be written into
the Accountability blockchain, whether the access was a success or a failure. Policies can therefore
be written to take into account the previous behavior of subjects, relationships between entities, and
contextual information.

Xu et al. [Xu et al., 2018a] implement a capability-based solution using smart contracts, with a focus
on delegation as a means of scaling administration. Authors present a federated architecture with a PDP
(coordinator) for each domain, as well as a centralized cloud server to handle cross-domain delegation.
Conditions for delegation can be specified, to guarantee separation of duty for instance. Users register
with their domain coordinator that also handles access requests. When a request is granted, the associated
token is sent to a smart contract. Subjects produce the smart contract address when trying to access a
device. Acting as the PEP, the device contacts the blockchain to retrieve the token. It may contain
additional conditions that will be verified by the device as well as an expiration time. When a capability
is revoked, all delegated privileges that spawned from this capability are revoked as well. Any subject
up the chain can revoke a children capability. No description of initial capability issuance is provided.
In particular, the authorization model is not discussed. So while this solution offers interoperability
and high scalability, the potential depth of the delegation tree makes it hard for administrators to follow
and manage authorizations, though depth and width of authorization can be defined and adjusted by
delegators. Authors forbid two capabilities to be delegated to a single subject simultaneously to maintain
a tree structure instead of a Directed Acyclic Graph (DAG). The complexity of administration is only
slightly reduced while this is an important constraint on operation.

Zhang et al. [Zhang et al., 2018b] use smart contracts to encode Access Control Lists onto the
blockchain. One contract is required per resource/subject pair and per authentication method. The poli-
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cies are therefore static and hyper specific. They can contain negative permissions, i.e. an ACL can deny
a request for a given subject, object, action triplet. Subject behaviors are recorded and can factor into
the authorization decision. Given examples of misbehavior are subsequent access failure, or too many
requests in a given time frame. Special smart contracts called Judge Contracts are deployed and linked
with ACL contracts to punish bad behavior, by banning offending subjects for a limited time for instance.
The addition of a new user or object requires the deployment of a number of smart contracts, which takes
time, computation, and space. Updating permissions require blockchain transactions as well. Similarly
to [Novo, 2018] however, retrieving an ACL is a simple read operation. A single smart contract main-
tains a lookup table containing all the information to find the appropriate smart contract for each access
request: address, creator, associated subject and object. This simplifies maintenance operation as actors
need only be configured with one smart contract address. The size of this contract however might hinder
scalability.

3.7.4 Conclusion

Table 3.5 presents the properties of solutions using a PDP/PEP hybrid. The solutions presented here
are generic and do not apply to a specific use case. They resemble centralized architectures with added
context-awareness and represent the lion’s share of the research efforts regarding access control solutions
for the IoT. As such, they present many similarities. ABAC is preferred here for its ability to factor con-
textual information into the access decision. Resources are mostly REST API and actions correspond to
CoAP methods. When tokens are used, which is the case for half of the solutions and equate to serverless
authorization support, they are implemented using JSON. Almost all solutions yield an implementation.
It is regretful then that they do not provide more details about the bootstrapping process. Interestingly, so-
lutions using serverless authorization still offer explicit revocation. Delegation and auditability however
are not addressed.

Table 3.6 shows the property summary of the different solutions using multiple PDP.
The majority supports serverless authorization. This seems natural as the rational behind these so-

lutions is to be only loosely attached to any single PDP. The downside however is that the revocation of
allotted rights is implicit. Policies are fine-grained. Most of them provide details on the bootstrapping
process. Contrary to other architectures, the bootstrap phase is likely to be repeated multiple times over
the course of the device life. These details are therefore important to be able to evaluate the true impact
of the solution. Implementations demonstrate the feasibility of such solutions. Delegation mechanisms
are barely addressed.

Table 3.7 shows the property summary of the different blockchain-based solutions.
In all of the presented solutions, access policies are stored on the blockchain. This increases re-

silience and maintainability but compromises privacy. Indeed, most blockchain implementations are
only pseudonymous. Studies [Reid and Harrigan, 2013] have shown that passive observation of the net-
work coupled with external information could lift the pseudonymity of users. Even with permisionned
blockchains, special care must be put into deciding what information gets recorded. The burden of pri-
vacy protection falls on subjects that can cover their tracks by using multiple identities. Gateways are
used to connect IoT devices to the blockchain. When they are blockchain nodes themselves, the system
enjoys semi-serverless authorization that we call local access: only a connection to the local gateway is
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required at access time. This connection is likely to occur over short range protocols, likely the same that
are used by subjects. Hence if the connection to the gateway is disrupted, the connection between client
and device is also likely to falter. The unavailability of the access control system is then not the biggest
issue. Updates are all dependent on transaction validation. This time varies greatly from blockchain
to blockchain and sometimes from moment to moment. Only a few solutions offer implicit revocation.
Blockchain-based solutions are therefore not indicated for systems that require timely revocation. Re-
source efficiency and context awareness are highly dependent on the specifics of each solution.

3.8 Taxonomy & Analysis

3.8.1 Analysis

From the work presented in Sections 3.4 to 3.7 the following conclusions can be drawn.
The bulge of the research effort is focused on centralized solutions. Second come distributed pro-

posals. Note that most solutions that fall under our PDP/PEP hybrid architecture use a centralized PDP
and therefore also suffer from the single point of failure and scalability issue. Recently, the emergence of
the blockchain has lead to a surge in blockchain-based AC solutions that aim to remedy this. There also
seem to be an increased interest for federated architectures. However, hierarchical solutions that could
alleviate the load on a single central PDP and therefore increase the scalability of centralized solutions
are not being explored.

Furthermore, looking at the degree of diversity between the solutions within each architecture, the
centralized and PDP/PEP hybrid proposals present the most similarities. Having been studied the most,
they are crystallizing when multi PDP, federated, and hierarchical solutions present more opportunities
for creativity and improvements. Federation for instance can be combined with hierarchical signature
scheme [Saadeh et al., 2018] or PDP/PEP local condition evaluation [Xu et al., 2018b].

Revocation mechanisms are missing from many solutions. Serverless authorization seems to be
incompatible with explicit revocation as the connection to the server needs to be active to check for
revoked privileges and attributes [Gusmeroli et al., 2013, Ahmad et al., 2018, Sciancalepore et al., 2018].
In the IoT context where devices are physically vulnerable, operate without supervision, and are difficult
to update, no access control solution should be deployed without support for revocation.

Two other features are scarce in the literature: auditability and support for delegation. Auditability is
essential for forensic purposes. Numerous IoT use cases require devices to operate without supervision.
Logs are then the only tools at our disposal to study potential incidents. Delegation, though not as essen-
tial, seems adapted to use cases such as smart homes that operate under DAC. With proper configuration,
it constitutes a good way to increase usability and decrease administrators’ load.

3.8.2 Taxonomy

Table 3.8 presents a summary of each architecture qualitative strength and weaknesses. Some of the
criteria defined in Section 3.3, such as the granularity of permissions or maturity level, are only relevant
to the assessment of full-fledge proposals. They are therefore not included in the table.
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Centralized DistributedCriteria
Serverless Not serverless

Hierarchical Federated
multi PDP Hybrid Blockchain

Resource
Efficiency + ++ + + - - - - -

Resilience - - - + + ++ - ++
Scalability - - - + + ++ - +
Maintain-

ability ++ + - - - - - +

Permission
Updates - ++ + - - - + -

Usability ++ + ++ - +
Context-

awareness - - - + ++

Revocation - - ++ ++ - - - +
Auditable + ++ - - - - ++
Privacy - - - - ++ ++ + -

Governance ++ ++ + - - - - + - -

Table 3.8: Comparison of architectures

We use the most differentiating criteria from Table 3.8 to build our taxonomy, illustrated in Figure 3.9.
Scalability and Resilience for instance are both good candidates for a first-level separation as they split
our architectures roughly in two. When two criteria can be used, we take the most relevant for the IoT
context or with regard to the architectures.

3.8.3 Future research direction

Based on the state of the art presented in this chapter, we believe the following challenges should be
tackled by future proposals:

Hybrid architectures Most access control solutions deployed today rely on centralized PDP. This
leads to scalability and context-awareness issues. Edge intelligence is limited by resource constrains.
However these two extremes are not the only options. Hybrid architectures - hierarchical, federated,
multi PDP - enable a compromise between requirements and limitations.

Usability To be efficient, security measures must be used. If they hinder the user experience, access
control solutions are likely to be de-activated or circumvented by end users. Designing solutions with
usability in mind will lead to a faster adoption and overall higher security.

Privacy It is important for IoT applications to recognize when they are handling sensitive data and
manage them in the best interest of all parties involved. Thanks to the General Data Protection Regulation
(GDPR), EU citizens now have oversight rights over the collection and management of their personal
data. Data leaks can have devastating effects on companies. There are therefore economic and legal
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Figure 3.9: A Taxonomy of access control architectures

incentives to put privacy at the center of all IoT applications. This implies transparency about the data

collected and its purpose as well as technical means of partially or entirely opting out of it.

Flexibility Once deployed, IoT systems are not likely to be heavily modified. The requirements of the

system however are likely to evolve over time. Flexibility in the design allows this evolution to happen.

Some IoT use cases call for the dynamic addition of users, an important turn over in devices and clients,

rapid modifications of policies, collaboration with different entities, etc. Solutions should therefore be

built with the expectation and the capacity for change.

Serverless authorization There are several reasons why a device might not be connected to its PDP

at access time: poor network connectivity, temporary network outage, to limit bandwidth-usage-related

costs, to limit power consumption, ... Access control solutions should therefore enable serverless autho-

rization as a temporary or permanent option. PDP can use subject’s tokens to deliver updates to their

devices, including revocation information. As of today, no solutions enable explicit revocation with

serverless authorization.

Blockchain-based system The blockchain is in its infancy. Its venture outside of the realm of cryp-

tocurrency is even more recent. However, it is a promising approach to decentralization that should be

further explored.
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3.9 Conclusion

This chapter proposes four architectures for access control - centralized, hierarchical, federated and
distributed - and discusses the benefits and disadvantages of each architecture type in the perspective
of access control for IoT environments. We provide an extensive review of the literature, with a deep
and fine-grained analysis based on detailed criteria for comparing access control solutions against one
another. This is the basis for our taxonomy.

From this analysis, we note that only few solutions adopt the hierarchical or federated architectures
despite their relevance for IoT use cases. Revocation mechanisms are largely not discussed. Access
logs or other means for recording the system activity are barely mentioned outside of blockchain-based
solutions. Delegation of privileges is largely unsupported.

In conclusion, though many great solutions have been presented, none solve all the challenges pre-
sented by the IoT. We believe future research should explore hybrid solutions. Federation in particular
is a requirement for many IoT use cases. Usability is paramount to the adoption of security solutions
for consumer facing products. So is privacy. Clearer revocation mechanisms are necessary. Serverless
authorization should be enabled to accommodate use cases with low or no network connectivity.

Chapters 4 and 5 present our own access control proposals. Chapters 4 addresses usability and
serverless authorization, while Chapter 5 focuses on flexibility and auditability.
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4.1 Introduction

This chapter presents the results that are the most geared towards industrial applications. This is the result
of Gemalto’s involvement in this doctoral project. Gemalto is an international public company dedicated
to digital security with major R&D centers in France, Singapore, and the US. Targeting transparent
security, the objective of Gemalto is to design the technology that allows businesses and governments all
around the world to offer secure and trusted digital services to their customers or citizens.

Gemalto develops secure software and operating systems embedded in SIM cards, banking cards,
tokens, electronic passports, or ID cards which are provided to its clients. The company also deploys
platforms and services to manage and protect all the sensitive data these devices hold throughout their
life-cycle.

4.1.1 Motivation

Chapter 3 analyzes the state of the art in academia. The solutions proposed in the literature are yet to
reach industrial adoption. In the industry, access control is often equated to the authentication mecha-
nisms embedded in IoT protocols.

The other popular option is to use IoT platforms run by the giants of the web such as Amazon’s AWS
and Microsoft’s Azure. These platforms are mostly built for sensors that send their data to the cloud
where classical access control solutions can be deployed. As a result, all access requests must transit
through the server. Modifications to actuators’ state are enacted through the server as well. Devices must
be connected to the server to receive updates. This centralized approach, in addition to scalability issues,
causes policies to lack context-awareness.

The solutions at our disposal are therefore lacking in three ways: actuators are treated as an af-
terthought, serverless authorization is not an available option, and device-level context is not part of the
authorization decision. As a security solution provider, Gemalto’s goal is to simplify the implementation
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of security measures for its clients. The OATL project sets out to provide a set of token libraries that
would handle most of the access control burden and facilitate the work of IoT product developers. This
project was realized in conjunction with five of my Gemalto collegues that participated in the implemen-
tation and deployment of a Proof of Concept, as well as the realization of a video introducing the token
libraries to developers.

OATL has two goals: provide a serverless context-aware actuator-minded access control solution for
users, but also provide flexible pre-packaged access control functions to IoT vendors and developers.
The access control layer must therefore be abstracted and isolated. The use of libraries is central to our
approach as it fulfills this requirement. This abstraction increases the usability of the solution for IoT
vendors as well as the odds of integration in future IoT projects.

Our libraries handle the emission, verification, and client-side management of authorization tokens
respectively. Tokens constitute a flexible expression of permissions. Because their interpretation is
handled by a library, token formats can evolve independently of the application code. This evolution can
stem from evolving cryptographic standards, changes in regulation, etc. Several token formats can even
be concurrently emitted by a single server depending on targeted IoT devices.

Token verification is made up of two sub-process: first, the library checks the token’s validity (e.g.
integrity, not expired, etc), then it verifies that the token’s bearer is indeed its intended recipient. The
adequacy between the permissions contained in a token and the access request is not checked by the
library.

Our libraries can be used by a single business entity developing an IoT device, its companion ap-
plication, and running a server to issue the token. Several entities could also adopt them to ensure
interoperability between the different actors. Authorization Service Providers in particular could handle
the issuance of tokens, and point their clients to the libraries they need to verify and manage them inside
their applications.

4.1.2 Requirements

Let us consider the following use case: a company renting connected cars. Access to each vehicle is
controlled by smart locks. Cars can be booked online. Clients only need to download the company app
and load their virtual key. No physical contact with a clerk is required. The key should function even
when the car is in the middle of the countryside with poor network connectivity. Additionally, the virtual
key controls access to the optional car features, depending on the options the client subscribed to. The
GPS for instance, is disabled by default. At the end of the lease, mileage information can be extracted
for accurate billing. The client should not be able to use the car after that. A client should not be able
to rent a car that requires maintenance operations. These cars can be rented for a really short time (to go
grocery shopping for instance), or for longer periods (over the weekend).

For such a use case, we need an access control solution that supports:

• Resource efficiency - can operate with limited resources,

• Serverless authorization - can be used without server connection,

• Actuator-compatible - is compatible with both actuators and sensors,
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• Revocation - enables both implicit and explicit revocation,

• Granularity - supports fine-grained authorization,

• Context-awareness - can account for context.

This covers the first goal of the OATL project. On top of the requirements defined above, as we are
building a solution not only for the users but also for the car renting company and other IoT vendors or
service providers, our solution must have the following properties:

• Ease of Integration - The integration process should be intuitive,

• Generality - The solution should work across application domains,

• Modularity - The solution should work with different types of device, protocols, access control
models or policies, etc.

To achieve these requirements, OATL proposes a token-based solution. Different types of tokens can
be used depending on the restrictions of each IoT device. Three libraries are provided to help developers
handle the authorization tokens: a token generation library, a client-side library, and a token interpretation
library.

Contributions The contributions of this chapter can be summarized as follows:

• A set of libraries that issue, store, and verify tokens, including the legitimacy of the requestor,

• A thorough security analysis of the proposal,

• A Proof of Concept implementation illustrating the, high usability of our solutions for developers
and users alike,

• A live coding video demonstration showcasing the ease of integration of our libraries,

• An overall generic access control system enabling serverless authorization.

Organization Table 4.1 summarizes the notations used in this chapter.
The rest of this chapter is organized as follows. Section 4.2 introduces the architecture of the solution.

Section 4.3 details the different types of tokens available. The access control process is described in
Section 4.4. Section 4.5 analyzes the security of the proposed scheme. Section 4.6 presents the Proof of
Concept implementation. Section 4.7 compares this solution to the state of the art presented in Chapter 3.
Finally, Section 4.8 concludes this chapter.

4.2 Architecture

In this section, we present the business and technical actors that play a part in the access control solution.
The role of each of our libraries is detailed and an overview of the architecture is provided.
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Symbol Description
CD Counter number on device
Cnew

D New counter number on device
Ct Counter number in token
w window size
nt maximum number of uses for token t
Ai Assumption i
Pi Attacker profile i
T

Pj

i Threat i associated to profile Pj

Table 4.1: Notations for OATL

4.2.1 Actors

Actors can be separated in two categories: business and technical. We consider two to three business
actors: The IoT Device Owner/Vendor, the user, and, optionally, the Authorization Service Provider
(ASP). The technical actors are the IoT device (connected car per our example use case), a mobile phone
that belongs to the user, the IoT cloud platform deployed by the device owner, and, optionally, the
authorization server.

We propose a PDP/PEP hybrid architecture (see Section 3.7.1).

Device Owner or Device Vendor There are two cases here. In the first, the device owner is a company.
We consider a walled garden ecosystem, meaning that the device owner operates the cloud platform and
controls the development of the mobile application. This is a classic scenario in Industrial IoT. It is the
case of our car rental use case, but also of smart buildings, or at-home health monitoring kits for instance.
The Device Owner is also its administrator. It defines the access control policies and acts as a PAP.

In the second case, the Device Owner is an individual. As part of the product, the Device Vendor
operates a cloud platform and provides an application. The application is used to interact with the device.
The Owner creates an account on the cloud platform via the application and uses it to manage their
device, including defining conditions for its access, adding users, etc. Here, again, the Device Vendor is
in control of the mobile app, the cloud platform, and, to an extent, the code running on the device. The
Owner acts as a PAP and defines access control policies.

We can illustrate the second case with a smart lock installed in a house. The owner of the house
wishes to issue keys for their neighbour to come and feed their cats as they are in vacation, to give to a
friend that is staying over while in town, or to a cleaner but only during the time they are scheduled to
work at the house. The owner of the house owns the device, the vendor developed the companion app,
information are backed onto the cloud, including access control policies.

In the reminder of this Chapter, for the sake of simplicity, we will consider that we are in the first use
case. Device Owner will be used to refer to both the Device Owner of the first use case, and the Device
Vendor of the second.
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User The user can be a customer, a patient, an employee, etc. They interact with the device but do
not own it and must follow the rules established by the device owner. The user is the subject of the
authorization.

IoT cloud platform The cloud platform acts as a PDP. It receives access requests, assesses them, and,
when appropriate, delivers a token to the user. That token can include additional conditions to be verified
by the device at the time of access.

The platform is operated by the device owner. Optionally, the cloud platform can outsource the
authorization decision to an authorization server.

Mobile application The mobile application is developed under the control of the device owner. Its
role is to request an authorization token, store it, and provide it when making the access request. It acts
as the user’s agent.

IoT device IoT devices, behaving either as sensors or actuators, decide whether a requestor is permitted
to access some resources (e.g. sensed data), or to perform an action. They do so by retrieving the
authorization embedded in the authorization token and, if needed, evaluate the local conditions.

4.2.2 Libraries

OATL is made out of three libraries that are to be hosted on each of the technical actors, namely the cloud
platform, the user mobile device, and the device itself. Figure 4.1 illustrates how each library interfaces
with the application code developed by the Device Owner. The arrows represent the communication
channels required between actors after the initial bootstrap.

The role of each library is described below.

Token Generation Library (TGL) The TGL is hosted on the cloud platform. As indicated by its
name, it generates tokens based on authorization decisions taken by the cloud platform. The TGL is not
responsible for the authorization decision. This ensures that the library can be integrated regardless of
the authorization engine used by the device owner. The TGL issues different types of tokens depending
on the target IoT device.

Client-side library (CSL) The CSL is used by the mobile application running on the user’s mobile.
It has two functions: safely store and manage authorization tokens, and compute the response to device
challenges using the information from said tokens.

Here again, the CSL does not send the token request to the cloud server, nor does it send the access
request to the device, as to not constrain request formats.

Token interpretation library (TIL) The TIL is deployed on the IoT Device. Its purpose it to verify
each token authenticity and validity. This verification is based on criteria that have nothing to do with the
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Figure 4.1: OATL architecture

application such as the token’s expiration time or its issuer. It generates a challenge message to check

that the client that originated the request is the rightful owner of the token.

When a token is deemed valid, the TIL extracts the authorization decision contained within and

passes it to the vendor’s code to be interpreted.

4.2.3 Access Control Scenario

Our access control scenario is composed of two processes: the token request, and the access request.

Figure 4.2 illustrates both, taking the car rental use case as an example. This overview excludes the

bootstrap phase.

First, the customer books a car using the cloud platform (step 1). The platform processes the booking

(including the dates, the payment, etc) and validates it (step 2). This triggers a call to the TGL that issues

a virtual key or token embedding the corresponding privileges (step 3). This token is delivered to the

application on the user’s mobile phone (step 4). This delivery must take place over a secure channel. If

the reservation is made directly through the app, the token is part of the booking confirmation. Otherwise,

the client can retrieve it later by entering a booking number into the app. Once the token has been

delivered, the CSL stores it on the device (step 5). This ends the token request phase.

The client is now next to the car and initiates the access request (step 6). This request must contain

the token delivered by the cloud platform. It is retrieved by the CSL. Upon reception, the token’s validity

is checked by the TIL (step 7). If it passes the initial verification, the TIL generates a challenge message

(step 8). The CSL generates the response to this challenge. If the response is correct, the TIL extracts

the permissions from within the token and passes them to the device that takes the final authorization
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Figure 4.2: OATL example use case - Renting a car

decision (step 9).

4.3 Tokens

Tokens are made up of two parts, one for the client and one for the device. They both are given to

the client upon a successful token request. The former is for its own use and should not be shared. It

contains information used for authentication such as private keys. The latter is meant for the device and

materializes the authorization decision. Because of its sensitive nature, the token must be delivered using

a secure communication channel. The establishment of such a channel is out of scope.

We propose two formats of token described below. The first one, presented in Section 4.3.1, is geared

toward constrained devices. The second one is the object of Section 4.3.2 and focuses on privacy. By

design, our solution can be expanded to add other token types. Table 4.2 summarizes the key aspects of

each token type.

Tokens are encoded in JSON. This format was also chosen by Hernandez-Ramos et al. [Hernández-

Ramos et al., 2013], Bernabe et al.[Bernabe et al., 2016], and Hussein et al. [Hussein et al., 2017b] in their

proposals. It is handled by a majority of the programming languages. As such, it is highly interoperable.

This choice does not restrain either ours or the Device Owner options implementation-wise.

JSON is not too verbose but still human-readable. This would let actors develop their own libraries

to replace either TGL, CSL, or TIL if they are not to their liking without having to look at the original
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specifications. It also enable extensions as the syntax is highly flexible and can accommodate the addition
of custom fields.

JSON Web Tokens (JWT [Jones et al., 2015b]) are a standardized data format. Along with JSON
Web Encryption (JWE [Jones and Hildebrand, 2015]) and JSON Web Signatures (JWS [Jones et al.,
2015a]), they are commonly used in the industry.

Token #1 Token #2
Cryptography Pre-shared key Public/Private key pair

Credentials
One key per token

(derived from PSK)
One pair per token

Token authenticity HMAC Signed by issuer
Authentication Challenge Challenge

Time Awareness No Yes

Implicit Revocation
Number of use

Validity window
Expiration time

Explicit Revocation Validity window update TBD

Table 4.2: Token types

4.3.1 Token #1: constrained devices

This type of token uses symmetric cryptography and is built to work with device without time-awareness.
A counter is used instead. A type #1 token contains the following fields:

• Token Identifier - String. Uniquely identifies the token.

• Token Type - String. Indicates the token type (1 or 2).

• Token Key Parameters - String. Parameters used to derive the token key

• Token counter number - Integer. Indicates the number of tokens issued by the TGL so far.

• Issuer - String. Optional. ID of the cloud platform

• HMAC - String. Used to ensure the authenticity and integrity of the token

• Update window size - Integer. Disregarded is negative. Updates the size of the validity window
otherwise.

• Max number of use - Integer. Optional. Used for implicit revocation. Indicates how many times
the token can be used before becoming invalid. If not included, the token is single use.

• Authorization Object - JSON. Permissions materialized by the token. Contains the following
fields:
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– Object - String. Object of the authorization

– Actions - String array. Actions allowed on the object

– Conditions - JSON. Optional. Local conditions to be checked at access time.

– Subject - String. Optional. Id of the client

Signatures and keys are encoded in Base64.

Key derivation A type #1 token involves five types of keys, all of which are symmetric. They are

represented on Figure 4.3. The first key is a HMAC key that is shared by the device and the cloud

platform. It is used for integrity and authenticity. The second is a master Pre-Shared Key (PSK) that is

also shared during the bootstrap phase. The three remaining types of keys are derived from this PSK.

They are the Token Key, the Challenge Key, and the Session Key.

Figure 4.3: Token #1 - Keys

When a token is issued, the TGL derives the Token Key from the PSK. This key is included in the

client-side token. The derivation information are included in the device-side token. A different Token

Key is used for every token. This enables subject unlinkability across tokens, provided the subject ID is

not included in the authorization object.

When it receives the token, the CSL uses the Token Key to generate a Challenge Key. The generation

information will be included with the access request. This derivation only occurs once. The same

Challenge Key will be used throughout the token life.

After the access request has been validated, the Device and Mobile app exchange the information

used to derive the session key from the Token Key. A different Key is used for each session.
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Revocation There are two types of revocation to consider: implicit and explicit revocation. The former

is embedded in the token and limits its use over time, the latter requires a trigger.

Implicit Revocation Without time awareness, type #1 tokens rely on a counter instead [Wu et al.,

2017]. This counter must be synchronized between the TGL and the TIL. The TGL increments it each

time a token is issued. The TIL increments it depending on the tokens that it sees. Additionally, the TIL

must be configured with a window size. This defines the number of tokens that can be valid concurrently.

This parameter can be modified by the TGL to adapt to the number of issued tokens or to implement

explicit revocation.

Let CD be the current counter number on the device, Ct be the counter number of token t, nt be the

maximum number of uses for token t, and w be the window size.

Figure 4.4: Implicit revocation without time-awareness

When presented with a token for the first time, the device compares its own counter number CD to Ct.

If Ct < CD, the token falls outside of the validity window and access is denied. If CD ≤ Ct < CD + w,

the remaining number of uses for this token is set to nt − 1 and access is granted. If CD + w ≤ Ct, the

window slides to meet the token: CD is updated such that Cnew
D + w = Ct + 1.

After that initial connection, the token is valid if CD ≤ Ct < CD + w and the number of remaining

uses is not null.

Figure 4.4 illustrates this process. Simply put, access is only allowed up to nt times as long as the

counter number of the token Ct is within the acceptable window. In the example, token 14 can be used

five more times, whereas token 15 can only be used once. The valid token counter number are in green,

invalid in red.

When a token with counter number greater than the acceptable window is presented, the counter

on the device is updated to slide the window forward accordingly. So when token 16 is presented, the

window slides to adjust and token 11 becomes invalid, even though there were 3 uses remaining.
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The window never slides backward. This means that tokens may become unusable before their

allotted number of uses. The window can be configured to fit specific use cases and depends on the

device’s memory and the number of expected clients.

Explicit Revocation Explicit revocation is achieved by adjusting the size of the validity window as

illustrated on Figure 4.5. It is not really precise however and will revoke all tokens issued up to that

point.

Figure 4.5: Explicit revocation without time-awareness

To do so, the TGL issues a token setting the window size at 1. This will cause the CD to slide forward

to this Ct, thus making every older token invalid. In our example, when token 16 is presented, the CD

is set to 16 and all other tokens are revoked. If the new window size had been 2, 3 or 4 instead of 1,

only the 3, 2, or 1 oldest tokens would have been revoked respectively. The size of the window can be

increased again later to re-align with the use case.

Revocation does not require a connection to the server. It may require the intervention of a trusted

user in the case of explicit revocation. In our car rental use case, a company employee could fill this

role. Another solution is to embed it in the process: when a customer checks out, a new token is issued

to allow access to the mileage information. This token can be used to revoke older permissions.

4.3.2 Token #2: privacy preserving

This type of token uses asymmetric cryptography and is built to work with time-awareness. A type #2

token contains the following fields:

• Token Identifier - String. Uniquely identifies the token
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• Token Type - String. Indicates the token type (1 or 2)

• Token’s public key - String. Short term credentials linked to the token

• Issuer - String. Optional. ID of the cloud platform

• Issuer’s signature - String. Used to ensure the authenticity and integrity of the token

• Issued at - . Time of token issuance

• Valid From - . Time at which the token becomes valid

• Expires at - . Time after which the token is revoked

• Authorization Object - JSON Object. Permissions materialized by the token. Contains the fol-
lowing fields:

– Object - String. Object of the authorization

– Actions - String array. Actions allowed on the object

– Conditions - JSON Object. Optional. Local conditions to be checked at access time.

– Subject - String. Optional. ID of the client

Additionally, the client-side token contains the private key associated to the token’s public key.
ECDSA is used for signatures. A different key pair is generated for each token to ensure client un-
linkability across token.

Implicit revocation is handled by the expiration time included in the token. Explicit revocation is not
yet handled for this token.

4.4 Access Control Process

4.4.1 Bootstrap

Here we define the information that must be exchanged between the different actors before the access
control process can begin. Discovery is out of scope.

Device Registration To make its resources available, a device must associate with the cloud platform.
During this bootstrap phase, the device will describe its resources and choose the kind of token it will
work with.

The device owner registers new devices on the platform, including the type(s) of token they support.
A device can support both token types. A unique identifier is generated and associated with the device.

For type #1 tokens, the device and the platform exchange a PSK and a HMAC key. They also
synchronize their counters. For type #2 tokens, the platform provides its certificate to be stored in the
device. The device will need it at access time to ensure the token’s authenticity.

Finally, the device owner declares a list of resources within the device and their corresponding access
control policies. This final step completes a device’s registration.
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Client Registration Where the libraries are concerned, no information need to be exchanged between
client and platform before access. On the application level however, a registration phase likely occurs
before the authorization token can be delivered. In our example use case, client registration is part of the
booking process.

The client may specify its preferred token type. The preference is not guaranteed to be respected as
device requirements will always prevail. It should however be respected whenever possible.

4.4.2 Token request

After the bootstrap is complete, the client places a token request with the cloud platform. This original
exchange is likely to involve an authentication between the two actors. The format of this request is
out of the scope of our proposal. The communication protocol between client and cloud platform is
out of the scope of our proposal. This choice was made to enable the integration of our libraries into
existing environment. Because our main goal is usability, we do not want to hinder the developers by
adding unnecessary architectural requirement. However, we recommend TCP/IP for this segment of
communication.

For similar reason, the libraries do not handle the authorization engine. Our libraries can therefore be
integrated into any policy or any model, provided it supports CapBAC as an access control mechanism.
The authorization process can also be offloaded to an authorization service provider.

After the authorization decision has been taken, the corresponding Authorization Object is created. It
must contain the name of the resource and the actions allowed on the object. Optionally it might contain
either the name of the subject (or a pseudonym), or local conditions to be verified by the device at access
time.

These local conditions must be expressed using the JSON format. They are not evaluated by our
libraries and simply passed to the vendor’s code instead. This gives the vendor the freedom to express
conditions however they want rather than be forced into a specific format.

The Authorization Object is passed to the TGL along with the ID of the device for which this token
is to be issued. Based on that information, the TGL selects the appropriate format, derives or generates
the appropriate key(s), signs, and returns the token to the vendor’s code. Here again, communication is
not handled by the TGL. The cloud platform can then either return the token to the client right away or
store it to be retrieved at a later date.

The token must be sent over a secure channel. It is received by the mobile application that invokes
the CSL. The CSL separates the token into its client and token side. The client side is stored either in
an hardware or software secure storage, depending on the underlying phone. Both of the token sides are
mapped to an application-provided identifier to be retrieved for the access request. The application may
potentially notify to the server that the token has been received and successfully processed.

4.4.3 Access request

Figure 4.6 illustrates the access request flow. It involves the mobile and the CSL as well as the device
and the TIL. The access request does not involve the cloud platform and can be operated offline. Once
again, we do not specify the communication protocol used between the client and the device. However,
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we recommend a short range protocol such as BlueTooth Low Energy (BTLE). Discovery mechanisms

between the two actors are out of scope (step 1). The format of the access request (step 3) is left to the

vendor. The only requirement is that the request contains the device-side token, as delivered during the

token request. This token is recovered by invoking the CSL (step 2). In the case of type #1 tokens, the

request also includes the information used to derive the Challenge Key. They are not included in the

token as they are generated by the CSL.

Figure 4.6: Access Request

Upon reception, the vendor’s code running on the device invokes the TIL to check the token’s validity

(step 4). First, the TIL checks whether the token falls within the validity window (type #1 token) or if

it is expired (type #2 token). If it passes this test, the TIL checks the token’s integrity and authenticity,

either via HMAC (type #1 token) or by verifying the cloud platform’s signature (type #2 token). On

a successful check, the TIL generates a challenge message and returns it to the vendor’s code (step 5).

Otherwise, an empty string is returned. The challenge message is sent to the mobile application (step 6)

The application invokes the CSL to generate the response to the challenge (step 7). The mobile

application then sends it back to the device that passes it to the TIL (step 8). At that point, if appropriate,

the TIL generates both the Token Key using the information contained in the token and the Challenge Key
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using the information contained in the request. The TIL uses the appropriate key to verify the challenge
(step 9). If it passes, the window size and remaining number of uses are updated. The Authorization
Object is returned to the vendor’s code (step 10).

At that point, the token is deemed valid. However, the adequacy between the request and the permis-
sions contained within has not been verified. This is a job for the vendor’s code (step 11). The request
can therefore still fail at this point. If it does and in the case of type #1 tokens, the token is still consid-
ered as having been used once. The local conditions are also verified outside of the TIL (still step 11).
For performance optimization and bandwidth efficiency, these checks should occur before the challenge
message is sent out. However, from the developer’s point of view, it makes more sense to only intervene
after the job of the TIL is finished rather than in the middle. Finally, the access decision is returned to
the mobile application (step 12).

4.5 Security analysis

In this section we analyze the security of our proposal. Our analysis revolves around the token request
and the access request. First, we lay out our security assumptions. Second, we propose five attacker
profiles along with their motivations and capabilities. Third, we detail our assets and their sensitivity
levels. Finally, we examine potential threats and how our solution addresses them.

4.5.1 Security assumptions

We work under following security assumptions:

A1 Secure cryptographic primitives - The underlying cryptographic primitives are assumed to be
secure.

A2 [Strong] Robust random generator - We assume devices have access to a secure source of ran-
domness.

A3 Secure communication channel (token request) - A secure communication channel can be es-
tablished between the cloud platform and the mobile. This channel is used to exchange the token
after a successful token request.

A4 [Strong] Secure libraries - We assume our libraries cannot be compromised. The code running
on top however, can be modified.

A5 [Strong] Compliant cloud platform - Even when the cloud platform is not operated by the same
actor as the device, it is assumed that tokens issued by the cloud platform are in compliance with
the policies defined by the device owner or administrator. Furthermore, the cloud platform must
provide usable tokens to the users and cannot actively work to disrupt operation.

A6 [Strong] Secure execution environment (cloud server and device) - We assume that the code
running on the cloud server and IoT device is executed in a secure environment.
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A7 [Strong] User authentication (on mobile) - We assume that the mobile application requires the
user to authenticate locally before using the private key. Consequently, if someone were to stole
the mobile phone, they should not be able to use the application.

A8 Secure storage on mobile - We assume that the mobile phone has a secure storage that can be
used by the CSL.

A9 [Strong] Authentication between user and cloud platform - We assume that the cloud platform
is able to authenticate a user before delivering a token. The authentication methods is out of scope.

4.5.2 Profiles

In the following we assume there are multiple instances of each actor in the system. This means that a
device may be registered with several cloud platforms, a cloud platform serves multiple devices, clients
can be registered with multiple platforms and seek access to multiple devices. Different instances may
be operated by different actors that do not trust each other.

Despite this multiplicity and for the sake of simplicity, we restrain the scope of attacks to a single
actor: the cloud platform will try to spy on the user, the user will try to access resources on the device, ...

We consider five types of attacker profiles, numbered from P1 to P5. For each, we detail their
capabilities and goals.

P1 - Malicious cloud platform operator According to assumption A5, cloud platforms can be trusted
to comply with access control policies when issuing tokens. Their operator can however be curious or
malicious with regards to resources and users that are not registered with them. A cloud platform operator
may wish to learn information about user’s usage patterns, or their possible registration with other cloud
platforms. They may also be interested in learning about resources a device owns but may have registered
with another platform, or devices that are not registered with them at all. This boils down to a breach
in privacy. Additionally, a cloud platform operator may try to issue fraudulent tokens for resources or
devices that are not registered with them. They can also try to use tokens issued for legitimate users in
their stead.

Depending on the type of token used, the cloud platform may share symmetric keys with the device.
It holds information on a device’s resources and on clients. The nature of this information is unclear
as we do not control the way policies are expressed, nor do we have control over the authentication
and authorization process for clients. Clients contact the cloud platform when new tokens are required.
The cloud platform therefore knows when a user is able to gain access to a resource, though it does not
know when an access request is placed. Most importantly, the cloud platform has access to token keys
generated for clients.

P2 - Malicious device owner We consider a curious device owner that wants to gain information about
the user without their knowledge. The device owner is also interested in gaining information about other
devices, potentially via a common user. The owner may use the information transiting through their
device to try and access other devices, maybe by pretending to be the common user.
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As the owner, P2 controls the code running on the device. They also have access to the tokens
presented by users. Depending on the type of tokens used, the device owner also has access to a number
of symmetric keys shared with the cloud platform.

P3 - Malicious user Malicious users wish to gain access to resources they are not allowed to access.
They may also wish to learn information about other users or map the resources available on a given
device in addition to those they have access to.

The malicious users control the mobile phone that runs the application. They can therefore change
the code running on top of the CSL library. They have access to the information contained in the token.

P4 - Malicious third party The purpose of the malicious third party is to gain as much information as
possible. This means learn who the users are, when they access each device, what they request, whether
they are successful, what are the resources hosted on each device, what cloud platform protects them,
how they can be accessed. When the device is an actuator, the malicious third party is also trying to
operate said device. The malicious third party might want to disrupt operations, or compromise the
technical actors.

We consider that the malicious third party can eavesdrop on the different exchanges that happen over
unprotected channels as well as intercept messages and send their own.

P5 - Colluding cloud platform and device Here we consider that the cloud platform is colluding with
the IoT device. As such, P5 enjoys the capacities and knowledge of both the cloud platform and IoT
device as described above. The purpose of this collusion is to lift the pseudonymity of the user and
determine a precise usage pattern. This collusion corresponds to our example use case where the car
rental company also operates the cloud platform, acting as both the platform operator and the device
owner.

4.5.3 Assets

Figure 4.7 presents our assets. Here we consider that we are working with a single cloud platform, sev-
eral devices, and several users. Colors encode sensitivity levels. Black denotes a system-wide critical
asset. If such an asset is compromise, the system cannot operate (i.e. devices and their functions can-
not be accessed) or the access control process cannot be trusted (e.g. an attacker has gained the ability
to counterfeit tokens). Red denotes a user-wise or devise-wise critical asset. If such an asset is com-
promised, a few users can no longer access a device or can be impersonated. Other users can still use
the system. Likewise a device might become unreachable while other devices continues to operate as
normal. Orange corresponds to limited functionalities. If such an asset is compromised, a user might
need to renew their token, privacy might be compromised, etc. Green assets represent metadata leaks
not easily linkable to a given user or device. Blue is out of scope.

Assets are of two types: assets introduced by our access control system and assets that are specific
to the application itself. For instance, the data stored on the device are application specific whereas the
privileges afforded to a user are an asset generated by our access control system. Among these latter
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Figure 4.7: OATL - Assets sensitivity level

assets, we distinguish between those that are generic, such as the previously mentioned user privileges,

and those that are linked to a specific token type.

For each asset, we consider its confidentiality, integrity, and availability and the sensitivity of their

compromise.

4.5.3.1 Device-related assets

Device state On an actuator, the device state can be changed by calling the appropriate functions. In our

car rental use case for instance, the maximum speed of the car, the temperature of the Air Conditioning,

or the state of the smart lock are device states. If the confidentiality of the state is compromised, we

have a privacy concern but no impact on operations. Compromised integrity and availability prevent the

normal course of operation for this single device. However, if an attacker can modify an actuator’s state,
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the access control system has failed at preventing unauthorized access.

Device-generated data Device-generated data are the whole purpose of sensors. They can also be
relevant in actuators. In our car rental use case for instance, the GPS position or the car mileage are
device-generated data. A breach in confidentiality does not prevent legitimate users from accessing the
data whereas a breach in integrity or availability does. However, if an attacker can read sensor data, the
access control system has failed at preventing unauthorized access.

Device identity As the discovery process between devices and users is out of scope, we only consider
the device identity privacy-wise. In that context, if an identity’s confidentiality is compromised, privacy
has been breached.

4.5.3.2 General system assets

User’s identity User authentication is out of scope. As such, we only consider user identities privacy-
wise. In that context, if an identity’s confidentiality is compromised, privacy has been breached.

User’s privileges A breach in privilege confidentiality compromises user privacy but does not affect
operation. Attacking the integrity of user privileges can be equated to privilege elevation or suppression.
It either prevents a legitimate user from accessing authorized objects or breaks the access control system
by enabling unauthorized access to a malicious user.

Our libraries do not cover the authorization engine. As such, the availability of user privileges is out
of scope.

Public token As its name supposes, the consequences of breaching a public token’confidentiality are
limited to privacy concerns. In the case of unavailability, a new token can be requested. An integrity
compromise can have consequences ranging from the need for a new token to privilege elevation.

Private token Private tokens are more sensitive as they contain the private or secret keys corresponding
to the token. Depending on the token, this can lead to the attacker enjoying the privileges of the intended
recipient (confidentiality). In case of unavailability or integrity issues, the user can request a new token.

4.5.3.3 Token #1-related assets

Secret keys Type #1 tokens involve a number of secret keys. Here we consider that each PSK and
HMAC key is used by a unique cloud platform/device pair. That way, if a key is lost or otherwise
compromised, the security breach is contained.

If the confidentiality of both the PSK and the HMAC key is concurrently compromised, an attacker
can forge any token they like, thus breaking the access control system for the corresponding device.

The HMAC key alone would not be enough as the attacker would be unable to create a valid token
key: the TIL computes the token key by deriving the PSK. Creating a valid token key without the PSK
would break Assumption A1.
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The PSK alone would not be enough: the fraudulent tokens would not pass the authenticity check
from the TIL. Creating a valid token key without the HMAC key would break Assumption A1.

Compromising the integrity or availability of the PSK and HMAC key prevents the cloud platform
from issuing new tokens and the device from verifying them, thus stopping operation for the correspond-
ing device.

A breach in either confidentiality or integrity of the PSK and HMAC key affects the system until
keys are replaced on both the cloud platform and the IoT device, thus forcing a new configuration phase.
Key security can be increased however by using a Hardware Secure Module (HSM) for storage.

A token key with compromised confidentiality enables the attacker to enjoy the privileges associated
with the token. However, the impact of such compromise is limited by the use of the Challenge key. That
key is derived by the mobile application and fixed over the life of the token. This means that the first
person to use a token sets the challenge key. An attacker would therefore need to either set it themselves
in which case the user would be alerted as they would not be able to use the token. Or they could capture
the exchange between the mobile and the device to retrieve the derivation information used to derive the
challenge key.

Compromising the confidentiality of the challenge key is not enough either as the token key is re-
quired to generate valid session keys between mobile and IoT device. So in order for an attacker to
impersonate a user, they must possess both the token and the challenge key.

The session key itself is short-lived. If its confidentiality were to be compromised, the window of
exploitation would be really short. It can still be used to decipher previous communications.

A breach in either integrity or availability for the token key, the challenge key, or the session key
requires the user to request a new token or start a new session which is minor.

Counter number & remaining number of use It is difficult to extract meaningful information from
the counter number of a device or the remaining number of use for a token. At best, an attacker can know
at which rate a device is used. Tokens are not linked to users. So the knowledge that Token 5 has been
used three times is worthless on its own. Hence, confidentiality is not an issue. Note that crossing that
information with the knowledge of a malicous cloud platform breaks pseudonimity.

The integrity and availability of these parameters however is important. Without them, the device
can no longer check token validity, thus halting operation. If an malicious user can modify both, they
can use their token indefinitely by fixing the validity window and replenishing their allotted use. With
only the counter number, an attacker can move the validity window so far ahead that new tokens are
considered expired. They can also move it back to use tokens that are below the validity window with
some remaining uses. With only the remaining number of use, a malicious user can use a token more
than intended as long as the validity window does not slide away. An attacker can expire all tokens by
setting their number of remaining uses at 0. Manipulating these value can be very disruptive. However,
one can only gain access to objects that they were once authorized to access.

4.5.3.4 Token #2-related assets

Token private keys With a token private key(confidentiality), an attacker can use the token instead of
its intended recipient. A compromise in integrity or availability requires only the issuance of a new token
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to be fixed.

Cloud platform signing key By breaking the confidentiality of the cloud platform private key, an
attacker can forge any token they like for any device, thus breaking the system entirely. Similarly, if the
integrity of the key is compromised, tokens can no longer be issued. Both attacks last until the key is
revoked and a new public key is deployed across devices, forcing a new system-wide re-configuration.
Key security can be increased however by using a Hardware Secure Module (HSM) for storage.

If the signing key is unavailable for a short time, the system can continue to function as it is not
required at access time. However a prolonged availability issue would halt operations.

4.5.4 Attacks

LetA be the attacker. In this section we consider four means by whichA can try to disturb the system and
compromise our assets. They are Denial of Service attacks, Man-in-the-middle attacks, replay attacks,
and eavesdropping.

4.5.4.1 Denial of Service (DoS)

In DoS attacks, A’s purpose is to block communications or render actors incapable of operating their
services. Our proposal involves two communication segments that can be interrupted: Mobile to plat-
form communication during token requests, and mobile to device communication during access requests.
Consequently, the actors that would be targeted by such attacks are the cloud platform and the device.

DoS target availability.

4.5.4.2 Man-in-the-middle attack (MitM)

By placing themselves between two actors and intercepting their communications,A hopes to gain access
to private information or pass as a legitimate user, thus either obtaining an authorization token (MitM
during token request), or access to a given resource (MitM during access request).

This type of attacks can occur in a synchronous or asynchronous fashion. The former are called relay
attacks while the latter are delayed Man-in-the-middle.

MitM target confidentiality and potentially availability.

Relay attack In relay attacks, the attacker artificially bridges the distance between the two legitimate
actors by relaying messages over a potentially long distance. This attack is used to fool proximity-based
protocol. An attacker could for instance stand by the hotel pool, next to a victim’s phone, and relay
messages from the phone to an accomplice standing by the smart lock of the hotel room.

Delayed Man-in-the-Middle Alternatively, the man-in-the-middle attack can be conducted in two
steps. First, the attacker registers a sequence of messages exchanged between them and one of the
actors (here the mobile application). Then, the attacker replays the registered sequence to the intended
party.
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This attack is related to replay attacks. The difference is that the messages are new to the intended
recipient. We take the example of a counter-based replay protection mechanism: each time A and B
exchange messages, they increment a counter. Replayed messages will present an outdated counter
number. Whereas delayed MitM presents a fresh number and passes through the protection.

4.5.4.3 Replay attacks

By replaying intercepted messages, A hopes to access unauthorized resources. This replay can affect
either the token request or the access request.

4.5.4.4 Eavesdropping

A hopes to gain information by observing communications. The observation is passive. Under this attack
we also consider everything that malicious IoT platforms, users, or device owners can achieve with the
information they can access through their normal use of the system.

4.5.5 Threats and mitigation

We have defined five attacker profiles, four means of attack, and detailed our system assets. We now
examine what threats our system is subject to and how we mitigate them. Figure 4.8 summarizes this
discussion. In green are the threats that are handled directly by our libraries. In orange, the threats that
are either mitigated by the library or for which we have provided a mitigation in the discussion. In gray,
the threats that are not addressed by OATL. When no color are provided, the risks for the given attacker
to compromise the given asset with the given method are low to null.

4.5.5.1 Denial of Service (DoS)

A collusion between the cloud platform administrator and the device owner (P5) has no interest in
disturbing availability as either of these actors would be the target in the case of a DoS attack.

Cloud platform (token request) The cloud platform acts as a classical server. As such, it can use
classic security solutions to mitigate DoS attacks. Our proposal does not control the specifics of token
requests or administrative services that might be offered by the cloud platform. As such, we cannot
assess the likelihood of a successful attack. For the same reason, we cannot conclude whether a given
attacker profile is more likely to mount such an attack or succeed. We can still exclude P1 and P5 as
according to A5 the cloud platform cannot disturb its own operation.
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Figure 4.8: Threats addressed by OATL
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In the context of our threat model, a DoS targeting the cloud platform would threaten the availability
of its PSK and HMAC key, or the signing key for token #1 and #2 respectively. This would prevent the
issuance of new authorization tokens. Ongoing operations however would go on as the cloud platform
is not required for the access itself. This neutralizes short-lived DoS attacks that would have limited
consequences.

Device (access request) DoS attacks on the device target the availability of the device’s state and data.
The device’s resource constraints make it particularly sensitive to DoS attacks. The memory usage for
instance, can be abused so that the device is no longer able to function. Because of this, challenges carry
a time-out and only allow a single concurrent challenge per token. This to avoid a malicious application
flooding the device with unfinished access requests.

The window-size for type #1 tokens is used to control how many tokens can be accepted at once. This
should be set according to use case specifications and device capabilities. This window can be adjusted
over the course of operation to accommodate an increase in user access requests or to mitigate malicious
behavior.

Bandwidth-wise, the token validity is checked before a challenge is sent out. This prevents malicious
users from artificially increasing bandwidth usage using expired tokens or simply placing requests with
no token at all. Computation-wise, type #1 tokens only generate keys after the challenge answer has been
received. Keeping the most expensive operations for last.

A token is still marked as used if the permission does not match with the request. This limits the
number of attempts a malicious user (P3) can place with a single token. The cloud platform should
blacklist a user that requests tokens too often, thus preventing them from spamming the device. A user
could request tokens often to obtain a high token number and revoke older tokens before they can be
used. The same token request monitoring will prevent this behavior.

Communications between the mobile and the device use short range protocols. A protocol-level DoS
therefore has limited consequences on the system as a whole.

4.5.5.2 Man-in-the-middle attack (MitM)

Once again, we have no control over the specifics of the token request and it might very well be vulnerable
to such an attack. However, A3 guarantees a secure communication channel for token delivery. This
ensures the private token’s confidentiality.

Our focus is on the access request. In this context, MitM attacks target the confidentiality of the
device state and data, user identity and privileges as well as public tokens as all of these assets are
involved in the access request. The access request can take place over an insecure channel, though this
breaks the confidentiality of the user privileges. The token only contains a short-lived pseudonym. Hence
the user identity is not revealed to a third party observer (P4). However, a malicious cloud platform can
link the token to a subject and gain unauthorized knowledge of its user’s activity.

Once access is granted, the device and mobile should switch to a secure communication channel
before proceeding. The session key for this channel is derived from private information possessed by
each party. Based on the public information alone, an attacker cannot compute the session key without
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breakingA1. A malicious cloud platform however has access to the same private information as the user.
They can therefore compute the session key and keep eavesdropping on communications.

In addition to confidentiality breach, the attacker may also try to modify the intercepted access re-
quest. If permissions contained within the token are larger than those needed for the current access
request, the attacker can request access to another resource. To limit this attack surface, cloud platform
should be mindful of including the smallest possible authorization set in tokens, breaking up permissions
between different tokens if need be. This leaks more information about the user’s activity to eavesdrop-
pers but ultimately protects access to the device’s data and functions.

An attacker cannot modify a token to gain access to resources that are not authorized to the user.
This would require changes to the public token which cannot be achieved without breaking the under-
lying cryptographic primitives (Assumption A1). All attempts will be detected by the integrity check
performed by the TIL. Because the cloud platform can manufacture token for themselves, they have no
incentives to modify the token here.

Finally, an attacker that has successfully planted themselves in-between the mobile application and
the device can cut communication between them, thus threatening the availability of the device’s data
and state. By A5, the cloud platform cannot engage in such behavior as it would disturb the flow of
operations.

The mobile application (P3) is involved in both communication segments. There are therefore no
incentives for them to attempt such an attack. Similarly, a collusion between the device and the cloud
platform (P5) provides both parties with all the information that can be gained from this attack.

Relay attack This attack is not thwarted by our libraries. The discovery process as well as message
issuance and reception is handled by the application code. It is therefore impossible for the libraries to
measure the time elapsed between messages, which is usually the indicator of such attacks. The only
control that we can provide over this type of attacks is the time out delay associated to the challenge
issued for the access request. But setting the cut out time too low would hinder usability.

However, by A7, the mobile application requires the user to locally authenticate with his phone.
So such an attack requires a specific action from the user themselves. The attacker needs more than
proximity to their victim.

Delayed MitM Access requests include a random challenge that cannot be predicted without breaking
assumption A2 (secure random generator). It is therefore not possible to capture a sequence of messages
from the mobile application that can later convince the device of the legitimacy of the request. This
would requireA to compute a valid challenge without the corresponding private key, which would break
Assumption A1.

4.5.5.3 Replay attacks

The format and specifics of the token request are out of the scope of our proposal. However, accord-
ing to A9, the cloud platform must authenticate a user before issuing a token. Therefore, unless the
replayed messages contain an authentication process, the cloud platform should not grant the request.
Otherwise, if A can successfully replay a token request, the TGL will issue a new token corresponding
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to the specifications of the original request. This breaks the confidentiality of the device’s state and data,
user privileges as well as the integrity of the device’s state.

Access requests cannot be replayed. Provided the device has access to a secure source of randomness
(Assumption A2), challenges prevent the repetition of access request messages. These challenges are
issued and verified by the TIL, which code cannot be corrupted (Assumption A4).

The device owner (P2) and cloud platform operator (P1) do not gain any advantage from their
involvement in the system.

4.5.5.4 Eavesdropping

According to our definition of eavesdropping, different profiles have access to drastically different infor-
mation.

Passive eavesdropping cannot reach the secure communication channel over which the private token
is transmitted (A3). The token is therefore safe while in transit. It is also safe in storage according to A8.
So under our security assumption, the private token cannot be observed.

The public token however can be observed in transit. In doing so, one can learn what resources are
hosted on the device, or the pseudonym of the user. A malicious cloud provider can lift the pseudonymity
and observe the usage pattern of users. If the cloud provider is colluding with the IoT device, this
information is even more trivial to obtain.

Considering the attacker to be a malicious or curious device owner, the token can leak information
when it is presented with the access request. The permissions contained within give indication on the
user’s interests. If a token contains permissions for more than one device, a malicious device learn
information about other devices. The token does not have to contain the subject’s identity however, which
improves privacy. The lifetime of the token can be modulated to ensure unlinkability of operations.

To protect the token, we can either trust the transport level encryption or encrypt the token at the
library level. This would require the TGL and TIL to share yet another key. Library-level encryption of
the token does not prevent information leakage from the access request itself. If the token carries a large
set of privileges associated to the user, the access request is always specific and identifies which resource
the user is exactly interested in.

The use of session keys protects the information exchanged after access has been granted. This pre-
vents the cloud platform in particular to read exchanges between the mobile application and the device.
However, if the privileges contained in a token are too narrow, the cloud platform can learn information
about the user’s interests. To prevent this, tokens can carry a broader range of permissions than those ex-
actly needed to perform their operation. It can mean grouping permissions pertaining to several devices
or granting permissions at a higher granularity.

The cloud platform operator is the only one that can link two tokens to the same user. Each token
represents a new set of credentials. Lifetime and maximum number of uses should be set in accordance
with each use case specific threat model to best preserve the user’s privacy and the device’s resources.
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4.5.6 Other security consideration

Trust model Our example use case (car rental) placed us within a walled garden ecosystem where a
single entity is responsible for the code running on the cloud platform, the mobile, and the device. This is
not a requirement but rather a simplification hypothesis. Provided the bootstrap is correctly implemented,
the libraries can run on entities operated by different actors.

Privacy becomes more relevant when different actors are involved as other entities may be honest-
but-curious or simply malicious (Profiles P1, P2, P3, and P5). By colluding (or if they are one and the
same), the cloud platform operator and the device owner are able to track the user activity and break
pseudonymity.

Privileges can be split between tokens (and therefore pseudonyms) to hide user’s intentions to de-
vices. For the same reason, a device could be registered with several cloud platforms to prevent a com-
plete mapping of its resources by one actor.

This implies multiple keys or certificate as each cloud platform will perform a separate bootstrap.
The device must also track states separately for each cloud platform: for type #1 tokens, both cloud
platforms cannot synchronized on the counter number they associate with each token. If the device only
maintains one counter, two tokens can co-exist with the same counter number, both valid as they were
issued by a different cloud platform, both associated to a different user with different privileges. To avoid
that situation, the device must maintain separated states for each cloud platform.

Mobile security The security of mobile phone is an active ongoing topic of research. Our principal
concern is the possibility of a malicious application running on the same device. The capacities of this
type of attacker are highly dependent on the degree of separation built into the phone. They may share
key storage, logs, the app may monitor outgoing connections, see when a request is placed, intercept
the token, etc. Under the right circumstances, the malicious application could therefore impersonate the
legitimate application and perform a successful privilege elevation attack.

Assumption A6 places this threat out of our scope. It is nonetheless worth mentioning as A6 is a
strong assumption that is not guaranteed to hold.

Grouping permissions Symmetric cryptography tends to multiply keys. To avoid this both on the
platform with multiple registered devices and on the device with a multiplicity of tokens, one might be
tempted to group devices or permissions.

Grouping devices makes a lot of sense in certain use cases, where a number of devices distributed
over an area perform the same tasks and are controlled by the same policies for instance. However, doing
so can leak information to curious device owners (P2) or curious users (P3).

Grouping permissions allow for a more compact expression of privileges. A token could carry several
sets of permissions involving several devices with different policies. Privacy becomes a concern however
as Device A could learn information about Device B by reading the the token of user U that has access
to both. Information such as the name of the resources it hosts, what client they have in common, what
kind of token they accept and therefore what capacity they are likely to have, etc.

But as we have mentioned, ultra-specific permissions also leak information to the cloud platform. A
compromise need to be reached based on the use case and the trust that can be placed in each actor.
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4.6 Proof of Concept (PoC)

A Proof of Concept based on the proposal described above was developed by Gemalto. A team of

five people, including myself, worked on this implementation and the development of the associated

live-coding video demonstration. The PoC is focused on usability rather than efficiency and is built to

showcase ease of integration. Only type #1 tokens were implemented. The implementation of type #2

tokens will be part of a second iteration of this PoC focused on modularity.

The PoC contains an implementation of each of the three libraries as well as sample code illustrating

a potential use case. The objective of the PoC implementation was the production of a short 5-minute

video aimed at developers highlighting the use and integration of our libraries for each of our three

technical actors as well as an example of an access control scenario.

The PoC helped refined our proposal. Some of the specifics presented in the previous sections are

therefore not present in the PoC. A crucial example is the absence of the challenge key. Additionally,

some of the chosen standards appear ill-fitted in retrospect and will be changed in future iterations. When

either of these instances arise, they are discussed.

Figure 4.9: OATL implementation architecture

Figure 4.9 presents the communication protocols and implementation languages used in the PoC.

Use Case Application We assume the role of a developer working on smart locks for a hotel chain.

This use case presents many similarities with the car rental use case, though the latter was more ap-

propriate to emphasize the need for serverless authorization and was therefore preferred to illustrate the

project.
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We are operating under the same walled garden ecosystem assumption. Clients book their rooms on
the hotel’s website. They can then retrieve a virtual key to open their room without going to the reception.
When the stay is over, the client’s access to their room is revoked.

Cloud platform (TGL) Two instances of the cloud platform have been deployed: one on AWS, the
other on Google cloud. Both use docker containers for portability. Information on devices such as their
associated keys and counter numbers are stored in a MySQL database. The cloud platform exposes a
REST API that is invoked by the mobile application to generate tokens. No discovery mechanism is
proposed. Addresses are hard coded. Similarly, no authorization engine is implemented.

The TGL is implemented in Java. It uses SHA256 [NIST, 2001] for the HMAC. PBKDF2 (Password-
Based Key Derivation Function 2 [Kaliski, 2000]) is used for token key derivation with 16384 iterations
(more than 10 000, as per the recommendations). A pass-phrase is shared as the PSK between the TGL
and the TIL during bootstrap. The token contains a salt as well as the number of iterations required to
derive the key.

PBKDF2 is not adapted to that usage. We will prefer NIST SP 800-108 [Chen, 2008] for key deriva-
tion in future iterations.

Mobile application (CSL) We implemented an android application to use over the CSL. It is written
in Java. The GUI of the application is presented in Figure 4.10. It lets the user book a room, which
triggers a token request, and lock/unlock the door of said room, which equates to an access request.

Secret keys are stored in the android keystore. No challenge key is derived by the CSL. The token
key is used instead.

IoT Device (TIL) The STM32L4 Discovery kit 40 is used for the device. TIL is implemented in C++.
Communications between the device and the mobile app are encrypted using AES 256 over BTLE.

In the current setting, the key derivation on the device takes over 3 seconds. This represents a
noticeable wait for the user. Resource efficiency should be tackled in the next iteration.

4.7 Comparison to the state of the art

OATL uses tokens. The specifics of capability-based solutions are discussed in Section 3.2.2. OAuth 2.0
is a popular framework when it comes to tokens. It similarly abstract the authorization layer and has many
available implementation. However, OAuth 2.0 uses bearer tokens, which means that the protocol does
not verify the legitimacy of a subject to be using a given token. This works because OAuth 2.0 requires
encrypted communications (TLS) for every segment. In the IoT, this posses two problems: First, it binds
the framework to one protocol in an environment where communication protocols are varied and ever-
changing. Second, it makes security reliant on transport-level security which cannot be assumed in this
context. Furthermore, OAuth 2.0 uses a lot of messages be exchanged between the different actors which
is not compatible with actors with limited bandwidth. Therefore, OAuth 2.0 cannot be applied as-is to
IoT use cases.

40https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html, Last Checked: July 21st, 2019
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Figure 4.10: Mobile Application GUI

RFC7800 [Jones et al., 2016] addresses the bearer token issue by introducing a Proof of Possession to
the OAuth 2.0 standard. In essence, the subject is given (or generates) a key that the authorization server
(PDP) either stores or encrypts and embeds in the token. In the first case, the authorization server must be
contacted at access time to communicate the key to the IoT device, which forbids serverless authorization.
In the second case, the IoT device decrypts part of the token to retrieve the key. This addition does not
address the high number of messages required by the OAuth 2.0 framework. Furthermore, in the case of
symmetric keys, it is subject to the key escrow issue that is addressed by the introduction of challenge
key in OATL type #1 tokens.

Table 4.3 compares our proposal to the solutions presented in the state of the art. Our solution adopts
a PDP/PEP hybrid architecture, as described in Section 3.7.1. As such, it shares a few similarities with
solutions that use the same architecture: Hybrid solutions are more scalable than fully centralized solu-
tions but less so than solutions opting for multi-PDP or blockchain based architectures (see Sections 3.7.2
and 3.7.3 respectively). Authorization decisions are transmitted using tokens, which enables serverless
authorization. The solution provides high context awareness by enabling the evaluation of local con-
ditions at access time. This local evaluation however negatively impacts resource efficiency. For that
reason, it is not clear how complex the local evaluation can be. Note that the resource efficiency grade
for OATL is based on the PoC implementation. This implementation does not include type #2 tokens. It
was also not optimized for resource efficiency. Later iteration will most likely yield a better score in that
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area.
When serverless authorization is enabled, they present more resilience as operations can proceed

despite the server’s unavailability. For the same reason, maintenance operations are easier to conduct on
the central server as they do not disrupt operations. Replacing keys and certificates on devices however,
is a taxing operation. Permission updates are taken into account when users request a new token.

We share other traits with the solutions from the state of the art that are not due to a common archi-
tecture: We operate at a resource-level granularity. We are focused on authorization rather than authenti-
cation. Our solution does not mention delegation, nor does it provide auditability. Our proposal includes
an implementation in a simulated environment.

Our proposal can be considered as a single-head governance instance when considering the device
owner is in control of all aspects of system. If we consider instead that device owner and vendor are two
distinct entities, we fall under multi-head governance.

What distinguishes OATL is the use of severless authorization with explicit revocation. Hussein et
al. [Hussein et al., 2017a] uses a gateway rather than the object itself as the PDP/PEP. Explicit revocation
requires the gateway to be accessible by the server. Bernabe et al. [Bernabe et al., 2016] mentions
revocation but does not provide any explicit means of revoking a token once issued. If explicit revocation
is only available for type #1 tokens, it is the only proposals that provides it with no connection to the
server.

Privacy is also an important feature of our proposal. On one hand, devices don’t have access to the
identity of users. Each new token represent a new pseudonym. So users cannot be tracked over time. On
the other hand, the cloud platform does not have access to the specifics of user transactions as it is not
involved in the access request. A user can request a token and never use it. They can also exceed their
allotted uses in a few minutes and only request another token a month later. Privacy is set to high instead
of very high in Table 4.3 because we have no control over the vendor’s code.

Finally, our proposal is focused on usability. It is therefore natural that it scores higher than other
solutions in this category.

4.8 Conclusion

Summary We have presented our work on Offline Authorization Token Libraries. These libraries are
meant to help developers tackle security requirements while providing serverless access to users.

Our libraries offer some guarantees of security while other aspects are left to the application side.
The guarantees offered by our libraries are:

• Authentication (in the sense that the token can only be used by its intended recipient),

• Authorization (enforcement),

• Anti-replay protection on authorization,

• Session-Key generation for secure communication,

• Secure storage of secret keys on the mobile,
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• Protection against Delayed Man in the Middle.

OATL does not take care of:

• User authentication,

• Authorization decisions,

• Secure storage of keys for the server and device,

• Mutual authentication,

• Man in the Middle Attacks (relay attacks).

We advocate using a secure enclave on the device and an HSM on the server. The choice of au-
thorization engine is left entirely to the IoT vendor. Additional local conditions can be included in the
tokens. These conditions should be expressed in a JSON format. Their interpretation is then left to the
application.

Perspectives The perspectives for the OATL project boil down to two things: working on a better
implementation and going beyond what was proposed in this Chapter.

The PoC presented in Section 4.6 is a first iteration. In future iterations, we would like to:

• Re-implement type #1 tokens with the revised specification:

– New derivation algorithm,

– Challenge key,

– Clearer derivation of session keys.

• Implement type #2 tokens,

• Focus on resource efficiency,

• Test local conditions,

• Test our implementation in a more realistic environment.

To improve on our proposal, we would like to:

• Propose a binary format for type #1 tokens instead of JSON. The JSON format is verbose. A
binary format would be more restrictive but would result in a lower overhead.

• Add more token format to deliver on the modularity aspect of the project.

• Offer the user the option to not use the mobile application and instead use their phone as a relay
between the device and the cloud platform. It is harder and harder to convince clients to install
apps. An alternative route would enhance usability. This would however disable serverless autho-
rization. But it would be the user’s choice to do so.
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• Propose explicit revocation for type #2 tokens. An idea would consist in embedding revocations
inside authorization tokens and use clients to deliver them to the device. A compact representation
of revoked tokens is however required.

• Work on delegation aspects. Users should be able to transfer permissions without going through a
central entity.

• Discuss auditability. Devices are constrained memory-wise and cannot be supposed to connect to
the cloud platform after the initial bootstrap phase. Without a gateway, it is interesting to explore
how and where to store access logs for the device.
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5.1 Introduction

The previous chapter presented a PEP/PDP hybrid solution with a centralized server. We go further
towards distribution by doing away with this central entity and replacing it by a blockchain. The benefits
of doing so have been elaborated on in Section 3.7.3.

MAAC-B (Multi-endorsed Attribute for Access Control using the Blockchain) defines an attribute
management system based on blockchain transactions. In MAAC-B, attributes are stored in smart con-
tracts that are deployed and managed by the users themselves. These attributes can be issued by anyone
with a single blockchain transaction. A trust level is then computed for each attribute based on the entities
that have endorsed it.

MAAC-B also provides a policy management system where administrators can define generic poli-
cies and assign them to resources held by IoT devices under their control. The blockchain is used to
issue, update, and disseminate these policies.

The objective of this proposal is to provide a distributed attribute-based access control solution that
enables interoperability, supports the dynamicity of the IoT (user or device addition, flexible policies,
task re-assignment, etc), and gives users control over their identity within the system.

A shorter version of this solution was presented in IWCMC 2019 [Dramé-Maigné et al., 2019]. The
original paper limited its proposal to attribute management. The present chapter expands on this work
by introducing policy management.

Use Case For illustration, we consider the case of a hotel company with locations all around the world.
Each hotel hosts a vast array of services including restaurants, pool, spa, gym, etc. These services
are available not only to hotel clients but also to the local crowd. In particular, gyms are operated
by independent companies that have locations both within and outside the hotels. Both the hotel and
the gym companies want to control access to their own infrastructures (i.e., hotel rooms, lockers, gym
equipment) independently through smart locks. Having different sets of requirements, different clients,
and different interests, neither party is willing to delegate access control to the other.

In this use case, the access control solution needs to be interoperable in order to serve both the
company operating the hotels, and the ones operating the gyms. As the length of stay varies greatly and
new clients can come in at any time, the system should accommodate the dynamic addition of users.
As a client-centric business, the hotel would benefit from a user-centric system. In the spirit of user-
centricity, users’ personal information should be treated with care. The system therefore needs to be
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privacy-focused. It should not sacrifice ease of management for the administrators as it is important for
them to be able to get a view of room occupancy and allotted privileges. In the event of a network outage,
clients should still be able to access their rooms and move around the hotel. Local access, where devices
only rely on connection to a local manager should therefore be enabled. The system is also expected to
scale to manage clients coming from the different hotel and gym locations.

Selection of ABAC and blockchain technology in our solution The state of art does not fulfill our
smart hotel use case requirements (see Section 5.8). We propose an attribute-based blockchain-based
approach to access control that provides interoperability, local access, dynamic user addition, contextual
authorization, user privacy, and ease of management. The Attribute-Based Access Control (ABAC)
model [Hu et al., 2013] enables high expressiveness, in particular in devising context-aware policies. It
is compatible with dynamicity in both users and resources, enabling interoperability between federated
entities, while allowing for a more compact expression of access policies.

We selected the blockchain technology for:

• keeping track of users’ attributes through per user smart contracts where attributes can be endorsed
by multiple Attribute Issuing Entities (AIE),

• managing the trust level assigned to endorsing AIE by administrators, thus enabling the (smart
lock) devices to assess the trust level of an attribute,

• issuing and managing access control policies based on subject’s attributes.

Note that reading attributes and policies from the blockchain is a fast operation that is compatible
with real-time applications. Endorsing a subject’s attribute is a matter of one blockchain transaction.
Same goes for modifying the trust level of an AIE, or publishing a policy. As such, the blockchain-
based approach supports dynamic addition and removal of both requesting subjects (next referred to as
requestors) and AIE.

Contribution The contributions of this chapter can be summarized as follows:

• The definition of user-controlled identities that can then be used to separate attributes in accordance
with the user’s wishes.

• An attribute endorsement system that is entity-independent and remains operational through changes
in organizations or partnerships.

• A trusted entities management system enabling administrative changes throughout the life of IoT
devices.

• An attribute evaluation scheme based on endorsements and reputation.
• A distributed policy management system where policies can be re-used for multiple resources.
• An overall user-centric access control system enabling interoperability and flexibility.

Organization The reminder of this chapter is organized as follows: Section 5.2 discusses the archi-
tecture of our proposal. Section 5.3 describes the management of administrators and trust. Section 5.4
details the issuance and management of access control policies. Section 5.5 focuses on attribute endorse-
ment, and Section 5.6 on access control and attribute evaluation. Section 5.7 analyzes the security of the
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proposal. Section 5.8 compares our proposal to the state of the art presented in Chapter 3. Section 5.9
concludes this chapter.

5.2 Architecture, Assumptions and Overview

This section presents the actors of our solution, our security assumptions, and the high level process of
policy issuance, attribute endorsement and evaluation, as well as access control.

5.2.1 Actors

Our system includes: IoT devices, administrators, blockchain nodes, gateways, Attribute Issuing Entities
(AIE), and requestors. Additionally, we consider an independent reputation system. Going back to the
smart hotel use case, clients (requestors) wish to activate smart locks (IoT devices) to access their rooms,
the gym, or any door in the building. Gateways are connected to the blockchain and routinely update
smart locks on policy or administrative changes. When they receive a request, smart locks query the
gateway to retrieve attributes issued by multiple AIE. Smart locks compute each attribute’s trust level
and evaluate the request based on the requirements defined in the policy, thus deciding whether to open
or close the door.

IoT Devices IoT devices, behaving either as sensors or actuators, decide whether a requestor is permit-
ted to access some resources (e.g. sensed data), or to perform an action.

The device is configured with the addresses of two blockchain smart contracts: one is used to man-
age its trust, the other associates a device’s resources with access control policies. When the device is
associated to a single long-term gateway, this configuration can be hosted there.

The access control decision requires the retrieval of the appropriate policy, the extraction of attribute’s
endorsements, and their verification in order to determine their associated trust level. The device acts
both as a PEP and a PDP by evaluating attributes.

Blockchain The blockchain supports three services:

• The Trust Anchor Service is made up of transactions published by the administrators to promote
new administrators, add entities to the list of trusted entities, or update the reputation score of an
entity. These transactions are discussed in Section 5.3.

• The Policy Service is comprised of all transactions that relate to policy publication or update.
Policies define the rules that govern access in the system and involve requirements for requestor’s
attributes. These transactions are introduced in Section 5.4.

• The Attribute Service is comprised of all transactions published by the AIEs to endorse or revoke
attributes. These mechanisms are detailed in Sections 5.5.

The blockchain serves as a vehicle that stores and transports access control policies. It also acts as a
PIP with regards to attribute retrieval.
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Reputation System The reputation system operates independently. It can be hosted on the blockchain
or outside of it. We will consider it as a black box. It provides reputation scores for all types of entities
that are then normalized between 0 and 1.

Gateway Due to considerable resources being consumed by the blockchain, connectivity to IoT de-
vices still remains a big challenge, and an ongoing research topic (see Section 2.10). Until an optimized
solution is found, we introduce a gateway to act as a proxy between the blockchain and IoT devices.
Each device is therefore registered with a gateway that takes part in the blockchain network and filters
new blocks, extracting data relevant to each device.

Through gateways, devices retrieve administrative or policy updates either via periodical updates or
at their own request. Update periodicity is defined by administrators.

Additionally, the gateway understands a large range of communication protocols. IoT devices are
therefore not required to be IP-enabled. They communicate with their gateway using short range proto-
cols such as Bluetooth Low Energy (BTLE). As such, in the case of a network outage, communication
with the gateway are still operational. This enables local access.

A device can be associated to a single gateway. Alternatively a device may be registered with several
gateways or dynamically register with new gateways over the course of its life. The latter is particularly
indicated for devices with location that varies over time. In this case, a dynamic registration process must
be devised that is out of the scope of this proposal.

Administrators Administrators perform administrative operations through the Trust Anchor Service
and Policy Service. They must therefore have a blockchain address and be able to publish transactions.
Each device is associated to at least one administrator.

Attribute Issuing Entities (AIE) AIEs endorse attributes of requestors according to their own policy
(which is out of scope of our contribution). They are required to have blockchain capabilities.

Requestors The entity requesting access to a device’s resources and required to be provided with some
attributes might be either a device itself, or a more powerful entity such as a desktop or a mobile phone.
Requestors may act independently or on behalf of a user.

5.2.2 Security Assumptions

We operate under the following assumptions:

A1 Secured blockchain keys: Blockchain keys cannot be stolen, lost or otherwise compromised.

A2 Solid cryptographic primitives: Signatures, hashes and other cryptographic primitives cannot be
broken.

A3 Blockchain consistency over time and nodes [Pass et al., 2017]: All nodes in the network agree on
blockchain history, the last few blocks excluded. Accepted transactions cannot be modified.
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Figure 5.1: Access policy issuance and update

A4 Blockchain growth [Pass et al., 2017]: Valid transactions will integrate the blockchain eventually.

A5 Trusted and Reliable Gateway: The gateway is assumed to be trust-worthy and accessible.

A6 Trusted Entities (TE): Administrators and AIEs designated as TEs are trusted.

A7 Robust Random Generator: Devices are provided with robust random generators.

A8 Secure Reputation System: The reputation system is considered secure.

5.2.3 Access Control Scenario

Our access control scenario is composed of two processes that happen in parallel: the management and

retrieval of access policy and attributes. For both, we exclude the bootstrap phase that is considered out

of scope. It entails: the creation of blockchain accounts, the pairing of each IoT device with a gateway,

the configuration of IoT devices (i.e. keys, contract addresses, ...).

The process by which AIEs decide to issue attributes for a requestor is out of scope as it is AIE-

dependent. In the smart hotel use case for instance, an attribute is issued when a client signs up for a

gym membership. The discovery process between the requestor and the device is also out of scope.

We present the high level procedures of policy and attribute management below.

Access policy management Figure 5.1 presents the high level steps required to issue and revoke poli-

cies. First, administrators publish a Trust Anchor Contract (TrAnC) to establish the trust relationships

for their devices (step 1). After that initialization, administrators publish both Policy Contracts (PolC)

and Dispatch Contracts (DisC) (step 2& 3). The former manages policies, the latter links policies to re-

sources. Resources are hosted on IoT devices. Several devices can host the same types of resources. For
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Figure 5.2: Attribute management and evaluation

instance all smart thermometers will host a temperature resource. This lets administrators group similar

devices under the same policy.

When a new block is created (step 4), the gateway scans it for policy updates relevant to the devices

that are under its care (step 5). If changes occurred, the gateway notifies the corresponding device(s)

(step 6). Updates are sent according to the availability of the device and the update frequency defined by

administrators.

Attribute management Figure 5.2 presents a high level illustration of how the different actors work

together to manage and verify attributes. First, administrators establish the trust relationships for their

devices (step 0). In parallel, the user or somebody acting on its behalf deploys an attribute contract

(step 1). Using this smart contract, one or several AIE endorse the appropriate attributes (step 2). En-

dorsements can be revoked at any time by the AIE that issued them. They are the only one allowed to

revoke endorsements.

When a client requests a smart lock’s opening (step 3), the device contacts its gateway (step 4 & 5)

to retrieve attribute endorsements. Finally (step 6), the smart lock evaluates them against the applicable

policy and makes its decision.
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Figure 5.3: Trust Anchor Contract

5.3 Trust Anchor Service

The blockchain opens a communication channel between administrators and devices through Trust An-

chor Contracts (TrAnC). Through these contracts security updates are pushed to devices, including the

list of permitted administrators, the list of trusted AIEs, and AIEs’ reputation scores. These reputation

scores are an addition to the reputation system. Administrators have no control over the latter. This lets

them overwrite decisions they may disagree with, either increasing or lowering the score of an entity.

The invocation of state-modifying functions is reserved to administrators. The read operations are open

to all.

TrAnC must implement the following functions, summarized in Table 5.1:

- isAdmin: to verify that a given blockchain address is defined as an administrator in this contract.

- newAdmin: to add a new administrator in the contract.

- removeAdmin: to remove an administrator. Combine with newAdmin to change the blockchain

address of an administrators after devices have been deployed.

- newTrustedEntity: to add a new AIE to the list of TE. The second argument (scope) is optional and

restricts the trusted status of an AIE to these attributes only. It is formatted as a string containing

attributes separated by colons,

- removeTrustedEntity: to revoke an AIE TE status.

- getTrustedEntitiesList: to get the list of TEs with TE’s scope when applicable.
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Function Type Arguments
isAdmin call address blockchain address of the entity
newAdmin tx address blockchain address of the new administrator
removeAdmin tx address blockchain address of the revoked administrator

newTrustedEntity tx AIEPubKey public key of the AIE
scope Opt. attributes for which the AIE is to be considered as a TE

removeTrustedEntity tx AIEPubKey public key of the AIE
getTrustedEntitiesList call - -

updateReputationScore tx AIEPubKey public key of the AIE
score new reputation score for this AIE.

getReputationScores call - -
deleteContract tx - -

tx (short for transaction): state-modifying functions; call: read-only functions

Table 5.1: Functions of an Trust Anchor smart Contract (TrAnC)

- updateReputationScore: to update reputation of AIEs (after an AIE has been compromised for
instance). A negative score means that attribute endorsements from this AIE should be disregarded

- getReputationScore: to get the reputation score of an AIE.

- deleteContract: to destroy the TrAnC and all of the included information.

Smart contracts should always include a function to remove the contract from the blockchain. This
prevents blockchain bloating. A contract can never be deleted otherwise.

Figure 5.3 illustrates the use of a TrAnC. The user that deploys the contract (Bob in step 1) is con-
sidered as an administrator by default. As such, Bob can promote AIE to a Trusted Entity status (step
2). When a scope is provided (here, Attra), trust in the AIE is limited to that scope. TrAnC can also be
used to designated new administrators (step 3). Once a user has been declared as an administrator, all
functions are accessible to them, included AIE promotion (step 4), and the demotion of AIE promoted
by other administrators (step 5).

5.4 Policy Service

The Policy Service is made up of two smart contracts. Policy contracts (PolC) house policies associating
attributes and trust level. Dispatch contracts (DisC) assign resources to policy contracts. Together they
define which attributes a requestor must possess (and the required trust level) to access a resource.

Each PolC and DisC is associated with a TrAnC which isAdmin function is called each time a state-
modifying function is invoked.

5.4.1 Policy contracts (PolC)

PolC are a collection of policies, each of which is a list of requestor’s attribute and a corresponding trust
level. These policies are defined in a resource-agnostic fashion. This enables reusability which lowers
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Figure 5.4: Policy Contract (PolC)

the complexity of the system.

The following functions must be implemented in PolCs. They are summarized in Table 5.2.

- addPolicy: to add a policy. Input must be formatted as such:

AttrA : TL; AttrB : TL; ...AttrU : TL

where AttrA is a requestor attribute and TL is the associated trust level. Optionally, policies can

designate a Trusted Entity. On creation, a policy is allotted the next available Policy Number.

- updatePolicy: to update a policy already associated with a Policy Number. It takes the same input

format as addPolicy, including an optional AIE.

- removePolicy: to remove a policy given its Policy Number.

- getPolicy: to retrieve a policy based on its Policy Number. The returned policy is formatted as

such (polNumber, AttrA : TL; AttrB : TL; ...AttrU ; TL, TE)

- getAllPolicies: to retrieve all the policies stored within the PolC. The returned policies are format-

ted as such policy1, policy2, ..., policyi where policyi is formatted as showcased in getPolicy.

- deleteContract: to destroy the PolC and all of the included information

Figure 5.4 provides an example of the use of a PolC. First, an administrator deploys the contract

(step 1). Contrary to TrAnC, the user that issues the blockchain transaction creating the contract does
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Function Type Arguments

addPolicy tx
policy string of the form attA : TL; attB : TL; representing a policy

AIEPubKey Opt. public key of an AIE that will be a TE for this policy

updatePolicy tx

policyNbr the number of the target policy in the policy table

policy new policy (see addPolicy format)

AIEPubKey Opt. new TE

removePolicy tx policyNbr the number of the target policy in the policy table

getPolicy call policyNbr the number of the target policy in the policy table

getAllPolicies call

deleteContract tx - -

tx (short for transaction): state-modifying functions; call: read-only functions; TL: Trust Level

Table 5.2: Functions of a Policy smart Contract (PolC)

Figure 5.5: Dispatch Contract

not gain administrative privileges over it. Instead, the blockchain address of a TrAnC must be provided

(here TrAnCA) to manage the rights to issue and revoke policies.

An administrator (a user designated as such in TrAnCA) then issues a new policy (step 2). This

policy involves two attributes (AttrA,AttrB) with different associated trust levels (0.5 and 0.25 respec-

tively). The contract returns a policy number (here 1).

Another policy is published (step 3) with a designated trusted entity (AIE1). This means that for

the purpose of this policy, attributes endorsed by AIE1 will be given a trust level of 1. The policy only

involves one attribute (AttrC) with a required trust level of 1.

Finally, the administrator revokes policy #1.
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Function Type Arguments

addAssignment tx
res resource name
polAddr address of the PolC
polNumber number of the target policy

updateAssignment tx
res resource name
newPolAddr address of the PolC
newPolNumber number of the target policy

removeAssignment tx res resource name
getAssignment call res resource name
deleteContract tx - -
tx (short for transaction): state-modifying functions; call: read-only functions

Table 5.3: Functions of a Dispatch smart Contract (DisC)

5.4.2 Dispatch contracts (DisC)

DisC associate resources and policies. Each device is associated with one or several DisC. The following
functions must be implemented in DisC. They are summarized in Table 5.3.

- addAssignment: to associate a resource with a policy designated by a PolC address and a policy
number.

- updateAssignment: to update an already existing association between a resource and a policy. If
the given resource has not been assigned to a policy yet, it should fail.

- removeAssignment: to remove the association between a resource and a policy

- getAssignment: to retrieve the policy associated with a given resource. The output will be of the
form (res, PolC, polNbr).

- deleteContract: to destroy the DisC and all included information.

Figure 5.5 provides an example of a Dispatch Contract. As with PolC, DisC take the address of
a TrAnC at the time of deployment (step 1). The contract is then used to store assignments of policy
to resources (step 2). A resource is assigned to a single policy, identified by the address of the Policy
Contract and its Policy Number. The same policy can be assigned to several resources. When validating
an assignment, the DisC should retrieve the corresponding policy to check that it exists.

To remove an assignment (step 3), the administrator provides only the name of the resource. To min-
imize transactions, policies in PolC should be updated rather than revoked and re-issued. This dispenses
administrators from re-issuing assignments whenever a policy is updated.

5.4.3 Policy Retrieval

Devices receive policy updates from their gateway(s). The gateway, being a blockchain node, updates
its own ledger each time a new block is mined. The gateway gathers transactions pertaining to TrAnC
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Figure 5.6: AttC: Attribute endorsement and revocation

or DisC associated to any of its devices. It also follows modifications to PolC. As there are no links

between PolC and the DisC that assign them to resources, policy revocations and modifications are

not automatically pushed to DisC. When a resource is assigned a new policy, the gateway queries the

corresponding PolC to retrieve it.

The gateway gathers these updates and either delivers them to the concerned device or stores it to be

provided on demand.

5.5 Attribute Service

Attribute publication steps are described in Figure 5.6. Each step is defined below.

5.5.1 Requestor’s Identity

Requestors can have one or several identities that take the form of a public/private key pair. The identifier

in itself is a hash of the public key. It is neither provider-dependent, nor blockchain-dependent and can

be created autonomously and at will. Attributes are linked to the subject through one of its identities.

A subject can therefore split its attributes amongst different identities. Attributes could be separated

by use: one id for work, one id for government-issued attributes, one id for vacation purposes, etc. They

could be separated by issuer, or for any other reason. The user is in control of what identity they provide

to each AIE while looking for endorsements. This enhances privacy by letting users switch pseudonyms.

153



Chapter 5. MAAC-B: Multi-endorsed Attributes for Access Control using the Blockchain

5.5.2 Attribute Contracts (AttC)

AttC are used to link attributes to requestors. One (or more) AttC must be deployed for each requestor.
The identity of its associated requestor is stored in an AttC and used to validate endorsements. It cannot
be modified. Deployment of the AttC is the first step of Figure 5.6. For each attribute, the smart contract
stores a list of AIEs that have issued endorsements, and their signatures.

Function Type Arguments

endorseAttribute tx

attr name of the attribute to endorse
AIEPubKey public key of the issuing AIE
blockNumber block number at the time the transaction was issued

sign
signature of the hash of id||attr||blockNumber,
where id is the identity of the requestor

removeEndorsement tx
attr name of the attribute to revoke
AIEPubKey public key of the issuing AIE

sign
signature of the hash of id||attr||blockNumber||revoke,
where id is the identity of the requestor and
blockNumber was the argument used at the time of issuance

getEndorsements call attr name of the attribute to confirm
deleteContract tx - -

tx (short for transaction): state-modifying functions; call: read-only functions

Table 5.4: Functions of an Attribute smart Contract (AttC)

There are no restriction on who can invoke an AttC’s functions, deleteContract excluded. The latter
can only be invoked by the contract’s owner, i.e. the identifier embedded in the contract. Attributes can
be endorsed by any entity. The following functions must be implemented in AttCs. They are summarized
in Table 5.4.

- endorseAttribute: for AIE to endorse attributes.

- removeEndorsement: to revoke an endorsement.

- getEndorsements: to retrieve an attribute endorsement set which include a list of endorsers and the
material necessary to verify their signatures.

- deleteContract: to destroy the AttC and all the information it contains.

5.5.3 Attribute Publication

Once an AttC is deployed, AIE can start issuing attributes for the associated identity. This is represented
as steps 2 and 3 of Figure 5.6.

In order to do so, an AIE must first retrieve the AttC’s address. A requestor most likely has to interact
with an AIE one way or another before the AIE agrees to endorse an attribute. During this exchange,
the AIE retrieves the AttC’s address and the requestor’s identity. This exchange is out of scope and each
AIE is free to implement its own process for authentication and attribute verification.
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The AIE then issues a blockchain transaction invoking the endorseAttribute function of the AttC.
When the function is called, the AttC first reconstructs the signed message using the provided argument
and the stored requestor’s identity, and checks the provided signature against the provided public key.
This operation applies to non-endorsed attributes (step 2 of Figure 5.6) and attributes with pre-existing
endorsements (step 3 of Figure 5.6). For each attribute in the AttC, an endorsement record should include
the following elements:

attr : (AIEPubKey, blockNumber, sign)

5.5.4 Attribute Revocation

An AIE is always free to revoke its attribute endorsements. To do this, it must invoke the removeEn-
dorsement function of the corresponding AttC. This is depicted as step 4 of Figure 5.6.

After verifying the signature and checking it against the stored information, the AttC removes the
AIE’s endorsement. If the attribute is then no longer endorsed by any other AIE, the attribute is removed
from the AttC. If other AIEs have issued endorsement for this attribute, the attribute remains.

Note that AIE are responsible for the attributes they issue. As such, they are assumed to keep track
of issued attributes along with the associated identity and address of the smart contract that was used.

5.6 Access Control

We consider that before the access control process begins, the latest policy updates have been delivered to
the device. This means that the Gateway sorted through new blocks, identified changes in either PolC or
DisC related to the device, and sent the corresponding modifications. The security policies are therefore
hosted on the device itself and do not need to be retrieved at access time.

Before granting access to resources, the device needs to evaluate the requestor’s attributes against
the corresponding security policy. Attribute evaluation can be separated into three steps. An access
request must be placed and associated attributes identified. The corresponding endorsements need to
be retrieved from the blockchain. Finally a trust level must be assigned to each attribute. The attribute
retrieval process is illustrated in Figure 5.7.

5.6.1 Requestor Authentication

An access request (step 1 (a) of Figure 5.7) must include the requestor’s identity, the address of the
associated AttC, and the public key linked to the identity. A challenge message is then sent to authenticate
the requestor. If the signature of the challenge matches the provided public key, the IoT device retrieves
the policy corresponding to the access request.

Alternatively, a client may choose to use a combination of identities to prove that it possesses all
the required attributes (Step 1 (b) of Figure 5.7). In that case, and if the device supports it, the access
request should not carry any identifying information. The device first retrieves the policy corresponding
to the request and extracts the required attributes. They are then sent to the client along with a challenge
message. For each attribute, the client must provide an identity, the corresponding AttC address, public
key, and signed challenge.
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Figure 5.7: Attribute Retrieval

For this alternate authentication, the device needs to interrogate several AttC instead of one in order

to retrieve the attributes’ endorsements. This however amounts to the same number of AttC requests as

one needs to be placed for each attribute. However a greater number of signatures must be verified to

authenticate the client. This option should therefore be limited to IoT devices that can handle the increase

is computational requirements.

Though this feature adds flexibility to the system, there are some privacy concerns: Any requester

can obtain the list of attributes necessary to gain access to a resource. In settings where this is too much

to share, this option should be disabled.

5.6.2 Endorsement Retrieval

Attributes are retrieved based on the applicable access control policy. For each of these attributes, the

IoT Device queries the AttC via the gateway, using the getEndorsements function (step 2). In response,

the device receives a set of endorsements for each attribute as shown in step 3 of Figure 5.7.

Endorsements are of the form (AIEPubKey, blockNumber, sign). An endorsement is verified by

reconstructing the signed message (see endorseAttributes), hashing it, and verifying the signature.

5.6.3 Trust Level Computation

The trust level of an attribute represents how much the device can trust that a requestor actually possesses

this attribute. It is a numerical value comprised between 0 and 1. 0 corresponds to a situation where the

device cannot conclude with any degree of certainty whether the requestor possesses said attribute. It is

used as a parameter in access policies. A low trust level may be enough to grant access to a less critical
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resource while the main functionality of a device requires a trust level close or even equal to 1 to access.
Administrators are free to fix their own requirements in this matter.

If no endorsement exists for a given attribute, the trust level is set to 0 and the request is most likely
denied. In other cases, two methods of computation can be used.

Trusted entities Administrators can declare AIE that should be considered as trusted entities (TE).
Such a declaration can occur at different levels. It can be policy-specific, attribute-specific, or general.

As seen in Section 5.4, a policy may specify an AIE. This AIE is then considered as a trusted entity
with regards to that policy. Administrators can also decide to trust an AIE with a number of specific
attributes. An example could be a company using its own AIE to issue roles within its organization. In
that case and for all policies, the role attribute would need to have been endorsed by their in-house AIE to
be deemed valid. This is materialized by the optional scope parameter in the newTrustedEntity function
of TrAnC. Finally, administrators can declare general TE that are valid across policies and attributes. All
the above definition of TE stack and an AIE can be considered as trusted thanks to different attributions.

An attribute endorsed by a TE is given a trust level of 1. It is a matter of policy whether this trust
level is a requirement. Administrators are still free to require a lower trust level for a given attribute and
a given policy.

When a device retrieves the list of endorsements for an attribute, it looks for potential trusted en-
dorsements. If any is found and successfully verified, the attribute is given a trust level of 1. If no TE are
declared or none have endorsed the attribute, the device must use the reputation system to compute the
attribute’s trust level.

Reputation System In the absence of trusted entities, a reputation system is used to determine the
trustworthiness of an endorsement. This reputation system can reside on the blockchain [Dennis and
Owen, 2015, Schaub et al., 2016] or outside of it. The trust level of an endorsement is based off of
its endorsing AIE’s reputation, normalized to a number between 0 and 1. Additionally, the reputation
scores retrieved via the getReputationScores function of a device’s TrAnC are used to determine the
trustworthiness of an endorsement. When defined, they take precedence over the reputation system. This
enables the blacklisting of entities in response to an attack for instance.

The final trust level of an attribute is computed by combining individual endorsements’ trust levels.
The combination methods must be chosen in accordance to the use case and the environment. Examples
of such methods include taking the maximum trust level, the minimum, the mean of all the endorsements,
or even the trust score occurring the most often.

5.6.4 Access Decision

Each attribute is considered valid if the computed trust level is greater than the minimum value set in the
policy. If all required attributes are valid, access is granted. Otherwise, the request is denied.
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5.7 Security Analysis

We show that, given the security assumptions described in Section 5.2.2, our system is secure against the
following attacks, assuming that the device is physically tamper-proof. A denotes the attacker. H is an
honest participant.

5.7.1 Identity Theft

A’s goal is to masquerade as the honest requestor H, thus enjoying the privileges offered by H’s at-
tributes. In order to do that, A must be able to:

1. forge a valid signature ofH within the access protocol (step 1 of Figure 5.2),

2. replay one ofH’s signature from an old protocol session.

Forging a valid signature not knowing the private key ofH, breaks assumptions A1, or A2.
Replaying H’s signature means that the random generator used by the device is not robust, which

contradicts assumption A7.

5.7.2 False attributes endorsements

A’s goal is to convince the device that she has attribute a. To achieve this, she can:

1. declare herself as an administrator to promote a fake AIE and issue her own endorsement,

2. compromise a trusted AIE and have it endorse a,

3. inject another AIE’s signature for a in step 3 of Figure 5.7,

4. replay a valid endorsement transaction previously performed by an AIE,

5. game the reputation system to inflate the reputation score of her own AIE and have it endorse a.

Option (1) breaks assumptions A1 or A2 as invocation of the newAdmin or newTrustedEntity func-
tions of the TrAnC requires administrator’s credentials. Another road would be to collude with an ad-
ministrator which breaks assumption A5.

Option (2) similarly breaks assumptions A1, A2, or A5. Even if an AIE is compromised, as long
as their private key is safe (A1), A cannot forge their endorsement as this would break assumption A2.
Collusion breaks assumption A5.

Option (3) requires A to forge a signature over a, which contradicts assumptions A1 or A2.
Option (4) is detailed in section 5.7.4.
Option (5) contradicts assumption A8.
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5.7.3 Privilege Elevation

A’s goal is to convince the device that she is allowed to access resource r controlled by policy P . She
would need to:

1. produce false attribute endorsements corresponding to P ’s requirements,

2. change r’s policy assignment in its DisC to point to a policy that A fulfills,

3. update P in the PolC to alter either the trust level associated to each attribute or the attributes
themselves.

4. substitute herself to the gateway to replace P by a policy that A fulfills,

5. compromise the gateway to replace P by a policy that A fulfills.

Option (1) has been treated in section 5.7.2.
Option (2) breaks assumptions A1 or A2 as invocation of the addAssignment or updateAssignment

functions of a DisC requires administrator’s credentials.
Option (3) breaks assumptionsA1 orA2 as invocation of the updatePolicy function of a PolC requires

administrator’s credentials.
The success of option (4) depends on the security of the device/gateway pairing. This process is

considered out of scope and therefore cannot be analyzed here. However, if the substitution can be
achieved, A controls the update that are sent to the device. This includes policies and AIE’s trust scores.
A can therefore gain access to r illicitly.

Option (5) is similar in outcome to option (4) if the gateway is compromised.

5.7.4 Replay attacks over endorsement transactions

A’s goal is to convince the device that she has attribute a by using previously issued transactions or any
message exchanged between actors.

The payload of an endorsement transaction contains a signature over the following message:

id||attr||blockNumber

Unless she can forge an AIE’s signature, thus breaking assumptionA1 orA2,A cannot reuse transactions
where the id is not hers. Similarly, she cannot substitute one attribute for another.

To avoid the risk that a revoked attribute is successfully re-issued to the same requestor at a later time
without the initial AIE’s approval, AttC should be parameterized to only accept attribute endorsements
if the included block number is within an acceptable window around the current block number.

The blockchain does not offer any guarantees regarding the delay between the publication of a trans-
action and its validation and subsequent integration into a block. However, an average validation time
can be approximated and used to define an acceptable window. It should be smaller than the life ex-
pectancy of attributes. Indeed, if blockNumber is still within the acceptable window when the attribute
is revoked, the payload of the initial transaction can simply be re-used.

The inclusion of a challenge between the requestor and the device prevents A from replaying old
access request sessions.

159



Chapter 5. MAAC-B: Multi-endorsed Attributes for Access Control using the Blockchain

5.7.5 Replay attacks over policy transactions

A’s goal is to convince the device that access to r is protected by P by using previously issued transac-
tions or any message exchanged between actors.

Contrary to attributes that can be endorsed by any entity, policies must be issued or revoked by
administrators. Extracting the payload of a previous transaction is therefore not enough. A new trans-
action must be issued and must contain the signature of an administrator to be considered valid by the
blockchain. Thus, transactions cannot be re-used to update policies.

5.7.6 Privilege suppression

A’s goal is to wrongly convince the device thatH does not possess attribute a. This might be done by:

1. using a compromised AIE to revoke attribute a,

2. compromising administrators and revoking the AIEs having endorsedH with a,

3. replaying the revocation transactions for a,

4. altering the blockchain content thus removing a forH,

5. stopping the transaction endorsing a forH,

6. removing the AIE’s signature for a in the step 3 flow of Figure 5.7,

7. blocking the communication between the device and its gateway.

Options (1) and (2) contradict assumptions A5, A1 or A2 (similarly explained in section 5.7.3).
Option (3) assumes a has been revoked in the past, and A tries to replay the revocation transaction.

The block number included belongs to an older transaction and will not match the one currently stored.
Option (4) contradicts the blockchain consistency assumption (A3).
Option (5) contradicts A4 as A can not stop endorsement transactions from being validated.
Option (6) and (7) are dependent on the local protocol used between the gateway and the device. No

protocol can mitigate a network shutdown. They remain small scale attacks occurring at the local level.

5.7.7 Other issues and mitigation

Gateways Overall, as with many IoT application, the gateway represents a weak point in our system.
Through it, an attacker can modify policies and trust scores given to the device. This attack however only
has local consequences as only a few devices depend on any given gateway. This is a betterment com-
pared to a centralized architecture. To mitigate its effect, the device can be either directly connected to the
blockchain, if it has enough capacities, or connect to more that one gateway and compare information.

Alternatively, updates pertaining to policies or trust score can include the corresponding blockchain
transactions. This offers two options. The first option is for the device to contact any other blockchain
node to verify the transactions’ legitimacy.

160



5.8. Comparison to the state of the art

The second option is to maintain a list of administrators and verify that the transactions have been
issued by one of them. This requires the device to be configured with at least one administrator’s public
key during the bootstrap phase. The list of administrators can still be extended later on: a call to the
newAdmin function coming from the original administrator will be considered as valid, the new adminis-
trator will therefore be dynamically included in the device configuration. In this second option, devices
should be wary of unconfirmed transactions. A malicious gateway could indeed update their devices and
produce a valid transaction that is yet to be included in the blockchain. This opens the door for double
spending. The consequences of double spending in this context however are limited.

Smart Contracts The implementation of the different smart contracts has direct implications on the
security of the system. As we have seen in Section 2.8.5, bugs in smart contracts can be exploited to
devastating effects. The risk is even greater as users deploy their own contracts. A formally verified
template should be provided that all actors can use and modify at their own risk.

When a vulnerability is found in a smart contract, it must be deleted and a patched version rede-
ployed. For TrAnC and DisC this implies a change in the device configuration as the new contracts will
not have the same blockchain address. DisC and PolC can also be affected if their respective TrAnC is
removed from the blockchain. PolC and AttC can be redeployed without affecting the device. A PolC
redeployment however affects the DisC that references it.

Denial of Service We have seen that an adversary could perform privilege suppression attacks by
filtering out endorsements transiting between the device and the gateway. Our system presents four com-
munication segments and as many opportunities to block information during its transport. The segments
are: the blockchain network, the communication channel between the blockchain and the gateway, the
one between the gateway and the device, and finally the one between the device and the requestor. The
disruption of communication does not have the same effects depending on the segment.

Blockchains present their own protection mechanisms against DoS attacks. They are implementation-
dependent. Section 2.8.6 addressed this concern.

Depending on the quality of the gateway’s network access, stopping communication between the
blockchain and the gateway can be hard. If the quality is poor to begin with, then communications can
be interrupted by targeting the gateway’s access directly, cutting it from all communications. Otherwise,
the blockchain is a peer to peer network. The gateway therefore has many options of peers to connect
to. Blocking them all would be difficult. If the connection is interrupted nonetheless, the system will
continue to operate with the parameters that were last received. Revocations and other updates will not
go through. Once communication is restored, the gateway can catch up to the rest of the blockchain,
update its devices, and resume as normal.

Blocking the short range communication between the requestor and the device will totally hinder
operation. However, there are no protocol-level protection against that.

5.8 Comparison to the state of the art

Table 5.5 compares our solution to the state of the art.
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We adopted a blockchain-based architecture akin to the one presented in Section 3.7.3. The use of
the blockchain result in a few similarities: Policies are stored on the blockchain. Permission updates
are therefore put into practice after being validated by miners and integrated in the blockchain. In our
proposal, policies are also stored locally on the device. The solutions have very high resilience as they
are based on a distributed peer to peer network. The blockchain of course provides auditability. Note that
in our case, policy history can be traced back but access requests are not stored in the blockchain. Nodes
can be updated and maintained without affecting operation. Note however than redeploying faulty smart
contracts is a costly operation.

Beyond their architecture, these solutions share a resource-level granularity, and a multi-head gover-
nance.

Resource efficiency varies across solutions. We use a gateway to mitigate the high resource demand
of the blockchain. The local evaluation of attribute trust level and storage of policies can still be demand-
ing for constraint devices. Hence our average score in that category. Our analysis is not supported by an
implementation that would let us quantify the impact of such operations on IoT devices.

We only provide explicit revocation. On the blockchain, there are no guarantees regarding integration
time once a transaction has been issued. This means that revocation transactions take an unknown time
to be validated. For certain use case, this is not acceptable. Our solution would therefore be greatly
improved with the addition of implicit revocation. This does not require heavy modifications of our
proposal.

As the majority of the state of the art, our solution does not address delegation.
Our solution shines by enabling serverless access, or rather local access through the gateway. Ouad-

dah et al. [Ouaddah et al., 2016a] for instance require users to contact the device owner and a transaction
to be validated to grant access. Our solution is more flexible and scalable. Zhang et al. [Zhang et al.,
2018b] use one contract per resource/subject pair and per authentication method, leading to static poli-
cies. By using generic policies and detailing how they can be managed and updated, we minimize the
space taken by our access policies while maintaining expressivity. The use of attributes provides a higher
level of context-awareness. The issuance and management of attributes is lacking in [Pinno et al., 2017].
Users are in control of their identities. This enhances privacy and usability.

5.9 Conclusion

This chapter describes a blockchain-based attribute and policy management system for access control
in the IoT which is user-centric, easy to manage, flexible, and interoperable. This system benefits from
blockchain properties such as its distributed nature, resilience, and auditability. The underlying shared
architecture lowers the deployment cost for smaller device owner, thus making security more accessible.
Clients can use several pseudonyms to split their attributes amongst several identities, enhancing their
privacy.

The administrators of the IoT system are free to rely either on a small number of entities that they
fully trust to issue attributes to requestors, or they can leverage a reputation system and agglomerate
many entities’s endorsements of an attribute for verification. The entire lifecycle of an attribute managed
through the blockchain, including its revocation is detailed in our proposal. The issuance and revocation
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Criteria MAAC-B [Zyskind et al.,
2015]

[Ouaddah et al., 2016a],
[Ouaddah et al., 2017a] [Novo, 2018] [Pinno et al., 2017] [Xu et al., 2018a] [Zhang et al.,

2018b]

Model ABAC - - - - - -

Crypto - encrypt: symmetric,
sign: ECDSA ECC asymmetric asymmetric - -

Standards - Kademilia,
LevelDB Bitcoin CoAp,

JSON-RPC - Ethereum, JSON,
SQLite Ethereum

Use Case Smart Lock Mobile user - - - - -
AuthN or AuthZ authN & authZ authN & authZ authN & authZ authZ authZ authN & authZ authZ

Policy storage on BC,
on Device on BC on BC on BC on BC on coordinator,

on Device on BC

Bootstrap phase no yes yes yes no yes yes
Resource Efficiency fair poor poor high high fair fair

Resilience very high very high very high very high very high very high very high
Serverless local no yes no - no yes
Scalability high very poor high poor very high fair fair

Maintainability high high high high high fair high
Permission Updates Int BC Int BC Int BC Int BC Int BC Int BC Int BC

Usability high high fair high fair very high high
Granularity RL RL RL RL RL RL RL

Context-awareness high very poor high very poor very high fair fair
Revocation expl expl expl impl & expl - impl & expl -
Delegation no no yes - - yes -
Auditable yes yes yes yes yes yes yes
Privacy high very high fair poor poor poor poor

Governance multi-head multi-head multi-head multi-head multi-head multi-head multi-head
Maturity Level Th Th SE SE Th SE SE

“-”: Non Mentioned or Non Applicable - RL: Resource Level - expl: explicit - impl: implicit - authN: authentication - authZ: authorization - LoT: Lifetime of Token -
SE: simulated environment - LoS: lifetime of a session - Int BC: integration in the blockchain - Th: Theoritical

Table 5.5: Comparison of MAAC-B with the state of the art

of access control policies is also presented.
Thanks to the blockchain’s decentralized nature, our approach supports dynamic administration. For

instance, IoT devices might be dynamically updated with changes in an entity’s reputation and list of
administrators. Policies can be updated.

We identify four directions in which this proposal can be extended.

1. Implementation - The system should be implemented to test its applicability.

2. Accountability system - To distribute trust further, the reputation system should be integrated to
the access control system. Past behaviors can be recorded and attribute endorsements accepted
based on the community feedback on access control.

3. More context - Attributes are only given to subjects. Our scheme can be extended to include
environmental or object related attributes.

4. Implicit revocation - To mitigate the delay in revocation processing, attribute endorsement trans-
action might be enriched with an expiration time, thus allowing an attribute to be revoked without
the need for a new blockchain transaction.

163



Chapter 5. MAAC-B: Multi-endorsed Attributes for Access Control using the Blockchain

164



Chapter 6

IoT devices’ lifecycle: ownership change
and remote configuration

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.1 Security assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.2 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3 Asset ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3.2 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.3 Security analysis and limitations . . . . . . . . . . . . . . . . . . . . . . 175

6.3.3.1 Blockchain-related threats and limitations . . . . . . . . . . . . 175

6.3.3.2 Use-case-related threats and limitations . . . . . . . . . . . . . 175

6.4 Managing secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4.2 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.4.3 Security analysis and limitations . . . . . . . . . . . . . . . . . . . . . . 179

6.5 Sharing configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5.2 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.5.3 Security analysis and limitations . . . . . . . . . . . . . . . . . . . . . . 181

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

165



Chapter 6. IoT devices’ lifecycle: ownership change and remote configuration

6.1 Introduction

Up until now, this thesis has been focused on access control solutions. Chapter 5 explored the adequacy
of a blockchain-based solution. In this chapter, we come back to a more traditional use of the technology,
asset exchange, and use it to manage ownership transfers.

A shorter version of this proposal was presented at SecureComm 2018 [Dramé-Maigné et al., 2018].
The original paper focused on ownership tracking and presented secret management as an extension. The
present chapter presents a second extension: dynamic configuration sharing.

As mentioned, a common blockchain use case is the tracking of asset ownership such as houses, cars,
or artwork [Rosenfeld, 2012]. In some countries the state cannot be trusted to keep accurate records of
land ownership due to corruption. The blockchain constitutes a viable trust-less alternative. Countries
such as Georgia41, and Sweden42 are each at different stages of implementing a land entitlement project
using the blockchain. Such initiatives have the power to combat that corruption and give power back to
farmers and small property owners.

In this chapter, we propose to use the blockchain to track IoT devices’ ownership. The blockchain is
a cheaper alternative to ownership records when compared to traditional methods that involve an outside
authority such as notaries. It is also a simpler and faster process. Thanks to the decreased cost and added
usability, ownership records can then be used for more low-cost assets such as IoT devices.

This mechanism can also be used to exchange device-related secrets, enabling remote configuration
and efficient secret management. IoT use cases can involve many devices deployed in various physical
locations. This makes manual configuration inefficient. Smart grids are a good example of hundreds of
devices that need to be deployed to cover the entirety of electricity grids. The deployment speed is highly
impacted by the configuration method, as many devices need to be configured at once. By leveraging
the chain of ownership published in the blockchain, we propose to facilitate remote configuration. Addi-
tionally, owners can use the same mechanism to efficiently manage the multiple secrets used to remotely
manage their devices.

The same mechanism can also be used to publish information related to IoT devices, either for
safekeeping or for advertising their characteristics to potential users. IoT use cases depart from classical
ones that involve only a small number of known actors. The list of clients for one IoT device can be
dynamic. In order for that device to be trusted with a task, potential clients may require some guarantees.
For instance, a user could demand that the device be running the latest version of a software, hence
ensuring that security patches have been applied, or simply that its list of communication protocols
intersect with its own. Such information can be published on the blockchain.

Contributions The contributions of this chapter can be summarized as follows:

• An independent proof of ownership based on blockchain transactions,

• The desintermediation and decentralization of ownership records,

41https://www.mitpressjournals.org/doi/pdf/10.1162/inov_a_00276, Last checked July, 14th 2019
42https://www.coindesk.com/sweden-demos-live-land-registry-transaction-on-a-

blockchain, Last checked July, 14th 2019
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• A key management system,

• The advertising of dynamic device properties to potential users.

Symbol Description
D Device
{Di}0≤i<n Family of n devices
idi Identifier of device Di

O Device owner
M Device manufacturer
C A Company
addrA Blockchain address of A. addrA = Hash(pubA)
(pubA, privA) Public/private blockchain key pair linked to addrA

si Secret linked to device Di

KA Master key of A
kA,B Symmetric key derived from KA and shared with B
kA,i Symmetric key derived from KA and idi

txk kth blockchain transaction
outkj jth output of txk

Table 6.1: Chain of Ownership: Notations

Organization Notations are summarized in Table 6.1. The rest of this chapter is organized as follows.
Security assumptions and threat models are presented in Section 6.2. Section 6.3 introduces our

tracking of ownership using the blockchain. Section 6.4 proposes an extension of the approach to con-
figure IoT devices and manage keys for the sake of the owner. Section 6.5 discuss a second extension
that advertises dynamic device properties to potential users. Finally, Section 6.6 concludes this chapter.

6.2 Security Considerations

6.2.1 Security assumptions

We operate under the following assumptions:

A1 Secured blockchain keys: Blockchain keys cannot be stolen, lost or otherwise compromised. This
implies good key management.

A2 Solid cryptographic primitives: Our proposal uses cryptographic primitives such as signatures,
hashes, or encryption. We assume these primitives cannot be broken.

A3 Blockchain consistency: Fundamental blockchain properties include consistency amongst nodes
and consistency over time [Pass et al., 2017]. This implies that all nodes in the network will
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agree on blockchain history, the few last blocks excluded, and that accepted transactions cannot be
modified. We assume these properties are verified and the blockchain history cannot be altered.

A4 Blockchain capability: All actors (M , C, O, and U ) own a blockchain address, the corresponding
public and private key pair, and the means of submitting or retrieving a transaction to or from the
blockchain.

A5 Reputation System: The actors take part in a reputation system where bad behaviors can be re-
ported. We assume this system cannot be tampered with.

A6 Unicity of device’s serial number: A device can be uniquely identified by its serial number. We
assume this serial number is physically located on the device and cannot be tampered with.

A7 Secure random generator: Actors have access to a secure source of randomness.

A1 is a very strong assumption that does not really hold. However, as this is a core issue for all
blockchain applications, there exist a number of methods to safeguard one’s key. This issue has been
addressed in Section 2.8.2.

For the same reasons, we do not address the security of reputation systems (Assumption A5).

6.2.2 Threat model

Across our three proposals, we consider three types of attackers : a malicious new owner, a malicious
previous owner, and a malicious uninvolved third party. We detail nine possible threats involving these
actors. These threats are summarized in Table 6.2.

Malicious previous owners This attacker’s goal is to either fool a potential buyer, by not providing
the device after the sale has been concluded, or to retain access to said device and thus gain access to
sensitive data belonging to the new owner. As the previous owner, the attacker is in possession of the
credentials that, at the time of the handover, enable device access. She can also provision anything unto
the device prior to the handover and is able to produce a valid proof of ownership.

When a device is sold and exchanged, the previous owner can use her knowledge to gain access to
sensitive information. She can also use the device as an entry point into the new owner’s network. This
defines Threat T1.

A prospective owner can be fooled by the previous owner and buy a device that will not be delivered.
This defines Threat T2.

When a secret must be provided in order to gain access to the device (see Section 6.2), the attacker
may refuse to provide it or falsify it, thus preventing the new owner from accessing his device. This
defines Threat T3.

Malicious new owners The goal of this attacker is to gain access to sensitive information without
authorization. As its new owner, the attacker has full access and full control over the device.

After the sale, if the device has not been properly wiped, the new owner can extract potentially
sensitive information related to the former owner from the device itself. This defines Threat T4.
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Nbr Attacker Type Description
T1 Prev. Owner Previous owner retains access to the device
T2 Prev. Owner Proof of Ownership is produced but device is not provided
T3 Prev. Owner Secret is not valid. Provided device cannot be accessed
T4 New Owner New owner extracts sensitive data from the device
T5 New Owner New owner uses device to gain access to sensitive data
T6 Third Party Ownership transfer cannot be completed
T7 Third Party Attacker accesses sensitive information by eavesdropping
T8 Third Party Attacker successfully masquerades as the device owner
T9 Third Party Ownership chain with no corresponding device

Table 6.2: Threats

The new owner can also use the device’s identity to gain access to previous owner’s data. This can
be achieved by interacting with users or devices that still recognize the device as being owned by the
previous owner. This defines Threat T5.

Malicious third party This attacker’s goal is to appear as a legitimate device owner to fool a potential
buyer, steal and re-sale a device, disturb the sale transaction or gain information about the parties involved
in the ownership transfer. When a public blockchain is used, the attacker has access to all information
that transits through the blockchain. She can also produce and submit valid blockchain transactions.

First, the attacker can try to clog the blockchain network. In this event, the network would not be
able to process the transaction signaling the ownership transfer. This defines Threat T6.

Second, when the transfer occurs, the attacker may try to gain knowledge about the involved parties.
This defines Threat T7.

Third, the attacker may pretend to be the owner of a device she does not possess or acquired illegally
(through theft for instance). This is Threat T8.

Fourth, the attacker may fabricate a blockchain trace for a device that does not actually exist. This is
Threat T9.

6.3 Asset ownership

6.3.1 Motivation

As previously mentioned, asset tracking is one of the most straightforward blockchain application. As-
sets that have been considered for this use case tend to be expensive (i.e. land, cars, houses, paintings,
etc). These objects’ ownership will most likely already be tracked using third parties such as notaries,
insurance companies, or other government-sanctioned entities. The corresponding administrative pro-
cedures can be long and costly. By using the blockchain instead, trust in these third parties and their
infrastructure is no longer required. The cost of a transaction is also highly reduced. The transfer of
ownership is a simple blockchain operation. For these reasons, ownership records do not have to be
confined to expensive items. We propose to apply this principle to IoT devices.
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Triggers for ownership transfer in the IoT might be: a user re-selling an old device after it has
been replaced by a newer one, an individual looking for cheaper options and turning to the second-hand
market, a company re-assigning resources as a project closes, long-term renting of IoT devices (for smart
buildings applications for instance), etc.

Benefits of the proposal Keeping ownership records on the blockchain offers the following benefits:

• Desintermediation: Traditionally, changes in ownership must be attested, assisted, and recorded
by third parties. As the blockchain keeps a public proof of the transaction, they are no longer
necessary.

– Lower Cost - Third parties involved in ownership transfers take a commission that drives
up the cost of the operation. Desintermediation therefore has the added benefit of lowering
costs.

– Freedom of choice - Some users may prefer to still use a third party as a buffer between
the vendor and the buyer and as a mean of solving potential conflicts. Instead of selecting
this third party from a small pool of government-sanctioned agents, users are free to choose
anyone that both party agree on.

– Independent Proof of Ownership (IPoO): Proofs of ownership traditionally require an attes-
tation from the third party in charge of the record. This requires the user to register and
sometimes maintain an account with this entity. IPoO can be used to replace company-
dependent registration processes, enabling a user to pseudonymously prove ownership of a
device before maintenance operation or to obtain help from customer support.

• Decentralization: Records are neither controlled nor managed by a unique entity.

– Availability - By its distributed nature, the blockchain offers availability guarantees that the
deployment of a private fact recording infrastructure cannot match.

– Persistence - Blockchain transactions will be stored in a decentralized fashion, protecting
ownership record from loss and modifications by any one party.

• Transparency: Ownership records are publicly accessible. This gives a new buyer information
about the life of a device, its age, maybe what it was previously used for, etc. Transaction history
can easily be checked for discrepancies.

– Traceability - Ownership of an object can be traced from its original owner to the most
current one or the other way around. This enables application such as security alerts: When
an incident affecting a large number of devices occurs, it is currently hard to track owners
and warn them of the issue. Owners can be private individuals. They are not likely to follow
best security practices. For that reason, in the event of a large scale IoT attack, being able to
track and warn device owners could prevent further damage.
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Field Description Status
Tx type Possible values are genesis and transfer Mand
Nounce Can be made mandatory for genesis tx (see Section 6.3.3.1) Opt
Inputs Lists all the inputs of the tx (see Table 6.4) Opt
Outputs Lists all the outputs of the tx (see Table 6.5) Mand

Table 6.3: Transaction format

– Automation - The availability of ownership transfer operation enables the automation of some
processes that should occur when a device changes hands. For instance, the automatic revo-
cation of allotted permissions can be triggered. This would enhance the protection of former
owners’ private information.

• Usability: This method of ownership tracking is simple to grasp and deploy.

– Simplicity - The process by which the ownership is transferred requires a single transaction.
Its simplicity makes it highly usable, even to private individuals.

– Interoperability - When using existing public or private blockchains, one can take advantage
of the infrastructure already deployed by others. This use case does not require the deploy-
ment of a dedicated infrastructure nor the federation of a large number of systems to enable
interoperability.

• Privacy: The use of the blockchain empowers users to decide who they can trust, who they want
to interact with, and what information they are willing to share rather than having them forced into
a pre-established system that may not suit them.

– Pseudonimity - Traditionally, ownership records are nominative. This is natural as the PoO is
linked to one’s identity. When using the blockchain, device ownership is tied to the ownership
of the corresponding blockchain private key. This enables the use of pseudonyms.

– Identity ownership - Blockchain accounts are both created and controlled by users.

6.3.2 Proposal

We take our example at the very beginning of the ownership chain with the sale of a device D. We
consider the following actors : the device’s manufacturer M , and a company C that wishes to acquire
D. Both M and C possess a blockchain address, the corresponding public and private key pair, and the
means of submitting or retrieving a transaction to or from the blockchain.

Transactions The general idea is to link the asset’s exchange to a series of blockchain transactions,
thus creating a chain of ownership. There are two types of transaction available. The transaction that
creates the link between the asset and its digital counterpart is the asset genesis transaction. Transactions
that mark a change in ownership are transfer transactions. Transactions follow the Bitcoin model of
input/output (see Section 2.5.1.1), meaning that each transaction uses previous transaction outputs as
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Field Description Status

Previous tx Hash of a previous tx Mand
Index Index of output to be used in previous tx, must be unspent Mand
Public key Public key that matches the address that owns the selected output Mand
Signature Must be signed with the priv. key that matches the given pub. key Mand

Table 6.4: Input format

Field Description Status

Destination Blockchain address of the output owner Mand
Id Device serial number, mandatory for genesis tx Opt
Secret See Section 6.4 Opt
Data See Section 6.5 Opt

Table 6.5: Output format

inputs. Transactions are detailed in Table 6.3. Table 6.4 and Table 6.5 breakdown the construction of

inputs and outputs respectively.

For an input to be valid, it must be signed with the private key corresponding to the output’s desti-

nation address. Figure 6.1 provides an example: transaction tx0 has 2 outputs, out0
0 sent to addrA and

out0
1 sent to addrB . Transaction tx1 uses out0

0 as input. To be valid, the input must carry the public key

corresponding to addrA along with a valid signature produced using privA, private key corresponding to

addrA. Because outputs only carry blockchain addresses, and because hashes are irreversible, the public

key pubA is needed for the signature validation (reminder: addrA = Hash(pubA). Each output in a

transaction corresponds to a different asset.

A genesis-type transaction has no input. Its outputs however must include an id field. According to

A6, device identifiers are unique and cannot be tampered with. This field, shown in Table 6.5, therefore

strongly affiliates a physical IoT device and its digital counterpart.

Figure 6.1: An example of blockchain transactions
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Figure 6.2: Overview of ownership transfer

Ownership transfer Figure 6.2 presents an overview of the steps required to transfer the ownership of

device D from M to C. First, M must register D in the blockchain (step 1). They do so by issuing a

genesis transaction. That transaction must contain an output addressed to addrM , their own blockchain

address, carrying D’s serial number. This creates device D’s digital representation and registers M as

the original owner.

C requires a Proof of Ownership before they can commit to purchasing D. The specifics of this proof

are addressed in the next section. It involves an exchange of messages between M and C (step 2), as

well as the retrieval of the genesis transaction from the blockchain (step 3). Once ownership has been

established, the sale can proceed.

When C purchases the device, M issues a second transaction of type transfer. This transaction takes

the previous genesis transaction as an input. It includes M ’s signature and public key. The transaction

also contains one output sent to addrC . This second transaction transfers the ownership of D to C.

Proof of Ownership Before the sale can take place, M must produce a valid proof of ownership to C.

Figure 6.3 illustrates this process.

First, C sends a challenge message m to M (step 1). The challenge is chosen by C. M therefore

cannot reproduce an intercepted message. M signs m with privM (step 2) and sends back the proof of

ownership itself (step 3). It must contain four things:

1. The identifier of the transaction that transferred ownership of the device to M (Txi).

2. The output number corresponding to the device in question (j). This output must be unspent.

3. The computed challenge response (s),

4. The public key that goes with the transaction output (pubM ).
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Figure 6.3: Proof of ownership

Using the transaction identifier, Txi, Company C can extract the corresponding transaction in the

blockchain and in particular the designated output, here the jth (step 4). To verify the PoO, C:

• Verifies the validity of M ’s signature over the challenge message m. This ensures that M owns

(pubM , privM ) and by extension addrM .

• Extracts the destination address from outi
j and compare it to the hash of the public key provided

in the PoO.

• Checks that the device ID registered in the transaction correspond to D.

• Validates that Txi is unspent.

Note that providing such a proof does not compromise the owner’s pseudonymity.

Following Assumption A1, blockchain keys cannot be stolen. Assumption A2 states that the blockchain’s

cryptographic primitives cannot be broken. This means that the only person capable of producing a valid

PoO is the owner of both the blockchain key and the device. Furthermore, since the blockchain history

cannot be altered according to Assumption A3, once an ownership record has been published or updated,

it cannot be modified. This neutralizes Threat T8.

A PoO can be required for operations outside of the scope of a sale. Currently, when buying a device,

the customer can be required to register with the corresponding vendor. This involves personal data that

will later be used to authenticate and identify the customer as the device owner. A PoO can be used

instead, enhancing customer privacy.
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6.3.3 Security analysis and limitations

Our proposal presents a few limitations that we describe below. Some are due to the underlying blockchain.
Others stem from the use case itself. We also discuss how our scheme mitigates the threats defined in
Section 6.2.2.

6.3.3.1 Blockchain-related threats and limitations

The principal limitation of this solution is that the security of the scheme depends on the security of
the underlying blockchain [Lin and Liao, 2017]. These concerns have been expressed in Sections 2.8
and 2.9. Assumption A2 does not cover these issues as they are not crypto-related but rather network-
related. However, despite all these theoretical shortcomings, blockchains like Bitcoin and Ethereum have
demonstrated their resilience to attacks and only grown stronger as a result.

Another issue that needs addressing is the resistance to DDoS attacks. In the Bitcoin blockchain,
the only transactions without inputs are coinbase transactions. First transaction of a block, a coinbase
transaction can only be issued when a block is mined. Furthermore, now that Bitcoin miners’ payment
is moving from block reward to transaction fees, all other transactions have a cost that is only going to
increase over time. This mitigates DDoS attacks as the cost is linear in the number of transactions. When
a large number of transactions floods the network, miners can temporarily increase transaction fees, thus
rendering an attack even more costly. If they do not require inputs, genesis transactions are not exempt
from fees. Issuing a large number of them has a cost that is at least linear in the number of transaction
and can even grow faster as the miners’ fees adapt to the situation. The cost of the attack is a deterrent.
This addresses Threat T6. Valid transactions can also be created by transferring a device’s ownership to
oneself. But the cost is the same.

We propose two additional means of mitigation. The first solution is to use a private blockchain
where the right to issue genesis transactions is limited to pre-approved actors. Manufacturers would
need to be registered in a manufacturer consortium, granting them the exclusive right of issuing genesis
transaction, thus creating new devices. A manufacturer that behaves incorrectly, by advertising non ex-
isting devices or issuing too many genesis transactions, would lose its publication privileges. This has the
added advantage of addressing Threat T9. But private blockchains unfortunately limit interoperability
and do not offer the same decentralization-related properties when compared to public ones.

A second solution consists in increasing the cost of genesis transactions. They would require a
nounce as an input (see Table 6.4). Similarly to Proof of Work (see Section 2.6.1, the nounce would be
chosen so that the hash of the transaction is lower than a pre-defined threshold. The difficulty does not
need to be as high as Bitcoin’s PoW and can be adapted to counter DDoS attacks. The downside is that
this increased computational cost will mostly impact manufacturers as they are the most likely to issue
genesis transactions. This is therefore likely to impact the device’s cost in return.

6.3.3.2 Use-case-related threats and limitations

In the above proposal, a genesis transaction creates the digital representation of an IoT device. If the
transaction is linked to the device via its serial number, no proof of the existence of this device is required.
The production of a valid proof of ownership does not translate to the possession of a real-life IoT device.

175



Chapter 6. IoT devices’ lifecycle: ownership change and remote configuration

In case of theft for instance, the original owner can still produce a valid proof but will not be able to
produce the device itself. This situation is not different from online shopping where the buyer has to
rely on pictures, listings, reputation, or other criteria to decide whether to trust the vendor. Following
Assumption A5, vendors that do not provide devices after the transaction is completed can be reported.
Their reputation score will be lowered and they are less likely to fool someone else in the future. This
addresses Threat T9.

Similarly, the issuance of a transfer transaction does not force the shipping of the device to the new
owner. It means however that the previous owner can no longer prove that they own the device. This
is a deterrent as future prospective buyers are unlikely to commit to the sale if the ownership cannot be
proven.

Blockchain transactions are irreversible. The vendor can therefore be tempted to require payment
before the transfer transaction is issued. The buyer then runs the risk of that transaction never being is-
sued. Bitcoin’s multi-signature presents a solution to this problem. Multi-signature refers to transactions
that need more than one signature to be valid. The desired number here is 2 out of 3. The buyer and
vendor choose a party that they trust to be impartial. The buyer then sends the funds to the multisignature
address. If everything goes smoothly, upon reception of the purchased item, the buyer and seller both
sign the transaction and funds are sent to the vendor. When a conflict occurs, the third party decides who
should receive the funds and signs the transaction together with the interested party. The same can be
done with ownership transactions. This addresses Threat T2.

An owner could also try to sell the same device to two different people. This is a problem that is
similar to double spending (see Section 2.14. In a similar fashion, both transactions cannot co-exist. New
owners should therefore be sure to wait for the blockchain transaction to be confirmed. For Bitcoin, the
generic rule is to wait for the transaction to be buried under 5 to 6 blocks, which takes around an hour.
For such a use case, this delay is not an inconvenience. In all of the above cases, bad behavior from any
of the involved actors will negatively affect that actor’s reputation score (Assumption A5). All reporting
should include the incriminating transaction(s) when applicable. For a double sale for instance, two
transactions spending the same output with valid signatures should be provided as proof of bad behavior.

Finally, malicious previous owners might want to retain control of their former device after it has
been shipped to its new owner. To protect against this risk, the device should be wiped clean upon
reception and all the credentials should be changed. This addresses Threat T1. The same applies to a
former device owner who wants to prevent her sensitive data from being accessed by the new owner.
Before the device can be shipped, it should be restored to factory default. This addresses Threat T4.
The necessary steps should also be taken to revoke the device’s access to all sensitive services such as
a smart home private network. This addresses Threat T5. Threats T4 and T5 are better addressed by
Section 6.5.

6.4 Managing secrets

6.4.1 Motivation

Security rests on the sharing of secrets. These secrets are used to secure communications or encrypt data.
When a device is manufactured, initial secrets are provisioned to start the security chain. When acquiring
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a device, its secrets need to be retrieved from the manufacturer or previous owner. The means currently
at our disposal to do so lead to slow and cumbersome deployment processes. What is needed therefore is
a mean of efficiently retrieving that information to be able to remotely and efficiently configure devices
in an industrial context.

Currently, physical access to the device is often necessary. When buying a device, the new owner
will have it shipped to her location and configure it. The pin or the password may be written down
on the device’s box, in the configuration manual or otherwise physically attached to the device and
its packaging. Buyer and seller might also choose to call on a trusted third party to take care of the
configuration and installation of devices.

The need for an initial physical access is a hindrance on the deployment process. Because many
devices need to be configured at once, this method that is slow, costly and may require to trust confidential
information to a third party is ill-fitted.

Another issue is the management of these secrets. In IoT scenarios, multiple devices may be owned
by the same entity. Furthermore, symmetric cryptography is often preferred due to the constrained nature
of IoT devices. This is another multiplying factor for the number of keys involved. This multiplicity
implies the need for an efficient management of secrets over the life a device. Based on the blockchain
ownership records, we propose a solution that both delivers a device’s secret to its newest owner and
enable their management over the life of the device.

As an extension, this proposal presents the same benefits as those described in Section 6.3.1. To these
we add the a cost reduction and simplification of the deployment process, the reduction of the number of
secret keys, and a distributed storage for said keys.

6.4.2 Proposal

For the sake of this proposal, we consider IoT devices as black boxes exposing a number of functions
that can be activated either by physical interactions or via a communication channel. In both cases, a
secret is required to successfully invoke any function. When the device is manufactured, an initial secret
is provided. As for any function, the generation of a new secret requires the previous secret and can be
invoked either by physical interaction or through the communication channel.

Once again, we start at the beginning of the ownership chain. The manufacturer M sells a batch of
n devices {Di}0≤i<n to a company C. Each device has a unique identifier idi. Additionally, C owns
a master key KC . Used as an input for key derivation, KC should not be shared and only be known by
C. The symmetric key kC,M is derived from KC and M . This means that a symmetric key is associated
with every vendor. Key kC,M will be used to encrypt {si}0≤i<n, secret linked to device {Di}0≤i<n. The
blockchain still supports two types of transaction, genesis and transfer.

Delivering device secret Figure 6.4 illustrates the process by which ownership is transferred and se-
crets are exchanged :

Step 1 M interacts with each Di and generates a secret si. This secret si can be an administrative pass-
word, a private key, a pin, etc.
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Figure 6.4: Transferring ownership and delivering device secret

Step 2 M retrieves kC,M from C or from its own record. That information can be provided along with

payment information for instance. We assume kC,M to be a symmetric key that needs to be pro-

vided by the buyer. If C prefers using asymmetric cryptography, the key used to encrypt si can also

be retrieved from a registry storing public key records. These keys are used for application pur-

poses and should differ from the keys used for the blockchain protocol. Using kC,M , M encrypts

each si.

Step 3 M issues a genesis transaction, tx0, with n outputs where out0
i is linked to Di through its serial

number idi and is sent to addrM , her own blockchain address. M issues a second transaction of

type transfer, tx1, with {out0
i } as inputs, signed with privM . This transaction yields n outputs,

one for each Di, sent to addrC . In addition to addrC , each output carries EnckC,M
(si) (see

Table 6.5).

Step 4 C retrieves {EnckC,M
(si)} from the blockchain and deciphers them, recovering {si}.

Step 5 Using si, C gains access to each Di. When necessary, si is also used for configuration.

The same process can then be repeated by the new owner to sell the device to somebody else. tx1’s

outputs can be separated, enabling devices to be sold separately.

This scheme involves several keys and secrets, especially when considering devices bought from

multiple vendors but only KC and privC need to be safeguarded by C. Each si can be recovered from

KC . This greatly simplifies the management of secrets where many devices are involved.
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Figure 6.5: Publishing a new secret to the blockchain

Updating device secrets Updates can be made to a device’s secret, as illustrated by Figure 6.5. After

buying a device Di, the new owner should change the corresponding si as this secret is known to the

previous owner (Threat T1). The first step is to recover the encrypted secret from the transfer transaction

published in the blockchain (step 1). Assuming that M is our vendor and C is the new owner, si is

encrypted with kC,M , the symmetric key shared by C and M . That key can be generated from KC and

used to decipher si (step 2).

Using si, the owner can invoke any function of Di including the generation a new secret, snew
i (step

3). If si is valid, the device generates snew
i (step 4), and sends it back to the owner (step 5). This secret

can now replace si in the blockchain.

The owner generates a new key kC,i using their master key KC and the device identifier idi, and en-

crypts snew
i (step 6). The last step is a simple transfer transaction to themselves, replacing EnckC,M

(si)
by EnckC,i

(snew
i ), where Enc is the encryption algorithm (step 7).

Such a transaction can also be made to hide the link between the owner’s identity and their blockchain

address, thus hiding the number of device belonging to a single owner. This also hides how long an actor

holds on to a device (Threat T7). Note that the new secret should of course be encrypted with a key that

is not known to M . Here kC,i is used to replace kC,M .

6.4.3 Security analysis and limitations

The first delicate point of this scheme is the transmission of the encryption key, kC,M , from C to M .

If symmetric keys are used, then a secure communication channel should be put in place to enable the

exchange. The security of a key during its transmission falls outside of the scope of this proposal. When
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a large number of sales involve the same actors, here M and C, the same key is used to encrypt all
secrets. The symmetric key must be exchanged only once. Alternatively, a master key can be used from
which session keys are extracted for encryption.

If asymmetric cryptography is used, the public key can simply be transferred or even made available
in a registry. Registries can be switched without affecting the scheme. This mitigates Threat T7.

Before selling a device, the owner should invoke the secret generation function to bind the device to a
new secret. If the secret that is communicated to the new owner via the transfer transaction was already in
use, it can be used to retrieve private information from the previous owner (Threat T4). Similarly, if kC,M

is a symmetric key, it should not be reused when a new secret is uploaded to the blockchain. Otherwise,
all snew

i are exposed to M (Threat T1). To achieve this, kC,i can be derived from elements linked to the
blockchain transactions. Let txn be the latest transaction that proves M owns Di. Such a transaction
must exist with unspent output otherwise M is not the rightful owner of Di. In that case, Hash(txn)
could be used as an input for key derivation. The transfer transaction fromM to C, transaction txm, will
use one of txn output as input. Similarly, when updating si, an output from txm will be used. The hash
of the previous transaction is therefore an easy element to recover. It varies with transactions, leading to
different kC,i.

As stated in Threat T3, the new owner runs the risk of receiving the correct device but being given the
wrong secret. In such a case, the device is unusable. The motivation behind this can be for the previous
owner to retain control of the device (Threat T1) while accessing the new owner’s network. Devices
should not be connected to sensitive infrastructure before the secret has been verified and changed, and
the device has been wiped clean. As these are basic precautions, the attack has really low chances of
success. Meanwhile the attacker is no longer in possession of the device. Furthermore, such bad behavior
can be reported through the reputation system (Assumption A5). There are few incentives to engage in
this kind of behavior.

One should be careful about publishing encrypted secrets to the blockchain as attackers may try to
decipher them (Threat T7). The secret should therefore be updated in accordance with the security of
the used encryption scheme. Recovery of old secrets are not a threat as they are only used to activate
functions and cease to be useful once they have been updated. This, of course, holds if no information
about the new secret can be inferred from the old ones.

6.5 Sharing configurations

6.5.1 Motivation

We have seen that information pertaining to the device can be stored into the blockchain for its owner’s
use. It is also the case for information that would be used by users or other IoT devices willing to
interact with it. Contrary to static properties such as memory space or power consumption, a device
possesses a number of dynamic properties. Such properties can be useful to others for any number of
reasons such as authentication, evaluation of trust (and risks), discovery of assets, etc. Other examples
include advertising known protocols, the version of the software that is running on a device or other
application-specific information.

During the life of a device, the owner can share and update that information using the blockchain.
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Figure 6.6: Publishing dynamic properties to the blockchain

Transfer transactions can be assorted with any number of properties that the owner judges relevant to the

use of their device. Updates are made by transferring ownership to oneself. Users can then retrieve that

information from the blockchain.

6.5.2 Proposal

Let O be the owner of a device. O wishes to publish PropD, a set of dynamic properties of D. Let U be

a potential user of D. User U needs to consult PropD before exchanging with D. Let txn be the latest

blockchain transaction designating O as D’s owner. The corresponding output, outn
l , must be unspent,

otherwise, O is no longer the owner of D.

As illustrated in Figure 6.6, O issues a transfer transaction, txm, with outn
l as input, signed with

privO. This transaction yields one output sent to addrO that, additionally, carries PropD (see Table 6.5).

U can then retrieve txm and extract PropD. After verifying that the dynamic properties of D are in

accordance with its requirements, U interacts with the device.

6.5.3 Security analysis and limitations

The first question that comes to mind is the allotted size for PropD. This, once again, depends of the

underlying blockchain. In Bitcoin, the maximum size of a block is fixed at 1 MB43. Naturally, this

limits the size of a transaction. Furthermore, bigger transactions have a higher cost. Miners are paid by

transaction fees. If transaction fees were fixed, a large number of small transactions would amount to

more fees than a small number of big transactions. To compensate for that, bigger transactions should

43Many want to increase this limit but this would require a hard fork. The issue is still being debated.
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pay a higher fee. In Ethereum, there is no fixed limit to the size of a transaction but the amount of gas

per block is limited. Even if this limit augments with time, the size of a transaction is currently limited

to around 100.000 non-zero byte. Bigger PropD also amount to higher cost. Published data should

therefore be kept to a minimum. This is inline with many other IoT requirement however.

Privacy concerns might arise from the publication of device information in such public fashion

(Threat T7). They can be tackled by either using a private blockchain or encrypting the published content

to restrict its viewing. Group keys [Harney and Muckenhirm, 1997] or attribute-based encryption [Goyal

et al., 2006] can be used to efficiently control access to that information.

Finally, IoT devices may want to retrieve PropD. Unfortunately, the resources required to maintain

a connection to the blockchain network are too much for constrained devices at the moment. This

limitation is not due to the blockchain technology but rather to its youth. Light clients specifically

designed for IoT devices should emerge before long. In the meantime, a gateway can be used to retrieve

that information in the device’s stead.

6.6 Conclusion

The blockchain has made the tracking of asset’s ownership relatively inexpensive. It does not have to

be reserved for houses and boats any longer. We therefore propose to use it to track the ownership of

IoT devices. The chain of ownership can be augmented by adding additional information to transfer

transactions. We present two ways to do so. First, encrypted device-related secrets can be added to help

the owner manage their devices. Second, relevant dynamic properties can be advertised to users and

other devices.

Figure 6.7: Threats addressed by our proposal

We have argued the benefits of these applications. Among them, a pseudonymous proof of ownership

can be produced to give guarantees to a prospective buyer and replace the registration systems in place,

currently run by private companies. Other benefits include the desintermediation and decentralization of

classic solutions. Limitations of our proposals have been argued.
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A threat model has been detailed and three potential attackers considered: a malicious previous
owner, a malicious future owner, and a malicious third party. We have defined six security assumptions
and nine security threats involving these attackers. Table 6.7 summarizes the latter. Out of nine threats
identified, three are addressed directly by our scheme (in green), three are mitigated (in orange) in par-
ticular by the use of a reputation system, and three are not addressed (in red). Threats T1, T4, and T5
however can be mitigated by the precautions taken by device owners right before and after ownership
transfers: the erasure of sensitive data, the generation of new secrets, the isolation of a new device before
configuration is complete, ...

One could argue that blockchain keys should not be considered safe and can easily be lost or com-
promised. However, the issue of safekeeping a key has been studied extensively and many solutions
can be provided. In the current state of affairs, the requirement that every potential owner possesses a
blockchain address seems the most unlikely. We believe this is likely to evolve in a near future.
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Conclusion and Perspectives
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This chapter concludes our thesis. Section 7.1 summarizes our research and reflects on the questions
stated in Section 1.4. Section 7.2 looks at improvements our contributions could benefit from as well as
future research directions.

7.1 Conclusion

7.1.1 Research summary

The content of this thesis can be summarized as follows:

Chapitre 1 introduced our readers to the Internet of Things and its many faces. The IoT is indeed made
up of various applications domains such as Smart Gadgets, eHealth, Smart Homes, Smart Buildings,
Smart Cities and Infrastructure, or the Industry 4.0. Each area comes with a specific set of requirements,
a specific set of users, their own set of legacy systems, values, different properties, etc.

We have also discussed the challenges faced by IoT applications. In an ecosystem where most actors
have limited computation power, where bandwidth is restricted either by cost concerns or by the quality
of the network itself, and where memory can be a rare commodity, the primary challenge is resource
efficiency. The longevity of systems and application is also a concern: Devices deployed in the wild are
hard to maintain while more susceptible to physical attacks. Software updates are difficult to conduct.
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Devices should include a potential for growth but resources are already missing for the current task at
hand. Business models can be hard to find in a fragmented market with emerging regulations concerning
technological aspects as well as privacy. But one of the most important challenges facing the IoT today,
is its security.

Inexperienced users, hard coded passwords, security patches that cannot be delivered, the IoT is
becoming infamous for its botch security measures. This not only negatively impacts the growth potential
of the field, but also creates numerous unprotected devices that represent free resources for malicious
parties. Privacy is a primary concern. But the risks are far greater when it comes to vulnerable medical
devices or heavy machinery.

Access control is one of the most important tools in a system’s protective arsenal. We defined two
central conflicts brimming in the access control community: adaptation vs invention, and centralization
vs distribution. IoT systems do not support traditional methods of access control as they are too demand-
ing. One solution is to adapt those methods, which is easier but can lead to cumbersome processes, or
invent new ones, harder to do but more likely to fit the different IoT requirements. Centralization is used
to circumvent the resource constraints of edge devices but lead to single point of failure and scalability
issues. Distribution on the other hand presents a lot of advantages but is hard to achieve when devices
are so limited. In some cases however, contacting a central server is not an option: when on a boat in the
middle of the ocean for instance. Access control solutions must account for these situations.

The challenges of handling a device’s life-cycle have been addressed. from the manufacturing line
to its first deployment and eventual retirement, a device may change hands many times. Tracking and
facilitating those exchanges is in everybody’s best interest. To know where to send security updates for
instance.

From these challenges, we have extracted six research questions that the rest of this thesis tried to
answer:

1. What are the main remaining challenges of access control in the IoT?

2. What role does architecture play in the existing access control solutions?

3. Can access control logic be deported to edge node to enable serverless authorization decisions?

4. How can we increase security usability?

5. Can the blockchain be leveraged for decentralizing access control while maintaining expressivity
and offline access?

6. Using the blockchain, can we tackle other IoT issues such as the lifecycle of devices?

Finally, a summary of our contributions was presented and the organization of the manuscript de-
tailed.

Chapitre 2 took a deep dive into the blockchain technology. It succinctly introduced the cryptographic
primitives behind the blockchain: hash functions, digital signatures, and merkle trees. Beyond basic
concepts such as transactions, addresses, miners, or blocks, it presented the diversity and complexity of
the blockchain ecosystem.
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We discussed the specifics of three of the most popular blockchain implementations, namely Bitcoin,
Ethereum, and Hyperledger. Transaction-based model, blockchain accounts, wallets, smart contracts,
public and permissioned model, order of execution, etc. Similarities and differences were dissected.

Consensus protocols were heavily featured. We addressed the workings, benefits, and short comings
of Proof of Work and Proof of Stake as well as alternative, less common methods. Proof of activity
combines the two previous protocols while the Ripple consensus mechanism is based on decentralized
trust.

Governance is another touchy issue. First, there is the question of whether to go with an open public
blockchain or towards a more restricted permissioned blockchain. If you choose public, then comes the
issue of collectively deciding which bugs to fix, what improvements should be made, and how to react
to attacks. These decisions can be made off or on the blockchain itself. We also looked at soft and hard
forks and their consequences on the future of the community.

Security has been discussed, of course. Famous attacks such as the double spending or 51% attacks.
Less famous ones such as withholding attacks. Beyond attacks, potential vulnerabilities and limitations
have also been addressed: scalability issues, the legal framework around the blockchain, or privacy
concerns.

Armed with this knowledge, the relevance of an association between the blockchain and the IoT
has been debated. On the one hand, we have benefits such as decentralization, desintermediation, trans-
parency, reduced cost, and built-in auditability. On the other hand, scalability issues, transactions’ val-
idation time, stability, usability, and of course resource efficiency are a concern. But the blockchain is
young and some of these issues can be circumvented until the community comes up with a solution.

Chapitre 3 surveyed access control solutions for the IoT. It presented the background behind access
control: the difference between the policy, model, and mechanism abstractions, the four fundamental
functions of access control (PEP, PDP, PAP, and PIP), capability-based and attribute-based access control.

We proposed 16 criteria to compare solutions from the literature. Some objective, some qualitative.
Our analysis is separated by architecture: centralized, hierarchical, federated, and distributed. These
architectures are defined using the multiplicity and localization of the PDP function. For each architec-
ture, we detailed the benefits and shortcomings that solutions inherit from their choice of architecture.
Examples from the literature are provided to illustrate our remarks.

Using this analysis, we defined an architecture-based taxonomy of IoT access control solutions to
help practitioners pick the architecture that will work the best for their application. Future research
directions were also mentioned. Among them, usability, privacy, and serverless authorization, three
properties that we tried to integrate in our following contributions.

Chapitre 4 presented the OATL project, a set of access control libraries to issue, store, and verify
authorization tokens. Through a smart car rental use case, we highlighted the need for an access control
solution that would offer: resource efficiency, serverless authorization, revocation, granularity, context-
awareness, and be actuator-compatible. But our focus was not on the access control process itself. OATL
aims at pre-packaging access control mechanisms for IoT developers. From that lense, new requirements
emerge: ease of integration, generality (across application domains), and modularity (across many types
of devices, protocols, policies, etc).
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We proposed three libraries, each hosted on a different actor, that developers would integrate in their
solutions. The Token Generation library is hosted on an IoT cloud platform. It issues tokens but does
not take authorization decisions. The Client-side library is called by the mobile application. It manages
the tokens for the client, including storing sensitive information such as private keys. Finally, the Token
Interpretation Information verifies the token’s legitimacy and challenges its bearer to prove its ownership
of it by requesting a signature over a random message.

We proposed two types of tokens to accommodate the requirements of different applications. Neither
carries the identity of its intended recipient. A new token key is generated with each token and acts as
short term credentials for the user. The first token uses symmetric cryptography and assumes devices are
not time-aware. The second is based on public-key cryptography and assumes time-awareness.

After detailing the access control process and revocation mechanism, we presented a thorough secu-
rity analysis of our proposal. We highlighted what properties were offered by our libraries and which
remained the responsibility of the vendor that would implement the code to run each component. A Proof
of Concept has been implemented to showcase the usability of our solution.

We concluded the chapter by a comparison of our solution with the state of the art using the same
architecture. OATL distinguishes itself by enabling explicit revocation with serverless authorization, by
its focus on usability, and by its respect of privacy.

Chapitre 5 introduces MAAC-B, another access control system that uses the blockchain instead of to-
kens. MAAC-B is made of three services: attribute management, policy management, and trust manage-
ment. Each of them is based on one or several smart contracts that register the corresponding information
into the blockchain.

Attribute Contracts are deployed by the clients themselves, giving them the freedom to slip their
attributes over however many pseudonyms as they wish. Anybody can endorse an attribute. It is a
simple blockchain transaction. The validity of an attribute, its trust level, is then defined by the trust the
validating entity puts in the endorsing entities.

The Trust Anchor Service is used to manage trusted entities, and promote new administrators. The
Policy Service also uses it to check whether some entity is a registered administrator, and therefore
should be able to modify policies. Policies are defined in a generic fashion. They are made of a list of
attributes the requestor must possess and the trust level that must be met in order for an attribute to be
deemed valid. Dispatch contracts then associated these policies to resources.

Devices are connected to the blockchain via their gateway that scans incoming blocks for policy
updates. Policies are then bundled together and transmitted to the device for local storage. When an
access request is placed, the device queries its gateway for the requestor’s attribute endorsements. Each
attribute is then score according to them.

We provide a security analysis of our proposal, and compare it to other blockchain-based IoT access
control solutions from the state of the art. Once again, our proposal enables serverless authorization as
well as user privacy. Attributes make for a flexible solution with high context-awareness. Their issuance
is distributed.

Chapitre 6 departed from access control and focused instead on ownership. Asset tracking is one of the
more natural blockchain applications. Once reserved for expensive items such as jewelry, the blockchain
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has democratized the practice to more common assets. IoT devices can benefit from this practice for a
few reasons. The desintermediation enabled by the blockchain lets users produce an independent proof
of ownership that can be used when selling a device, when making repair, or to install new software.
Decentralized storage and processing enhances availability and persistence. Using the transparency and
accessibility of ownership transfer information, one could automate permission revocation in the event
of an ownership change. Owners control their identity and the information they share about their device.

We proposed two types of transactions: genesis transactions create the link between tangible objects
and their digital counterparts, transfer transactions change ownership from the emitter to the recipient.
An independent Proof of Ownership can be produced by signing a challenge message with the key that
corresponds to the recipient address of the latest transfer transaction.

Two extensions were proposed. The first aimed at improving the management of device-related
secrets. We considered the IoT device as a black box providing functions that can only be activated using
a secret. This secret must be transferred from the original to the new owner. We proposed to embed it in
the transfer transaction, encrypted with a secret key shared by vendor and actor. The secret can then be
retrieved from the blockchain and decrypted. The same scheme can be used to manage the secrets of a
large number of devices: secrets are encrypted and posted to the blockchain. The owner uses a master
key to derives one encryption key for each secret based on the device identifier. Now the owner only
needs to safeguard its master key.

The second extension embeds dynamic device properties into transfer transactions. Devices possess
a set of static properties such as their overall memory space. They also possess dynamic properties such
as the memory space that is currently available. Potential users might be interested in these properties.
The blockchain would let owners advertise them without many additional cost.

We defined seven security assumptions and nine potential threats. Each proposal has been analyzed
through this spectrum. We also addressed limitations.

7.1.2 Research questions

In Section 1.4, we asked six research questions and have tried to answer them throughout this manuscript.
Table 7.1 summarizes which contributions tackles what research question. Here is what we found.

Contributions
Questions 1 2 3 4

1 x
2 x
3 x x x
4 x x
5 x x
6 x

Table 7.1: Research questions in contributions

Question 1 What are the main remaining challenges of access control in the IoT?
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In Chapter 3, we analyzed the state of the art in IoT access control. We concluded that the com-
munity was focused on either fully centralized or distributed solutions, leaving a lot of space for hybrid
architectures. Federation seems to be getting more interest recently. If the world is heading towards
smart infrastructure, interoperability needs to be addressed.

Usability is another important property that the community should focus on. Without it, security
measures are simply disabled by end-users. When dealing with companies, we can rely on their policy
to push employees to safeguard company’s interests and apply security measures. When end-users are
individuals, only usability can ensure compliance. Yet usability is still not integrated in the design of
proposals. It is not the case for every solution though. A number of solutions try for instance to reduce the
number of time a user has to authenticate by isolating the authentication process from the authorization
process. Default password should be stronger and unique, written on the device’s packaging, as is the
case for Internet routers. Other solutions use context information for continuous, background access
control. User involvement should be minimized.

Users also demand privacy. The European General Data Protection Regulation (GDPR 44) requires
opt-out options when it comes to user information collection. This is not feasible in many existing
solutions, as the systems are not built to enable that. Because privacy was not considered as part of the
system’s requirements. In the future, privacy should be integrated at the design phase.

In Section 1.2, we list some of the challenges the IoT is facing. One of them is longevity. This
translates to the access control process as flexibility. Because of the constrained nature of IoT devices,
access control proposals tend to be hyper specific. They tend to lack adaptability and do not account for
potential changes in organization or requirements.

Finally, serverless authorization needs to be addressed in more details. In the state of the art, so-
lutions that offer serverless authorization lack other properties that are present in solutions that do not
support serverless authorization. Explicit revocation is an example. But there are many use cases that
would benefit from serverless authorization and cannot afford the current drawbacks.

Question 2 What role does architecture play in the existing access control solutions?
This question is answered via our exploration of the state of the art in Chapter 3. We have shown that

a lot of a solution’s properties are inherited from their architecture. Beyond the obvious aspects that are
scalability or resilience, it plays a role on how revocation is addressed, how delegation can be achieved,
or what level of context-awareness can be attained.

In Section 3.4, we put forward the properties shared by centralized architectures, differentiating be-
tween those who enable serverless authorization (Section 3.4.2), and those who don’t (Section 3.4.1).
Section 3.5 defines hierarchical architectures and provides the benefits and shortcomings of such ar-
chitectures for the IoT. Federation is addressed in Section 3.6. Distributed architectures (Section 3.7)
proved harder to define. They have therefore been split into three types, each with their own sets of
properties: PDP/PEP hybrid (Section 3.7.1), multi PDP (Section 3.7.2), and blockchain-based solu-
tions (Section 3.7.3)

Our survey concludes that architecture is a good indicator of similarities between IoT access control
solutions.

44GDPR: https://gdpr-info.eu, Last Checked: July 28th, 2019
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Question 3 Can access control logic be deported to edge node to enable serverless authorization
decisions?

This thesis answered that question in three ways. First, it explored the state of the art for solutions
enabling serverless authorization. Then, we proposed two solutions of our own: OATL and MAAC-B.

The survey presented in Chapter 3 has shown there are several ways to achieve serverless authoriza-
tion with various degrees of edge intelligence. Centralized solutions (see Section 3.4.2) use tokens to
transfer the access control decision from the PDP to the PEP, located in the device, thus enabling server-
less authorization. Here, the edge device only enforces the decision. In Section 3.7.1, we have seen
PDP/PEP hybridization, allowing the device to take part in the access control decision by checking extra
conditions at access time.

OATL takes the hybridization approach to edge intelligence. In chapter 4, we propose a set of li-
braries to manage tokens. Issuers have the option to embed local conditions into the tokens. OATL
however does not provide a format for these conditions, nor is it part of our libraries’ duty to handle the
evaluation.

MAAC-B on the other hand, presents a solution where the device acts as an independent PDP. Chap-
ter 5 defines a policy management system that lets administrators push policies onto their devices, acting
as PAP. The blockchain, by storing user’s attributes, acts as a PIP for the device. It is the device that
ultimately evaluates each attribute’s trust level and evaluates the policy, pushing the access control logic
to the device.

Question 4 How can we increase security usability?
Usability is mainly addressed by the OATL project presented in Chapter 4. Usability is generally

considered with regards to the user. But the security issue in the IoT is partially due to the absence of
adequate security measures within IoT products. We therefore considered the problem of usability at the
design phase. The goal then becomes to push IoT vendors to integrate robust access control mechanisms
in their product. To achieve this, we focused on a solution that would be inexpensive and easy to integrate.
We built a solution that is as generic as possible and can be used outside of the car rental use case we
used as illustration.

The authorization engine and ultimate access decision are purposefully left out of our scope to ac-
commodate different requirements. Several types of tokens are proposed to accommodate different types
of devices. A library is proposed for each actor in the process. The model is therefore valid whether a
single actor is in charge of developing all three pieces of software (cloud platform, mobile application,
and device application) or each brick is developed independently. Interoperability is assured by the use
of the OATL libraries.

Chapter 6 also touches on usability. It provides a simple method to track ownership and handle a
device’s lifecycle at a reduced cost. The blockchain provides a shared infrastructure that frees users
from vendor dependency. Section 6.4 adds on the original proposal by contributing a method to manage
device-related secrets.

Question 5 Can the blockchain be leveraged for decentralizing access control while maintaining ex-
pressivity and offline access?
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Blockchain-based solutions to IoT access control were surveyed in Section 3.7.3. We found that
context-awareness and expressivity were highly dependent on the specifics of each solution. Two pro-
posals [Ouaddah et al., 2016b, Zhang et al., 2018b] offer offline access. Ouaddah et al. require the
involvement of the device owner and the issuance of several blockchain transactions for each access
which can be a deal breaker for time sensitive solutions. Zhang et al. use ACL to take access control
decisions. Their ACL are static and hyper specific, leading to a decrease in expressivity.

Chapter 5 describes our own attempt at using the blockchain as a tool for decentralization. MAAC-B
uses the ABAC model. Attributes in ABAC can be used to represent any and all features of subjects,
objects, actions, or of the environment: identity, status, capacities, location, role, etc. This makes ABAC
a highly expressive system. If MAAC-B is only focused on user attribute, it still allows more flexibility
than static ACL. It requires a working connection to the device’s gateway which is a requirement found
in many IoT applications. The system can operate normally when cut off from the rest of the blockchain.
Updates are not received of course. But offline access is successfully enabled.

Question 6 Using the blockchain, can we tackle other IoT issues such as the lifecycle of devices?
This question is addressed by Chapter 6. In this chapter, we use the blockchain to track ownership

changes, obtain device-related secrets when they arise, and advertise changes in dynamic properties of
devices. Compared to current ownership registration systems, the blockchain offers desintermediation,
decentralization, transparency of processes, and an increase in both usability and privacy.

7.2 Perspectives

7.2.1 Improvement on our contributions

In this section, we address potential extensions for our work.

Contribution 1: Access control survey By nature, a survey can always be extended by adding newer
proposals. IoT access control is a hot topic with new solutions coming out every month. Blockchain-
based solutions are especially popular considering that there were none only five years ago.

Outside from the obvious then, we would like to refine our survey by providing a detailed decision
tree that would not only guide the reader to the type of architecture that best fits their needs, but also to
the proposal that best matches their requirements.

Contribution 2: OATL The OATL project is very much ongoing and the results presented in Chapter 4
only represent the first iteration. As stated in the conclusion of this chapter, improvements to OATL can
be classified in two categories: improvements to the existing implementation, and improvements to the
proposal.

To improve our implementation, the following should be added to the PoC:

• Update type #1 tokens - Section 4.3.1 presents a specification that has been improved by feedback
from the PoC implementation. Parts of the revised specification are:
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– New derivation algorithm

– Challenge keys

– Clearer derivation process for session keys

• Implement type #2 tokens - The PoC only provides type #1 tokens. Implementing type #2 tokens
is important to showcase the modularity of our solution.

• Focus on resource efficiency - The first iteration was focused on usability. Resource efficiency
should be the focus of the second iteration as it is paramount for IoT applications.

• Test local conditions - The influence of local condition evaluation on resource efficiency should
be evaluated.

• Change test conditions - Our current PoC does not involve realistic devices. Because of the
emphasize we put on usability, actual IoT devices should be used to test our solution.

Additionally, our proposal can be improved by addressing the following topics:

• Binary format - Our tokens use the JSON format. JSON can be verbose. More restricted appli-
cations might prefer a binary format for the tokens to reduce message overhead. Such a format
would be less flexible and harder to interpret but more efficient.

• More token types - One of the aspects of our proposal is modularity. To deliver on this premise,
more token types should be added to the proposal. These types might include tokens that carry
subject’s identity, bearer tokens, etc.

• App-less access - Serverless authorization is an important part of our proposal. However, it is
harder and harder to get users to install dedicated applications on their mobile phone. For more
usability, OATL would benefit from an app-less option. The mobile phone would then acts as a
relay between the device and the cloud platform. This would disable serverless authorization but
increase usability.

• Explicit revocation for type #2 tokens - Explicit revocation is only enabled with type #1 tokens.
We would like to extend this feature to type #2 tokens. This can be achieved by embedding
revocation inside any and all new authorization tokens. The revocation would then be delivered
to the device when any new token is used by anyone after the revocation has been issued. This
requires a compact representation of token revocation.

• Delegation - The delegation of permissions between users would alleviate some of the adminis-
trative work, enhance usability, and privacy: a hotel guest could invite a guest overnight, duplicate
its virtual key for the occasion, and revoke it in the morning, all without disclosing the guest to the
hotel staff.

• Access logs - Devices are constrained memory-wise and cannot be supposed to connect to the
cloud platform after the initial bootstrap phase. Without a gateway, it is interesting to explore how
and where to store access logs for the device.
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Contribution 3: MAAC-B There are four ways in which MAAC-B can be improved:

• Implementation - We do not yet provide an implementation for MAAC-B. This is first on the
list of future evolution for the solution. An implementation would validate the feasibility of our
solution.

• Accountability system - Our proposal references a reputation system. This system would benefit
from records of past behavior, good and bad. Access control could then be contingent on proof of
good behavior.

• More context - In its current state, our proposal only focuses on subject’s attributes. Our scheme
can be extended to include all kind of attributes such as environmental or object-related attributes.
This would increase context-awareness.

• Implicit revocation - To mitigate the delay in revocation processing, attribute endorsement trans-
action might be enriched with an expiration time, thus allowing an attribute to be revoked without
the need for a new blockchain transaction.

Contribution 4: Ownership tracking An interesting extension proposed for our ownership tracking
system is the automatic revocation of allotted permissions triggered on ownership change. This system
would need to be configured with a list of potential pseudonyms to avoid a false trigger on a trans-
fer transaction meant to either update device-related secrets or hide the owner’s identity by switching
pseudonyms.

7.2.2 Future research directions

Beyond our contributions, we list potential directions for future research.

A resource-efficient blockchain At the moment, IoT devices cannot connect directly to the blockchain
for lack of resources. There are some attempts at creating IoT-compatible blockchains [Popov, 2016].
This is a really interesting field that is opening up.

Privacy concern Privacy is one of the next challenge not only in IoT but in computer science in general.
Privacy by design is becoming a requirement. There are privacy concerns surrounding the blockchain.
Addressing them outside of permissioned model will be an interesting challenge.

Delegation Delegation is rarely mentioned in IoT access control solutions, apart from solutions that
solely focus on delegation itself. It has the power to improve usability, increase scalability and manage-
ability, as well as boost privacy. It is therefore worth studying in more details.
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Explicit revocation with serverless authorization We have seen that explicit revocation is hard to
achieve with serverless authorization as the server naturally tends to handle revocation. Explicit revoca-
tion is a feature that any use case should enjoy. This is therefore a challenge that should be addressed.
We have mentioned the possibility of using clients to carry revocation from the server to the device. It is
a trail that is well worth exploring.
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(2019+). Centralized, Distributed and everything in-between: Reviewing access control solutions
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Table of acronyms

Acronym Expended
6LoWPAN IPv6 Low power Wireless Personal Area Network
ABAC Attribute-Based Access Control
AC Access Control
ACE Access Control Entry
ACL Access Control List
AES Advanced Encryption Standard
AIE Attribute Issuing Entity
API Application Programming Interface
a.k.a also known as
AROP Authorization Route Optimization Problem
ARPP Authorization Route Planning Problem
ASIC Application-Specific Integrated Circuits
ASM Ambient Space Manager
ASP Authorization Service Provider
authN authentication
authZ authorization
AttC Attribute Contract
AWS Amazon Web Service
BAN Logic Burrows-Abadi-Needham Logic
BIP Blockchain Improvement Proposal
BTC BiTCoin
BTLE BlueTooth Low Energy
CapBAC Capability-Based Access Control
CCAAC Capability-based Context Aware Access Control
CN Coordination Node
CoAP Constrained Application Protocol
COCapBAC COmmunity-driven Capability-Based Access Control
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CP-ABE Cyphertext Policy Attribute-Based Encryption
CPU Central Processing Unit
CSL Client-Side Library
CSP Cloud Service Provider
DAC Discretionary Access Control
DAG Directed Acyclic Graph
DAO Decentralized Autonomous Organization
DCAPBAC Distributed Capability-Based Access Control
DDoS Distributed Denial of Service
DisC Dispatch Contract
DNS Domain Name System
DoS Denial of Service
DTLS Datagram Transport Layer Security
EAA Entité Approbatrices d’Attributs
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
EIP Ethereum Improvement Proposal
ETC Ethereum Classic
ETH ETHer
EU European Union
EVM Ethereum Virtual Machine
GDPR General Data Protection Regulation
GPS Global Positioning System
GPU Graphics Processing Unit
GUI Graphical User Interface
HMAC Hash-based Message Authentication Code
HSM Hardware Security Module
IBE Identity-Based Encryption
IdO Internet des Objets
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
IPoO Independent Proof of Ownership
IWCMC International Wireless Communications & Mobile Computing
JSON JavaScript Object Notation
JWE JSON Web Encryption
JWS JSON Web Signature
JWT JSON Web Token
LoRaWAN Long Range Wide-Area Network
MAAC-B Multi-endorsed Attribute Access Control using the Blockchain
MAC Mandatory Access Control
MAC address Media Access Control address
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MD5 Message Digest 5
MitM Man-in-the-Middle
NGAC Next Generation Access Control
NIST National Institute of Standards & Technology
NFC Near Field Communication
OATL Offline Authorization Token Libraries
OM-AM Object Model-Architecture Mechanism
PAP Policy Administration Point
PBKDF2 Password-Based Key Derivation Function 2
PDP Policy Decision Point
PdPI Preuve de Propriété Indépendente
PEP Policy Enforcement Point
PIP Policy Information Point
PKG Private Key Generator
PKI Public Key Infrastructure
PoA Proof of Activity
PoC Proof of Concept
PolC Policy Contract
PoO Proof of Ownership
PoS Proof of Stake
PoW Proof of Work
PUF Physical Uncloneable Function
PSK Pre-Shared Key
QR Code Quick Response Code
RBAC Role-Based Access Control
REST REpresentational State Transfer
RFID Radio Frequency IDentification
SEAC Sensing Enabled Access Control
SAML Security Assertion Markup Language
SIM Subscriber Identity Module
SQL Structured Query Language
TBAC Trust-Based Access Control
TBD To Be Determined
TCP Transmission Control Protocol
TE Trusted Entity
TGL Token Generation Library
TIL Token Interpretation Library
TL Trust Level
TLS Transport Layer Security
TrAnC Trust Anchor Contract
tx transaction
U2IoT Unit and Ubiquitous IoT
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UCON Usage Control
UMA User Managed Access
UNL Unique Node List
URI Uniform Resource Identifier
UTXO Unspent Transaction Output
VIP Very Important Person
WoT Web of Things
XACML EXtensible Access Control Markup Language

Table B.1: Acronyms
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C.1 Introduction

L’Internet des objets désigne l’interface entre le physique et le digital. Dans ce contexte, un objet est un
objet physique équipé de capteurs, de logiciels, et autres équipements électroniques. Ces équipements
lui permettent d’échanger des données avec d’autres objets, des serveurs situés dans le cloud, ou de les
présenter directement aux utilisateurs. Dans certains cas, les objets connectés sont aussi utilisés pour
agir sur leur environnement.

Avec plus de 21.5 milliards d’objets estimés d’ici 202545, l’IdO est en pleine expansion. Ce nombre
n’inclut pas les ordiphones, les tablettes, les ordinateurs portables, et autres terminaux utilisés pour
interagir avec les objets en question.

L’IdO a de nombreux domaines d’applications tels que la santé, la domotique, ou encore l’infrastructure
des villes de demain. Naturellement, ce domaine s’adresse donc a des clients multiples. Cette hétérogénéité
de cas d’usage et d’utilisateurs constitue un défi dans le déploiement de solutions pour l’IdO, de même
que les faibles capacité de calcul ou de mémoire dont dispose les objets.

45Estimation par IoT Analytics, voir Figure 1.1
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Mais le plus grand défi de l’IdO reste sa sécurité. Ce manque de sécurité menace la vie privée des
utilisateurs, parfois leur sécurité physique dans le cas d’objets médicaux ou d’applications industrielles,
et fournit des ressources potentielles à des acteurs malveillants. Cette thèse se concentre sur les problé-
matiques liées au contrôle d’accès et au cycle de vie des objets.

Cette thèse propose de répondre aux questions suivantes:

1. Quels sont les principaux défis du contrôle d’accès dans l’IdO ?

2. Quel rôle joue l’architecture dans les solutions de contrôle d’accès existantes ?

3. La logique de contrôle d’accès peut-elle être déportée vers le bord du réseau pour se passer du
serveur lors de la demande d’accès ?

4. Comment peut-on améliorer l’ergonomie des solutions de sécurité ?

5. Peut-on utiliser la blockchain pour décentraliser le contrôle d’accès tout en conservant l’expressivité
du système et un accès hors-ligne ?

6. L’usage de la blockchain, permet-il d’aborder d’autres problèmes de l’IdO tel que le cycle de vie
des objets ?

Pour répondre à ces questions, nous proposons quatre contributions.
La première est une étude approfondie des solutions actuelles de contrôle d’accès de l’IdO. Notre

analyse s’articule autour de l’architecture choisit par les auteurs. Une taxonomie est proposée ainsi que
des directions pour de future recherches sur le sujets. Cette contribution répond aux questions 1, 2, 3, et
5 définies ci-dessus. Elle est résumée dans la Section C.2.

Notre seconde contribution propose un ensemble de trois bibliothèques utilisées pour générer, stocker,
et vérifier des jetons d’autorisation. Ces bibliothèques ont vocation à aider les développeurs de produits
IdO à intégrer des mécanismes de contrôle d’accès dans leur solution. Ce faisant, nous répondons aux
questions 3 et 4. Cette contribution est détaillée dans la Section C.3

Notre troisième contribution présente une seconde solution de contrôle d’accès. Nous utilisons la
blockchain pour gérer les attributs des utilisateurs, les politiques de contrôle d’accès ainsi que la confi-
ance entre les différentes entités. Cette contribution répond aux questions 3 et 5. Elle est présenté dans
la Section C.4.

Notre dernière contribution s’intéresse aux propriétaires d’objets connectés. Nous définissons une
preuve de propriété indépendante basé sur des transactions blockchain. Ce faisant, l’archivage des
changements de propriétaires est décentralisé et peut s’effectuer sans intermédiaire. Le même système
peut être utilisé pour transmettre et gérer les secrets liés aux objets (un code PIN par exemple), ou pour
diffuser les propriétés dynamiques d’un objet qui pourraient intéresser des utilisateurs potentiels (i.e.
protocoles de communication, version de l’OS installée, etc). Ceci réponds aux questions 4 et 6. Ces
travaux sont résumés en Section C.5.
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C.2 Survol du contrôle d’accès dans l’IdO

La plupart des études sur la sécurité de l’IdO mentionnent le contrôle d’accès plus ou moins superfi-
ciellement. Ouaddah et al. [Ouaddah et al., 2017b] ont été les premiers à en faire le sujet d’un article
complet. Nous prenons ici une approche différente de la leur, basée sur l’architecture, similaire à celle
employée par Roman et al. [Roman et al., 2013] dans un article traitant de sécurité au sens large.

Les mécanismes de contrôle d’accès peut être découpé en quatre fonctions fondamentales :

• le PAP (Policy Administration Point) crée les politiques d’accès,

• le PDP (Policy Decision Point) prends les décisions,

• le PEP (Policy Enforcement Point) mets en oeuvres les décisions prises par le PDP,

• le PIP (Policy Information Point) est parfois consulté lors de la prise de décision pour renseigné
le PDP sur les attributs du sujet, de l’objet ou de l’environnement. Plusieurs PIP peuvent être
consulté.

La répartition de ces fonctions entre les différents acteurs ainsi que leur multiplicités définissent nos
différentes architectures. Nos définitions se concentrent sur le PDP particulièrement. C’est en effet
la fonction qui demande le plus de ressources : de la mémoire pour stocker les politiques de contrôle
d’accès, de la puissance de calcul pour faire tourner le moteur de décision, de la bande passante pour
interroger les PIP ou communiquer la décision au PEP.

Nous définissons sept architectures réparties en quatre catégories : centralisée, hiérarchique, fédérée,
et distribuée. Les solutions adoptants une architecture centralisée sont particulièrement sensibles à la
santé du serveur central abritant le PDP. Ainsi, nous distinguons les solutions qui nécessitent son inter-
vention lors du contrôle d’accès (solutions en ligne) de celles qui peuvent s’en passer (solutions hors
ligne). Les solutions distribuées sont elles aussi divisées en plusieurs catégories. Lorsque l’objet con-
serve une partie de son autonomie et est en charge d’une partie de la décision de contrôle d’accès, nous
parlons d’hybridation PDP/PEP. Lorsque plusieurs PDP sont accessibles, nous parlons de solutions multi-
PDP. Enfin, nous distinguons les solutions qui utilisent la blockchain pour distribuer les fonctionnalités
du PDP.

Les solutions de l’état de l’art sont analysées et comparées à l’aide de seize critères différents.
Certains sont qualitatifs, d’autres quantitatifs. Notre analyse donne lieu à une taxonomie basée sur
l’architecture. Nous identifions également des directions propices à de futures recherche. Parmi elles,
l’ergonomie des solutions, la vie privée des utilisateurs, et la possibilité d’effectuer le contrôle d’accès
en l’absence du serveur lorsqu’il existe.

C.3 Librairies de jetons d’autorisation hors-ligne

En accord avec les conclusions tirées de l’état de l’art, notre première solution de contrôle d’accès se
concentre sur l’ergonomie. Nous ciblons ici les développeurs qui sont les premiers responsables du
manque de sécurité dans les produits de l’IdO. Nous leur proposons un ensemble de bibliothèques faciles
à intégrer qui se chargent des mécaniques de contrôle d’accès. Le code applicatif n’a alors plus qu’à

207



Appendix C. Blockchain et controle d’accès : Vers un Internet des Objets plus sécurisé - Résumé

faire appel à ces bibliothèques pour profiter de leurs garanties de sécurité. Notre solution se veut près
des usages et des architectures existantes.

Considérons le cas d’une société de location de voitures connectées. Les clients peuvent réserver leur
voiture via une application installée sur leur téléphone portable, en choisissant notamment leurs options
(GPS, Air Conditionné, etc). A l’issue de la réservation, l’application communique avec un serveur
cloud pour obtenir une clé virtuelle. Pas besoin d’aller chercher la voiture dans une antenne de la société,
l’application indique la voiture la plus proche correspondant aux critères du clients. Lors de l’utilisation,
les fonctionnalités de la voiture sont débloquées en fonction des droits inclut dans la clé virtuelle. Cette
clé doit fonctionner même en l’absence de couverture réseau, donc sans accès au serveur cloud. A la fin
de la période de location, le client utilise de nouveau l’application qui extrait les données d’utilisation de
la voiture et facture l’utilisateur au plus juste. Après ça, la clé virtuelle doit cesser de fonctionner.

Pour répondre à ce cas d’usage, notre solution doit posséder les propriétés suivantes : efficacité
dans l’utilisation des ressources, contrôle d’accès hors ligne, possibilité de révoquer les droits d’accès,
connaissance du contexte, et granularité dans les autorisations. De plus, notre solution doit fonctionner
avec les objets qui agissent sur leur environnement, en opposition aux capteurs qui se contentent de
produire des données qui peuvent ensuite être traitées ailleurs.

Dans un soucis d’ergonomie à l’usage des développeurs de produits connectés, notre solution doit
posséder quelques propriétés supplémentaires : facilité d’intégration, compatibilité avec plusieurs do-
maines d’application, et compatibilité avec différents types d’objets, protocoles, modèle de contrôle
d’accès, etc.

Nous utilisons des jetons pour matérialiser l’autorisation. Cette solution est à la fois très utilisée dans
l’IdO et compatible avec notre modèle : l’émission et la gestion des jetons peuvent être confiées à nos
bibliothèques tandis que leur transmission restent à la charge du code applicatif.

Le contrôle d’accès peut être séparé en deux segments : l’obtention du jeton et la demande d’accès
proprement dite. Le premier segment n’implique que le mobile et le serveur cloud, le second n’implique
que le mobile et l’objet connecté.

Nos bibliothèques sont aux nombres de trois, une pour chaque acteur. La première se charge de
l’émission des jetons et est utilisée par le serveur cloud. Elle n’agit pas en tant que PDP. Ainsi, le
choix du moteur de décision reste libre pour le serveur cloud. Une fois la décision d’accès prise, notre
bibliothèque la matérialise sous forme de jeton.

La seconde bibliothèque est utilisée par le code de l’application mobile. Elle se charge de stocker
les jetons et les informations privées associées de manière sécurisé. Cette bibliothèque ne s’occupe pas
de formuler les requêtes. Elle est par contre appelée pour en préparer le contenu. Ceci permet de ne pas
contraindre les choix des protocoles de communication.

La dernière bibliothèque vérifie la validité des jetons, c’est à dire à la fois leur intégrité et la légitimité
de l’utilisateur à les utiliser. Elle est située sur l’objet connecté. Cette bibliothèque n’interprète pas les
droits contenus dans le jeton. Notamment, elle ne vérifie pas l’adéquation entre le jeton et la requête. En
outre, le jeton peut contenir des conditions à vérifier localement. Cette évaluation reste à la charge du
code applicatif, pour plus de liberté dans l’expression des conditions.

Nous proposons deux types de jetons pour s’adapter à des objets plus ou moins contraints. Les
jetons ne comportent pas de référence explicite à l’identité de leur propriétaire. De nouvelles clés cryp-
tographiques sont générées pour chaque nouveau jeton. Le premier utilise de la cryptographie symétrique
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et considère que l’objet n’a pas de notion du temps. Le second type de jeton utilise de la cryptographie
asymétrique et inclut une date d’expiration.

Notre solution comprend une analyse de sécurité détaillés ainsi qu’une Preuve de Concept (PdC)
illustrant la facilité d’intégration de la solution.

C.4 Contrôle d’accès à base d’attributs à approbations multiples utilisant
la blockchain

Notre troisième contribution propose une seconde solution de contrôle d’accès qui adopte cette fois une
architecture distribuée. La blockchain est un registre distribué qui n’accepte que les ajouts. Ce registre
enregistre et ordonne des transactions soumises par ses utilisateurs. La blockchain est le nom donné à
la fois au registre et au réseau d’utilisateur qui le constitue. Nous utilisons ici la blockchain pour gérer
trois services: les attributs des utilisateurs, les politiques de contrôle d’accès, et la confiance entre les
différents acteurs.

Les différents services utilisent des contrats intelligents. Ce sont des protocoles informatiques qui
facilitent et assurent l’exécution des termes d’un accord entre différentes entités. Dans la blockchain, les
contrats intelligents sont exécutés par tous les noeuds du réseau. Leur code est accessible à tous et ne
peut pas être modifié une fois déployé.

Les utilisateurs déploient eux-même les contrats utilisés pour contenir leurs attributs. Ce faisant,
ils conservent la gestion de leur identité numérique. En effet, un contrat s’assimile à un pseudonyme.
L’utilisateur peut alors choisir quelle identité donner à chaque entité avec laquelle il interagit. Ces con-
trats sont utilisés par les Entité Approbatrices d’Attributs (EAA). N’importe qui peut devenir une EAA
en générant une transaction approuvant un attribut pour un client donné.

Deux types de contrat sont utilisés pour gérer les politiques de contrôle d’accès. Le premier associe
attributs et niveaux de confiance pour créer des règles d’accès: L’accès est autorisé si l’utilisateur peut
justifier de la possession de tous les attributs avec le niveau de confiance associé à chacun. Le niveau
de confiance est utilisé pour paramétrer l’accès. Il est basé sur la niveau de confiance accordé aux EAA
ayant approuvés un attributs par l’objet qui l’évalue. Le deuxième contrats associe chaque ressource à
une politique de contrôle d’accès stockée dans un contrat du premier type. Ces contrats sont déployés et
utilisés par des administrateurs.

Enfin, la confiance entre les différentes entités est gérer par un seul type de contrat. Ces contrats sont
déployés par un administrateur. Ils peuvent ensuite être utilisé pour promouvoir un nouvel administrateur
ou encore accorder la pleine confiance à certaines EAA. Les contrats définissant les politiques de contrôle
d’accès invoquent ces contrats pour s’assurer qu’un utilisateur est bien un administrateur. Un service de
réputation détermine le niveau de confiance accorder aux EAA auxquelles les administrateurs ne font
pas totalement confiance.

Les objets sont connectés à la blockchain par l’intermédiaire d’une passerelle qui prend part au
réseau. Cette passerelle filtre les nouvelles transactions et compile les mises à jour concernant les objets
qui lui sont associés. Ces mises à jour sont envoyées périodiquement ou récupérées sur demande.

Lors de la demande d’accès, le client prends l’identité de son choix et joint l’adresse du contrat
correspondant dans la blockchain à sa demande. L’objet garde localement la version des règles d’accès
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correspondant à la dernière mise à jour. Il identifie les attributs nécessaires et contacte la passerelle pour
récupérer les approbations des EAA stockés dans la blockchain. Pour chaque attributs, les approbations
sont vérifiés et un niveau de confiance est déterminé en fonction de la confiance accordées aux EAA
approbatrices. Si le niveau de confiance est supérieur ou égal à celui demandé par les règles d’accès,
l’attribut est validé. Si le client possède tous les attributs nécessaire, la demande d’accès est acceptée.

Notre contribution comprends une analyse de sécurité détaillée de notre solution qui évalue notam-
ment sa sensibilité aux menaces telles que le vol d’identité, les approbations frauduleuses, la suppression
ou l’élévation de privilège, ou encore les attaques par rejeu.

C.5 Le cycle de vie des objets de l’IdO : Changement de propriétaire et
configuration à distance

Le suivi des actifs est l’une des premières applications de la blockchain. Cette pratique est en générale
réservée aux objets précieux tels que les oeuvres d’art, les biens immobiliers, ou encore les bijoux.
La blockchain la démocratise et la rend applicable à des objets de moindre valeur tels que les objets
connectés.

Son application à l’IdO présente plusieurs avantages. La blockchain permet de se passer d’intermédiaire,
ce qui réduit les coûts et ouvre la porte à une Preuve de Propriété Indépendante (PdPI). Cette preuve se
base sur des transactions enregistrées dans la blockchain et ne nécessite pas de connaître l’identité de
l’utilisateur, seulement son pseudonyme. Une PdPI peut être demandée lors de la revente d’un objet con-
necté, pour effectuer des réparations ou modifications importantes, ou encore pour installer un nouveau
logiciel.

Le stockage et le traitement décentralisé du registre renforce sa disponibilité ainsi que sa persistance.
Les modifications illicites sont plus difficiles à opérer. La transparence et accessibilité des information de
changement de propriétaire peut être utilisé pour automatiser les révocations de droits associer à un objet.
Enfin, les propriétaires contrôlent eux même leurs identités ainsi que les informations qu’ils partagent
sur leurs objets.

Nous proposons deux types de transactions : les transactions de genèse créent le lien entre l’objet tan-
gible et son équivalent digital, les transactions de transfert changent la propriété d’un objet de l’émetteur
vers le récepteur. Une PdPI peut être produite en signant un message généré aléatoirement avec la clé
correspondant au récepteur de la dernière transaction de transfert lié à un objet.

Nous proposons deux extensions. La première vise à améliorer la gestion des secrets liés aux ob-
jets. Nous considérons l’objet comme une boite noire dont les fonctions ne peuvent être activées qu’à
l’aide d’un secret. Ce secret doit être transféré du propriétaire original vers le nouvel acquéreur. Nous
proposons d’intégrer ce secret dans la transaction de transfert, chiffré à l’aide d’une clé partagée par le
vendeur et l’acheteur. Le secret peut ensuite être récupéré depuis la blockchain et déchiffré.

Le même mécanisme peut être utilisé pour gérer les secrets d’un grand nombre d’objets : les secrets
sont chiffrés et postés dans la blockchain. Le propriétaire utilise une clé maître pour dériver les clé
de chiffrement de chaque secret à l’aide de l’identifiant de l’objet. Cette clé est alors la seule que le
propriétaire stocke et protège.

La seconde extension intègre les propriétés dynamiques de l’objet à la transaction de transfert.
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Chaque objet possède des propriétés statiques telles que leur espace mémoire ou leur processeur. Un
objet possède aussi des propriétés dynamiques que sont l’espace mémoire disponible ou encore les ver-
sions des logiciels actuellement installés. Des utilisateurs potentiels pourraient être intéressés par ces
propriétés. La blockchain permet aux propriétaires de les recenser et de les diffuser sans sur-coût.

Notre contribution contient une analyse de sécurité et discute les limites de nos propositions.

C.6 Conclusion

En conclusion, nous proposons des améliorations à chacune de nos contributions ainsi que des directions
pour continuer nos travaux de recherche.

Notre étude de l’état de l’art peut naturellement être mise à jour avec des articles plus récents. De
nouvelles solutions de contrôle d’accès paraissent régulièrement, notamment des solutions de fédération
ou utilisant la blockchain. Une autre possibilité serait d’affiner notre taxonomie en proposant un arbre
de décision dont les branches seraient non plus des architectures mais des solutions.

Concernant nos bibliothèques à l’usage des développeurs, deux pistes peuvent être suivies : améliorer
l’implémentation ou améliorer la proposition en elle-même. En effet, notre implémentation n’inclut
actuellement que le premier type de jeton. De plus, nos tests n’incluent pas, par exemple, l’évaluation
des conditions locales. La proposition quant à elle pourrait être enrichie par différents format de jetons
pour s’adapter aux objets les plus contraints, ou encore par l’ajout de mécanismes de délégation des
autorisations.

Notre solution à base d’attributs gérés par l’intermédiaire de la blockchain gagnerait à être implé-
menté. De plus, la proposition pourrait être enrichie par un service enregistrant les actions passés des
utilisateurs et EAA, bonne ou mauvaise, pour utiliser cette information dans le calcul du niveau de con-
fiance. Les attributs ne concernent actuellement que les sujets. Ils pourraient être étendus aux objets ou
au contexte.

Concernant la dernière contribution, il serait intéressant d’étudier la possibilité d’un système de révo-
cation automatique lors de changement de propriétaire.

Au delà de nos contributions, nous envisageons quatre directions pour nos futures recherche : l’amélioration
de l’utilisation des ressources par la blockchain pour permettre aux objets connectés de s’y connecter sans
l’usage d’une passerelle, l’amélioration du traitement des données des utilisateurs dans les produits de
l’IdO, l’ajout de mécanismes de délégation dans les solutions de contrôle d’accès, et l’inclusion de mé-
canismes de révocation explicite des autorisations, c’est à dire de moyens de révoquer les permissions
associées à un objet compromis sans attendre leurs expirations, et ce même dans le cas de solutions
hors-ligne.

211



Appendix C. Blockchain et controle d’accès : Vers un Internet des Objets plus sécurisé - Résumé

212



Bibliography

[Abdallah and Khayat, 2004] Abdallah, A. E. and Khayat, E. J. (2004). A formal model for parameter-
ized role-based access control. In IFIP World Computer Congress, TC 1, pages 233–246. Springer.
84

[Ahmad et al., 2018] Ahmad, T., Morelli, U., Ranise, S., and Zannone, N. (2018). A lazy approach to
access control as a service (acaas) for iot: An aws case study. In Proceedings of the 23nd ACM on
Symposium on Access Control Models and Technologies, pages 235–246. ACM. 80, 82, 101

[Akl and Taylor, 1983] Akl, S. G. and Taylor, P. D. (1983). Cryptographic solution to a problem of
access control in a hierarchy. ACM Transactions on Computer Systems (TOCS), 1(3):239–248. 85

[Ammar et al., 2018] Ammar, M., Russello, G., and Crispo, B. (2018). Internet of things: A survey on
the security of iot frameworks. Journal of Information Security and Applications, 38:8–27. 64

[Androulaki et al., 2018] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro,
A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al. (2018). Hyperledger fabric: a dis-
tributed operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys
Conference, page 30. ACM. 30, 32

[Anggorojati et al., 2012] Anggorojati, B., Mahalle, P. N., Prasad, N. R., and Prasad, R. (2012).
Capability-based access control delegation model on the federated IoT network. In Wireless Per-
sonal Multimedia Communications (WPMC), 2012 15th International Symposium on, pages 604–608.
IEEE. 86, 89

[Antonakakis et al., 2017] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran,
J., Durumeric, Z., Halderman, J. A., Invernizzi, L., Kallitsis, M., et al. (2017). Understanding the
Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association. 7

[Armando et al., 2005] Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J.,
Drielsma, P. H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., et al. (2005). The AVISPA tool for
the automated validation of internet security protocols and applications. In International conference
on computer aided verification, pages 281–285. Springer. 96

[Ashibani et al., 2017] Ashibani, Y., Kauling, D., and Mahmoud, Q. H. (2017). A context-aware authen-
tication framework for smart homes. In Electrical and Computer Engineering (CCECE), 2017 IEEE
30th Canadian Conference on, pages 1–5. IEEE. 78, 81

213



Bibliography

[Atzori et al., 2012] Atzori, L., Iera, A., Morabito, G., and Nitti, M. (2012). The Social Internet of
Things (SIoT)– when social networks meet the Internet of Things: Concept, architecture and network
characterization. Computer networks, 56(16):3594–3608. 93

[Bandara et al., 2016] Bandara, S., Yashiro, T., Koshizuka, N., and Sakamura, K. (2016). Access control
framework for API-enabled devices in smart buildings. In Communications (APCC), 2016 22nd Asia-
Pacific Conference on, pages 210–217. IEEE. 78, 81, 82

[Barka et al., 2015] Barka, E., Mathew, S. S., and Atif, Y. (2015). Securing the Web of Things with Role-
Based access control. In International Conference on Codes, Cryptology, and Information Security,
pages 14–26. Springer. 84, 86

[Bentov et al., 2014] Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld, M. (2014). Proof of activity:
Extending bitcoin’s proof of work via proof of stake. ACM SIGMETRICS Performance Evaluation
Review, 42(3):34–37. 39

[Bernabe et al., 2016] Bernabe, J. B., Hernández-Ramos, J. L., and Gomez, A. F. S. (2016). TACIoT:
multidimensional trust-aware access control system for the Internet of Things. Soft Computing,
20(5):1763–1779. 91, 93, 112, 136, 137

[Bertin et al., 2019] Bertin, E., Hussein, D., Sengul, C., and Frey, V. (2019). Access control in the
internet of things: a survey of existing approaches and open research questions. Annals of Telecom-
munications, pages 1–14. 65

[Burrows et al., 1990] Burrows, M., Abadi, M., and Needham, R. (1990). A logic of authentication.
ACM Transactions on Computer Systems, 8:18–36. 85

[Buterin, 2014] Buterin, V. (2014). Proof of stake : How i learned to love weak subjec-
tivity. https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-
weak-subjectivity. Last Checked: July 28th, 2019. 37

[Buterin et al., 2013] Buterin, V. et al. (2013). Ethereum white paper. https://github.com/
ethereum/wiki/wiki/White-Paper. Last checked : 23/09/2016. 8, 24, 29

[Castiglione et al., 2016] Castiglione, A., De Santis, A., Masucci, B., Palmieri, F., Castiglione, A., and
Huang, X. (2016). Cryptographic hierarchical access control for dynamic structures. IEEE Transac-
tions on Information Forensics and Security, 11(10):2349–2364. 85, 86

[Cerf, 2015] Cerf, V. G. (2015). Access Control and the Internet of Things. IEEE Internet Computing,
19(5):96–c3. 90, 91, 137

[Chen, 2008] Chen, L. (2008). Recommendation for key derivation using pseudorandom functions.
Technical report, National Institute of Standards and Technology. 134

[Cherkaoui et al., 2014] Cherkaoui, A., Bossuet, L., Seitz, L., Selander, G., and Borgaonkar, R. (2014).
New Paradigms for Access Control in Constrained Environments. In 9th International Symposium on

214

https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper


Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), page 4 p., Montpellier, France.
91, 92, 137

[Christidis and Devetsikiotis, 2016] Christidis, K. and Devetsikiotis, M. (2016). Blockchains and smart
contracts for the internet of things. IEEE Access, 4:2292–2303. 58

[Decker and Wattenhofer, 2013] Decker, C. and Wattenhofer, R. (2013). Information propagation in the
bitcoin network. In IEEE International Conference on Peer-to-Peer Computing, pages 1–10. 55

[Dennis and Van Horn, 1966] Dennis, J. B. and Van Horn, E. C. (1966). Programming semantics for
multiprogrammed computations. Communications of the ACM, 9(3):143–155. 67, 71

[Dennis and Owen, 2015] Dennis, R. and Owen, G. (2015). Rep on the block: A next generation repu-
tation system based on the blockchain. In 2015 10th International Conference for Internet Technology
and Secured Transactions (ICITST), pages 131–138. IEEE. 157

[Dramé-Maigné et al., 2019] Dramé-Maigné, S., Laurent, M., and Castillo, L. (2019). Distributed Ac-
cess Control Solution for the IoT based on Multi-endorsed Attributes and Smart Contracts. In
2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pages
1582–1587. IEEE. 142

[Dramé-Maigné et al., 2018] Dramé-Maigné, S., Laurent, M., Castillo, L., and Ganem, H. (2018). Aug-
mented chain of ownership: Configuring iot devices with the help of the blockchain. In International
Conference on Security and Privacy in Communication Systems, pages 53–68. Springer. 166

[Duffield and Diaz, 2015] Duffield, E. and Diaz, D. (2015). Dash : A privacy-centric
crypto-currency. https://www.dash.org/wp-content/uploads/2015/04/Dash-
WhitepaperV1.pdf. Last checked : 23/09/2016. 55

[Eyal and Sirer, 2014] Eyal, I. and Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vul-
nerable. In International Conference on Financial Cryptography and Data Security, pages 436–454.
Springer. 53

[Fernández et al., 2017] Fernández, F., Alonso, Á., Marco, L., and Salvachúa, J. (2017). A model to
enable application-scoped access control as a service for IoT using OAuth 2.0. In Innovations in
Clouds, Internet and Networks (ICIN), 2017 20th Conference on, pages 322–324. IEEE. 78, 79, 81

[Fernández-Caramés and Fraga-Lamas, 2018] Fernández-Caramés, T. M. and Fraga-Lamas, P. (2018).
A review on the use of blockchain for the internet of things. IEEE Access. 58, 59, 60

[Ferraiolo and Kuhn, 1992] Ferraiolo, D. F. and Kuhn, R. (1992). Role-based access controls. 15th
NIST-NCSC National Computer Security Conference, pages 554–563. 65, 67, 84

[Fotiou et al., 2016] Fotiou, N., Kotsonis, T., Marias, G. F., and Polyzos, G. C. (2016). Access Control
for the Internet of Things. In Secure Internet of Things (SIoT), 2016 International Workshop on, pages
29–38. IEEE. 95, 96

215

https://www.dash.org/wp-content/uploads/2015/04/Dash-WhitepaperV1.pdf
https://www.dash.org/wp-content/uploads/2015/04/Dash-WhitepaperV1.pdf


Bibliography

[Garay et al., 2015] Garay, J., Kiayias, A., and Leonardos, N. (2015). The bitcoin backbone protocol:
Analysis and applications. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 281–310. Springer. 26

[Goyal et al., 2006] Goyal, V., Pandey, O., Sahai, A., and Waters, B. (2006). Attribute-based encryption
for fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security, pages 89–98. Acm. 182

[Gusmeroli et al., 2013] Gusmeroli, S., Piccione, S., and Rotondi, D. (2013). A capability-based se-
curity approach to manage access control in the Internet of Things. Mathematical and Computer
Modelling, 58(5):1189–1205. 79, 82, 101

[Hao et al., 2019] Hao, J., Huang, C., Ni, J., Rong, H., Xian, M., and Shen, X. S. (2019). Fine-grained
data access control with attribute-hiding policy for cloud-based iot. Computer Networks. 79, 81

[Hardt, 2012] Hardt, D. (2012). The OAuth 2.0 Authorization Framework. RFC 6749, RFC Editor. 65,
72

[Harney and Muckenhirm, 1997] Harney, H. and Muckenhirm, C. (1997). Group key management pro-
tocol (gkmp) architecture. RFC 2094, RFC Editor. 182

[Hemdi and Deters, 2016] Hemdi, M. and Deters, R. (2016). Using REST based protocol to enable
ABAC within IoT systems. In Information Technology, Electronics and Mobile Communication Con-
ference (IEMCON), 2016 IEEE 7th Annual, pages 1–7. IEEE. 91, 93, 137

[Hernández-Ramos et al., 2013] Hernández-Ramos, J. L., Jara, A. J., Marın, L., and Skarmeta, A. F.
(2013). Distributed capability-based access control for the internet of things. Journal of Internet
Services and Information Security (JISIS), 3(3/4):1–16. 91, 93, 112, 137

[Hernández-Ramos et al., 2016] Hernández-Ramos, J. L., Jara, A. J., Marín, L., and Skarmeta Gómez,
A. F. (2016). DCapBAC: embedding authorization logic into smart things through ECC optimizations.
International Journal of Computer Mathematics, 93(2):345–366. 93

[Hsiao et al., 2019] Hsiao, T.-C., Chen, T.-L., Chen, T.-S., and Chung, Y.-F. (2019). Elliptic curve
cryptosystems-based date-constrained hierarchical key management scheme in internet of things. Sen-
sors and Materials, 31(2):355–364. 85, 86

[Hu et al., 2006] Hu, V. C., Ferraiolo, D., and Kuhn, D. R. (2006). Assessment of access control systems.
US Department of Commerce, National Institute of Standards and Technology. 68

[Hu et al., 2013] Hu, V. C., Ferraiolo, D., Kuhn, R., Friedman, A. R., Lang, A. J., Cogdell, M. M.,
Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K., et al. (2013). Guide to attribute based access
control (ABAC) definition and considerations. NIST Special Publication, 800(162). 65, 67, 69, 73,
143

216



[Hummen et al., 2014] Hummen, R., Shafagh, H., Raza, S., Voig, T., and Wehrle, K. (2014). Delegation-
based Authentication and Authorization for the IP-based Internet of Things. In Sensing, Communi-
cation, and Networking (SECON), 2014 Eleventh Annual IEEE International Conference on, pages
284–292. Ieee. 80, 82

[Hussein et al., 2017a] Hussein, D., Bertin, E., and Frey, V. (2017a). A Community-Driven Access
Control Approach in Distributed IoT Environments. IEEE Communications Magazine, 55(3):146–
153. 91, 93, 136, 137

[Hussein et al., 2017b] Hussein, D., Bertin, E., and Frey, V. (2017b). Access control in IoT: From re-
quirements to a candidate vision. In Innovations in Clouds, Internet and Networks (ICIN), 2017 20th
Conference on, pages 328–330. IEEE. 112

[INCITS, 2013] INCITS (2013). Next Generation Access Control - Functional Architecture (NGAC-
FA). Standard INCITS 499-2013, American National Standard Institute. 80

[INCITS, 2016] INCITS (2016). Next Generation Access Control - Generic Operations and Data Struc-
tures. Standard INCITS 526, American National Standards Institute. 80

[Johnson et al., 2001] Johnson, D., Menezes, A., and Vanstone, S. (2001). The elliptic curve digital
signature algorithm (ECDSA). International Journal of Information Security, 1(1):36–63. 79

[Jones et al., 2015a] Jones, M., Bradley, J., and Sakimura, N. (2015a). JSON Web Signature (JWS).
RFC 7515, RFC Editor. 72, 113

[Jones et al., 2015b] Jones, M., Bradley, J., and Sakimura, N. (2015b). JSON Web Token (JWT). RFC
7519, RFC Editor. 72, 113

[Jones et al., 2016] Jones, M., Bradley, J., and Tschofenig, H. (2016). Proof-of-possession key seman-
tics for json web tokens (jwts). RFC 7800, RFC Editor. 135

[Jones and Hildebrand, 2015] Jones, M. and Hildebrand, J. (2015). JSON Web Encryption (JWE). RFC
7516, RFC Editor. 72, 92, 113

[Kaliski, 2000] Kaliski, B. (2000). PKCS# 5: Password-based cryptography specification version 2.0.
RFC 2898, RFC Editor. 134

[Khan and Salah, 2018] Khan, M. A. and Salah, K. (2018). Iot security: Review, blockchain solutions,
and open challenges. Future Generation Computer Systems, 82:395–411. 65

[Kouicem et al., 2018] Kouicem, D. E., Bouabdallah, A., and Lakhlef, H. (2018). Internet of things
security: A top-down survey. Computer Networks, 141:199–221. 65

[Kwon, 2014] Kwon, J. (2014). Tendermint: Consensus without mining. https://www.
weusecoins.com/assets/pdf/library/TendermintConsensuswithoutMining.
pdf. 36, 37

217

https://www.weusecoins.com/assets/pdf/library/Tendermint Consensus without Mining.pdf
https://www.weusecoins.com/assets/pdf/library/Tendermint Consensus without Mining.pdf
https://www.weusecoins.com/assets/pdf/library/Tendermint Consensus without Mining.pdf


Bibliography

[Lin and Liao, 2017] Lin, I.-C. and Liao, T.-C. (2017). A survey of blockchain security issues and
challenges. IJ Network Security, 19(5):653–659. 175

[Liu et al., 2017] Liu, Q., Zhang, H., Wan, J., and Chen, X. (2017). An Access Control Model for
Resource Sharing based on the Role-Based Access Control Intended for Multi-domain Manufacturing
Internet of Things. IEEE Access. 88, 89

[Maler et al., 2015] Maler, E., Machulak, M., and Catalano, D. (2015). User-Managed Acess (UMA)
Profile of OAuth 2.0. Standard, Kantara Initiative. Last accessed: January 5, 2018. 65

[Mathew, 2013] Mathew, S. S. (2013). Classifying and clustering the web of things. PhD thesis, Uni-
versity of Adelaide. 84

[Mathew et al., 2011] Mathew, S. S., Atif, Y., Sheng, Q. Z., and Maamar, Z. (2011). Web of things:
Description, discovery and integration. In Internet of Things (iThings/CPSCom), 2011 International
Conference on and 4th International Conference on Cyber, Physical and Social Computing, pages
9–15. IEEE. 84

[McCorry et al., 2017] McCorry, P., Heilman, E., and Miller, A. (2017). Atomically trading with
roger: Gambling on the success of a hardfork. In Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pages 334–353. Springer. 46

[Menezes et al., 1996] Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. A. (1996). Handbook of
applied cryptography. CRC press. 16

[Merkle, 1980] Merkle, R. C. (1980). Protocols for public key cryptosystems. In IEEE Symposium on
Security and privacy, volume 122. 16, 19

[Miers et al., 2013] Miers, I., Garman, C., Green, M., and Rubin, A. D. (2013). Zerocoin: Anonymous
distributed e-cash from bitcoin. In Security and Privacy (SP), 2013 IEEE Symposium on, pages 397–
411. IEEE. 54

[Moses et al., 2005] Moses, T. et al. (2005). Extensible access control markup language (XACML)
version 2.0. Standard, OASIS. 73, 92

[Nakamoto, 2008] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. 15, 27, 50

[Neuman and Ts’o, 1994] Neuman, B. C. and Ts’o, T. (1994). Kerberos: An authentication service for
computer networks. IEEE Communications magazine, 32(9):33–38. 79

[Ning et al., 2015] Ning, H., Liu, H., and Yang, L. T. (2015). Aggregated-proof based hierarchical
authentication scheme for the internet of things. IEEE Transactions on Parallel and Distributed
Systems, 26(3):657–667. 84, 86

[NIST, 2001] NIST, U. (2001). Descriptions of SHA-256, SHA-384, and SHA-512. https:
//web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/
STM/cavp/documents/shs/sha256-384-512.pdf. 134

218

https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
https://web.archive.org/web/20130526224224/http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf


[Novo, 2018] Novo, O. (2018). Blockchain meets iot: an architecture for scalable access management
in iot. IEEE Internet of Things Journal. 98, 99, 100, 163

[Osaka et al., 2008] Osaka, K., Takagi, T., Yamazaki, K., and Takahashi, O. (2008). An efficient and
secure rfid security method with ownership transfer. In RFID security, pages 147–176. Springer. 8

[Ouaddah et al., 2016a] Ouaddah, A., Abou Elkalam, A., and Ait Ouahman, A. (2016a). FairAccess: a
new Blockchain-based access control framework for the Internet of Things. Security and Communi-
cation Networks, 9(18):5943–5964. 98, 99, 162, 163

[Ouaddah et al., 2017a] Ouaddah, A., Elkalam, A. A., and Ouahman, A. A. (2017a). Towards a Novel
Privacy-Preserving Access Control Model Based on Blockchain Technology in IoT. In Europe and
MENA Cooperation Advances in Information and Communication Technologies, pages 523–533.
Springer. 98, 99, 163

[Ouaddah et al., 2016b] Ouaddah, A., Mousannif, H., Elkalam, A. A., and Ouahman, A. A. (2016b).
Access control in iot: Survey & state of the art. In Multimedia Computing and Systems (ICMCS),
2016 5th International Conference on, pages 272–277. IEEE. 192

[Ouaddah et al., 2017b] Ouaddah, A., Mousannif, H., Elkalam, A. A., and Ouahman, A. A. (2017b).
Access control in the Internet of Things: Big challenges and new opportunities. Computer Networks,
112:237–262. 65, 207

[Ouaddah et al., 2015] Ouaddah, A., Mousannif, H., and Ouahman, A. A. (2015). Access control models
in IoT: The road ahead. In Computer Systems and Applications (AICCSA), 2015 IEEE/ACS 12th
International Conference of, pages 1–2. IEEE. 64

[Pappu et al., 2002] Pappu, R., Recht, B., Taylor, J., and Gershenfeld, N. (2002). Physical one-way
functions. Science, 297(5589):2026–2030. 92

[Park and Sandhu, 2004] Park, J. and Sandhu, R. (2004). The UCON ABC usage control model. ACM
Transactions on Information and System Security (TISSEC), 7(1):128–174. 65

[Pass et al., 2017] Pass, R., Seeman, L., and Shelat, A. (2017). Analysis of the blockchain protocol
in asynchronous networks. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 643–673. Springer. 26, 145, 146, 167

[Patel et al., 2016] Patel, S., Patel, D. R., and Navik, A. P. (2016). Energy efficient integrated authenti-
cation and access control mechanisms for Internet of Things. In Internet of Things and Applications
(IOTA), International Conference on, pages 304–309. IEEE. 95, 96

[Pinno et al., 2017] Pinno, O. J. A., Gregio, A. R. A., and De Bona, L. C. (2017). Controlchain:
Blockchain as a central enabler for access control authorizations in the iot. In GLOBECOM 2017-2017
IEEE Global Communications Conference, pages 1–6. IEEE. 98, 99, 162, 163

[Popov, 2016] Popov, S. (2016). The tangle [iota whitepaper]. cit. on, page 131. 194

219



Bibliography

[Qiu et al., 1985] Qiu, L., Zhang, Y., Wang, F., Kyung, M., and Mahajan, H. R. (1985). Trusted com-
puter system evaluation criteria. Standard DoD 5200.28-STD, National Computer Security Center.
66

[Ray et al., 2018] Ray, B. R., Abawajy, J., Chowdhury, M., and Alelaiwi, A. (2018). Universal and
secure object ownership transfer protocol for the internet of things. Future Generation Computer
Systems, 78:838–849. 8

[Ray et al., 2017] Ray, I., Alangot, B., Nair, S., and Achuthan, K. (2017). Using attribute-based access
control for remote healthcare monitoring. In Software Defined Systems (SDS), 2017 Fourth Interna-
tional Conference on, pages 137–142. IEEE. 80, 82

[Reid and Harrigan, 2013] Reid, F. and Harrigan, M. (2013). An analysis of anonymity in the bitcoin
system. In Security and privacy in social networks, pages 197–223. Springer. 54, 100

[Rekleitis et al., 2014] Rekleitis, E., Rizomiliotis, P., and Gritzalis, S. (2014). How to protect security
and privacy in the iot: a policy-based rfid tag management protocol. Security and Communication
Networks, 7(12):2669–2683. 8

[Rescorla and Modadugu, 2012] Rescorla, E. and Modadugu, N. (2012). Datagram transport layer se-
curity version 1.2. RFC 6347, RFC Editor. 80

[Roman et al., 2013] Roman, R., Zhou, J., and Lopez, J. (2013). On the features and challenges of
security and privacy in distributed internet of things. Computer Networks, 57(10):2266–2279. 64, 65,
207

[Rosenfeld, 2012] Rosenfeld, M. (2012). Overview of colored coins. White paper, bitcoil. co. il, page 41.
8, 166

[Rotondi et al., 2011] Rotondi, D., Seccia, C., and Piccione, S. (2011). Access control & iot: Capability
based authorization access control system. In 1st IoT International Forum. 79, 82

[Saadeh et al., 2018] Saadeh, M., Sleit, A., Sabri, K. E., and Almobaideen, W. (2018). Hierarchical
architecture and protocol for mobile object authentication in the context of iot smart cities. Journal of
Network and Computer Applications, 121:1–19. 88, 89, 90, 101

[Sain et al., 2017] Sain, M., Kang, Y. J., and Lee, H. J. (2017). Survey on security in internet of things:
State of the art and challenges. In Advanced Communication Technology (ICACT), 2017 19th Inter-
national Conference on, pages 699–704. IEEE. 64

[Saltzer and Schroeder, 1975] Saltzer, J. H. and Schroeder, M. D. (1975). The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308. 71

[Samarati and de Vimercati, 2000] Samarati, P. and de Vimercati, S. C. (2000). Access control: Policies,
models, and mechanisms. In International School on Foundations of Security Analysis and Design,
pages 137–196. Springer. 66, 67

220



[Sandhu, 2000] Sandhu, R. (2000). Engineering authority and trust in cyberspace: The OM-AM and
RBAC way. In Proceedings of the fifth ACM workshop on Role-based access control, pages 111–119.
ACM. 65

[Schaub et al., 2016] Schaub, A., Bazin, R., Hasan, O., and Brunie, L. (2016). A trustless privacy-
preserving reputation system. In IFIP International Information Security and Privacy Conference,
pages 398–411. Springer. 157

[Schneider, 2003] Schneider, F. B. (2003). Least privilege and more [computer security]. IEEE Security
& Privacy, 99(5):55–59. 88

[Schwartz et al., 2014] Schwartz, D., Youngs, N., and Britto, A. (2014). The ripple protocol consensus
algorithm. Ripple Labs White Paper. 39, 40

[Sciancalepore et al., 2018] Sciancalepore, S., Piro, G., Caldarola, D., Boggia, G., and Bianchi, G.
(2018). On the design of a decentralized and multiauthority access control scheme in federated and
cloud-assisted cyber-physical systems. IEEE Internet of Things Journal, 5(6):5190–5204. 89, 101

[Seitz et al., 2013] Seitz, L., Selander, G., and Gehrmann, C. (2013). Authorization framework for the
internet-of-things. In World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2013 IEEE
14th International Symposium and Workshops on a, pages 1–6. IEEE. 91, 92, 93, 137

[Shelby et al., 2014] Shelby, Z., Hartke, K., and Bormann, C. (2014). The constrained application pro-
tocol (CoAP). RFC 7252, RFC Editor. 79, 93

[Shirey, 2007] Shirey, R. W. (2007). Internet security glossary. RFC 4949, IETF. 66

[Sicari et al., 2015] Sicari, S., Rizzardi, A., Grieco, L. A., and Coen-Porisini, A. (2015). Security, pri-
vacy and trust in internet of things: The road ahead. Computer Networks, 76:146–164. 64

[Sompolinsky and Zohar, 2015] Sompolinsky, Y. and Zohar, A. (2015). Secure high-rate transaction
processing in bitcoin. In International Conference on Financial Cryptography and Data Security,
pages 507–527. Springer. 26

[Szabo, 1997] Szabo, N. (1997). Formalizing and securing relationships on public networks. First
Monday, 2(9). 8, 24

[Tamboli and Dambawade, 2016] Tamboli, M. B. and Dambawade, D. (2016). Secure and efficient
CoAP based authentication and access control for Internet of Things (IoT). In Recent Trends in
Electronics, Information & Communication Technology (RTEICT), IEEE International Conference
on, pages 1245–1250. IEEE. 79, 82

[Tourani et al., 2016] Tourani, R., Mick, T., Misra, S., and Panwar, G. (2016). Security, privacy, and
access control in information-centric networking: A survey. arXiv preprint arXiv:1603.03409. 64

221



Bibliography

[Uriarte et al., 2016] Uriarte, M., López, O., Blasi, J., Lázaro, O., González, A., Prada, I., Olivares, E.,
Palau, C. E., Molina, B., Portugués, M. A., et al. (2016). Sensing enabled capabilities for access
control management: Iot as an enabler for the advanced management of access control. In Internet-
of-Things Design and Implementation (IoTDI), 2016 IEEE First International Conference on, pages
253–258. IEEE. 88, 89

[Van Tilborg, 2014] Van Tilborg, H. C., editor (2014). Encyclopedia of cryptography and security.
Springer Science & Business Media. 67, 71
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Résumé : L’internet des Objets (IdO) a besoin 
d’améliorer sa sécurité pour assurer l’expansion 
du domaine et son adoption par les utilisateurs. 
Mais le manque d’espace, de puissance de calcul, 
ou encore l’accès au réseau limite l’utilisation 
des méthodes traditionnelles. De nouvelles 
méthodes doivent donc être adoptées. 
Le contrôle d’accès est une étape importante vers 
la sécurisation d’un système. Il permet de 
restreindre l'accès aux informations 
confidentielles et aux fonctions sensibles. Cette 
thèse propose quatre contributions dont trois sont 
liées au contrôle d’accès. 
Tout d'abord, nous examinons l'état de l'art pour 
déterminer l'influence de l'architecture sur les 
propriétés d'une solution et proposer une 
taxonomie du contrôle d'accès dans l'IdO. 
Ensuite, nous proposons un ensemble de 
bibliothèques pour aider les développeurs à 
intégrer les mécanismes de contrôle d'accès dans  
 

leurs produits. Ces bibliothèques gèrent 
l’émission, le stockage, et la vérification de 
jetons matérialisant l’autorisation. 
La blockchain est un registre distribué qui 
enregistre et ordonne les transactions. Elle est 
utilisée dans notre troisième contribution pour 
gérer les attributs des utilisateurs, les politiques 
de contrôle d'accès, et la confiance entre les 
différentes entités. 
Notre quatrième contribution élargit le spectre de 
la sécurité de l'IdO et se concentre sur les 
propriétaires. Au cours de sa vie, un objet est 
susceptible de changer de main. Nous 
fournissons un système de suivi des propriétaires 
ainsi qu'une preuve de propriété indépendante. 
De plus, nous proposons un système de gestion 
des secrets liés aux objets et un mécanisme de 
publication des propriétés dynamiques de ces 
objets qui pourraient intéresser des utilisateurs 
potentiels. 

 

 

Title: Blockchain and access control: Towards a more secure Internet of Things 
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Abstract: The Internet of Things (IoT) needs 
better security if we want to ensure the 
expansion of the field and user adoption. But the 
lack of memory, of computational power, or 
access to the network limit the use of 
traditionnal methods. New ones must therefore 
be devised. 
Access control is an important step towards 
securing a system. It restricts access to private 
information and sensitive functions. This thesis 
proposes four contributions, among which three 
are related to access control. 
First, we survey the state of the art to determine 
the influence of architecture on the properties of 
a solution and propose a taxonomy of  IoT 
access control. 
Second, we propose a set of libraries to help  

developers integrate access control mechanisms 
into their products. These libraries handle the 
issuance, storing, and verification of tokens that 
materialize authorization. 
The blockchain is a distributed ledger that 
registers and orders transactions. It is used in our 
third contribution to manage user's attributes, 
access control policies, and trust. 
Our forth contribution broadens the specter of 
IoT security and focuses on device ownership. 
Throughout its life, an IoT device is likely to 
change hands. We provide an ownership 
tracking system as well as an independent proof 
of ownership. Additionally, we propose a 
management system for device-related secret 
and a mechanism for publishing dynamic device 
properties that might interest potential users. 


