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Abstract

Dependability has become a necessity in the industrial world during the twentieth century.

Dependability is an activity domain that proposes means to increase the attributes of the

system in a reasonable time and with a less cost.

In systems engineering, dependability is defined as the property that enables system

users to place a justified confidence in the service it delivers to them and it is a measure of

a system’s availability, reliability, and its maintainability, and maintenance support perfor-

mance, and, in some cases, other characteristics such as durability, safety and security. The

key concept that our work is based on is the availability. The availability A(t) is the ability

of a system to be operational at a specific moment.

The cost of some system with high availability is very expensive. The designer must

compromise between the availability and the economic costs. Users can reject systems that

are unsafe, unreliable or insecure. Therefore, any user (or industry) will ask this question

before getting any product: "What is the optimal product in the market?" To answer to this

question, we must combine the following two points:

• The best availability of the system: The user wants a product that lasts as long as

possible.

• The best cost of the system: The user wants a product without costing him a fortune.

Availability calculation is based primarily on knowledge of failure rates and repairs of

system components. Availability analysis helps to calculate the ability of a system to pro-

vide a required level of performance depending on the level of degradation.

Several methods have been used to calculate the availability of a system, amongst which

we find the Universal Generating Function (UGF), Inclusion-Exclusion technique, Markov

models, etc. These methods employ different probabilistic techniques to evaluate this crite-

rion, but these proposed approaches remain effective only for very specific cases, for exam-
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ple the cases of binary systems.

A binary system is a system where only two cases are possible: perfect functioning

and total failure. While the transition to multi-state systems (MSS) drastically restricts the

application of most of these methods. In real life, the systems corresponds to MSS. In

such scenarios, systems and their components can operate at different performance levels

between working and failure states. However, the evaluation of the availability of the MSSs

is more difficult than in the binary case, because we have to take into account the different

combinations of the component failure modes. Throughout this thesis, we search for a

method that helps us to compute and to optimize the availability of MSS.
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Résumé

La sûreté de fonctionnement (SdF) est devenue une nécessité dans le monde industriel au

cours du XXe siècle. La SdF est un domaine d’activité qui propose des moyens d’augmenter

les attributs du système dans un délai raisonnable et à moindre coût.

Dans l’ingénierie des systèmes, la SdF est définie comme la propriété qui permet aux

utilisateurs du système de placer une confiance justifiée dans le service qu’il leur fournit et

c’est une mesure de la disponibilité, de la fiabilité et de la maintenabilité d’un système, et

de la performance du support de maintenance, et, dans certains cas, d’autres caractéristiques

telles que la durabilité, la sûreté et la sécurité. Le concept sur lequel notre travail est basé est

la textbf disponibilité. La disponibilité A(t) est la capacité d’un système à être opérationnel

à un moment précis.

Le coût d’un système à haute disponibilité est très cher. Le concepteur doit faire un

compromis entre la disponibilité et les coûts économiques. Les utilisateurs peuvent rejeter

des systèmes dangereux, peu fiables ou non sécurisés. Par conséquent, tout utilisateur (ou

industrie) posera cette question avant avoir un produit: "Quel est le produit optimal sur le

marché?" Pour répondre à cette question, nous devons combiner les deux points suivants:

• La meilleure disponibilité du système: L’utilisateur souhaite un produit qui dure

longtemps le plus possible.

• Le meilleur coût du système: l’utilisateur veut un produit sans lui coûter une fortune.

Le calcul de la disponibilité est basé principalement sur la connaissance des taux de défail-

lance et des réparations des composants du système. L’analyse de disponibilité permet de

calculer la capacité d’un système à fournir un niveau de performance requis en fonction du

niveau de dégradation.

Plusieurs méthodes ont été utilisées pour calculer la disponibilité d’un système, parmi

lesquelles on trouve la Fonction de Génératrice Universelle (UGF), la technique d’inclusion-
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exclusion, les modèles de Markov, etc. Ces méthodes utilisent différentes techniques prob-

abilistes pour évaluer ce critère, mais ces approches proposées ne restent efficaces que pour

des cas très spécifiques, par exemple les cas de systèmes binaires.

Un système binaire est un système où deux cas sont possibles: fonctionnement parfait

et défaillance totale. Alors que les systèmes multi-états (SME) restreint considérablement

l’application de la plupart de ces méthodes. Dans la vie réelle, les systèmes correspondent

à des SME. Dans de tels scénarios, les systèmes et leurs composants peuvent fonctionner à

différents niveaux de performances entre l’etat de fonctionnement parfait et l’état de défail-

lance totale. Cependant, l’évaluation de la disponibilité des SME est plus difficile que dans

le cas binaire, car il faut tenir compte des différentes combinaisons des modes de défaillance

des composants. Tout au long de cette thèse, nous recherchons une méthode qui nous aide à

calculer et à optimiser la disponibilité de SME tenant compte le facteur coût.
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Introduction

1. Context and Motivation

From the beginning, the human being seeks to find his own needs (food, sleep, comfort,...).

However, what distinguishes the human of today with the one of the past is that over time

he seeks to find these materials needs with the best benefits. In order to achieve his aim, he

must use some "tools" that allow him to realize these needs. These "tools" are the products

in the commerce. However, the choice of which product is chosen depends on its efficacy. In

this context, the competition between companies has increased. When firms compete with

each other, consumers get the best possible prices, quantity, and quality of goods and ser-

vices. One important benefit of competition is a boost to innovation. Competition can lead

companies to invent lower cost manufacturing processes, which can increase their profits

and help them compete and then, pass those savings on to the consumer. That is why the

evolution of technology has expanded which led to the increase of the complexity of systems

(products) and has further reduced their design and manufacturing costs. Correspondingly,

manufacturers rely on the criterion of quality to be distinguished in the commerce/industry.

To achieve this goal, they must control the various tools that will enable them to keep in a

competitive position and must take actions of improvement at all levels. All these reasons

make that Dependability domain has an undeniable means that must be mastered when de-

signing any system.

Dependability has become a necessity in the industrial world during the twentieth cen-

tury. The term "dependability" appeared in an advertisement on Dodge Brothers engines in

the 1930s. The aim of dependability is to achieve the "grail" of system design. In order to

realize this aim, all possible uses of a product should be tested over a long period, which

is unthinkable in the industrial context or even impossible to achieve in any case. Depend-

ability is an activity domain that proposes means to increase the attributes of the system in

a reasonable time and with a less cost.
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Dependability is often referred to as "the science of failures"; it includes their knowl-

edge, evaluation, foresight, measurement and mastery. A crosscutting area requires a global

knowledge of the system such as the conditions of use, the external risks, the functional

and material architectures, the structure and fatigue of the materials. In systems engineer-

ing, dependability is defined as the property that enables system users to place a justified

confidence in the service it delivers to them and it is a measure of a system’s availability, re-

liability, and its maintainability, and maintenance support performance, and, in some cases,

other characteristics such as durability, safety and security [130]. The key concept that our

work is based on is the availability. The availability A(t) is the ability of a system to be

operational at a specific moment [130].

The cost of a high level of quality is very expensive. The designer must compromise

between the availability and the economic costs. Users can reject systems that are unsafe,

unreliable or insecure. Thus, to have a good system in terms of high availability, the cost

of system can be extremely high. Therefore, any user (or industry) will ask the following

question before getting any product: "What is the optimal product in the market?" To answer

this question, we must combine the following two points:

• The best availability of the system: The user wants a product that lasts as long as

possible.

• The best cost of the system: The user wants a product with moderate price.

2. Problem statement

Since, dependability domain is extremely large and complex, in this thesis we focus on the

system’s availability assessment. Availability is an important parameter to study the sys-

tem’s working states. It consists in that a component, a repairable unit, a replaceable unit or

a system is in a state of normal operation at a given instant or during a given period. Avail-

ability calculation is based primarily on knowledge of failure rates and repairs of system

components [118]. Availability analysis helps to calculate the ability of a system to provide

a required level of performance depending on the level of degradation.

Several methods have been used to calculate the availability of a system, among them we

find the Universal Generating Function (UGF) [63], Inclusion-Exclusion technique [77, 76],

Markov models [96],. . . These methods employ different probabilistic techniques to eval-

uate this criterion, but these proposed approaches remain effective only for very specific
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cases, for example the cases of binary systems.

A binary system is a system where only two cases are possible: perfect functioning and

total failure. While the transition to multi-state systems drastically restricts the applica-

tion of most of these methods. In real life, the systems correspond to multi-states systems.

In such scenarios, systems and their components can operate at different performance lev-

els between working and failure states. However, the evaluation of the availability of the

multi-state systems is more difficult than in the binary case, because we have to take into

account the different combinations of the component failure modes. Throughout this thesis,

we search for a method that helps us to compute the availability of multi-states systems.

In addition to the multi-state aspect, there is the structural aspect of the system, which

illustrates the type of connection connecting the components. In this case, the system be-

come much complex. In general, most methods of availability assessment can be applied

efficiently only to systems with a simple structure: series, parallel, bridge or mixed,. . .

In this thesis, we are interested in the state of the system after a long period of time,

which means that we need to calculate the steady availability of the system. Therefore, we

use Markov models to represent the complex multi-states system and to calculate its avail-

ability.

On the other hand, in dependability studies, the knowledge that we have about the com-

ponents availability is generally imprecise. Taking into account totally or partially of the

imprecision of the used knowledge involves on the validity of the results. This requires

some methods that allow modeling and manipulation of such imprecision as the probability

theory, the fuzzy set theory, the belief function theory,. . . However, in our work we want to

calculate the imprecise availability using Markov models. For our best of knowledge, there

is only one work in the literature that aims to solve this problem [110].

The first part of our work consists on proposing a methodology to calculate the imprecise

availability of a multi-states system. The second part consist on proposing a methodology

that optimize the imprecise availability, in other words, propose a methodology that chooses

the best system with the best availability and the best cost?
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Best System ?!

Uncertainty

Figure 1: Representation of the thesis problematic

3. Objectives and Contributions

In this thesis, we focus on availability analysis of the multi-states systems. In this context,

our aim is to propose a methodology that optimize the design of multi-states systems. We

will rely on the cost criterion on one side, and the availability criterion on the other side,

in order to find the best compromise between these two criteria. Therefore, two objectives

must be done:

• First objective: Proposition of a method that compute the imprecise availability of

multi-states systems.

• Second objective: Proposition of a method that optimize the imprecise availability of

multi-states systems.

First, we propose to use the Markov models [37] to model the multi-states systems and

to calculate the steady imprecise availability of the system. However, in our study, we must

take into account the uncertainties on the data of the multi-states system. In our work, we

propose to use interval analysis [89, 23] to solve the problem of uncertainties and to treat

the data with uncertainties in terms of intervals. To compute the imprecise availability, we

4



CONTENTS

introduce for the first time in dependability domain, a technique used in interval analysis,

the "Technique of Contractors" [10, 49]. We apply this technique to large systems.

After we define the principal methodology of computing the imprecise availability of

multi-states systems, we pass to the next step. We need to propose a method that aims at

optimizing the imprecise availability of a multi-states system, by choosing a certain number

of components among different components that provide the best availability with the lowest

cost for some system’s configuration. As a simple start, we proceed in two ways. The

first consists in choosing among several components with different performances, the best

components of the system, for a given configuration. The second is to define a fixed number

of possible components, and choose the best configuration of the system that provides the

best availability and the best cost.

4. Thesis outline

This manuscript comprises two parts: the first lumps prerequisites and background of the

thesis while the second presents our main contributions. The hierarchy of the report is based

on five chapters as indicated in what follows.

The first part is devoted to present basic knowledge related to our subject, the basic no-

tions and the state of the art.

Chapter 1 provides the scientific context for our work. We first start with an overview

on dependability, then we present a brief history of dependability. Since the subject of the

thesis is based on uncertainties, we give a short explanation of aleatory uncertainty and

epistemic uncertainty. Next, we define the main concepts in dependability (RAMS for Re-

liability, Availability, Maintainability and Safety). Then, we continue with a presentation

of the RAMS assessment for the component that belongs to a system. After, we discuss

some of the RAMS methods that help to illustrate the system and to calculate RAMS. To

summarize the chapter, we end with a conclusion.

Since uncertainty are, mainly modeled in intervals in our work, chapter 2 is devoted to

present the basics of interval analysis.

First, we start with a historical overview of interval analysis. Second, we explain the main

concept of interval analysis. Third, we focus on giving an overview of the basic terms and

definitions. To the good use of intervals, we present later the interval arithmetic computa-
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tion principles and we give the well-known properties of intervals (commutativity and as-

sociativity, additive and multiplicative identity elements, nonexistence of inverse elements,

sub-distributivity, cancellation). The main use of intervals in the thesis appears in matrices,

therefore a section is dedicated to present the concepts of interval matrices. We present also

a well-known technique in interval analysis which is "constraint satisfaction problem". In

this section, we give a brief history of contractors, the main definitions, some of the con-

tractors, and we focus on the forward-backward contractor since it will be applied in our

methodology. Finally, we end this chapter by a conclusion.

Chapter 3 is devoted to present the related work to imprecise availability assessment of

multi-states systems. We start with a distinction between binary systems and multi-states

systems. Then, we present the techniques used to calculate the availability of a binary sys-

tem. After, we explain the case of multi-states system and we present some of the methods

(UGF, Inclusion-Exclusion technique, Monte-Carlo simulation, Markovian method) used to

calculate the precise availability of such systems and their examples in the literature. Ee

present in this chapter the imprecise case of availability assessment and we cite some of

related works. We end the chapter with the positioning of our work compared to others and

with the conclusion of the chapter.

Part 2 is organized into two chapters, that consist of the contributions of this thesis.

Chapter 4 provides the first contribution of this thesis, which is a method of computing

the availability of multi-states systems using imprecise Markov models. First, we start with

some basics of the use of imprecise Markov models in dependability and we discuss related

works. To compute the imprecise availability of MSS using Markov models, we present

two methods. The first called the "Exact method" and the second, which constitute one of

the main contributions of this thesis, is based on "the technique of contractors". We give

the metrics for validation of the methodology and provide numerical examples in order to

assume better understanding of the new proposed approach. We end up with the discussion

of the methods and conclusion.

Chapter 5 provides the second contribution of the thesis, which is the optimization of

the imprecise availability of multi-states systems using the method proposed in Chapter 4.

We start with an introduction about the optimization in dependability in general. After, we

present two of the possible cases of optimization of the imprecise availability and provide

useful and clear solutions. Two examples are presented to illustrate the two methodologies.
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We end with the results discussion and with the conclusion of the chapter.

A general conclusion recapitulating the basic concepts and contributions of the thesis,

as well as future work and perspectives, are given at last.





Part I

Background
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Chapter 1

Dependability basics

1.1 Introduction

Nowadays, dependability domain is one of the major challenges that interest the manufac-

turers and operators in the various sectors (automotive, aeronautics, aerospace, telecommu-

nications, nuclear, defense, etc.). The exponential evolution of technology has increased the

complexity of the systems and further reduced their design and maintenance costs. In this

perspective, manufacturers rely on quality criteria to be distinguished in the market. To do

this, they must master the various tools that enable them to make it possible to keep their

competitive position and must adopt improvement actions to all levels. For all these reasons,

dependability is the key to success which must be mastered when designing any system.

Dependability provides users measures to evaluate services supplied by systems. It is

widely used in many domains, including human factors [107], railway systems [92], nuclear

systems [122, 55], etc.

In this chapter, we are interested in different concepts related to systems dependability.

At first, we recall the definition of a system and we focus on the terms of dependability

by exposing its hindrances, its aspects and a brief history in order to become familiar with

the subject. So, we first list the precise definitions characterizing the various concepts in

dependability which are given by Avizienis et al. [48], and then recall other existing defini-

tions. After, we present the different mathematical measures and theories of the reliability

and availability of the systems that discern these concepts. In addition, we highlight the use-

ful methods of analyzing the reliability/availability through a bibliographic study. Similarly,

we present the different structures of existing systems. Finally, we show the difference be-

tween binary and multi-state systems (MSS) and the basic techniques that help to calculate
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the reliability/availability.

A system is an entity with bounds (frontiers) which is able to have autonomous activities

according to objectives and interacting with other entities. The function of a system is

what the system is intended to do and is described by the functional specification in terms

of functionality and performance. The behavior of a system is what the system does to

implement its function and is described by a sequence of states. The total state of a given

system is the set of the following states: computation, communication, stored information,

interconnection, and physical condition. The structure of a system is what enables it to

generate its functional organization. The service delivered by a system is its behavior as it

is perceived by its users.

1.2 What is the concept of dependability?

The concept of dependability is defined by many, in this section we cite the definitions in-

troduced in some references.

This concept is defined according to Mortureux [83] as a set of means and a set of results

produced by these means. For a system, this notion is considered as the characteristic of a

system that allows to place a justified confidence in it. This confidence is based on a set of

steps and is expressed through a set of characteristics, in particular availability.

According to Villemeur [115], dependability is considered as the ability of an entity to

perform one or more required functions under given conditions. In this definition, the entity

can refer to an organization, system, product or means and the function of the system means

the functional performance expected by the system. He also notes that this concept mainly

encompasses reliability, availability, maintainability and safety, but also other skills such as

durability, testability. . . or combinations of these skills. In a broad sense, this concept refers

to the science of failures and breakdowns.

Laprie [62] says that dependability is the property that allows users of the system to

place justified confidence in the service it provides them. Thus, according to this definition,

dependability reflects the trust that can be placed in a system.

12
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1.3 Dependability history

Dependability problems [4] have existed for a very long time, as soon as a system may have

failed.

The first collection of statistical information on engines and aircraft accidents was con-

ducted in the 1930s, in the air transport sector. Between 1939 and 1942, the very first quan-

tified objectives were given by Captain A.F. Pugsley of the 7th Canadian Infantry Brigade

appeared. He estimated failure rates of 10−5/h for aircraft and 10−7/h for their structures.

Between 1940 and 1950, the concept of maintainability appeared and a discipline started

developing under the name of "reliability theory", following a comparison of the failure fre-

quencies of aircraft used during the Second World War. It was applied to electronics in the

aeronautics, defense and nuclear sectors.

Between 1960 and 1970, the generalization of this approach to other components: me-

chanical, hydraulic, electrical, then to people, software . . . and the development of new

methods (Process Hazard Analysis (PHA), Fault Trees (FT),. . .) to control the risks, have

been done.

In 1962, the Academy of Sciences welcomed the word "reliability" in its terminology.

In the 1980s, a formalization of the global approach of the dependability on the con-

cept of complex systems and the appearance of several deepening were manifested in the

development: reliability databases, modeling and analysis methods, calculation software,

modeling software, etc, have been defined [62].

To conclude this brief history of dependability, we can say that today the dependability

of a system has never been more important. The study of the dependability of any system is

well needed to be recognized in the industry in all kind of majors.

1.4 What are uncertainties?

In the work of Aven [5], uncertainties are usually divided into two types: aleatory uncer-
tainty and epistemic uncertainty. Aleatory uncertainty is due to the natural variability of

a random phenomena. It reflects the objective feature of the world. Aleatory uncertainty

is usually represented by the probability models and frequentist probabilities. Epistemic

13
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uncertainty expresses the lack of knowledge about the true values of the frequentist proba-

bilities and parameters of probability models. It reflects the subjective feature of the analyst.

The distinction is important because epistemic uncertainties can be reduced by acquiring

knowledge on the studied system, whereas aleatory uncertainties cannot. Furthermore, some

works have proven that uncertainties in reliability and risk assessments are mainly epistemic

[121].

Due to the environment and the lack of failure data (due to rare failure events) related to

some components or subsystems used in transportation systems, there are epistemic uncer-

tainties when modeling such systems. Because of this, there is always uncertainty in the

modeling of transportation systems. As transportation systems are high-availability sys-

tems, the influence brought by epistemic uncertainty cannot be ignored. This motivates us

to consider all types of uncertainties in our models. Keep in mind that there are other points

of view as to how to distinguish sources or types of uncertainty [31]. Blockley [15] argued

that uncertainty is classified using three conceptually distinctive and orthogonal attributes:

fuzziness, incompleteness (epistemic) and randomness (aleatory). The motivation was that

the aleatory/epistemic classification is not rich enough for practical decision making. Block-

ley further described some characterizations of uncertainty, such as ambiguity, confusion,

contingency, indeterminacy and conflict emerge from mixes and interactions between these

basic three attributes. As a consequence, several uncertainty theories for uncertainty quan-

tification were presented, including Bayesian theory, imprecise probability theory [117],

possibility theory [53], belief functions theory [26], etc. Probability is the predominant tool

used to measure uncertainties in reliability and risk analysis. However, some researchers

have argued that probabilistic approaches are not adequate to handle epistemic uncertainties

in reliability studies, and should be restricted to aleatory uncertainties [5]. The Bayesian ap-

proach requires us to specify probability distribution. But, in many cases, prior knowledge

is either vague, or non-existent. Thus, some recent theories such as belief functions were

introduced to handle both aleatory and epistemic uncertainties in reliability studies. During

the last years, belief functions theory was applied in a few works concerning reliability and

risk analysis [41, 47, 98]. Particularly, a proper reliability model using belief functions the-

ory was introduced by Sallak et al. [98] and further studied in [101, 99]. In these works,

different points were treated concerning the representation of the system’s configuration, the

failure dependencies between components and a comparison with other uncertainty meth-

ods.
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1.5. CONCEPTS IN RAMS ASSESSMENT

1.5 Concepts in RAMS assessment

The system is characterized by five fundamental properties: functionality, usability, perfor-

mance, cost, and dependability. The concept of dependability as we consider in this thesis

denotes the ability to deliver service that can justifiably be trusted [91].

A systematic exposition of the concepts of dependability consists of three parts: the

threats to, the attributes of, and the means by which dependability is attained, as shown in

Figure 1.2.

RAMS is an acronym for Reliability, Availability, Maintainability, and Safety, it denotes

the concept of dependability. Dependability is an integrating concept which contains the

following attributes [6]:

• availability: readiness for correct service.

• reliability: continuity of correct service.

• safety:

1. technical security: absence of catastrophic consequences on the users and the

environment.

2. regulation security: with respect to human behavior (compliance with the labor

code, anti-intrusion resistance to malice).

• integrity: absence of improper system alterations.

• maintainability: ability to undergo modifications and repairs.

• Security is defined as the combination of confidentiality, the prevention of the unau-

thorized disclosure of information, integrity, the prevention of the unauthorized amend-

ment or deletion of information also it takes into account protection against physical

"attacks" (destruction, sabotage,. . .), and availability, the prevention of the unautho-

rized withholding of information [22, 90].

There are some threats to dependability: failures, errors, and faults. A failure occurs

when the service delivered by the system deviates from what is required. The cause of a

failure is an error affecting a part of the system’s state (e.g. erroneous value of a variable).

The cause of an error is a fault (e.g. short-circuit on an electronic component). Note that

these definitions are in fact recursive because a failure of a component is a fault for the sys-

tem containing that component. The causal chain is presented in Figure 1.1.
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Figure 1.1: The chain between the threats of dependability [6].

Faults during the life of a system are classified into three groups [6]:

• development faults that include all fault classes occurring during development,

• physical faults that include all fault classes that affect hardware,

• interaction faults that include all external faults.

Dependability

Threats

Attributes

Means

Faults
Errors
Failures

Availability
Reliability
Maintainability
Safety
Integrity
Confidentiality

Fault Prevention 
Fault Tolerance
Fault Removal
Fault Forecasting

Security

Figure 1.2: The dependability tree [6].

A system does not always fail in the same way. The ways in which a system can fail are

its failure modes. These can be ranked according to failure severity. The modes characterize

incorrect service according to several means, which they are developed to attain the various

attributes of dependability. Those means are grouped into four major categories:

• Fault prevention means to prevent the occurrence of introduction of faults.
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• Fault tolerance means to avoid service failures in the presence of faults.

• Fault removal means to reduce the number and severity of faults.

• Fault forecasting means to estimate the present number, the future incidence, and the

likely consequences of faults.

1.6 RAMS assessment at the component level

RAMS (Reliability, Availability, Maintainability, Safety) attributes are always used to assess

the performance of a system [14]. In this section, some quantitative measures of RAMS

assessment are applied at the component level.

1.6.1 Reliability

Reliability is defined as the ability of a good to perform a required function under given con-

ditions for a given period of time according to the standard (NF EN 13306, French Standard

(European Norm), Maintenance Vocabulary, Maintenance Terminology, October 2001).

Reliability is the support to be given to increase availability while taking into account

the objective of cost optimization. This quantity can be quantified by these two indicators:

the mean time to failure (MTTF) for non-repairable systems, such as lamps and electronic

components, and the mean time between consecutive failures (MTBF) for repairable items,

such as industrial or domestic equipment. It represents the probability R(t) that entity E

performing its functions at the instant 0 always accomplishes them at the instant t. It is

characterized by its function R(t) and its failure rate λ(t).

R(t) = Probability(No failure on the interval [0, t]) (1.1)

where the component or the system is supposed to be working at time t=0.

In this context, the unreliability function is also introduced, denoted as F(t). Unlike

reliability, this function represents the probability that entity E has experienced a failure

before time t.

F (t) = Probability(failure on the interval [0, t]) (1.2)

with F (t) = 1−R(t).
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Note that the reliability function, can take forms beyond time depending on the context

of the work. For instance, it may refer to the number of cycles carried out for a valve or

contractor, at the distance traveled for a car, at the number of revolutions for a pump or

motor, etc.

Generally, to measure reliability, the function of the failure rate is used. The failure rate

λ represents the frequency at which a component or a system fails. The failure rate at time

t is defined as

λ(t) =
P (Failure on [t, t+ dt] with no failure on [0, t])

P (no failure on [0, t])
(1.3)

λ(t) = − 1

R(t)

dR(t)

dt
(1.4)

In case the failure rate is constant and thus does not depend on time, the reliability

function follows an exponential law:

R(t) = e−λt (1.5)

1.6.2 Availability

According to the standard (NF EN 13306), availability is defined as the ability of a compo-

nent or a system to perform a required function under given conditions at time t, assuming

that the provision of the necessary external means is ensured. The availability at time t is

expressed by

A(t) = Probability(System is working at time t). (1.6)

In this thesis, we are interested in availability calculation.

For non-repairable items, the notion of availability remains the same as that of reliabil-

ity. As long as for repairable items, this concept is more valid when breakdowns are rare

and short, i.e. when the item is reliable and maintainable.

Availability is often quantified by these two indicators: Mean Time to Failure (MTTF)

and Mean Time to Repair (MTTR). Then the average availability Ai can be evaluated by the

ratio:

Ai =
MTTF

MTTF +MTTR
(1.7)
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Mean Time To Failure (MTTF) is the average operating time before the first failure.

When t tends to infinity, R(t) decreases (as fast as an exponential law), we can calculate the

MTTF as follows:

MTTF =

∫ ∞
0

R(t)dt (1.8)

For a component with a constant failure rate λ, we have

MTTF =
1

λ
(1.9)

Mean Time To Repair (MTTR) is the average time of repair, it is defined in 1.6.3.

1.6.3 Maintainability

The standard (NFEN13306) defines maintainability as the ability of a component or a

system to be maintained or repaired during a given time interval, when maintenance is per-

formed under given conditions, with prescribed procedures and means. It is characterized

by the probability M(t) that at time t an entity E is in a state performing these functions

knowing that it was in failure at time 0. The maintainability at time t is expressed by:

M(t) = Probability(Repair completed on [0, t]) (1.10)

where the component or the system is supposed to be failed at time t=0.

From its definition, it is clear that this concept can only be applied to repairable systems,

where the determination of maintenance policies is very important. On the other hand, for

non-repairable systems, the notion of maintainability does not apply. Generally, this quan-

tity is measured by the following two indicators, the average repair time (MTTR) and the

repair rate µ.

The repair rate µ represents the frequency at which the failure of a component or a

system is repaired. For a repairable component or system, the repair rate at time t is defined

as:

µ(t) =
1

1−M(t)

dM(t)

dt
. (1.11)

For a component with a constant repair rate µ, the maintainability at time t is given by:

M(t) = 1− e−µt (1.12)

Mean Time To Repair (MTTR) is the average time of repair. It can be calculated as

follows, such that M(t) tends to 1 (as fast as an exponential law), when t tends to infinity:

MTTR =

∫ ∞
0

(1−M(t))dt (1.13)
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Figure 1.3: Illustration of MTTF, MUT, MDT, MTBF.

For a component with a constant repair rate µ, we have

MTTR =
1

µ
(1.14)

For a component with constant failure rate λ and constant repair rate µ, the availability

is defined as

A(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t (Component is working at t = 0) (1.15)

A(t) =
µ

λ+ µ
− µ

λ+ µ
e−(λ+µ)t (Component is failed at t = 0) (1.16)

Mean Up Time (MUT) is the average operating time after the repair. Mean Down Time

(MDT) is the the average time of repair after a failure. Mean Time Between Failures

(MTBF) is the average time between failures. Figure 1.3 illustrates all these parameters.

According to this figure, we have the following equations:

MTBF = MDT +MUT (1.17)

Availability =
MDT

MTBF
(1.18)

1.7 RAMS Methods

In the previous section we introduced the RAMS concepts, in this section, we talk about the

RAMS methods.

Dependability combines a set of techniques used to identify, analyze, manage and, re-

duce the risks associated with industrial systems [86]. All the dependability methods have

at least three points in common, which can be summarized in three types of action:

• Identify the processes that can affect reliability, maintainability, availability or secu-

rity.

• Model these different processes to facilitate the understanding of the involved mech-

anisms.

20



1.7. RAMS METHODS

• Evaluate the analysis results by using the obtained models to assess the level of de-

pendability of the studied system.

Many works offer an inventory of these methods, among them Amongst other presenta-

tions [116, 11, 87, 133, 86].

Three classification modes are commonly used:

1. Qualitative/quantitative approaches

• Qualitative/Quantitative Approaches

The results provide information about system characteristics: weak points of the

system, influence of a given element on the reliability of the system, identifica-

tion of critical paths, testing (for critical paths) of disposal methods.

• Quantitative approaches

The results are due to the calculation of reliability, availability,. . .

2. Inductive/deductive approaches

• Inductive approaches

Inductive approaches based on a bottom-up approach, they consider an initiating

event (technical failure, organizational dysfunction) which they seek to charac-

terize the consequences on the system and its environment.

• Deductive approaches

Deductive approaches based on a top-down approach, they consider a dreaded

event (system shutdown, malfunction) which they seek to explain the causes,

usually in the form of sequences of events.

3. Static/dynamic approaches

• Static approaches

Static approaches allow to analyze the system from a structural point of view

without taking into account changes over time; generally they rely on a Boolean

mathematical model of the system that will provide, for example, combinations

of failures leading to the fail of the system but without representing the temporal

interrelations that affect it.

• Dynamic approaches

Dynamic methods take into account the behavioral and temporal aspects.
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A predictive safety analysis is a way to study a real system in order to produce a model

of the system related to dependability characteristic (reliability, availability, maintainability,

security). The elements of this model will be events likely to occur in the system and its

environment, such as:

1. Failures of system components.

2. Environmental events.

3. Human errors in operation phase.

Thus, thee model represents all the failures of system components that compromise one of

dependability characteristics. Several methods of analysis have been developed. The main

ones are:

• Preliminary Hazard Analysis (PHA).

• Failure Modes and Effects Analysis (FMEA).

• Reliability Block Diagram (RBD).

• Truth-Table method (TTM).

• Fault Tree Analysis (FTA).

• Accident Consequence Tree (ACT).

• Cause-Consequence Diagram Method (CCD)

In this section, we present some of the classical methods of RAMS that corresponds to

the structural aspect of the systems in the aim of availability computing.

1.7.1 Graphical representation of a system

Any system is designed to perform a specific function. The system is defined by the rela-

tionships that these components have with each other. According to Kjarulff and Madsen

[57], a system able to perform tasks that are supposed to be intellectually demanding will

often exhibit artificial intelligence. It is said expert system if the system’s problem solving

ability is restricted to a particular area of expertise.

Graphical models are usually used to visualize the structure of a system, the behavior of

a system, and the conditional relationship between components. A graphical model can be

constructed to solve a particular problem within a given problem domain, thus expert system
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can refer to systems that perform reasoning and decision making by means of graphical

models. In the literature, there are some widely used graphical models. In this section,

some useful graphical models are presented. Users choose a graphical model according to

their objectives and the characteristics of these graphical models.

Figure 1.4: RBDs for some typical systems (series system, parallel system, k-out-of-n sys-

tem, complex system [91])

1.7.1.1. Reliability block diagram

For the development of any system, it is not only necessary to identify its components but it

is also important to know the layout and connection that will bring these elements together.

Following the different interactions between components, the system is oriented towards

achieving an expected objective. The term system is used in all fields: mechanical, auto-

matic, electronic, computer, etc.

Reliability block diagram (RBD) is the most common model that has been used in re-

liability analysis for many years. A number of components represented by blocks are con-

nected to reflect the logical reliability structure of a system. In this section, we expose the

different system configurations, as illustrated in Figure 1.4.

A- Systems with simple configuration
The main configurations often encountered in the context of dependability analysis are

exposed hereafter:

Series system
A series system is characterized by a linear sequence of n elements (cf. Figure 1.5).

According to this structure, the failure of one of the n components leads to the failure of the

whole system, which means that the system is working when all components are working.
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Figure 1.5: Series system

Figure 1.6: Parallel system

The reliability of the whole system Rs is equal to the product of the reliability of each

component:

Rs =
n∏
i=1

Ri (1.19)

Parallel system
A parallel system is characterized by a parallel association of all components (cf. Figure

1.6). Generally, the failure of one or more elements does not cause the system to fail, the

system only fails if all the elements fail.

The failure probability of the system Fs is equal to the product of the failure probability

of each component:

Fs =
n∏
i=1

Fi =
n∏
i=1

(1−Ri) (1.20)

So, the reliability Rs of the system is:

Rs = 1− Fs = 1−
n∏
i=1

(1−Ri) (1.21)

Series-parallel system
The series-parallel system consists of n subsystems connected in parallel such that each

subsystem consists of k elements placed in series (cf. Figure 1.7). A series-parallel system
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Figure 1.7: Series-parallel system

is the result of the combination of both series and parallel systems.

To calculate its reliability, the complete system is reduced to a parallel system by model-

ing each subsystem in series with a single component. The reliability of a series subsystem

i is given by:

Ri =
n∏
j=1

Rij (1.22)

So, the reliability Rs of the complete system is:

Rs = 1−
k∏
i=1

(1−Ri)

Rs = 1−
k∏
i=1

(1−
n∏
j=1

Rij)

(1.23)

Parallel-series system
The parallel-series system consists of n subsystems connected in series such that each

subsystem consists of k elements placed in parallel (cf. Figure 1.8). Similarly, a parallel-

series system is the result of combining the two series and parallel systems.

To calculate its reliability, the complete system is reduced to a series system by modeling

each subsystem in parallel with a single component. The reliability of a parallel subsystem

j is:

Rj = 1−
n∏
i=1

(1−Rij) (1.24)
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Figure 1.8: Parallel-series system

Figure 1.9: Mixed system

So, the reliability of the whole system Rs is as follows:Rs =
∏n

j=1Rj

Rs =
∏n

j=1(1−∏k
i=1(1−Rij))

(1.25)

Mixed system
A mixed system is the combination of series and parallel structures (cf. Figure 1.9). The

reliability of the complete system is assessed by decomposing the system into several series

and parallel subsystems, then each subsystem is reduced to a single component.

B- Systems with any kind of configuration
Other types of system configurations are presented hereafter:

k-out-of-n system (k/n)
A redundant system k-out-of-n only works if at least k components of the n parallel
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Figure 1.10: k-out-of-n system

Figure 1.11: Bridge system

components work to guarantee the system function, Figure 1.10. In the case where all the

components of the system are identical, i.e. they have the same failure rate and reliability R,

the system’s reliability Rs is equal to the sum of the probabilities of all configurations with

at least k operational components:

Rs(k, n) =
n∑
i=k

Ci
nR

i(1−R)n−i ; (Ci
n =

n!

i!(n− i)!) (1.26)

Bridge structure
A system is said to have a bridge structure when the system cannot be broken down into

series and parallel combinations (cf. Figure 1.11). This system operates in parallel-series

mode under the control of the bridge component C3. If this component fails, the system

switches to series-parallel mode, which is considered degraded mode.

To calculate the reliability of the systemRs, either the Boolean table is used while listing

all the possible combinations of component states, either iteration system is reduced using
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Figure 1.12: Decomposition of a bridge system

the conditional probability theorem.

Figure 1.12(a) represents the case where the bridge component is working. The reliabil-

ity is given by:

Ra = [1− (1−R1)(1−R4)].[1− (1−R2)(1−R5)] (1.27)

Figure 1.12(b) represents the case when the bridge component fails. we have:

Rb = 1− (1−R1R2)(1−R4R5) (1.28)

So, the reliability Rs of the complete system is:

Rs = R3.Ra + (1−R3).Rb (1.29)

Systems with complex configurations
A system with a complex configuration can only be represented by its connection dia-

gram (cf. Figure 1.13). In this example, it is possible to represent it by "bridge" or simple

structure, however it must be combined (or with conditional probabilities).

To go from the starting point (S) to the arrival point (T), it is necessary to pass through a

set of linearly placed subsystems, each subsystem consists of a set of components and each

component can be connected with one or more components of the previous and the next

subsystems.

Indeed, the other types of configurations represent particular cases of the complex sys-

tem, for example, when it is a parallel system, any component of the system is connected to

all the components of its two preceding and following subsystems. The mastery of this type

of configuration will allow us to master all the other configurations that follow.
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Figure 1.13: Complex system

In the example of Figure 1.13, we can apply some approaches to calculate the reliabil-

ity/availability of such system. Although the complex system represents the most general

case of systems that may exist, however, there is more complicated cases then the one in

Figure 1.13, for example when the system involves evolution over time and/or dependencies

(example of performance distribution or non-independent failure between the components,

etc.).

graphic symbol meaning

or gate

and gate

(n-k+1)-out-of-n gate

top or intermediate event

elementary basic event

Table 1.1: Graphical symbols in FT.
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System

C1 C2 C3

Figure 1.14: Series system FT

System

C1 C2 C3

Figure 1.15: Parallel system FT

System

C1 C2 C3 Cn

(n
-k
+
1)
/n

...

Figure 1.16: k-out-of-n system FT
System

Minimal cut 1

C1 C2 C3

Minimal cut 2

C4 C5

Minimal cut 3

C1 C2 C5

Minimal cut 4

C2 C3 C4

Figure 1.17: Complex system FT

Figure 1.18: FTs for some typical systems in Figure 1.4.
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1.7.1.2. Fault tree

The Fault Tree Analysis (FTA) is an analytical technique that is used for Reliability, Main-

tainability and Safety Analysis [58]. It is a top-down (deductive) analysis, proceeding

through successively more detailed (i.e. lower) levels of the design until the probability

of occurrence of the top event (the feared event) can be predicted in the context of its envi-

ronment and operation.

The FTA was used for the first time in 1962 [21, 50], for the US Air Force by Bell Tele-

phone Laboratories on the Minuteman Weapon System [33].

FTA received extensive coverage at a 1965 System Safety Symposium in Seattle spon-

sored by Boeing and the University of Washington [58].

In 1976, the US Army Material Command incorporated FTA into the Engineering De-

sign Handbook, Design for Reliability [58]. The Reliability Analysis Center at Rome Lab-

oratory, has published documents on FTA and reliability block diagrams since the 1960s

[Chapter 6 (FTA) in MIL-HDBK-338B (Electronic Reliability Design Handbook)].

In 1998, the US Federal Aviation Administration (FAA) the FAA published Order 8040.4

establishing risk management policy and hazard analysis in a range of critical activities be-

yond aircraft certification, including air traffic control and modernization of the US National

Airspace System. This led to the publication of the FAA System Safety Handbook, which

describes the use of FTA in various types of formal hazard analysis [58].

Nowadays, the FTA methodology is so used in system safety and reliability engineering,

and in all different fields of engineering.

The Fault tree (FT) method makes it possible to identify failures and the different sce-

narios that lead to the occurrence of a feared event (FA). It is a qualitative and quantitative

graphic approach at the same time. Indeed, at first, it identifies the different combinations

leading to the adverse event, and then, from these critical scenarios, we can quantify the

probability of occurrence of this feared event.

This approach follows a deductive process; it starts from a single event to then identify

the different causes possibly triggering this event. Graphically, the feared event appears

at the top, it is the starting point for creating elementary events by tree structure. Fault tree
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(FT) evaluates the state of a system using Boolean logic to combine lower-level events in this

system. Table 1.1 shows some graphical symbols in FT. The operators in FT are inspired

by the logic gates in digital electronics. The top and intermediate events represented by

rectangles are progressively broken down into combinations of lower-level events until the

reach of elementary basic events represented by circles. Basic events usually denote the

failure of components while top event usually indicates the failure of a system.

Figure 1.18 gives FTs of all the RBDs in Figure 1.4.

Figure 1.14 is the FT of a series system. Where the failure of any component causes

the failure of the whole system. Therefore, OR gate in FT corresponds to the series sys-

tem in RBD. Figure 1.15 is the FT of a parallel system. Where only the failure of all three

components causes the failure of the system. Therefore, AND gate in FT corresponds to

the parallel system in RBD. Figure 1.16 is the FT of a k-out-of-n system. In such system,

the failure of at least (n − k + 1) component causes the failure of the system. Therefore,

(n − k + 1)-out-of-n gate in FT corresponds to the k-out-of-n voter system in RBD. Fig-

ure 1.17 is the FT of the complex system in Figure 1.4. All the possible failure scenarios

are listed as branches of the FT. The definition of minimum cut will be given in subsection

1.7.1.4.

If we want to calculate the reliability/ availability (probability that the system works)

of the series system by using the FT in Figure 1.14, we must calculate the unreliabil-

ity/unavailability (the probability that the system fails) of the system. In other words, we

calculate the probability that the top event occurs. The top event represents here the failure

of the whole system. The probability of the failure of the system is equal to the probability

of the failure of C1, C2 or C3, and it is presented as follows:

P (the whole system fails) = P (C1 fails or C2 fails or C3 fails) = P (C1 ∪ C2 ∪ C3)

P (the whole system works) = 1− P (the whole system fails)

1.7.1.3. Bayesian network

Bayesian network (BN) is a probabilistic graphical model used to represent a set of random

variables and their conditional dependencies via a directed acyclic graph. It was developed

by Judea Pearl [88] as a framework for representing and evaluating models under uncertainty

[109, 46, 61].
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X1 X2 X3

Figure 1.19: Series

X1

X2 X3

Figure 1.20: Diverging

X1 X2

X3

Figure 1.21: Converging

Figure 1.22: BNs of different structures.

During the last decades, the use of BN in risk and reliability analysis studies has in-

creased. Weber et al. [120] presented a review on the application of BN to dependability,

risk analysis and maintenance. In this paper, the authors claim that during the last few years,

there is an increasing use of BN in dependability and risk analysis. They have also compare

BN with three classical dependability and risk analysis methods: FTs, Markov chains and

Petri nets, to demonstrate the benefits of BN. Langseth and Portinale [61] also list some

arguments for the use of BNs in the reliability analysis (software reliability, fault finding

systems, general reliability modeling, etc.). They present in the context challenges and open

problems when using BN such as building BNs from expert input or using continuous vari-

ables in BNs. Akhtar and Utne [3] studied the human fatigue’s effect on the risk of maritime

ship accident using BN. Khakzad et al. [52] developed a BN method to conduct quantita-

tive risk analysis of drilling operations. BNs are used to develop accident scenarios. Zhang

et al. [128] estimated the navigational risk of the Yangtze River using the formal safety

assessment and BN. In this context, BNs were used to model and evaluate accidents due

to different factors. Sousa and Einstein [106] presented a methodology to assess systemat-

ically and manage the risks associated with tunnel construction using BN. Goulding et al.

[39] proposed a BN model to assess the public health risk associated with wet weather sewer
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overflows. The uncertainty inherent in sewer overflow events and subsequent impacts were

taken into account through the use of probabilities.

A brief recall about Bayesian networks is provided hereafter. [109, 61, 57].

Known as an inference probabilistic method, BN is composed of nodes, arcs and condi-

tional probability tables (CPTs). Nodes represent random variables. They may be observ-

able elements, unknown parameters, or propositions. Arcs represent direct dependencies

between linked variables. The strength of these dependencies is quantified by conditional

probabilities. Nodes that are not directly connected represent variables that are condition-

ally independent. CPTs are used to specify the conditional probabilities among random

variables. BN is used to estimate the posterior probability of unknown variables given other

variables, through a process known as probabilistic reasoning.

Let U = {X1, X2, . . . , Xn} be a set of n random variables. If there exists a directed path

from Xi to Xj , we call Xi a parent of Xj , and Xj a descendant of Xi. Figure 1.22 shows

three BNs of different structures. In Figure 1.19, X1 is the parent of X2, X2 is the parent of

X3, written pa(X2) = {X1}, pa(X3) = {X2}. In Figure 1.20, X1 is the parent of X2 and

X3, written pa(X2) = {X1}, pa(X3) = {X1}. In Figure 1.21, X1 and X2 are parents of X3,

written pa(X3) = {X1, X2}.

The topology of a BN represents which variables are conditionally independent given

another variable. For example, in Figure 1.20, X2 is conditionally independent of X3, given

X1 if P (X2|X3, X1) = P (X2|X1).

The advantage of BNs is that they provide a compact representation of the joint prob-

ability distribution of the variables. This probability can be expressed as a product of the

conditional distributions of each node given its parents in the graph. Let pa(X) denote the

parents of node X , the joint distribution P (U) has the following form:

P (U) =
∏
X∈U

P (X|pa(X)) (1.30)

For example, the joint probability of the model in Figure 1.19 is

P (X1, X2, X3) = P (X3|X2)P (X2|X1)P (X1)
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the joint probability of the model in Figure 1.20 is

P (X1, X2) = P (X2|X1)P (X1)

P (X1, X3) = P (X3|X1)P (X1) (1.31)

the joint probability of the model in Figure 1.21 is

P (X1, X2, X3) = P (X3|X1, X2)P (X1)P (X2)

This reasoning is called probabilistic reasoning. It consists in instantiating the input

variables and propagating their effect through the network to update the probability of the

variables of interest. The propagating procedure is based on Bayes’ theorem and the struc-

ture of dependencies of the network.

As BNs often represent causal relationship like X → Y , where X is a cause of Y and Y

is an observable effect of X . The posterior probability distribution P (X|Y = y) given the

observation Y = y can be computed using the prior distribution P (X) and the conditional

probability distribution P (Y |X). Bayes’ rule is expressed in the following form

P (X|Y = y) =
P (Y = y|X)P (X)

P (Y = y)
(1.32)

where P (Y = y) =
∑

x P (Y = y|X = x)P (X = x).

As described above, a BN contains two parts: a qualitative part consisting of a directed

acyclic graph, and a quantitative part consisting of a joint probability distribution that fac-

torizes into a set of conditional probability distributions governed by the structure of the

directed acyclic graph.

MSBNx (Microsoft Bayesian Network Editor) is a component-based toolbox for creat-

ing, assessing, and evaluating BNs. As a simple example, we use MSBNx to construct the

BN of the system in Figure 1.21.

Suppose all three random variables are binary and the probabilities of input variables are

P (X1 = Y es) = 0.7 P (X1 = No) = 0.3

P (X2 = Y es) = 0.8 P (X2 = No) = 0.2

CPTs can be determined by experiments. To simplify the example, we set the CPT of all
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Figure 1.23: CPT

Figure 1.24: BN of the system in Figure 1.21[91].

three variables as shown in Figure 1.23. It means

P (X3 = Y es|X1 = Y es,X2 = Y es) = 1 P (X3 = No|X1 = Y es,X2 = Y es) = 0

P (X3 = Y es|X1 = Y es,X2 = No) = 0.6 P (X3 = No|X1 = Y es,X2 = No) = 0.4

P (X3 = Y es|X1 = No,X2 = Y es) = 0.8 P (X3 = No|X1 = No,X2 = Y es) = 0.2

P (X3 = Y es|X1 = No,X2 = No) = 0 P (X3 = No|X1 = No,X2 = No) = 1

Usually, the outputs of a BN are the posterior probabilities of variables of interest. In this

example, X3 is the variable of interest. The probability of X3 assessed by MSBNx is given

in Figure 1.24. To prove the correctness of this result given by the software, we calculate

the probability of X3 using the law of total probability. We have

P (X3 = Y es) = 0.7 ∗ 0.8 ∗ 1 + 0.7 ∗ 0.2 ∗ 0.6 + 0.3 ∗ 0.8 ∗ 0.8 + 0.3 ∗ 0.2 ∗ 0 = 0.836

P (X3 = No) = 0.7 ∗ 0.8 ∗ 0 + 0.7 ∗ 0.2 ∗ 0.4 + 0.3 ∗ 0.8 ∗ 0.2 + 0.3 ∗ 0.2 ∗ 1 = 0.164

1.7.1.4. Kaufmann reliability network

Kaufmann reliability networks are an interesting method to calculate the reliability of a

system [51, 78, 54]. They are used in the communication studies or energy distribution net-

works [102]. This graphical representation is a modeling tool for many problems where the

use of reliability block diagrams (RBD) is not appropriate. Kaufmann reliability networks

can be considered as a form of extension of RBDs. Thus, these reliability networks provide

a simple way of computing the reliability of the system. Reliability networks make it pos-

sible to represent the structure and the connections in a graphical system by expressing the

relationships between the components.
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Kaufmann reliability network use concepts of graph theory as a tool to analyze systems

dependability. In the following, we first recall the basics of graph theory and then show how

it applies to reliability networks. Note that, in our case,these networks can represent systems

in a broad sense (logistics transport, telecommunications, IT, embedded systems, etc.). A

network is a system in which entities communicate with each other by sending a flow, from

a source node to a target node. It is similar to an oriented graph, whose nodes and arcs can

fail according to a certain probability.

� Definitions
A reliability network R is a oriented graph G = (V,E) whose arcs represent the com-

ponents E = {C1, C2, . . . , Cn} and the vertexes V = {V1, V2, . . . , Vn} represent the nodes.

This graph G is without loop, in which two vertexes S ∈ V and T ∈ V are distinguished

and called respectively "origin" and "end". Each arc Ui ∈ U is noted (VjVk)Cl
such as Vj

and Vk ∈ V and Cl ∈ E with U all the arcs in the graph [95].

Ω : U −→ V × V corresponds to each arc in the graph, the couple of its extremities.

The same end pair can represent several arcs such as each arc corresponds to a component.

∆ : V × V −→ E corresponds to each arc in the graph represented by its initial and

final ends a components. Several arcs can represent the same component.

Figure 1.25 gives an example of a connection diagram (a) and its associated reliability

network (b). The locations of nodes A and B on the connection diagram are represented by

blue dots and the origin nodes "S" and end nodes "T " by black dots.

The set of nodes is given by V = {S,A,B, T} and the set of components is E =

{C1, C2, C3, C4, C5}. Ω : E −→ V × V
Ω(C1) = (S,A)

(1.33)

∆ : V × V −→ E

∆(A, T ) = C4

(1.34)

We can notice that the same torque (S,A) for example, represents two arcs (SA)C1 and

(SA)C2 . Thus, there are two arcs represented by the pairs (S,A) and (S,B) which are gen-

erated by the same component C2.
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Figure 1.25: Example of a connection diagram (a) and its reliability network (b)

Figure 1.26: Example of a reliability network

A path C of a reliability network is a subset of an arc U ′ ⊂ U connecting the origin

point S to the end point T . A path C is said to be minimum when no subset U ′′ ⊂ U cannot

present a path, such that U ′ is the set of arcs of the path C.

From Figure 1.26, we deduce the following paths:

C1 = {(SB)C1 , (BA)C4 , (AB)C4 , (BT )C3}
C2 = {(SB)C1 , (BT )C3}
C3 = {(SB)C1 , (BC)C4 , (CT )C1}
C4 = {(SC)C3 , (CT )C1}
C5 = {(SC)C2 , (CT )C1}

(1.35)

The paths C2, C3, C4 and C5 are minimum paths of the reliability network in Figure 1.26,

whereas the path C1 is not a minimum path because all the arcs of the path C2 are included
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in all the arcs of the path C1.

A cut D of an reliability network is a subset of components E ′ ⊂ E. Removing these

components would disconnect both extremities of the network. And therefore, there would

be no path from origin point S to end point T .

A cut D is said to be minimum when no subset of components E ′′ ⊂ E ′ presents a cut, such

that E ′ is the set of components of the cut D.

In the example in Figure 1.26,
{
C1, C2, C3

}
and

{
C1, C3

}
are network cuts but they are

not minimum, whereas
{
C1

}
and

{
C2, C3, C4

}
are minimum cuts.

� RAMS assessment at the system level
The reliability of a system can be deduced from the reliability of components and the

structure of the system. When the reliability of components is given, we can use two meth-

ods to assess the reliability of the system.

•Minimum path-sets
A path-set is defined as a set of components whose operation guarantees the correct op-

eration of a system. A minimum path-set is a path-set which does not contain other path-sets.

Let Pj denote the event that the components in the minimum path-set pj are working.

Ap is the collection of minimum path-sets. The reliability of the system is:

Rs = P (∪Pj∈ApPj) (1.36)

Using the inclusion-exclusion principle, the reliability of a complex system can be de-

veloped as follows:

Rs =
∑
I⊆Ap

(−1)|I|+1P (∩Pj∈IPj) (1.37)

with |I| is the cardinal the cardinal of I the subset of events. Eq. 1.37 is obtained from

the theorem of Sylvester-Poincaré. For example, the collection of minimum path-sets of the

complex system in Figure 1.7.1 is {C1C4, C2C4, C2C5, C3C5}. Based on Eq. 1.37, the

reliability of the complex system is obtained as Rs = R1R4 + R2R4 + R2R5 + R3R5 −
R1R2R4−R2R4R5−R2R3R5−R1R3R4R5 +R1R2R3R4R5.

• Minimum cut-sets
A cut-set is defined as a set of components whose failure guarantees the failure of a

system. A minimum cut-set is a cut-set which does not contain other cut-sets.
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Let Cj denote the event that the components in the minimum cut-set cj are failed. Ac is

the collection of minimum cut-sets. The unreliability of the system is

Rs = P (∪Cj∈AcCj) (1.38)

Using the inclusion-exclusion principle (see chapter 3), the reliability of a complex sys-

tem is developed as

Rs = 1−
∑
I⊆Ac

(−1)|I|+1P (∩Cj∈ICj) (1.39)

For example, the collection of minimum cut-sets of the complex system in Figure 1.7.1

is {C1C2C3, C4C5, C1C2C5, C2C3C4}. Based on Eq. 1.39, the reliability of the

complex system is obtained as Rs = R1R4 + R2R4 + R2R5 + R3R5 − R1R2R4 −
R2R4R5−R2R3R5−R1R3R4R5 +R1R2R3R4R5.

1.8 Conclusion

Dependability is the main subject of this thesis. Particularly, the evaluation of the system’s

availability is of main concern. In this chapter we exposed the main definitions, concepts

and methods related to dependability. We also presented the different types of systems

(series, parallel, complex systems, etc.). Even if the presented methods that concern the

structures of the system are simple to apply, however when having large systems (in terms

of components and states) their use become limited. In the following chapters, we focus on

complex systems and consider the case where uncertainty is present. Hence, this chapter

also included a brief explanation of uncertainties and the difference between aleatory and

epistemic uncertainty. The main novelty of this thesis is to model uncertainties in terms of

intervals. Thus, the following chapter, will be devoted to present basic definitions of inter-

val analysis and its operators, also an explanation of a technique used in this domain "the

technique of contractors" will be given, so that we can use it in our proposed methodology

in chapter 4.



Chapter 2

Interval analysis

2.1 Introduction

Mathematicians developed a method called interval computation, interval analysis, interval

mathematics, or interval arithmetic [79, 80, 81]. It is an approach to putting bounds on

rounding errors and measurement errors in mathematical computation and thus developing

numerical methods that yield reliable results. Each value is represented by a range of possi-

bilities. Our methods in Part II are based on interval analysis.

Before using interval analysis in these methods, we need to introduce its main concepts.

First, we start with a brief history about interval analysis. Then, we explain the basic con-

cept of interval analysis. Later, we cite all the definitions and the operations in interval

analysis. Contractors, operators introduced in interval analysis, will be used in our methods.

For this reason, we explain their concept in this chapter.

2.2 History of interval analysis

In this section, we give a historical view of how interval analysis was developed. For sure,

we cannot give all the details concerning this development. However, we try to list some of

the marks and works in the field of interval analysis.

Interval analysis is not recently introduced in mathematics; it has appeared many times

under different names before. In the third century BC, Archimedes calculated the lower and

the upper bounds: 223/71 < π < 22/7 .

Calculation with intervals and its rules were published in a 1931 work by Rosalind Ce-

cily Young [125]. In 1951, a textbook on linear algebra by Paul Dwyer [32] was published
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where he works to improve the reliability of digital systems; he used intervals to measure

rounding errors associated with floating-point numbers.

Later in 1958, Teruo Sunaga published a paper on interval algebra in numerical analysis

[108]. In this paper, not only the algebraic rules for the operations with intervals are men-

tioned but also a systematic investigation of the rules which they achieve.

Modern interval arithmetic was really appears with the book "Interval Analysis" by Ra-

mon E. Moore in 1966 [79, 81]. He had the idea in 1958, in the next year he published an

article about computer interval arithmetic [45]. It starts with a simple principle that provided

a general method for automated error analysis, not just errors resulting from rounding.

Moore’s book was inspired from his Ph.D. thesis [82]. Therefore, he was mainly concen-

trated on bounding solutions of initial value problems for ordinary differential equations,

however it contained also a lot of general ideas.

Also in 1956, to calculate with intervals Mieczyslaw Warmus suggested formulas, but

Moore found the first non-trivial applications.

In the next twenty years, groups of German researchers continued in this field Götz Ale-

feld and Ulrich Kulisch at the University of Karlsruhe and at the Bergische University of

Wuppertal. In the 1960s, Eldon R. Hansen extend intervals for linear equations and then

provided important contributions to global optimization (including Hansen’s method), per-

haps the most used interval algorithm [44].

In 1988, Fortran-based software for reliable solutions for initial value problems using

ordinary differential equations was developed by Rudolf Lohner [72].

Since 1990, the journal Reliable Computing (Interval Computations) has been published.

The editor R. Baker Kearfott, has contributed to the unification of notation and terminology

used in interval arithmetic, in addition to his work on global optimization.

Recently, the estimation of preimages of parametrized functions and to robust control

theory is the main focused work (by the COPRIN working group of INRIA in Sophia An-

tipolis in France) [56].
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2.3 What is interval analysis?

The mathematical operations on floating points instead of real numbers make an accumula-

tion of errors due to rounding. We will find at the end that the obtained result can be far from

the expected result. Thanks to Ramon Moore’s work in [79], the solution is described as fol-

lows. On the one hand, the reals are represented by intervals bounded by floating with a fixed

number of decimals, for example π = 3.14159 . . ., will be represented by [3.1415, 3.1416]

because π ∈ [3.1415, 3.1416].

On the other hand, operation tools with intervals represent the result of a mathematical func-

tion by an interval that contains it in a guaranteed way.

The aim of interval analysis is to create methods that cope with all kind of imprecision

that blocks classical numerical techniques from providing reliable results [20]. In real life

problems, we can model imprecision with rounding errors as well as data uncertainties. The

main idea is to fix intervals where the range of all possible error made belongs to them, in

any low-level computation. Therefore, computations are performed with the so-called inter-

val arithmetic, that takes intervals instead of real values, e.g.,

[2, 3] + [1, 4] = [3, 7]

Of course, the representation by intervals does not have only advantages. One of the

serious problems, is the overestimation of the uncertainty bounds of the obtained result by

interval computing [20].

For systems where uncertainties occupied, interval analysis is a promising methodology.

2.4 Basic terms and definitions

An interval real [x] is a closed subset of R. Although various other types of intervals (open,

half-open) appear throughout mathematics, our work will center primarily on closed inter-

vals. We will keep the notation [x] to any interval.

Endpoint Notation

An interval is defined as:

[x] = [x, x] = {x ∈ R|x ≤ x ≤ x} , (2.1)
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where x and x refer respectively to the lower bound and the upper bound of [x].

The lower bound is defined as:

x , sup {a ∈ R|∀x ∈ [x], a ≤ x} , (2.2)

Its upper bound, is defined as:

x , inf {b ∈ R|∀x ∈ [x], x ≤ b} , (2.3)

x is the largest number on the left of [x] and x is the smallest number on the right. Example,

if [x] = [−2, 5] then x = −2 and x = 5; if [x] =]−∞,+∞[ then x = −∞ and x = +∞.

Interval equality

Two intervals [x] and [y] are said to be equal, if they are the same sets. This happens when

their corresponding endpoints are equal:

[x] = [y] if x = y and x = y (2.4)

Width and midpoint of interval

The width of an interval is defined as:

w([x]) , x− x (2.5)

The width of [−2, 5] is w([−2, 5]) = 7.

The midpoint (or center) of any bounded interval [x] is defined as:

mid([x]) ,
x+ x

2
(2.6)

The center of [−2, 5] is mid([−2, 5]) = −2+5
2

= 1.5.

Degenerate Intervals

[x] is degenerate if x = x. A single real number x belongs to such interval. We identify a

degenerate interval [x, x] with the real number x. In this sense, we can write such equations

as:

0 = [0, 0] (2.7)
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Intersection, Union, and Interval Hull

The set-theoretic operations are also applied to intervals. The intersection of two intervals

[x] and [y] is empty if either y < x or x < y. Let ∅ presents the empty set, we will have:

[x] ∩ [y] = ∅ (2.8)

Which means that [x] and [y] have no points in common.

The intersection of two intervals [x] and [y], defined by

[x] ∩ [y] , {z ∈ R|z ∈ [x] and z ∈ [y]} (2.9)

in other way

[x] ∩ [y] = {z : z ∈ [x] and x ∈ [y]}
=
[
max

{
x, y
}
,min {x, y}

] (2.10)

which is also an interval. In general, this is not the case for their union, it is not always an

interval

[x] ∪ [y] , {z ∈ R|z ∈ [x] or z ∈ [y]} (2.11)

in a another way

[x] ∪ [y] = {z : z ∈ [x] or x ∈ [y]}
=
[
min

{
x, y
}
,max {x, y}

] (2.12)

However, the interval hull of two intervals, defined by

[x]∪[y] , [[x] ∪ [y]] (2.13)

is an interval and can be used in interval computations. We have [x] ∪ [y] ⊂ [x]∪[y].

Example, the intersection [2, 5] ∩ [3, 7] = [3, 5] however its union is [2, 5] ∪ [3, 7] = [2, 7].

Importance of Intersection

Intersection plays an important role in interval analysis. Suppose that there are two intervals

that contain a result of interest, then their intersection also contains the result.

Example, if two people make independent measurements of the same measure m. One

finds m = 5.4 with a measurement error less than 0.2. The other finds that m = 5.2 with

an error less than 0.2. We can represent the two obtained values of m respectively by two

intervals [m1] = [5.2, 5.6] and [m2] = [5, 5.4]. Since m depends on the two measurements,

it depends also on [m1] ∩ [m2] = [5.2, 5.4].

The empty intersection means that at least one of the measurements is wrong.
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Order Relations for Intervals

Real numbers are ordered by the relation <, e.g. 3 < 5,−5 < 2. This relation is transitive,

which means that if a < b and b < c, so a < c,∀a, b, c ∈ R. For intervals we can define the

same thing and we use the same symbol, with the following definition:

[x] < [y] means that x < y (2.14)

Set inclusion is another transitive order relation for intervals:

[x] ⊆ [y] if y ≤ x and x ≤ y (2.15)

That means that [y] contains [x].

[x] and [y] are overlapping intervals when [x] is not contained in [y], nor [y] is contained

in [x]. However, [x] ∩ [y] is contained in [x] and [y].

Example: [3, 8] and [4, 10] the two intervals do not contain to each other, however their

intersection [4, 8] is contained in both of them.

2.5 Interval computation

In this section, we will define the basic arithmetic operations between intervals, these defi-

nitions are taken from Moore’s book [81]. Computing with intervals is computing with sets.

Which means, if we add two intervals, the resulting interval is a set containing the sums of

all pairs of numbers, one from each of the two initial sets [81].

Let us define the four arithmetic operations that are used the most, then we detail each one

apart:

• The sum of two intervals [x] and [y] is the set:

[x] + [y] = {x+ y : x ∈ [x], y ∈ [y]} (2.16)

• The difference of two intervals [x] and [y] is the set:

[x]− [y] = {x− y : x ∈ [x], y ∈ [y]} (2.17)

• The product of [x] and [y] is given by:

[x].[y] = {xy : x ∈ [x], y ∈ [y]} (2.18)
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• The quotient [x]/[y] is defined as:

[x]/[y] = {x/y : x ∈ [x], y ∈ [y], 0 /∈ [y]} (2.19)

In general, we can summarize the above definitions by writing:

[x] � [y] = {x � y : x ∈ [x], y ∈ [y]} (2.20)

Where � refers for any of the four binary operations {+,−,×,÷}.

2.5.1 Interval addition

Since

x ∈ [x] means that x ≤ x ≤ x (2.21)

and

y ∈ [y] means that y ≤ y ≤ y (2.22)

the numerical sums x+ y ∈ [x] + [y] must satisfy

x+ y ≤ x+ y ≤ x+ y (2.23)

We will have:

[x] + [y] =
[
x+ y, x+ y

]
(2.24)

Example: let [x] = [1, 2] and [y] = [−1, 3], then [x] + [y] = [1 + (−1), 2 + 3] = [0, 5].

It is not the same as [x]∪ [y] = [−1, 3]. The sum of two intervals it doesn’t mean their union.

2.5.2 Interval subtraction

The sum [x] + [y] is expressed in eq. 2.24 in terms of the endpoints of [x] and [y]. Derived

for the remaining arithmetic operations we can write similar expressions. For subtraction

we add the inequalities:

x ≤ x ≤ x and − y ≤ y ≤ −y (2.25)

to get

x− y ≤ x− y ≤ x− y (2.26)

It follows that

[x]− [y] =
[
x− y, x− y

]
(2.27)

Note that

[x]− [y] = [x] + (−[y]) (2.28)
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Case xy xy

0 ≤ x and 0 ≤ y x.y x.y

x < 0 < x and 0 ≤ y x.y x.y

x ≤ 0 and 0 ≤ y x.y x.y

0 ≤ x and y < 0 < y x.y x.y

x ≤ 0 and y < 0 < y x.y x.y

0 ≤ x and y ≤ 0 x.y x.y

x < 0 < x and y ≤ 0 x.y x.y

x ≤ 0 and y ≤ 0 x.y x.y

x < 0 < x and y < 0 < y min
{
xy, xy

}
max

{
xy, xy

}
Table 2.1: Endpoint formulas for interval product

where

−[y] = [−y,−y] = {y : −y ∈ [y]} (2.29)

Example: let [x] = [−1; 1] and [y] = [0, 2], then

−[y] = [−2, 0] and [x]− [y] = [x] + (−[y]) = [−3, 1]

2.5.3 Interval multiplication

The product [x].[y] of two intervals [x] and [y] is given by:

[x].[y] = [min S,max S], where S =
{
xy, xy, xy, xy

}
(2.30)

Example, if [x] = [−1, 1] and [y] = [0, 2], then:

S = {−1.0,−1.2, 1.0, 1.2} = {0,−2, 0, 2}

and

[x].[y] = [min S,max S] = [−2, 2]

2[y] = [2, 2].[0, 2] = [0, 4]

The product of intervals is given in terms of the minimum and maximum of four products

of endpoints. However, if we test the sign of the endpoints x, x, y, y, the formula for the

endpoints of the interval product can be broken into nine special cases. Table 2.1 presents

all the possible cases.
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[x] + [y] = [x+ y, x+ y]

[x]− [y] = [x− y, x− y]

[x]× [y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)]

[x]÷ [y] = [x]× [1/y, 1/y], 0 /∈ [y]

Table 2.2: Basics interval operations

2.5.4 Interval division

Like when dealing with real numbers, division can be done via multiplication by the recip-

rocal of the second operand. From eq. 2.19, we can write down:

[x]/[y] = [x].(1/[y]) (2.31)

where

1/[y] = {y : 1/y, y ∈ [y]} = [1/y, 1/y] (2.32)

with 0 /∈ [y].

Example: To solve the equation ax = b we can use the division, with a and b belongs to

two intervals [a] and [b], respectively. We find that x must belong to [b]/[a].

2.6 Properties of intervals

We introduced the definitions of the basic interval arithmetic operations [81], Table 2.2

summarizes the operations that we will use later. These definitions lead to a certain familiar

looking algebraic properties. In this section, we present some of these properties.

2.6.1 Commutativity and associativity

Interval sum and interval product multiplication are commutative and associative; we have

for any three intervals [x], [y] and [z]:

[x] + [y] = [y] + [x], [x] + ([y] + [z]) = ([x] + [y]) + [z];

[x].[y] = [y].[x], [x]. ([y].[z]) = ([x].[y]) .[z]
(2.33)
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2.6.2 Additive and multiplicative identity elements

In the system of intervals, the degenerate intervals [0] and [1] are additive and multiplicative

identity elements. For any [x], we have:
[0] + [x] = [x] + [0] = [x];

[0].[x] = [x].[0] = [0];

[1].[x] = [x].[1] = [x].

(2.34)

2.6.3 Nonexistence of inverse elements

In the system of intervals, −[x] is not an additive inverse for [x]. We have:

[x] + (−[x]) = [x, x] + [−x,−x] = [x− x, x− x], (2.35)

It is equal to [0, 0] only if x = x. If the width of [x] is not equal to zero, then:

[x]− [x] =



[x, x]− [x, x]

= [x− x, x− x]

= [− (x− x) , x− x]

= (x− x) [−1, 1]

= w([x])[−1, 1]

(2.36)

Thus,

[x]− [x] = w([x])[−1, 1] (2.37)

The same thing for [x]/[x] = 1 only if w([x]) = 0. Usually, we have:

[x]/[x] =

[x/x, x/x] if 0 < x,

[x/x, x/x] if x < 0.
(2.38)

Degenerate intervals only have additive or/and multiplicative inverses.

2.6.4 Sub-distributivity

The distributive law of ordinary arithmetic,

x(y + z) = xy + xz (2.39)

is not applied for intervals.

Lets take [x] = [1, 2], [y] = [1, 1] and [z] = −[1, 1]:
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
[x]([y] + [z]) = [1, 2].([1, 1]− [1, 1])

= [1, 2].[0, 0]

= [0, 0]

and we have 
[x][y] + [x][z] = [1, 2][1, 1]− [1, 2][1, 1]

= [1, 2]− [1, 2]

= [−1, 1]

We can define the sub-distributive law as follows:

[x]([y] + [z]) ⊆ [x][y] + [x][z] (2.40)

2.6.5 Cancellation

The cancellation law holds for interval addition.

[x] + [z] = [y] + [z]⇒ [x] = [y] (2.41)

But, the multiplicative cancellation does not hold in interval arithmetic; which means:

[z][x] = [z][y] ; [x] = [y] (2.42)

2.7 Interval matrices

An interval matrix is a matrix whose elements are interval numbers. Here an example of

interval matrix:

[A] =

[
A11 A12

A21 A22

]
=

[
[0, 2] [−2, 2]

[1, 4] [3, 6]

]
(2.43)

If B is a matrix with real elements Bij such that Bij ∈ Aij for all i and j, with Aij are the

elements of the interval matrix [A], then we write B ∈ [A].

2.7.1 Matrix norm, width, and midpoint

The matrix norm for an interval matrix [A] is an extension of the maximum row sum norm

for real matrices. It is given by:

‖[A]‖ = maxi
∑
j

|Aij| with |Aij| = max
(
|Aij|, |Aij|

)
(2.44)
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If a real matrix B belongs to the interval matrix [A], then ‖B‖ ≤ ‖[A]‖.

The width w([A]) of a matrix [A], is defined by:

w([A]) = maxi,jw(Aij) (2.45)

The midpoint of the interval matrix [A] is the real matrix m([A]) where its elements are

the midpoints of the corresponding interval elements of [A], m([A]) ∈ [A]

(m([A]))ij = m(Aij) (2.46)

For the matrix in 2.43, we have:

‖[A]‖ = max {|[0, 2]|+ |[−2, 2]|, |[1, 4]|+ |[3, 6]|}
= max {2 + 2, 4 + 6} = 10

w([A]) = max {w([0, 2]), w([−2, 2]), w([1, 4]), w([3, 6])}
= max {2, 3, 4}

= 4

and

m([A]) =

[
m([0, 2]) m([−2, 2])

m([1, 4]) m([3, 6])

]
=

[
1 0

2.5 4.5

]

2.7.2 Matrices computation

An interval matrix can be punctual if all its elements are punctual.

The lower bound of an interval matrix [A] is denoted by A. It is the punctual matrix made

up with the lower bounds of the interval components of [A]:

A =


a11 . . . a1n

... . . . ...

am1 . . . amn

 (2.47)

The same thing for the upper bound A of the interval matrix [A], is the punctual matrix

made up with its interval upper bounds components:

A =


a11 . . . a1n

... . . . ...

am1 . . . amn

 (2.48)

If [A] and [B] are interval matrices, with � a binary operator, then:
[A] � [B] = [{A �B|A ∈ [A] and B ∈ [B]}]
[A] + [B] = ([aij] + [bij])1≤i≤n,1≤j≤n

[A] ∗ [B] = (
∑n

k=1[aik] ∗ [bkj])1≤i≤n,1≤j≤n

(2.49)
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2.7.3 Interval matrices and dependency

When taking the product [C] = [A][B] of an m by p interval matrix [A] and a p by n

interval matrix [B], the ijth element of this product Cij gives bounds on the range, for each

i 1 ≤ i ≤ m and for each j 1 ≤ j ≤ n,

Cij =

{
Mij =

p∑
k=1

PikQkj : Pik ∈ Aik and Qkj ∈ Bkj for 1 ≤ k ≤ p

}
(2.50)

the obtained interval matrix [C] may contain point matrices D, that are not what we ob-

tain by doing the multiplication of point matrices P ∈ [A] and Q ∈ [B].

The product of two interval matrices [A] and [B] gives:

[C] = [A][B] =
[

[1, 2] [3, 4]
] [ [5, 6] [7, 8]

[9, 10] [11, 12]

]
=
[

[32, 52] [40, 64]
]

(2.51)

If we take the matrix D = [ 32 64 ], it belongs to [C], but it does not correspond to the

product of any point matrix P ∈ [A] with any matrix Q ∈ [B].

Actually, if we do the product of the lower bound matrix A = [1 3] ∈ [A] with the lower

bounds of the first column of [B] (5 9)T , we obtain the first element 32 of D. However, 64 the

second element of D is obtained by doing the product of the upper bound matrixA = [2 4] ∈
[A] of [A] with the upper bounds [8 12]T of the second column of [B]. Interval arithmetic

does not assume that the same point elements are chosen from the interval elements of [A]

in forming the sets comprising the different columns of the product interval matrix [C]. This

is why this type of interval dependency occurs [81]. The so-called dependency problem is a

major obstacle to the application of interval arithmetic (example: [x]2 6= [x].[x]).

2.8 Constraint satisfaction problems and contractors

Constraint satisfaction is the process of finding a solution to a set of constraints that impose

conditions that the variables must satisfy [112]. Therefore, the solution will be a set of val-

ues for the variables with satisfaction of all constraints, that is a point in the feasible region.

The technique used in constraint satisfaction to find the solution, depends on the kind

of constraints. This technique use operators called contractors, that is why we call it the

technique of contractors.
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The technique of contractors has been developed to be one of the important part in

Interval Analysis domain [49]. This technique helps to contract an interval [x] into a smaller

one [x′].

2.8.1 History of contractors

Constraint satisfaction antedates 1965 [36]. The real world problems, like workforce schedul-

ing, that we now identify as constraint satisfaction, have always been with us.

The 8-queens game’s problem, which preoccupied so many of the early constraint sat-

isfaction researchers in artificial intelligence, it have been proposed by the chess player

Max Bazzel in 1848. Mythology claims that a form of backtrack search, a powerful search

paradigm that has become a central tool for constraint satisfaction, was used by Theseus in

the labyrinth in Crete.

In recreational mathematics in the nineteenth century, they used the backtrack search. It

was a subject of study as computer science and operations research emerged as academic

disciplines after World War II. Bitner and Reingold [7] credit Lehmer with first using the

term "backtrack" in the 1950’s [43]. Many different forms of constraint satisfaction and

propagation appeared in the 1960’s, in the computer science literature [17, 18, 34, 74].

The technique of contractors, was introduced for the first time in the field of artificial

intelligence in the 1970s [36], and it becomes so used in this field.

2.8.2 Definitions [49]

Let us suppose that we have nx variables xi ∈ R, i ∈ 1, .., nx , linked by nf constraints in

the form [49]

fj(x1, .., xnx) = 0, j ∈ 1, .., nf . (2.52)

Each variable xi belongs to a given domain Xi. These domains, for simplicity, will be

considered as intervals denoted by [xi]. Define the vector X as:

X = (x1, .., xnx)T (2.53)

and the prior domain for X is a box as:

[X] = [x1]× ..× [xnx ] (2.54)
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Contractors Based on
CGE (Ap− b = 0, [A], [p], [b]) Gauss elimination

CGS (Ap− b = 0, [A], [p], [b]) Gauss-Siedel algorithm

CK (f(x) = 0, [x]) Krawczyk method

CN (f(x) = 0, [x]) Newton contractor

C↓↑ (f(x) = 0, [x]) forward-backward propagation

Table 2.3: Some of the contractors [49]

The function whose coordinate functions are the fjs, is called f . Eq. 2.52 can be written

in vector form as: f(x) = 0. This corresponds to a constraint satisfaction problem (CSP) H

[49], which can be formulated as:

H : (f(x) = 0, x ∈ [x]) (2.55)

The solution set of H is defined as:

S = {x ∈ [x]|f(x) = 0} (2.56)

Contracting H means replacing [x] by a smaller domain [x′] such that the solution set

remains unchanged, i.e. S ⊂ [x′] ⊂ [x]. There exists an optimal contraction of H [49],

which corresponds to replacing [x] by the smallest box contains S. A contractor for H is any

operator that can be used to contract it.

2.8.3 Basic contractors

A contractor C is an operator used to contract the initial domain of the CSP, and to provide

a new box.

Many contractors do exist; Krawczyk contractor, Newton contractor, intervalization of

Gauss elimination, Gauss-Seidel contractor,. . . (cf. Table 2.8.3). These contractors work in

an efficient way on specific classes of problems only. In our work, we choose the use of the

Forward-Backward propagation technique.

First, we present the notion of finite subsolvers to build contractors by intervaliza-

tion. Then, we present contractors obtained by intervalization of fixed-point methods. The

forward-backward contractor is a contractor based on constraint propagation and it is pre-

sented later.
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In this part, we give the definitions of some of the basic contractors. These definitions

are adapted from Luc Jaulin’s book [49].

Finite subsolvers

A finite subsolver of the CSP H : (f(x) = 0, x ∈ [x]) ia finite algorithm to compute the

values of some variables xi when others are known xj .

The vector u = (u1, . . . , unu)T is a subvector of x = (x1, . . . , xnx)T (with nx =

Cardinal(x)), if there exists a subset I of {1, . . . , nx} of cardinal nu, such that nu < nx. I

is then called the index set of u, and we shall write u = xI .

Consider I = (i1, . . . , inu) and J = (j1, . . . , jnv), two index sets such I ∩ J = ∅, and

two subvectors u = xI and v = xJ of the same vector x. A finite subsolver associated with

H is a finite set-valued algorithm φ : u → φ(u) such that the following implication holds

true:

f(x) = 0⇒ v ∈ φ(u) (2.57)

The components of u are called the inputs of φ and those of v are called its outputs. In

Figure 2.1, the inputs x1, x2, x3 and x4, and the outputs are x8 and x9.

Example: Suppose the following CSP:

H :


x1x2 − x3 = 0

x2 − sin(x4) = 0

[x1] = [x2] = [−∞, 0], [x3] = [x4] = R

(2.58)

We can obtain many subsolvers of H, five of them are:

φ1( in: x1, x2; out: x3)→ x3 = x1x2,

φ2( in: x1, x3; out: x2)→ x2 = x3/x1 if x1 6= 0,R otherwise,

φ3( in: x4; out: x2)→ x2 = sin(x4),

φ4( in: x1, x3, x4; out: x2)→ x2 = φ2(x1, x3) ∩ φ3(x4),

φ5( in: x3, x4; out: x1, x2)→ x2 = sin(x4), x1 = x3/x2 if x2 6= 0,R otherwise.
(2.59)

Intervalization of finite subsolvers- Gauss elimination

An important class of CSPs for which intervalization of finite subsolvers can be employed

is that of square linear systems of interval equations. The problem is to compute a box
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x5 x6 x7

x10x3

x4x1

x2
x9

x8

ɸ

Figure 2.1: Subsolver computing x8 and x9 when x1, x2, x3 and x4 are known

containing the solution set of the CSP.

H :

A ∈ [A], b ∈ [b], p ∈ [p],

Ap− b = 0
(2.60)

with

A =


a11 . . . a1np

... . . . ...

anp1 . . . anpnp

 , b =


b1

...

bnp

 (2.61)

The variables of H form the vectorx =
(
a11, . . . , anpnp , p1, . . . , pnp , b1, . . . , bnp

)T
,

CGE ([A], [b], [p])→ ([A], [b], [p] ∩ [φ]([A], [p], [b]))
(2.62)

Fixed-points method: Gauss-Seidel contractor

A fixed-point subsolver for the CSP H:(f(x) = 0, x ∈ [x]) is an algorithm ψ such that

f(x) = 0⇔ x = ψ(x) (2.63)

A contractor for H is obtained by replacing [x] in H by:

[x] ∩ [ψ]([x]) (2.64)
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This contractor is called the fixed-point contractor associated with ψ.

There are many fixed-point contractors, mainly, the interval Gauss-Seidel, Krawczyk and

interval Newton contractors. In this part, we present the Gauss-Seidel Contractor.

Consider again the CSP:

H :

A ∈ [A], b ∈ [b], p ∈ [p],

Ap− b = 0
(2.65)

Where the matrix A is assumed to be square. We can decompose A into the sum of a

matrix with zeros on its diagonal and a diagonal matrix:

A = diag(A) + extdiag(A) (2.66)

Thus, Ap− b = 0 will be equivalent to:

diag(A)p+ extdiag(A)p = b (2.67)

Provided that diag(A) is invertible (i.e., A has no entry on its diagonal), eq.2.67 can be

rewritten as:

p = (diag(A))−1(b− extdiag(A)p) (2.68)

A fixed-point subsolver for H is:

ψ

 A

b

p

 =

 A

b

(diag(A))−1(b− extdiag(A)p)

 (2.69)

An inclusion function for ψ is:

[ψ]

 [A]

[b]

[p]

 =

 [A]

[b]

(diag([A]))−1([b]− extdiag([A])[p])

 (2.70)

The contractor CGS is given by:

CGS :

 [A]

[b]

[p]

→
 [A]

[b]

[p] ∩ (diag([A]))−1([b]− extdiag([A])[p])

 (2.71)

We should mention that CGS and CGE are efficient when [A] is close to identity matrix.
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k [p1](k) [p2](k) [p3](k)

0 [−10, 10] [−10, 10] [-10,10]
1 [-8,9.75] [-5.40001, 5.00001] [-9.5,10]
2 [-6.85001, 8.28751] [-5.17501,4.97501] [-6.39001,10]
5 [-5.66909,5.24052] [-3.03602, 4.03031] [-4.65079,7.84124]
20 [-2.48786, 2.03998] [-0.994123,2.00077] [-0.775045,4.29151]

Table 2.4: Iteration of the CGS contractor

Example: Consider the following situation:

[A] =


[4, 5] [−1, 1] [1.5, 2.5]

[−0.5, 0.5] [−7,−5] [1, 2]

[−1.5,−0.5] [−0.7,−0.5] [2, 3]



[b] =


[3, 4]

[0, 2]

[3, 4]



[p] =


[10, 10]

[10, 10]

[10, 10]



(2.72)

We get:

(diag([A]))−1 =

 [0.2, 0.25] [0, 0] [0, 0]

[0, 0] [−0.2,−0.1429] [0, 0]

[0, 0] [0, 0] [0.3333, 0.5]

 (2.73)

and

extdiag([A]) =

 [0, 0] [−1, 1] [1.5, 2.5]

[−0.5, 0.5] [0, 0] [1, 2]

[−1.5,−0.5] [−0.7,−0.5] [0, 0]

 (2.74)

The contractor CGS : ([A], [b], [p]) yields to:

[p] =

 [−8, 9.75]

[−5.4001, 5.0001]

[−9.5, 10]

 (2.75)

When we iterates the contraction using CGS , we obtain in Table 2.4. For k iterations, we

obtain the box [p](k) for [p].
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Fixed-points method: Krawczyk contractor

Consider the CSP H : (f(x) = 0, x ∈ [x]), where nf = nx and f is assumed to be dif-

ferentiable. For any invertible matrix M, f(x) = 0 ⇔ x − M f(x) = x, the function

ψ(x) = x − M f(x) is a fixed point subsolver for H. The centered inclusion function for

ψ is

[ψ]([x]) = ψ(x0) + [Jψ]([x]) ∗ ([x]− x0) (2.76)

where [Jψ] is an inclusion function for the Jacobian matrix of ψ and x0 = mid([x]).

We obtain the Krawczyk contractor:

CK : [x]→ [x] ∩ (ψ(x0)) + [Jψ([x])] ∗ ([x]− x0) (2.77)

By replacing ψ(x) with x−M f(x) in 2.77, we get:

CK : [x]→ [x] ∩ (x0 −M f(x0)) + (I −M [Jf]([x])) ∗ ([x]− x0) (2.78)

Where I is the identity matrix and [Jf] is an inclusion function for the Jacobian matrix of f.
Usually, we take the matrix M as the inverse J−1

f (x0) of the Jacobian matrix of f, computed

at x0.

Recall the definition of the Jacobian matrix is as follows:

Suppose the function f with

f:


x1

...

xn

→


f1(x1, . . . , xn)
...

fm(x1, . . . , xn)


The Jacobian matrix of the function f is defined as:

Jf =
(

∂f
∂x1

. . . ∂f
∂xn

)
(2.79)

Jf =


∂f1
∂x1

. . . ∂f1
∂xn

... . . . ...
∂fm
∂x1

. . . ∂fm
∂xn

 (2.80)

The inverse of the Jacobian matrix is defined as J−1
f .

Example: Consider the CSP H : (f(x) = 0, x ∈ [x]), described by:

60



2.8. CONSTRAINT SATISFACTION PROBLEMS AND CONTRACTORS

H :


f1(x1, x2) = x2

1 − 4x2

f2(x1, x2) = x2
2 − 2x1 + 4x2

[x] = [−0.1, 0.1]× [−0.1, 0.3]

The Jacobian matrix for f is:

Jf =

[
2x1 −4

−2 2x2 + 4

]

the inverse of the Jacobian matrix is:

J−1
f (x1, x2) = 1

det(Jf )

[
Jf22 −Jf12
−Jf21 Jf11

]
with det(Jf ) = Jf11 × Jf22 − Jf21 × Jf12

J−1
f (x1, x2) = 1

(4x1x2+8x1−8)

[
2x2 + 4 4

2 2x1

]

M is as follows:

M = J−1
f (0, 0.1) =

[
−0.525 −0.5

−0.25 0

]
And the Krawczyk contractor yields to:

CK([x]) =

 [−0.0555, 0.005]

[−0.005, 0.005]


CK(Ck([x])) =

 [−0.00258, 0.00255]

[−0.00128, 0.00127]


CK(Ck(Ck([x]))) =

 [−0.00000818, 0.00000817]

[−0.00000329, 0.00000329]


We keep on contracting until the solution converges.

Fixed-points method: Newton contractor

Consider the CSP H : (f(x) = 0, x ∈ [x]), with nf = nx. The fixed-point subsolver is

given by ψ(x) = x −M f(x), if f is affine (f = Ax + b), then we can write down ψ(x) =

x −M(Ax + b). With M = A−1, the sequence xk+1 = ψ(xk) converges to the solution

x∗ = −A−1b. If f is non-linear but differentiable, it can be approximated by its first-order
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Taylor expansion to get an approximate fixed-point subsolver ψ(x) = x− J−1
f (x) ∗ f(x).

The inclusion function is:

[ψ]([x]) = [x]− [Jf]
−1([x]) ∗ [f]([x]) (2.81)

which leads to the Newton contractor,

CN : [x]→ [x] ∩
(
[x]− [Jf]

−1([x]) ∗ [f]([x])
)

(2.82)

Forward-backward propagation

As we mentioned before, several contractors do exist, each one of them works in a different

way and it is efficient only for specific CSPs and for certain cases.

One popular contractor applied to contracts intervals, that will be used in our approach,

is the "Forward-backward propagation (FBP) contractor". This technique is known for its

simplicity and ease, it is also more general than the other contractors since it works on all

type of systems. It also gives guaranteed results which means that during the contractions

we will always get an interval that belongs to the initial interval.

For all these reasons we chose to use the "Forward-backward" propagation technique to

help us to contract the intervals in the aim to compute the imprecise availability when t tends

to infinity as given in the system of equation Π.Q = 0, in the case of imprecise data.

In the next subsection, we detail the technique of forward-backward propagation, which

it will be used later.

2.8.4 Methodology of the Forward-Backward contractor [49]

Forward-backward (FBP) contractor C↓↑ is a classical algorithm in constraint programming

for contracting. It is based on constraint propagation [49].

Using this contractor makes it possible to contract the domains of the CSP

H : (f(x) = 0, x ∈ [x]) (2.83)

by taking into account each one of the nf constraints apart, say fi (x1, . . . , xnx). In this

case, nf is not necessarily equal to nx.
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The algorithm works in two steps. The forward step applies interval arithmetic to each

operator of the function y = f(x), from the variable’s domain ([x]) up to the function’s

domain ([y]), this step considers the direct forms of the equations.

The backward step sets the interval associated to the new function’s domain [y] to [0, 0]

(imposes constraint satisfaction, since we are solving f(x) = 0) and, then, applies backward

arithmetic from the function’s domain to the variable’s domain, which means using the in-

verse of the functions that appear in the equations f(x). The following example explains the

procedure of the FBP technique.

Example: Consider the constraint y = −5x1 + 2x2 = 0 and the initial box-domain

[x] = [1, 4]× [−3, 7].

This constraint can be decomposed as shown in eq. 2.84 into three primitive constraints

(i.e., constraints involving a single operator such as (+,−, ∗, /) or a single function) by

introducing two intermediate variables a1 and a2 defined as: a1 = −5.x1 and a2 = 2.x2.

Initial domains for these variables are determined as follows:
[a1] := −5[x1] = −5× [1, 4] = [−20,−5]

[a2] := 2[x2] = 2× [−3, 7] = [−6, 14]

[y] := [a1] + [a2] = [−20,−5] + [−6, 14] = [−26, 9]

(2.84)

and this step is called the "forward propagation". A method for contracting H with respect

to the constraint f(x) = 5x1 + 2x2 = 0 is to contract each of the primitive constraints in

2.84 until the contractors become inefficient, which the solution converges.

For this example: Since f(x) = 0, the domain for y should be taken equal to 0, we can add

the step:

[y] := [y] ∩ 0 (2.85)

If [y] as computed in eq. 2.85 turns out to be empty, then the CSP has no solution. Else,

[y] is replaced by 0, which is the case in this example. After, a backward propagation is

performed, updating the domains associated with all the variables to get:

[a1] := ([y]− [a2]) ∩ [a1] = ([0, 0]− [−6, 14]) ∩ [−20,−5] =⇒ [a1] = [−14,−5]

[a2] := ([y]− [a1]) ∩ [a2] = ([0, 0]− [−20,−5]) ∩ [−6, 14] =⇒ [a2] = [5, 14]

[x1] := ([a1]/− 5) ∩ [x1] = ([−14,−5]/− 5) ∩ [1, 4] =⇒ [x1] = [1, 14/5]

[x2] := ([a2]/2) ∩ [x2] = ([5, 14]/2) ∩ [−3, 7] =⇒ [x2] = [5/2, 7].

(2.86)
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Step 1: Forward a1 := −5x1

Step 2: Forward a2 := 2x2

Step 3: Forward y := a1 + a2

Step 4 [y] := [y] ∩ 0

Step 5: Backward [a1] := ([y]− [a2]) ∩ [a1]

Step 6: Backward [a2] := ([y]− [a1]) ∩ [a2]

Step 7: Backward [x1] := ([a1]/− 5) ∩ [x1]

Step 8: Backward [x2] := ([a2]/2) ∩ [x2]

Table 2.5: Steps of C↓↑

And we obtain the new box :

[x](1) = [1, 14/15]× [5/2, 7] (2.87)

which is the result of the first FBP contraction. Iterating this procedure, the resulting se-

quence of boxes [x](k) converges towards the smallest possible domain, after which the

domains no longer change following another iteration of FBP. Table 2.5 shows the corre-

sponding steps of the forward-backward contractor applied on this example.

Here another example is token from Luc Jaulin’s book [49]. Consider the CSP:

H :


x1 + 2x2 − x3 = 0

x1 − x2 − x4 = 0

[x] ∈ [−10, 10]× [10, 10]× [−1, 1]× [−1, 1]

Using C↓↑, the constraint x1 + 2x2 − x3 = 0 gives:
[x1] = [−10, 10]

[x2] = [−11
2
, 11

2
]

[x3] = [−1, 1]

and the constraint x1 − x2 − x4 = 0 gives:
[x1] = [−13

2
, 13

2
]

[x2] = [−11
2
, 11

2
]

[x4] = [−1, 1]

When iterating the steps of the contractor, a sequence of boxes [x](k) converge to the small-

est possible domain, see Table 2.6. The new box is:

[x] = [−3, 3]× [−2, 2]× [−1, 1]× [−1, 1]
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k [x1](k) [x2](k) [x3](k) [x4](k)

0 [-10,10] [-10,10] [-1,1] [-1,1]
1 [-6.5,6.5] [-5.5,5.5] [-1,1] [-1,1]
2 [-4.75,4.75] [-3.75,3.75] [-1,1] [-1,1]
5 [-3.2,3.2] [-2.2,2.2] [-1,1] [-1,1]
10 [-3.006,3.006] [-2.006,2.006] [-1,1] [-1,1]
∞ [-3,3] [-2,2] [-1,1] [-1,1]

Table 2.6: Iterations of C↓↑

2.9 Conclusion

This chapter has presented the main idea of interval analysis. We showed all the basic def-

initions of interval operators. We introduced the idea of contractors and presented some

of the main contractors. The Gauss-Siedel method is useful in some cases. However, the

use of this method demands some conditions (for example all the diagonal elements of the

matrix must be different than zero). Also, it is a slow algorithm (it requires many iterations),

each iteration can require a lot of computing time, depending on the case. The Krawczyk

and Newton contractors are very useful when we have nonlinear differential functions and

matrices, in the aim to apply contractions on the two of them. In our case, we have a sys-

tem of linear equations where we do not want to contract the matrix so we can use another

contractor that is simple to apply. The Forward-Backward contractor is the most used con-

tractor. It is a general contractor used on linear equations and nonlinear equations. It is

very simple to apply; the operations are based on simple arithmetic calculations to facilitate

the contractions. The Forward-Backward contractor gives always a guaranteed result where

it includes the real exact values. The Forward-Backward contractor and the Gauss-Siedel

contractor yield to close results, however the number operations, the number of contractions

and the computing time vary. In our case, the equations are linear where we do not want to

contract the matrix, therefore we use the simplest contractor among all of them which is the

Forward-Backward contractor.

In this chapter, we developed the "forward-backward" contractor since we will use it

later in our methodology.

The following chapter is devoted to present the difference between a binary system and a

multi-states system (MSS). Then, we present the state of art on dependability in particularly

about the works that have been done with complex MSS. Also, we show all the works that

have been done in this subject.





Chapter 3

Dependability state of art

3.1 Introduction

In dependability studies, we use a set of tools and methods that allow, in all levels of a

system’s life, to ensure that the system performs or accomplishes the missions for which it

was designed, and in conditions of reliability, maintainability, availability and security pre-

defined. Generally, these studies consist in analyzing the effects of failures, malfunctions,

errors of the studied system. It should be noted that a lot of works have advanced research

and have been developed within the framework of dependability. In this, chapter we cite

some of the related works.

Systems are often multi-states. During operation, the lack of data leads to uncertainties.

For that, in this thesis, we are interested in multi-states systems (MSS) imprecise availabil-

ity assessment. However, before passing to the part of MSSs which is our main subject, in

section 2, we present some of the related works in dependability for binary systems.

Later in section 3, we present some of the related works in dependability when dealing

with MSS.

Among all the methods of representing the system, we chose the Markov model method

to help us to calculate the availability. Section 4 presents the explanations and the related

works in this topic.

Section 5, is about uncertainties in dependability. Therefore, this section concerns the

works on imprecise availability computing.

To end up with conclusion and the problematic of this work.
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3.2 Binary systems methods

Before discussing MSSs, we will present the different methods and techniques used to esti-

mate the availability (or reliability) of binary systems with two operating states. Which are

a particular case of MSSs whose elements do not work with degraded performance levels

between the two extreme states "perfect working" and "total failure". Of course, there are

more effective, more complex, more precise, more general or faster methods than others,

but each of these methods has its different advantages and disadvantages, and for each type

of structure one may appear more efficient than the other.

To confirm these availability assessment models, we will determine the most appropriate

technique for each type of structure. There are several works in the literature that present

in general the different methods and techniques that have been developed to deal with the

problems of the reliability of binary systems, then these methodologies have been evolved

and adapted to solve a wide variety of problems.

3.2.1 States enumeration technique

When the system is composed of a small number of components, its reliability can be calcu-

lated directly by listing all the possible configurations. The reliability of the total system is

found by doing the sum over all the probabilities that present the system when it is working.

Consider the stochastic graph G defined by the G = (V, U), where V = {v1, v2, . . . , vn}
is the set of nodes, and U = {u1, u2, . . . , un} is the set of arcs that represent the components.

An arc u of the set U is defined by a pair of nodes. The arc u = (a, b), means that the

arc goes from a to b. It is also said that a is the initial extremity and b is the final extremity.

In the graph in Figure 3.1, the nodes are V = {1, 2, 3, 4, 5, 6} and the arcs are U =

{(1, 2), (1, 3), (3, 4), (3, 6), (4, 1), (5, 2), (5, 6), (6, 3)}.

We note d+(v) the external degree of the node v, i. e. the number of arcs having v as

the initial extremity.

We note d−(v) the inner degree of the node v, i. e. the number of arcs that have v as the

final extremity.

68



3.2. BINARY SYSTEMS METHODS

1

2

5

4

3

6

Figure 3.1: Oriented graph

The degree of the node v is:

d(v) = d+(v) + d−(v) (3.1)

In the graph in Figure 3.1, we have the following degrees:d+(1) = 2, d+(2) = 0, d+(3) = 2, d+(4) = 1, d+(5) = 2, d+(6) = 1

d−(1) = 1, d−(2) = 2, d−(3) = 2, d−(4) = 1, d−(5) = 0, d−(6) = 2

A path leading from the top a at the top z is a sequence of nodes and arcs (v, u), begin-

ning and ending with a node, such that each arc is bounded on the left by its original node

and on the right by its destination node.

On the graph in Figure 3.1, we can take for example the paths: (1, (1, 2), 2) and (5, (5, 6), 6,

(6, 3), 3, (3, 4), 4, (4, 1), 1, (1, 2), 2).

A circuit is a path where its starting and ending points are the same. The circuit that can

be drawn from the graph in Figure 3.1, is for example (1, (1, 3), 3, (3, 4), 4, (4, 1), 1).

Let G′ = (V ′, U ′) a sub-graph of G = (V, U) with U ′ ⊆ U . Let Γ be the set of all the

sub-graphs G′ of G such that the end points S and T are included in V ′. The reliability of

the system can be written as follows:R(G) =
∑

G’i∈Γ Pr(G’i) = 1−∑G’i /∈Γ Pr(G’i)

P (G’i) =
∏

j∈G’i pj.
∏

j /∈G’i(1− pj)
(3.2)

with j ∈ U .

This method seems simple and efficient, however the cost of computation in terms of

time increases exponentially with the extension of the graph size (number of components)

[68].
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Figure 3.2: Block diagram of the system

3.2.2 Technique of the Boolean Truth Table

The Boolean truth table approach is a simple method, it is based on listing all the possible

combinations of the states of the system’s components. It requires knowledge of the ele-

ments that lead to system failure and the link between the system’s components.

The truth table contains n entries and 2n lines (2n possible combinations), such that n is

the number of system’s components. Each column represents an element of the system and

the lines represent the different states of these elements; a "1" means that the component is

working and a "0" means that the component isn’t working. Each line is tested independently

to define the status of the complete system (example Figure 3.2 and Table 3.1).

The probability of each combination is calculated by multiplying the probabilities of the

component states. Then, the reliability of the system is obtained by summing all the proba-

bilities of the combinations that lead to the system functioning.

This method is practical only for small systems. Otherwise, the approach becomes very

limited, in fact the truth table of such a system is complex and long, as it is not always easy

to predict the state of the complete system from the states of its components.

With:

Rs = P4 + P6 + P8 = 1− (P1 + P2 + P3 + P5 + P7)

3.2.3 Inclusion-exclusion method

This method requires the enumeration of all minimum paths or minimum cuts of the studied

system.
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A B C System Probability

0 0 0 0 P1 = (1− PA).(1− PB).(1− PC)

0 0 1 0 P2 = (1− PA).(1− PB).PC

0 1 0 0 P3 = (1− PA).PB .(1− PC)

0 1 1 1 P4 = (1− PA).PB .PC

1 0 0 0 P5 = PA.(1− PB).(1− PC)

1 0 1 1 P6 = PA.(1− PB).PC

1 1 0 0 P7 = PA.PB .(1− PC)

1 1 1 1 P8 = PA.PB .PC

Table 3.1: Boolean truth table

The two concepts "minimum path" and "minimum cut" has been presented in section

7 of chapter 1. The computing of the reliability of the system is based on on Poincaré’s

formula. Through this formula, the reliability of the system is expressed by the probability

of union of all the minimum cuts or all the minimum paths (the choice of using minimum

paths or minimum cuts depends on the total number of the minimum paths and the total

number of the minimum cuts, we choose the lowest one) and their intersection probabilities.

In general, calculations can be made using either the minimum path technique or the mini-

mum cut technique. The adoption of one of these two approaches is based on the number of

minimum paths and minimum cuts that can be extracted from the system, when the number

is lower, the calculation is more simple.

Let us consider the structure of Figure 3.2, we can detect two minimum paths C1 = AC

and C2 = BC and two minimum cuts D1 = AB and D2 = C. The well-functioning of

at least one path implies the functioning of the system, therefore the reliability assessment

using the minimum paths is calculated as follows:

Rs = P (C1 ∪ C2) = P (C1) + P (C2)− P (C1 ∩ C2)

Rs = PA.PC + PB.PC − PA.PB.PC
(3.3)

From the minimum cuts, we can calculate the probability that the system is nonfunc-

tional:

Fs = 1−Rs = P (D1 ∪D2) = P (D1) + P (D2)− P (D1 ∩D2)

Fs = (1− PA).(1− PB) + (1− PC)− (1− PA).(1− PB).
(3.4)
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We form from Poincaré’s formula for m minimum paths the following formula:

P (
m⋃
i=1

Ci) =
m∑
i=1

P (Ci)−
∑

1≤i<j≤m

P (Ci ∩ Cj)

+
∑

1≤i<j<k≤m

P (Ci ∩ Cj ∩ Ck) + . . .+ (−1)m+1P (C1 ∩ . . . ∩ Cm)

(3.5)

The good thing about this method that it can be applied on a wide range of problems

regardless of the type of the system. However, the calculation of the reliability using the

formula will not be simple when it comes to a large system.

3.3 MSS methods

In this section, we will discuss the different approaches and techniques for computing the

reliability of MSSs, where the operating states present in degradation.

An MSS is the general case of a system and the binary system is a particular case of

the MSS. An MSS is a system where the components and the system could have different

degraded states from "perfect working" to " total failure".

As we have seen, there are many techniques that have been developed to model and to

calculate the reliability of binary systems. However, a lot of these methods cannot be applied

to MSSs. The problem is that when having this type of system, the reliability calculation

become hard. Since the size of the system where the elements of the system can have many

different states, this will cost in terms of time to solve the problem.

Since 1998, the two researchers G. Levitin and A. Lisnianski have published several

works in this perspective, their works were dedicated to the analysis, to the calculation and

the optimization of the availability of an MSS. They have improved some of the approaches

that simplify the systems by significantly reducing calculation time. Generally, methods

for assessing the reliability of MSSs are based on four different approaches: an extension

of Boolean models [71], the stochastic process (mainly Markovian and semi-Markovian)

[27], the approach of the Universal Generating Function (UGF) [63] and Monte-Carlo
simulation technique [13]. With regard to this subject, in their book published in 2003

[64, 71], the two authors G. Levitin and A. Lisnianski presented several models to assess the

reliability of MSSs.
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State 1 State 2 State k-1 State k

Normal working Degraded 1 
working state 

Degraded k-2 
working state Total failure

Figure 3.3: Functional diagram of a multi-states component

In this section, first we will detail the concept of the MSS. Later, we will present the four

methods mentioned before and we will show some of the related works.

3.3.1 Description of a MSS

A MSS is a system that can operate with degraded performance levels between normal

functioning and total failure. A component is an entity of the system that cannot be broken

down into other components. This entity itself can have several operating states. Therefore,

an MSS can be made up of binary elements or multi-states elements. Figure 3.3 shows a

functional diagram of a component having k possible states.

In order to analyze a MSS, it is necessary to know the characteristics of its components.

Each element i of a system can have ki different states, each state corresponds to a perfor-

mance level. The different performance levels are represented by the set:

Gi = {gi1, gi2, . . . , giki} (3.6)

At time t, the performance of the element i noted by Gi(t) is a random variable that

takes its values from the set Gi.

The associated probabilities to the states gij of the i with j ∈ {1, 2, . . . , ki} are repre-

sented by the set:

Pi = {pi1, pi2, . . . , piki} (3.7)

with

pij = Probability {Gi(t) = gij} (3.8)

The performance level of a system with n multi-states components is defined from the

performance levels of its components. The entire system can have k different states. The
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performance level G(t) of the system is a random variable that takes its values from the set:

G = {g1, g2, . . . , gk} (3.9)

The space of all the possible combinations of the performance levels of the n components

of the system is:

Ln = {g11, g12, . . . , g1k1} × {g21, g22, . . . , g2k2} × . . .× {gn1, gn2, . . . , gnkn} (3.10)

The structure function associates each combination in Ln, to the performance level of

the corresponding total system:φ : Ln → G

φ (G1(t), G2(t), . . . , Gn(t)) = Gt

(3.11)

The general model of a MSS can be defined as follows:gi, pi(t), 1 ≤ i ≥ n

φ (G1(t), G2(t), . . . , Gn(t))
(3.12)

With gi is the state of component i and pi is the probability that element i is in the state gi.

The required performance limit rated W (t) (or required demand) determines the flow

that must be generated by the system at the output node. From this limit, the set of the

system states G (see eq.3.9) can be divided into two separate subsets G’ = {accepted states}
and G = {unaccepted states} with G’∪G = G. The first set includes the system states that

provide a flow greater than or equal to the required demand:

G’ = {G(t) ∈ G/G(t) ≥ W (t)} (3.13)

The second set includes the system states that generate a flow less than the required

demand:

G = {G(t) ∈ G/G(t) < W (t)} (3.14)

The availability of a system is the ability that it is in its working states at a instant t. The

availability can be written as follows:

A(t) =
∑
Gi∈G

Pr {G(t) ≥ W (t)} =
∑
Gi∈G’

qi(t) (3.15)

With qi(t) is the probability of having the combination of component performances that

ensures the level of performanceGi(t). If we assume thatGi(t) = φ (g1i(t), g2i(t), . . . , gni(t))

then qi(t) is:

qi(t) =
n∏
j=1

pij (3.16)
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In the following sections, we will present some of the main methods applied on MSS to

calculate its availability.

3.3.2 The Universal Generating Function (UGF)

The principles of the UGF method were introduced by I. Ushakov in 1986 [113], then

many scientists (G. Levitin, A. Lisnianski,. . .) proved the capacity of the method [63]. This

method is based on simple algebraic operations and determines the performance level and

the availability of the overall system from the characteristics of its components.

Mathematical fundamentals

Suppose n independent discrete random variables X1, . . . , Xn and suppose that each vari-

able Xi can be presented by the vectors xi and pi:xi = (xi1, . . . , xiki)

pi = (pi1, . . . , piki) with pij = Pr {Xi = xij} with j = 0, . . . , ki
(3.17)

The evaluation of the performance distribution function of a function (X1, . . . , Xn), re-

quires the evaluation of the vector y of all the possible values that this function could take

and the vector q of the corresponding probabilities.

If we consider that each variable Xi can have ki different implementation, then the num-

ber of the possible combinations is:

K =
∏

1≤i≤n

ki (3.18)

However, the variables Xi are independent, therefore the probability of having each

combination is equal to the product of the probabilities of the realizations of the arguments

of the combination. For a combination Cj = (x1j1 , . . . , xnjn) such that each xiji is a value

of the vector xi for 1 ≤ i ≤ n, the value of the corresponding function f is the combination

probability, we have: fj = f(Cj)

qj =
∏n

i=1 piji with piji = Pr {Xi = xiji}
(3.19)

Several combinations can have the same value of the function f , then the probability

that the function f takes the same value fh is equal to the sum of the probabilities of the

combinations that give this value, in case of independent combinations. LetH be the number

of the possible values of f , then the set of combinations producing the same value fh is:

Ah = {Cj/fj = fh, 1 ≤ j ≤ H} (3.20)
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UGF applied on MSSs

Consider a MSS with n multi-states components. Each component i could have ki possible

states, such thatGiji is the performance level of state ji of component i and piji the probabil-

ity of being in this state. To evaluate the performance distribution, we write the U -function

of component i as:

ui(Z) =

ki∑
ji=1

pijiZ
Giji [38] (3.21)

To obtain the UGF of m components, we use the the composition operators. Based on

simple algebraic operations, we find the U(Z) of a group of components, and the resulted

U -function of these m components is:

Ω (u1(Z), u2(Z), . . . , um(Z)) =

k1∑
j1=1

k2∑
j2=1

. . .
km∑
jm=1

(
m∏
i=0

pijiZ
w(Gij1

,...,Gijm )

)
(3.22)

where the function w (Gij1 , . . . , Gijm) represents the performance of m components, if

they are connected in series it will be there minimum, with:

w (Gij1 , . . . , Gijm) = min (Gij1 , . . . , Gijm) (3.23)

if they are simultaneous active redundancy the function w will be the sum of their per-

formances, with:

w (Gij1 , . . . , Gijm) =
m∑
i=1

Giji (3.24)

Let us consider that there is r combinations (G1, . . . , Gm) that allow the system to

produce the same level Gi. The probability of the occurrence of the jth combination

(G1, . . . , Gm) which ensures this level, is qij . Then the probability of having the perfor-

mance level Gi is:

qi =
r∑
j=1

qij (3.25)

According to eq. 3.9, the set G represents the performance levels that the system could

have. Suppose that the cardinal of G is the l, then the U -function of the global system takes

the form:

U(Z) = q1Z
G1 + q2Z

G2 + . . .+ qlZ
Gl (3.26)
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M1

M2

M3

Figure 3.4: System of 3 machines

with Gi ∈ G such as G1 < G2 < . . . < Gl and qi =
∑ri

j=1 qij such as
∑l

i=1 qi = 1.

The availability of the MSS is the probability that the performance G(t) of the system

is greater than the required demand W (t). Let Gk = {min(G1, G2, . . . , Gl)/Gk ≥ W (t)}.
According to eq. 3.15 and eq. 3.26, the availability can be written:

A(t, w) =
∑
Gi∈G

Pr {Gi(t) ≥ W (t)} =
l∑

i=k

qi (3.27)

This method gives a fast estimation but its application remains limited to systems with

simple structure: series, parallel, series-parallel,. . . This method wouldn’t be efficient when

the structure of the system is complex.

Numerical application

This example is token from the Master’s report of Kaoutar Rhazali [95]. In a production

process, there are three machines M1, M2 and M3. First, the product must pass through

either M1 or M2 and then through M3. The system is illustrated in Figure 3.4:

Since M1 and M2 perform the same task then they are modeled by a parallel connection.

M3 is modeled by a serial connection with M1 and M2 because all products leaving them

must pass through M3.

Suppose thatM1 can process a flow of φ1
1 = 1000p/h (pieces per hour), when it operates

normally. In case of an intermediate failure, the flow is reduced to φ2
1 = 600p/h. In case

of a total failure, the flow becomes zero φ3
1 = 0p/h. M2 machine is binary, thus, either it

produces a flow of φ1
2 = 500p/h or it is in failure mode with φ2

2 = 0p/h. M3 produces a

flow φ1
3 = 1500p/h when it is in normal operation. According to the first failure case, the

flow is reduced to φ2
3 = 1000p/h, according to the second failure case the flow decreases to
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M1 M2 M3

Performance (G) Probability (p) Performance (G) Probability (p) Performance (G) Probability (p)
1 0.8 0.5 0.95 1.5 0.69

0.6 0.15 0 0.05 1 0.2

0 0.05 - - 0.5 0.1

- - - - 0 0.01

Table 3.2: Characteristics of M1, M2 and M3

φ3
3 = 500p/h and when it is in total failure the flow becomes zero φ4

3 = 0p/h.

It is assumed that the system operates normally only when the output flow is equal to

1000p/h. Then the required demand is W = 1000
1000

= 1.

M1 has 3 states, the corresponding performance levels are:
g11 = 1000

1000
= 1;

g12 = 600
1000

= 0.6;

g13 = 0;

M2 has only 2 states, the performance levels are:g21 = 500
1000

= 0.5;

g22 = 0;

M3 has 4 operating states, the corresponding performance levels are:

g31 = 1500
1000

= 1.5;

g32 = 1000
1000

= 1;

g33 = 500
1000

= 0.5;

g34 = 0;

Table 3.2 presents the states of the three components and their probabilities:

The number of combinations of the states is:

K =
∏3

i=1 ki with k1 = 3, k2 = 2 and k3 = 4 which gives K = 3× 2× 4 = 12

the system has 12 combinations Cj .

Table 3.3 represents the U -functions of each machine:

The two blocks M1 and M2 are connected in parallel:
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Machine U -function
M1 u1(Z) = 0.8Z1 × 0.15Z0.6 × 0.05Z0

M2 u2(Z) = 0.95Z0.5 × 0.05Z0

M3 u3(Z) = 0.69Z1.5 × 0.2Z1 × 0.1Z0.5 × 0.01Z0

Table 3.3: U -functions of the three machines

M12 M3

Figure 3.5: Simplified reability block diagram of Figure 3.4

w(G1j1 , G2j2) = G1j1 +G2j2 with Giji the state of ji of the ith machine (j1 ∈ 1, 2, 3 and

j2 ∈ 1, 2)

Ω(u1(Z), u2(Z)) = Ω (0.8Z1 + 0.15Z0.6 + 0.05Z0, 0.95Z0.5 + 0.05Z0) = 0.8×0.95Zw(1,0.5)+

0.8×0.05Zw(1,0)+0.15×0.95Zw(0.6,0.5)+0.15×0.05Zw(0.6,0)+0.05×0.95Zw(0,0.5)+0.05×
0.05Zw(0,0) = 0.76Z1.5 + 0.04Z1 + 0.1425Z1.1 + 0.0075Z0.6 + 0.0475Z0.5 + 0.0025Z0.

Thus,

u12(Z) = 0.76Z1.5 + 0.1425Z1.1 + 0.04Z1 + 0.0075Z0.6 + 0.0475Z0.5 + 0.0025Z0

If we merge the two blocksM1 andM2 into a single block notedM12, then the reliability

block diagram will be simplified as Figure 3.5 shows.

The two blocks M12 and M3 are in series:

w(G12j12 , G3j3) = min(G12j12 , G3j3)

with Giji the performance level of the state ji of the machine i, with j12 ∈ 1, 2, 3, 4, 5, 6

and j3 ∈ 1, 2, 3, 4.

Ω(u12(Z), u3(Z)) = Ω(0.76Z1.5 + 0.1425Z1.1 + 0.04Z1 + 0.0075Z0.6 + 0.0475Z0.5 +

0.0025Z0, 0.69Z1.5 × 0.2Z1 × 0.1Z0.5 × 0.01Z0)

When we form the U -function of the system whe obtain:

U(Z) = 0.012475Z0+0.142025Z0.5+0.006675Z0.6+0.2161Z1+0.098325Z1.1+0.5244Z1.5
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According to the U -function of the system, we can notice that this one can provide three

performance levels greater than or equal to the required demand W = 1 (G4 = 1, G5 = 1.1

and G6 = 1.5). The availability is:

A(W = 1) =
∑6

i=3 qi = 0.8388

3.3.3 Inclusion-Exclusion method

When having a system that it can’t be broken down into subsystems with simple structures,

the use of the UGF method becomes very limited. Indeed, in this case we talk about com-

plex system and there is no function that helps to calculate the U -function of such systems.

In the case of binary systems with complex structures, the "Inclusion-Exclusion" tech-

nique is considered to be the most efficient method for computing its availability. In [77,

76, 77] an algorithm has been developed based on the extension of this method to apply on

MSSs.

The calculation of reliability based on the minimum paths makes it possible to evaluate

the reliability for any type of system. This method seems simple but when it comes to MSSs,

the meaning of the term of minimum path changes. Indeed, the minimum path becomes

conditioned by the performance level. For each state of the system, we can extract various

minimum paths depending on the states of the components.

Formulation of the Problem

In this section, we will develop the "Inclusion-Exclusion" method for computing the avail-

ability of an MSS. This method is based on the extension of the minimum path approach

applied to MSSs.

The method is applied to any system consisting of n subsystems such as each subsystem

si can be composed from ni elements with i ∈ {1, 2, . . . , n} (cf. Figure 3.6). The compo-

nents are numbered from 1 toN from left to right and from top to bottom withN =
∑n

i=1 ni.

Each component of the subsystem i can receive a flow from one or many components of

the subsystem i − 1, as it can also divide its flow between one or more components of the

subsystem i+ 1.
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Ck1 Ck2

C11 C12

C21 C22

Ckn

C1n

C2n

Subsystem 1 Subsystem 2 Subsystem n

Figure 3.6: Parallel-series system

Let’s consider that each component j can have the following performance levels {0, 1, . . . , Kj}
with j ∈ {1, 2, . . . , N}. The probability that this component is in the state k is noted by pjk
with k ∈ {0, 1, 2, . . . , Kj}. The parameter W represents the required demand. The vector

X with N its length, represents the states of the system components, it can take values from

(0, 0, . . . , 0) to (K1, K2, . . . , KN).

We should know that the structure function φ associates to each vector X , a state h of

the system.

Principles of the method

X is called the minimum path vector for a level h if the image of X using the function φ

is greater than or equal to h (φ(X) ≥ h) and that for any vector Y < X , the image of Y by

φ is strictly less than h (φ(Y ) < h).

X is called the minimum cut vector for a level h if the image of X using the function

φ is strictly less than h (φ(X) < h) and that for any vector Y > X , the image of Y by φ is

greater than or equal to h (φ(Y ) ≥ h).

NB: We say that Y > X(Y < X), if there is one i ∈ {1, 2, ..., N} such that: yi >

xi(yi < xi) and for any k 6= i with k ∈ 1, 2, . . . , N , we have: yk = xk.

yi corresponds to the state of component i, Y = (y1, y2, . . . , yN).
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C1

C2

C3

G11=0;  G12=1;  G13=3

G21=0;  G22=2;  G23=3

G31=0;  G32=2;  G33=5

Figure 3.7: Example of minimal cut and minimal path for a level h

Consider a system of three components and suppose that each component can operate at

three different levels (cf. Figure 3.7):

• The minimum path vectors:

– For level h = 1: X = (1, 0, 2)

– For level h = 2: X = (3, 0, 2) and X = (0, 2, 2)

– For level h = 3: X = (3, 0, 5), X = (0, 3, 5) and X = (1, 2, 5)

– For level h = 4: X = (1, 3, 5) and X = (3, 2, 5)

– For level h = 5: X = (3, 2, 5)

• The minimum cut vectors:

– For level h = 3: X = (3, 3, 2)

– For level h = 4: X = (3, 3, 2) and X = (1, 2, 5)

– For level h = 5: X = (3, 3, 2) and X = (1, 3, 5)

For a binary system, the calculation of availability by minimum paths is based on the

Poincaré’s formula:

A =
m∑
i=1

P (Ci)−
∑

1≤i<j≤m

P (Ci ∩ Cj) + . . .+ (−1)m+1P (C1 ∩ . . . ∩ Cm) (3.28)

Such that m is the number of all the minimal paths and Ci is ith minimal path.

The extension of this formula to apply it on MSSs is:

Ah =
m∑
i=1

P (X ≥ Yi)−
∑

1≤i<j≤m

P (X ≥ max(Yi, Yj))+. . .+(−1)m+1P (X ≥ max(Y1, . . . , Ym))

(3.29)
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With m is the maximum number of the minimum paths ensuring for the level h and Yi the

minimal path vector i among the m vectors.

max(Y1, . . . , Ym) = max(max(y11, . . . , y1m), . . . ,max(yN1, . . . , yNm))

with Y1 = (y11, . . . , yN1) and N is the number of the components of the system. For exam-

ple, if we have Y1 = (1, 2, 1) and Y2 = (3, 0, 1) then max(Y1, Y2) = (3, 2, 1).

Consider a system of N components such as each component Ci can work in its lev-

els that can take values from 0 to Mi. The maximum capacity of the system is defined by

M = {M1,M2, . . . ,Mn}.

To define the minimum paths of the system, we will need the vector Li which defines

the levels corresponding to the states of the component Ci and the vector Oi which defines

the order of these states. For example, if Li = (0, 3, 5, 6) then Oi = (0, 1, 2, 3).

First, we define the primary minimum paths of the system without taking into account

the states of the components. Which means, we find the minimum connections that allow

to go from the source to the end point. The primary minimum path vector PMP is defined

as follows, if the ith component exists in the path then the ith value of the vector takes the

value 1 otherwise it takes 0.

From these PMP vectors, we will build the secondary path vectors SP from the values

of Li. It is possible to obtain vectors that are not minimal, repeatable or greater than the

vector M . In this case, we choose the vectors in order to eliminate false vectors and to keep

only the minimum path vectors. And finally, through the formula of Poincaré, we will be

able to calculate the availability of the system for each level of performance. Here is the

steps that we must do:

• Step 1: Find the PMP vectors, with "1" means the existence of the component in the

path and "0" otherwise.

• Step 2: Build the primary minimum path vectors of level h + 1 noted PMPh+1

from the primary minimum path vectors of the level h noted PMP and the primary

minimum paths vectors of level 1 noted PMP1.

PMPh+1 = X + Y such that X ∈ PMPh and Y ∈ PMP1.
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S T
C1

C2

C3

C4

Figure 3.8: An example system

Component 1 Component 2 Component 3 Component 4

G P G P G P G P
0 0.1 0 0.1 0 0.1 0 0.1

2 0.1 1 0.2 1 0.1 2 0.2

3 0.8 4 0.7 3 0.8 4 0.7

Table 3.4: The characteristics of the components of the system in Figure 3.8

• Step 3: Merge the vectors Z ∈ PMPh+1 that repeat themselves, eliminate the vectors

that are not not minimal and remove vectors greater than the maximum capacity of the

system M .

• Step 4: Repeat steps 2 and 3 for all the levels h.

• Step 5: Determine the minimum secondary path vectors SP from the PMP s for each

level h. If the ith value of the vector PMPh noted by xi does not exist in the vector

Li of the component Ci, then in the vector SPh, this value is replaced by the smallest

value of the vector Li that is higher than xi.

• Step 6: Eliminate the SP vectors that are not minimal and that are repeated for each

level h.

• Step 7: Calculate the system availability for each level h using the formula of Poincaré.

Numerical example

This example is token from the Master’s report of Kaoutar Rhazali [95]. Consider the system

of the Figure 3.8 and the Table 3.4 presents the characteristics of the components.

1. State 1:
The vectors PMP1 are: X2 = (1, 0, 1, 0) ; X2 = (1, 0, 0, 1) ; X3 = (0, 1, 1, 0) ;

X4 = (0, 1, 0, 1).
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The corresponding SP1 vectors are:



PMP1 ⇒ SP1

(1, 0, 1, 0)⇒ (2, 0, 1, 0)

(1, 0, 0, 1)⇒ (2, 0, 0, 2)

(0, 1, 1, 0)⇒ (0, 1, 1, 0)

(0, 1, 0, 1)⇒ (0, 1, 0, 2)

The minimum path vectors are: X1 = (2, 0, 1, 0) ; X2 = (2, 0, 0, 2); X3 = (0, 1, 1, 0)

and X4 = (0, 1, 0, 2).

A1 = P (X ≥ X1) + P (X ≥ X2) + P (X ≥ X3) + P (X ≥ X4) − P (X ≥
max(X1, X2))−P (X ≥ max(X1, X3))−P (X ≥ max(X1, X4))−P (X ≥ max(X2, X3))−
P (X ≥ max(X2, X4)) − P (X ≥ max(X3, X4)) + P (X ≥ max(X1, X2, X3)) +

P (X ≥ max(X1, X3, X4))+P (X ≥ max(X1, X2, X4))+P (X ≥ max(X2, X3, X4))−
P (X ≥ max(X1, X2, X3, X4))

⇒ A1 = 0.9× 1× 0.9× 1 + 0.9× 1× 1× 0.9 + 1× 0.9× 0.9× 1 + 1× 0.9× 1×
0.9− 0.9× 1× 0.9× 0.9− 0.9× 0.9× 0.9× 1− 0.9× 0.9× 0.9× 0.9− 0.9× 0.9×
0.9× 0.9− 0.9× 0.9× 1× 0.9− 1× 0.9× 0.9× 0.9 + 0.9× 0.9× 0.9× 0.9 + 0.9×
0.9× 0.9× 0.9 + 0.9× 0.9× 0.9× 0.9 + 0.9× 0.9× 0.9× 0.9− 0.9× 0.9× 0.9× 0.9.

⇒ A1 = 0.9801.

2. Level 2:
The vectors PMP2 and SP2: PMP2 ⇒ SP2

(1, 1, 1, 0) + (1, 0, 1, 0) = (2, 0, 2, 0)⇒ (2, 0, 3, 0)

(1, 0, 1, 0) + (1, 0, 0, 1) = (2, 0, 1, 1)⇒ (2, 0, 1, 2) (The third component is greater than the

third component of the M, then this vector must be eliminated)(2, 0, 0, 2)

(1, 0, 1, 0) + (0, 1, 1, 0) = (1, 1, 2, 0)⇒ (2, 1, 3, 0) (it is not a minimum vector) (2, 0, 3, 0)

(1, 0, 1, 0) + (0, 1, 0, 1) = (1, 1, 1, 1)⇒ (2, 1, 1, 2) (it is not a minimum vector) (2, 1, 0, 2)

(1, 0, 0, 1) + (1, 0, 0, 1) = (2, 0, 0, 2)⇒ (2, 0, 0, 2)

(1, 0, 0, 1) + (0, 1, 1, 0) = (1, 1, 1, 1) (repeated vector)

(1, 0, 0, 1) + (0, 1, 0, 1) = (1, 1, 0, 2)⇒ (2, 1, 0, 2) (it is not a minimum vector) (2, 0, 0, 2)

(0, 1, 1, 0) + (0, 1, 1, 0) = (0, 2, 2, 0)⇒ (0, 4, 3, 0)

(0, 1, 1, 0) + (0, 1, 0, 1) = (0, 2, 1, 1)⇒ (0, 4, 1, 2) (it is not a minimum vector) (0, 4, 0, 2)

(0, 1, 0, 1) + (0, 1, 0, 1) = (0, 2, 0, 2)⇒ (0, 4, 0, 2)

The minimum path vectors are: (2, 0, 3, 0) ; (2, 0, 0, 2) ; (0, 4, 3, 0) and (0, 4, 0, 2).
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A2 = 0.9506.

3. Level 3:
The minimum path vectors: (3, 0, 3, 0); (2, 1, 3, 0); (2, 1, 3, 0); (3, 0, 1, 2); (3, 0, 0, 4);

(2, 1, 1, 2); (0, 4, 3, 0); (0, 4, 1, 2) and (0, 4, 0, 4).

A3 = 0.7921.

4. Level 4:
The minimum path vectors: (3, 1, 3, 2); (0, 4, 3, 2); (3, 1, 0, 4) and (0, 4, 0, 4).

A4 = 0.7396.

5. Level 5:
The minimum path vectors: (2, 4, 3, 2) and (2, 4, 1, 4).

A5 = 0.4977.

6. Level 6:
The minimum path vectors: (2, 4, 3, 4).

A6 = 0.3528,

7. Level 7:
The minimum path vectors: (3, 4, 3, 4).

A7 = 0.3136

From these results, we can deduce the U -function of the system:

Usystem = (1− A1) ∗ Z0 + (A1 − A2) ∗ Z1 + (A2 − A3) ∗ Z2 + (A3 − A4) ∗ Z3 + (A4 −
A5) ∗ Z4 + (A5 − A6) ∗ Z5 + (A6 − A7) ∗ Z6 + A7 ∗ Z7

Usystem = 0.0199 ∗ Z0 + 0.0295 ∗ Z1 + 0.029 ∗ Z2 + 0.182 ∗ Z3 + 0.2419 ∗ Z4 + 0.1449 ∗
Z5 + 0.0392 ∗ Z6 + 0.3136 ∗ Z7

"Inclusion-Exclusion" method is to evaluate the availability of MSSs with a complex

structure. It is based on the minimal paths and the Poincaré’s formula. Even it is efficient,

this procedure requires a lot of computing time. Also, the number of minimal path vectors
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is much larger than the number of nodes and number of links in the system, on the other

hand this makes the application of the Poincaré’s formula much complex, especially when

the number of components states increases.

3.3.4 Monte-Carlo simulations

This technique is well used in dependability [93, 94, 124, 131]. It offers a powerful means

for evaluating the availability of a system, due to the flexibility in modeling that it offers

regardless the type and the dimension of the problem. The idea of this method is the gener-

ation of certain random and discrete events in a computer model in order to create a realistic

lifetime model of the system. Therefore the simulation of the system’s life process will

be carried out in the computer, and estimations will be made for the desired measures of

performance [13]. The simulation will be then treated as a series of real experiments, and

statistical inference will then be used to estimate confidence intervals for the performance

metrics. The events can be simulated either with variable time increments (discrete event

simulation) or with fix time increments, at equidistant points of time (continuous time sim-

ulation).

An approach was presented using Monte-Carlo simulation and an enumeration tech-

nique for the reliability evaluation of MSS [12]. Another work by Zio et al. [131], where

they presented a Monte Carlo simulation technique which allows modelling the complex

dynamics of multi-state components subject to operational dependencies with the system

overall state. Jose et et al. [93] described a Monte-Carlo simulation methodology for eval-

uating the reliability of a MSS. Zio and Podofillini [132] have presented a Monte-Carlo

simulation approach to estimate all the importance measures of the components at a given

performance level in a multi-state series-parallel system.

In all of these works, we can find several examples that show how we apply Monte-Carlo

simulation on MSS, however we will not present them because of the various sort of appli-

cations.

The weak point of the Monte Carlo method is the computing time. The method is based

on the repeated samples of realizations of system configurations. A large number of re-

alizations must be simulated in order to achieve an acceptable accuracy in the estimated

failure probability with costly large computing times. However, there are efficient methods

of convergence acceleration when we are only interested in averages.
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3.3.5 Markovian approach

The Markovian approach is based on the work of Andrei Andreevich Markov (1856-1922)

in probability theory. It was applied in dependability for the first time in the 1950s. Since

then, many advances and extensions have been made to solve some sort of problems.

Markovian approach is very adopted in dependability to calculate the availability of an

MSS [75, 85, 84, 35, 69, 70]. It is possible with this method to present all the possible states.

The main benefit is its easy implementation in the form of a graph of states. In our study, we

use the Markovian approach to model MSS and to calculate the availability of the system.

The way of use of this method will be detailed in chapter 4.

Reminder of the Markovian model

Markov models represent a class of stochastic processes, whereX is a random variable with

the parameter t the time which is always positive.

{X(t), t ≥ 0} (3.30)

the time t could be discrete then we talk about Markov chain or continuous we talk about

Markov process. In our work the time is continuous.

A stochastic process in which the future state of the system does not depend on the past

trajectory, it is memoryless. The Markovian model evaluates the transition rates of jumping

from one known state into the next logical state until, depending upon the configuration of

the system being considered, the system has reached the final or totally failed state.

The states of the system can then be deduced from the states of the components by study-

ing the interactions between components or their simple combinations. The state equations

can show the evolution of the system as a function of time in terms of the probability of

occupation of the state of the system Pi(t), using the transition probabilities Pij(t) with

dPij(t) = qij(t)dt during an interval time dt between two states ei and ej .

The parameter qij(t) is called the transition rate and it is only defined when Pij(t)

is differentiable. The state equations of a system S are defined in a discrete state space

E = {e1, . . . , en} with ei is the ith state of the system S, taking into account the transition

rates qij existing between consecutive states of the system.
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Since in our study the time is continuous, we do not talk about probabilities (like the

case in discrete time), however we talk about transition rates qij (could be failure rates,

repair rates, or the combinations of these two) and about the transition matrix Q, where:

Q =


q11 . . . q1n

... . . . ...

qn1 . . . qnn

 (3.31)

Diagonal elements qii are defined such that:

qii = −
n∑

i=1,i 6=j

qij (3.32)

thus the sum of each row of Q is equal to 0.

The equations of the states of a system S are defined in a discrete state space E by tak-

ing into account the transition rates qij(t) existing between consecutive system states. By

defining the probabilities that the system stays in its current state or moves to any of the pos-

sible states in E for an elementary time interval [t, t+ dt], we obtain a system of differential

equations, called the Chapman-Kolmogorov equations.

Thus, for each state ei

Pi(t+ dt) = P( S in state ei at t and in [t, t+ dt]) (3.33)

+
∑

ej∈E−ei

P( S in state ej at t and in ei at [t, t+ dt]) (3.34)

Which means:

Pi(t+ dt) = Pi(t)qii(t)dt+
∑

ej∈E−ei

Pj(t)qji(t)dt (3.35)

We can now write down:

Pi(t+ dt) = Pi(t)(1−
∑

ej∈E−ei

qij(t)dt) +
∑

ej∈E−ei

Pj(t)qji(t)dt (3.36)

We have:

Pi(t+ dt)− Pi(t)
dt

= −Pi(t)
∑

ej∈E−ei

qij(t) +
∑

ej∈E−ei

Pj(t)qji(t) (3.37)

And finaly we obtain:

Ṗ (t) = P (t).Q (3.38)
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with vector P represents the probabilities of being in a state in a certain time tP =
[
P1(t) . . . Pn(t)

]
∑n

j=1 Pj(t) = 1.
(3.39)

In our study, we have Q is independent from t, since we take the case of constant transition

rates (failure rates and repair rates).

In many applications, only the steady-state probabilities are interesting, since we want

to know if the product is survivable till when. The steady-state probabilities is the values of

Pj(t) when t −→∞.

The process is said to be irreducible if every state is reachable from every other state.

For an irreducible Markov process, it can be shown that the limits

limt−→∞ Pj(t) = πj for j = 1, 2, . . . , n

always exist and are independent of the initial state of the process (at time t = 0).

The asymptotic probabilities are often called the steady-state probabilities for the Markov

process.

If Pj(t) tends to a constant value when t −→∞, then:

limt−→∞ Ṗj(t) = 0 for j = 1, 2, .., n

The steady-state probabilities Π = [π1, π2, . . . , πn] must therefore satisfy the matrix equa-

tion:

[π1, π2, . . . , πn].


q11 q12 . . . q1n

q21 q22 . . . q2n

.. .. . . . ..

qn1 .. . . . qnn

 = [0, 0, . . . , 0] (3.40)

which may be abbreviated by:

Π.Q = 0 (3.41)

and this equation will be the main equation that we will use later in the aim to solve our

problem. With as before: ∑n
j=1 πj = 1
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The main idea is to find the solution Π so that we could calculate the availability of the

system when t tends to infinity.

In this aim, we define the input:

P(0) =
[
P10 P20 . . . Pn1

]
(3.42)

which is the initial vector of the states of system. From the data of all the components

(failure rates and repair rates), we form our transition matrix Q, and we solve the system of

equation in eq 4.1 to get Π.

3.4 Imprecise availability computing

In the real world of MSSs, there is an insufficiency of data which makes it difficult to esti-

mate precise values of component’s failure rates, repair rates and state probabilities [100].

Nowadays, usually the estimation of the effect of uncertainty is a necessity, e.g. due to vari-

ation in parameters, operational conditions and in the modeling and simulations [9].

Uncertainties are classified into two categories: epistemic uncertainty and aleatory un-

certainty [100]. Epistemic uncertainty is due to the lack of knowledge of quantities. Aleatory

uncertainty is due to the inherent variation associated to the physical system [100].

Uncertainties was introduced in all kind of works in dependability field. In [2], they use

the belief function theory on the Inclusion-Exclusion method in dependability. In [129], they

used intervals to model imprecise probability using Monte-Carlo method. In this section, we

talk about some of the methods that we will use them later in chapter 4. In these methods,

they applied uncertainty in the calculation of imprecise availability.

3.4.1 IUGF and BUGF

BUGF (Belief Universal Generated Function) [28] and IUGF (Interval Universal Generated

Function) [66] are two methods based on the UGF (Universal Generated Function) but they

are applied on intervals and therefore are used in the case of interval-modeled imprecision.

These two methods are efficient and give good results, the BUGF is also noted as more

efficient than the IUGF.

IUGF

In [66], a method is proposed to analyze the reliability of MSSs when the available data of

components are insufficient. Based on the Bayesian approach and the imprecise Dirichlet
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Figure 3.9: Flow transmission system

model, the state probabilities of components are obtained as intervals instead of precise

values. They developed the interval universal generating function, and the correspond-

ing operators are defined to estimate the reliability of MSSs in interval form. They used

affine arithmetic to find the interval-valued reliability. The results show the efficiency of the

method when the performance levels of states and/or the state’s probabilities of components

are uncertain.

BUGF

In [28], they proposed a method which is an extension of the UGF method taking into ac-

count epistemic uncertainties. This method allows to model ill-known probabilities and

transition rates. Based on the use of belief functions which are general models of uncer-

tainty they developed their method. In this work, they also compared this extension with

UGF methods based on interval arithmetic operations performed on probabilistic bounds

like the work cited previously [66].

To compare the two methods, they gave a numerical example that was presented in this

article and in [66]. The example is from Yi Ding and Anatoly Lisnianski [29]. Where they

changed the fuzzy into interval numbers in [66]. As Figure 3.9 shows, the flow transmission

system consists of three components. It is supposed that components 1 and 2 have three

possible states: a state of total failure corresponding to a capacity of 0, a state of full capacity,

and a state of partial failure. The component 3 only has two states: a state of total failure,

and a state of full capacity. All state performances of the components are precise. The state

probabilities state pji and the performance levels gji of the components of the system are

given in Table 3.5.

• State 3 of component j: gj3 represents the performance rate of the completely success-

ful state.

• State 2 of component j: gj2 represents the performance rate of the degraded successful

state.
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Component j 1 2 3

pj1 [0.096, 0.106] [0.095, 0.105] -

pj2 [0.095, 0.105] [0.195, 0.205] [0.032,0.042]

pj3 [0.799,0.809] [0.7, 0.71] [0.958, 0.968]

gj1 0 0 -

gj2 1 1.5 0

gj3 1.5 2 4

Table 3.5: Parameter of the components of the system

• State 1 of component j: gj1 represents the performance rate of the total failure state.

and pji is the probability of being in state gji . Here the procedures and the results by each

method. A. Interval UGF approach (IUGF)

According to Li et al. [66], the IUGF of a component j with Mj states is defined by:

Uj(z) =

Mj∑
i=1

[pji ].z
gji (3.43)

The IUGF of a system with n components is obtained as follows:

U(z) = ω(U1(z), . . . , Un(z))

= ω(

k1∑
l1=1

[pl11 ].z
g1l1 , . . . ,

kn∑
ln=1

[plnn ].zg
n
ln )

=

k1∑
l1=1

k2∑
l2=1

. . .
kn∑
ln=1

[pl11 ].[pl22 ] . . . [plnn ]zφ(g1l1
,g2l2

,...,gnln )

=

k1∑
l1=1

k2∑
l2=1

. . .
kn∑
ln=1

[
n∏
i=1

pili ,

n∏
i=1

pili ]z
φ(g1l1

,g2l2
,...,gnln )

=
R∑
i=1

[pi].z
ri

(3.44)

where φ(g1
l1
, g2
l2
, . . . , gnln) depends on the component states. The final line summarizes the

last big sum into a sum of probabilities over system performance levels. For a demand level

w, the system availability [A] is obtained such that:

[A] =
R∑
i=1

[pi|ri ≥ w] (3.45)

Using eq. 3.43, the IUGF of the three components are:
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
U1(z) = [0.799, 0.809]z1.5 + [0.095, 0.105]z1 + [0.096, 0.106]z0

U2(z) = [0.7, 0.71]z2 + [0.195, 0.205]z1.5 + [0.095, 0.105]z0

U3(z) = [0.958, 0.968]z4 + [0.032, 0.042]z0

The IUGF of the subsystem formed by components 1 and 2 is

U12(z)


= ω(U1(z), U2(z))

= [0.55593, 0.5744]z3.5 + [0.2223, 0.24035]z3 + [0.0185, 0.00215]z2.5 + [0.0672, 0.075]z2

+[0.0946, 0.1066]z1.5 + [0.009, 0.011]z1 + [0.0091, 0.0111]z0

We obtain the overall IUGF of the system by applying:

U123(z) = ω(U12(z), U3(z))

To estimate the availability of the system when w = 1.5, we use eq. 3.45 and we obtain:

[A] = [0.9183, 0.9665]

B. Belief UGF approach (BUGF)

They applied the UGF extension to the system of 3 components. To apply Belief func-

tion, mass functions of probability intervals described in Table 3.5 can be obtained using the

following formula

m(E) =


pjk if E = gjk

1−∑kj
k=1 p

j
k if E = Gj

0 else

(3.46)

with E presents the set of the performance level and Gj is the set of all the performance

levels of the component j.

The BUGF equations of the three components is obtained by using

Uj(z) =

Fj∑
i=1

m(gji ).z
gij (3.47)

with Fj is the number of the performance level of the component j.

We have: 
U1(z) = 0.799z{1.5} + 0.095z{1} + 0.096z{0} + 0.01z{0,1,1.5}

U2(z) = 0.7z{2} + 0.195z{1.5} + 0.095z{0} + 0.01z{0,1.5,2}

U3(z) = 0.958z{4} + 0.032z{0} + 0.01z{0,4}
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The overall BUGF of the system is computed similar as in IUGF, we found out U12(z)

using U1(z) and U2(z).Then we use the min operator to U12(z) with the UGF of component

3.

Concerning the availability of the event A = ri, . . . , rR with w = 1.5, they defined two

operators δ+
A and δ−A that compute plausibility and belief values of A.

δ+
A(U(z)) = δ+

A(

F1∑
i1=1

F2∑
i2=1

. . .

Fn∑
in=1

n∏
j=1

mj
ij
zφ([g]1i1

,...,[g]nin ))

=

F1∑
i1=1

F2∑
i2=1

. . .

Fn∑
in=1

n∏
j=1

mj
ij
δ+
A(zφ([g]1i1

,...,[g]nin ))

(3.48)

with

δ+
A(zφ([g]1i1

,...,[g]nin )) =

1 if ri ≤R φ([g]1, . . . , [g]n)+

0 else
(3.49)

we obtain δ−A by replacing the plus signs by minus signs. R is the set of global performance

rates of the system and ≤R is the order relation on R.

The availability interval can be defined, it contains the precise availability, and is bounded

by two non-additive continuous measures called belief (or support) and plausibility. Belief

function Bel(A) is the amount of belief that directly supports either the given hypothesis or

a more specific one, thus forming a lower bound on its probability. It is the sum of all the

masses that support A. Plausibility function Pl(A) is an upper bound on the possibility that

the hypothesis could be true and it represents the total amount of masses that might support

A.

We have that δ+
A = Pl(A) the plausibility and δ−A = Bel(A) the belief function.

This can be seen by noticing that ri ≤R φ([g]1, . . . , [g]n)+ means that at least one ele-

ment of the interval-valued performance φ([g]1, . . . , [g]n) is above (or equal to) perfor-

mance ri, hence φ([g]1, . . . , [g]n) ∩ A 6= 0, while if ri ≥R φ([g]1, . . . , [g]n)+, no ele-

ments of φ([g]1, . . . , [g]n) is in A. Similarly, ri ≤R φ([g]1, . . . , [g]n)− is equivalent to

φ([g]1, . . . , [g]n) ⊆ A [28].

We get:

[Bel(A), P l(A)] = [0.9377, 0.9505]
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3.4.2 Imprecise Markovian model

When the initial states probabilities and the transition rates of a finite Markov chain in dis-

crete time are not well known, we should talk about imprecise Markov model.

The Markov assumption stating that Xt+dt is conditionally independent of Xs, for s < t,

knowing Xt may not be realistic, especially for repair. Also, the transition rates may not be

constant in time, but are usually affected by a variety of factors, and the estimation of the

rates themselves may be difficult due to the lack of data.

A full modeling of these details requires a lot of data and expert knowledge. Instead of

ignoring this problem, a better way to cope with it is to incorporate the imprecision into the

models. This becomes possible with the development of models of imprecise probabilities.

Our contribution will be based on imprecise Markov model, in chapter 4 we will give a

detailed explanation of this concept with the related work.

3.5 Problem statement and positioning

A MSS, as we said before, is a system of components and each of these components could

have more than one state of functioning. Our main point, is to calculate the availability of

such system. In this thesis, we assume that the components are independent components

and that the only influence of the environment is that of repair/control and demand (system

solicitation). In particularly, the change of the component’s state depends only the compo-

nents (no influence of other components or the environment), except maintainability.

Finding the availability of an MSS with complex structure isn’t simple. A system with

complex structure presents all the possible combinations between the elements, without re-

specting one type of connection. It becomes much complicated when the system is larger

(number of components n > 60).

The total number of component’s states increases when the number of components in-

creases and when the system become more complex. Therefore, the combination between

all the possible states become much complicated. The Inclusion-Exclusion method treats

the case where all components are binaries, it studies a particular case, thus we should not

use it in our work. Also, the UGF method is applied only if the system is simple (parallel,

series, series-parallel,. . .), which means it could not be used when a system is complex and
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this isn’t our case. Thus, this proposed method costs a lot in terms of time.

We should also take into account that in dependability studies, the information about

the data of the components are generally imprecise. The obtained results depend on the

imprecision of the data used. The uncertainties result from the model itself which means it

isn’t perfect. Also, the performance values obtained could be imprecise or wrong. The data

that we have (failure rates λ and repair rates µ) aren’t exact because the estimation of the

transition rates is difficult (new elements, rarely affected elements, expensive elements,. . .)

or they may not be constant in time. It requires some methods to model and manipulate the

imprecision like the probability theory, the fuzzy theory, the belief function theory,. . . Some

of the works presented in this chapter, have been done to calculate the imprecise availability

of MSS, we mention the work of Li.[66] where he used the arithmetic interval calculation

applied to UGF (IUGF, interval universal generating function) and the work of Destercke et

Sallak [28] where they proposed to apply belief functions on the UGF (BUGF, belief uni-

versal generating function). These two methods study the case of system with imprecision,

since they are based on the UGF method, they don’t treat the case of complex system, which

means we need another method to take into account the complexity of the system and the

imprecision. For these two methods we need first to transform the failure rates and the repair

rates in terms of probabilities then apply the technique. Their use is limited to the case of

systems with simple configuration and the imprecise availability assessment will cost a lot

of time.

Many methods exist to find the availability of the system, however in this thesis, we

choose to work with Markovian models applied on the complex MSS. With Markovian

models, it is easier to model the system with its sequence of events such as breakdowns,

repairs,... It is very flexible in the type of systems and system behavior it can model [16].

In general, two states are considered for a component of the system (working/ failing) it is

possible to present more (degraded, repair,. . .). The main benefit, is its easy implementation

in the form of a graph of states. The number of states that grows with the number of com-

ponents and therefore makes it difficult to assess the availability but approximations exist

for large sizes of systems, especially when considering asymptotic availability, which is our

aim.

However, as we said before, we are dealing with uncertainties on the given data (fail-

ure rates, repair rates, the states probabilities). Therefore, we decide to model these data

in interval form and introduce Interval analysis to this work. Intervals represent each value
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as a range of possibilities. We keep track of and handle rounding errors directly during the

calculation and of uncertainties in the knowledge of the exact values of physical and tech-

nical parameters. Therefore, in our case, we will have imprecise Markov model. Imprecise

Markovian model is the most general method, since we are able to model an MSS with all

the possible combination even if the system is complex with the presence of imprecision.

We should take into account later, that we may have some difficult when the number of

components increases a lot. In this case, we will apply some approximations. To our best of

knowledge, there is one work dealt with this case which will be presented in chapter 4.

To calculate the availability of the system, we will apply the imprecise Markov model,

which is defined in the previous section so we could solve the eq. 4.1 and find the vector Π.

Solving this system of equation in the aim to compute Π, isn’t simple. Since we are dealing

with intervals (matrix, vector,. . .), we can use a technique called "the technique of contrac-

tors". This method is well used in interval analysis, and it will be applied in dependability

for the first time. The main idea is to contract each interval as much as we can using some

operators called "contractors", which will give us a guaranteed result.

3.6 Conclusion

In this chapter, we presented some of the related work for availability assessment. We started

with the case of binary systems then we pass to the case of MSSs. After that we introduced

uncertainties and we presented some of the related works with this condition.

Part 2 deals with our contributions. In chapter 4, we will present our first contribution

where we will present our methodology in the aim of calculating the imprecise availability

of an MSS using Markovian approach. In chapter 5, we will present how we can optimize

the imprecise availability of an MSS taking into account the cost factor of the system.



Part II

Contributions
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Chapter 4

Imprecise availability estimation of MSS

4.1 Introduction

A system as defined in the introduction of chapter 1, is any group of at least two interact-

ing or interrelated elements that form a unified whole such that there are no independent

elements [119]. Each system is designed to perform a specific function. This function is

defined by the connections that these components make between each other. As long as the

connections between the components are simple and can be defined, the system has a simple

structure. As the connections become more complex, the system has a complex structure.

In addition to the complex structure of the system, the system and the components can have

multi-states.

Computing the availability of a multi-states system (MSS) with complex structure isn’t

simple. Although, the MSSs with complex structures represent the most general case of sys-

tems that may exist and the binary case is a particular case from the complex cases. Still the

computing of their availability remains difficult and complicated. This calculation becomes

more complicated when the system is larger, which means when the number of components

increases. Since, the complex system cannot be decomposed into subsystems with simple

structures, we must find and use different strategies that help us in this case. Also, even if

methods that estimate uncertainties on data (failure rates, repair rates, initial probabilities to

be in a given state) do exist, but this estimation is sometimes hard to get (components rarely

affected, expensive components, new components, . . .). An objective is to develop efficient

method that can deal with the uncertainties problem.

When studying the availability of a system, one may face some difficulties due to the

fact that the system can be an MSS, which means that the system and its components may
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have different states. In our work, we assume imprecise failure rates and repair rates; this

requires methods that allow to model and to manipulate these uncertainties. In this thesis,

we are interested in uncertainties about reliability data (failure rate λ and repair rate µ of

each component). The proposed method to cope with these uncertainties is based on the

theory of imprecise probabilities, in particular, interval probabilities and the corresponding

interval analysis (the choice of this approach is discussed in section 3.5).

Interval analysis is a branch of the numerical analysis which uses for calculation closed

intervals of real numbers instead of precise numbers [30]. Interval analysis is used in order

to obtain computational results that are surely true. The result of an ordinary computation is

a single number, a point on the real line, which lies at some distance from the true answer.

In this context, a question may arise: how large is this distance? To answer this question, we

must evaluate the data in a marge of values which is the interval. The result of an interval

computation is an interval, a pair of numbers, an upper and a lower bounds, and this pair

of numbers guarantees to enclose the exact value. In our case, we consider that uncertain

transition rates are bounded by intervals, λ = [λ, λ] and µ = [µ, µ].

To model the complex structure of the MSS with its complex structure, we propose the

use of Markov model and calculate its asymptotic availability by first solving the following

system of equations:

Π.Q = 0 (4.1)

with Π = [[π1] . . . [πn]] is the state’s probability vector of the system, where its elements

are [πi] the probability interval of the system to be in the ith state. Q is the interval transition

matrix. The availability is then equal to the sum of the probabilities related to the function-

ing state.

Markovian models are generally used in dependability domain. They are commonly

used for modeling large systems and for the evaluation of the performance and dependabil-

ity of complex systems. They present, in a logical and simple way, the transitions from

one operating state to another one. Two major problems that are encountered in the use of

Markov models are largeness and stiffness [84]. Complex systems induce large and com-

plex Markov models. The largeness problem can be addressed by either avoiding it through

aggregation and decomposition, or by using automated methods for generating the large and

complex Markov chains. Stiffness often results from having transition rates of different or-

ders of magnitude in the Markov chain. The problem of stiffness is avoided by using special

methods [84].
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In this thesis, we will propose a new method that can calculate the imprecise availability

in a simple way. The availability of an MSS that we are interested in, is the probability that

the system remains working after a period of time. In a simple way, we are looking for the

imprecise steady probabilities of the system’s states so that we can evaluate the imprecise

availability of the system. Markovian models are usually used to model the transition states

in a transition matrix Q and to calculate the steady probabilities of each state. In this thesis,

we propose to handle imprecise data as intervals and to apply interval analysis on imprecise

Markovian approaches, thus we could calculate the imprecise availability of a system. To

calculate the interval form of the availability, we will recall "the technique of contractors"

defined in chapter 2. In particular, we will use the contractor of the forward-backward prop-

agation, in order to contract the intervals of steady probabilities and to assess efficiently the

imprecise availability of the studied system. Note that, in our study we may have the prob-

lem of largeness. In this case, we can apply some approximations in order to simplify the

problem.

In this chapter, first we detail the imprecise Markovian model in dependability. Then,

we present the original work handling the use of imprecise Markovian model in dependabil-

ity where we show the bad side of it. Later, we introduce the method that we call "Exact

method" and we propose our contribution in the aim of estimate the imprecise availability

of an MSS. This method takes all the constraints into account in the aim of computing the

availability of a complex MSS.

To understand all the steps of the methodology, numerical examples will be presented later

and compared to other results obtained by different existing methods (IUGF (cf. section

3.4), BUGF (cf. section 3.4), Exact method). We end this chapter with discussions and

conclusions.

4.2 The use of imprecise Markovian models in dependabil-
ity studies

In chapter 3, we talked about the Markovian model and we presented its basics and some of

the related works that have been done. In this section, we focus on the imprecise Markovian

model and how it is used in our contribution.

In dependability studies, in order to assess availability using Markov model, it is neces-
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sary to calculate the probabilities of functioning for each state of the system. These prob-

abilities are usually considered as precise and perfectly known. It is also supposed that all

information on the behavior of the system and its components concerning reliability are

known. As Utkin wrote in [114], it assumes two main conditions:

• All probabilities or probability distributions are known or perfectly determinable.

• The system components are independent, i.e. all random variables which describe the

component reliability behavior are independent or alternatively, their dependence is

precisely known.

In real systems, the first condition is rarely fulfilled [114]. In general, the reliability as-

sessments that are integrated to describe systems and components come from different and

various sources [103]. Some information may be objective measures of relative frequencies

or established models. Other information may be provided by experts who usually incorpo-

rate epistemic uncertainty. The problem of uncertainty in dependability domain, in our case

for availability computing, has led to several approaches. In this work, we have an MSS

with multi-states components where the systems have a complex structure and uncertainties

on the data. To solve the problem of finding the availability, we use imprecise Markovian

model where we have imprecise probabilities. These imprecise probabilities are be treated

in terms of intervals (cf. chapter 3, section 3.5).

Before passing to the next section, leading with is the methodology of the imprecise

availability computing for a MSS, we need to recall the basics definitions and procedure of

the imprecise Markovian model. In the next subsection, we give some of the related work

on imprecise Markovian model. Later, we explain a technique of computing the imprecise

availability, that we call "Exact technique". Finally, we propose our methodology and we

will explain it.

4.2.1 Basics of imprecise Markovian model

The Markov assumption stating that Xt+dt is conditionally independent of Xs, for s < t,

knowing Xt may not be realistic, especially for repair, also the transition rates may not be

constant in time, but are usually affected by a variety of factors, and the estimation of the

rates themselves may be difficult due to the lack of data. Particularly, under constant tran-

sition rates, repair times are exponentially distributed and are independent of the history of

the system, but repairs will often follow a binomial distribution rather than an exponential

distribution; the same applies for failure rate.
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A full modeling of these details requires a lot of data and expert knowledge. Instead of

ignoring this problem, a better way to cope with it is to incorporate the imprecision into the

models. This becomes possible with the development of models of imprecise probabilities,

such as the interval probability model. It seems therefore convenient to consider our transi-

tion rates as not being precise, but instead being bounded by an interval. Imprecision may

also exist on the initial probabilities or the transition matrix, and sometimes even on both.

To model this imprecision, probabilities will be replaced by intervals [1]. Thus, we have the

following imprecise Markov model:

P (X0 = i0) = [pi, pi]

P (Xn = j = in|Xn−1 = i = in−1, . . . , X0 = i0) = P (Xn = j|Xn−1 = i)
(4.2)

With x = {1, . . . , N}, i and j are two elements of x. X0, Xn−1 and Xn are random

variables that belong to x and satisfies eq. 4.2.

According to eq. 4.2, any probability that satisfies pi ∈ [pi, pi] for each state with

i ∈ {1, . . . , n}, can be considered as an initial distribution, and similarly for the transition

matrix Q ∈ [Q,Q] can be the transition matrix at time t.

We are interested to find the probability of a system to be in a working state at the in-

finity, thus our purpose is to compute the asymptotic availability. Under the assumptions in

eq. 4.2, the stationarity of the system is hence determined in form of a vector of intervals

[Π] = [[π0] . . . [πi] . . . [πn]] with i ∈ {1, . . . , n}, where [πi] is the probability interval of be-

ing in a state ei. Finding the interval of each stationarity state is not as simple as it might

seem. In the case of precise data, we have a precise transition matrix and we can find the

answer by solving a system of equations, but in the case of imprecise data, the bounds of the

intervals of stationarity states cannot be obtained just by taking into account the two bounds

of the transition matrix as the work presented in [110] suggests. This will be discussed in

details in the next subsection.

Several methods have been proposed to solve the previous problem by finding the solu-

tion of equation 4.1 in case of imprecise data. The exact method is a technique that consists

on finding all the possible transition matrices of a system and where we have to solve 4.1

and to find a vector of stationary probabilities. In order to form at the end a vector of in-

tervals which contains all of the possible vectors. This method gives an accurate result but
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its complexity increases drastically with the system’s size, since it computes all the possi-

bilities for the different transition matrices. BUGF (Belief Universal Generated Function)

[28] and IUGF (Interval Universal Generated Function) [66] are two methods based on the

UGF (Universal Generated Function), and are applied on intervals. Therefore, they are used

in the case of interval-modeled imprecision. These two methods are efficient and give good

results. The BUGF is also noted as more efficient than the IUGF, but their use is limited to

the cases where the system has not a complex structure (series-parallel and parallel-series

configurations). In our approach we propose to determine the asymptotic availability of the

MSS by using a new technique applied on intervals, that is the technique of contractors.

4.2.2 Related work to imprecise Markovian model

To our best of knowledge, there is only one work that have been done in dependability, for

availability computing of an MSS based on the imprecise Markov models, we will focus on

this work and show that a part of it is wrong. This paper have been published by Troffaes

et al. [110], where they used imprecise continuous time Markovian models for assessing

the reliability of power networks. They explore how imprecise continuous time Marko-

vian models can improve traditional availability models based on precise continuous time

Markov models. They analyzed the availability of power networks under very weak statis-

tical assumptions, explicitly accounting for non-stationary failure and repair rates and the

limited accuracy by which common cause failure rates can be estimated. Bounds on typical

quantities of interest are derived, namely the expected time spent in system failure state, as

well as the expected number of transitions to that state.

Modeling repair requires much more sophisticated mathematical methods which have

been only very recently developed for imprecise continuous time Markov chains [104].

Since failure rates often follow a so-called bathtub curve due to burn-in and wear-out ef-

fects, and can be affected in quite complex ways by the repair history of the system, a full

modeling of these details requires a lot of data and expert knowledge. Therefore, they con-

sider that the transition rates as not being precise, but instead being bounded by an interval,

to cover a range of distributions that is more likely to occur in reality, without having to be

too precise about the details of this distribution, or on how this distribution depends on the

history of the system.

Following [104], one should make a discretization of imprecise continuous time Markov

chain and should use lower and upper transition operators [24]. The imprecise probability

distributions over the set of states are calculated in terms of the corresponding expectation
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operators. This problem was translated to an interval differential equation whose boundary

solutions define the required values of the imprecise functional. In this framework, practical

calculations such as calculating lower and upper long run probabilities can be done via lin-

ear programming [104]. An approximation is applied in order to find the expected number

of times that the system visits the totally failed state, as well as the expected amount of time

that it spends there, in a given time period. For the imprecise case, simple bounds on these

quantities are derived.

In this work, to solve the problem of uncertainties the authors considered that failure

rates and repair rates are bounded by intervals. But it isn’t the case for the transition ma-

trix [Q]. Instead, they found out two matrices, Q the lower bound of [Q] and Q the upper

bound of [Q]. The transition rates [qij] depending on the intervals of the failure rates and the

intervals of the repair rates of the components of the system. Q is obtained by finding its el-

ements qij , where qij are the lower values of [qij]. Contrariwise, Q is obtained by finding its

elements qij , where qij are the higher values of [qij]. By obtaining two matrices, the problem

is turned into two precise cases of Markovian model. By solving Π.Q = 0, the two vectors

of [Π] are founded, the probability vector of the system to be in a specific state; the lower

bound Π and the upper bound Π. In this way, we can find the interval of the availability of

system, formed from two bounds: the lower bound is the sum over all the elements of Π

corresponding to working states, and the upper bound is the sum over all the elements of Π

corresponding to working states.

To more illustrate this methodology, let us analyze the example proposed by the au-

thors. Consider a simple network consisting of just two power lines, called A and B.

The continuous time Markov chain modeling this system as follows. The state space is

E = {AB,A,B, ∅}, where the labels of the states denote the non-faulty components (i.e.

both A and B are non-faulty in AB, whereas both are faulty in ∅). They model common

cause failures by assigning all failures to any one of the following three events:

• AI: independent failure of A.

• BI: independent failure of B.

• CAB: common cause failure of both A and B.

To simplify, any interval [x] will be written as x.

Using standard notation from the literature on common cause failure modeling, we denote

by qA1 the rate of AI, qB1 the rate of BI and q2 the rate of CAB. Similarly, let rA be the repair
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Figure 4.1: Troffaes et al. example: Markov chain for failure with non-instant repair. The

nodes present the states of the system.

rate of A and rB the repair rate of B, for simplicity they excluded simultaneous repair. The

rate matrix is then:

[Q] = [Q,Q] =


−qA1 − qB1 − q2 qB1 qA1 q2

rB −qA1 − q2 − rB 0 qA1 + q2

rA 0 −qB1 − q2 − rA qB1 + q2

0 rA rB −rA − rB


(4.3)

The corresponding digraph of the continuous time Markov chain is depicted in Figure 4.1.

For qA1 , qB1 and q2, the authors used the data and intervals for failure rates derived in

the example in [111], under the approximate assumption of immediate repair, which seems

reasonable as the system will spend most of its time in state AB. In these data, A and B are

two identical distribution lines, and the intervals for the expected failure rates are:

qA1 = [0.32, 0.37]

qB1 = [0.32, 0, 37]

q2 = [0.19, 0, 24]

(4.4)

expressed per year. In this study, there is no repair time data. Through expert elicitation, the

repair rates are judged between 6 and 12 hours to be reasonable:

rA = [730, 1460]

rB = [730, 1460]
(4.5)
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expressed per year.

The transition matrix Q, is the interval Q =
[
Q,Q

]
. The lower bound Q is defined by:

Q =


−qA1 − qB1 − q2 qB1 qA1 q2

rB −qA1 − q2 − rB 0 qA1 + q2

rA 0 −qB1 − q2 − rA qB1 + q2

0 rA rB −rA − rB

 (4.6)

by replacing each term by its value, we obtain:

Q =


−0.98 0.32 0.32 0.19

730 −1460.61 0 0.51

730 0 −1460.61 0.51

0 730 730 −2920

 (4.7)

and its upper bound Q is defined by:

Q =


−qA1 − qB1 − q2 qB1 qA1 q2

rB −qA1 − q2 − rB 0 qA1 + q2

rA 0 −qB1 − q2 − rA qB1 + q2

0 rA rB −rA − rB

 (4.8)

and we will have:

Q =


−0.83 0.37 0.37 0.24

1460 −730.51 0 0.61

1460 0 −730.51 0.61

0 1460 1460 −1460

 (4.9)

They evaluated the lower and upper stationary distributions by using the above two transition

matrices, and solving Π.Q = 0 and Π.Q = 0, without taking into account that the sum of the

steady probabilities is equal to one (
∑
πi = 1). For the stationary distribution, the authors

found:

Π1 =


9.985× 10−1

2.623× 10−4

2.623× 10−4

6.513× 10−5

 (4.10)
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Π1 =


9.994× 10−1

7.252× 10−4

7.252× 10−4

1.647× 10−4

 (4.11)

such that [Π1,Π1] is the interval of Π obtained by the authors method. To find the interval

vector [Π], it is by regrouping the two bounds (Π and Π) together. The authors could find

the availability of the system from the interval vector [Π]. In this example, we find by doing

the sum over π1, π2, π3 that the availability is: [A1] = [0.9990246, 1.00085]

In this work, the authors looked at a model for dealing with common cause failures in

power networks with two power lines, where intervals for the failure and repair rates are

used to allow us to make accurate yet robust prediction of behavior under relatively weak

statistical assumptions. Using imprecise Markov chains allows for the case where failure

and repair rates are not constant in time, and allows for them to properly capture the un-

certainty regarding common cause failures which are very hard to quantify. For all these

reasons, imprecise continuous time Markov chains have a lot of potential to improve tradi-

tional reliability models based on precise Markov chains. However, they made a mistake in

this work. The lower transition matrix Q where all its elements are the lower bounds of qij ,

isn’t surely the matrix that gives the lower stationary vector Π. We have the same remark

regarding the upper transition matrix Q where all its elements are the upper bounds of qij ,

isn’t surely the matrix that gives the upper stationary vector Π. In other words, there are

some combinations of the transitions rates intervals, which can lead to a lower or higher

matrix different from the ones chosen by the authors to find the solutions (vector of proba-

bilities) which are outside the range of values proposed by the authors.

In fact, by applying the "Exact method", that we explain in the next section, we can

understand that their assumption is not always correct. The main idea to get all possible

combinations of the lower and upper bounds of qij , for each combination we have a tran-

sition matrix. With the transition matrix we find the vector Π then the availability of the

system. We compare all the values of the availability, so that we could choose the matrix

Ql that belongs to [Q,Q], and that gives the lower bound of [Π], which corresponds to the
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lowest vector among all the Πs and the lower bound of [A]. Ql is given as follows:

Ql =


−0.83 0.32 0.32 0.19

730 −1460.61 0 0.51

730 0 −1460.61 0.51

0 730 730 −2920

 (4.12)

such that [Π2,Π2] is the interval of Π obtained by the Exact method, with:

Π2 =


9.9816× 10−1

5.6745× 10−4

5.6745× 10−4

6.9782× 10−4

 (4.13)

and another matrix Qu that also belongs to [Q,Q], that gives the upper bound of [Π], which

corresponds to the highest vector among all the Πs and the upper bound of [A]. Qu is given

as follows:

Qu =


−0.83 0.32 0.32 0.19

1460 −1460.61 0 0.51

1460 0 −730.51 0.51

0 730 730 −2920

 (4.14)

with:

Π2 =


9.994× 10−1

1.894× 10−4

3.787× 10−4

5.91× 10−5

 (4.15)

The obtained availability, by doing the sum over the probabilities of the working states (in

this example the sum of [π1], [π2] and [π3]), is [A2] = [0.999302, 1.00005].

Table 4.1 show the availability obtained by the proposed method in the article and the avail-

ability obtained by the "Exact method". To show the efficiency of the "Exact method", we

kept the obtained interval as it is, however in this case, we can make the intersection of the

obtained interval with [0, 1] since the probability belongs to this interval. Note that in this

example and in the rest of the manuscript, the results are obtained after rounding calcula-

tions.

Ql ∈ [Q,Q] gives the lower stationary vector Π, which will give the lower bound of the

system’s availability interval. Thus, Qu ∈ [Q,Q] gives the upper bound Π, which will give

the upper bound of the system’s availability interval. Therefore, it is not like as it mentioned

in Troffaes article that lower and upper bounds of [Π] are obtained by using Q which all
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The article’s method [A1] = [0.9990246, 1.00085]

The Exact method [A2] = [0.999302, 1.00005]

Table 4.1: The imprecise availability obtained by the two methods

its elements are the lower bounds of the intervals and by Q which all its elements are the

upper bounds of the intervals. Note that in the article, the authors did not take into account

the condition that the sum of the probabilities is equal to 1. Later, in section 4.3 we detail

our proposed method to solve the problem by taking into account the lower and the upper

bounds of qij , with a method that will be called the "Exact" method.

4.3 The "Exact" method

Every MSS, formed from a number of components where each component could have a

certain number of functioning states, has its own states. At each time t, the system has a

probability Pi(t) to be in the state i. To figure out, A(t) the availability of the system at t,

it depends on all the probabilities representing only the functioning states. For each system,

there is an exact value of the availability that can be computed. In our case, we are dealing

with uncertainties and the estimation of this exact value of the availability of the system is

hard.

The failure rates and the repair rates are bounded by intervals, that is why when we want

to find the transition matrix of the system, it will be also bounded by interval. The proba-

bility vector which its elements are the probability of the system to be in a certain state will

be also bounded by interval. In 4.2.2, we presented a work that have been done in [110]. In

this article, the authors state that the availability of the system will be bounded by interval,

and that in order to find this interval, it will be enough to find the lower bound and the upper

bound. Therefore, they proposed a method that helps to find the lower bound Π and the

upper bound Π of the vector Π, where Π is the vector of probabilities of the system to be in

the system’s states when t tends to infinity. To find Π and Π, we just need to find in order

the lower bound of the transition matrix Q and the upper bound of the transition matrix Q.

However, Q and Q are not necessarily the transition matrices that gives the lower bound Π

and the upper bound Π.

In this section, we propose a method that we will call it "Exact" method, since it is the

most guaranteed method that gives a narrow interval of availability of the system compared

to other methods and that contains the real exact value of the availability that is impossible
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to find it. The main idea of this method is simple; we need to take all the possible values of

the tranisition matrix elements [qij] either its lower bound or the upper bound (combinations

of the bounds of [λ] the failure rates intervals and [µ] the repair rates intervals of the sys-

tems components according to their position in the matrix). Which means all the possible k

combinations. For each combination k, we find the corresponding transition matrix Qk and

we turn the problem into the precise case in order to solve eq. 4.1 to find the corresponding

stationary vector Πk. From the vector Πk, we can calculate the corresponding availability

Ak of the system for the combination k. The number of the possible combinations is 2l,

where l is the number of [qij] the elements of the transition matrix [Q], and k ∈
{

1, . . . , 2l
}

.

We compare all the obtained availabilities from all combinations, and we can choose the

corresponding availability interval Ae, which is the availability of the system obtained by

the "Exact method". Its bounds are the lowest availability (lower bound) and the highest

availability (upper bound) between all the Ak.

Here a simple example to show how does this technique work:

Example: Considering a system formed by two components A and B. Each of these two

components has two possible states: perfect functioning and total failure. Each component

has the following failure and repair rates per hours:λA = [2× 10−3, 4× 10−3] ; µA = [1.8× 10−2, 3.5× 10−2]

λB = [3× 10−3, 4.5× 10−3] ; µB = [1.5× 10−2, 3× 10−2]

The system works if the two components work ( see Figure 4.2). The system will have

here 4 possible states:

• State 1: Components A and B work

• State 2: Component A works and B fails

• State 3: Component B works and A fails

• State 4: Components A and B fail

The Markov graph of the system states that shows the transitions between one state to

another one is presented in Figure 4.3. Since the system is a series system that’s mean that

the system works unless all the components work, we can regroup the system’s states into

two states: Working state colored node (state 1) and failure state (states 2, 3 and 4).
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Figure 4.2: Series system of components A and B

The transition matrix elements qij can take either the lower or the upper bound of the

interval [qij] (the combination of the failure and the repair rates of A and B). For example,

the first combination k = 1 is when all the qij take as values the lower bounds of their

intervals. The second combination k = 2 is when q11 takes as value the upper bound of its

interval and the rest take the lower bounds as values, and so on. In this case, we have l = 16

and 2l = 216 possibles precise transition matrices Qk, with k ∈ {1, . . . , 216} in this form:

Qk =


−(λA + λB) λA λB 0

µA −(µA + λB) 0 λB

µB 0 −(λA + µB) λA

0 µB µA −(µA + µB)

 (4.16)

For each Qk, we solve Πk.Qk = 0 to find the vector Πk and the availability Ak. When

comparing all the k availabilities we reform the interval of the availability of the system,

where the lower bound has the smallest value between all the Aks and the upper bound has

the highest value between all of the Aks.

In this example, the availability of the system is:

A = [0.5207, 0.9427].

With the correspondingQl the transition matrix that givesA andQu the transition matrix

that gives A (P.S.: Ql and Qu are not the lower and upper transition matrix of Q).

Ql =


−0.005 0.002 0.003 1

0.018 −0.038 0 1

0.015 0 −0.032 1

0 0.015 0.018 1

.
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Figure 4.3: Markov graph of the series system

Qu =


−0.005 0.004 0.0045 1

0.035 −0.038 0 1

0.03 0 −0.032 1

0 0.015 0.018 1

.

When uncertainties exist and when we use interval analysis to treat this uncertainties, this

method is accurate and guarantee in the sense that the obtained interval will always contain

the unknown precise value. However, we do not proceed like in [111] (cf. section 4.2.2). As

we saw in the example presented in this section, that for a system of two binary components,

we had 216 possible cases. This means that the exact method would not be simple in terms

of cost of time when having larger systems, in terms of number of components and number

of states. If the system is larger, then the transition matrix will be large and the same for the

number of cases which will be equal to 2l. As a conclusion, the exact method will be time

consuming and computing of the availability at each time will not be straightforward.

4.4 The proposed methodology

Our main problem is to calculate the availability of an MSS when t tends to∞. We should

take into account the uncertainties on the data (failure and repair rates). The first method

presented in 4.2.2 cannot be used, since the authors found the lower bound of the stationary

vector by taking the lower bound of the transition matrix and the upper bound of the sta-
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tionary vector by taking the upper bound of the same matrix. We showed by detailing the

calculation that there may exist another matrices that gives the upper and the lower bound

of [Π].

The exact method is the most efficient method to find the imprecise availability of an

MSS, however when the system become much larger, the number of transitions will be-

come very huge. In this case, we will have combinatorial explosion of the calculation. For

this aim, we need a guaranteed method that helps us to calculate efficiently the imprecise

availability of the MSS in order to guarantee that our solution include the true value of the

availability. Our search will be for simple procedures for calculation and with a minimal

cost of time.

We chose to model the uncertainties of data in terms of intervals, and we will use the

imprecise Markov models and introducing the technique of contractors to compute the im-

precise availability of an MSS.

In this section, we give the detailed steps of our methodology and to better demonstrated

this methodology, we present the different steps through a small example.

4.4.1 The steps of the methodology

To calculate the availability of a complex MSS with multi-state components, we must follow

and apply the steps presented in Figure 4.4. To summarize, we will follow the following

steps:

1. Step 1: Define the Markov graph to present the states and all transitions between the

states of the system.

2. Step 2: Construct the interval transition matrix of the system.

3. Step 3: Apply the technique of contraction on the system of equations Π ·Q = 0.

4. Step 4: Find Π and the availability of the system.

Before we start with the steps of the method, we need to list all the information about the

system that we are dealing with. What kind of system we have and what is the structure of

this system, and the number of his components and how many states does each component

have? To this end, we determine the states of the components of the system and we define

the corresponding interval failure rates λ and the interval repair rates µ of each component.
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Figure 4.4: Steps to calculate the availability of the system

Then, we figure out the type of connection between one component’s state and the other

states. In this way, we can easily define the possible states of the system and understand the

type of connections between them.

We should mention that when the components are independent, we can take each com-

ponent apart and apply the steps of the methodology to compute its availability then we

compute the availability of the system. The obtained interval will be more conservative than

the availability’s interval obtained when applying the methodology on the entire system. For

illustration and of the different steps, we will take the following simple example:

Suppose a parallel system of two components A and B, which means that the system

works when at least one of the two components works. Figure 4.5 presents the reliability

block diagram of such system. For each component, we have two possible states (binary

components): state 1 (perfect functioning) and state 2 (total failure). Thus, the whole system

has 4 possible states, where the first three states present the functioning state of the parallel

system and the last state is the failure state. The components have the following failure and

repair rates per hour:
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Figure 4.5: Bloc diagram of a parallel system of two components

Figure 4.6: Markov chain of a system of two binary components

λA = [3× 10−3, 4× 10−3] ; µA = [2.8× 10−2, 3.5× 10−2]

λB = [3.5× 10−3, 4.5× 10−3] ; µB = [2× 10−2, 3× 10−2]

Step 1

When knowing the system structure and the states of each component, we can easily find the

states of the whole system. In the example above, we have 2 binary components. Thus, the

system has 4 states: total functioning (state 1), degraded states (states 2 and 3), these three

states are considering as functioning states since we have a parallel system and the last state

is the total failure (state 4). Figure 4.6 shows the Markov graph of this system.
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Step 2

When having the Markov graph either for the system or for each component, we pass to the

second step. As in the precise case, we can figure out the transition matrix from the Markov

graph, the only difference here is that we are dealing with uncertainties in terms of interval.

We define the interval transition matrix [Q] where each term of the matrix qij = [qij, qij], is

an interval of failure rates λi = [λi, λi] and interval of repair rates µi = [µi, µi] of dimension

(n× n).

We should mention that each term of the transition matrix represents the transition rate

from one state to the other one. The transition matrix of our example is:

[Q] = [Q,Q] =


[q11, q11] [q12, q12] [q13, q13] [q14, q14]

· · · ·
· · · ·[

q41, q41

]
[q42, q42] [q43, q43] [q44, q44]

 (4.17)

In our example, we will have [Q] as:


[−(λA + λB),−(λA + λB)] [λA, λA] [λB , λB ] 0

[µA, µA] [−(µA + λB),−(µA + λB)] 0 [λB , λB ]

[µB , µB ] 0 [−(λA + µB),−(λA + µB)] [λA, λA]

0 [µB , µB ] [µA, µA] [−(µA + µB),−(µA + µB)]


By replacing the values of failure rates and repair rate, we obtain:


[−8.5× 10−3,−6.5× 10−3] [3× 10−3, 4× 10−3] [3.5× 10−3, 4.5× 10−3] 0

[2.8× 10−2, 3.5× 10−2] [−3.95× 10−2,−3.15× 10−2] 0 [3.5× 10−3, 4.5× 10−3]

[2× 10−2, 3× 10−2] 0 [−3.4× 10−2,−2.3× 10−2] [3× 10−3, 4× 10−3]

0 [2× 10−2, 3× 10−2] [2.8× 10−2, 3.5× 10−2] [−6.5× 10−2,−4.8× 10−2]


Step 3

After that we have our transition matrix [Q], we start with the next step. To determine the

availability of the system, we must have the probabilities of being in each state of the sys-

tem, and since we want to find the availability when the time t tends to∞, we need to find

the steady probabilities of being in each state of the system:

[Π] = [Π,Π] = [[π1, π1] . . . [πn, πn]].
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For this aim, as this vector is unknown for us, we will take an initial supposed vector [Π]

as:

[Π] = [[0, 1][0, 1] . . . [0, 1]] (4.18)

where [Π] present all the initial intervals of steady probability of the system to be in

each state. To compute the intervals of this vector, we will use the technique of contractors,

that’s why we apply eq.4.1 and we obtain a system of n equations with the last equation

representing the fact that:

n∑
i=1

πi = 1 which means the sum of all the probabilities is equal to 1 (4.19)

By doing the operations of the forward-backward propagation contractor, we will be able

to contract our steady probabilities into smaller intervals that contains the real unknown ex-

act values.

In the previous example, our system of equations is:

[q11][π1] + [q21][π2] + [q31][π3] = 0⇒ (1)

[q12][π1] + [q22][π2] + [q41][π4] = 0⇒ (2)

[q13][π1] + [q33][π3] + [q43][π4] = 0⇒ (3)

[q24][π2] + [q34][π3] + [q44][π4] = 0⇒ (4)

[π1] + [π2] + [π3] + [π4] = 1⇒ (5)

(4.20)

We apply the Forward-Backward, on the intervals [πi] =
[
πi, πi

]
, to reduce each [πi] as

much as it is possible which means reducing the elements of vector Π.

We start with the first contraction, each constraint (equation) in 4.20 has the form:

fi(π1, . . . , πnk
) = 0,

where fi can be decomposed into a sequence of operations involving elementary operators

such as (+,−, ∗, /). We decompose this constraint into primitive constraints [65]. A primi-

tive constraint is a constraint involving a single operator. For instance the first constraint in

4.20, can be decomposed into the following primitive constraints:
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

[a1] = [q11][π1] = [−8.5× 10−3,−6.5× 10−3] ∗ [0, 1] = [−8.5× 10−3, 0],

[a2] = [q21][π2] = [2.8× 10−2, 3.5× 10−2] ∗ [0, 1] = [0, 3.5× 10−2],

[a3] = [q31][π3] = [2× 10−2, 3× 10−2] ∗ [0, 1] = [0, 3× 10−2],

[y] = [a1] + [a2] + [a3] = [−8.5× 10−3, 6.5× 10−2]

(4.21)

When having the new interval [y], we find the intersection with 0 because the main con-

straint y = 0:

[y] ∩ 0 = [−8.5× 10−3, 6.5× 10−2] ∩ [0, 0] = [0, 0].

With this final value of [y], we make the backward propagation, by re-finding the three

intervals [a1], [a2] and [a3], so at the end we can reconstruct the needed intervals [π1], [π2]

and [π3], as shown in 4.22: 

[a1] = ([y]− [a2]− [a3]) ∩ [a1]

[a2] = ([y]− [a1]− [a3]) ∩ [a2]

[a3] = ([y]− [a1]− [a2]) ∩ [a3]

[π1] = ([a1]/q11) ∩ [π1]

[π2] = ([a2]/q21) ∩ [π2]

[π3] = ([a3]/q31) ∩ [π3]

(4.22)

The obtained intervals are:



[a1] = [−6.5× 10−2, 0] ∩ [−8.5× 10−3, 0] = [−8.5× 10−3, 0]

[a2] = [−3× 10−2, 8.5× 10−3] ∩ [0, 3.5× 10−2] = [0, 8.5× 10−3]

[a3] = [−3.5× 10−2, 8.5× 10−3] ∩ [0, 3× 10−2] = [0, 8.5× 10−3]

[π1] = [0, 1.30769] ∩ [0, 1] = [0, 1]

[π2] = [0, 0.3035714] ∩ [0, 1] = [0, 0.3035714]

[π3] = [0, 0.425] ∩ [0, 1] = [0, 0.425]

(4.23)

After applying the constraint number 1, we obtained the vector Π in the form:

[Π1] =
[
[0, 1][0, 0.3035714][0, 0.425][0, 1]

]
(4.24)
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We continue the technique of contraction with the constraint number 2. By following

the same steps, we have the primitive constraints:

[b1] = [q12][π1] = [3× 10−3, 4× 10−3] ∗ [0, 1] = [0, 4× 10−3],

[b2] = [q22][π2] = [−3.95× 10−2,−3.15× 10−2] ∗ [0, 0.3035714] = [−1.199107× 10−2, 0],

[b4] = [q42][π4] = [2× 10−2, 3× 10−2] ∗ [0, 1] = [0, 3× 10−2],

[y] = [b1] + [b2] + [b4] = [−1.199107× 10−2, 7× 10−2]

(4.25)

The intersection of [y] with [0, 0], yeld to [0, 0]. Now we repeat the same operations

backward to re-find [b1], [b2] and [b4], then the newest version of [π1], [π2] and [π4]. We find:



[b1] = ([y]− [b2]− [b4]) ∩ [b1]

[b2] = ([y]− [b1]− [b4]) ∩ [b2]

[b4] = ([y]− [b1]− [b2]) ∩ [b4]

[π1] = ([b1]/q12) ∩ [π1]

[π2] = ([b2]/q22) ∩ [π2]

[π4] = ([b4]/q42) ∩ [π4]

(4.26)

With:



[b1] = [−3× 10−2, 1.199107× 10−2] ∩ [0, 4× 10−3] = [0, 4× 10−3]

[b2] = [−3.4× 10−2, 0] ∩ [−1.199107× 10−2, 0] = [−1.199107× 10−2, 0]

[b4] = [−4× 10−3, 1.199107× 10−2] ∩ [0, 3× 10−2] = [0, 1.199107× 10−2]

[π1] = [0, 1.33333] ∩ [0, 1] = [0, 1]

[π2] = [0, 0.3807] ∩ [0, 0.3035714] = [0, 0.3035714]

[π4] = [0, 0.05996] ∩ [0, 1] = [0, 0.05996]

(4.27)

Where the newest vector of probabilities is:

[Π2] =
[
[0, 1][0, 0.3035714][0, 0.425][0, 0.05996]

]
(4.28)

Now, we take the third constraint, then the fourth constraint to end with the final one,

and with each constraint we apply the same previous steps. Table 4.2 represents the ob-

tained probability vector Π after using the five constraints and by applying the technique of

contractors only one time.
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Constraint number Probability vector Π

1
[
[0, 1][0, 0.3035714][0, 0.425][0, 1]

]
2

[
[0, 1][0, 0.3035714][0, 0.425][0, 0.05996]

]
3

[
[0, 1][0, 0.3035714][0, 0.032084][0, 0.5996]

]
4

[
[0, 1][0, 0.3035714][0, 0.425][0, 0.0065544]

]
5

[
[0.207552, 1][0, 0.3035714][0, 0.425][0, 0.0638764]

]
Table 4.2: The obtained probability vector after each constraint

Number of contraction k Probability vector Π

1
[
[0.207, 1][0, 0.3035][0, 0.425][0, 0.0638]

]
2

[
[0.4968, 0.9599][0.0161, 0.182][0.022, 0.2806][0.0018, 0.0404]

]
3

[
[0.571, 0.9013][0.0396, 0.1554][0.0542, 0.2389][0.0046, 0.0344]

]
6

[
[0.6252, 0.8719][0.0513, 0.1359][0.0707, 0.2086][0.006, 0.0301]

]
10

[
[0.6288, 0.8698][0.0521, 0.1346][0.0718, 0.2066][0.0061, 0.0298]

]
Table 4.3: The obtained probability vector after k contraction

We keep repeating the contractions on all the equations and several times, until π the

elements of the vector Π converge. That is how we obtain the final version of the interval

vector Π. Table 4.3 presents the vector Π after k times of contraction.

Figure 4.7 shows how the probability interval for each state contracts at each time.

Step 4

We calculate the imprecise availability of the system As by doing the sum of πi over all the

working states.

As =
∑

i, over the working states

[πi] (4.29)

In the example, we have a parallel system of 2 components, π1, π2, π3 are the probabili-

ties of the system to be in a working state. π4 is the probability to be in the failure state.

From the last version of [Π] obtained after 10 contractions (when each [πi] converges to a

certain interval), we compute the availability of the system:[π1] + [π2] + [π3] = [0.7529529, 1.21107924]

As = [0.7529529, 1.21107924]
(4.30)
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Figure 4.7: The probability interval for each state after k contractions

Note that we can find the availability of the system when its components are independent,

by taking each component apart and applying the same steps mentioned in this section. By

doing the steps for each component, we will find the corresponding [Πj] of the component

j, then we can compute the availability of each component [Aj] separately. When having

the availability of all the components, we figure out the relation between all the [Aj] and

we could calculate the imprecise availability of the system [As] . In the example, we have a

parallel system which means that the relation between the availability of components is:

As = 1− (1− A1)(1− A2) (4.31)

To verify if the result obtained by the technique of contractors is accurate, we will apply

the "Exact" method and compare the obtained availability by the technique of contractors to
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the availability obtained by the "Exact" method. We recall that the main idea of the "Exact"

method is to take all the possible transition matrices by doing a combination between the

lower bounds and upper bounds of [qij] (by taking the lower and upper bounds of the failure

rates interval and the repair rates interval). For each combination we obtain a transition ma-

trix. We solve the system from eq 4.1 and find the corresponding [Πk] and the availability

[Ak] where we could have 2l possibilities where l is the number of [qij] the elements of the

transition matrix [Q], and k = 1, . . . , 2l, after that we compare all the obtained availabili-

ties from all combinations, and we can choose the corresponding availability interval [AE]

where its bounds are the lowest availability (lower bound) and the highest availability (upper

bound).

When we retake the previous example, we obtain the lower bound of the steady proba-

bilities obtained by the Exact method is:

ΠE =


0.666963

0.098112

0.146102

0.088821


and the upper bound of the steady probabilities obtained by the Exact method is:

ΠE =


0.837987

0.060367

0.111134

0.009490


The availability by the Exact method is:

[AE] = [0.91117, 1.00949]

In addition, we can verify the results, by taking the center of each interval elements of the

transition matrix [qij], we will get one transition matrix formed from all the midpoint values

of the data, we solve eq 4.1 to get the precise midpoint vector mid([Π]), where we could

finally calculate the precise midpoint availability mid([A]), which it has to belong to the in-

terval availability obtained by the technique of contractors [A] and to the interval availability

obtained by the "Exact" method [AE]. We will call this method the "Precise method", with

mid([A]) = AP .

When we retake the previous example, we obtain AP = 0.986206897.

Table 4.4 presents the obtained results by the three methods.
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The technique of contractors The Exact method The Precise method

As = [0.75295, 1.21107] [AE ] = [0.91117, 1.00949] AP = 0.98620

Table 4.4: The obtained system’s availability by different methods

Figure 4.4 illustrates the steps of computing the availability of the system by using the

technique of contractors.

4.5 Metrics for validation of the methodology

4.5.1 Guaranteed Index (GI)

In general, the results provided by the forward-backward propagation methods and the con-

tractors are guaranteed, which means that from correct assumptions, interval contraction

will provide correct conclusions. The results are guaranteed in any case.

More specifically, in availability analysis, we consider a guaranteed availability result,

a result obtained when we are sure that the "real" availability belongs to the obtained avail-

ability interval. To do so, and in order to quantify and validate the efficiency of our method,

we have considered that a guaranteed result i.e. an interval which contains the exact interval

availability. We recall that the exact interval availability is obtained when considering all

the combinations the transition matrix elements qij (upper and lower failure and repair rates)

and we compute the optimum interval from all the obtained intervals.

Thus, we introduce, the "Guaranteed Index (GI)" which is a binary variable equal to one

if the obtained availability interval contains the exact interval availability, and 0 if it is not

the case.

4.5.2 Conservatism Rate (CR)

With regard to conservatism, we define a conservatism rate of the obtained availability using

a method as the ratio of the difference between the width of the interval of this availability

obtained by our proposed method and the width of the one obtained by the exact method,

and the width of the availability obtained by our proposed method.
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Formally, the Conservatism Rate (CR) will be given by:

CR =
w([Aobtained])− w(AE)

w(Aobtained)
(4.32)

where w([A]) = A− A.

4.6 Case studies

To understand and validate the proposed methodology, we will propose two cases of study

where we have an MSS and apply the methodology to calculate the imprecise availability.

When having the imprecise availability, we will compare the results to the ones obtained by

two principal methodologies (IUGF [66] and BUGF [28]) presented in chapter 3. The first

case of study is used to prove the accuracy of our method comparing to other methods. The

second one, is used to verify that the method could handle efficiently the cases when the

systems are complex with a large number of components and states.

4.6.1 Case study 1

In this section, we use the example presented by Soroudi et al. [105]. Our aim is to compute

the availability of a flow transmission system presented in Figure 4.8 and made of three

pipes. The flow is transmitted from left to right, and the performances of the pipe are mea-

sured by their transmission capacity (tons per minute).

It is supposed that components 1 and 2 have three states: a state of total failure corre-

sponding to a capacity of 0, a state of full capacity, and a state of partial failure. Only the

third component has two states of functioning: a state of total failure, and a state of full

capacity. All the performance’s level of the component’s states are precise. We want to

calculate the availability of the system by using Markov chain and we will compare it to

the availability obtained by the IUGF proposed in [66] and the availability obtained by the

BUGF proposed in [28].

In this case study, we consider that both failure and repair rates are given by intervals.

Table 4.5 presents the failure and repair rates of the three components.

Moreover, each of the components 1 and 2 have three possible states, while component 3

has only two states, hence the whole system has at most eighteen (3× 3× 2) possible states

degrading from the total functional state to the failure state as shown in Figure 4.9.
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Figure 4.8: Case study 1: Flow transmission system

Figure 4.9: Case study1: Markov chain for 18 states
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G1 G2 G3

State 1 g13 = 1.5 g23 = 2 g32 = 4

(Completely successful) (Completely successful) (Completely successful)

State 2 g12 = 1 g22 = 1.5 g31 = 0

(Degraded successful) (Degraded successful) (Total failure)

State 3 g11 = 0 g21 = 0 −
(Total failure) (Total failure)

Failure rates λ13,1 = [10−5, 3× 10−4] h−1 λ23,1 = [2× 10−5, 6× 10−4] h−1 λ32,1 = [10−5, 4× 10−4] h−1

λ12,1 = [4× 10−5, 5× 10−4] h−1 λ22,1 = [3× 10−5, 4× 10−4] h−1

Repair rates µ1
2,1 = [2× 10−2, 5× 10−2] h−1 µ2

2,1 = [3× 10−2, 6× 10−2] h−1 µ3
1,1 = [5× 10−2, 9× 10−2] h−1

µ1
1,1 = [4× 10−2, 8× 10−2] h−1 µ2

1,1 = [3× 10−2, 7× 10−2] h−1

Table 4.5: Transition rates and states for each component

In the figure: 0j means that component j is in the completely working state, 1j means

that component j is in the partial working state and 2j means that component j is in the

completely failure state. In each state, the performance level g is calculated by taking

into account the performance level of each component. For example, state 1 denoted by

010203 refers to the state where all three components are completely working. To ob-

tain the performance level of the state: Components 1 and 2 are placed in parallel so

the performance level resulting of them is the sum of the two performances which means

2 + 1.5 = 3.5. Component 3 is placed in series, the total performance level g is the min-

imum, i.e. g = min(3.5, 4) = 3.5. In this example, we are studying the availability of

the system for a demand level w = 1.5, we will consider the working states when the total

performance level is greater than or equal to w. In Figure 4.9, the colored states present the

working states.

First, we calculate the corresponding availability of the system using IUGF and BUGF,

results are grouped in Table 4.6. Then we will compare these values to those obtained by our

methodology. We first use the Forward-backward propagation technique to solve the system

of equations by contracting the intervals. The system of equations 4.1 is equal to zero (18

equations) plus one last equation that is the sum of each steady availability term π is equal

to one. By following the steps of the methodology, we find our imprecise availability. Our

obtained results are shown in table 4.6. The result of the exact method is also given in Table

4.6 and in Figure 4.10.

Table 4.6 shows that the accuracy offered by the FBP contraction technique is close

to that obtained when using the exact method; the interval availability by the technique of
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Exact method Contraction technique BUGF IUGF

[0.9809, 1.0323] [0.9551, 1.0360] [0.9550 , 1.0361] [0.9137 , 1.0900]

Table 4.6: Availability whhen t tends to∞ for each method
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Figure 4.10: The obtained interval availability of the system by each method

contractors method is also more conservative than the other two methods (BUGF and IUGF),

since the interval obtained by the contraction technique contains the interval obtained by the

exact method and it is smaller than the intervals obtained by the IUGF method and very

close the one obtained by the BUGF method.

In this case, the GI of this example is one since the obtained interval by using the contraction

technique contains the interval obtained by the exact method. Also, the CR of this example

is:

CR1 =
0.0809− 0.0514

0.0809
= 0.364 (4.33)

Therefore, the FBP contraction method turns out as an efficient technique for availability

assessment since it offers accurate results and it is more simple especially when handling

complex systems.

4.6.2 Case study 2

After that we showed that the method is efficient and more accurate than the other methods

to calculate the availability, now we will show that the proposed methodology remains effi-

cient also when the system has a large number of states.

To illustrate this fact, we will apply it on the following case of study: we aim to com-

pute the availability of the system presented in Figure 4.11. The system is composed of
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Figure 4.11: Case study 2: MSS composed of 8 components

8 components : A, B, C, D, E, F, G and H. The transmission of the system is from left to

right. We assume that components B, C, E and H are binary components, i.e., they have only

two possible states: a state of total failure, and a state of full functioning. The components

A, F and G have three possible states: a state of total failure, a state of full functioning,

and a state of partial failure. The component D has 4 possible degraded states: a state of

total failure, a state of full functioning, a state of degraded functioning of type 1, and a

state of degraded functioning of type 2. Thus, the total number of states for the system is

4× 3× 3× 3× 2× 2× 2× 2 = 1728. The values of repair rates and failure rates of each

component are presented in Figure 4.7, where λ(k,i) and µ(k,i)represent the failure rate i and

repair rate i of component k.

Since in this example we consider that the components are independent, for each com-

ponent, we will construct its Markov graph (Figure 4.12), in order to determine its inter-

val transition matrix. Then, we will apply eq 4.1 to find Π(k) for each component, with

k = A, . . . , H . Finally, we compute the availability of each component by computing the

sum of Π(k,i) over all the working states. In this example, the availability of the entire system

Asystem is presented in the following equation:

Asystem = 1− (1− AAABACAD)(1− AEAFAGAH) (4.34)

To find Π(k) for each component, we will apply the technique of contractors. We propose

to compare the obtained availability with the availability of the system obtained by the exact

method and by the precise one. To simplify the comparison, we chose to write the results in

terms of the unavailability (1− availability). All the results are presented in Table 4.8 and

in Figure 4.13.

In this example the obtained availability interval by the contraction technique contains
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Component Failure rate Repair rate

A λ1,1 = [3× 10−5, 4.5× 10−5] h−1 µ1,1 = [4.1× 10−1, 7× 10−1] h−1

λ1,2 = [2.6× 10−5, 7× 10−5] h−1 µ1,2 = [3× 10−1, 6.2× 10−1] h−1

B λ2 = [2.6× 10−5, 3.1× 10−5] h−1 µ2 = [1.6× 10−1, 4× 10−1] h−1

C λ3 = [3.5× 10−5, 4.6× 10−5] h−1 µ3 = [2.1× 10−1, 3× 10−1] h−1

D λ4,1 = [2.6× 10−5, 3.5× 10−5] h−1 µ4,1 = [3.1× 10−1, 3.5× 10−1] h−1

λ4,2 = [2.9× 10−5, 3.7× 10−5] h−1 µ4,2 = [2.9× 10−1, 3.3× 10−1] h−1

λ4,3 = [2.7× 10−5, 3.4× 10−5] h−1 µ4,3 = [3× 10−1, 3.5× 10−1] h−1

E λ5 = [3× 10−5, 4.1× 10−5] h−1 µ5 = [2.5× 10−1, 3× 10−1] h−1

F λ6,1 = [3.1× 10−5, 5.6× 10−5] h−1 µ6,1 = [2× 10−1, 2.4× 10−1] h−1

λ6,2 = [2.9× 10−5, 4.6× 10−5] h−1 µ6,2 = [2.6× 10−1, 3× 10−1] h−1

G λ7,1 = [4.1× 10−5, 4.7× 10−5] h−1 µ7,1 = [2.3× 10−1, 2.9× 10−1] h−1

λ7,2 = [2.9× 10−5, 3.2× 10−5] h−1 µ7,2 = [2.7× 10−1, 3.1× 10−1] h−1

H λ8 = [4.1× 10−5, 5× 10−5] h−1 µ8 = [2.7× 10−1, 3× 10−1] h−1

Table 4.7: Failure and repair rates from a state to another for each component

Figure 4.12: Case study 2: The corresponding Markov graph for each component

Exact method Contraction technique Precise method

[3.318× 10−8, 2.987× 10−7] [8.508× 10−9, 5.310× 10−7] 8.346× 10−8

Table 4.8: The unavailability of the system using different methods
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Figure 4.13: The obtained unavailability of the system by each method

the interval obtained by the exact method, the GI also in this example is one. When we

calculate the CR for this case, we will have:

CR2 =
5.224× 10−7 − 2.655× 10−7

5.224× 10−7
= 0.491 (4.35)

Table 4.8 shows that the interval obtained by the contraction technique contains the inter-

val obtained by the exact method and the precise availability belongs to the two availability

intervals. Therefore, the FBP contraction method turns out as an efficient technique for

availability assessment since it offers accurate results when having larger systems. How-

ever, CR2 > CR1 since the second system is larger than the first one with a big number of

components and a big number of states.

4.6.3 Discussion of results and conclusion

In this chapter, we started with explaining what is a complex system, and that there is a

difference between a binary system and an MSS. In our work, we are searching for the

availability of a complex MSS. This problematic is not simple as it looks like, especially

in presence of epistemic uncertainties (interval values of failure rates and repair rates). We

want to estimate an imprecise availability of a complex MSS.

To find this imprecise availability, we chose to use imprecise Markovian model. Sec-

tion 4.2 is devoted to explain the imprecise Markovian model in dependability. To find the

imprecise availability of the system, we need to find the steady probability vector Π that

presents the steady probabilities π to be in each state of the system. For that reason we need
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to solve the system of equations in eq. 4.1. In the same section, we presented the only work

that we know that is looking for the same aim. We recalled the proposed method in this

work and we detailed an example that is presented in the article.

Later, we explained the "Exact method" which is a method based on finding all the pos-

sible precise cases and all the possible precise availabilities, and then we reconstruct the

imprecise availability interval.

After, recalling the two methods IUGF and BUGF, we presented our proposed method-

ology, which consists the use of the technique of contractors in interval analysis to solve

eq. 4.1 and find the imprecise availability of the system. To verify the methodology, two

cases of study we proposed, the first is by comparing the result of our methodology with the

results obtained by the "Exact method" and the two methods introduced in chapter 3, the

IUGF and the BUGF. The second case, the obtained result of our methodology is compared

to the results obtained by the "Exact method" and the "Precise method, which is the method

that calculate the centric availability.

The results obtained from the first numerical application, by taking a simple case of

multi-state system with simple structure, show that the technique of contractors helps to

find an imprecise availability. The obtained imprecise availability is more conservative than

the BUGF and IUGF methods when we compare the obtained imprecise availabilities with

the one we found it by applying the exact method. However, results by using the technique

of contractors and the one obtained by BUGF are very close, but the main benefit in our

proposed methodology is that we don not have to transform the repair rates and the failure

rates into probabilities first and it do not cost a lot of time like the case of UGF.

To study the case when the system become more complex and larger, we took a system

with a large number of states in the second application. To simplify the problem, we consid-

ered that we have independent components. With independent components, we can figure

out the availability of each component then formulate the system’s availability.

By comparing the results obtained from the technique of contractors to those obtained from

the exact method and the precise method, we found that the imprecise availability (1− un-

availability) by the technique of contractors contains the precise availability and the impre-

cise availability obtained by the exact method. That gives the conclusion, that the technique

of contractors works even when the system became larger and complex.
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Note that the number of contractions that we should make to achieve the convergent Π,

increases when the number of equations in eq. 4.1 increases. Which means when the the

transition matrix Q and the steady probability vector Π become larger. In other words, when

the system become larger and more complex, depending on the number of components and

their states. However, the cost of time isn’t excessive compared to other simulation methods

(Monte-Carlo simulation). We can reduce the computing time if we want, when the com-

ponents of the system are independent, in this way we can model for each component its

Markov chain and estimate each availability. Finally, we can compute the availability of the

system from the availabilities of the components.

Usually, the failure rates are lower than the repair rates. However, in all the different

examples with all the possible failure rates and repair rates that we took in our study, we

noticed that the ratio λ
µ

must always be different to one, so that the technique of contractors

works.

Since we are dealing with Markovian approach, we should take into account that when

the number of states increases in a big way, we will have the problem of combinatorial ex-

plosion, that is why in this case we will make some approximations to simplify the problem.

Markov models, for our best of knowledge, are the most suitable methods, especially

when the given data are imprecise. The use of interval Contraction method (Forward-

backward contractor) to calculate the availability is very helpful in an easy and guaranteed

way.

By using this method, we can extend to more complicated cases and try to find the best

configuration in terms of cost and availability. In the next chapter, we aim to do that. We

will propose a methodology that helps us to find the best system between many systems,

that have the best availability with the best cost.
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Chapter 5

Safe design of MSSs

5.1 Introduction

In the previous chapter, we introduced a new computing methodology for availability as-

sessment of an MSS in the presence of uncertainties. These uncertainties are modeled in

term of intervals..

To find the availability of the system, Markov model was used. We constructed the

Markov model of the system and found out its transition matrix Q. Then, we solved the

system of equation

Π.Q = 0

to find Π the vector of interval probabilities of the system’s states

Π = [π1, . . . , πm]

with m is the number of the states of the system.

To find Π, we used the "technique of contractors", which is well-known in the domain of

interval analysis. The main idea of this technique is to contract the intervals of probabilities

πis of the system to be in a given state i, into smaller intervals.

When finding the vector Π, we can calculate the availability by doing the sum over all

the intervals πj , where j presents the states where the system works.

We should mention that if the components of the system are independent, we can model

each component as a Markov model and we find its availability in order to find the availabil-
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ity of the entire system using the connection between the components.

In this chapter, we propose a general methodology to solve the problem of optimal de-

sign of MSSs. First, we present the optimization problem and some of the related works

that have been done in dependability problem. There are several ways to study the optimal

design. However in this thesis, we present two concepts to find the optimal design.

The first one, consists in finding the best architecture among n configurations formed

with a fixed number of components k, in the aim to have a better availability with the best

cost. The overall cost of the MSS is thus optimized. As soon as we get the optimal avail-

ability and optimal cost, we can build the different optimal architectures corresponding to

the availability and the cost obtained.

The second one, consists of searching for the same purpose, however in this method we

fix the desired architecture of the system formed of k components. Suppose that we have N

components, each time we choose k components from the N that forms an architecture. We

find the architecture that gives the best availability with the best cost of components, and

this architecture will be the optimal one among the others.

To understand the two concepts, we present two numerical examples that will explain

the two concepts. To end up with the chapter’s conclusion.

5.2 Optimization in dependability

The competition in the industrial world and the user requirements has increased, which made

the configuration of the systems becomes more complex. Therefore, reducing the cost with

reliable systems is a great challenge [60, 40].

As we described before, reliability and availability are both two concepts in RAMS for

system performance. Reliability is the probability that the system will perform for a given

period of time, and availability measures the online level of the system [40, 127].

To improve the performance of the system, we can apply different options such as: in-

creasing the reliability or the availability of the components, using active/parallel redun-

dancy, applying preventive/corrective maintenance, using large safety factors, managing

dependent failures with the other components, and integrating a monitoring process or di-
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agnosis process [60]. However, we need to find a balance between the system cost and the

required performance, since we are searching for reliable system without being expensive.

In this context, several studies ([59], [127], [73], [126],. . .) has been made in the aim to

optimize the reliability or the availability of the system taking into account the cost of the

system.

The optimization of reliability or availability is an interesting goal to researchers and

industrialists since the 1960s. In fact, taking into account the reliability or the availability of

components during system design makes it possible to to have an accurate idea of the cost

and the total reliability or the availability of the system [97].

Kuo et al. [60] classify the methods of reliability optimization according to:

• The structure of the system: series, parallel, series-parallel, parallel-series, k out of n

systems, undefined systems,. . .

• The type of problem that we are dealing with.

• The techniques of optimization: heuristics, meta-heuristics (genetic algorithm), exact

algorithm (dynamic programming, implicit enumeration,. . .) and other methods.

For the part of optimization, researchers have developed and have improved many meth-

ods and algorithms. These methods can be divided into two main categories: the exact

methods that guarantee the achievement of an optimal solution for problems with reason-

able size, and the approached methods (Heuristics and meta-heuristics) that provide good

solutions, without any guarantee of optimality, but with shorter calculation time. The exact

methods are based on enumeration, all the solutions are in the search space. The approached

methods use rather random processes in the exploration of potential solutions, and this in

the purpose of dealing with the combinatorial explosion generated when using the exact

methods. However, in our study we will not use these approaches.

For optimization, we need to model the system that we have and present the method that

will help us to calculate the availability or the reliability. To design a system, we start from a

set of components to choose the best among them, in terms of performance and cost. When

having the components we formulate the system. That is why before seeking to optimize, it

is necessary to apply a method for reliability or availability assessment (in our work, we are

interested about availability) and we are using the Markovian approach.
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In these works [123, 42, 19], they presented an optimization method of the the pa-

rameters of dependability using Markovian model. To our best of knowledge, there is no

works that present an optimization method of the imprecise availability using Markovian

model. However, for optimization of the system’s dependability parameters (availability,

reliability,. . .) with uncertainties using different methods exists in the literature [67, 8, 25],

but the use of Markovian models is the distinctive aspect of this thesis.

5.3 Two concepts to find the optimal system

When we want to buy a product from the commercial market, we are interested in the prod-

uct that gives us the best life time. Also, the price of the product is important to us, we do

not want to have a product for a big amount of money.

This principle is applied in all domains. This case is similar if we have a system of

components. We want to choose the best components in terms of availability and price, to

form the best system’s configuration. However, in our study we introduced the presence of

uncertainties of the failure rates λ and the repair rates µ of the components. To model these

uncertainties, we use interval analysis and make all the data concerning the components and

the system in term of intervals.

To model the system that we have, we use the imprecise Markovian approach. In con-

sequence, by solving the system of equations we obtain the imprecise availability of the

system in terms of interval. The system’s availability which is in form of interval, is com-

puted by using the methodology presented in the previous chapter.

The idea of optimization in our work, is to find the best safe design of the system. The

best system is when we can balance between the cost and the availability of the system. To

achieve this aim, we need to find the best interval of availability with the minimal cost. The

best design of the system, is when having the following two criteria:

• The best interval availability of the system As = [As, As]: we need to maximize the

lower bound of the interval As and minimize the length of the interval (As − As).

• The best system’s cost Cs: we need to minimize the system’s overall cost, which is

the sum of components cost.

The powerful side of the system’s availability interval, is its lower bound As because

our main benefit is to maximize the availability as much as we can. Therefore, we need to
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maximize the lower bound As. However, we are interested in finding the best availability

interval with the minimal imprecision. Which can be done by reducing the length of the

interval As, that is why we need to minimize the length of the interval. The total cost of the

system Cs is equal to the sum of the costs of its components, so it is obvious that we want

to minimize the cost of the system.

To find the best system with the corresponding components, we define our objective

function in the aim of its maximization. The objective function is a function that minimizes

the cost of the system since we tend to find a lower price of components. The function min-

imizes the length of the availability interval of the system, to reduce the interval. Finally,

it maximizes the lower bound of the availability interval, because we are searching for the

best system with the best availability. Our objective function will be noted as f.

In this section, we present two points of view or two possible cases to find the optimal

system. To find the best safe design of a system, there are a lot of points of view. Each point

of view represents a way of study, however in this thesis we chose two of them. The chosen

two points of view are widely treated cases and represent the most common case in the real

life. Also, these two points of view are two simple cases of optimization before passing

to another high level of optimization with more complicated cases. The basic idea of the

first case, is to choose the best architecture among m available architecture or systems of a

certain number k of components, where this architecture gives the best availability with the

minimal cost. The idea of the second case, is to choose the best n components from the N

available components to give the best availability of the system with a suitable system cost.

To study the two cases, first we need to define all the information concerning the system

that we work on. Suppose that’s the system with a specific configuration, is formed from n

components. We present all the N available components with their intervals of failure rates

λ, their intervals of repair rates µ and their costs. We need to present the different states

for each component. We define the configuration of the system (parallel, series, series-

parallel,. . .) that we have.

The components of the system could be independent. When this is the case, we find

for each component its Markov chain, then its transition matrix, and using the contraction

technique we find its interval availability. In the second case the architecture of the system

is fixed, we can form the expression of the availability of the system in term of the availabil-

ities of the components. For the cost of the system, simply we sum over the costs of the n
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components. However, when the components are dependent, we find the Markov chain of

the whole system, then its transition matrix and the availability of the system are assessed

based on the methodology of the contraction technique. The same thing is done for the first

case of study, however here we are obliged to use the block diagram method with Markov

approach, to model the architectures of the systems.

5.3.1 The first point of view

One of the undeniable steps in the safe design of systems is the problem of choosing the

best system configuration in the most effective way so as to maximize the overall system’s

availability and to minimize the overall system’s cost. The main objective in this part is to

propose a methodology of optimization of the availability of MSSs with multi-states com-

ponents in presence of both aleatory and uncertainties.

The problem is formulated as follows: let us consider a number of configurations m of

a system, each configuration consisting of a specific number of components k with different

working states. The related data of each component are imprecise,therefore we have impre-

cise failure rates and imprecise repair rates provided in form of intervals. The objective is to

find the best configuration regarding the system availabilities and costs.

First, we take each configuration of k components and we compute its imprecise avail-

ability by using the method introduced in chapter 4, based on Markovian approaches com-

bined with interval contraction techniques. Each configuration of the system will have a

different structure (parallel, series, series-parallel, complex,. . .), with different choices of

component characteristics (imprecise failure and repair rates). Then, we compute the over-

all cost of each configuration. When having the availability and the cost of all the con-

figurations, we define an objective function in terms of cost, lower and upper bounds of

availability, and imprecision (length of availability interval). Then, this function is com-

puted for each configuration (with its availability and cost). According to different criteria

as high availability, low cost, or low availability imprecision, we will find the best system

configuration when we find the maximum objective function f. Figure 5.1 illustrates our

proposed methodology.

Here, the different steps of our methodology for optimal design of MSS among many

configurations:
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• λ: failure rate of the k components
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Figure 5.1: Methodology of the first point of view of safe design

1. Define the different system structures that we have:

• The number of components in each structure.

• Failure rates and repair rates.

• The working states of each component for each structure.

• The different costs for each component in each structure.

2. Our aim is to choose the components and their connection that will achieve the optimal

MSS structure with minimal overall cost. Thus, we need to know the number of the

system configuration m.

3. Modeling the m structures of each MSS by a Markov chain (or a block diagram, just

to understand what type of system it is).

4. Computing the m interval of the system availability As for each configuration. We

use the method defined in chapter 4. If the components are independent, we can find

the availability of each component then we formulate the availability of the entire

system regarding the connections between the components. If it is not the case, we

calculate the availability of the system by modeling the Markov chain of total system

and finding the transition matrix of the system.

5. Computing the m cost Cs.

Cs =
k∑
i=1

Ci (5.1)
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with k is the number of components for a structure and Ci is the cost of the ith com-

ponent.

6. The best interval availability of the best system must have the highest value of its

lower bound in condition of having the smallest length.

7. Calculate the objective function f of each configuration, and find the maximum value

which correspond to the best one.

Our aim is to find the best system with the components that gives the best availability with

a low cost. Therefore, we need to optimize the cost and the availability interval. We opti-

mize the availability interval of a system, by maximizing its lower bound and minimizing

the length of the availability interval. Thus, we need to minimize the cost of the system.

The objective function is in terms of the sum of the total cost of the components, the av-

erage of the availability and the lower bound of the availability interval, since it is important

to define the best availability with the lower cost. The objective function is given by:

f = −α1Cs/β − α2(As − As) + α3As (5.2)

With α1, α2 and α3 are constants, such that
∑3

j=1 αj = 1.

These constants are defined by the user depending on his point of interest, is he want to

focus on the cost or on the availability.

The cost is by a price unit, the factor β is a number applied on the cost to make the three

factors (cost, availability, length of the interval availability) in the same scale.

5.3.2 The second point of view

In the previous subsection, we explained a method of how to choose the best system in terms

of high availability and minimal cost with the presence of uncertainties. We searched for

the best system between m possible systems formed from k components. We defined the

objective function f, which will be calculated for the m structures so that we can choose the

best system corresponding to the highest value of f.

That is one of the possible points of view of the cases that we can deal with in real life

to find the best system. In this section, another case of study that we can have it will be

presented.
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Figure 5.2: Methodology of the second point of view of safe design

Suppose that the producer of some system has the idea of the structure of the system of

the product that he want to build. However, the producer do not recognize what are the best

components to be used in the constructing of the system.

The difference between the previous case and this case, is that here we have type of the

structure of the system by using the block diagram. The problem is to find the best architec-

ture of k components. In this case, we search for the best system among m configurations.

Each configuration is formed from k components chosen from a number n components that

the producer could have. In other words, we need to find the k components from the avail-

able n components in the market that lead us to the best system.

We should always remember that the best system or the optimal system, is the system

where we have a better availability with the best cost and minimal availability imprecision.

In this aim, we seek to minimize the overall cost of the MSS, and maximize the avail-

ability. Maximization of the availability interval is done when we minimize the availability

interval imprecision and maximize the lower bound of the interval, as we explained in the

first point of view. As soon as we get the optimal availability interval with the optimal cost,

we can find the optimal architecture corresponding to the available and the cost obtained.
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Here, we present the different steps of our methodology for optimal design of MSS for

this case of study (cf. Figure 5.2):

1. Introduce all the information that we have concerning the system and the available

components:

• The number of all the possible components that we have, denoted by n. We

choose a certain number of them to form the system.

• Failure rates λ and repair rates µ for each component of the n components.

• The number of the possible states of each component of the n components (bi-

nary component or multi-states components).

• The working states w of each component of the n components.

• The different costs for each component of the n components.

• The number of components k to build the structure of the system to be optimized.

• The type of structure of the system chosen (parallel, series-parallel,. . .).

2. Our aim is to choose the best k components that will achieve the optimal MSS struc-

ture with minimal overall cost Cs and best availability interval. We mean by the best

availability interval of the system, when having the best availability interval in terms

of maximal lower bound and minimal imprecision.

3. Modeling the structure of the MSS by a Markov chain (or a block diagram, just to

understand what type of system it is).

4. If the components are supposed to be dependent, at each time we take k components

out of the n components and we formulate the Markov chain of the system. We form

the transition matrix Q. By applying the method introduced in Chapter 4, we solve

the system of equation Π.Q = 0, so that we get the availability of the system by doing

the sum over all the πj , where j presents the working states of the system.

5. If the components are independent, we can calculate the availability of each compo-

nent apart. We use the method defined in Chapter 4. To compute the availabilities for

the n components, we form the transition matrix of the ith component then we solve

the system of equation of the component i Π.Q = 0. To obtain the availability of each

component i, we do the sum over all the πj the probabilities of the working states of

the component i.
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6. Since the components are independent, we find the relation between the availabilities

of the k components to form the availability As of the MSS

As = f(A1, . . . , Ak) (5.3)

Al with l = 1, . . . , k is the availability of the component l.

7. We define all the possible systems for the structure that we defined. For each system

p, we take a number k out of the n components, with each component is different

from the other one. We will have m architectures (of systems), with m is equal to the

arrangements Akn.

8. In the case of independent components, for each system p, we compute its availability

of the system Asp by applying the relation 5.3 between the k components and the

overall system. For dependent components, simply for each system p, we find the

transition matrix of the whole system and then solve the equation Π.Q = 0. In order

to find the availability of the system, we sum over all the probabilities the functional

states.

9. However the components are dependent or not, we need to calculate the cost of the

total system Csp . We calculate the cost of each system p by doing the sum of the costs

of the k components

Csp =
k∑
l=1

Cl (5.4)

with p = 1, . . . ,m.

To ensure that the constraints imposed are respected, we should ensure that the real exact

availability Areal of the MSS, belongs to the availability interval of the best system.

For that reason, we should add a constraint representing the availability imprecision (the

length of the interval which is the difference between the lower bound and the upper bound

of the system availability interval).

The parameter α1 makes it possible to minimize the cost of the system.

The parameter α2 to minimize the imprecision of the availability interval of the system.

The parameter α3 to maximize the lower bound of the availability interval of the system.

Our aim is to find the best system with the components that gives the best availability

with a low cost and best availability interval (depending on the lower bound of the inter-

val and its imprecision). Therefore, we need to reduce the cost of the system and reduce
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the availability interval. We maximize the system’s availability interval, by maximizing its

lower bound and reducing the length of the system’s availability interval.

Same as the first case, the objective function f is in terms of the sum of the total cost of

the components, the imprecision of the system’s availability and its lower bound, since it is

important to define the best availability with the lower cost.

The objective function f is defined by:

f = −α1Cs/β − α2(As − As) + α3As (5.5)

With α1, α2 and α3 are constants, such that
∑3

j=1 αj = 1.

We choose these coefficients according to what the user asks for. For example, if he

wants to minimize the cost more, we choose a high value for α1.

The cost is by a price unit, the factor β is a number applied on the cost to make the three

factors (cost, availability, length of the interval availability) in the same scale.

5.4 Numerical examples

In the previous section, we presented two points of view of optimization of the imprecise

availability of an MSS. We formulated our two methodologies of choosing the best sys-

tem among m possible systems taking into account the best system’s availability interval in

terms of the best value of the lower bound of the interval and the best length for the interval,

and of course the best cost of the system.

To illustrate our two proposed methodologies, in this section, we present two numerical

examples. The first example is applied using the first point of view and the second example

is by applying the second point of view. The two numerical examples represent two cases

to illustrate the two optimization methods, however the two methodologies are well applied

on different cases and types of systems.

5.4.1 Example of the first point of view

As we described the point of view and the methodology in 5.3.1 and to a better explanation,

here a simple example that presents the case.
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Component i Failure rate ×10−3 per hour (λi) Repair rate ×10−2 per hour (µi) Cost per Euros (Ci)

1 [3,4] [2.5, 3.1] 1500
2 [4, 4.8] [2, 3] 1200
3 [3.5, 4.1] [3, 3.5] 1700
4 [2, 2.8] [2, 2.8] 2000

Table 5.1: Given failure rate, repair rate and cost for each component

The main idea of this study, is to find the best system among m possible systems, all

of them are formed of k components. Each component has different degraded states from

perfect functioning to total failure, with its specific imprecise failure rates λ and imprecise

repair rates µ. Each configuration of the system will have a different structure (parallel,

series, series-parallel, complex,. . .).

Suppose that the producer is searching for the best system of 4 components. To simplify

we will consider that the 4 components are binary, where all the information: failure rates

λ per hour, repair rates µ per hour and the cost C per Euros, for each component are repre-

sented in Table 5.1.

From the four components, we can build 40 different architectures of the system. We

eliminate the repeated architectures, for example the parallel system of components 1, 2 , 3

and 4 is the same parallel system of components 3, 1 ,4 and 2, and so on.

To find the best system from the 40 possible architectures, we need to define the objec-

tive function f. We want to maximize the availability, and that is done by maximizing the

lower bound and minimizing the length of the interval of the availability, and we need to

minimize the cost. To make all the three factors at the same scale, we will take the value of

β equal to 104.

The corresponding objective function is:

f = −α1Cs/104 − α2(As − As) + α3As (5.6)

The cost of each system is obtained by doing the sum of the costs of the 4 components.

In this example, we have the same 4 components for the 40 systems so the cost of the system

Cs is:

Cs = C1 + C2 + C3 + C4 = 1500 + 1200 + 1700 + 2000 = 6400 Euros
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Component i Availability Ai
1 [0.8532, 0.9174]

2 [0.7851, 0.8953]

3 [0.8752, 0.9124]

4 [0.8686, 0.9379]

Table 5.2: Availability of the 4 components

In this example, we consider that the components are independent. Therefore, we calcu-

late the corresponding availability of each component apart using the method of contraction

introduced in Chapter 4. Table 5.2 presents the availabilities of the components.

The 40 possible architectures of the system of 4 components with simple structure, are

presented in Figure 5.3. Structures 1 and 2 have one case each. Structures 3 and 7 has each

4 possible cases by taking all the possibilities of occupation of a, b, c and d by the 4 com-

ponents with the elimination of the repeated architectures. Structures 4 and 9 have each 6

possible systems. Structures 5 and 6 have each 3 possible systems. To end with the structure

8, with 12 possible systems.

Each system of the 40 systems will have different interval availabilityAs. It is calculated

depending on the relation between the components in the concerning structure of the system.

To calculate the objective function, we use eq. 5.6. We choose the values of α1, α2 and

α3 according to what criterion we are interested in more than the others.

As example, let us suppose that we are focusing more on maximizing the lower bound

of the interval of the system’s availability. We take α1 = α2 = 0.1 and α3 = 0.8. Table

5.3, shows all the availabilities of the systems with the corresponding values of the objective

function.

From Table 5.3, we find that the best result is:

 The best objective function: f = 0.7355

The best availability: As = [0.9994, 0.9999]

That means that the system with the parallel structure is the best architecture. We notice

that even when we change the values of the parameters αi, the parallel system has always the
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Figure 5.3: The 40 possible cases of system’s structure with the 4 components
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System j Availability Asj Objective function fj
1 [0.5093, 0.7029] 0.3241

2 [0.9994, 0.9999] 0.7355
3(1): a=1; b=2; c=3; d=4 [0.8502, 0.9169] 0.6094
3(2): a=2; b=1; c=3; d=4 [0.7832, 0.8949] 0.5514
3(3): a=3; b=1; c=2; d=4 [0.8716, 0.9119] 0.6293
3(4): a=4; b=1; c=2; d=4 [0.8652, 0.9372] 0.62101

4(1): a=1; b=2; c=3; d=4 [0.6589, 0.81693] 0.44732
4(2): a=1; b=3; c=2; d=4 [0.7257 ,0.8316] 0.5059
4(3): a=1; b=4; c=2; d=3 [0.7213, 0.8526] 0.4999
4(4): a=2; b=3; c=1; d=4 [0.6739, 0.8127] 0.4612
4(5): a=2; b=4; c=1; d=3 [0.6695, 0.8336] 0.4552
4(6): a=3; b=4; c=1; d=2 [0.7363, 0.8484] 0.51389

5(1): a=1; b=2; c=3; d=4 [0.9525, 0.9859] 0.6947
5(2): a=1; b=3; c=2; d=4 [0.9539, 0.9863] 0.6959
5(3): a=1; b=4; c=2; d=3 [0.9544, 0.9857] 0.6964

6(1): a=1; b=2; c=3; d=4 [0.9298, 0.9742] 0.6673
6(2): a=1; b=3; c=2; d=4 [0.9194, 0.9739] 0.6615
6(3): a=1; b=4; c=2; d=3 [0.91904, 0.9744] 0.6656

7(1): a=1; b=2; c=3; d=4 [0.9498, 0.9807] 0.6846
7(2): a=2; b=1; c=3; d=4 [0.9245,0.9775] 0.6703
7(3): a=3; b=1; c=2; d=4 [0.9478, 0.9799] 0.69108
7(4): a=4; b=1; c=2; d=3 [0.9456, 0.9844] 0.6886

8(1): a=1; b=2; c=3; d=4 [0.8092, 0.9035] 0.5739
8(2): a=1; b=3; c=2; d=4 [0.8193, 0.9045] 0.5829
8(3): a=1; b=4; c=2; d=3 [0.8181, 0.90701] 0.5816
8(4): a=2; b=1; c=3; d=4 [0.7575, 0,8846] 0.5292
8(5): a=2; b=3; c=1; d=4 [0.7597, 0.8843] 0.5313
8(6): a=2; b=4; c=1; d=3 [0.759,0.8862] 0.5304
8(7): a=3; b=1; c=2; d=4 [0.8344, 0.9003] 0.5969
8(8): a=3; b=2; c=1; d=4 [0.8266, 0.8991] 0.59003
8(9): a=3; b=4; c=1; d=3 [0.8373, 0.9023] 0.5993

8(10): a=4; b=1; c=2; d=3 [0.8288, 0.9237] 0.5895
8(11): a=4; b=2; c=1; d=3 [0.8214, 0.9219] 0.58308
8(12): a=4; b=3; c=1; d=2 [0.8329, 0.9232] 0.5933

9(1): a=1; b=2; c=3; d=4 [0.9924, 0.9987] 0.7293
9(2): a=1; b=3; c=2; d=4 [0.9941, 0.9988] 0.7308
9(3: a=1; b=4; c=2; d=3) [0.9939, 0.99906] 0.7306
9(4): a=2; b=3; c=1; d=4 [0.99306, 0.9987] 0.7298
9(5): a=2; b=4; c=1; d=3 [0.9928, 0.9989] 0.7296
9(6): a=3; b=4; c=1; d=2 [0.9945, 0.99903] 0.7312

Table 5.3: Availability and objective function of the 40 systems in Figure 5.3
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Component i Failure rate ×10−3 per hour (λi) Repair rate ×10−2 per hour (µi) Cost per Euros (Ci)

1 [3,4] [2.5, 3.1] 1500
2 [4, 4.8] [2, 3] 1200
3 [3.5, 4.1] [3, 3.5] 1700
4 [2, 2.8] [1.5, 2] 2000
5 [30,40] [6, 7] 700
6 [6, 7] [2, 3] 1000
7 [5, 10] [2, 4] 1100
8 [7, 9] [5, 6] 1300

Table 5.4: Given failure rate, repair rate and cost for each component

best objective function, while the rank between the other architectures changes. However,

that may change if we take the case of dependent components.

5.4.2 Example of the second point of view

To understand the basic methodology of the second point of view, we give the following

simple example.

The main idea of this study, is to find the k components among n possible components

that form a demanded type of the system, with the best availability and the best price. Of

course, each component has different degraded states from perfect functioning to total fail-

ure, with its specific imprecise failure rates λ and imprecise repair rates µ.

Suppose that the producer has 8 possible components. To simplify, we will consider that

the 8 components are binary, where all the information: failure rates λ per hour, repair rates

µ per hour and the cost C per Euros, for each component are represented in Table 5.4.

The producer is searching for best 4 components among the 8 possible components, that

form the best system where its structure is represented in Figure 5.4. It is a parallel-series

system of four components: a, b, c and d.

From the four components, we have 1680 possibilities of arrangement between the com-

ponents. That means that we will find the best components that form the best structure

among the 1680 cases.

As in the first example, to find the best system from the 1680 possible architectures, we
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a

b

c d

Figure 5.4: The structure of the system of 4 components

need to define the objective function f. We want to maximize the availability, and that is

done by maximizing the lower bound and minimizing the length of the availability’s inter-

val, and we need to minimize the cost. To make all the three factors at the same scale, we

take the value of β equal to 104.

The corresponding objective function is:

f = −α1Cs/104 − α2(As − As) + α3As (5.7)

The cost of each system is obtained by doing the sum of the costs of the 4 components.

In this example, and for each system we have different components which means different

system’s cost Cs, with:

Cs = C1 + C2 + C3 + C4 per Euros

In this example, we consider that the components are independent. Therefore, we calcu-

late the corresponding availability of each component apart using the method of contraction

introduced in Chapter 4. Table 5.5 presents the availabilities of the components.

Each system of the 1680 systems will have different interval availability As. It is calcu-

lated depending on the relation between the components, which is:

As = Ac.Ad [1− (1− Aa)(1− Ab)] (5.8)

Where a, b, c and d are chosen from the eight components.

To calculate the objective function, we use eq. 5.7. We choose the values of α1, α2 and

α3 according to what criterion we are interested in more than the others.
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Component i Availability Ai
1 [0.8532, 0.9174]

2 [0.7851, 0.8953]

3 [0.8752, 0.9124]

4 [0.8288, 0.9171]

5 [0.4657, 0.8003]

6 [0.6989, 0.8602]

7 [0.5333, 0.9333]

8 [0.8375, 0.9022]

Table 5.5: Availability of the 8 components

By choosing the values of α1, α2 and α3 depending on the criterion studied, we find the

components that represent the best architecture.

In this example, we study the best architecture when we are interested in all the criteria

at the same level.

We take the same value for all the parameters with α1 = α2 = α3 = 0.3333333.

We find that the highest value of the objective function, is: f = 0.014964. With the

corresponding availability and cost:

As = [0.7102, 0.8256]

Cs = C1 + C3 + C6 + C8 = 5500 Euros

It corresponds to the best system, with:



a= component 3

b= component 1

c= component 8

d= component 6

It is the best architecture, in terms of availability interval (in terms of imprecision and

lower bound) and cost. If we are looking for a system with same priority for cost, lower

bound of the availability interval and its imprecision, we should take this architecture.
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Case number α1 α2 α3 Cs As f System
a b c d

1 1 0 0 4000 [ 0.3299, 0.7860] -0.4 7 6 5 2
2 0 1 0 6500 [ 0.7147, 0.8176] -0.1029 8 3 4 1
3 0 0 1 6500 [ 0.7260, 0.8303] 0.72604 3 1 8 4
4 0.3333333 0.3333333 0.3333333 5500 [0.7102, 0.8256] 0.014964 3 1 8 6
5 0.2 0.1 0.7 5700 [0.7207,0.8285] 0.3797 3 1 8 2
6 0.2 0.7 0.1 5700 [ 0.71001, 0.8161] -0.1173 8 3 2 1
7 0.7 0.1 0.2 4200 [ 0.5518, 0.7852] -0.2069 8 2 6 5

Table 5.6: The best achitectures when changing αi

Now, let us suppose that the producer is interested more in maximizing the lower bound

of the availability. Therefore, the values of the constants are for example α1 = 0.2, α2 = 0.1

and α3 = 0.7. In this case, the best architecture is obtained with:


f = 0.3797

As = [0.7207, 0.8285]

Cs = 5700 Euros

Such the system is:



a= component 3

b= component 1

c= component 8

d= component 2

Table 5.6 presents some of the possible cases when we change the parameters αi.

We took this example, and we found out the ranking of the five best structures for each

case when we variate the values of αi. Figure 5.5 presents the obtained rank for this case of

study. The objective function is f. The relative distance of the other ranks to the obtained

structure in the first rank is represented by D, with

D =
|(f rank i − f rank 1)|

f rank i
(5.9)

Such that f rank i is the objective function of the structure with rank i and f rank 1 is the

objective function of the first place structure.
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The structures are represented by S = {a, b, c, d}, where a, b, c and d take place from

the 8 components.

As we can see, for each case we have different ranking. However, there is repeated

structures in many cases with different ranks. Here is the most repeated structures.



S = {3, 1, 8, 2}
S = {3, 1, 8, 6}
S = {8, 3, 2, 1}
S = {3, 1, 8, 4}
S = {8, 2, 6, 5}

(5.10)

Case

1 f= -0.4
S= {7, 6, 5, 2}

D=0.0243
f=-0.41
S= {8, 7, 6, 5}

D= 0.0476
f=-0.42
S= {8, 6, 5, 2}

D= 0.0697
f= -0.43
S= {8, 7, 5, 2}

D= 0.0909
f= -0.44
S={6, 5, 2, 1}

2 f=-0.1029
S= {8, 3, 4, 1}

D= 0.0128
f= -0.1043
S={3, 1, 8, 4}

D= 0.0303
f= -0.1061
S={8, 3, 2, 1}

D= 0.04507
f= -0.1078
S={3, 1, 8, 2}

D= 0.06397
f= -0.1099
S={8, 3, 4, 2}

3 f= 0.72604
S={3, 1, 8, 4}

D=  0.0073
f= 0.7207
S={3, 1, 8, 2}

D= 0.0093
f= 0.71933
S={3, 1, 4, 2}

D= 0.0158
f= 0.7147
S= {8, 3, 4, 1}

D= 0.0221
f= 0.7102
S={3, 1, 8, 6}

4 f= 0.014964
S={3, 1, 8, 6}

D= 0.0456
f= 0.0143
S={3, 1, 8, 2}

D= 0.1178
f= 0.0133
S= {8, 3, 6, 2}

D= 0.1917
f= 0.01255
S={8, 3, 6, 1}

D= 0.3266
f= 0.0112
S={8, 3, 2, 1}

5 f= 0.3797
S={3, 1, 8, 2}

D= 0.0108
f= 0.3756
S={3, 1, 8, 6}

D= 0.0197
f= 0.3723 
S={8, 3, 2, 1}

D=0.0285
f= 0.3692
S={8, 3, 6, 1}

D= 0.031
0.3683
S={3, 1, 6, 2}

6 f= -0.1173
S={8, 3, 2, 1}

D= 0.00064
f= -0.11739
S={3, 1, 8, 2}

D= 0.0147
f= -0.119
S={8, 3, 6, 1}

D=0.0202
f= -0.1197
S={3, 1, 8, 6}

D= 0.0485
f=-0.1233
S= {8, 3, 6, 2}

7 f= -0.2069
S={8, 2, 6, 5}

D=0.0352
f= -0.2145
S= {8, 6, 5, 2}

D= 0.0398
f= -0.2155
S={8, 1, 6, 5}

D= 0.0556
f= -0.2191
S={6, 2, 8, 5}

D=0.0557
f=-0.2192
S={2, 1, 6, 5}

Figure 5.5: Ranking of the structures for the cases in Table 5.6

157



5.5. CONCLUSION

S = {3, 1, 8, 2} S = {8, 3, 2, 1} S = {3, 1, 8, 6} S = {8, 3, 4, 1} S = {3, 1, 8, 4}
Daverage 0.0882 0.1319 0.1548 0.4406 0.494

Rank 1 2 3 4 5

Table 5.7: The average of the distance between one structure and the best structure

The cases in Table 5.6, presents a general view of all the possible cases that we could

have. When we take the extreme cases we are focusing on one criterion without the others.

The equal parameters αi presents the case where we are interested in all the criteria as equal.

The last three cases, present examples of the other cases that we could have. From Figure

5.5, we found out the most occupied structure in all the cases is the system S = {3, 1, 8, 2}.
However, to see how much this structure is close to the first rank, we calculated the average

of the distance of the corresponding structure to the structure of the first in each case. Table

5.7 presents the average of the distanceDaverage between one structure and the best structure

for the 5 systems in 5.10. Note that we cannot compare the results obtained by the two points

of view since each one has different hypothesis.

As we can see, from Table 5.7 that the best system is for S = {3, 1, 8, 2}. This structure

for any case of study, can be chosen since it always classified in the the list of the best

structures.

5.5 Conclusion

In the previous chapter we introduced a method to calculate the imprecise availability of a

MSS with multi-states components. This method is applied by using Markovian model with

the use of a technique applied in Interval Analysis called "Technique of contractors". In this

chapter, our aim is to use this proposed method to find the best design of a system.

The best design is chosen by taking into account the minimal cost of the system Cs,

which is the sum of the costs of all the components that form the system, and the system’s

availability interval [As]. Which means to choose the best design, we must minimize the cost

of the system and maximize the availability of the system. The latter is done by minimizing

the imprecision of the interval of As, which is the length of the interval and maximizing the

lower bound of the interval.

For these arguments, we defined an objective function f to be maximized, see eq. 5.7.

The best structure is chosen for the highest value of f. Where the parameters α1, α2 and α3

are constants chosen depending on which criterion the producer is focusing on: the cost, the
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imprecision of [As] or the the lower bound of [As].

In this chapter we presented two possible points of view:

• The first one: Finding the best structure of k components, among m possible struc-

tures.

• The second one: Finding the best k components among n components that give the

best structure, where the type of structure is defined before.

With two simple examples, we detailed the methods of the two points of view. To sim-

plify we took binary components, however we do the same procedures when we have multi-

states components and when having much complex systems. We studied the change of the

ranking when we take different cases of αi.

To verify the methods, we can study the different cases when we fix one parameter (by

fixing αi) and modify the others.

With these two methods we can always find the best structure, with the minimum cost

and the maximum availability. In addition, it is a general description for the three criteria.

These two methods can be applied when having multi-states components and when having

large and complex systems with a big number of components.





Conclusions and perspectives

The research work presented in this thesis, deals with the problem of availability assessment

of a multi-states systems (MSS) taking into account the uncertainty of the components data

(failure rates and repair rates), when time tends towards infinity. Another problem presented

in this thesis, which is how to find the best design of a system among different structure and

which components must take into account.

1. Conclusion

Throughout this thesis, we have tried to find a methodology which will optimize the avail-

ability of MSSs. However, there are few methods in the litterateurs that deal with the case of

such systems. In particular, traditional works was interested in the availability of the binary

systems (normal working and total failure). Nevertheless, for a wide range of real systems

the binary approach no longer makes sense because in real life the systems will have many

possible states.

Also in real life, the availability of the systems is not precise because uncertainties on

components data will occur. These uncertainties could be about the components perfor-

mance values, they may be imprecise. Or, uncertainties could be about the failure rates λ

and the repair rates µ which may be imprecise because the estimation of the transition rates

is difficult (new elements, rarely affected elements, expensive elements,. . .) or they may not

be constant in time,. . . In other works, they applied different methods to model the uncer-

tainties and to calculate the availability or the reliability of the system (IUGF, BUGF,Monte

Carlo simulation,. . .). However, the methods in the presented works are limited in their use.

These methods can be applied for particular systems (simple systems), small systems (with

a small number of components and states), also their computing time is large.

In this context, this thesis allowed us to identify an original methodology for the impre-

cise availability assessment of MSSs. We have proposed the use of imprecise Markovian
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approaches in presence of imprecise failure and repair rates. Markovian approaches are

suitable methods to present the systems states and to calculate their steady probabilities.

However, the use of Markovian methods is limited since we will have a combinatorial ex-

plosion when the number of states increases (the number of states increases exponentially

with the number of components), in this case some approximation can be applied to avoid

such problem. The main benefit of the Markovian methods is that we can calculate the avail-

ability when t tends to infinity. The user is always looking for: "What is the probability that

the system remains functional after a long time?".

In this thesis, we chose to model the failure rates, the repair rates and the systems states

initial probabilities in terms of intervals. Therefore, the transition matrix will be an interval

transition matrix. To compute the imprecise availability, we have to know the systems states

probabilities. These probabilities are obtained when solving the system of equations:

Π.Q = 0

In this aim, we proposed to use a technique in interval analysis called the technique of

contractors. In particular, the forward-backward contraction method on the equations ob-

tained by the transition matrix of the MSSs. The main goal of the contraction method is to

reduce the initial intervals of the systems states probabilities to their most possible minimum

sizes. We tested the method on several examples, in this thesis we mentioned two of them.

For the first example, we compared the results of the imprecise availability obtained by the

methodology to the ones obtained by the exact method and the IUGF and BUGF. For the

second example, our aim was to increase the number of components and the number of states

and compare the results of the methodology to the results obtained by the exact method and

the precise one. We found that the interval obtained by the technique of contraction is more

conservative than the interval obtained by the two methods IUGF and BUGF, however it is

very close to the one obtained by the BUGF. We found that the precise availability is always

belong to the intervals of the exact method and the technique of contractors. Based on this

method, we can study the availability of larger systems, where the number of components

and the number of possible states for each element is higher. However, in all of this thesis we

supposed that the components are independent, and in this case the technique of contractor

do not cost a lot of time in computing, because we find the availability of each component

then we figure out the availability of the entire system.

To reach our aim of optimization and finding the best system’s design, we proposed

two methodologies corresponding to two possible points of view. These two points of view
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represent two simple case of study for finding the best system. The first one is when having

k a fixed number of system’s components, and the problem is to find the best system among

all the possible systems of the k components such that we have the best availability and

the best cost. The second case, is when having n a number of possible components with a

certain type of system of k components, the problem is to find the best k components among

the n components such that we obtain the best system’s availability with the best cost. In

the two cases, we define our objective functions in terms of the system’s availability and

the system’s cost. The best system is characterized by the maximization of the objective

function, this is done by maximizing the lower bound of the availability’s interval and by

minimizing the length of the interval and the system’s cost. We presented two numerical

example to illustrate the two methodologies, however the two methods are well applied in

all kind of systems.

2. Perspectives

All the results obtained in this thesis, are according to some hypotheses: constant failure

and repair rates, absence of common causes failure, independent components of the sys-

tem. In what follows, we will base on these hypotheses by proposing some perspectives for

extending the obtained results.

• Applying the proposed methodology using the technique of contractors on systems

with dependent components and with the case of common cause failure. In this case

we need to model the system with its Markov chain without taking each component

apart.

• The use of non-constant transition rates (repair rates and failure rates) with semi-

Markov processes (in this case, stochastic Petri nets are used).

• Apply the proposed methodologies on an example in real life.

• Applying the technique of contractors on different methods in dependability, to com-

pare to the results obtained by Markovian methods.

• For the optimization problem, we choose to apply two points of view, however we

can expand the problem to more complicated cases. For example: finding the best

system of k components among n possible components without fixing a certain type

of structure.
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