W. Lv, Z. Wang, H. Cao, Y. Sun, Y. Zhang et al., A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries, ACS Sustain. Chem. Eng, vol.6, issue.2, pp.1504-1521, 2018.

J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury et al., Electrical Properties of Amorphous Lithium Electrolyte Thin Films. Solid State Ion, pp.647-654, 1992.

J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury et al., Fabrication and Characterization of Amorphous Lithium Electrolyte Thin Films and Rechargeable Thin-Film Batteries, J. Power Sources, vol.43, issue.1, pp.103-110, 1993.

J. B. Bates, N. J. Dudney, D. C. Lubben, G. R. Gruzalski, B. S. Kwak et al., Thin-Film Rechargeable Lithium Batteries, J. Power Sources, vol.54, issue.1, pp.58-62, 1995.

J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, and C. D. Evans, Thin-Film Lithium and Lithium-Ion Batteries. Solid State Ion, vol.135, pp.33-45, 2000.

, Solid State Ionics for Batteries | T, 2019.

A. Hayashi, R. Komiya, M. Tatsumisago, and T. Minami, Characterization of Li2S-SiS2-Li3MO3 (M=B, Al, Ga and In) Oxysulfide Glasses and Their Application to Solid State Lithium Secondary Batteries. Solid State Ion, pp.285-290, 2002.

F. Mizuno, S. Hama, A. Hayashi, K. Tadanaga, T. Minami et al., All Solid-State Lithium Secondary Batteries Using High Lithium Ion Conducting Li2S-P2S5 Glass-Ceramics, Chem. Lett, issue.12, pp.1244-1245, 2002.

R. Kanno and M. Murayama, Lithium Ionic Conductor Thio-LISICON: The Li2 S -GeS2 -P 2 S 5 System, J. Electrochem. Soc, vol.148, issue.7, pp.742-746, 2001.

T. Minami, A. Hayashi, and M. Tatsumisago, Recent Progress of Glass and Glass-Ceramics as Solid Electrolytes for Lithium Secondary Batteries. Solid State Ion, vol.177, pp.2715-2720, 2006.

H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate, J. Electrochem. Soc, vol.137, issue.4, pp.1023-1027, 1990.

Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida et al., High Ionic Conductivity in Lithium Lanthanum Titanate, Solid State Commun, vol.86, issue.10, pp.689-693, 1993.

F. Stadler and C. Fietzek, Crystalline Halide Substituted Li-Argyrodites as Solid Electrolytes for Lithium Secondary Batteries, ECS Trans, issue.36, pp.177-183, 2010.

G. S. Macglashan, Y. G. Andreev, and P. G. Bruce, Structure of the Polymer Electrolyte Poly(Ethylene Oxide) 6 :LiAsF 6, Nature, vol.398, issue.6730, p.792, 1999.

C. Yuan, J. Li, P. Han, Y. Lai, Z. Zhang et al., Enhanced Electrochemical Performance of Poly(Ethylene Oxide) Based Composite Polymer Electrolyte by Incorporation of Nano-Sized Metal-Organic Framework, J. Power Sources, vol.240, pp.653-658, 2013.

Q. Ma, H. Zhang, C. Zhou, L. Zheng, P. Cheng et al., Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion, Angew. Chem. Int. Ed, vol.55, issue.7, pp.2521-2525, 2016.

K. Fu,

Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao et al., Solid-State, Ion-Conducting Membrane with 3D Garnet Nanofiber Networks for Lithium Batteries, Proc. Natl. Acad. Sci, vol.113, pp.7094-7099, 2016.

P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. Tarascon, -. Li et al., Batteries with High Energy Storage, Nat. Mater, vol.2012, issue.2, p.172

L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao et al., Recent Progress on Sodium Ion Batteries: Potential High-Performance Anodes, Energy Environ. Sci, vol.11, issue.9, pp.2310-2340, 2018.

, Batteries sodium-ion : un prototype plein de promesses !, 2019.

J. Hwang, S. Myung, and Y. Sun, Recent Progress in Rechargeable Potassium Batteries, Adv. Funct. Mater, vol.28, issue.43, p.1802938, 2018.

C. Kuang, W. Zeng, and Y. Li, A Review of Electrode for Rechargeable Magnesium Ion Batteries, J. Nanosci. Nanotechnol, vol.19, issue.1, pp.12-25, 2019.

,

M. Lin, M. Gong, B. Lu, Y. Wu, D. Wang et al., An Ultrafast Rechargeable Aluminium-Ion Battery, Nature, vol.520, issue.7547, pp.324-328, 2015.

S. Zhang, K. Zhao, T. Zhu, and J. Li, Electrochemomechanical Degradation of High-Capacity Battery Electrode Materials, Prog. Mater. Sci, vol.89, pp.479-521, 2017.

M. S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev, vol.104, issue.10, pp.4271-4302, 2004.

B. Liu, X. Sui, S. Zhang, F. Yu, Y. Xue et al., Investigation on Electrochemical Performance of LiNi0.8Co0.15Al0.05O2 Coated by Heterogeneous Layer of TiO2, J. Alloys Compd, vol.739, pp.961-971, 2018.

J. R. Dahn, U. Sacken, M. W. Juzkow, and H. Al-janaby, Rechargeable LiNiO2 / Carbon Cells, J. Electrochem. Soc, vol.138, issue.8, pp.2207-2211, 1991.

,

S. Yamada, M. Fujiwara, and M. Kanda, Synthesis and Properties of LiNiO2 as Cathode Material for Secondary Batteries, J. Power Sources, vol.54, issue.2, pp.209-213, 1995.

T. Ohzuku and A. Ueda, Why Transition Metal (Di) Oxides Are the Most Attractive Materials for Batteries. Solid State Ion, vol.69, pp.90410-90413, 1994.

M. Guilmard, C. Pouillerie, L. Croguennec, and C. Delmas, Structural and Electrochemical Properties of LiNi0.70Co0.15Al0.15O2. Solid State Ion, vol.160, pp.106-107, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00207941

S. Madhavi, G. V. Subba-rao, B. V. Chowdari, and S. F. Li, Effect of Aluminium Doping on Cathodic Behaviour of LiNi0.7Co0.3O2, J. Power Sources, vol.93, issue.1, pp.156-162, 2001.

P. Kalyani, N. Kalaiselvi, N. G. Renganathan, and M. Raghavan, Studies on LiNi0.7Al0.3?xCoxO2 Solid Solutions as Alternative Cathode Materials for Lithium Chapitre I : Bibliographie 63 Batteries, Mater. Res. Bull, vol.39, issue.1, pp.41-54, 2004.

,

S. B. Majumder, S. Nieto, and R. S. Katiyar, Synthesis and Electrochemical Properties of LiNi0.80(Co0.20?xAlx)O2 (X=0.0 and 0.05) Cathodes for Li Ion Rechargeable Batteries, J. Power Sources, vol.154, issue.1, pp.262-267, 2006.

,

S. H. Ju, H. C. Jang, and Y. C. Kang, Al-Doped Ni-Rich Cathode Powders Prepared from the Precursor Powders with Fine Size and Spherical Shape, Electrochimica Acta, vol.52, issue.25, pp.7286-7292, 2007.

M. Takano, R. Kanno, and T. Takeda, A Chemical Contribution to the Search for Novel Electronic Properties in Transition Metal Oxides: LiNiO2, Mater. Sci. Eng. B, vol.63, issue.1, pp.44-50, 1999.

W. Yoon, K. Y. Chung, J. Mcbreen, and X. Yang, A Comparative Study on Structural Changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during First Charge Using in Situ XRD, Electrochem. Commun, vol.8, issue.8, pp.1257-1262, 2006.

C. Martin, Driving Change in the Battery Industry, Nat. Nanotechnol, vol.9, pp.327-328, 2014.

A. Trippe, T. Massier, and T. Hamacher, Optimized Charging of Electric Vehicles with Regard to Battery Constraints -Case Study: Singaporean Car Park, IEEE Energytech, 2013.

Y. Zhang and C. Wang, Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode, J. Electrochem. Soc, vol.156, issue.7, pp.527-535, 2009.

M. C. Smart, B. V. Ratnakumar, R. C. Ewell, S. Surampudi, F. J. Puglia et al., The Use of Lithium-Ion Batteries for JPL's Mars Missions, Electrochimica Acta, vol.268, pp.27-40, 2018.

Y. Wang, J. Jiang, and J. R. Dahn, The Reactivity of Delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with Non-Aqueous Electrolyte, Electrochem. Commun, vol.9, issue.10, pp.2534-2540, 2007.

T. Sasaki, T. Nonaka, H. Oka, C. Okuda, Y. Itou et al., Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries I. Analysis by Electrochemical and Spectroscopic Examination, J. Electrochem. Soc, vol.156, issue.4, pp.289-293, 2009.

R. Kostecki and F. Mclarnon, Local-Probe Studies of Degradation of Composite LiNi0.8Co0.15Al0.05 O 2 Cathodes in High-Power Lithium-Ion Cells, Electrochem. Solid-State Lett, vol.7, issue.10, pp.380-383, 2004.

J. Lei, F. Mclarnon, and R. Kostecki, Situ Raman Microscopy of Individual LiNi0.8Co0.15Al0.05O2 Particles in a Li-Ion Battery Composite Cathode, J. Phys. Chem. B, vol.109, issue.2, pp.952-957, 2005.

R. Kostecki, J. Lei, F. Mclarnon, J. Shim, and K. Striebel, Diagnostic Evaluation of Detrimental Phenomena in High-Power Lithium-Ion Batteries, J. Electrochem. Soc, vol.153, issue.4, pp.669-672, 2006.

L. Wu, K. Nam, X. Wang, Y. Zhou, J. Zheng et al., Structural Origin of Overcharge-Induced Thermal Instability of Ni-Containing Layered-Cathodes for High-Energy-Density Lithium Batteries, Chem. Mater, vol.23, issue.17, pp.3953-3960, 2011.

S. Hwang, W. Chang, S. M. Kim, D. Su, D. H. Kim et al.,

, Chapitre I : Bibliographie, vol.64

, Cathode Materials Induced by the Initial Charge, Chem. Mater, vol.26, issue.2, pp.1084-1092, 2014.

S. Hwang, S. M. Kim, S. Bak, B. Cho, K. Y. Chung et al., Investigating Local Degradation and Thermal Stability of Charged Nickel-Based Cathode Materials through Real-Time Electron Microscopy, ACS Appl. Mater. Interfaces, vol.6, issue.17, pp.15140-15147, 2014.

S. Bak, K. Nam, W. Chang, X. Yu, E. Hu et al., Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials, Chem. Mater, vol.25, issue.3, pp.337-351, 2013.

W. Yoon, O. Haas, S. Muhammad, H. Kim, W. Lee et al., Situ Soft XAS Study on Nickel-Based Layered Cathode Material at Elevated Temperatures: A Novel Approach to Study Thermal Stability. Sci

K. Feng, M. Li, W. Liu, A. G. Kashkooli, X. Xiao et al., Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications, Small Weinh. Bergstr. Ger, issue.8, p.14, 2018.

X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang et al., Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon, vol.2012, pp.749-756

,

F. Shi, Z. Song, P. N. Ross, G. A. Somorjai, R. O. Ritchie et al., Failure Mechanisms of Single-Crystal Silicon Electrodes in Lithium-Ion Batteries, Nat. Commun, vol.7, 2016.

J. H. Ryu, J. W. Kim, Y. Sung, and S. M. Oh, Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries, Electrochem. Solid-State Lett, vol.7, issue.10, pp.306-309, 2004.

M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novák, Insertion Electrode Materials for Rechargeable Lithium Batteries, Adv. Mater, vol.10, issue.10, pp.725-763, 1998.

M. Ashuri, Q. He, and L. L. Shaw, Silicon as a Potential Anode Material for Li-Ion Batteries: Where Size, Geometry and Structure Matter, Nanoscale, vol.2015, issue.1, pp.74-103

M. T. Mcdowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix et al., Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy, Adv. Mater, vol.2012, issue.45, pp.6034-6041

,

X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu et al., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation, ACS Nano, vol.6, issue.2, pp.1522-1531, 2012.

K. Kalaga, I. A. Shkrob, R. T. Haasch, C. Peebles, J. Bareño et al., Auger Electrons as Probes for Composite Micro-and Nanostructured Materials: Application to Solid Electrolyte Interphases in Graphite and Silicon-Graphite Electrodes, J. Phys. Chem. C, vol.2017, issue.42, pp.23333-23346

T. Schott, R. Robert, P. A. Ulmann, P. Lanz, S. Zürcher et al., Cycling Behavior of Silicon-Containing Graphite Electrodes, Part A: Effect of the Lithiation Protocol, J. Phys. Chem. C, vol.2017, issue.34, pp.18423-18429

, Chapitre I : Bibliographie, vol.65

T. Schott, R. Robert, S. Pacheco-benito, P. A. Ulmann, P. Lanz et al., Cycling Behavior of Silicon-Containing Graphite Electrodes, Part B: Effect of the Silicon Source, J. Phys. Chem. C, vol.2017, issue.46, pp.25718-25728

W. Tang, W. Peng, G. Yan, H. Guo, X. Li et al., Effect of Fluoroethylene Carbonate as an Electrolyte Additive on the Cycle Performance of Silicon-Carbon Composite Anode in Lithium-Ion Battery, Ionics, vol.2017, issue.12, pp.3281-3288

R. E. Ruther, K. A. Hays, S. J. An, J. Li, D. L. Wood et al., Chemical Evolution in Silicon-Graphite Composite Anodes Investigated by Vibrational Spectroscopy, ACS Appl. Mater. Interfaces, vol.10, issue.22, pp.18641-18649, 2018.

,

X. Zhao, C. Yim, N. Du, and Y. Abu-lebdeh, Shortly Branched, Linear Dextrans as Efficient Binders for Silicon/Graphite Composite Electrodes in Li-Ion Batteries, Ind. Eng. Chem. Res, vol.57, issue.28, pp.9062-9074, 2018.

P. Li, J. Hwang, and Y. Sun, Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery, ACS Nano, vol.13, issue.2, pp.2624-2633, 2019.

M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, and M. Shirakata, (84) Types of Lithium-ion Batteries -Battery University, J. Electrochem. Soc, vol.152, issue.10, pp.2089-2091, 2005.

, International Symposium on the Reactivity of Solids, pp.2-7

. Madrid, :. C. Spain, and . Bermejo, , 1956.

R. J. Cava, D. W. Murphy, S. Zahurak, A. Santoro, and R. S. Roth, The Crystal-Structures of the Lithium-Inserted Metal-Oxides Li0.5tio2 Anatase, Liti2o4 Spinel, and Li2ti2o4, J. Solid State Chem, vol.53, pp.90228-90235, 1984.

D. W. Murphy, R. J. Cava, S. M. Zahurak, and A. Santoro, Ternary Lixtio2 Phases from Insertion Reactions. Solid State Ion, pp.413-417, 1983.

T. Ohzuku, A. Ueda, and N. Yamamoto, Zero-Strain Insertion Material of Li[Li1/3ti5/3]O-4 for Rechargeable Lithium Cells, J. Electrochem. Soc, vol.142, pp.1431-1435, 1995.

W. Schmidt and M. Wilkening, Discriminating the Mobile Ions from the Immobile Ones in Li4+xTi5O12: Li-6 NMR Reveals the Main Li+ Diffusion Pathway and Proposes a Refined Lithiation Mechanism, J. Phys. Chem. C, vol.120, pp.11372-11381, 2016.

H. Ge, N. Li, D. Li, C. Dai, and D. Wang, Study on the Theoretical Capacity of Spinel Lithium Titanate Induced by Low-Potential Intercalation, J. Phys. Chem. C, issue.16, pp.6324-6326, 2009.

C. Pecharroman and J. M. Amarilla, Thermal Evolution of Infrared Vibrational Properties of Li4/3Ti5/3O4 Measured by Specular Reflectance, Phys. Rev. B, vol.62, pp.12062-12068, 2000.

I. A. Leonidov, O. N. Leonidova, L. A. Perelyaeva, R. F. Samigullina, S. A. Kovyazina et al., Ionic Conduction, and Phase Transformations in Lithium Titanate Li4Ti5O12, Phys. Solid State, vol.45, issue.11, pp.2183-2188, 2003.

I. Chapitre, , p.66

W. Schmidt and M. Wilkening, Diffusion-Induced Li-7 NMR Spin-Lattice Relaxation of Fully Lithiated, Mixed-Conducting Li7Ti5O12. Solid State Ion, vol.287, pp.77-82, 2016.

M. Vijayakumar, S. Kerisit, K. M. Rosso, S. D. Burton, J. A. Sears et al., Lithium Diffusion in Li4Ti5O12 at High Temperatures, J. Power Sources, vol.196, pp.2211-2220, 2011.

S. Scharner, W. Weppner, and P. Schmid-beurmann, Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel, J. Electrochem. Soc, vol.146, pp.857-861, 1999.

M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil et al., A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12, Adv. Mater, vol.18, issue.23, pp.3169-3173, 2006.

B. Yan, M. Li, X. Li, Z. Bai, J. Yang et al., Novel Understanding of Carbothermal Reduction Enhancing Electronic and Ionic Conductivity of Li4Ti5O12 Anode, J. Mater. Chem. A, vol.2015, issue.22, pp.11773-11781

,

C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian et al., Studies of Mg-Substituted Li4?xMg x Ti5O12 Spinel Electrodes (0?x?1) for Lithium Batteries, J. Electrochem. Soc, vol.148, issue.1, pp.102-104, 2001.

T. Yuan, X. Yu, R. Cai, Y. Zhou, and Z. Shao, Synthesis of Pristine and Carbon-Coated Li4Ti5O12 and Their Low-Temperature Electrochemical Performance, J. Power Sources, issue.15, pp.4997-5004, 2010.

M. Wilkening, R. Amade, W. Iwaniak, and P. Heitjans, Ultraslow Li Diffusion in Spinel-Type Structured Li4Ti5O12 -A Comparison of Results from Solid State NMR and Impedance Spectroscopy, Phys. Chem. Chem. Phys, vol.9, pp.1239-1246, 2007.

K. M. Colbow, J. R. Dahn, and R. R. Haering, Structure and Electrochemistry of the Spinel Oxides Liti2o4 and Li4/3ti5/3o4, J. Power Sources, vol.26, pp.80152-80153, 1989.

E. Ferg and R. J. Gummow,

M. M. Thackeray, Spinel Anodes for Lithium-Ion Batteries, J. Electrochem. Soc, vol.141, issue.11, pp.147-150, 1994.

,

B. Zhao, R. Ran, M. L. Liu, and Z. P. Shao, A Comprehensive Review of Li4Ti5O12-Based Electrodes for Lithium-Ion Batteries: The Latest Advancements and Future Perspectives, Mater. Sci. Eng. R-Rep, vol.98, pp.1-71, 2015.

,

S. Jiang, B. Zhao, Y. Chen, R. Cai, and Z. Shao, Li4Ti5O12 Electrodes Operated under Hurdle Conditions and SiO2 Incorporation Effect, J. Power Sources, vol.238, pp.356-365, 2013.

K. Zaghib, M. Simoneau, M. Armand, and M. Gauthier, Electrochemical Study of Li4Ti5O12 as Negative Electrode for Li-Ion Polymer Rechargeable Batteries, J. Power Sources, pp.300-305, 1999.

J. Ni, W. Liu, J. Liu, L. Gao, and J. Chen, 2V LiCoPO4/Li4Ti5O12 Full Battery, vol.35, pp.1-4, 2013.

,

K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues et al., Safe and Fast-Charging Li-Ion Battery with Long Shelf Life for Power Applications
URL : https://hal.archives-ouvertes.fr/hal-00616802

X. Lu, L. Zhao, X. Q. He, R. J. Xiao, L. Gu et al., Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy, Adv. Mater, vol.24, pp.3233-3238, 2012.

,

M. Lu, Y. Tian, X. Zheng, J. Gao, and B. Huang, Enhanced Performance of Spherical Natural Graphite Coated by Li4Ti5O12 as Anode for Lithium-Ion Batteries, J. Power Sources, vol.219, pp.188-192, 2012.

Y. He, B. Li, M. Liu, C. Zhang, W. Lv et al., Gassing in Li(4)Ti(5)O(12)-Based Batteries and Its Remedy, Sci. Rep, vol.2, p.913, 2012.

I. Belharouak, G. M. Koenig, T. Tan, H. Yumoto, N. Ota et al., Performance Degradation and Gassing of Li4Ti5O12/LiMn2O4 Lithium-Ion Cells, J. Electrochem. Soc, vol.2012, issue.8

L. Shen, E. Uchaker, X. Zhang, and G. Cao, Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries, Adv. Mater, vol.2012, issue.48, pp.6502-6506

Y. Wang, L. Gu, Y. Guo, H. Li, X. He et al., Rutile-TiO2 Nanocoating for a High-Rate Li4Ti5O12 Anode of a Lithium-Ion Battery, J. Am. Chem. Soc, vol.2012, issue.18, pp.7874-7879

,

L. Yu, H. B. Wu, and X. W. Lou, Mesoporous Li4Ti5O12 Hollow Spheres with Enhanced Lithium Storage Capability, Adv. Mater, vol.25, issue.16, pp.2296-2300, 2013.

S. Kim, J. G. Alauzun, N. Louvain, N. Brun, L. Stievano et al., Alginic Acid Aquagel as a Template and Carbon Source in the Synthesis of Li4Ti5O12/C Nanocomposites for Application as Anodes in Li-Ion Batteries, RSC Adv, vol.8, issue.57, pp.32558-32564, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898985

L. Fan, X. Tan, T. Yu, and Z. Shi, Li4Ti5O12/Hollow Graphitized Nano-Carbon Composites as Anode Materials for Lithium Ion Battery, RSC Adv, vol.2016, issue.31, pp.26406-26411

L. Shen, E. Uchaker, C. Yuan, P. Nie, M. Zhang et al., Three-Dimensional Coherent Titania-Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties, ACS Appl. Mater. Interfaces, vol.2012, issue.6, pp.2985-2992

X. Guo, H. F. Xiang, T. P. Zhou, X. K. Ju, and Y. C. Wu, Morphologies and Structures of Carbon Coated on Li4Ti5O12 and Their Effects on Lithium Storage Performance

, Electrochimica Acta, vol.130, pp.470-476, 2014.

X. Hu, Z. Lin, K. Yang, Y. Huai, and Z. Deng, Effects of Carbon Source and Carbon Content on Electrochemical Performances of Li4Ti5O12/C Prepared by One-Step Solid-State Reaction, Electrochimica Acta, vol.56, issue.14, pp.5046-5053, 2011.

,

X. Guan, X. Chen, G. Li, Y. Zang, H. Lin et al., Direct Synthesis of Carbon-Coated Li4Ti5O12 Mesoporous Nanoparticles for High-Rate Lithium-Ion Batteries, RSC Adv, vol.2013, issue.9, pp.3088-3094

Y. Kuo and J. Lin, One-Pot Sol-Gel Synthesis of Li4Ti5O12/C Anode Materials for High-Performance Li-Ion Batteries, Electrochimica Acta, vol.142, pp.43-50, 2014.

H. Jung, S. Myung, C. S. Yoon, S. Son, K. H. Oh et al., Microscale Spherical Carbon-Coated Li4Ti5O12 as Ultra High Power Anode Chapitre I : Bibliographie 69

, Material for Lithium Batteries, Energy Environ. Sci, vol.2011, issue.4, pp.1345-1351

S. Ji, J. Zhang, W. Wang, Y. Huang, Z. Feng et al., Preparation and Effects of Mg-Doping on the Electrochemical Properties of Spinel Li4Ti5O12 as Anode Material for Lithium Ion Battery, Mater. Chem. Phys, vol.2010, issue.2, pp.510-515

Q. Zhang, C. Zhang, B. Li, S. Kang, X. Li et al., Preparation and Electrochemical Properties of Ca-Doped Li4Ti5O12 as Anode Materials in Lithium-Ion Battery, Electrochimica Acta, vol.98, pp.146-152, 2013.

,

T. Yi, H. Liu, Y. Zhu, L. Jiang, Y. Xie et al., Improving the High Rate Performance of Li4Ti5O12 through Divalent Zinc Substitution, J. Power Sources, vol.215, pp.258-265, 2012.

H. Song, S. Yun, H. Chun, M. Kim, K. Y. Chung et al., Anomalous Decrease in Structural Disorder Due to Charge Redistribution in Cr-Doped Li4Ti5O12 Negative-Electrode Materials for High-Rate Li-Ion Batteries, Energy Environ. Sci, vol.2012, issue.12, pp.9903-9913

H. Zhao, Y. Li, Z. Zhu, J. Lin, Z. Tian et al., Structural and Electrochemical Characteristics of Li4?xAlxTi5O12 as Anode Material for Lithium-Ion Batteries, Electrochimica Acta, vol.53, issue.24, pp.7079-7083, 2008.

,

T. Yi, Y. Xie, Q. Wu, H. Liu, L. Jiang et al., High Rate Cycling Performance of Lanthanum-Modified Li4Ti5O12 Anode Materials for Lithium-Ion Batteries, J. Power Sources, vol.214, pp.220-226, 2012.

,

L. Hou, X. Qin, X. Gao, T. Guo, X. Li et al., Zr-Doped Li4Ti5O12 Anode Materials with High Specific Capacity for Lithium-Ion Batteries, J. Alloys Compd, vol.774, pp.38-45, 2019.

T. Yi, J. Shu, Y. Zhu, X. Zhu, C. Yue et al., High-Performance Li4Ti5?xVxO12 (0?x?0.3) as an Anode Material for Secondary Lithium-Ion Battery, Electrochimica Acta, vol.54, issue.28, pp.7464-7470, 2009.

,

B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, Niobium Doped Lithium Titanate as a High Rate Anode Material for Li-Ion Batteries, Electrochimica Acta, vol.55, issue.19, pp.5453-5458, 2010.

J. Wolfenstine and J. L. Allen, Electrical Conductivity and Charge Compensation in Ta Doped Li4Ti5O12, J. Power Sources, vol.180, issue.1, pp.582-585, 2008.

,

T. Yi, Y. Xie, L. Jiang, J. Shu, C. Yue et al., Advanced Electrochemical Properties of Mo-Doped Li4Ti5O12 Anode Material for Power Lithium Ion Battery, RSC Adv, vol.2012, issue.8, pp.3541-3547

Y. Qi, Y. Huang, D. Jia, S. Bao, and Z. P. Guo, Preparation and Characterization of Novel Spinel Li4Ti5O12?xBrx Anode Materials, Electrochimica Acta, vol.54, issue.21, pp.4772-4776, 2009.

L. Zhao, Y. Hu, H. Li, Z. Wang, and L. Chen, Porous Li4Ti5O12 Coated with N-Doped Carbon from Ionic Liquids for Li-Ion Batteries, Adv. Mater, vol.23, issue.11, pp.1385-1388, 2011.

Y. Huang, Y. Qi, D. Jia, X. Wang, Z. Guo et al., Synthesis and Electrochemical Properties of Spinel Li4Ti5O12?xClxanode Materials for Lithium-Ion Batteries, J. Solid State Electrochem, vol.16, issue.5, pp.2011-2016, 2012.

, Chapitre I : Bibliographie, vol.70

Y. Ma, B. Ding, G. Ji, and J. Lee, Carbon-Encapsulated F-Doped Li4Ti5O12 as a High Rate Anode Material for Li Batteries, ACS Nano, vol.7, pp.10870-10878, 2013.

X. Han, Z. Zhao, Y. Xu, D. Liu, H. Zhang et al., Synthesis and Characterization of F-Doped Nanocrystalline Li4Ti5O12/C Compounds for Lithium-Ion Batteries, RSC Adv, vol.2014, issue.79, pp.41968-41975

Z. Zhao, Y. Xu, M. Ji, and H. Zhang, Synthesis and Electrochemical Performance of F-Doped Li4Ti5O12 for Lithium-Ion Batteries, Electrochimica Acta, vol.109, pp.645-650, 2013.

Y. Chen, C. Qian, P. Zhang, R. Zhao, J. Lu et al., Fluoride Doping Li4Ti5O12 Nanosheets as Anode Materials for Enhanced Rate Performance of Lithium-Ion Batteries, J. Electroanal. Chem, vol.815, pp.123-129, 2018.

,

D. Guyomard and J. M. Tarascon, Rechargeable Li1 + x Mn2 O 4 / Carbon Cells with a New Electrolyte Composition Potentiostatic Studies and Application to Practical Cells, J. Electrochem. Soc, vol.140, issue.11, pp.3071-3081, 1993.

J. M. Tarascon and D. Guyomard, New Electrolyte Compositions Stable over the 0 to 5 V Voltage Range and Compatible with the Li1+xMn2O4/Carbon Li-Ion Cells. Solid State Ion, vol.69, pp.293-305, 1994.

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev, vol.104, issue.10, pp.4303-4418, 2004.

S. S. Zhang, A Review on Electrolyte Additives for Lithium-Ion Batteries, J. Power Sources, vol.162, issue.2, pp.1379-1394, 2006.

J. W. Gibbs, Scientific Papers of J. Willard Gibbs ...; Longmans, Green and co, 1906.

A. J. Spaull, The Gibbs Treatment of Interfaces, J. Chem. Educ, vol.81, issue.3, p.423, 2004.

R. Jasinski, Advances in Electrochemistry and Electrochemical Engineering, vol.8, 1971.

A. N. Dey and B. P. Sullivan, The Electrochemical Decomposition of Propylene Carbonate on Graphite, J. Electrochem. Soc, vol.117, issue.2, pp.222-224, 1970.

,

E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Model, J. Electrochem. Soc, vol.126, issue.12, pp.2047-2051, 1979.

E. Peled and H. Yamin, Solid Electrolyte Interphase (Sei) Electrodes .1. Kinetics of Lithium in Lialcl4-Socl2, Isr. J. Chem, vol.18, issue.1-2, pp.131-135, 1979.

S. B. Brummer and . Newman,

E. G. Yeager, B. Schumm, G. Blomgren, and . Blankenship,

. Leger,

. Akridge, Proceedings of the Workshop on Lithium Non-Aqueous Battery Electrochemistry, vol.80, 1980.

E. Peled and S. Menkin, Review-SEI: Past, Present and Future, J. Electrochem. Soc, vol.2017, issue.7, pp.1703-1719

, Linden's Handbook of Batteries, 2019.

J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, Filming Mechanism of Lithium-Carbon Anodes in Organic and Inorganic Electrolytes, J. Power Sources, vol.54, issue.2, pp.228-231, 1995.

J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. Möller et al., Ageing Mechanisms in Chapitre I : Bibliographie, p.71

, Lithium-Ion Batteries, J. Power Sources, vol.147, issue.1, pp.269-281, 2005.

K. Edström, M. Herstedt, and D. P. Abraham, A New Look at the Solid Electrolyte Interphase on Graphite Anodes in Li-Ion Batteries, J. Power Sources, vol.153, issue.2, pp.380-384, 2006.

S. Leroy, F. Blanchard, R. Dedryvère, H. Martinez, B. Carré et al., Surface Film Formation on a Graphite Electrode in Li-ion Batteries: AFM and XPS Study, Surf. Interface Anal, vol.37, issue.10, pp.773-781, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01504000

A. Zaban and D. Aurbach, Impedance Spectroscopy of Lithium and Nickel Electrodes in Propylene Carbonate Solutions of Different Lithium Salts A Comparative Study, J. Power Sources, vol.54, issue.2, pp.289-295, 1995.

D. Aurbach, Review of Selected Electrode-Solution Interactions Which Determine the Performance of Li and Li Ion Batteries, J. Power Sources, vol.89, issue.2, pp.431-437, 2000.

A. M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, and K. Edström, Electrochemically Lithiated Graphite Characterised by Photoelectron Spectroscopy, J. Power Sources, pp.522-527, 2003.

P. Verma, P. Maire, and P. Novák, A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries, Electrochimica Acta, vol.55, issue.22, pp.6332-6341, 2010.

R. Dedryvère, S. Laruelle, S. Grugeon, L. Gireaud, J. Tarascon et al., XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode, J. Electrochem. Soc, vol.152, issue.4, pp.689-696, 2005.

A. Augustsson, M. Herstedt, J. Guo, K. Edström, G. V. Zhuang et al., Solid Electrolyte Interphase on Graphite Li-Ion Battery Anodes Studied by Soft X-Ray Spectroscopy, Phys. Chem. Chem. Phys, vol.6, issue.16, pp.4185-4189, 2004.

E. Peled, D. Bar-tow, A. Merson, A. Gladkich, L. Burstein et al., Composition, Depth Profiles and Lateral Distribution of Materials in the SEI Built on HOPG-TOF SIMS and XPS Studies, J. Power Sources, pp.505-510, 2001.

R. Dedryvère, L. Gireaud, S. Grugeon, S. Laruelle, J. Tarascon et al., Characterization of Lithium Alkyl Carbonates by X-Ray Photoelectron Spectroscopy: Experimental and Theoretical Study, J. Phys. Chem. B, issue.33, pp.15868-15875, 2005.

D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-eli, On the Correlation between Surface Chemistry and Performance of Graphite Negative Electrodes for Li Ion Batteries, Electrochimica Acta, vol.45, issue.1, pp.194-196, 1999.

S. Geniès, R. Yazami, J. Garden, J. C. Frison, . Sem et al., Characterization of the Passivation Film on Lithiated Mesocarbon Fibers. Synth. Met, vol.93, issue.2, pp.77-82, 1998.

A. M. Andersson and K. Edström, Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite, J. Electrochem. Soc, vol.148, issue.10, pp.1100-1109, 2001.

D. Aurbach, A. Zaban, Y. Gofer, Y. E. Ely, I. Weissman et al., Abramson, O. Recent Studies of the Lithium-Liquid Electrolyte Interface Electrochemical

, Morphological and Spectral Studies of a Few Important Systems, J. Power Sources, vol.54, issue.1, pp.76-84, 1995.

H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani et al., Degradation Mechanism of Alkyl Carbonate Solvents Used in Lithium-Ion Cells during Initial Charging, J. Power Sources, vol.68, issue.2, pp.2635-2644, 1997.

R. Dedryvère, S. Leroy, H. Martinez, F. Blanchard, D. Lemordant et al., Characterization of Lithium Salts as a Tool to Study Electrode/Electrolyte Interfaces of Li-Ion Batteries, J. Phys. Chem. B, issue.26, pp.12986-12992, 2006.

S. E. Sloop, J. K. Pugh, S. Wang, J. B. Kerr, and K. Kinoshita, Chemical Reactivity of PF 5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions, Electrochem. Solid-State Lett, vol.4, issue.4, pp.42-44, 2001.

K. Tasaki, K. Kanda, S. Nakamura, and M. Ue, Decomposition of LiPF6and Stability of PF 5 in Li-Ion Battery Electrolytes Density Functional Theory and Molecular Dynamics Studies, J. Electrochem. Soc, vol.150, issue.12, pp.1628-1636, 2003.

,

U. Heider, R. Oesten, and M. Jungnitz, Challenge in Manufacturing Electrolyte Solutions for Lithium and Lithium Ion Batteries Quality Control and Minimizing Contamination Level, J. Power Sources, pp.142-143, 1999.

C. L. Campion, W. Li, and B. L. Lucht, Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries, J. Electrochem. Soc, vol.152, issue.12, pp.2327-2334, 2005.

S. Laruelle, S. Pilard, P. Guenot, S. Grugeon, and J. Tarascon, Identification of Li-Based Electrolyte Degradation Products Through DEI and ESI High-Resolution Mass Spectrometry, J. Electrochem. Soc, issue.8, pp.1202-1209, 2004.

,

B. Philippe, Etude d'interfaces Électrode/Électrolyte Dans Des Batteries Li-Ion Par Spectroscopie Photoélectronique à Différentes Profondeurs. thesis, 2013.

J. C. Burns, A. Kassam, N. N. Sinha, L. E. Downie, L. Solnickova et al., Predicting and Extending the Lifetime of Li-Ion Batteries, J. Electrochem. Soc, vol.160, issue.9, pp.1451-1456, 2013.

L. Madec and L. D. Ellis, Exploring Interactions between Electrodes in Li[NixMnyCo1-Xy]O2/Graphite Cells through Electrode/Electrolyte Interfaces Analysis, J. Electrochem. Soc, vol.2017, issue.14, pp.3718-3726

Z. Ding, L. Zhao, L. Suo, Y. Jiao, S. Meng et al., Towards Understanding the Effects of Carbon and Nitrogen-Doped Carbon Coating on the Electrochemical Performance of Li4Ti5O12 in Lithium Ion Batteries: A Combined Experimental and Theoretical Study, Phys. Chem. Chem. Phys, vol.13, issue.33, pp.15127-15133, 2011.

A. Du-pasquier, I. Plitz, S. Menocal, and G. Amatucci, A Comparative Study of Li-Ion Battery, Supercapacitor and Nonaqueous Asymmetric Hybrid Devices for Automotive Applications, J. Power Sources, vol.115, issue.1, pp.718-726, 2003.

L. Zhang, S. Zhang, Q. Zhou, K. Snyder, and T. Miller, Electrolytic Solvent Effects on the Gassing Behavior in LCO||LTO Batteries, Electrochimica Acta, vol.274, pp.170-176, 2018.

X. Li, J. Xu, P. Huang, W. Yang, Z. Wang et al.,

I. Chapitre, , p.73

, Anode Material and Suppress the Electrolyte Reduction Decomposition on the Electrode

, Electrochimica Acta, vol.190, pp.69-75, 2016.

P. K. Alaboina, Y. Ge, M. Uddin, Y. Liu, D. Lee et al., Nanoscale Porous Lithium Titanate Anode for Superior High Temperature Performance, ACS Appl. Mater. Interfaces, vol.8, issue.19, pp.12127-12133, 2016.

,

X. Lu, L. Gu, Y. Hu, H. Chiu, H. Li et al., New Insight into the Atomic-Scale Bulk and Surface Structure Evolution of Li4Ti5O12 Anode, J. Am. Chem. Soc, vol.137, issue.4, pp.1581-1586, 2015.

J. Liu, P. Bian, J. Li, W. Ji, H. Hao et al., Gassing Behavior of Lithium Titanate Based Lithium Ion Batteries with Different Types of Electrolytes, J. Power Sources, vol.286, pp.380-387, 2015.

C. P. Han, Y. B. He, H. F. Li, B. H. Li, H. D. Du et al., Suppression of Interfacial Reactions between Li4Ti5O12 Electrode and Electrolyte Solution via Zinc Oxide Coating, Electrochimica Acta, vol.157, pp.266-273, 2015.

J. Gao, B. Gong, Q. Zhang, G. Wang, Y. Dai et al., Study of the Surface Reaction Mechanism of Li4Ti5O12 Anode for Lithium-Ion Cells, Ionics, vol.2015, issue.21, pp.2409-2416

C. R. Fell, L. Sun, P. B. Hallac, B. Metz, and B. Sisk, Investigation of the Gas Generation in Lithium Titanate Anode Based Lithium Ion Batteries, J. Electrochem. Soc, vol.162, issue.9, 2015.

L. Chancelier, A. Benayad, T. Gutel, S. Mailley, and C. C. Santini, Characterization of LTO//NMC Batteries Containing Ionic Liquid or Carbonate Electrolytes after Cycling and Overcharge, J. Electrochem. Soc, vol.162, issue.6, pp.1008-1013, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02087071

,

R. Bernhard, M. Metzger, and H. A. Gasteiger, Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry, J. Electrochem. Soc, vol.162, issue.10, pp.1984-1989, 2015.

R. Bernhard, S. Meini, and H. A. Gasteiger, On-Line Electrochemical Mass Spectrometry Investigations on the Gassing Behavior of Li4Ti5O12 Electrodes and Its Origins, A497-A505, vol.161, 2014.

K. Wu, J. Yang, X. Qiu, J. Xu, Q. Zhang et al., Study of Spinel Li4Ti5O12 Electrode Reaction Mechanism by Electrochemical Impedance Spectroscopy, Electrochimica Acta, vol.108, pp.841-851, 2013.

,

J. Guo, W. Zuo, Y. Cai, S. Chen, S. Zhang et al., A Novel Li4Ti5O12-Based High-Performance Lithium-Ion Electrode at Elevated Temperature, J. Mater. Chem. A, vol.2015, issue.9, pp.4938-4944

S. E. Sloop, J. B. Kerr, and K. Kinoshita, The Role of Li-Ion Battery Electrolyte Reactivity in Performance Decline and Self-Discharge, J. Power Sources, pp.149-155, 2003.

K. Wu, J. Yang, Y. Liu, Y. Zhang, C. Wang et al.,

, J. Power Sources, vol.237, pp.285-290, 2013.

J. C. Burns, N. N. Sinha, G. Jain, H. Ye, C. M. Vanelzen et al., The Impact of Intentionally Added Water to the Electrolyte of Li-Ion Cells II. Cells with Lithium Titanate Negative Electrodes, J. Electrochem. Soc, vol.161, issue.3, pp.247-255, 2014.

, Chapitre I : Bibliographie, vol.74

M. He, E. Castel, A. Laumann, G. Nuspl, P. Novák et al., Situ Gas Analysis of Li4Ti5O12 Based Electrodes at Elevated Temperatures, J. Electrochem. Soc, vol.162, issue.6, pp.870-876, 2015.

M. Kitta, T. Matsuda, Y. Maeda, T. Akita, S. Tanaka et al., Atomistic Structure of a Spinel Li4Ti5O12(111) Surface Elucidated by Scanning Tunneling Microscopy and Medium Energy Ion Scattering Spectrometry, Surf. Sci, vol.619, pp.5-9, 2014.

M. Liu, Y. B. He, W. Lv, C. Zhang, H. D. Du et al., High Catalytic Activity of Anatase Titanium Dioxide for Decomposition of Electrolyte Solution in Lithium Ion Battery, J. Power Sources, vol.268, pp.882-886, 2014.

B. Simon, J. Boeuve, B. Simon, and J. Boeuve, Rechargeable Lithium Electrochemical Cell. US5626981A, 1997.

D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt et al., On the Use of Vinylene Carbonate (VC) as an Additive to Electrolyte Solutions for Li-Ion Batteries, Electrochimica Acta, vol.47, issue.9, pp.858-859, 2002.

M. Contestabile, M. Morselli, R. Paraventi, and R. J. Neat, A Comparative Study on the Effect of Electrolyte/Additives on the Performance of ICP383562 Li-Ion Polymer (Soft-Pack) Cells, J. Power Sources, issue.03, pp.292-293, 2003.

D. Aurbach, J. S. Gnanaraj, W. Geissler, and M. Schmidt, Vinylene Carbonate and Li Salicylatoborate as Additives in LiPF3 ( CF 2 CF 3 ) 3 Solutions for Rechargeable Li-Ion Batteries, J. Electrochem. Soc, vol.151, issue.1, pp.23-30, 2004.

,

T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, and Z. Ogumi, Suppression of an Alkyl Dicarbonate Formation in Li-Ion Cells, J. Electrochem. Soc, vol.152, issue.10, 2005.

G. Chen, G. V. Zhuang, T. J. Richardson, G. Liu, and P. N. Ross, Anodic Polymerization of Vinyl Ethylene Carbonate in Li-Ion Battery Electrolyte, Electrochem. Solid-State Lett, vol.8, issue.7, pp.344-347, 2005.

Y. Hu, W. Kong, Z. Wang, H. Li, X. Huang et al., Effect of Morphology and Current Density on the Electrochemical Behavior of Graphite Electrodes in PC-Based Electrolyte Containing VEC Additive, Electrochem. Solid-State Lett, vol.7, issue.11, pp.442-446, 2004.

J. Lee, Y. Lin, and Y. Jan, Allyl Ethyl Carbonate as an Additive for Lithium-Ion Battery Electrolytes, J. Power Sources, vol.132, issue.1, pp.244-248, 2004.

,

K. Abe, H. Yoshitake, T. Kitakura, T. Hattori, H. Wang et al., Additives-Containing Functional Electrolytes for Suppressing Electrolyte Decomposition in Lithium-Ion Batteries, Electrochimica Acta, vol.49, issue.26, pp.4613-4622, 2004.

Y. Ein-eli, S. R. Thomas, and V. R. Koch, New Electrolyte System for Li-Ion Battery, J. Electrochem. Soc, vol.143, issue.9, pp.195-197, 1996.

Y. Ein-eli, S. R. Thomas, and V. R. Koch, The Role of SO 2 as an Additive to Organic Li-Ion Battery Electrolytes, J. Electrochem. Soc, vol.144, issue.4, pp.1159-1165, 1997.

Y. Ein-eli and . Dithiocarbonic-anhydride, CS2)-a New Additive in Li-Ion Battery Electrolytes, J. Electroanal. Chem, vol.531, issue.1, p.1046, 2002.

J. O. Besenhard, M. W. Wagner, M. Winter, A. D. Jannakoudakis, P. D. Jannakoudakis et al., Inorganic Film-Forming Electrolyte Additives Improving the Cycling Behaviour of Metallic Lithium Electrodes and the Self-Discharge of Carbon-Lithium Electrodes, J. Power Sources, vol.44, issue.1, p.80183, 1993.

M. W. Wagner, C. Liebenow, and J. O. Besenhard, Effect of Polysulfide-Containing Electrolyte on the Film Formation of the Negative Electrode, J. Power Sources, vol.68, issue.2, pp.328-332, 1997.

G. H. Wrodnigg, J. O. Besenhard, and M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with Graphitic Anodes, J. Electrochem. Soc, vol.146, issue.2, pp.470-472, 1999.

R. Mogi, M. Inaba, S. Jeong, Y. Iriyama, T. Abe et al., Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate, J. Electrochem. Soc, issue.12, pp.1578-1583, 2002.

G. H. Wrodnigg, J. O. Besenhard, and M. Winter, Cyclic and Acyclic Sulfites: New Solvents and Electrolyte Additives for Lithium Ion Batteries with Graphitic Anodes?, J. Power Sources, pp.592-594, 2001.

H. Gan, E. S. Takeuchi, H. Gan, and E. S. Takeuchi, Nitrate Additives for Nonaqueous Electrolyte Rechargeable Cells. US6136477A, 2000.

Z. X. Shu, R. S. Mcmillan, J. J. Murray, and I. J. Davidson, Use of Chloroethylene Carbonate as an Electrolyte Solvent for a Lithium Ion Battery Containing a Graphitic Anode, J. Electrochem. Soc, vol.142, issue.9, pp.161-162, 1995.

,

Z. X. Shu, R. S. Mcmillan, J. J. Murray, and I. J. Davidson, Use of Chloroethylene Carbonate as an Electrolyte Solvent for a Graphite Anode in a Lithium-Ion Battery, J. Electrochem. Soc, vol.143, issue.7, pp.2230-2235, 1996.

R. Mcmillan, H. Slegr, Z. X. Shu, and W. Wang, Fluoroethylene Carbonate Electrolyte and Its Use in Lithium Ion Batteries with Graphite Anodes, J. Power Sources, pp.201-209, 1999.

A. Naji, J. Ghanbaja, P. Willmann, and D. Billaud, New Halogenated Additives to Propylene Carbonate-Based Electrolytes for Lithium-Ion Batteries, Electrochimica Acta, vol.45, issue.12, pp.410-417, 2000.

A. Schiele, B. Breitung, T. Hatsukade, B. B. Berkes, P. Hartmann et al., The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries, ACS Energy Lett, vol.2017, issue.10, pp.2228-2233

E. Markevich, G. Salitra, K. Fridman, R. Sharabi, G. Gershinsky et al., Fluoroethylene Carbonate as an Important Component in Electrolyte Solutions for High-Voltage Lithium Batteries: Role of Surface Chemistry on the Cathode, Langmuir, vol.30, issue.25, pp.7414-7424, 2014.

Y. Xu, J. Liu, L. Zhou, L. Zeng, and Z. Yang, FEC as the Additive of 5V Electrolyte and Its Electrochemical Performance for LiNi0.5Mn1.5O4, J. Electroanal. Chem, vol.791, pp.109-116, 2017.

D. Liu, K. Qian, Y. He, D. Luo, H. Li et al., Positive Film-Forming Effect of Fluoroethylene Carbonate (FEC) on High-Voltage Cycling with Three-Electrode LiCoO2/Graphite Pouch Cell, Electrochimica Acta, vol.269, pp.378-387, 2018.

H. Liang, Z. Wang, H. Guo, J. Wang, and J. Leng, Improvement in the Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Material by Li2ZrO3 Coating, Appl. Surf. Sci, vol.423, pp.1045-1053, 2017.

K. Park, J. Park, B. Choi, J. H. Kim, S. Hong et al., Metal Phosphate-Coated Ni-Rich Layered Oxide Positive Electrode Materials for Li-Ion Batteries: Improved Electrochemical Performance and Decreased Li Residuals Content

, Electrochimica Acta, vol.257, pp.217-223, 2017.

T. Nakajima, M. Koh, R. N. Singh, and M. Shimada, Electrochemical Behavior of Surface-Fluorinated Graphite, Electrochimica Acta, vol.44, issue.17, pp.2879-2888, 1999.

T. Nakajima, V. Gupta, Y. Ohzawa, H. Iwata, A. Tressaud et al., Electrochemical Properties and Structures of Surface-Fluorinated Graphite for the Lithium Ion Secondary Battery, J. Fluor. Chem, vol.114, issue.2, pp.209-214, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00818422

T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh et al., Electrochemical Behavior of Plasma-Fluorinated Graphite for Lithium Ion Batteries, J. Power Sources, vol.104, issue.1, pp.895-898, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00708244

T. Nakajima, A. Ueno, T. Achiha, Y. Ohzawa, and M. Endo, Effect of Surface Fluorination and Conductive Additives on the Electrochemical Behavior of Lithium Titanate (Li4/3Ti5/3O4) for Lithium Ion Battery, J. Fluor. Chem, vol.130, pp.810-815, 2009.

M. Saito, Y. Nakano, M. Takagi, T. Maekawa, A. Tasaka et al., Effect of Surface Fluorination on the Charge/Discharge Properties of High Potential Negative Electrode TiO2(B) for LIBs, Key Eng. Mater, vol.582, pp.127-130, 2014.

Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yan et al., Enhanced Rate Capability and Low-Temperature Performance of Li4Ti5O12 Anode Material by Facile Surface Fluorination, ACS Appl. Mater. Interfaces, vol.2017, issue.20, pp.17145-17154

J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen et al., Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability, J. Am. Chem. Soc, vol.139, issue.33, pp.11550-11558, 2017.

J. Lang, Y. Long, J. Qu, X. Luo, H. Wei et al., One-Pot Solution Coating of High Quality LiF Layer to Stabilize Li Metal Anode, Energy Storage Mater, vol.16, pp.85-90, 2019.

,

H. Park and W. Choi, Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors, J. Phys. Chem. B, vol.108, pp.4086-4093, 2004.

T. Nordh, R. Younesi, M. Hahlin, R. F. Duarte, C. Tengstedt et al., Manganese in the SEI Layer of Li4Ti5O12 Studied by Combined NEXAFS and HAXPES Techniques, J. Phys. Chem. C, vol.2016, issue.6, pp.3206-3213

J. Gieu, V. Winkler, C. Courrèges, L. E. Ouatani, C. Tessier et al., New Insights into the Characterization of the Electrode/Electrolyte Interfaces within LiMn2O4/Li4Ti5O12 Cells, by X-Ray Photoelectron Spectroscopy, Scanning Auger Microscopy and Time-of-Flight Secondary Ion Mass Spectrometry, J. Mater. Chem. A, vol.2017, issue.29, pp.15315-15325
URL : https://hal.archives-ouvertes.fr/hal-01622272

M. Ueda, M. Ohe, J. Kim, S. Yonezawa, and M. Takashima, Effects of Surface Fluorination on the Electrochemical Properties and Thermal Stability of LiFePO4 Cathode Références du chapitre II

T. Khoa-le, D. Flahaut, D. Foix, S. Blanc, H. K. Hung-nguyen et al., Study of Surface Fluorination of Photocatalytic TiO2 by Thermal Shock Method, J. Solid State Chem, vol.187, pp.300-308, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01499189

,

J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen et al., Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability, J. Am. Chem. Soc, vol.139, issue.33, pp.11550-11558, 2017.

T. Nakajima, M. Koh, R. N. Singh, and M. Shimada, Electrochemical Behavior of Surface-Fluorinated Graphite, Electrochimica Acta, vol.44, issue.17, pp.2879-2888, 1999.

Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yan et al., Enhanced Rate Capability and Low-Temperature Performance of Li4Ti5O12 Anode Material by Facile Surface Fluorination, ACS Appl. Mater. Interfaces, vol.2017, issue.20, pp.17145-17154

T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh et al., Electrochemical Behavior of Plasma-Fluorinated Graphite for Lithium Ion Batteries, J. Power Sources, vol.104, issue.1, pp.895-898, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00708244

T. Nakajima, V. Gupta, Y. Ohzawa, H. Iwata, A. Tressaud et al., Electrochemical Properties and Structures of Surface-Fluorinated Graphite for the Lithium Ion Secondary Battery, J. Fluor. Chem, vol.114, issue.2, pp.28-31, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00818422

G. K. Johnson, J. G. Malm, and W. N. Hubbard, The Enthalpies of Formation of XeF6(c), XeF4(c), XeF2(c), and PF3(g), J. Chem. Thermodyn, vol.1972, issue.6, pp.90010-90019

M. Tramsek,

B. ?emva, Synthesis, Properties and Chemistry of Xenon(II) Fluoride, Acta Chim Slov, vol.53, pp.105-116, 2006.

N. S. Chilingarov, J. V. Rau, L. N. Sidorov, L. Bencze, A. Popovic et al., Atomic Fluorine in Thermal Reactions Involving Solid TbF4, J. Fluor. Chem, vol.104, issue.2, pp.259-260, 2000.

W. Liu, X. Huang, L. Guobao, Z. Wang, H. Huang et al., Electrochemical and X-Ray Photospectroscopy Studies of Polytetrafluoroethylene and Polyvinylidene Fluoride in Li/C Batteries, J. Power Sources, vol.68, issue.2, pp.344-347, 1997.

, IUPAC Compendium of Analytical Nomenclature, Definitive Rules, 1997.

B. J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman et al., Molecular Spectroscopy by Means of ESCA. Phys. Scr, vol.1, pp.286-298, 1970.

D. A. Shirley and . Esca, Advances in Chemical Physics

, , pp.85-159, 2007.

S. E. Evans and . Spectroscopy, Theory, Techniques and Application, vol.3

C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy

K. Siegbahn, C. N. Nordling, K. Hamrin, J. Hedman, G. Johansson et al., ESCA, Atomic, Molecular, and Solid State Structure Studied by Means of Electron Spectroscopy, 1967.

A. G. Shard, J. D. Counsell, D. J. Cant, E. F. Smith, P. Navabpour et al., Intensity Calibration and Sensitivity Factors for XPS Instruments with Monochromatic Ag L? and Al K? Sources, Surf. Interface Anal, vol.51, issue.7, pp.763-773, 2019.

J. H. Scofield and . Hartree-slater, Subshell Photoionization Cross-Sections at 1254 and 1487 EV, J. Electron Spectrosc. Relat. Phenom, vol.8, issue.2, pp.80015-80016, 1976.

D. Briggs and J. Grant, Surface Analysis. Surf. Spectra IM Publ, 2003.

C. Gressus, Spectroscopie Des Électrons Auger, No. P2620V2, pp.1-16, 1990.

M. M. El-gomati, M. Prutton, B. Lamb, and C. G. Tuppen, Edge Effects and Image Contrast in Scanning Auger Microscopy: A Theory/Experiment Comparison, Surf. Interface Anal, vol.11, issue.5, pp.251-265, 1988.

M. P. Seah, Quantitative AES and XPS: Convergence between Theory and Experimental Databases, J. Electron Spectrosc. Relat. Phenom, vol.100, issue.1, pp.40-47, 1999.

K. Tsutsumi, N. Ikeo, and Y. Nagasawa, Peak Deconvolution Analysis in Auger Electron Spectroscopy, JEOL News, vol.37, issue.1, p.66, 2002.

R. Kosiba, J. Liday, G. Ecke, O. Ambacher, J. Breza et al., Quantitative Auger Electron Spectroscopy of SiC, Vacuum, vol.80, issue.9, pp.990-995, 2006.

,

, Surface Chemical Analysis -Auger Electron Spectroscopy and X-Ray Photoelectron Spectroscopy -Guide to the Use of Experimentally Determined Relative Sensivity Factors for the Quantitative of Homogeneous Materials, Int. Organ. Stand, issue.18118, 2015.

R. Castaing, Application Des Sondes Electroniques à Une Méthode d'Analyse Ponctuelle Chimique et Cristallographique, 1951.

T. Madey and Y. Jr, Electron-Stimulated Desorption as a Tool for Studies of Chemisorption: A Review, J. Vac. Sci. Technol, vol.8, p.525, 1971.

J. K. Sharma, B. R. Chakraborty, and S. M. Shivaprasad, Electron-stimulated Desorption of Fluorine from Barium Fluoride Films Deposited on Silicon Substrates, J. Appl. Phys, vol.68, issue.5, pp.2489-2492, 1990.

Y. He, B. Li, M. Liu, C. Zhang, W. Lv et al., Gassing in Li(4)Ti(5)O(12)-Based Batteries and Its Remedy, Sci. Rep, vol.2, p.913, 2012.

I. Chapitre, Composés de référence pour l'étude des effets de la fluoration par

J. C. Parlebas, M. A. Khan, T. Uozumi, K. Okada, and A. Kotani, Theory of Many-Body Effects in Valence, Core-Level and Isochromat Spectroscopies along the 3d Transition Metal Series of Oxides, J. Electron Spectrosc. Relat. Phenom, vol.71, issue.2, pp.117-139, 1995.

T. Khoa-le, D. Flahaut, D. Foix, S. Blanc, H. K. Hung-nguyen et al., Study of Surface Fluorination of Photocatalytic TiO2 by Thermal Shock Method, J. Solid State Chem, vol.187, pp.300-308, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01499189

,

M. C. Biesinger, L. W. Lau, A. R. Gerson, R. Smart, and . St, Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides, Cu and Zn. Appl. Surf. Sci, vol.2010, issue.3, pp.887-898

D. Briggs and G. Beamson, XPS Studies of the Oxygen 1s and 2s Levels in a Wide Range of Functional Polymers, Anal. Chem, issue.11, pp.1517-1523, 1993.

D. Kim, H. Shiiba, N. Zettsu, T. Yamada, T. Kimijima et al., Full Picture Discovery for Mixed-Fluorine Anion Effects on High-Voltage Spinel Lithium Nickel Manganese Oxide Cathodes, NPG Asia Mater, vol.2017, issue.7

P. Verma, P. Maire, and P. Novák, A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries, Electrochimica Acta, vol.55, issue.22, pp.6332-6341, 2010.

B. Philippe, R. Dedryvère, M. Gorgoi, H. Rensmo, D. Gonbeau et al., Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries -A Photoelectron Spectroscopy Study, Chem. Mater, vol.25, issue.3, pp.394-404, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01560421

B. Philippe, R. Dedryvère, M. Gorgoi, H. Rensmo, D. Gonbeau et al., Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study, J. Am. Chem. Soc, vol.135, issue.26, pp.9829-9842, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01560423

B. Philippe, R. Dedryvère, J. Allouche, F. Lindgren, M. Gorgoi et al., Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-Ray Photoelectron Spectroscopy, Chem. Mater, vol.2012, issue.6, pp.1107-1115
URL : https://hal.archives-ouvertes.fr/hal-01560424

L. Castro, R. Dedryvère, J. Ledeuil, J. Bréger, C. Tessier et al., Aging Mechanisms of LiFePO4 // Graphite Cells Studied by XPS: Redox Reaction and Electrode/Electrolyte Interfaces, J. Electrochem. Soc, vol.2012, issue.4, pp.357-363

A. Guéguen, L. Castro, R. Dedryvère, E. Dumont, J. Bréger et al., The Electrode/Electrolyte Reactivity of LiFe0.33Mn0.67PO4 Compared to LiFePO4, J. Electrochem. Soc, vol.160, issue.2, pp.387-393, 2013.

J. Gieu, C. Courrèges, L. El-ouatani, C. Tessier, and H. Martinez, Temperature Effects on Li4Ti5O12 Electrode/Electrolyte Interfaces at the First Cycle: A X-Ray Photoelectron Spectroscopy and Scanning Auger Microscopy Study, J. Power Sources, vol.318, pp.291-301, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01622408

J. Gieu, C. Courrèges, L. E. Ouatani, C. Tessier, and H. Martinez, Influence of Vinylene Carbonate Additive on the Li4Ti5O12 Electrode/Electrolyte Interface for Lithium-Ion Chapitre III : Composés de référence pour l'étude des effets de la fluoration par spectroscopies 172

, Batteries. J. Electrochem. Soc, vol.2017, issue.6, pp.1314-1320

,

J. Gieu, V. Winkler, C. Courrèges, L. E. Ouatani, C. Tessier et al., New Insights into the Characterization of the Electrode/Electrolyte Interfaces within LiMn2O4/Li4Ti5O12 Cells, by X-Ray Photoelectron Spectroscopy, Scanning Auger Microscopy and Time-of-Flight Secondary Ion Mass Spectrometry, J. Mater. Chem. A, vol.2017, issue.29, pp.15315-15325
URL : https://hal.archives-ouvertes.fr/hal-01622272

S. Verdier, L. E. Ouatani, R. Dedryvère, F. Bonhomme, P. Biensan et al., XPS Study on Al2O3-and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries, J. Electrochem. Soc, vol.154, issue.12, pp.1088-1099, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01560697

,

A. P. Grosvenor, M. C. Biesinger, R. Smart, . C. St, and N. S. Mcintyre, New Interpretations of XPS Spectra of Nickel Metal and Oxides, Surf. Sci, vol.600, issue.9, pp.1771-1779, 2006.

L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage et al., Electron Transfer Mechanisms upon Lithium Deintercalation from LiCoO2 to CoO2 Investigated by XPS, Chem. Mater, vol.20, issue.2, pp.583-590, 2008.

Z. Wang, B. Huang, H. Huang, R. Xue, L. Chen et al., A Vibrational Spectroscopic Study on the Interaction Between Lithium Salt and Ethylene Carbonate Plasticizer for PAN-Based Electrolytes, J. Electrochem. Soc, vol.143, issue.5, pp.1510-1514, 1996.

Z. Wang, X. Huang, and L. Chen, Performance Improvement of Surface-Modified LiCoO2 Cathode Materials: An Infrared Absorption and X-Ray Photoelectron Spectroscopic Investigation, J. Electrochem. Soc, vol.150, issue.2, pp.199-208, 2003.

,

Y. Ikezawa and H. Nishi, Situ FTIR Study of the Cu Electrode/Ethylene Carbonate+dimethyl Carbonate Solution Interface, Electrochimica Acta, vol.53, issue.10, pp.3663-3669, 2008.

J. Li, S. Chen, X. Fan, L. Huang, and S. Sun, Studies of the Interfacial Properties of an Electroplated Sn Thin Film Electrode/Electrolyte Using in Situ MFTIRS and EQCM, Langmuir, vol.23, issue.26, pp.13174-13180, 2007.

L. Doucey, M. Revault, A. Lautié, A. Chaussé, and R. Messina, A Study of the Li/Li+ Couple in DMC and PC Solvents: Part 1: Characterization of LiAsF6/DMC and LiAsF6/PC Solutions, Electrochimica Acta, vol.44, issue.14, pp.2371-2377, 1999.

R. Aroca, M. Nazri, G. A. Nazri, A. J. Camargo, and M. Trsic, Vibrational Spectra and Ion-Pair Properties of Lithium Hexafluorophosphate in Ethylene Carbonate Based Mixed-Solvent Systems for Lithium Batteries, J. Solut. Chem, vol.29, issue.10, pp.1047-1060, 2000.

C. Zhao, L. Liu, Q. Zhang, J. Rogers, H. Zhao et al., Synthesis of Carbon-TiO 2 Nanocomposites with Enhanced Reversible Capacity and Cyclic Performance as Anodes for Lithium-Ion Batteries, Electrochimica Acta, vol.155, p.288, 2015.

Q. Tian, J. Yan, L. Yang, and J. Chen, Fabrication of Three-Dimensional Carbon Coating for SnO 2 /TiO 2 Hybrid Anode Material of Lithium-Ion Batteries, Electrochimica Acta, vol.282, p.38, 2018.

L. Wang, Y. Wu, J. Han, B. Zhang, X. Bai et al., Enhancing the Electrochemical Performance of Commercial TiO 2 by Eliminating Sulfate Radicals and Coating Carbon, Electrochimica Acta, vol.245, p.186, 2017.

M. He, Q. Sa, G. Liu, and Y. Wang, Caramel Popcorn Shaped Silicon Particle with Carbon Coating as a High Performance Anode Material for Li-Ion Batteries, ACS Appl. Mater. Interfaces, vol.5, issue.21, p.11152, 2013.

J. Cho, Y. J. Kim, and B. Park, Novel LiCoO 2 Cathode Material with Al2O3 Coating for a Li Ion Cell, Chem. Mater, vol.12, issue.12, p.3788, 2000.

N. Andreu, D. Flahaut, R. Dedryvère, M. Minvielle, H. Martinez et al., XPS Investigation of Surface Reactivity of Electrode Materials: Effect of the Transition Metal, ACS Appl. Mater. Interfaces, vol.7, issue.12, p.6629, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489307

J. Xiang, C. Chang, L. Yuan, and J. Sun, A Simple and Effective Strategy to Synthesize Al2O3-Coated LiNi 0.8 Co 0.2 O 2 Cathode Materials for Lithium Ion Battery, Electrochem. Commun, vol.10, issue.9, p.1360, 2008.

A. M. Wise, C. Ban, J. N. Weker, S. Misra, A. S. Cavanagh et al., Effect of Al2O3 Coating on Stabilizing LiNi 0.4 Mn 0.4 Co 0.2 O 2 Cathodes, Chem. Mater, vol.27, issue.17, p.6146, 2015.

A. Friesen, S. Hildebrand, F. Horsthemke, M. Börner, R. Klöpsch et al., Al2O3 Coating on Anode Surface in Lithium Ion Batteries: Impact on Low Temperature Cycling and Safety Behavior, J. Power Sources, vol.363, p.70, 2017.

I. Ullah, Y. Xu, X. Du, X. Sun, W. Ur-rehman et al., Al2O3 Coated Mn3O4@C Composite for LIBs Anode with Enhanced Cycling Stability and Rate Performance, Solid State Ion, vol.320, p.226, 2018.

L. Hu, P. Brüner, T. Grehl, H. H. Brongersma, and J. Cabana, Control of Chemical Structure in Core-Shell Nanocrystals for the Stabilization of Battery Electrode/Electrolyte Interfaces, Chem. Mater, vol.29, issue.14, p.5896, 2017.

D. M. Stanbury, Reduction Potentials Involving Inorganic Free Radicals in Aqueous Solution, Advances in Inorganic Chemistry, vol.33, p.69, 1989.

M. Saito, Y. Nakano, M. Takagi, T. Maekawa, A. Tasaka et al., Effect of Surface Fluorination on the Charge/Discharge Properties of High Potential Negative Electrode TiO 2 (B) for LIBs, Key Eng. Mater, vol.582, p.127, 2014.

D. Deng, M. G. Kim, J. Y. Lee, and J. Cho, Green Energy Storage Materials: Nanostructured TiO 2 and Sn-Based Anodes for Lithium-Ion Batteries, Energy Environ. Sci, vol.2, issue.8, p.818, 2009.

T. Le, D. Flahaut, D. Foix, S. Blanc, H. K. Hung-nguyen et al., Study of Surface Fluorination of Photocatalytic TiO 2 by Thermal Shock Method, J. Solid State Chem, vol.187, p.300, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01499189

J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen et al., Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability, J. Am. Chem. Soc, vol.139, issue.33, p.11550, 2017.

T. Nakajima, M. Koh, R. N. Singh, and M. Shimada, Electrochemical Behavior of Surface-Fluorinated Graphite, Electrochimica Acta, vol.44, issue.17, p.2879, 1999.

Y. Zhang, Y. Luo, Y. Chen, T. Lu, L. Yan et al., Enhanced Rate Capability and Low-Temperature Performance of Li4Ti5O12 Anode Material by Facile Surface Fluorination, ACS Appl. Mater. Interfaces, vol.9, issue.20, p.17145, 2017.

T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh et al., Electrochemical Behavior of Plasma-Fluorinated Graphite for Lithium Ion Batteries, J. Power Sources, vol.104, issue.1, p.108, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00708244

, IP A1914 Journal of The Electrochemical Society, vol.166, issue.10, pp.1905-1914, 2019.

T. Nakajima, V. Gupta, Y. Ohzawa, H. Iwata, A. Tressaud et al., Electrochemical Properties and Structures of Surface-Fluorinated Graphite for the Lithium Ion Secondary Battery, J. Fluor. Chem, vol.114, issue.2, p.209, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00818422

J. G. Malm, H. Selig, J. Jortner, and S. A. Rice, The Chemistry of Xenon, Chem. Rev, vol.65, issue.2, p.199, 1965.

D. A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, vol.5, issue.12, p.4709, 1972.

J. H. Scofield, Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 EV, J. Electron Spectrosc. Relat. Phenom, vol.8, issue.2, p.129, 1976.

J. Zhang, X. Yan, J. Zhang, W. Cai, Z. Wu et al., Preparation and Electrochemical Performance of TiO 2 /C Composite Nanotubes as Anode Materials of Lithium-Ion Batteries, J. Power Sources, vol.198, p.223, 2012.

L. Shen, E. Uchaker, C. Yuan, P. Nie, M. Zhang et al., Three-Dimensional Coherent Titania-Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties, ACS Appl. Mater. Interfaces, vol.4, issue.6, p.2985, 2012.

W. Liu, X. Huang, L. Guobao, Z. Wang, H. Huang et al., Electrochemical and X-Ray Photospectroscopy Studies of Polytetrafluoroethylene and Polyvinylidene Fluoride in Li/C Batteries, J. Power Sources, vol.68, issue.2, p.344, 1997.

M. C. Biesinger, L. W. Lau, A. R. Gerson, R. S. Smart, and Z. , Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides, Appl. Surf. Sci, vol.257, issue.3, p.887, 2010.

D. Briggs and G. Beamson, XPS Studies of the Oxygen 1s and 2s Levels in a Wide Range of Functional Polymers, Anal. Chem, vol.65, issue.11, p.1517, 1993.

J. C. Parlebas, M. A. Khan, T. Uozumi, K. Okada, and A. Kotani, Theory of Many-Body Effects in Valence, Core-Level and Isochromat Spectroscopies along the 3d

, Transition Metal Series of Oxides, J. Electron Spectrosc. Relat. Phenom, vol.71, issue.2, p.117, 1995.

N. Gauthier, C. Courrèges, L. Goubault, J. Demeaux, C. Tessier et al., Influence of the Positive Electrode on Li4Ti5O12 (LTO) Electrode/Electrolyte Interfaces in Li-Ion Batteries, Journal of The Electrochemical Society, vol.13, p.165, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01999897

J. C. Yu, L. Zhang, Z. Zheng, and J. Zhao, Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity, Chem. Mater, vol.15, issue.11, p.2280, 2003.

T. K. Le, D. Flahaut, H. Martinez, T. Pigot, H. K. Nguyen et al., Surface Fluorination of Single-Phase TiO 2 by Thermal Shock Method for Enhanced UV and Visible Light Induced Photocatalytic Activity, Appl. Catal. B Environ, vol.144, p.1, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01499187

D. Briggs and G. Beamson, Primary and Secondary Oxygen-Induced C1s Binding Energy Shifts in x-Ray Photoelectron Spectroscopy of Polymers, Anal. Chem, vol.64, issue.15, p.1729, 1992.

H. Hantsche, High Resolution XPS of Organic Polymers, the Scienta ESCA300 Database, p.295, 1992.

. Pp and . Hardcover, Adv. Mater, vol.00, issue.10, p.778, 1993.

J. K. Sharma, B. R. Chakraborty, and S. M. Shivaprasad, Electron-stimulated Desorption of Fluorine from Barium Fluoride Films Deposited on Silicon Substrates, J. Appl. Phys, vol.68, issue.5, p.2489, 1990.

P. W. Palmberg, Handbook of Auger Electron Spectroscopy: A Reference Book of Standard Data for Identification and Interpretation of Auger Electron Spectroscopy Data, 1972.

K. M. Colbow, J. R. Dahn, and R. R. Haering, Structure and Electrochemistry of the Spinel Oxides LiTi2O4 and Li4/3Ti5/3O4, J. Power Sources, vol.26, issue.3-4, pp.397-402, 1989.

T. Ohzuku, A. Ueda, and N. Yamamoto, Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells, J. Electrochem. Soc, vol.142, issue.5, pp.1431-1435, 1995.

C. Pillot, Battery Market Development for Consumer Electronics, Automotive, and Industrial: Materials Requirements and Trends. Lecture given by Avicenne Energy at Quinghai EV Rally, 2015.

C. Pillot, Batteries, 2014.

C. Pillot, The worldwide battery market 2011-2025, Batteries, 2012.

G. Zhu, L. Chen, Y. Wang, C. Wang, R. Che et al., Binary Li4Ti5O12-Li2Ti3O7 Nanocomposite as an Anode Material for Li-Ion Batteries, Adv. Funct. Mater, vol.23, issue.5, pp.640-647, 2013.

L. Zhao, Y. Hu, H. Li, Z. Wang, and L. Chen, Porous Li4Ti5O12 Coated with N-Doped Carbon from Ionic Liquids for Li-Ion Batteries, Adv. Mater, vol.23, issue.11, pp.1385-1388, 2011.

J. Gieu, C. Courrèges, L. El-ouatani, C. Tessier, and H. Martinez, Temperature effects on Li4Ti5O12 electrode/electrolyte interfaces at the first cycle: An X-ray Photoelectron Spectroscopy and Scanning Auger Microscopy study, J. Power Sources, vol.318, pp.291-301, 2016.

J. Gieu, C. Courrèges, L. E. Ouatani, C. Tessier, and H. Martinez, Influence of Vinylene Carbonate Additive on the Li4Ti5O12 Electrode/Electrolyte Interface for Lithium-Ion Batteries, J. Electrochem. Soc, vol.2017, issue.6, pp.1314-1320
URL : https://hal.archives-ouvertes.fr/hal-01530950

J. B. Gieu, V. Winkler, C. Courreges, L. El-ouatani, C. Tessier et al., New insights into the characterization of the electrode/electrolyte interfaces within LiMn2O4/Li4Ti5O12 cells, by X-ray photoelectron spectroscopy, scanning Auger microscopy and time-of-flight secondary ion mass spectrometry, J. Mater. Chem. A, vol.2017, issue.29, pp.15315-15325
URL : https://hal.archives-ouvertes.fr/hal-01622272

R. Dedryvere, D. Foix, S. Franger, S. Patoux, L. Daniel et al., Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery, J. Phys. Chem. C, vol.2010, issue.24, pp.10999-11008
URL : https://hal.archives-ouvertes.fr/hal-01560426

L. El-ouatani, R. Dedryvere, C. Siret, P. Biensan, and D. Gonbeau, Effect of Vinylene Carbonate Additive in Li-Ion Batteries: Comparison of LiCoO2/C, LiFePO4/C, and LiCoO2/Li4Ti5O12 Systems, J. Electrochem. Soc, vol.156, issue.6, pp.468-477, 2009.

N. Gauthier, C. Courrèges, L. Goubault, J. Demeaux, C. Tessier et al., Influence of the Positive Electrode on Li4Ti5O12 (LTO) Electrode/Electrolyte Interfaces in Li-Ion Batteries, J. Electrochem. Soc, vol.165, issue.13, pp.2925-2934, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01999897

J. Christensen, V. Srinivasan, and J. Newman, Optimization of Lithium Titanate Electrodes for High-Power Cells, J. Electrochem. Soc, vol.153, issue.3, pp.560-565, 2006.

M. Winter, W. K. Appel, B. Evers, T. Hodal, K. Möller et al., Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries, Monatsh. Chem. Chem. Mon, vol.132, issue.4, pp.473-486, 2001.

M. Song, R. Kim, S. Baek, K. Lee, K. Park et al., Is Li4Ti5O12 a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte, J. Mater. Chem. A, vol.2013, issue.3, pp.631-636

S. Wang, K. Yang, F. Gao, D. Wang, and C. Shen, Direct visualization of solid electrolyte interphase on Li4Ti5O12 by in situ AFM, RSC Adv, vol.6, issue.81, pp.77105-77110, 2016.

Y. B. He, B. Li, M. Liu, C. Zhang, W. Lv et al., Gassing in Li4Ti5O12-based batteries and its remedy, Sci. Rep, vol.2, pp.913-914, 2012.

V. Chapitre, Etude de l'influence de la fluoration sur le matériau Li4Ti5O12 241

L. Shen, E. Uchaker, X. Zhang, and G. Cao, Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries, Adv. Mater, vol.2012, issue.48, pp.6502-6508

Y. Q. Wang, L. Guo, Y. G. Guo, H. Li, X. Q. He et al., Rutile-TiO2 Nanocoating for a High-Rate Li4Ti5O12 Anode of a Lithium-Ion Battery, J. Am. Chem. Soc, vol.2012, issue.18, pp.7874-7879

L. Yu, H. B. Wu, and X. W. Lou, Mesoporous Li4Ti5O12 Hollow Spheres with Enhanced Lithium Storage Capability, Adv. Mater, vol.25, issue.16, pp.2296-2300, 2013.

S. Kim, J. G. Alauzun, N. Louvain, N. Brun, L. Stievano et al., Alginic acid aquagel as a template and carbon source in the synthesis of Li4Ti5O12/C nanocomposites for application as anodes in Li-ion batteries, RSC Adv, vol.8, issue.57, pp.32558-32564, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898985

L. P. Fan, X. Tan, T. Yu, and Z. Q. Shi, Li4Ti5O12/hollow graphitized nano-carbon composites as anode materials for lithium ion battery, RSC Adv, vol.6, issue.31, pp.26406-26411, 2016.

L. Shen, E. Uchaker, C. Yuan, P. Nie, M. Zhang et al., Three-Dimensional Coherent Titania-Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties, ACS Appl. Mater. Inter, vol.2012, issue.6, pp.2985-2992

X. Guo, H. F. Xiang, T. P. Zhou, X. K. Ju, and Y. C. Wu, Morphologies and structures of carbon coated on Li4Ti5O12 and their effects on lithium storage performance, Electrochim. Acta, vol.130, pp.470-476, 2014.

X. B. Hu, Z. J. Lin, K. R. Yang, Y. J. Huai, and Z. H. Deng, Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solidstate reaction, Electrochim. Acta, vol.56, issue.14, pp.5046-5053, 2011.

X. B. Hu, Z. J. Lin, K. R. Yang, and Z. Deng, Kinetic Analysis of One-Step Solid-State Reaction for Li4Ti5O12/C, J. Phys. Chem. A, issue.46, pp.13413-13419, 2011.

X. F. Guan, X. M. Chen, G. S. Li, Y. P. Zang, H. F. Lin et al., Direct synthesis of carbon-coated Li4Ti5O12 mesoporous nanoparticles for high-rate lithium-ion batteries, RSC Adv, vol.2013, issue.9, pp.3088-3094

Y. C. Kuo and J. Y. Lin, One-pot sol-gel synthesis of Li4Ti5O12/C anode materials for highperformance Li-ion batteries, Electrochim. Acta, vol.142, pp.43-50, 2014.

H. G. Jung, S. T. Myung, C. S. Yoon, S. B. Son, K. H. Oh et al., Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries, Energy Environ. Sci, vol.2011, issue.4, pp.1345-1351

S. Z. Ji, J. Y. Zhang, W. W. Wang, Y. Huang, Z. R. Feng et al., Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery, Mater. Chem. Phys, vol.2010, issue.2-3, pp.510-515

Q. Y. Zhang, C. L. Zhang, B. Li, S. F. Kang, X. Li et al., Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery, Electrochim. Acta, vol.98, pp.146-152, 2013.

T. F. Yi, H. P. Liu, Y. R. Zhu, L. J. Jiang, Y. Xie et al., Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution, J. Power Sources, vol.215, pp.258-265, 2012.

H. Song, S. W. Yun, H. H. Chun, M. G. Kim, K. Y. Chung et al., Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries, Energy Environ. Sci, vol.2012, issue.12, pp.9903-9913

H. Zhao, Y. Li, Z. Zhu, J. Lin, Z. Tian et al., Structural and electrochemical characteristics of Li4?xAlxTi5O12 as anode material for lithium-ion batteries, Electrochim. Acta, vol.53, issue.24, pp.7079-7083, 2008.

T. F. Yi, Y. Xie, Q. J. Wu, H. P. Liu, L. J. Jiang et al., High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries, J. Power Sources, vol.214, pp.220-226, 2012.

L. N. Hou, X. Qin, X. J. Gao, T. R. Guo, X. Li et al., Zr-doped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries, J. Alloys Compd, vol.774, pp.38-45, 2019.

T. Yi, J. Shu, Y. Zhu, X. Zhu, C. Yue et al., Highperformance Li4Ti5?xVxO12 (0?x?0.3) as an anode material for secondary lithium-ion battery, Electrochim. Acta, vol.54, issue.28, pp.7464-7470, 2009.

B. B. Tian, H. F. Xiang, L. Zhang, Z. Li, and H. H. Wang, Niobium doped lithium titanate as a high rate anode material for Li-ion batteries, Electrochim. Acta, issue.19, pp.5453-5458, 2010.

J. Wolfenstine and J. L. Allen, Electrical conductivity and charge compensation in Ta doped Li4Ti5O12, J. Power Sources, vol.180, issue.1, pp.582-585, 2008.

T. F. Yi, Y. Xie, L. J. Jiang, J. Shu, C. B. Yue et al., Advanced electrochemical properties of Mo-doped Li4Ti5O12 anode material for power lithium ion battery, RSC Adv, vol.2012, issue.8, pp.3541-3547

Y. Qi, Y. Huang, D. Jia, S. Bao, and Z. P. Guo, Preparation and characterization of novel spinel Li4Ti5O12?xBrx anode materials, Electrochim. Acta, vol.54, issue.21, pp.4772-4776, 2009.

Y. Huang, Y. Qi, D. Jia, X. Wang, Z. Guo et al., Synthesis and electrochemical properties of spinel Li4Ti5O12?xClx anode materials for lithium-ion batteries, J. Solid State Electrochem, vol.16, issue.5, pp.2011-2016, 2011.

Y. Ma, B. Ding, G. Ji, and J. Lee, Carbon-Encapsulated F-Doped Li4Ti5O12 as a High Rate Anode Material for Li Batteries, ACS Nano, vol.7, issue.12, pp.10870-10878, 2013.

X. N. Han, Z. Zhao, Y. L. Xu, D. Liu, H. Zhang et al., Synthesis and characterization of F-doped nanocrystalline Li4Ti5O12/C compounds for lithium-ion batteries, RSC Adv, vol.2014, issue.79, pp.41968-41975

Z. Zhao, Y. L. Xu, M. D. Ji, and H. Zhang, Synthesis and electrochemical performance of Fdoped Li4Ti5O12 for lithium-ion batteries, Electrochim. Acta, vol.109, pp.645-650, 2013.

Y. Chen, C. Qian, P. F. Zhang, R. F. Zhao, J. J. Lu et al., Fluoride doping Li4Ti5O12 nanosheets as anode materials for enhanced rate performance of lithium-ion batteries, J. Electroanal. Chem, vol.815, pp.123-129, 2018.

Y. Charles-blin, D. Flahaut, J. Ledeuil, K. Guérin, M. Dubois et al., Surface Layer Fluorination of TiO2 Electrodes for Electrode Protection LiBs: Fading the Reactivity of the Negative Electrode/Electrolyte Interface, J. Electrochem. Soc, vol.166, issue.10, pp.1905-1914, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02169378

J. G. Malm, H. Selig, J. Jortner, and S. A. Rice, Chemistry of Xenon, Chem. Rev, vol.65, issue.2, pp.199-236, 1965.

E. Unger, M. Liebau, G. S. Duesberg, A. P. Graham, F. Kreupl et al., Fluorination of carbon nanotubes with xenon difluoride, Chem. Phys. Lett, vol.399, issue.1-3, pp.280-283, 2004.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calve et al., Modelling one-and two-dimensional solid-state NMR spectra, Magn. Reson. Chem, vol.40, issue.1, pp.70-76, 2002.

T. Madey and Y. Jr, Electron-Stimulated Desorption as a Tool for Studies of Chemisorption: A Review, J. Vac. Sci. Technol, vol.8, pp.525-555, 1971.

J. K. Sharma, B. R. Chakraborty, and S. M. Shivaprasad, Electron-Stimulated Desorption of Fluorine from Barium Fluoride Films Deposited on Silicon Substrates, J. Appl. Phys, vol.68, issue.5, pp.2489-2492, 1990.

M. Estruga, M. Casas-cabanas, D. Gutiérrez-tauste, C. Domingo, and J. A. Ayllón, Straightforward synthesis of a novel hydronium titanium oxyfluoride, Mater. Chem. Phys, vol.2010, issue.2, pp.904-907

I. A. Leonidov, O. N. Leonidova, L. A. Perelyaeva, R. F. Samigullina, S. A. Kovyazina et al., Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12, Phys. Solid State, vol.45, issue.11, pp.2183-2188, 2003.

D. G. Kellerman, V. S. Gorshkov, E. V. Shalaeva, B. A. Tsaryev, and E. G. Vovkotrub, Structure peculiarities of carbon-coated lithium titanate: Raman spectroscopy and electron microscopic study, Solid State Sci, vol.2012, issue.1, pp.72-79

L. Aldon, P. Kubiak, M. Womes, J. C. Jumas, J. Olivier-fourcade et al., Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel, Chem. Mater, vol.16, issue.26, pp.5721-5725, 2004.

A. V. Knyazev, N. N. Smirnova, M. Maczka, S. S. Knyazeva, and I. A. Letyanina, Thermodynamic and spectroscopic properties of spinel with the formula Li4/3Ti5/3O4, Thermochim. Acta, vol.559, pp.40-45, 2013.

K. Mukai, Y. Kato, and H. Nakano, Understanding the Zero-Strain Lithium Insertion Scheme of Li[Li1/3Ti5/3]O4: Structural Changes at Atomic Scale Clarified by Raman Spectroscopy, J. Phys. Chem. C, issue.6, pp.2992-2999, 2014.

S. S. Köcher, P. P. Schleker, M. F. Graf, R. A. Eichel, K. Reuter et al., Chemical shift reference scale for Li solid state NMR derived by first-principles DFT calculations, Journal of Magnetic Resonance, vol.297, pp.33-41, 2018.

M. F. Graf, H. Tempel, S. S. Köcher, R. Schierholz, C. Scheurer et al., Observing different modes of mobility in lithium titanate spinel by nuclear magnetic resonance, vol.7, pp.25276-25284, 2017.

W. Schmidt and M. Wilkening, Diffusion-induced 7 Li NMR spin-lattice relaxation of fully lithiated, mixed-conducting Li7Ti5O12, Solid State Ionics, vol.287, pp.77-82, 2016.

W. Schmidt and M. Wilkening, Discriminating the Mobile Ions from the Immobile Ones in Li4+xTi5O12: 6 Li NMR Reveals the Main Li + Diffusion Pathway and Proposes a Refined Lithiation Mechanism, J. Phys. Chem. C, issue.21, pp.11372-11381, 2016.

W. Schmidt, P. Bottke, M. Sternad, P. Gollob, V. Hennige et al., Small Change-Great Effect: Steep Increase of Li Ion Dynamics in Li4Ti5O12 at the Early Stages of Chemical Li Insertion, Chem. Mater, vol.27, issue.5, pp.1740-1750, 2015.

H. Brandstätter, D. Wohlmuth, P. Bottke, V. Pregartner, M. Wilkening et al., Ion Dynamics in Nanocrystalline and Structurally Disordered Li2TiO3, Z. Phys. Chem, vol.229, issue.9, p.1363, 2015.

Y. V. Baklanova, I. Y. Arapova, I. R. Shein, L. G. Maksimova, K. N. Mikhalev et al., Charge distribution and mobility of lithium ions in Li2TiO3 from 6,7 Li NMR data, J. Struct. Chem, vol.54, issue.1, pp.111-118, 2013.

M. Vijayakumar, S. Kerisit, K. M. Rosso, S. D. Burton, J. A. Sears et al., Lithium diffusion in Li4Ti5O12 at high temperatures, J. Power Sources, vol.196, issue.4, pp.2211-2220, 2011.

A. Laumann, H. Boysen, M. Bremholm, K. T. Fehr, M. Hoelzel et al., Lithium Migration at High Temperatures in Li4Ti5O12 Studied by Neutron Diffraction, Chem. Mater, vol.23, issue.11, pp.2753-2759, 2011.

M. Wilkening, W. Iwaniak, J. Heine, V. Epp, A. Kleinert et al., Microscopic Li self-diffusion parameters in the lithiated anode material Li4+xTi5O12 (0 <= x <= 3) measured by 7 Li solid state NMR, Phys. Chem. Chem. Phys, vol.9, issue.47, pp.6199-6202, 2007.

M. Wilkening, R. Amade, W. Iwaniak, and P. Heitjans, Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 -A comparison of results from solid state NMR and impedance spectroscopy, Phys. Chem. Chem. Phys, vol.9, issue.10, pp.1239-1246, 2007.

M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil et al., A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12, Adv. Mater, vol.18, issue.23, pp.3169-3173, 2006.

J. P. Kartha, D. P. Tunstall, and J. T. Irvine, An NMR Investigation of Lithium Occupancy of Different Sites in the Oxide Superconductor LiTi2O4 and Related Compounds, J. Solid State Chem, vol.152, issue.2, pp.397-402, 2000.

V. Luca, T. L. Hanley, N. K. Roberts, R. F. Howe, and X. Nmr, Absorption Study of Lithium Intercalation in Micro-and Nanocrystalline Anatase, Chem. Mater, vol.11, issue.8, pp.2089-2102, 1999.

M. Deschamps, F. Fayon, J. Hiet, G. Ferru, M. Derieppe et al., Spincounting NMR experiments for the spectral editing of structural motifs in solids, Phys. Chem. Chem. Phys, vol.10, issue.9, pp.1298-1303, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00201994

G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers, the Scienta ESCA300 Database, 1992.

M. M. El-gomati, M. Prutton, B. Lamb, and C. G. Tuppen, Edge effects and image contrast in scanning Auger microscopy: A theory/experiment comparison, Surf. Interface Anal, vol.11, issue.5, pp.251-265, 1988.

J. S. Park, A. U. Mane, J. W. Elam, and J. R. Croy, Atomic Layer Deposition of Al-W-Fluoride on LiCoO2 Cathodes: Comparison of Particle-and Electrode-Level Coatings, ACS Omega, vol.2017, issue.7, pp.3724-3729

J. S. Park, A. U. Mane, J. W. Elam, and J. R. Croy, Amorphous Metal Fluoride Passivation Coatings Prepared by Atomic Layer Deposition on LiCoO2 for Li-Ion Batteries, Chem. Mater, vol.27, issue.6, pp.1917-1920, 2015.

N. Louvain, Z. Karkar, M. El-ghozzi, P. Bonnet, K. Guerin et al., Fluorination of anatase TiO2 towards titanium oxyfluoride TiOF2: a novel synthesis approach and proof of the Li-insertion mechanism, J. Mater. Chem. A, vol.2014, issue.37, pp.15308-15315
URL : https://hal.archives-ouvertes.fr/hal-01104631

K. M. Colbow, J. R. Dahn, and R. R. Haering, J. Power Sources, vol.26, pp.397-402, 1989.

T. Ohzuku, A. Ueda, and N. Yamamoto, J. Electrochem. Soc, vol.142, pp.1431-1435, 1995.

K. Zaghib, J. Power Sources, vol.196, pp.3949-3954, 2011.

M. Winter, Monatshefte Für Chem. Chem. Mon, vol.132, pp.473-486, 2001.

J. Christensen, V. Srinivasan, and J. Newman, J. Electrochem. Soc, vol.153, pp.560-565, 2006.

M. Song, J. Mater. Chem. A, vol.2, pp.631-636, 2013.

F. Shi, J. Am. Chem. Soc, vol.137, pp.3181-3184, 2015.

G. Zhu, Adv. Funct. Mater, vol.23, pp.640-647, 2013.

L. Zhao, Y. Hu, H. Li, Z. Wang, and L. Chen, Adv. Mater, vol.23, pp.1385-1388, 2011.

Y. He, Sci. Rep, vol.2, p.913, 2012.

S. S. Zhang, J. Power Sources, vol.162, pp.1379-1394, 2006.

P. K. Alaboina, ACS Appl. Mater. Interfaces, vol.8, pp.12127-12133, 2016.

V. Chapitre, Etude de l'influence de la fluoration sur le matériau Li4Ti5O12 275

J. P. Olivier and M. Winter, J. Power Sources, pp.151-155, 2001.

R. Bernhard, M. Metzger, and H. A. Gasteiger, J. Electrochem. Soc, vol.162, pp.1984-1989, 2015.

S. Kim, RSC Adv, vol.8, pp.32558-32564, 2018.

X. Huang, R. Ren, N. K. Singh, M. Hardi, and J. Chen, ChemistrySelect, vol.3, pp.10792-10798, 2018.

C. P. Han, Electrochimica Acta, vol.157, pp.266-273, 2015.

W. Li, Electrochimica Acta, vol.139, pp.104-110, 2014.

M. R. Jo, G. Lee, and Y. Kang, ACS Appl. Mater. Interfaces, vol.7, pp.27934-27939, 2015.

Y. Wang, ACS Appl. Mater. Interfaces, vol.8, pp.26008-26012, 2016.

B. Fleutot, Appl. Surf. Sci, vol.400, pp.139-147, 2017.

T. Nakajima, M. Koh, R. N. Singh, and M. Shimada, Electrochimica Acta, vol.44, pp.2879-2888, 1999.

T. Nakajima, A. Ueno, T. Achiha, Y. Ohzawa, and M. Endo, J. Fluor. Chem, vol.130, pp.810-815, 2009.

Y. Zhang, ACS Appl. Mater. Interfaces, vol.9, pp.17145-17154, 2017.

J. G. Malm, H. Selig, J. Jortner, and S. A. Rice, Chem. Rev, vol.65, pp.199-236, 1965.

D. A. Shirley, Phys. Rev. B, vol.5, pp.4709-4714, 1972.

G. Gachot, Anal. Methods, vol.6, pp.6120-6124, 2014.

Z. Wang, J. Electrochem. Soc, vol.143, pp.1510-1514, 1996.

Z. Wang, X. Huang, and L. Chen, J. Electrochem. Soc, vol.150, pp.199-208, 2003.

Y. Ikezawa and H. Nishi, Electrochimica Acta, vol.53, pp.3663-3669, 2008.

J. Li, S. Chen, X. Fan, L. Huang, and S. Sun, Langmuir, vol.23, pp.13174-13180, 2007.

L. Doucey, M. Revault, A. Lautié, A. Chaussé, and R. Messina, Electrochimica Acta, vol.44, pp.2371-2377, 1999.

R. Aroca, M. Nazri, G. A. Nazri, A. J. Camargo, and M. Trsic, J. Solut. Chem, vol.29, pp.1047-1060, 2000.

J. Li, J. Electroanal. Chem, vol.649, pp.171-176, 2010.

J. Li, Z. Zhou, I. Broadwell, and S. Sun, Acc. Chem. Res, vol.45, pp.485-494, 2012.

C. Marino, J. Phys. Chem. C, vol.121, pp.26598-26606, 2017.

O. Borodin, Phys. Chem. Chem. Phys, vol.18, pp.164-175, 2015.

L. Madec, Phys. Chem. Chem. Phys, vol.17, pp.27062-27076, 2015.

J. Gieu, C. Courrèges, L. E. Ouatani, C. Tessier, and H. Martinez, J. Power Sources, vol.318, pp.291-301, 2016.

J. Gieu, C. Courrèges, L. E. Ouatani, C. Tessier, and H. Martinez, J. Electrochem. Soc, vol.164, pp.1314-1320, 2017.

A. G. Shard, Surf. Interface Anal, vol.51, pp.763-773, 2019.

J. Gieu, J. Mater. Chem. A, vol.5, pp.15315-15325, 2017.

V. Chapitre, Etude de l'influence de la fluoration sur le matériau Li4Ti5O12

Y. Charles-blin, ?. ?¥-delphine, . Flahaut, M. ?¥*-katia-guérin, L. Dubois et al.,

?. Montpellier, CNRS

?. Univ, /. Pau-&amp;-pays-adour, and . Uppa, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux -UMR 5254, vol.64000

¥. Réseau-sur-le-stockage-electrochimique-de-l&apos;energie, FR CNRS 3459, 33 Rue Saint Leu, 80039 Amiens, France. Publication n°5 : Insights into surface-modified Li(Ni0.80Co0.15Al0.05)O2 cathode by atomic layer fluorination for improved cycling behavior

Y. Charles-blin, A. Perbost, S. Liminana, D. Flahaut, H. Martinez et al., Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matér iaux -UMR, vol.5254, p.64000

C. Cemhti and . Upr, , vol.3079

, FR CNRS 3459, 33 Rue Saint Leu, 80039 Amiens, France. *email: nicolas.louvain@umontpellier.fr This journal is © The Royal Society of Chemistry 20xx, J. Name, vol.00, pp.1-3, 2013.

, This journal is © The Royal Society of Chemistry 20xx J. Name, vol.00, pp.1-3, 2013.

P. Yang and J. M. Tarascon, Nat. Mater, vol.11, pp.560-563, 2012.

Y. W. Chen, J. D. Prange, S. Duhnen, Y. Park, M. Gunji et al., Nat. Mater, vol.10, pp.539-544, 2011.

J. M. Tarascon and M. Armand, Nature, vol.414, pp.359-367, 2001.

J. B. Goodenough and K. S. Park, J. Am. Chem. Soc, vol.135, pp.1167-1176, 2013.

, Japanese Patent, 1985.

H. Groult, T. Nakajima, L. Perrigaud, Y. Ohzawa, H. Yashiro et al., J. Fluorine Chem, vol.126, pp.1111-1116, 2005.

J. S. Park, A. U. Mane, J. W. Elam, J. R. Croy, and . Omega, , vol.2, pp.3724-3729, 2017.

K. Matsumoto, T. Fukutsuka, T. Okumura, Y. Uchimoto, K. Amezawa et al., J. Power Sources, vol.189, pp.599-601, 2009.

L. Croguennec, J. Bains, M. Menetrier, A. Flambard, E. Bekaert et al., J. Electrochem. Soc, vol.156, pp.349-355, 2009.

M. Ménétrier, J. Bains, L. Croguennec, A. Flambard, E. Bekaert et al., J. Solid State Chem, vol.181, pp.3303-3307, 2008.

Y. K. Sun, S. W. Cho, S. T. Myung, K. Amine, and J. Prakash, Electrochim. Acta, vol.53, pp.1013-1019, 2007.

J. S. Park, A. U. Mane, J. W. Elam, and J. R. Croy, Chem. Mater, vol.27, pp.1917-1920, 2015.

X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., , vol.4, pp.174-185, 2018.

A. Pasquier, F. Disma, T. Bowmer, A. S. Gozdz, G. Amatucci et al., J. Electrochem. Soc, vol.145, pp.472-477, 1998.

T. Nakajima, J. Fluorine Chem, vol.105, pp.229-238, 2000.

A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, Computational Materials, 2018.

S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., Carbon, vol.105, pp.52-76, 2016.

K. I. Chung, J. G. Park, W. S. Kim, Y. E. Sung, and Y. K. Choi, J. Power Sources, vol.112, pp.626-633, 2002.

Y. S. Park, H. J. Bang, S. M. Oh, Y. K. Sun, and S. M. Lee, J. Power Sources, vol.190, pp.553-557, 2009.

T. Nakajima, Solid State Sci, vol.9, pp.777-784, 2007.

Y. K. Choi, K. I. Chung, W. S. Kim, Y. E. Sung, and S. M. Park, J. Power Sources, vol.104, pp.132-139, 2002.

G. Chen, Z. N. Shi, J. Y. Yu, J. L. Xu, X. W. Hu et al., J. Electrochem. Soc, vol.162, pp.197-204, 2015.

T. Nakajima, J. Fluorine Chem, vol.128, pp.277-284, 2007.

W. T. Li and B. L. Lucht, J. Electrochem. Soc, vol.153, pp.1617-1625, 2006.

Y. K. Sun, M. J. Lee, C. S. Yoon, J. Hassoun, K. Amine et al., Adv. Mater, vol.24, pp.1192-1196, 2012.

C. Wang, Y. S. Meng, and K. Xu, J. Electrochem. Soc, vol.166, pp.5184-5186, 2019.

S. Xia, F. Li, F. Cheng, X. Li, C. Sun et al., J. Electrochem. Soc, vol.165, pp.1019-1026, 2018.

C. Liu, K. Qian, D. Lei, B. Li, F. Kang et al., J. Mater. Chem. A, vol.6, pp.65-72, 2018.

D. W. Kim, H. Shiiba, N. Zettsu, T. Yamada, T. Kimijima et al., Npg Asia Mater, vol.9, p.10, 2017.

J. W. Lee and Y. J. Park, J Electrochem Sci Te, vol.7, pp.263-268, 2016.

Y. Huang, X. Zhang, R. Yu, S. Jamil, S. Cao et al., ACS Appl. Mater. Inter, vol.11, pp.16556-16566, 2019.

L. Zhu, Y. Liu, W. Y. Wu, X. W. Wu, W. P. Tang et al., J. Mater. Chem. A, vol.3, pp.15156-15162, 2015.

N. Kimiaie, K. Wedlich, M. Hehemann, R. Lambertz, M. Müller et al., Energy Environ. Sci, vol.7, pp.3013-3025, 2014.

D. P. Abraham, R. D. Twesten, M. Balasubramanian, I. Petrov, J. Mcbreen et al., Electrochem. Commun, vol.4, pp.620-625, 2002.

S. Lee, C. S. Yoon, K. Amine, and Y. Sun, J. Power Sources, vol.234, pp.201-207, 2013.

P. Xiao, T. Lv, X. Chen, C. Chang, . Sci et al., , 1408.

N. Wu, H. Wu, H. Liu, and Y. Zhang, J. Alloys Compd, vol.665, pp.48-56, 2016.

Y. Charles-blin, D. Flahaut, J. Ledeuil, K. Guérin, M. Dubois et al., J. Electrochem. Soc, vol.166, pp.1905-1914, 2019.

Y. Charles-blin, D. Flahaut, J. Ledeuil, K. Guerin, M. Dubois et al., ACS Applied Energy Materials, 2019.

W. Zhang, P. Bonnet, M. Dubois, C. P. Ewels, K. Guerin et al., Chem. Mater, vol.24, pp.1744-1751, 2012.

A. P. Kharitonov, R. Taege, G. Ferrier, V. Teplyakov, D. A. Syrtsova et al., J. Fluorine Chem, vol.126, pp.251-263, 2005.

E. Unger, M. Liebau, G. S. Duesberg, A. P. Graham, F. Kreupl et al., Chem. Phys. Lett, vol.399, pp.280-283, 2004.

M. Zupan and A. Pollak, J. Org. Chem, vol.39, pp.2646-2647, 1974.

J. G. Malm, H. Selig, J. Jortner, and S. A. Rice, Chem. Rev, vol.65, pp.199-236, 1965.

J. Im, J. Lee, M. Ryou, Y. M. Lee, and K. Y. Cho, J. Electrochem. Soc, vol.164, pp.6381-6385, 2017.

A. M. Andersson, D. P. Abraham, R. Haasch, S. Maclaren, J. Liu et al., J. Electrochem. Soc, vol.149, pp.1358-1369, 2002.

B. Park, H. Kim, H. J. Bang, J. Prakash, and Y. Sun, Industrial & Engineering Chemistry Research, vol.47, pp.3876-3882, 2008.

Y. Deng, S. Dong, Z. Li, H. Jiang, X. Zhang et al., Small Methods, 2018.

J. Yang, N. Solomatin, A. Kraytsberg, Y. Ein, and -. Chemistryselect, , vol.1, pp.572-576, 2016.

F. Ozanam and M. Rosso, Mater. Sci. Eng., B, vol.213, pp.2-11, 2016.

A. Ghannoum, K. Iyer, P. Nieva, and A. Khajepour, , 2016.

D. A. Dalla-corte, A. C. Gouget-laemmel, K. Lahlil, G. Caillon, C. Jordy et al., Electrochim. Acta, vol.201, pp.70-77, 2016.

H. Wu, L. A. Huff, and A. A. Gewirth, ACS Appl. Mater. Inter, vol.7, pp.1709-1719, 2015.

F. Shi, P. N. Ross, H. Zhao, G. Liu, G. A. Somorjai et al., J. Am. Chem. Soc, vol.137, pp.3181-3184, 2015.

D. A. Dalla-corte, G. Caillon, C. Jordy, J. Chazalviel, M. Rosso et al., Adv. Ener. Mater, vol.6, p.1501768, 2016.

Y. Akita, M. Segawa, H. Munakata, and K. Kanamura, J. Power Sources, vol.239, pp.175-180, 2013.

S. F. Amalraj and D. Aurbach, J. Solid State Electrochem, vol.15, pp.877-890, 2011.

E. Goren, O. Chusid, and D. Aurbach, J. Electrochem. Soc, vol.138, pp.6-9, 1991.

W. Kohs, J. Kahr, A. Ahniyaz, N. Zhang, and A. Trifonova, J. Solid State Electrochem, vol.21, pp.3389-3401, 2017.

G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot et al., J. Power Sources, vol.178, pp.409-421, 2008.

T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, and Z. Ogumi, J. Power Sources, vol.150, pp.208-215, 2005.

S. E. Sloop, J. B. Kerr, and K. Kinoshita, J. Power Sources, vol.119, pp.330-337, 2003.

H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani et al., J. Power Sources, vol.68, pp.311-315, 1997.

J. G. Malm, H. Selig, J. Jortner, and S. A. Rice, Chem. Rev, vol.65, pp.199-236, 1965.

E. Unger, M. Liebau, G. S. Duesberg, A. P. Graham, F. Kreupl et al., Chem. Phys. Lett, vol.399, pp.280-283, 2004.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calve et al., Magn. Reson. Chem, vol.40, pp.70-76, 2002.

D. A. Shirley, Phys Rev B, vol.5, pp.4709-4714, 1972.

J. H. Scofield, J. Electron. Spectrosc. Relat. Phenom, vol.8, pp.129-137, 1976.