C. Fourment, B. Chimier, F. Deneuville, D. Descamps, F. Dorchies et al., Ultrafast changes in optical properties of SiO 2 excited by femtosecond laser at the damage threshold and above, Phys. Rev. B, vol.98, p.155110, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104349

A. Lévy, P. Audebert, R. Shepherd, J. Dunn, M. Cammarata et al.,

D. Williams, R. W. Zhu, and . Lee, The creation of large-volume, gradient-free warm dense matter with an X-ray Free-Electron Laser, Physics of Plasmas, vol.22, issue.3, p.30703, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01245572

F. Dorchies, V. Recoules, J. Bouchet, C. Fourment, P. M. Leguay et al., Time evolution of electron structure in femtosecond heated warm dense molybdenum, Phys. Rev. B, vol.92, p.144201, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01561834

C. Fourment and T. Lahens, Intense relativistic electron beam propagation through plasma, 28th Symposium on Plasma Physics and Technology, 2018.

T. Lahens, Propagation d'un faisceau d'électrons relativistes intense de radiographie eclair dans un plasma froid, 2019.

R. Dautray and J. Watteau, La fusion thermonucléaire inertielle par laser. Eyrolles, 1993.

L. Spitzer and R. Härm, Transport phenomena in a completely ionized gas, Phys. Rev, vol.89, pp.977-981, 1953.

G. P. Schurtz, .. D. Ph, M. Nicolaï, and . Busquet, A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes, Physics of Plasmas, vol.7, issue.10, pp.4238-4249, 2000.

S. I. , BRAGINSKII : Transport properties in a plasma, Review of Plasma Physics, vol.1, pp.205-311, 1965.

J. F. Luciani, P. Mora, and J. Virmont, Nonlocal heat transport due to steep temperature gradients, Phys. Rev. Lett, vol.51, pp.1664-1667, 1983.

E. M. Epperlein and R. W. , SHORT : A practical nonlocal model for electron heat transport in laser plasmas, Physics of Fluids B : Plasma Physics, vol.3, issue.11, pp.3092-3098, 1991.

. Ph, M. Nicolaï, B. Vandenboomgaerde, F. Canaud, and . Chaigneau, Effects of self-generated magnetic fields and nonlocal electron transport in laser produced plasmas, Physics of Plasmas, vol.7, issue.10, pp.4250-4258, 2000.

.. D. Ph, J. A. Nicolaï, and G. P. Feugeas, SCHURTZ : A practical nonlocal model for heat transport in magnetized laser plasmas, Physics of Plasmas, vol.13, issue.3, p.32701, 2006.

T. H. Kho and M. G. Haines, Nonlinear kinetic transport of electrons and magnetic field in laser-produced plasmas, Phys. Rev. Lett, vol.55, pp.825-828, 1985.

G. Gregori, S. H. Glenzer, J. Knight, C. Niemann, D. Price et al., BYCHENKOV : Effect of nonlocal transport on heatwave propagation, Phys. Rev. Lett, vol.92, p.205006, 2004.

J. A. Harte, W. E. Alley, D. S. Bailey, J. L. Eddleman, and G. B. Zimmerman, LASNEX : A 2-D physics code for modeling ICF, pp.150-164, 1996.

E. M. Epperlein, G. J. Rickard, and A. R. Bell, Two-dimensional nonlocal electron transport in laserproduced plasmas, Phys. Rev. Lett, vol.61, pp.2453-2456, 1988.

G. Schurtz, S. Gary, S. Hulin, C. Chenais-popovics, J. Gauthier et al., Revisiting nonlocal electron-energy transport in Inertial-Fusion conditions, Phys. Rev. Lett, vol.98, p.95002, 2007.

J. M. Di-nicola, N. Fleurot, T. Lonjaret, X. Julien, E. Bordenave et al., The LIL facility quadruplet commissioning, J. Phys. IV France, vol.133, pp.595-600, 2006.

O. Peyrusse, Atomic configuration averages and non-local thermodynamical equilibrium plasma spectroscopy calculations, Journal of Physics B : Atomic, Molecular and Optical Physics, vol.32, issue.3, pp.683-700, 1999.

P. Maire, R. Abgrall, J. Breil, and J. Ovadia, A cell-centered lagrangian scheme for two-dimensional compressible flow problems, SIAM Journal on Scientific Computing, vol.29, issue.4, pp.1781-1824, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00113542

P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi et al., Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions, Phys. Rev. Lett, vol.97, p.255001, 2006.

R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth et al., Intense high-energy proton beams from Petawatt-laser irradiation of solids, Phys. Rev. Lett, vol.85, pp.2945-2948, 2000.

L. Lancia, C. Fourment, J. Fuchs, J. Feugeas, . Ph et al., Simultaneous measurement of self-generated magnetic fields and electron heat transport in dense plasma, Laser and Particle Beams, vol.31, issue.4, pp.653-661, 2013.

L. Willingale, A. G. Thomas, P. M. Nilson, M. C. Kaluza, S. Bandyopadhyay et al., Fast advection of magnetic fields by hot electrons, Phys. Rev. Lett, vol.105, p.95001, 2010.

L. Lancia, B. Albertazzi, C. Boniface, A. Grisollet, R. Riquier et al., Topology of Megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction, Phys. Rev. Lett, vol.113, p.235001, 2014.

C. Fourment, N. Arazam, C. Bonte, T. Caillaud, D. Descamps et al., Broadband, high dynamics and high resolution charge coupled device-based spectrometer in dynamic mode for multi-KeV repetitive X-ray sources, Review of Scientific Instruments, vol.80, issue.8, p.83505, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01561876

R. Dautray and J. Watteau, La fusion thermonucléaire inertielle par laser. Eyrolles, 1993.

C. Fourment, F. Deneuville, B. Chimier, D. Descamps, F. Dorchies et al., An interferometric diagnostic for the experimental study of dynamics of solids exposed to intense and ultrashort radiation, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol.8777, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01561847

F. Deneuville, Étude de la dynamique électronique des plasmas denses et tièdes par interférométrie optique, 2013.

F. Dorchies, A. Lévy, C. Goyon, P. Combis, D. Descamps et al., Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast X-ray Absorption Near-Edge Spectroscopy, Phys. Rev. Lett, vol.107, p.245006, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01561854

J. Gaudin, C. Fourment, B. I. Cho, K. Engelhorn, E. Galtier et al., Towards simultaneous measurements of electronic and structural properties in ultra-fast X-ray free electron laser absorption spectroscopy experiments, Scientific Reports, vol.4, issue.1, p.4724, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01561838

B. Mahieu, N. Jourdain, K. Ta, F. Phuoc, J. Dorchies et al., Probing warm dense matter using femtosecond x-ray absorption spectroscopy with a laser-produced betatron source, Nature Communications, vol.9, issue.1, p.3276, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01877671

Z. Lin, L. V. Zhigilei, and V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Phys. Rev. B, vol.77, p.75133, 2008.

F. Deneuville, B. Chimier, D. Descamps, F. Dorchies, S. Hulin et al., Sub-picosecond and nanometer scale dynamics of aluminum target surface heated by ultrashort laser pulse, Appl. Phys. Lett, vol.102, issue.19, p.194104, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01561848

F. Dorchies, Développement de sources X ultra-brèves : Application à la spectroscopie d'absorption X résolue en temps. Habilitation à diriger des recherches, 2013.

, OPTICS et Advanced Light SOURCE : X-ray data booklet. LBNL, 2009.

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland et al., STOECKL : A high-energy X-ray spectrometer diagnostic for the OMEGA laser, Review of Scientific Instruments, vol.73, issue.6, pp.2270-2275, 2002.

I. Thfoin, C. Reverdin, S. Hulin, C. I. Szabo, S. Bastiani-ceccotti et al., NAKATSUTSUMI : Monte-carlo simulation of noise in hard X-ray transmission crystal spectrometers : Identification of contributors to the background noise and shielding optimization, Review of Scientific Instruments, vol.85, issue.11, pp.11-615, 2014.

C. Reverdin, A. S. Morlens, B. Angelier, J. L. Bourgade, J. Y. Boutin et al.,

G. Soullié, P. Stemmler, P. Troussel, J. L. Ulmer, B. Villette et al., X-ray calibration of the time resolved crystal spectrometer SXDHR-1t of the Ligne d'Intégration Laser, Review of Scientific Instruments, vol.75, issue.10, pp.3730-3733, 2004.

M. Harmand, F. Dorchies, O. Peyrusse, D. Descamps, C. Fourment et al., Broad M-band multi-keV X-ray emission from plasmas created by short laser pulses, Physics of Plasmas, vol.16, issue.6, p.63301, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01561877

C. D. Chen, J. A. King, M. H. Key, K. U. Akli, F. N. Beg et al., A bremsstrahlung spectrometer using K-edge and differential filters with image plate dosimeters, Review of Scientific Instruments, vol.79, issue.10, pp.10-305, 2008.

J. L. Bourgade, B. Villette, J. L. Bocher, J. Y. Boutin, S. Chiche et al., DMX : An absolutely calibrated time-resolved broadband soft X-ray spectrometer designed for MJ class laser-produced plasmas (invited), Review of Scientific Instruments, vol.72, issue.1, pp.1173-1182, 2001.

G. Gauglitz and T. Vo-dinh, Handbook of Spectroscopy, 2003.

S. M. Gruner, M. W. Tate, and E. F. , EIKENBERRY : Charge-coupled device area X-ray detectors, Review of Scientific Instruments, vol.73, issue.8, pp.2815-2842, 2002.

A. Wells, D. H. Lumb, K. A. Pounds, G. C. Stewart, B. Aschenbach et al., JET-X : A joint european X-ray telescope for SPECTRUM-X, Proceedings of International Astronomical Union Colloquium, vol.115, p.318, 1990.

A. Rousse, A. Antonetti, P. Audebert, A. Santos, F. Fallies et al., Observation of X-ray fluorescence resulting from photoionization by a femtosecond laser-produced plasma X-ray source, Journal of Physics B : Atomic, Molecular and Optical Physics, vol.27, issue.21, pp.697-701, 1994.

D. H. Lumb, E. G. Chowanietz, and A. Walls, X-ray measurements of charge diffusion effects in EEV Ltd. Charge-Coupled Devices, Optical Engineering, vol.26, issue.8, pp.773-778, 1987.

G. R. Hopkinson, Analytic modeling of charge diffusion in Charge-Coupled-Device imagers, Optical Engineering, vol.26, issue.8, pp.766-772, 1987.

F. Dorchies, F. Blasco, C. Bonté, T. Caillaud, C. Fourment et al., Observation of subpicosecond X-ray emission from laser-cluster interaction, Phys. Rev. Lett, vol.100, p.205002, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01561883

F. Dorchies, M. Harmand, D. Descamps, C. Fourment, S. Hulin et al., High-power 1 kHz laser-plasma X-ray source for ultrafast X-ray Absorption Near-Edge Spectroscopy in the keV range, Applied Physics Letters, vol.93, issue.12, p.121113, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01561885

F. Gobet, F. Hannachi, M. Aléonard, M. Gerbaux, G. Malka et al., Particle characterization for the evaluation of the 181m Ta excitation yield in millijoule laser induced plasmas, Journal of Physics B : Atomic, Molecular and Optical Physics, issue.14, p.145701, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01561881

O. T. Strand, L. V. Berzins, D. R. Goosman, W. W. Kuhlow, P. D. Sargis et al., Velocimetry using heterodyne techniques, éditeurs : 26th International Congress on High-Speed Photography and Photonics, vol.5580, pp.593-599, 2005.

D. T. Farley, H. M. Ierkic, and B. G. Fejer, Radar interferometry : A new technique for studying plasma turbulence in the ionosphere, J.Geophys.Res, vol.86, issue.A3, pp.1467-1472, 1981.

J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, and J. A. , ARNAUD : Nouvelle méthode de mesure de la réponse impulsionnelle des fibres optiques, Appl. Opt, vol.19, issue.22, pp.3749-3755, 1980.

E. Tokunaga, A. Terasaki, and T. Kobayashi, Frequency-domain interferometer for femtosecond timeresolved phase spectroscopy, Opt. Lett, vol.17, issue.16, pp.1131-1133, 1992.

P. Audebert, . Ph, A. Daguzan, J. C. Santos, J. P. Gauthier et al., Space-time observation of an electron gas in SiO 2, Phys. Rev. Lett, vol.73, pp.1990-1993, 1994.

J. Geindre, P. Audebert, A. Rousse, F. Falliès, J. C. Gauthier et al., ANTONETTI : Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma, Opt. Lett, vol.19, issue.23, pp.1997-1999, 1994.

P. Blanc, P. Audebert, F. Falliès, J. P. Geindre, J. C. Gauthier et al., Phase dynamics of reflected probe pulses from sub-100-fs laser-produced plasmas, J. Opt. Soc. Am. B, vol.13, issue.1, pp.118-124, 1996.

D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Optics Communications, vol.56, issue.3, pp.219-221, 1985.

A. Benuzzi-mounaix, M. Koenig, J. M. Boudenne, T. A. Hall, D. Batani et al., Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments, Phys. Rev. E, vol.60, pp.2488-2491, 1999.

J. Geindre, P. Audebert, S. Rebibo, and J. Gauthier, Single-shot spectral interferometry with chirped pulses, Opt. Lett, vol.26, issue.20, pp.1612-1614, 2001.

L. Lecherbourg, P. Renaudin, S. Bastiani-ceccotti, J. Geindre, C. Blancard et al., AUDEBERT : X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse, High Energy Density Physics, vol.3, issue.1, pp.175-180, 2007.

M. Born and E. Wolf, Principles of Optics, 1999.

K. Widmann, T. Ao, M. E. Foord, D. F. Price, A. D. Ellis et al., Single-state measurement of electrical conductivity of warm dense gold, Phys. Rev. Lett, vol.92, p.125002, 2004.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee et al., Optical properties in nonequilibrium phase transitions, Phys. Rev. Lett, vol.96, p.55001, 2006.

P. Noé, C. Vallée, F. Hippert, F. Fillot, and J. , RATY : Phase-change materials for non-volatile memory devices : from technological challenges to materials science issues, Semiconductor Science and Technology, vol.33, issue.1, p.13002, 2017.

R. W. Lee, S. J. Moon, H. Chung, W. Rozmus, H. A. Baldis et al., AUDEBERT : Finite temperature dense matter studies on next-generation light sources, J. Opt. Soc. Am. B, vol.20, issue.4, pp.770-778, 2003.

R. E. Reinovsky, Warm dense matter : Another application for pulsed power hydrodynamics, IEEE Pulsed Power Conference, pp.203-208, 2009.

T. Guillot, Interiors of giant planets inside and outside the solar system, Science, vol.286, issue.5437, pp.72-77, 1999.

R. M. More, K. H. Warren, D. A. Young, and G. , ZIMMERMAN : A new quotidian equation of state (QEOS) for hot dense matter, The Physics of Fluids, vol.31, issue.10, pp.3059-3078, 1988.

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Models of wide-range equations of state for matter under conditions of high energy density, Sov. Tech. Rev. B : Therm. Phys, vol.5, p.1, 1993.

K. Eidmann, J. Meyer-ter, T. Vehn, S. Schlegel, and . Hüller, Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter, Phys. Rev. E, vol.62, pp.1202-1214, 2000.

M. Gill-comeau and L. J. Lewis, Ultrashort-pulse laser ablation of nanocrystalline aluminum, Phys. Rev. B, vol.84, p.224110, 2011.

X. Gonze, J. Beuken, R. Caracas, F. Detraux, M. Fuchs et al., First-principles computation of material properties : the {ABINIT} software project, vol.25, pp.478-492, 2002.

P. Renaudin, C. Blancard, G. Faussurier, and P. Noiret, Combined pressure and electrical-resistivity measurements of warm dense aluminum and titanium plasmas, Phys. Rev. Lett, vol.88, p.215001, 2002.

D. D. Ryutov, M. S. Derzon, and M. K. Matzen, The physics of fast Z pinches, Rev. Mod. Phys, vol.72, pp.167-223, 2000.

D. Varentsov, V. Ya, M. Ternovoi, D. Kulish, A. Fernengel et al., High-energy-density physics experiments with intense heavy ion beams, Proceedings of the 16th International Symposium on Heavy Ion Inertial Fusion, vol.577, pp.262-266, 2007.

A. Man?i?, A. Lévy, M. Harmand, M. Nakatsutsumi, P. Antici et al., Picosecond short-range disordering in isochorically heated aluminum at solid density, Phys. Rev. Lett, vol.104, p.35002, 2010.

J. E. Coleman and J. Colgan, Collisional heating and adiabatic expansion of warm dense matter with intense relativistic electrons, Phys. Rev. E, vol.96, p.13208, 2017.

L. B. Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes et al., Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar), Phys. Rev. Lett, vol.78, pp.483-486, 1997.

D. C. Swift and R. P. Johnson, Quasi-isentropic compression by ablative laser loading : Response of materials to dynamic loading on nanosecond time scales, Phys. Rev. E, vol.71, p.66401, 2005.

A. Lévy, P. Audebert, R. Shepherd, J. Dunn, M. Cammarata et al.,

D. Williams, R. W. Zhu, and . Lee, The creation of large-volume, gradient-free warm dense matter with an X-ray Free-Electron Laser, Physics of Plasmas, vol.22, issue.3, p.30703, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01245572

F. Deneuville, B. Chimier, D. Descamps, F. Dorchies, S. Hulin et al., Sub-picosecond and nanometer scale dynamics of aluminum target surface heated by ultrashort laser pulse, Appl. Phys. Lett, vol.102, issue.19, p.194104, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01561848

F. Deneuville, Étude de la dynamique électronique des plasmas denses et tièdes par interférométrie optique, 2013.

C. Fourment, F. Deneuville, B. Chimier, D. Descamps, F. Dorchies et al., An interferometric diagnostic for the experimental study of dynamics of solids exposed to intense and ultrashort radiation, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol.8777, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01561847

N. Medvedev and H. O. Jeschke, ZIAJA : Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse, New Journal of Physics, vol.15, issue.1, p.15016, 2013.

M. Born and E. Wolf, Principles of Optics, 1999.

D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum, Phys. Rev. E, vol.65, p.16409, 2001.

J. P. Colombier, P. Combis, F. Bonneau, R. Le-harzic, and E. Audouard, Hydrodynamic simulations of metal ablation by femtosecond laser irradiation, Phys. Rev. B, vol.71, p.165406, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00121833

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, vol.7, 1970.

C. Fourment, F. Deneuville, D. Descamps, F. Dorchies, S. Petit et al., Experimental determination of temperature-dependent electron-electron collision frequency in isochorically heated warm dense gold, Phys. Rev. B, vol.89, p.161110, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01561840

D. G. Yakovlev and V. A. Urpin, Thermal and electrical conductivity in white dwarfs and neutron stars, Soviet Astronomy, vol.24, p.303, 1980.

N. W. Ashcroft and N. D. Mermin, Solid state physics. Holt, Rinehart and Winston, 1976.

B. Y. Mueller and B. Rethfeld, Relaxation dynamics in laser-excited metals under nonequilibrium conditions, Phys. Rev. B, vol.87, p.35139, 2013.

Y. V. Petrov, N. A. Inogamov, and K. P. Migdal, Thermal conductivity and the electron-ion heat transfer coefficient in condensed media with a strongly excited electron subsystem, JETP Letters, vol.97, issue.1, pp.20-27, 2013.

C. Fourment, B. Chimier, F. Deneuville, D. Descamps, F. Dorchies et al., Ultrafast changes in optical properties of SiO 2 excited by femtosecond laser at the damage threshold and above, Phys. Rev. B, vol.98, p.155110, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104349

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses, Phys. Rev. B, vol.61, pp.11437-11450, 2000.

P. Audebert, . Ph, A. Daguzan, J. C. Santos, J. P. Gauthier et al., Space-time observation of an electron gas in SiO 2, Phys. Rev. Lett, vol.73, pp.1990-1993, 1994.

P. Martin, S. Guizard, . Ph, G. Daguzan, P. Petite et al., Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals, Phys. Rev. B, vol.55, pp.5799-5810, 1997.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova et al., Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation, Phys. Rev. Lett, vol.88, p.97603, 2002.

A. Bourgeade and G. Duchateau, Time-dependent ionization models designed for intense and short laser pulse propagation in dielectric materials, Phys. Rev. E, vol.85, p.56403, 2012.

B. Rethfeld, A. Rämer, N. Brouwer, N. Medvedev, and O. Osmani, Electron dynamics and energy dissipation in highly excited dielectrics. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol.327, pp.78-88, 2014.

S. V. Faleev, M. Schilfgaarde, T. Kotani, F. Léonard, and M. P. Desjarlais, Finite-temperature quasiparticle self-consistent GW approximation, Phys. Rev. B, vol.74, p.33101, 2006.

E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, Laser-induced band-gap collapse in GaAs, Phys. Rev. B, vol.51, pp.6959-6970, 1995.

M. Harb, R. Ernstorfer, C. T. Hebeisen, G. Sciaini, W. Peng et al., MILLER : Electronically driven structure changes of Si captured by femtosecond electron diffraction, Phys. Rev. Lett, vol.100, p.155504, 2008.

M. Garcia-lechuga, L. Haahr-lillevang, J. Siegel, P. Balling, S. Guizard et al., Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses, Phys. Rev. B, vol.95, p.214114, 2017.

Z. Vardeny and J. Tauc, Picosecond coherence coupling in the pump and probe technique, Optics Comm, vol.39, issue.6, pp.396-400, 1981.

S. V. Govorkov, I. L. Shumai, W. Rudolph, and T. Schroder, Initial stages of the melting of a GaAs surface by femtosecond laser pulses : Study by second-harmonic-generation method, JETP Letters, vol.52, issue.2, pp.117-121, 1990.

S. Sen and J. E. Dickinson, Ab initio molecular dynamics simulation of femtosecond laser-induced structural modification in vitreous silica, Phys. Rev. B, vol.68, p.214204, 2003.

L. V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP, vol.20, pp.1307-1314, 1965.

O. Peyrusse, Coupling of detailed configuration kinetics and hydrodynamics in materials submitted to X-ray Free-Electron-Laser irradiation, Phys. Rev. E, vol.86, p.36403, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01467194

J. Gaudin, C. Fourment, B. I. Cho, K. Engelhorn, E. Galtier et al., Towards simultaneous measurements of electronic and structural properties in ultra-fast X-ray free electron laser absorption spectroscopy experiments, Scientific Reports, vol.4, issue.1, p.4724, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01561838

F. Dorchies, V. Recoules, J. Bouchet, C. Fourment, P. M. Leguay et al., Time evolution of electron structure in femtosecond heated warm dense molybdenum, Phys. Rev. B, vol.92, p.144201, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01561834

J. Yano and V. K. , YACHANDRA : X-ray absorption spectroscopy, Photosynthesis Research, vol.102, issue.2, p.241, 2009.

F. Dorchies, Développement de sources X ultra-brèves : Application à la spectroscopie d'absorption X résolue en temps. Habilitation à diriger des recherches, 2013.

Z. Lin, L. V. Zhigilei, and V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Phys. Rev. B, vol.77, p.75133, 2008.

, Position initiale des fils, (b) Transition des fils vers un état de plasma WDM au passage du courant, (c) Compression du plasma au point de croisement des fils, qui conduit à l'émission d'une impulsion X "thermique" intense, (d) Séparation du plasma par le pincement magnétique, et formation d'un gap qui conduit à l'émission de rayonnement X "suprathermique

, En revanche il avait été moins systématiquement étudié, c'est pourquoi une première expérience visait à caractériser la source X en termes de taille, de transmission à travers des épaisseurs de matériaux choisis (Ta, Cu, Al), et de durée d'émission X. dispersion linéique (ou LSF pour Line Spread Function), obtenue par dérivation des profils du signal enregistré. Le détecteur est un écran radio-luminescent à mémoire. La transmission à travers des échelons d'épaisseurs calibrées est mesurée en utilisant les mêmes détecteurs, et présente plus d'intérêt pour l'application visée

. Durant-cette-expérience-;-le-x-pinch-:-cu, A. Mo, W. Au, and ). , Nous avons identifié la charge en or comme étant la plus prometteuse pour notre application : c'est à la fois celle pour laquelle nous avons mesuré la taille de source la plus petite (0.65 ± 0.05 mm), et qui présente une bonne capacité à différencier les épaisseurs des échelons testés. De plus son numéro atomique est élevé, ce qui assure une émission intense. Cette charge émet des rayons X sur une gamme spectrale étendue, nous avons effectué des essais avec différentes charges (i.e. nature et diamètre des fils constituant

. Ainsi,

N. C. Christofilos, R. E. Hester, W. A. Lamb, D. D. Reagan, W. A. Sherwood et al., High current Linear Induction Accelerator for electrons, Review of Scientific Instruments, vol.35, issue.7, pp.886-890, 1964.

C. Ekdahl, Modern electron accelerators for radiography. IEEE Transactions on Plasma Science, vol.30, pp.254-261, 2002.

J. E. Coleman and J. Colgan, Collisional heating and adiabatic expansion of warm dense matter with intense relativistic electrons, Phys. Rev. E, vol.96, p.13208, 2017.

T. J. Kwan, C. M. Snell, and P. J. Christenson, Electron beam-target interaction and spot size stabilization in flash X-ray radiography, Physics of Plasmas, vol.7, issue.5, pp.2215-2223, 2000.

C. Vermare, H. A. Davis, D. C. Moir, and T. P. Hughes, Ion emission from solid surfaces induced by intense electron beam impact, Physics of Plasmas, vol.10, issue.1, pp.277-284, 2003.

A. Compant and . Fontaine, Ion emission at the target of the radiographic devices PIVAIR and AIRIX, Journal of Physics D : Applied Physics, vol.40, issue.6, pp.1712-1732, 2007.

Y. Chen, G. J. Caporaso, and A. Paul, Controlling backstreaming ions from X-ray converter targets with time varying final focusing solenoidal lens and beam energy variation, 19th International Linear Accelerator Conference, vol.8, 1998.

C. Fourment, Premieres experiences d'interaction faisceau-cible sur l'installation FEVAIR. Rapport technique, 2019.

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Models of wide-range equations of state for matter under conditions of high energy density, Sov. Tech. Rev. B : Therm. Phys, vol.5, p.1, 1993.

P. A. Pincosy, N. Back, P. M. Bergstrom, Y. Chen, and P. Poulsen, Multiple pulse electron beam converter design for high power radiography, Review of Scientific Instruments, vol.72, issue.6, pp.2599-2604, 2001.

D. H. Kalantar and D. A. , HAMMER : The X-pinch as a point source of X-rays for backlighting, Review of Scientific Instruments, vol.66, issue.1, pp.779-781, 1995.

F. Zucchini, S. N. Bland, C. Chauvin, P. Combes, D. Sol et al., Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies, Review of Scientific Instruments, vol.86, issue.3, p.33507, 2015.

C. Fourment, Rapport préliminaire d'essais sur le X-pinch XP2 du CEA/GRAMAT. Rapport technique, 2019.

T. Lahens, Propagation d'un faisceau d'électrons relativistes intense de radiographie eclair dans un plasma froid, 2019.

J. J. Su, T. Katsouleas, J. M. Dawson, and R. Fedele, Plasma lenses for focusing particle beams, Phys. Rev. A, vol.41, pp.3321-3331, 1990.

I. D. Kaganovich, G. Shvets, E. Startsev, and R. C. Davidson, Nonlinear charge and current neutralization of an ion beam pulse in a pre-formed plasma, Physics of Plasmas, vol.8, issue.9, pp.4180-4192, 2001.

J. J. Santos, D. Batani, S. D. Baton, F. N. Beg, T. Ceccotti et al., GREMILLET : Supra-thermal electron beam stopping power and guiding in dense plasmas, Journal of Plasma Physics, vol.79, issue.4, pp.429-435, 2013.

M. C. Myers, J. A. Antoniades, R. A. Meger, D. P. Murphy, R. F. Fernsler et al., Transport and centering of high current electron beams in neutral gas filled cells, Journal of Applied Physics, vol.78, issue.6, pp.3580-3591, 1995.

D. R. Welch, D. V. Rose, B. V. Oliver, E. Schamiloglu, K. Hahn et al., Transport of a relativistic electron beam in gas and plasma-filled focusing cells for X-ray radiography, Physics of Plasmas, vol.11, issue.2, pp.751-760, 2004.

A. G. Sgro and T. J. Kwan, Long time scale electron beam penetration of blowoff plasma in multipulse X-ray radiography, Physics of Plasmas, vol.10, issue.3, pp.849-854, 2003.

.. S. Humphries, Charged particle beams, 2013.

C. J. Powell, X. Llovet, and F. Salvat, Use of the Bethe equation for inner-shell ionization by electron impact, Journal of Applied Physics, vol.119, issue.18, p.184904, 2016.

Y. Kim, J. P. Santos, and F. Parente, Extension of the binary-encounter-dipole model to relativistic incident electrons, Phys. Rev. A, vol.62, p.52710, 2000.

M. A. Lieberman and A. J. , LICHTENBERG : Principles of plasma discharges and materials processing, 2005.

Y. P. Raizer, Gas discharge physics, 1991.

R. F. Fernsler, R. F. Hubbard, and S. P. , SLINKER : Foil focusing of electron beams, Journal of Applied Physics, vol.68, issue.12, pp.5985-5994, 1990.