, caractérisant la dépendance exponentielle de ces données (cf fig. 6.23, modèle en tirets bleus) possède une valeur en très bon accord avec le modèle numérique, soit 30 meV

, En résumé, l'excitation sur le semi-transparent nous permet donc de clarifier le rôle joué par les électrodes en terme (1) de modification du potentiel de surface

, La gamme de blueshift à considérer étant de l'ordre de 50 meV sous le spot, il est nécessaire de considérer sur la figure 6.13b, non pas la courbe aux faibles densités (tirets rouges, D713) mais la zone dont la pente est donnée par les tirets violets

, par rapport à l'exponentielle de Boltzmann, une correction à l'ordre 2 en E b /k B T

F. Le, présente le code en MATLAB de la fonction qui a été développée pour résoudre l'équation de Schrödinger 1D par la méthode des différences finies. Ses paramètres d'entrée sont : ? le potentiel énergétique, Vi, échantillonné spatialement, ? le champ de masse effective, mi, ? le pas d'espace, dx

, Ses paramètres de sortie sont : ? la listes des N énergies propres de plus faibles valeurs Ei, ? la liste de N vecteurs propres correspondants, Phi. Sans rentrer dans le détail du code, mentionnons que l'on

E. A. Cornell and C. E. Wieman, Nobel Lecture : Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys, vol.74, pp.875-893, 2002.

W. Ketterle, Nobel lecture : When atoms behave as waves : Bose-Einstein condensation and the atom laser, Rev. Mod. Phys, vol.74, pp.1131-1151, 2002.

L. V. Keldysh and A. N. Kozlov, Collective Properties of Large-radius Excitons, ZhETF Pis ma Redaktsiiu, vol.5, p.238, 1967.

L. V. Butov, Excitonic devices, Superlattices and Microstructures, vol.108, pp.2-26, 2017.

J. Dalibard, Cohérence et superfluidité dans les gaz atomiques

J. Dalibard, Fluides quantiques de basse dimension et transition de kosterlitz-thouless

L. Butov, C. Lai, A. Ivanov, A. Gossard, and D. Chemla, Towards bose-einstein condensation of excitons in potential traps, Nature, vol.417, issue.6884, pp.47-52, 2002.

C. Abbas, Optical spectroscopy of indirect excitons and electron spins in semiconductor nanostructures, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02476502

M. Combescot and S. Shiau, Excitons and Cooper Pairs : Two Composite Bosons in Many-Body Physics, 2015.

S. Schmitt-rink, D. S. Chemla, and D. A. Miller, Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures, Phys. Rev. B, vol.32, pp.6601-6609, 1985.

S. Schmitt-rink, D. Chemla, and D. Miller, Linear and nonlinear optical properties of semiconductor quantum wells, Advances in Physics, vol.38, issue.2, pp.89-188, 1989.

. Bibliographie,

L. Kappei, J. Szczytko, F. Morier-genoud, and B. Deveaud, Direct observation of the mott transition in an optically excited semiconductor quantum well

, Rev. Lett, vol.94, p.147403, 2005.

G. Rossbach, J. Levrat, G. Jacopin, M. Shahmohammadi, J. Carlin et al.,

R. Ganière, B. Butté, N. Deveaud, and . Grandjean, High-temperature mott transition in wide-band-gap semiconductor quantum wells, Phys. Rev. B, vol.90, p.201308, 2014.

V. V. Nikolaev and M. E. Portnoi, Theory of excitonic mott transition in double quantum wells, physica status solidi (c), vol.1, issue.6, pp.1357-1362, 2004.

J. Mock, G. Thomas, and M. Combescot, Entropy ionization of an exciton gas, Solid State Communications, vol.25, issue.5, pp.279-282, 1978.

R. Zimmermann, Many-particle theory of highly excited semiconductors, vol.18, 1988.

I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Reviews of modern physics, vol.80, issue.3, p.885, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00195515

L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM Journal of Research and Development, vol.14, issue.1, pp.61-65, 1970.

L. Keldysh and A. Kozlov, Collective properties of excitons in semiconductors, Sov. Phys. JETP, vol.27, issue.3, p.521, 1968.

A. Cho and J. Arthur, Bmolecular beam epitaxy,[progr, Solid State Chem, vol.10, pp.157-191, 1975.

M. Droz and M. Combescot, Phase diagram for electron-hole droplets, Physics Letters A, vol.51, issue.8, pp.473-474, 1975.

V. Vavilov, V. Zayats, and V. Murzin, Resonant absorption, scattering, and emission of electron-hole drops in germanium in the region of their plasma frequency, ZhETF Pisma Redaktsiiu, vol.10, p.304, 1969.

N. N. Sibeldin, Electron-hole liquid in semiconductors and low-dimensional structures, Physics-Uspekhi, vol.60, issue.11, p.1147, 2017.

M. Stern, V. Umansky, and I. Bar-joseph, Exciton liquid in coupled quantum wells, Science, vol.343, issue.6166, pp.55-57, 2014.

A. Rustagi and A. F. Kemper, Theoretical phase diagram for the roomtemperature electron-hole liquid in photoexcited quasi-two-dimensional monolayer mos2, Nano letters, vol.18, issue.1, pp.455-459, 2018.

S. Berciaud, Quasi-two-dimensional electron-hole droplets, Nature Photonics, vol.13, issue.4, pp.225-226, 2019.

T. B. Arp, D. Pleskot, V. Aji, and N. M. Gabor, Electron-hole liquid in a van der waals heterostructure photocell at room temperature, Nature Photonics, vol.13, issue.4, pp.245-250, 2019.

L. V. Keldysh, Electron-hole drops in semiconductors, Soviet Physics Uspekhi, vol.13, issue.2, p.292, 1970.

D. W. Snoke, J. P. Wolfe, and A. Mysyrowicz, Evidence for bose-einstein condensation of excitons in Cu 2 O, Phys. Rev. B, vol.41, pp.11171-11184, 1990.

J. L. Lin and J. P. Wolfe, Bose-einstein condensation of paraexcitons in stressed Cu 2 O, Phys. Rev. Lett, vol.71, pp.1222-1225, 1993.

K. E. O'hara, L. Súilleabháin, and J. P. Wolfe, Strong nonradiative recombination of excitons in Cu 2 O and its impact on bose-einstein statistics, Phys. Rev

B. , , vol.60, pp.10565-10568, 1999.

D. W. Snoke, J. L. Lin, and J. P. Wolfe, Coexistence of bose-einstein paraexcitons with maxwell-boltzmann orthoexcitons in Cu 2 O, Phys. Rev. B, vol.43, pp.1226-1228, 1991.

T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Giant rydberg excitons in the copper oxide Cu 2 O, Nature, vol.514, issue.7522, pp.343-347, 2014.

S. Zieli?ska-raczy?ska, D. A. Fishman, C. Faugeras, M. M. Potemski, P. H. Van-loosdrecht et al., Magnetoexcitons in Cu 2 O : theoretical model from weak to high magnetic fields, New Journal of Physics, vol.21, p.103012, 2019.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun et al., Bose-einstein condensation of exciton polaritons, Nature, vol.443, issue.7110, pp.409-414, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02547781

P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall et al., Ultra-low-power hybrid lightmatter solitons, Nature Communications, vol.6, issue.1, p.8317, 2015.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont et al., From excitonic to photonic polariton condensate in a zno-based microcavity, Phys. Rev. Lett, vol.110, p.196406, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00824238

T. Guillet and C. Brimont, Polariton condensates at room temperature, Comptes Rendus Physique, vol.17, pp.946-956, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398056

K. Sivalertporn, L. Mouchliadis, A. Ivanov, R. Philp, and E. A. Muljarov, Direct and indirect excitons in semiconductor coupled quantum wells in an applied electric field, Physical Review B, vol.85, issue.4, p.45207, 2012.

Y. E. Lozovik and V. Yudson, A new mechanism for superconductivity : pairing between spatially separated electrons and holes, Zh. Eksp. i Teor. Fiz, vol.71, pp.738-753, 1976.

F. Fedichkin, T. Guillet, P. Valvin, B. Jouault, C. Brimont et al., Room-Temperature Transport of Indirect Excitons in (Al,Ga)N/GaN Quantum Wells, Phys. Rev
URL : https://hal.archives-ouvertes.fr/hal-01353893

. Applied, , vol.6, p.14011, 2016.

F. Fedichkin, P. Andreakou, B. Jouault, M. Vladimirova, T. Guillet et al., Transport of dipolar excitons in (Al,Ga)N/GaN quantum wells, Phys. Rev. B, vol.91, p.205424, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01154792

L. Kappei, J. Szczytko, F. Morier-genoud, and B. Deveaud, Direct observation of the mott transition in an optically excited semiconductor quantum well, Physical review letters, vol.94, issue.14, p.147403, 2005.

G. Rossbach, High-Density Excitonic Effects in GaN : Mott-Transition and Polariton Lasing, 2014.

J. Slotboom and H. De-graaff, Measurements of bandgap narrowing in si bipolar transistors, Solid-State Electronics, vol.19, issue.10, pp.857-862, 1976.

D. Kleinman and R. Miller, Band-gap renormalization in semiconductor quantum wells containing carriers, Physical Review B, vol.32, issue.4, p.2266, 1985.

S. Schmitt-rink, C. Ell, S. W. Koch, H. Schmidt, and H. Haug, Subband-level renormalization and absorptive optical bistability in semiconductor multiple quantum well structures, Solid state communications, vol.52, issue.2, pp.123-125, 1984.

H. Schweizer, A. Forchel, A. Hangleiter, S. Schmitt-rink, J. Löwenau et al., Ionization of the direct-gap exciton in photoexcited germanium, Physical Review Letters, vol.51, issue.8, p.698, 1983.

S. D. Sarma, R. Jalabert, and S. E. Yang, Band-gap renormalization in semiconductor quantum wells, Physical Review B, vol.41, issue.12, p.8288, 1990.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer et al., Efficient formation of excitons in a dense electron-hole plasma at room temperature, Physical Review B, vol.92, issue.24, p.241305, 2015.

M. Stern, V. Garmider, V. Umansky, and I. Bar-joseph, Mott transition of excitons in coupled quantum wells, Physical review letters, vol.100, issue.25, p.256402, 2008.

B. Laikhtman and R. Rapaport, Exciton correlations in coupled quantum wells and their luminescence blue shift, Phys. Rev. B, vol.80, p.195313, 2009.

B. Laikhtman and R. Rapaport, Correlations in a two-dimensional bose gas with long-range interaction, Europhysics Letters), vol.87, p.27010, 2009.

V. Nikolaev and M. Portnoi, Theory of the excitonic mott transition in quasitwo-dimensional systems, Superlattices and Microstructures, vol.43, issue.5-6, pp.460-464, 2008.

R. Suris, Gas-crystal phase transition in a 2d dipolar exciton system, Journal of Experimental and Theoretical Physics, vol.122, issue.3, pp.602-607, 2016.

V. Timofeev, A. Larionov, M. Grassi-alessi, M. Capizzi, and J. M. Hvam, Phase diagram of a two-dimensional liquid in GaAs/Al x Ga 1?x As biased double quantum wells, Physical Review B, vol.61, issue.12, p.8420, 2000.

A. A. High, J. R. Leonard, A. T. Hammack, M. M. Fogler, L. V. Butov et al., Spontaneous coherence in a cold exciton gas, Nature, vol.483, issue.7391, pp.584-588, 2012.

A. High, J. Leonard, M. Remeika, L. Butov, M. Hanson et al., Condensation of excitons in a trap, Nano letters, vol.12, issue.5, pp.2605-2609, 2012.

G. Schinner, J. Repp, E. Schubert, A. Rai, D. Reuter et al., Many-body correlations of electrostatically trapped dipolar excitons, Physical Review B, vol.87, issue.20, p.205302, 2013.

G. J. Schinner, J. Repp, E. Schubert, A. K. Rai, D. Reuter et al., Confinement and Interaction of Single Indirect Excitons in a Voltage-Controlled Trap Formed Inside Double InGaAs Quantum Wells, Phys. Rev. Lett, vol.110, p.127403, 2013.

. Bibliographie,

M. Alloing, M. Beian, M. Lewenstein, D. Fuster, Y. González et al., Evidence for a bose-einstein condensate of excitons, Europhysics Letters), vol.107, p.10012, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01229150

M. Alloing, A. Lemaitre, and F. Dubin, Quantum signature blurred by disorder in indirect exciton gases, Europhysics Letters), vol.93, issue.1, p.17007, 2011.

R. Anankine, Cohérence quantique et superfluidité d'un gaz d'excitons piégés, vol.6, 2017.

R. Anankine, M. Beian, S. Dang, M. Alloing, E. Cambril et al., Quantized vortices and four-component superfluidity of semiconductor excitons, Physical review letters, vol.118, issue.12, p.127402, 2017.

R. Anankine, S. Dang, M. Beian, E. Cambril, C. G. Carbonell et al., Temporal coherence of spatially indirect excitons across bose-einstein condensation : The role of free carriers, New Journal of Physics, vol.20, issue.7, p.73049, 2018.

Y. Shilo, K. Cohen, B. Laikhtman, K. West, L. Pfeiffer et al., Particle correlations and evidence for dark state condensation in a cold dipolar exciton fluid, Nature Communications, vol.4, 2013.

M. Beian, M. Alloing, E. Cambril, C. G. Carbonell, J. Osmond et al., Long-lived spin coherence of indirect excitons in GaAs coupled quantum wells, EPL, vol.110, pp.27001-27006, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01229138

M. Combescot, O. Betbeder-matibet, and R. Combescot, Bose-einstein condensation in semiconductors : The key role of dark excitons, Physical review letters, vol.99, issue.17, p.176403, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01284381

J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C : Solid State Physics, vol.6, issue.7, p.1181, 1973.

S. Dang, Exploring the Berezinskii-Kosterlitz-Thouless transition with dipolar excitons, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02406328

C. Abbas, F. Chiaruttini, S. Cronenberger, D. Scalbert, F. Dubin et al., Spin relaxation of indirect excitons in asymmetric coupled quantum wells, Superlattices and Microstructures, vol.122, pp.643-649, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01909352

A. Nalitov, M. Vladimirova, A. Kavokin, L. Butov, and N. Gippius, Nonlinear optical probe of indirect excitons, Physical Review B, vol.89, issue.15, p.155309, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02046568

F. Fedichkin, Excitons indirects dans les puits quantiques de la grande bande interdite, 2016.

X. Vögele, D. Schuh, W. Wegscheider, J. Kotthaus, and A. Holleitner, Density enhanced diffusion of dipolar excitons within a one-dimensional channel, Physical review letters, vol.103, issue.12, p.126402, 2009.

C. Dorow, M. Hasling, E. Calman, L. Butov, J. Wilkes et al., Spatially resolved and time-resolved imaging of transport of indirect excitons in high magnetic fields, Physical Review B, vol.95, issue.23, p.235308, 2017.

I. Singer, Solid lubrication processes, Fundamentals of Friction : Macroscopic and Microscopic Processes, pp.237-261, 1992.

K. S. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich et al., Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences, vol.102, issue.30, pp.10451-10453, 2005.

A. K. Geim and I. V. Grigorieva, Van der waals heterostructures, Nature, vol.499, issue.7459, pp.419-425, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01986052

X. Marie, B. Urbaszek, and T. Amand, Les dichalcogénures de métaux de transition, nouveaux matériaux bidimensionnels, pp.21-25, 2016.

F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen et al., Excitonic linewidth approaching the homogeneous limit in mos 2-based van der waals heterostructures, Physical Review X, vol.7, issue.2, p.21026, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02053910

L. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, Soviet Journal of Experimental and Theoretical Physics Letters, vol.29, p.658, 1979.

P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening in two-dimensional insulators : Implications for excitonic and impurity states in graphane, Physical Review B, vol.84, issue.8, p.85406, 2011.

T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides, Physical Review B, vol.88, issue.4, p.45318, 2013.

E. Calman, M. Fogler, L. Butov, S. Hu, A. Mishchenko et al., Indirect excitons in van der waals heterostructures at room temperature, Nature communications, vol.9, issue.1, pp.1-5, 2018.

A. Janotti and C. G. Van-de-walle, Fundamentals of zinc oxide as a semiconductor, Reports on progress in physics, vol.72, p.126501, 2009.

I. Institute, Brillouin zone of the hexagonal lattice

X. Zhang, T. Taliercio, S. Kolliakos, and P. Lefebvre, Influence of electron-phonon interaction on the optical properties of iii nitride semiconductors, Journal of Physics : Condensed Matter, vol.13, issue.32, p.7053, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01303256

B. Gil, Physics of Wurtzite Nitrides and Oxides : Passport to Devices, Springer Series in Materials Science, vol.197, 2014.

S. Chichibu, A. Shikanai, T. Azuhata, T. Sota, A. Kuramata et al., Effects of biaxial strain on exciton resonance energies of hexagonal GaN heteroepitaxial layers, Applied physics letters, vol.68, issue.26, pp.3766-3768, 1996.

B. Gil, Group III nitride semiconductor compounds : physics and applications, 1998.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for iii-v compound semiconductors and their alloys, Journal of Applied Physics, vol.89, issue.11, pp.5815-5875, 2001.

B. V. Rosencher and E. Optoélectronique, , vol.1, 2002.

G. and L. Rocca, Wannier-mott excitons in semiconductors, Thin films and nanostructures, vol.31, pp.97-128, 2003.

M. Shinada and S. Sugano, Interband optical transitions in extremely anisotropic semiconductors. i. bound and unbound exciton absorption, Journal of the Physical Society of Japan, vol.21, issue.10, pp.1936-1946, 1966.

F. Bassani and G. Parravicini, Electronic states and optical transitions in solids

C. Tanguy, Optical dispersion by wannier excitons, Physical review letters, vol.75, issue.22, p.4090, 1995.

C. Tanguy, P. Lefebvre, H. Mathieu, and R. Elliott, Analytical model for the refractive index in quantum wells derived from the complex dielectric constant of wannier excitons in noninteger dimensions, Journal of applied physics, vol.82, issue.2, pp.798-802, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01260885

H. Fröhlich, Electrons in lattice fields, Advances in Physics, vol.3, issue.11, pp.325-361, 1954.

N. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laügt et al., Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells, Journal of applied physics, vol.86, issue.7, pp.3714-3720, 1999.

R. Zimmermann, F. Grosse, and E. Runge, Excitons in semiconductor nanostructures with disorder, Pure and applied chemistry, vol.69, issue.6, pp.1179-1186, 1997.

R. Zimmermann and E. Runge, Exciton lineshape in semiconductor quantum structures with interface roughness, Journal of luminescence, vol.60, pp.320-323, 1994.

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, vol.34, pp.149-154, 1967.

M. J. Ali, Optical characterisation of non polar nanostructures quantum wells ZnO/(Zn, Mg) O, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02155700

M. Gallart, Dynamique de recombinaison excitonique dans les puits quantiques

. Gan/algan, , vol.2, 2001.

R. Martin, P. Middleton, K. , W. Van-der, and . Stricht, Exciton localization and the Stokes' shift in InGaN epilayers, Applied physics letters, vol.74, issue.2, pp.263-265, 1999.

D. Miller, D. Chemla, and S. Schmitt-rink, Relation between electroabsorption in bulk semiconductors and in quantum wells : The quantum-confined franz-keldysh effect, Physical Review B, vol.33, issue.10, p.6976, 1986.

L. Shen, S. Heikman, B. Moran, R. Coffie, N. Zhang et al., AlGaN/AlN/GaN high-power microwave HEMT, IEEE Electron Device Letters, vol.22, issue.10, pp.457-459, 2001.

M. Gallart, P. Lefebvre, A. Morel, T. Taliercio, B. Gil et al., Reduction of carrier in-plane mobility in group-iii nitride based quantum wells : The role of internal electric fields, physica status solidi (a), vol.183, pp.61-66, 2001.

F. Natali, D. Byrne, M. Leroux, B. Damilano, F. Semond et al., Inhomogeneous broadening of al x ga 1-x n/ ga n quantum wells, Physical Review B, vol.71, issue.7, p.75311, 2005.

Y. E. Lozovik, I. V. Ovchinnikov, S. Y. Volkov, L. V. Butov, and D. S. Chemla, Quasi-two-dimensional excitons in finite magnetic fields, Phys. Rev. B, vol.65, p.235304, 2002.

M. Goryca, J. Li, A. V. Stier, T. Taniguchi, K. Watanabe et al., Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields, Nature communications, vol.10, issue.1, pp.1-12, 2019.

A. V. Stier, K. M. Mccreary, B. T. Jonker, J. Kono, and S. A. Crooker, Exciton diamagnetic shifts and valley zeeman effects in monolayer ws 2 and mos 2 to 65 tesla, Nature communications, vol.7, issue.1, pp.1-8, 2016.

S. Tarucha, H. Okamoto, Y. Iwasa, and N. Miura, Exciton binding energy in GaAs quantum wells deduced from magneto-optical absorption measurement, Solid state communications, vol.52, issue.9, pp.815-819, 1984.

M. Grochol, F. Grosse, and R. Zimmermann, Exciton wave function properties probed by diamagnetic shift in disordered quantum wells, Physical Review B, vol.71, issue.12, p.125339, 2005.

M. Grochol, F. Grosse, and R. Zimmermann, Exciton diamagnetic shift in realistic quantum wells, physica status solidi c, vol.3, issue.10, pp.3492-3495, 2006.

M. Erdmann, C. Ropers, M. Wenderoth, R. G. Ulbrich, S. Malzer et al., Diamagnetic shift of disorder-localized excitons in narrow GaAs/AlGaAs quantum wells, Phys. Rev. B, vol.74, p.125412, 2006.

J. Wilkes and E. A. Muljarov, Exciton effective mass enhancement in coupled quantum wells in electric and magnetic fields, New Journal of Physics, vol.18, issue.2, p.23032, 2016.

Y. Kuznetsova, C. Dorow, E. Calman, L. Butov, J. Wilkes et al., Transport of indirect excitons in high magnetic fields, Physical Review B, vol.95, issue.12, p.125304, 2017.

B. Gil, III-Nitride Semiconductors and their Modern Devices, 2014.

N. Baron, Optimisation de l'épitaxie sous jets moléculaires d'hétérostructures à base de GaN : application aux transistors à haute mobilité d'électrons sur substrat silicium, 2009.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures, Journal of Applied Physics, vol.85, issue.6, pp.3222-3233, 1999.

O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann et al., Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures, Journal of Applied Physics, vol.87, issue.1, pp.334-344, 2000.

N. Thierry-jebali, Lyon 1, 2011. sous la direction de Christian Brylinski, Caractérisations et modélisations physiques de contacts entre phases métalliques et Nitrure de Gallium semi-conducteur

J. Bardeen, Surface states and rectification at a metal semi-conductor contact, Phys. Rev, vol.71, pp.717-727, 1947.

A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang et al., Schottky barrier properties of various metals on n-type GaN, Semicond. Sci. Technol, vol.11, pp.1464-1467, 1996.

K. A. Rickert, A. B. Ellis, J. K. Kim, J. Lee, F. J. Himpsel et al., X-ray photoemission determination of the Schottky barrier height of metal contacts to n-GaN and p-GaN, J. Appl. Phys, vol.92, pp.6671-6678, 2002.

E. Deleporte, J. Berroir, G. Bastard, C. Delalande, J. Hong et al., Magnetic field-induced type i -> type ii transition in a semimagnetic cdtecd0.93mn0.07te superlattice, Superlattices and Microstructures, vol.8, issue.2, pp.171-174, 1990.

A. Bellabchara, Développement d'un calcul numérique flexible des excitons dans tout type d'hétérostructure semiconductrice, vol.2, 1997.

P. Bigenwald, P. Lefebvre, T. Bretagnon, and B. Gilbigenwald, Confined Excitons in GaN-AlGaN Quantum Wells, physica status solidi (b), vol.216, pp.371-374, 1999.

D. Dugdale, S. Brand, and R. Abram, Direct calculation of k.p parameters for wurtzite AlN, GaN, and InN, Physical Review B, vol.61, issue.19, p.12933, 2000.

H. Frisch and J. Lebowitz, The Equilibrium Theory of Classical Fluids, vol.1, 1964.

. Bibliographie,

A. L. Ivanov, E. A. Muljarov, L. Mouchliadis, and R. Zimmermann, Comment on "photoluminescence ring formation in coupled quantum wells : Excitonic versus ambipolar diffusion, Phys. Rev. Lett, vol.104, p.179701, 2010.

K. H. Kingdon and I. Langmuir, The removal of thorium from the surface of a thoriated tungsten filament by positive ion bombardment, Phys. Rev, vol.22, pp.148-160, 1923.

M. N. Sc, Liii. ionization in the solar chromosphere, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.40, issue.238, pp.472-488, 1920.

J. Collet and T. Amand, Electron-hole interaction in the presence of excitons, Solid state communications, vol.52, issue.1, pp.53-56, 1984.

C. R. Smith, Bound states in a debye-hückel potential, Phys. Rev, vol.134, pp.1235-1237, 1964.

D. W. Snoke and J. D. Crawford, Hysteresis in the mott transition between plasma and insulating gas, Phys. Rev. E, vol.52, pp.5796-5799, 1995.

D. Snoke, Predicting the ionization threshold for carriers in excited semiconductors, Solid State Communications, vol.146, issue.1, pp.73-77, 2008.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud et al., Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells, Phys. Rev. B, vol.94, p.195411, 2016.

S. A. Moskalenko and D. W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons : And Coherent Nonlinear Optics with Excitons, 2000.

A. L. Ivanov, Quantum diffusion of dipole-oriented indirect excitons in coupled quantum wells, Europhys. Letters, vol.59, pp.586-591, 2002.

R. Rapaport, G. Chen, and S. H. Simon, Nonlinear dynamics of a dense twodimensional dipolar exciton gas, Phys. Rev. B, vol.73, p.33319, 2006.

F. Chiaruttini, T. Guillet, C. Brimont, B. Jouault, P. Lefebvre et al., Trapping dipolar exciton fluids in GaN/(AlGa)N nanostructures, Nano letters, vol.19, issue.8, pp.4911-4918, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02272702

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio et al., Observation and modeling of the time-dependent descreening of internal electric field in a wurtzite GaN/Al 0.15 Ga 0.85 N quantum well after high photoexcitation, Phys. Rev. B, vol.69, p.35307, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01303935

X. B. Zhang, T. Taliercio, S. Kalliakos, and P. Lefebvre, Influence of electronphonon interaction on the optical properties of III nitride semiconductors, J. Phys. : Condens. Matter, vol.13, pp.7053-7074, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01303256

L. V. Butov, A. Imamoglu, K. L. Campman, and A. C. Gossard, Coulomb effects in spatially separated electron and hole layers in coupled quantum wells, J. Exp

, Theor. Phys, vol.92, pp.260-266, 2001.

Y. Y. Kuznetsova, F. Fedichkin, P. Andreakou, E. V. Calman, L. V. Butov et al., Transport of indirect excitons in ZnO quantum wells, Opt. Lett, vol.40, pp.3667-3670, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01181619

W. Chen, X. Wen, J. Yang, M. Latzel, R. Patterson et al., Free charges versus excitons : photoluminescence investigation of InGaN/GaN multiple quantum well nanorods and their planar counterparts, Nanoscale, vol.10, pp.5358-5365, 2018.

B. Deveaud, L. Kappei, J. Berney, F. Morier-genoud, M. Portella-oberli et al., Excitonic effects in the luminescence of quantum wells, Chemical physics, vol.318, issue.1-2, pp.104-117, 2005.

G. Kir?ansk?, P. Tighineanu, R. S. Daveau, J. Miguel-sánchez, P. Lodahl et al., Observation of the exciton mott transition in the photoluminescence of coupled quantum wells, Physical Review B, vol.94, issue.15, p.155438, 2016.

C. Schindler and R. Zimmermann, Analysis of the exciton-exciton interaction in semiconductor quantum wells, Physical Review B, vol.78, issue.4, p.45313, 2008.

Y. E. Lozovik and A. Ruvinskii, Magnetoexciton absorption in coupled quantum wells, Journal of Experimental and Theoretical Physics, vol.85, issue.5, pp.979-988, 1997.

L. Butov, C. Lai, D. Chemla, Y. E. Lozovik, K. Campman et al., Observation of magnetically induced effective-mass enhancement of quasi-2d excitons, Physical review letters, vol.87, issue.21, p.216804, 2001.

. Bibliographie,

P. Arseev and A. Dzyubenko, Exciton magnetotransport in two-dimensional systems : weak-localization effects, Journal of Experimental and Theoretical Physics, vol.87, issue.1, pp.200-209, 1998.

. Keysight, E4980A Precision LCR Meter, User's Guide. Keysight

S. M. Sze and K. K. Ng, Physics of semiconductor devices, 2006.

N. F. Mott, The theory of crystal rectifiers, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.171, issue.944, pp.27-38, 1939.

B. Sharma, Metal-semiconductor Schottky barrier junctions and their applications, 2013.

J. Bardeen, Surface states and rectification at a metal semi-conductor contact, Physical Review, vol.71, issue.10, p.717, 1947.

N. Thierry-jebali, Caractérisations et modélisations physiques de contacts entre phases métalliques et Nitrure de Gallium semi-conducteur, 2011.

S. Kurtin, T. Mcgill, and C. Mead, Fundamental transition in the electronic nature of solids, Physical Review Letters, vol.22, issue.26, p.1433, 1969.

M. Ranade, F. Tessier, A. Navrotsky, V. Leppert, S. Risbud et al., Enthalpy of formation of gallium nitride, The Journal of Physical Chemistry B, vol.104, issue.17, pp.4060-4063, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02298635

F. Padovani and R. Stratton, Field and thermionic-field emission in schottky barriers, Solid-State Electronics, vol.9, issue.7, pp.695-707, 1966.

M. J. Cristea, Capacitance-voltage profiling techniques for characterization of semiconductor materials and devices, 2010.

J. Hilibrand and R. Gold, Determination of the impurity distribution in junction diodes from capacitance-voltage measurements, RCA review, vol.21, issue.2, pp.245-252, 1960.

F. Lu, D. Gong, J. Wang, Q. Wang, H. Sun et al., Capacitance-voltage characteristics of a schottky junction containing sige/si quantum wells, Physical Review B, vol.53, issue.8, p.4623, 1996.

V. Zubkov, Simulation of capacitance-voltage characteristics of heterostructures with quantum wells using a self-consistent solution of the schrödinger and poisson equations, Semiconductors, vol.40, issue.10, pp.1204-1208, 2006.

J. Wang, F. Lu, S. Zhang, B. Zhang, D. Gong et al., Analysis of capacitance-voltage characteristics of Si 1?x Ge x /Si quantum-well structures, Physical Review B, vol.54, issue.11, p.7979, 1996.

K. Kreher, Capacitance-voltage characteristics of a quantum well within a schottky layer, physica status solidi (a), vol.135, pp.597-603, 1993.

P. Brounkov, T. Benyattou, and G. Guillot, Simulation of the capacitance-voltage characteristics of a single-quantum-well structure based on the self-consistent solution of the schrödinger and poisson equations, Journal of applied physics, vol.80, issue.2, pp.864-871, 1996.

W. Ebeling, W. Kraft, and D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids, vol.1, 1976.