, Article publié en collaboration avec Alessandro Pagluiso et Pascale Cossart de l'institut Pasteur, vol.238

, Accepté dans Cell Host & Microbe, 2019.

M. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre, and K. R. Pardesi, Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review, Front. Microbiol, vol.10, p.539, 2019.

M. Navidinia, the Clinical Importance of Emerging Eskape Pathogens in Nosocomial Infections, J. Paramed. Sci, vol.7, issue.3, pp.43-57, 2016.

L. B. Rice, Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE, J. Infect. Dis, vol.197, issue.8, pp.1079-1081, 2008.

E. Tacconelli, Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis, Lancet. Infect. Dis, vol.18, issue.3, pp.318-327, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02347423

S. K. Green, M. N. Schroth, J. J. Cho, S. K. Kominos, and V. B. Vitanza-jack, Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa, Appl. Microbiol, vol.28, issue.6, pp.987-91, 1974.

J. B. Lyczak, C. L. Cannon, and G. B. Pier, Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist, Microbes Infect, vol.2, issue.9, pp.1051-1060, 2000.

, Infections nosocomiales | Inserm -La science pour la santé, p.3, 2015.

S. Elsen, A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia, Cell Host Microbe, vol.15, issue.2, pp.164-76, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00993388

J. R. Govan and G. S. Harris, Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis, Microbiol. Sci, vol.3, issue.10, pp.302-310, 1986.

M. L. Vasil, Pseudomonas aeruginosa: biology, mechanisms of virulence, epidemiology, J. Pediatr, vol.108, issue.5, pp.800-805, 1986.

A. Filloux and I. Vallet, Biofilm : mise en place et organisation d'une communauté bactérienne, médecine/sciences, vol.19, pp.77-83, 2003.

K. Lee and S. S. Yoon, Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness, J. Microbiol. Biotechnol, vol.27, issue.6, pp.1053-1064, 2017.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science, vol.284, issue.5418, pp.1318-1340, 1999.

A. Magiorakos, Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance, Clin. Microbiol. Infect, vol.18, issue.3, pp.268-81, 2012.

K. Poole, Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms, J. Mol. Microbiol. Biotechnol, vol.3, issue.2, pp.255-64, 2001.

M. E. El-zowalaty, Pseudomonas aeruginosa: Arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies, Future Microbiol, vol.10, issue.10, pp.1683-1706, 2015.

P. Gilbert, P. J. Collier, and M. R. Brown, Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response, Antimicrob. Agents Chemother, vol.34, issue.10, pp.1865-1868, 1990.

P. A. Lambert, Mechanisms of antibiotic resistance in Pseudomonas aeruginosa, J. R. Soc. Med. Suppl, vol.95, issue.41, pp.22-26, 2002.

C. K. Stover, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, vol.406, issue.6799, pp.959-964, 2000.

T. R. Costa, Secretion systems in Gram-negative bacteria: structural and mechanistic insights, Nat. Rev. Microbiol, vol.13, issue.6, pp.343-359, 2015.

E. R. Green and J. Mecsas, Bacterial Secretion Systems: An Overview, Microbiol. Spectr, vol.4, issue.1, 2016.

S. Bleves, V. Viarre, R. Salacha, G. P. Michel, A. Filloux et al., Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons, Int. J. Med. Microbiol, vol.300, issue.8, pp.534-543, 2010.

S. Létoffé, J. M. Ghigo, and C. Wandersman, Secretion of the Serratia marcescens HasA protein by an ABC transporter, J. Bacteriol, vol.176, issue.17, pp.5372-5379, 1994.

M. Lee, S. Jun, B. Yoon, S. Song, K. Lee et al., Membrane Fusion Proteins of Type I Secretion System and Tripartite Efflux Pumps Share a Binding Motif for TolC in Gram-Negative Bacteria, PLoS One, vol.7, issue.7, p.40460, 2012.

S. Létoffé, P. Delepelaire, and C. Wandersman, Protein secretion in gram-negative bacteria: assembly of the three components of ABC protein-mediated exporters is ordered and promoted by substrate binding, EMBO J, vol.15, issue.21, pp.5804-5815, 1996.

K. Kanonenberg, C. K. Schwarz, and L. Schmitt, Type I secretion systems -a story of appendices, Res. Microbiol, vol.164, issue.6, pp.596-604, 2013.

J. Lecher, C. K. Schwarz, M. Stoldt, S. H. Smits, D. Willbold et al., An RTX Transporter Tethers Its Unfolded Substrate during Secretion via a Unique N-Terminal Domain, Structure, vol.20, issue.10, pp.1778-1787, 2012.

I. Linhartová, RTX proteins: a highly diverse family secreted by a common mechanism, FEMS Microbiol. Rev, vol.34, issue.6, pp.1076-112, 2010.

N. Mackman and I. B. Holland, Functional characterization of a cloned haemolysin determinant from E. coli of human origin, encoding information for the secretion of a 107K polypeptide, Mol. Gen. Genet, vol.196, issue.1, pp.129-163, 1984.

R. A. Welch, E. P. Dellinger, B. Minshew, and S. Falkow, Haemolysin contributes to virulence of extra-intestinal E. coli infections, Nature, vol.294, issue.5842, pp.665-667, 1981.

K. Korotkov, M. Sandkvist, and W. G. Hol, The type II secretion system: biogenesis, molecular architecture and mechanism, Nat. Rev. Microbiol, vol.10, issue.5, pp.336-51, 2012.

N. P. Cianciotto, Type II secretion: a protein secretion system for all seasons, Trends Microbiol, vol.13, issue.12, pp.581-588, 2005.

M. Sandkvist, Biology of type II secretion, Mol. Microbiol, vol.40, issue.2, pp.271-283, 2001.

M. Sandkvist, M. Bagdasarian, S. P. Howard, and V. J. Dirita, Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae, EMBO J, vol.14, issue.8, pp.1664-73, 1995.

O. M. Possot, G. Vignon, N. Bomchil, F. Ebel, and A. P. Pugsley, Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE, J. Bacteriol, vol.182, issue.8, pp.2142-52, 2000.

S. Genin and C. A. Boucher, A superfamily of proteins involved in different secretion pathways in gram-negative bacteria: modular structure and specificity of the N-terminal domain, Mol. Gen. Genet, vol.243, issue.1, pp.112-120, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02708880

S. L. Reichow, K. Korotkov, W. G. Hol, and T. Gonen, Structure of the cholera toxin secretion channel in its closed state, Nat. Struct. Mol. Biol, vol.17, issue.10, pp.1226-1258, 2010.

D. Nunn, Bacterial type II protein export and pilus biogenesis: more than just homologies?, Trends Cell Biol, vol.9, issue.10, pp.402-410, 1999.

S. Bleves, R. Voulhoux, G. Michel, A. Lazdunski, J. Tommassen et al., The secretion apparatus of Pseudomonas aeruginosa : identification of a fifth pseudopilin, XcpX (GspK family), Mol. Microbiol, vol.27, issue.1, pp.31-40, 1998.

R. Voulhoux, Involvement of the twin-arginine translocation system in protein secretion via the type II pathway, EMBO J, vol.20, issue.23, pp.6735-6776, 2001.

K. Korotkov and W. G. Hol, Structure of the GspK-GspI-GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system, Nat. Struct. Mol. Biol, vol.15, issue.5, pp.462-468, 2008.

N. Sauvonnet, G. Vignon, A. P. Pugsley, and P. Gounon, Pilus formation and protein secretion by the same machinery in Escherichia coli, EMBO J, vol.19, issue.10, pp.2221-2229, 2000.

P. Braun, A. De-groot, W. Bitter, and J. Tommassen, Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa, J. Bacteriol, vol.180, issue.13, pp.3467-3476, 1998.

A. Martínez, P. Ostrovsky, and D. N. Nunn, LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components, Mol. Microbiol, vol.34, issue.2, pp.317-343, 1999.

H. M. Lu, S. Mizushima, and S. Lory, A periplasmic intermediate in the extracellular secretion pathway of Pseudomonas aeruginosa exotoxin A, J. Bacteriol, vol.175, issue.22, pp.7463-7470, 1993.

R. Rosqvist, A. Forsberg, and H. Wolf-watz, Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption, Infect. Immun, vol.59, issue.12, pp.4562-4571, 1991.

D. Büttner, Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant-and animal-pathogenic bacteria, Microbiol. Mol. Biol. Rev, vol.76, issue.2, pp.262-310, 2012.

G. M. Young, D. H. Schmiel, and V. L. Miller, A new pathway for the secretion of virulence factors by bacteria: The flagellar export apparatus functions as a protein-secretion system, Proc. Natl. Acad. Sci, vol.96, issue.11, pp.6456-6461, 1999.

T. Izoré, V. Job, and A. Dessen, Biogenesis, regulation, and targeting of the type III secretion system, Structure, vol.19, issue.5, pp.603-615, 2011.

T. Kubori, Supramolecular Structure of the Salmonella typhimurium Type III Protein Secretion System, Science (80-. ), vol.280, issue.5363, pp.602-605, 1998.

J. L. Hodgkinson, Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout, Nat. Struct. Mol. Biol, vol.16, issue.5, pp.477-85, 2009.

T. Spreter, A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system, Nat. Struct. Mol. Biol, vol.16, issue.5, pp.468-76, 2009.

C. Perdu, ExsB Is Required for Correct Assembly of the Pseudomonas aeruginosa Type III Secretion Apparatus in the Bacterial Membrane and Full Virulence In Vivo, Infect. Immun, vol.83, issue.5, p.1789, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02318858

A. Diepold and S. Wagner, Assembly of the bacterial type III secretion machinery, FEMS Microbiol. Rev, vol.38, issue.4, pp.802-822, 2014.

C. Pozidis, Type III Protein Translocase, J. Biol. Chem, vol.278, issue.28, pp.25816-25824, 2003.

A. Diepold, M. Amstutz, S. Abel, I. Sorg, U. Jenal et al., Deciphering the assembly of the Yersinia type III secretion injectisome, EMBO J, vol.29, issue.11, pp.1928-1968, 2010.

B. J. Burkinshaw and N. C. Strynadka, Assembly and structure of the T3SS, Biochim. Biophys. Acta -Mol. Cell Res, vol.1843, issue.8, pp.1649-1663, 2014.

A. Pastor, J. Chabert, M. Louwagie, J. Garin, and I. Attree, PscF is a major component of the Pseudomonas aeruginosa type III secretion needle, FEMS Microbiol. Lett, vol.253, issue.1, pp.95-101, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00378748

M. Quinaud, Structure of the heterotrimeric complex that regulates type III secretion needle formation, Proc. Natl. Acad. Sci, vol.104, pp.7803-7808, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00378747

K. Dohlich, A. B. Zumsteg, C. Goosmann, and M. Kolbe, A Substrate-Fusion Protein Is Trapped inside the Type III Secretion System Channel in Shigella flexneri, PLoS Pathog, vol.10, issue.1, p.1003881, 2014.

A. K. Veenendaal, J. L. Hodgkinson, L. Schwarzer, D. Stabat, S. F. Zenk et al., The type III secretion system needle tip complex mediates host cell sensing and translocon insertion, Mol. Microbiol, vol.63, issue.6, pp.1719-1730, 2007.

A. J. Blocker, What's the point of the type III secretion system needle?, Proc. Natl. Acad. Sci. U. S. A, vol.105, issue.18, pp.6507-6520, 2008.

C. Gendrin, Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa, PLoS Pathog, vol.8, issue.4, p.1002637, 2012.
URL : https://hal.archives-ouvertes.fr/cea-02019507

Y. Akeda and J. E. Galán, Chaperone release and unfolding of substrates in type III secretion, Nature, vol.437, issue.7060, pp.911-915, 2005.

B. J. Burkinshaw and N. C. Strynadka, Assembly and structure of the T3SS, Biochim. Biophys. Acta -Mol. Cell Res, vol.1843, issue.8, pp.1649-1663, 2014.

L. Dortet, C. Lombardi, F. Cretin, A. Dessen, and A. Filloux, Pore-forming activity of the Pseudomonas aeruginosa type III secretion system translocon alters the host epigenome, Nat. Microbiol, vol.3, issue.3, pp.378-386, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01726153

F. Navarro-garcia, F. Ruiz-perez, Á. Cataldi, and M. Larzábal, Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition, Front. Microbiol, vol.10, p.1965, 2019.

F. Boyer, G. Fichant, J. Berthod, Y. Vandenbrouck, and I. Attree, Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?, BMC Genomics, vol.10, p.104, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02072538

A. Zoued, Architecture and assembly of the Type VI secretion system, Biochim. Biophys. Acta -Mol. Cell Res, vol.1843, issue.8, pp.1664-1673, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458220

D. Liebl, M. Robert-genthon, V. Job, V. Cogoni, and I. Attrée, Baseplate Component TssK and Spatio-Temporal Assembly of T6SS in Pseudomonas aeruginosa, Front. Microbiol, vol.10, p.1615, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02330133

M. G. Renault, The gp27-like Hub of VgrG Serves as Adaptor to Promote Hcp Tube Assembly, J. Mol. Biol, vol.430, issue.18, pp.3143-3156, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847145

P. G. Leiman, Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin, Proc. Natl. Acad. Sci, vol.106, pp.4154-4159, 2009.

M. Basler, M. Pilhofer, G. P. Henderson, G. J. Jensen, and J. J. Mekalanos, Type VI secretion requires a dynamic contractile phage tail-like structure, Nature, vol.483, issue.7388, pp.182-186, 2012.

G. Bönemann, A. Pietrosiuk, A. Diemand, H. Zentgraf, and A. Mogk, Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion, EMBO J, vol.28, issue.4, pp.315-325, 2009.

A. Zoued, TssA: The cap protein of the Type VI secretion system tail, BioEssays, vol.39, issue.10, p.1600262, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01780742

T. G. Sana, B. Berni, and S. Bleves, The T6SSs of Pseudomonas aeruginosa Strain PAO1 and Their Effectors: Beyond Bacterial-Cell Targeting, Front. Cell. Infect. Microbiol, vol.6, p.61, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01458173

J. M. Silverman, Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates, Mol. Cell, vol.51, issue.5, pp.584-93, 2013.

J. D. Mougous, A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus, Science, vol.312, issue.5779, pp.1526-1556, 2006.

S. J. Coulthurst, The Type VI secretion system -a widespread and versatile cell targeting system, Res. Microbiol, vol.164, issue.6, pp.640-654, 2013.

M. Aschtgen, M. Gavioli, A. Dessen, R. Lloubès, and E. Cascales, The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall, Mol. Microbiol, vol.75, issue.4, pp.886-899, 2010.

F. Hsu, S. Schwarz, and J. D. Mougous, TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa, Mol. Microbiol, vol.72, issue.5, pp.1111-1136, 2009.

M. G. Casabona, An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa, Environ. Microbiol, vol.15, issue.2, pp.471-486, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00762614

B. Lesic, M. Starkey, J. He, R. Hazan, and L. G. Rahme, Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis, Microbiology, vol.155, pp.2845-55, 2009.

T. G. Sana, The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells, J. Biol. Chem, vol.287, issue.32, pp.27095-105, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458258

M. Basler, B. T. Ho, and J. J. Mekalanos, Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions, Cell, vol.152, issue.4, pp.884-94, 2013.

A. Ostrowski, Killing with proficiency: Integrated post-translational regulation of an offensive Type VI secretion system, PLOS Pathog, vol.14, issue.7, p.1007230, 2018.

M. M. Babu, A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins, J. Bacteriol, vol.188, issue.8, pp.2761-73, 2006.

D. Liebl, M. Robert-genthon, V. Job, V. Cogoni, and I. Attrée, Baseplate Component TssK and Spatio-Temporal Assembly of T6SS in Pseudomonas aeruginosa, Front. Microbiol, vol.10, pp.1-15, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02330133

A. E. Rizzitello, J. R. Harper, and T. J. Silhavy, Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli, J. Bacteriol, vol.183, issue.23, pp.6794-800, 2001.

E. Fan, N. Chauhan, D. B. Udatha, J. C. Leo, and D. Linke, Type V Secretion Systems in Bacteria, Microbiol. Spectr, vol.4, issue.1, 2016.

I. Meuskens, A. Saragliadis, J. C. Leo, and D. Linke, Type V Secretion Systems: An Overview of Passenger Domain Functions, Front. Microbiol, vol.10, p.1163, 2019.

H. D. Bernstein, Type V Secretion in Gram-Negative Bacteria, EcoSal Plus, vol.8, issue.2, 2019.

E. Braselmann and P. L. Clark, Autotransporters: The Cellular Environment Reshapes a Folding Mechanism to Promote Protein Transport, J. Phys. Chem. Lett, vol.3, issue.8, pp.1063-1071, 2012.

P. Emsley, I. G. Charles, N. F. Fairweather, and N. W. Isaacs, Structure of Bordetella pertussis virulence factor P.69 pertactin, Nature, vol.381, issue.6577, pp.90-92, 1996.

A. Brzuszkiewicz, Structure of EstA esterase from psychrotrophic Pseudoalteromonas sp. 643A covalently inhibited by monoethylphosphonate, Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun, vol.65, pp.862-867, 2009.

D. C. Oliver, G. Huang, E. Nodel, S. Pleasance, and R. C. Fernandez, A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain, Mol. Microbiol, vol.47, issue.5, pp.1367-1383, 2003.

I. R. Henderson and J. P. Nataro, Virulence Functions of Autotransporter Proteins, Infect. Immun, vol.69, issue.3, pp.1231-1243, 2001.

F. Jacob-dubuisson, J. Guérin, S. Baelen, and B. Clantin, Two-partner secretion: as simple as it sounds?, Res. Microbiol, vol.164, issue.6, pp.583-595, 2013.

J. C. Leo, I. Grin, and D. Linke, Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane, Philos. Trans. R. Soc. B Biol. Sci, vol.367, issue.1592, pp.1088-1101, 2012.

A. Delattre, Substrate recognition by the POTRA domains of TpsB transporter FhaC, Mol. Microbiol, vol.81, issue.1, pp.99-112, 2011.

E. Schiebel, H. Schwarz, and V. Braun, Subcellular location and unique secretion of the hemolysin of Serratia marcescens, J. Biol. Chem, vol.264, issue.27, pp.16311-16331, 1989.

J. W. St, H. Geme, and . Yeo, A prototype two-partner secretion pathway: the Haemophilus influenzae HMW1 and HMW2 adhesin systems, Trends Microbiol, vol.17, issue.8, pp.355-360, 2009.

D. Linke, T. Riess, I. B. Autenrieth, A. Lupas, and V. A. Kempf, Trimeric autotransporter adhesins: variable structure, common function, Trends Microbiol, vol.14, issue.6, pp.264-270, 2006.

E. Hoiczyk, A. Roggenkamp, M. Reichenbecher, A. Lupas, and J. Heesemann, Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins, EMBO J, vol.19, issue.22, pp.5989-5999, 2000.

M. Mühlenkamp, P. Oberhettinger, J. C. Leo, D. Linke, and M. S. Schütz, Yersinia adhesin A (YadA) -Beauty & beast, Int. J. Med. Microbiol, vol.305, issue.2, pp.252-258, 2015.

P. V. Da-mata-madeira, Structural Basis of Lipid Targeting and Destruction by the Type V Secretion System of Pseudomonas aeruginosa, J. Mol. Biol, vol.428, issue.9, pp.1790-1803, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01342981

R. Salacha, The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system, Environ. Microbiol, vol.12, issue.6, pp.1498-512, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00698204

M. A. Casasanta, A chemical and biological toolbox for Type Vd secretion: Characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum, J. Biol. Chem, vol.292, issue.49, pp.20240-20254, 2017.

J. C. Tsai, M. -r.-yen, R. Castillo, D. L. Leyton, I. R. Henderson et al., The Bacterial Intimins and Invasins: A Large and Novel Family of Secreted Proteins, PLoS One, vol.5, issue.12, p.14403, 2010.

P. Oberhettinger, Intimin and Invasin Export Their C-Terminus to the Bacterial Cell Surface Using an Inverse Mechanism Compared to Classical Autotransport, PLoS One, vol.7, issue.10, p.47069, 2012.

T. Touzé, R. D. Hayward, J. Eswaran, J. M. Leong, and V. Koronakis, Self-association of EPEC intimin mediated by the ?-barrel-containing anchor domain: a role in clustering of the Tir receptor, Mol. Microbiol, vol.51, issue.1, pp.73-87, 2003.

H. Liu, L. Magoun, S. Luperchio, D. B. Schauer, and J. M. Leong, The Tir-binding region of enterohaemorrhagic Escherichia coli intimin is sufficient to trigger actin condensation after bacterial-induced host cell signalling, Mol. Microbiol, vol.34, issue.1, pp.67-81, 1999.

F. Coppens, Hop-family Helicobacter outer membrane adhesins form a novel class of Type 5-like secretion proteins with an interrupted ?-barrel domain, Mol. Microbiol, vol.110, issue.1, pp.33-46, 2018.

S. Bouillot, Pseudomonas aeruginosa Exolysin promotes bacterial growth in lungs, alveolar damage and bacterial dissemination, Sci. Rep, vol.7, issue.1, p.2120, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01525980

E. Reboud, S. Bouillot, S. Patot, B. Béganton, I. Attrée et al., Pseudomonas aeruginosa ExlA and Serratia marcescens ShlA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation, PLOS Pathog, vol.13, issue.8, p.1006579, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01917836

P. Basso, Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death, Environ. Microbiol, vol.19, issue.10, pp.4045-4064, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01911523

P. Basso, Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis, MBio, vol.8, issue.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02318919

T. Maier, Conserved Omp85 lid-lock structure and substrate recognition in FhaC, Nat. Commun, vol.6, issue.1, p.7452, 2015.

Z. M. Nash and P. A. Cotter, Bordetella Filamentous Hemagglutinin, a Model for the Two-Partner Secretion Pathway, Protein Secretion in Bacteria, vol.7, pp.319-328, 2019.

C. Baud, Translocation path of a substrate protein through its Omp85 transporter, Nat. Commun, vol.5, issue.1, p.5271, 2014.

H. Hodak, B. Clantin, E. Willery, V. Villeret, C. Locht et al., Secretion signal of the filamentous haemagglutinin, a model two-partner secretion substrate, Mol. Microbiol, vol.61, issue.2, pp.368-82, 2006.

M. Junker and P. L. Clark, Slow formation of aggregation-resistant ?-sheet folding intermediates, Proteins Struct. Funct. Bioinforma, vol.78, issue.4, pp.812-824, 2010.

P. Basso, Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis, MBio, vol.8, issue.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02318919

B. Clantin, H. Hodak, E. Willery, C. Locht, F. Jacob-dubuisson et al., The crystal structure of filamentous hemagglutinin secretion domain and its implications for the twopartner secretion pathway, Proc. Natl. Acad. Sci. U. S. A, vol.101, issue.16, pp.6194-6203, 2004.

A. Hejazi and F. R. Falkiner, Serratia marcescens, J. Med. Microbiol, vol.46, issue.11, pp.903-912, 1997.

M. L. Cristina, M. Sartini, and A. M. Spagnolo, Serratia marcescens Infections in Neonatal Intensive Care Units (NICUs), Int. J. Environ. Res. Public Health, vol.16, issue.4, 2019.

R. Hertle, The Family of Serratia Type Pore Forming Toxins, Curr. Protein Pept. Sci, vol.6, issue.4, pp.313-325, 2005.

R. Hertle, Serratia marcescens hemolysin (ShlA) binds artificial membranes and forms pores in a receptor-independent manner, J. Membr. Biol, vol.189, issue.1, pp.1-14, 2002.

A. V. Kajava, Beta-helix model for the filamentous haemagglutinin adhesin of Bordetella pertussis and related bacterial secretory proteins, Mol. Microbiol, vol.42, issue.2, pp.279-292, 2001.

J. A. Melvin, E. V. Scheller, C. R. Noël, and P. A. Cotter, New Insight into Filamentous Hemagglutinin Secretion Reveals a Role for Full-Length FhaB in Bordetella Virulence, MBio, vol.6, issue.4, 2015.

D. Jurnecka, P. Man, P. Sebo, and L. Bumba, Bordetella pertussis and Bordetella bronchiseptica filamentous hemagglutinins are processed at different sites, FEBS Open Bio, vol.8, issue.8, pp.1256-1266, 2018.

M. S. Hanson, S. E. Pelzel, J. Latimer, U. Muller-eberhard, and E. J. Hansen, Identification of a genetic locus of Haemophilus influenzae type b necessary for the binding and utilization of heme bound to human hemopexin, Proc. Natl. Acad. Sci, vol.89, issue.5, pp.1973-1977, 1992.

S. Zambolin, Structural basis for haem piracy from host haemopexin by Haemophilus influenzae, Nat. Commun, vol.7, p.11590, 2016.

H. Contreras, N. Chim, A. Credali, and C. W. Goulding, Heme uptake in bacterial pathogens, Curr. Opin. Chem. Biol, vol.19, pp.34-41, 2014.

O. Mayans, Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases, Structure, vol.5, issue.5, pp.677-89, 1997.

H. Kawahara, Cryoprotectants and Ice-Binding Proteins, Psychrophiles: From Biodiversity to Biotechnology, pp.237-257, 2017.

M. Banach, L. Konieczny, and I. Roterman, Why do antifreeze proteins require a solenoid?, Biochimie, vol.144, pp.74-84, 2018.

J. S. Lorv, D. R. Rose, and B. R. Glick, Bacterial Ice Crystal Controlling Proteins, vol.2014, 2014.

Z. C. Ruhe, Programmed Secretion Arrest and Receptor-Triggered Toxin Export during Antibacterial Contact-Dependent Growth Inhibition, Cell, vol.175, issue.4, pp.921-933, 2018.

Z. C. Ruhe, Programmed Secretion Arrest and Receptor-Triggered Toxin Export during Antibacterial Contact-Dependent Growth Inhibition, Cell, vol.175, issue.4, pp.921-933, 2018.

P. Schanda, V. Forge, and B. Brutscher, HET-SOFAST NMR for fast detection of structural compactness and heterogeneity along polypeptide chains, Magn. Reson. Chem, vol.44, issue.S1, pp.177-184, 2006.

M. Ohgushi and A. Wada, Molten-globule state': a compact form of globular proteins with mobile side-chains, FEBS Lett, vol.164, issue.1, pp.21-24, 1983.

V. E. Bychkova, G. V. Semisotnov, V. A. Balobanov, and A. V. Finkelstein, The Molten Globule Concept: 45 Years Later, Biochem, vol.83, issue.S1, pp.33-47, 2018.

P. J. Wyatt, Light scattering and the absolute characterization of macromolecules, Anal. Chim. Acta, vol.272, issue.1, pp.1-40, 1993.

C. D. Putnam, M. Hammel, G. L. Hura, and J. A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution, Q. Rev. Biophys, vol.40, issue.3, pp.191-285, 2007.

C. D. Putnam, M. Hammel, G. L. Hura, and J. A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution, Q. Rev. Biophys, vol.40, issue.3, pp.191-285, 2007.

M. Podobnik, M. Kisovec, and G. Anderluh, Molecular mechanism of pore formation by aerolysin-like proteins, Philos. Trans. R. Soc. B Biol. Sci, vol.372, issue.1726, 2017.

M. D. Peraro and F. G. Van-der-goot, Pore-forming toxins: ancient, but never really out of fashion, Nat. Rev. Microbiol, vol.14, issue.2, pp.77-92, 2016.

S. J. Tilley and H. R. Saibil, The mechanism of pore formation by bacterial toxins, Curr. Opin. Struct. Biol, vol.16, issue.2, pp.230-236, 2006.

E. Kudryashova, D. Heisler, A. Zywiec, and D. S. Kudryashov, Thermodynamic properties of the effector domains of MARTX toxins suggest their unfolding for translocation across the host membrane, Mol. Microbiol, vol.92, issue.5, pp.1056-1071, 2014.

R. Hertle, Specific phosphatidylethanolamine dependence of Serratia marcescens cytotoxin activity, Mol. Microbiol, vol.26, issue.5, pp.853-865, 1997.

M. Alves-bezerra and D. E. Cohen, Triglyceride Metabolism in the Liver, Compr. Physiol, vol.8, issue.1, pp.1-8, 2017.

S. Siniossoglou, Phospholipid metabolism and nuclear function: Roles of the lipin family of phosphatidic acid phosphatases, Biochim. Biophys. Acta -Mol. Cell Biol. Lipids, vol.1831, issue.3, pp.575-581, 2013.

J. E. Vance and G. Tasseva, Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells, Biochim. Biophys. Acta -Mol. Cell Biol. Lipids, vol.1831, issue.3, pp.543-554, 2013.

C. Sohlenkamp and O. Geiger, Bacterial membrane lipids: diversity in structures and pathways, FEMS Microbiol. Rev, vol.40, issue.1, pp.133-159, 2016.

F. G. Tafesse, P. Ternes, and J. C. Holthuis, The Multigenic Sphingomyelin Synthase Family, J. Biol. Chem, vol.281, issue.40, pp.29421-29425, 2006.

D. Lingwood and K. Simons, Lipid Rafts As a Membrane-Organizing Principle, Science (80-. ), vol.327, issue.5961, pp.46-50, 2010.

M. Zhang, E. Mileykovskaya, and W. Dowhan, Cardiolipin Is Essential for Organization of Complexes III and IV into a Supercomplex in Intact Yeast Mitochondria, J. Biol. Chem, vol.280, issue.33, pp.29403-29408, 2005.

S. E. Horvath and G. Daum, Lipids of mitochondria, Prog. Lipid Res, vol.52, issue.4, pp.590-614, 2013.

J. De-craene, D. L. Bertazzi, S. Bär, and S. Friant, Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways, Int. J. Mol. Sci, vol.18, issue.3, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01771887

G. Schoehn, A. M. Di-guilmi, D. Lemaire, I. Attree, W. Weissenhorn et al., Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas, EMBO J, vol.22, issue.19, pp.4957-67, 2003.

R. Grisshammer, New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors, Protein Sci, vol.26, issue.8, pp.1493-1504, 2017.

V. Cherezov, High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor, Science, vol.318, issue.5854, pp.1258-65, 2007.

V. Cherezov, J. Clogston, M. Z. Papiz, and M. Caffrey, Room to move: crystallizing membrane proteins in swollen lipidic mesophases, J. Mol. Biol, vol.357, issue.5, pp.1605-1623, 2006.

P. Wadsten, Lipidic Sponge Phase Crystallization of Membrane Proteins, J. Mol. Biol, vol.364, issue.1, pp.44-53, 2006.

J. Vind, M. A. Sørensen, M. D. Rasmussen, and S. Pedersen, Synthesis of Proteins in Escherichia coli is Limited by the Concentration of Free Ribosomes, J. Mol. Biol, vol.231, issue.3, pp.678-688, 1993.

A. W. Bryan, J. L. Starner-kreinbrink, R. Hosur, P. L. Clark, B. Berger et al., Structurebased prediction reveals capping motifs that inhibit ?-helix aggregation, Proc. Natl. Acad. Sci. U. S. A, vol.108, issue.27, pp.11099-104, 2011.

A. Berry, cAMP and Vfr Control Exolysin Expression and Cytotoxicity of Pseudomonas aeruginosa Taxonomic Outliers, J. Bacteriol, vol.200, issue.12, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01963657

K. Beis, C. Whitfield, I. Booth, and J. H. Naismith, Two-step purification of outer membrane proteins, Int. J. Biol. Macromol, vol.39, issue.1-3, pp.10-14, 2006.

K. Simons and G. Van-meer, Lipid sorting in epithelial cells, Biochemistry, vol.27, issue.17, pp.6197-6202, 1988.

S. Mahammad and I. Parmryd, Cholesterol Depletion Using Methyl-?-cyclodextrin, pp.91-102, 2015.

M. E. Hibbing, C. Fuqua, M. R. Parsek, and S. B. Peterson, Bacterial competition: surviving and thriving in the microbial jungle, Nat. Rev. Microbiol, vol.8, issue.1, pp.15-25, 2010.

M. Knop, T. Q. Dang, G. Jeschke, and F. P. Seebeck, Copper is a Cofactor of the Formylglycine-Generating Enzyme, ChemBioChem, vol.18, issue.2, pp.161-165, 2017.

M. J. Appel, Formylglycine-generating enzyme binds substrate directly at a mononuclear Cu(I) center to initiate O2 activation, Proc. Natl. Acad. Sci. U. S. A, vol.116, issue.12, pp.5370-5375, 2019.

J. Landgrebe, T. Dierks, B. Schmidt, and K. Figura, The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro-to eukaryotes, Gene, vol.316, pp.47-56, 2003.

M. Strub, Selenomethionine and Selenocysteine Double Labeling Strategy for Crystallographic Phasing, Structure, vol.11, issue.11, pp.1359-1367, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02359489

W. Hendrickson, Determination of macromolecular structures from anomalous diffraction of synchrotron radiation, Science (80-. ), vol.254, issue.5028, pp.51-58, 1991.

P. G. Holder, Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion, J. Biol. Chem, vol.290, issue.25, pp.15730-15775, 2015.

M. Knop, T. Q. Dang, G. Jeschke, and F. P. Seebeck, Copper is a Cofactor of the Formylglycine-Generating Enzyme, Chembiochem, vol.18, issue.2, pp.161-165, 2017.

S. G. Wong and A. Dessen, Structure of a bacterial ?2-macroglobulin reveals mimicry of eukaryotic innate immunity, Nat. Commun, vol.5, issue.1, p.4917, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101622

E. A. Stura and I. A. Wilson, Analytical and production seeding techniques, Methods, vol.1, issue.1, pp.38-49, 1990.

C. Thaller, L. H. Weaver, G. Eichele, E. Wilson, R. Karlsson et al., Repeated seeding technique for growing large single crystals of proteins, J. Mol. Biol, vol.147, issue.3, pp.465-469, 1981.

A. Abuhammad, Structure of arylamine N -acetyltransferase from Mycobacterium tuberculosis determined by cross-seeding with the homologous protein from M. marinum : triumph over adversity, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.69, issue.8, pp.1433-1446, 2013.

G. C. Ireton, B. L. Stoddard, and I. , Microseed matrix screening to improve crystals of yeast cytosine deaminase, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.60, issue.3, pp.601-605, 2004.

C. Contreras-martel, Crystallization and 2.2 Å resolution structure of R-phycoerythrin from Gracilaria chilensis : a case of perfect hemihedral twinning, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.57, issue.1, pp.52-60, 2001.

T. Bergfors, Seeds to crystals, J. Struct. Biol, vol.142, issue.1, pp.66-76, 2003.

A. Arcy, T. Bergfors, S. W. Cowan-jacob, and M. Marsh, Microseed matrix screening for optimization in protein crystallization: what have we learned?, Acta Crystallogr. Sect. F, Struct. Biol. Commun, vol.70, pp.1117-1143, 2014.

J. R. Luft and G. T. Detitta, A method to produce microseed stock for use in the crystallization of biological macromolecules, Acta Crystallogr. D. Biol. Crystallogr, vol.55, pp.988-93, 1999.

A. Arcy, F. Villard, and M. Marsh, An automated microseed matrix-screening method for protein crystallization, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.63, issue.4, pp.550-554, 2007.

N. P. Cianciotto and R. C. White, Expanding Role of Type II Secretion in Bacterial Pathogenesis and Beyond, Infect. Immun, vol.85, issue.5, 2017.

K. E. Phillips and K. J. Satchell, Vibrio vulnificus: From Oyster Colonist to Human Pathogen, PLOS Pathog, vol.13, issue.1, p.1006053, 2017.

J. M. Janda and S. L. Abbott, The genus Aeromonas: taxonomy, pathogenicity, and infection, Clin. Microbiol. Rev, vol.23, issue.1, pp.35-73, 2010.

. ?-radu-stefureac, *. Yi-tao-long, P. Heinz-bernhard-kraatz, ?. Howard, S. Jeremy et al., Transport of ?-Helical Peptides through ?-Hemolysin and Aerolysin Pores ?, 2006.

K. Korotkov and M. Sandkvist, Architecture, Function, and Substrates of the Type II Secretion System, EcoSal Plus, vol.8, issue.2, 2019.

Z. Yan, M. Yin, D. Xu, Y. Zhu, and X. Li, Structural insights into the secretin translocation channel in the type II secretion system, Nat. Struct. Mol. Biol, vol.24, issue.2, pp.177-183, 2017.

J. Thomassin, J. S. Moreno, I. Guilvout, G. Tran-van-nhieu, and O. Francetic, The transenvelope architecture and function of the type 2 secretion system: new insights raising new questions, Mol. Microbiol, vol.105, issue.2, pp.211-226, 2017.

A. A. Chernyatina and H. H. Low, Core architecture of a bacterial type II secretion system, p.397794, 2019.

V. E. Shevchik and G. Condemine, Functional characterization of the Erwinia chrysanthemi Outs protein, an element of a type II secretion system, Microbiology, vol.144, issue.11, pp.3219-3228, 1998.

I. Guilvout, M. Chami, A. Engel, A. P. Pugsley, and N. Bayan, Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin, EMBO J, vol.25, issue.22, pp.5241-5250, 2006.

T. G. Strozen, G. Li, and S. P. Howard, YghG (GspS?) is a novel pilot protein required for localization of the GspS? type II secretion system secretin of enterotoxigenic Escherichia coli, Infect. Immun, vol.80, issue.8, pp.2608-2630, 2012.

R. A. Dunstan, Assembly of the Type II Secretion System such as Found in Vibrio cholerae Depends on the Novel Pilotin AspS, PLoS Pathog, vol.9, issue.1, p.1003117, 2013.

V. M. Ast, I. C. Schoenhofen, G. R. Langen, C. W. Stratilo, M. D. Chamberlain et al., Expression of the ExeAB complex of Aeromonas hydrophila is required for the localization and assembly of the ExeD secretion port multimer, Mol. Microbiol, vol.44, issue.1, pp.217-231, 2002.

G. Li and S. P. Howard, ExeA binds to peptidoglycan and forms a multimer for assembly of the type II secretion apparatus in Aeromonas hydrophila, Mol. Microbiol, vol.76, issue.3, pp.772-781, 2010.

E. M. Vanderlinde, S. Zhong, G. Li, D. Martynowski, P. Grochulski et al., Assembly of the type two secretion system in Aeromonas hydrophila involves direct interaction between the periplasmic domains of the assembly factor ExeB and the secretin ExeD, PLoS One, vol.9, issue.7, p.102038, 2014.

S. P. Howard, Structure and assembly of pilotin-dependent and -independent secretins of the type II secretion system, PLoS Pathog, vol.15, issue.5, p.1007731, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02133908

M. Yin, Z. Yan, and X. Li, Structural insight into the assembly of the type II secretion system pilotin-secretin complex from enterotoxigenic Escherichia coli, Nat. Microbiol, vol.3, issue.5, pp.581-587, 2018.

W. Kabsch and &. Xds, Acta Crystallogr. D. Biol. Crystallogr, vol.66, issue.2, pp.125-157, 2010.

M. D. Winn, Overview of the CCP4 suite and current developments, Acta Crystallogr. D. Biol. Crystallogr, vol.67, pp.235-277, 2011.

C. Millán, Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination, Acta Crystallogr. Sect. D, Struct. Biol, vol.74, pp.290-304, 2018.

G. Langer, S. X. Cohen, V. S. Lamzin, and A. Perrakis, Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7, Nat. Protoc, vol.3, issue.7, pp.1171-1180, 2008.

P. Emsley, K. Cowtan, and I. , Coot : model-building tools for molecular graphics, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.60, issue.12, pp.2126-2132, 2004.

G. N. Murshudov, REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr. D. Biol. Crystallogr, vol.67, pp.355-67, 2011.

J. Painter, E. A. Merritt, and I. , TLSMD web server for the generation of multi-group TLS models, J. Appl. Crystallogr, vol.39, issue.1, pp.109-111, 2006.

J. Painter, E. A. Merritt, and I. , Optimal description of a protein structure in terms of multiple groups undergoing TLS motion, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.62, issue.4, pp.439-450, 2006.

V. B. Chen, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D. Biol. Crystallogr, vol.66, pp.12-21, 2010.

R. A. Laskowski, M. W. Macarthur, D. S. Moss, J. M. Thornton, and I. , PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Crystallogr, vol.26, issue.2, pp.283-291, 1993.

M. R. Wilkins, Protein identification and analysis tools in the ExPASy server, Methods Mol. Biol, vol.112, pp.531-52, 1999.

J. D. Bendtsen, H. Nielsen, G. V. Heijne, and S. Brunak, Improved prediction of signal peptides: SignalP 3.0, J. Mol. Biol, vol.340, issue.4, pp.783-795, 2004.

L. Slabinski, L. Jaroszewski, L. Rychlewski, I. A. Wilson, S. A. Lesley et al., XtalPred: a web server for prediction of protein crystallizability, Bioinformatics, vol.23, issue.24, pp.3403-3405, 2007.

A. Drozdetskiy, C. Cole, J. Procter, and G. J. Barton, JPred4: a protein secondary structure prediction server, Nucleic Acids Res, vol.43, issue.W1, pp.389-394, 2015.

L. Zimmermann, A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core, J. Mol. Biol, vol.430, issue.15, pp.2237-2243, 2018.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, issue.3, pp.403-410, 1990.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, issue.6, pp.845-858, 2015.

Y. Song, High resolution comparative modeling with RosettaCM, Structure, vol.21, issue.10, 2013.

A. Waterhouse, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res, vol.46, issue.W1, pp.296-303, 2018.

L. Goldschmidt, D. R. Cooper, Z. S. Derewenda, and D. Eisenberg, Toward rational protein crystallization: A Web server for the design of crystallizable protein variants, Protein Sci, vol.16, issue.8, pp.1569-76, 2007.

G. A. Martin, R. Kawaguchi, Y. Lam, A. Degiovanni, M. Fukushima et al., High-yield, in vitro protein expression using a continuous-exchange, coupled transcription/translation system, Biotechniques, vol.31, issue.4, pp.948-953, 2001.

C. No, Roche Molecular Biochemicals Rapid Translation System RTS pIVEX His-tag Vector Set Cat. No. 3 253 538 Store at 15 to 25°C, pp.1-6, 2001.

D. D. Lasic, Liposomes in gene delivery, 1997.

D. P. Allison, N. P. Mortensen, C. J. Sullivan, and M. J. Doktycz, Atomic force microscopy of biological samples, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol.2, issue.6, pp.618-634, 2010.

S. Liu and Y. Wang, Application of AFM in microbiology: a review, Scanning, vol.32, issue.2, pp.61-73, 2010.

C. V. Kulkarni, W. Wachter, G. Iglesias-salto, S. Engelskirchen, and S. Ahualli, Monoolein: A magic lipid?, Phys. Chem. Chem. Phys, vol.13, issue.8, pp.3004-3021, 2011.

M. Caffrey, A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes, Acta Crystallogr. Sect. F, Struct. Biol. Commun, vol.71, 2015.

A. J. Mccoy, Phaser crystallographic software, J. Appl. Crystallogr, vol.40, issue.4, pp.658-674, 2007.

C. Vonrhein, E. Blanc, P. Roversi, and G. Bricogne, Automated Structure Solution With autoSHARP, Macromolecular Crystallography Protocols, vol.2, pp.215-230, 2007.

G. Tickle, I. J. Flensburg, C. Keller, P. Paciorek, W. Sharff et al.,

D. Franke, ATSAS 2.8: A comprehensive data analysis suite for small-angle scattering from macromolecular solutions, J. Appl. Crystallogr, vol.50, pp.1212-1225, 2017.

A. Pagliuso, An RNA-binding protein secreted by Listeria monocytogenes activates RIG-I signaling, p.543652, 2019.

K. Kanonenberg, O. Spitz, I. N. Erenburg, T. Beer, and L. Schmitt, Type I secretion system-it takes three and a substrate, FEMS Microbiol. Lett, vol.365, issue.11, 2018.