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me with instructions. Thanks goes to Béatrice Silva and Francois Carré for
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Résumé

La correspondance CFT (Anti-De Sitter) (AdS) / Théorie des champs con-
formes (CFT), également connue sous le nom de dualité holographique, con-
stitue un lien remarquable entre la théorie des cordes (qui inclut la gravité) et
les théories de jauge. Elle relie une CFT dans un espace-temps d-dimensionnel
à une théorie de la gravité dans un espace-temps dimension supérieur, également
appelé bloc. Ce dernier a une limite dans laquelle réside la théorie du champ
conforme.

Dans cette thèse, le sujet d’étude est la description holographique des
flux de groupes de renormalisation (RG) des théories (de champ) sur les
espaces-temps à symétrie maximale. Le cadre théorique que j’ai utilisé est
la théorie d’Einstein-scalaire. L’inclusion du champ scalaire dynamique cor-
respond à la rupture de l’invariance conforme aux limites. Dans ce travail,
les limites et les tranches du bloc sont choisies pour âtre des espaces-temps à
symétrie maximale et l’évolution des champs en bloc est étudiée. Il décrit les
écoulements RG holographiques sur des variétés courbes. De plus, deux ap-
plications sont présentées dans cette thèse. La première application s’inscrit
dans le contexte des théorèmes F et la seconde concerne un defaut incurvé
dans les flux RG holographiques en masse.

Les théorèmes F pour les théories de champs quantiques (QFT) définies
dans des espaces-temps tridimensionnels exigent l’existence de fonctions dites
F. Ce sont des fonctions décroissantes de façon monotone le long du flux RG.
Dans ce travail, de nouvelles fonctions F pour les théories holographiques
ont été découvertes. Elles sont construites à partir de l’action sur la paroie
d’une solution de flux holographique RG sur une sphère à 3-sphères. Ils
permettent une interprétation entropique, fournissant ainsi un lien direct
entre la formulation entropique du théorème F et sa définition en termes d’é
nergie libre.

La deuxiéme application des flux RG holographiques explorée dans cette
thèse se situe dans le contexte de modèles affichant un mécanisme d’auto-
ajustement en tant que résolution proposée du probléme de la constante cos-
mologique (CC). Dans ces modèles, notre univers à 4-dimensions est réalisé
comme une brane intégrée dans un volume à 5-dimensions. Ce cadre per-
met des solutions où la géométrie de la brane est plate malgré la présence
d’une énergie de vide non triviale sur son worldvolume. Ceci est appelé
réglage automatique. De chaque côté de la brane, les solutions sont des flux
RG holographiques. Le nouvel aspect introduit dans cette thèse consiste à
utiliser les flux RG holographiques sur des variétés courbes, ce qui permet
à son tour d’étudier des solutions à réglage automatique dans lesquelles la
brane est également courbe.
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Abstract

The Anti-de Sitter (AdS)/Conformal Field Theory (CFT) correspondence,
also known as holographic duality, is a remarkable connection between string
theory (which includes gravity) and gauge theories. It relates a CFT in a d-
dimensional space-time to a gravity theory in higher dimensional space-time
which is also referred to as the bulk. The latter has a boundary on which
the conformal field theory may be thought to reside.

In this thesis, the subject of study is the holographic description of Renor-
malization Group (RG) flows of (field) theories on maximally symmetric
space-times. The theoretical framework I used is Einstein-scalar theory. In-
clusion of the dynamical scalar field corresponds to breaking boundary con-
formal invariance. In this work, both the boundary and bulk slices are chosen
to be maximally symmetric space-times and the evolution of bulk fields is
studied. It describes holographic RG flows on curved manifolds. Further-
more, two applications are presented in this thesis. The first application is
in the context of F-theorems and the second is regarding a curved defect in
the bulk holographic RG flows.

F-theorems for Quantum Field Theories (QFT) defined on 3-dimensional
space-times demand the existence of so-called F-functions. These are mono-
tonically decreasing functions along the RG flow. In this work, new F-
functions for holographic theories have been found which are constructed
from the on-shell action of a holographic RG flow solution on a 3-sphere.
They allow an entropic interpretation, therefore providing a direct connec-
tion between the entropic formulation of the F-theorem and its definition in
terms of free energy.

The second application of holographic RG flows explored in this thesis is
in the context of models displaying a self-tuning mechanism as a proposed
resolution of the cosmological constant (CC) problem. In these models, our
4-dimensional universe is realized as a brane embedded in a 5-dimensional
bulk. This framework allows solutions where the brane geometry is flat de-
spite of the presence of non-trivial vacuum energy on its worldvolume. This
is referred to as self-tuning. On each side of the brane, the solutions are
holographic RG flows. The new aspect introduced in this thesis is to use the
holographic RG flows on curved manifolds, which in turn allows the study of
self-tuning solutions where the brane is also curved.

Keywords: Holography, Gauge/Gravity duality, AdS/CFT, RG flows, phase
transition, curvature, barne-world.
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Chapter 1

Introduction

1.1 Motivation

Two of the most successful physical theories for describing our universe are
the standard model of particle physics and the general theory of relativity.
The standard model is a quantum field theory which describes phenomena at
the subatomic scale. On the other hand, general relativity describes gravity
at large scales.

One revolution of modern physics came through Einstein’s theory of rel-
ativity. In the special theory of relativity, the idea of absolute time was
abandoned, space and time were unified into space-time. According to this
theory, the physical laws are invariant under Lorentz transformations instead
of Gallilean transformations and the velocity of light is a fundamental con-
stant of nature. It has passed many checks by experiments and the relativistic
effects have become indispensable in modern particle physics experiments.

General Relativity (GR) includes gravity in relativity theory. In GR,
gravity is a geometric property of space-time. The presence of matter acts as
a source that curves the geometry, which is determined by Einstein’s equation

Rab −
1

2
Rgab + Λgab = 8πGNTab, (1.1.1)

where gab is the metric of the space-time, Rab is the Ricci tensor, R is the
scalar curvature, Λ is known as the cosmological constant and Tab is the
stress-energy tensor. Test particles follow the geodesic motion under the
influence of gravity.

Quantum field theory, on the other hand is based on quantum mechan-
ics. The advent of quantum mechanics revolutionized physics. The classi-
cal deterministic view was replaced by the quantum probabilistic view. In
quantum mechanics, objects can display both wave and particle properties.

1
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Uncertainty is an inevitable phenomenon in the microscopic world. There-
fore quantum mechanics has changed the way of looking at physics departing
from a classical point of view.

Quantum Field Theory (QFT) combines special relativity, quantum me-
chanics and classical field theory. In QFT particles are excited states of
quantum fields. The most successful QFT is the standard model of particle
physics which is a gauge theory, i.e. the Lagrangian is invariant under a cer-
tain local group of transformations. One simple example of a gauge theory
is electromagnetism described by

L = − 1

4g2
FµνF

µν (1.1.2)

where g is a coupling constant and

Fµν = ∂µAν − ∂νAµ (1.1.3)

is known as the field strength tensor. The latter is invariant under

Aµ → Aµ + ∂µλ(x) (1.1.4)

where λ(x) is a scalar function. Eq. (1.1.4) can also be written as

Aµ → GAµG
−1 − i(∂µG)G−1 , (1.1.5)

where G(x) = eiλ(x). In group theoretical language, G(x) are elements of
a group referred to as U(1). The Lagrangian (1.1.2) is invariant under the
transformation (1.1.5) . Therefore, electromagnetism is a gauge theory under
the gauge group U(1).

The above example is an Abelian gauge theory where different elements
of the gauge group commute. When they do not commute, QFT invariant
under the gauge group is known as a non-Abelian gauge theory. An example
is Yang-Mills theory

L = − 1

4g2
YM

Tr (FµνF
µν) (1.1.6)

with gauge group U(N) and coupling gYM . The field strength tensor is in
the adjoint representation of the group: Fµν = F a

µνT
a where T as are the

generators of the group and a = 1, 2, · · · dim(G) is group index. The trace
in Eq. (1.1.6) is taken with respect to the group index. For U ∈ U(N), the
field strength tensor transforms as

Fµν → UFµνU
† . (1.1.7)
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The Yang-Mills Lagrangian (1.1.6) is invariant under this transformation and
N is called the rank of the gauge group.

The gauge/gravity duality is a connection between gauge theories and
gravitational theories in higher dimensions. The latter are string theories or
an appropriate limit thereof (e.g. supergravity). This is an explicit realiza-
tion of the holographic principle [1][2] as the gauge theory may be thought to
be defined on the boundary of the space-time. The idea of the holographic
principle emerged from the fact that black holes have an entropy [3] which
is proportional to the area of the horizon [4]. In section 1.2, I will review the
black hole thermodynamics.

The original idea of the AdS/CFT correspondence emerged from consid-
ering a collection of N D3 branes in IIB string theory and considering the
physics from two different points of view. In one picture, the D3 branes act
as sources for various fields of IIB string theory. The low energy limit of the
metric is a product geometry AdS5 × S5. In another picture, the D3 branes
describe N = 4 super Yang-Mills theory with gauge group U(N). Combining
these two views leads to the duality between N = 4 super Yang-Mills theory
with gauge group U(N) and IIB string theory in AdS5×S5. When the rank
of the gauge group N and the coupling are large, the string theory can be
well described by supergravity and the duality is between supergravity in
AdS5×S5 and N = 4, U(N) super Yang-Mills theory. I will present various
aspects of the AdS/CFT in section 1.3.

The AdS/CFT correspondence provides us with a novel way of finding
different quantities in the QFTs by computing proper objects on the gravity
side. One of the important concepts of QFT is running of coupling constants
as a function of energy scale. The evolution is encoded into a first order differ-
ential equation which is referred to as renormalization group (RG) equation.
Holography provides a tool to describe RG flows from the gravity dual. I will
review holographic RG flows in section 1.4.

Holographic RG flows are most often studied when the background space-
time of the field theory is flat. However, we can also study the holographic
RG flows when the field theory is defined on a curved background. In this
thesis, I have studied the holographic RG flow solutions on curved manifolds.
To describe these flows, we need to foliate the bulk by curved slices. The
boundary metric inherits the curvature from the slicing. In this thesis, I have
considered both the boundary and bulk slices to be maximally symmetric
space-times. These can be either flat, de Sitter (dS) or AdS in the Lorentzian
signature and flat, sphere or hyperbolic space in the Euclidean signature.
The holographic RG flows can be described from the evolution of the bulk
fields. In the simplest case, these solutions are monotonic between the fixed
points. However, there exist solutions which seem exotic from the view of
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QFT perturbation theory. These are flows which can reverse the directions
in the coupling constant space, previously referred to as bounces in the flat
case [5] and flows those skip the nearest possible endpoints. For the latter,
there can be multiple flows representing the vacua of the dual field theory
defined on a curved background. In this case, we observe a phase transition
driven by the boundary curvature.

Beside the general analysis, in this thesis I have studied two applications
of holographic RG flows on curved manifolds. The first application is the
study of free energies of QFTs defined on 3-spheres in the context of the
F-theorem. The subject of F-theorems is the existence of “F-functions”,
monotonic along RG flows, which interpolate between the UV and IR values
of the corresponding CFT central charges. In this work, new F-functions
for holographic theories have been found, which are constructed from the
on-shell action of a holographic RG flow solution on the 3-sphere. By the
holographic dictionary, the Euclidean on-shell action of the gravity dual cor-
responds to the free energy of the boundary QFT. The F-functions also allow
an interpretation as an entanglement entropy, thus providing a direct link be-
tween the entropic formulation of the F-theorem and its definition in terms
of the free energy. I confirmed monotonicity of these functions in several
holographic examples and also for free field theories.

The second application is in the context of braneworlds. One of the cen-
tral ideas of braneworlds is the realization of our universe as a 4-dimensional
defect, also referred to as the brane, embedded in a 5-dimensional bulk. As
observed in [6, 7], such bulk-brane setups may offer a resolution of the cos-
mological constant problem which is the discrepancy between the observed
value of the cosmological constant and the vacuum energy predicted by the
standard model. In particular, braneworlds allow solutions where the brane
is flat despite of the presence of a non-vanishing brane vacuum energy. This
is known as the self-tuning mechanism (in the context of braneworlds). In the
self-tuning models constructed in [7], the bulk space-time is AdS or asymp-
totically AdS. The bulk geometry on both sides of the brane is the same as
the one encountered in holographic RG flows. The new aspect introduced
in this thesis is the generalization of these solutions to holographic RG flows
on curved space-times including a defect. This in turn allows the study of
self-tuning solutions in which the brane is also curved. We show in several
examples that the main feature of self-tuning persists in that the brane cur-
vature is dynamically selected and not just determined by the brane vacuum
energy, and the brane position is dynamically stabilized.

The thesis is organized as follows. In the rest of this chapter, I will review
the AdS/CFT correspondence focusing on the aspects which will be essential
for the following chapters. In chapter 2, I will present the holographic renor-
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malization group flows on curved space-times. In chapter 3, I will discuss
four proposals of F-functions. In chapter 4, I will present a curvature driven
quantum phase transition. I will discuss a self-stabilization mechanism of a
curved brane in chapter 5.

The works presented in this thesis have been published in 3 seperate
papers. Chapters 2 and 4 are based on [8], chapter 3 is based on [9] and
chapter 5 is based on [10].

1.2 Black hole entropy and the holographic

principle

In the 70s, works of several scientists revealed more and more information
about black holes. From the works of Bardeen, Carter and Hawking [11], it
emerged that the laws of black holes are similar to the laws of thermody-
namics.

To state the first law of black hole mechanics, consider a black hole of mass
M , horizon area A and angular momentum J . Also consider that the black
hole metric is static. This implies that there is a Killing vector associated
with time translation vector ξ = ∂t. Surface gravity of the black hole κ is
defined by

κξµ = ξν∇νξ
µ (1.2.1)

where µ, ν are the space-time indices and ∇ denotes the covariant derivative
with respect to the metric. Consider a process where the static black hole
is transformed into another static black hole of mass M + δM , horizon area
A+δA and angular momentum J+δJ . The first law of black hole mechanics
relates all these quantities by

δM =
κ

8π
δA+ ΩHδJ, (1.2.2)

where ΩH is the angular velocity of the black hole.

The second law of black hole mechanics states that under weak energy
condition, the area of the horizon is a non-decreasing function of time. The
weak energy condition demands that for any observer in space-time, energy
density of a matter distribution is non-negative. Suppose vµ is a four-velocity
vector of an observer in space-time and Tµν is the stress-energy tensor of a
system. Weak energy condition implies that

Tµνv
µvν ≥ 0. (1.2.3)
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Under this assumption, the second law of black hole mechanics can be written
as

dA

dt
≥ 0. (1.2.4)

Now consider a thermal system at equilibrium temperature T . The first law
of thermodynamics states that

dE = TdS + dW (1.2.5)

where dE is the change in internal energy, dS is the change in entropy and
dW is the work done on the system by exterior agents. When the system
is rotating with an angular velocity Ω and angular momentum J , the work
done on the system is

dW = ΩdJ (1.2.6)

and the first law of thermodynamics (1.2.5) becomes

dE = TdS + ΩdJ . (1.2.7)

Note that this equation is similar to the first law of black hole mechanics
(1.2.2). The second law of thermodynamics states that the entropy of a closed
system is non-decreasing. This is also similar to the second law of black
hole mechanics (1.2.4). Therefore there is a striking resemblance between
thermodynamics and black hole mechanics where κ has the similar role as
temperature and A is similar to entropy. Later, the calculation of Hawking
showed that entropy corresponding to a black hole is

SBH =
A

4πGN

. (1.2.8)

Entropy in ordinary field theory is an extensive quantity. For example,
consider a volume V and assume for simplicity that the space is discretized
with lattice size `P . Also, consider a binary spin system with one spin at
each site. Then the total number of configurations this system can have is

N = 2n = 2V/`
3
P . (1.2.9)

The entropy is given by Boltzmann’s relation

SV = kB ln
(

2V/`
3
P

)
∼ V . (1.2.10)

Therefore we observe that the entropy is proportional to the volume of the
space. This holds in general for local QFTs.
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However, the black hole entropy is proportional to the area of the horizon.
Bekenstein argued that black hole possesses the maximum amount of entropy
in a bounded volume V . The argument is the following. Suppose there exists
a system which occupies the volume V with smaller energy but with higher
entropy than a black hole. By throwing matter inside, a black hole can
be formed which will have smaller entropy. This violates the second law of
thermodynamics. Bekenstein therefore concluded that the maximum entropy
is carried by the black hole that would fit in that volume.

An interpretation of the black hole entropy was given by ’t Hooft [2]. He
suggested that it should be possible to describe the physics inside a volume
V by the physics on the boundary enclosing the region. This is the idea
that quantum gravity is holographic where the physics inside can be equiv-
alently described by the physics on the boundary. This is the essence of the
holographic principle.

1.3 The AdS/CFT correspondence

The AdS/CFT correspondence is an explicit realization of the holographic
principle. It connects a gravitational theory to a non-gravitational theory.
Before embarking on the details of the correspondence, we will define the
necessary ingredients.

1.3.1 Anti-de Sitter space-time

AdS stands for Anti-de Sitter space-time. It is the maximally symmetric
space-time with constant negative curvature. It is also the solution of Ein-
stein’s equation

Rµν −
1

2
Rgµν + Λgµν = 0 , (1.3.1)

with negative cosmological constant Λ. For a (d+1)-dimensional AdS space-
time the value is

Λ = −d(d− 1)

2`2
(1.3.2)

where ` is called the AdS length and it is related to Ricci curvature by

R = −d(d+ 1)

`2
(1.3.3)

which can be obtained by contracting Eq. (1.3.1) with the metric.
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A (d + 1)-dimensional AdS of length ` can be described as embedded in
flat R2,d by the equation

−X2
1 −X2

2 +
d+2∑
i=3

X2
i = −`2 (1.3.4)

where X1, X2, · · · , Xd+2 are the coordinates of R2,d. Different parametriza-
tions of these coordinates will describe AdS in different coordinates. Two of
these are described below.

Global coordinates

In global coordinates, the embedding can be written as

X1 =
√
r2 + `2 cos (t/`) , (1.3.5)

X2 =
√
r2 + `2 sin (t/`) , (1.3.6)

X3 = rx̂3 , (1.3.7)

· · · (1.3.8)

Xd+2 = rx̂d+2 . (1.3.9)

where x̂3, · · · , x̂d+2 satisfy x̂2
3 + · · ·+ x̂2

d+2 = 1 and parametrize a unit (d−1)-
dimensional sphere, Sd−1. In these coordinates, AdS metric is

ds2 = −
(

1 +
r2

`2

)
dt2 +

(
1 +

r2

`2

)−1

dr2 + r2dΩ2
d−1 (1.3.10)

where dΩ2
d−1 is the line element of unit Sd−1. The spatial boundary is located

at r =∞ where the volume element diverges. For a lightlike geodesic it takes

t =
π`

2
to reach the boundary from the origin.

The topology of the boundary in global coordinates is R×Sd−1. In some
cases, it will be desirable to describe AdS in coordinates with a d-dimensional
flat boundary. This is achieved in the Poincaré patch coordinates.
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Poincaré patch coordinates

For Poincaré patch coordinates (z, t, ~x), the following transformations are
used

X1 =
z

2

(
1 +

`2 + ~x2 − t2

z2

)
, (1.3.11)

X2 = `
t

z
, (1.3.12)

Xi = `
xi
z

where i = 3, 4, · · · , d+ 1 , (1.3.13)

Xd+2 =
z

2

(
1− `2 + ~x2 − t2

z2

)
. (1.3.14)

In the Poincaré patch coordinates, the metric of a (d + 1)-dimensional AdS
space-time becomes

ds2 =
`2

z2

(
dz2 − dt2 + ~x2

)
. (1.3.15)

The AdS metric in the Poincaré patch coordinates is conformal to the flat
space-time. The boundary is located at z = 0 with the topology of R1,d−1

and this parametrization is useful to describe QFTs in flat space-time.

1.3.2 Conformal Field Theory

CFT stands for conformal field theory. CFTs are invariant under coordinate
transformations called the conformal transformations. Under these transfor-
mations, xµ → x′µ, the metric changes as the local rescaling

gµν → ω2(x)gµν , (1.3.16)

where ω(x) is known as the conformal factor. These transformations form a
group referred to as the conformal group. For the flat space-time, this group
consists of four types of generators.

• Translations Pµ = −i∂µ: The metric is invariant when the space-time
is translated. As a consequence, the conformal factor is 1.

• Lorentz generators Mµν = i(xµ∂ν − xν∂µ): These are isometries of
Minkowski spacetime. In this case the conformal factor is 1 as the
metric is invariant.

• Scaling D = −ixµ∂µ: This generates scaling of the coordinates xµ →
λxµ. The conformal factor for this case is ω = 1

λ
.
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• Special conformal transformations Kµ = i(x2∂µ − 2xµxν∂
ν): These

transformations are composed of an inversion followed by a translation
and inversion. Under these transformations the coordinates transform
as

x′µ

x′2
=
xµ

x2
− bµ (1.3.17)

where bµ is a constant vector. The conformal factor for this case is

ω(x) = (1− 2bµxµ + bµbµx
νxν) . (1.3.18)

Fields of a CFT can be classified by their scaling dimension ∆. Under the
scaling xµ → λxµ, a field of dimension ∆ transforms as

O(x)→ λ−∆O(λ−1x) . (1.3.19)

For a unitary CFT, the dimensions of the fields are bounded from below and
for a scalar field the bound is ∆ ≥ d−2

2
.

As CFTs have more symmetries than generic QFTs, correlation functions
of a CFT are more constrained as they should transform accordingly under
the conformal transformations. In particular, the two point function of fields
Oi and Oj with scaling dimensions ∆i and ∆j is entirely determined by
conformal symmetry

〈Oi(x1)Oj(x2)〉 =
δi,j

|x1 − x2|2∆i
. (1.3.20)

Higher point correlation functions are not fully determined by the conformal
symmetry but they must transform accordingly under the full conformal
group.

Conformal invariant field theories appear at the second order phase tran-
sitions of statistical systems. Another example of a CFT is N = 4 Super
Yang-Mills (SYM) which is an important ingredient in the AdS/CFT corre-
spondence [12].

1.3.3 The AdS/CFT correspondence and its limits

The argument leading to the AdS/CFT correspondence came by considering
N coincident D3 branes in type IIB superstring theory in 10-dimensions [13],
[14]. Dp branes are (p + 1)-dimensional hypersurfaces where open strings
can end. The D3 brane has 3 spatial coordinates and 1 time coordinate.
String theory with D3 branes contains two kind of perturbative excitations:
closed strings and open strings. Closed strings describe the excitations of
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empty space whereas open strings describe excitations of the D-branes. At
low energies, the closed string massless states are gravity supermultiplets
and the effective action is type IIB supergravity. In the low energy limit,
open string massless states are N = 4 vector supermultiplet and the low
energy effective description is N = 4, U(N) SYM in 3 + 1 dimensions. The
Yang-Mills coupling gYM is related to the string coupling gs by g2

YM = 4πgs.
In this limit, the systems decouple and the effective descriptions are bulk
supergravity and N = 4, U(N) SYM with no interaction between them.

From a different point of view, the D3 branes act as sources for various
supergravity fields (closed string sector). TheD3 branes can couple to gravity
and also a 4-form potential with a 5-form field strength. The D3 brane
solution of the low energy effective action of type IIB supergravity is

ds2 =
1√
f

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
√
f
(
dr2 + r2dΩ2

5

)
, (1.3.21)

F5 = (1 + ?)dtdx1dx2dx3df
−1, (1.3.22)

f = 1 +
`4

r4
, `4 = 4πgsα

′2N, (1.3.23)

where t, x1, x2, x3 are the coordinates on the D3 brane, r is the radial distance
from the brane and dΩ2

5 is the metric of a unit S5. Here ? denotes the Hodge
star with respect to the 10-dimensional metric.

There are two important limits of the metric (1.3.21). For an observer at
r =∞, the metric becomes flat

ds2 =
(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
(
dr2 + r2dΩ2

5

)
. (1.3.24)

The other limit is referred to as the near horizon or the throat limit where
r � `. In this limit we can write

f ∼ `4

r4
, (1.3.25)

and the 10-dimensional metric becomes

ds2 =
r2

`2

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
`2

r2

(
dr2 + r2dΩ2

5

)
. (1.3.26)

A coordinate transformation

u =
`2

r
(1.3.27)

transforms the metric to

ds2 =
`2

u2

(
du2 − dt2 + dx2

1 + dx2
2 + dx2

3

)
+ `2dΩ2

5 . (1.3.28)
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The first part of the metric above is a 5-dimensional AdS metric with length
` written in Poincaré patch coordinates. Therefore the near horizon limit is a
product geometry AdS5× S5 where both AdS5 and S5 have the same radius
of curvature, `.

The time component of the metric (1.3.21) depends on the observer’s
location. Therefore there will be a gravitational redshift in the energy mea-
sured by two observers located at different positions. If the energy of an
object measured by an observer located at r is Ẽ and the energy measured
by an observer located at infinity is E, these two quantities are related by

E = f−1/4Ẽ . (1.3.29)

When the object is close to the horizon, this relation becomes

E ≈ r

`
Ẽ . (1.3.30)

This implies that the energy of a localised object near the throat becomes
lower and lower as measured by an observer at infinity.

From the point of view of an observer at infinity, there are two kinds
of low energy excitations. The first kind are the massless long wavelength
excitations in the asymptotically flat region. The second kind of excitations
approach to the near horizon region, r → 0. In the low energy limit these
two types of excitations decouple from each other [13].

We observe that the system of N D3 branes can be described in two
different ways in the low energy limit. In one picture, it is described by
decoupled bulk supergravity and N = 4 SYM and in the other picture it is
described by decoupled supergravity and near horizon geometry AdS5 × S5.
Combining these two views led to the statement of the AdS/CFT correspon-
dence: N = 4 Super Yang-Mills (SYM) theory with gauge group U(N) in
3 + 1 dimensions is equivalent to type IIB superstring theory on AdS5 × S5.

On the field theory side, there are two parameters: the Yang-Mills cou-
pling gYM and the rank of the gauge group N . These two parameters com-
bine into the ’t Hooft parameter λ = g2

YMN . On the string theory side there
are three basic scales: the string length `s, the AdS length ` and the 10-
dimensional Newton’s constant G10. From these, two independent ratios can
be formed. The AdS/CFT correspondence relates these as:

`4

`4
s

= 4πgsN = g2
YMN = λ,

16πG10

`8
s

= (2π)7 g2
s =

8π5λ2

N2
. (1.3.31)

There are two important limits when the gauge theory parameters are large.
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The first limit is when N is large. From the relation (1.3.31), we observe
that, at fixed λ,

G10 ∼
1

N2
. (1.3.32)

This implies that the quantum gravitational effects are suppressed whenN �
1. The 10-dimensional Newton’s constant sets the Planck length G10 ∼ `8

P .
From (1.3.31), we find (

`

`P

)8

∼ N2. (1.3.33)

Therefore, the large N limit also implies that the AdS length scale ` is large
compared to the Planck length, `P . Therefore the geometry is classical in this
limit. On the field theory side, large N implies that the correlators receives
leading contribution form planar diagrams.

Once the large N limit has been taken, other free parameter is λ. On
the field theory side, perturbation theory is valid when this parameter λ is
small. On the dual side, it is useful to take the opposite limit namely the
large coupling limit. As we can write

`4

`4
s

∼ λ , (1.3.34)

the large coupling constant implies that the AdS radius is larger than the
string length. In this limit the stringy corrections are suppressed and su-
pergravity can be used as valid approximation. Therefore we conclude that
when both N and λ are large, the gauge theory can be well described by
classical IIB supergravity on AdS5×S5. This form of the duality is the most
convenient for practical calculation. It also provides a framework to perform
non-perturbative calculation of the gauge theory quantities.

1.3.4 CFT correlators from gravity

The AdS/CFT correspondence relates gravity theories to CFTs in large N
and large ’t Hooft coupling limit. The space-time of the gravity theory has a
boundary on which the gauge theory may be thought to reside. A prescription
to compute the gauge theory quantities from the gravity dual was given by
Gubser-Klebanov-Polyakov-Witten (GKPW) [15],[16] which relates partition
functions of both sides of the duality.

Consider an Euclidean CFT and a local operator O(x). The observables
are vacuum correlation functions

〈O(x1)O(x2) · · · O(xn)〉 (1.3.35)
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which are defined as the vacuum expectation values of product of the oper-
ators. The generating functional of the correlation functions is defined as

Z[J ] =
〈
e−

∫
ddxJ(x)O(x)

〉
CFT

(1.3.36)

where J(x) is the source for O(x). The correlation functions are obtained
by taking functional derivatives with respect to the source and setting it to
zero:

〈O(x1)O(x2) · · · O(xn)〉 = (−1)n
1

Z[0]

δ

δJ(x1)

δ

δJ(x2)
· · · δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

.

(1.3.37)
The GKPW rule relates the generating functional of the CFT to the

partition function of gravity in the supergravity limit

Z[J ] =
〈
e−

∫
ddxJ(x)O(x)

〉
CFT

=

∫
D[ϕi]e

−Sgrav [ϕi] (1.3.38)

where ϕi denote the bulk supergravity fields. These are dual to the boundary
operators. For simplicity, we consider a bulk scalar field which is dual to the
boundary operator O(x). The boundary condition of ϕ is set by the source
ϕ|boundary ∼ J . I will discuss the boundary condition precisely below for an
example of a saclar field. In the largeN and large coupling limit, the partition
function of gravity is determined semiclassically and it is dominated by the
classical saddle points. In this case, Eq. (1.3.38) can be written as

Z[J ] = e−Sgrav,on−shell[ϕ] . (1.3.39)

The right hand side is the gravity action evaluated such that the equations of
motion are satisfied with prescribed boundary conditions set by the J which
I will discuss next in the case of a scalar field.

The bulk fields are dual to some local operators on the field theory side.
As an example, consider a massive scalar field in (d + 1)-dimensional AdS
space-time written in Poincaré patch coordinates

ds2 = `2dz
2 + dxµdxµ

z2
(1.3.40)

and assume for simplicity that the field is constant on the compact space.
Here we denote the bulk coordinates as xA = (xµ, z) where A = 0, 1, · · · , d
and µ = 0, 1, · · · , d− 1. The boundary is located at z = 0. The action for a
massive scalar field is

S = − 1

2`d−1

∫
dd+1x

√
g
(
gAB∂Aϕ∂Bϕ+m2ϕ2

)
(1.3.41)
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where gAB is the inverse metric of (1.3.40) . Stationarity of the action under
a small variation of the field gives the equation of motion. We must consider
the boundary contribution as AdS has a boundary. Integrating (1.3.41) by
parts once and keeping the boundary contribution we obtain

S = − 1

2`d−1

∫
∂AdS

ddx
√
ggzAϕ∂Aϕ+

1

2`d−1

∫
dd+1x

√
gϕ
(
∇2 −m2

)
ϕ .

(1.3.42)
where the Laplacian is defined as ∇2 = 1√

g
∂A
(√

ggAB∂B
)
. The first term is

the boundary contribution and the second term yields the bulk equation of
motion (

∇2 −m2
)
ϕ = 0 . (1.3.43)

Therefore we observe that the on-shell action of a massive scalar field receives
contribution only from the boundary term.

To solve the equation of motion we can Fourier decompose the field. This
is possible because the action (1.3.41) is invariant under xµ → xµ+aµ as this
is an isometry of the AdS metric (1.3.40). We write

ϕ(x, z) =
1

(2π)d

∫
ddkeikµx

µ

fk(z) (1.3.44)

where kµ is the momentum vector in d-dimensions and fk(z) are Fourier
modes. These modes satisfy the following equation(

z2k2 − zd+1∂z(z
−d+1∂z) +m2`2

)
fk(z) = 0 . (1.3.45)

Solutions of this equation are the Bessel functions. Near the boundary z = ε
we use the ansatz fk(z) ∼ z∆. Inserting this into (1.3.45) we obtain(

k2z2 + ∆(d−∆) +m2`2
)
z∆ = 0 . (1.3.46)

Near the boundary z → 0, this requires

∆(d−∆) = −m2`2 . (1.3.47)

This equation has two solutions

∆± =
d

2
± d

2

√
1 +

4m2`2

d2
. (1.3.48)

The ∆− solution is always smaller than the ∆+ solution. In fact, we observe
that ∆− < d/2 and ∆+ > d/2 and they satisfy

∆− + ∆+ = d . (1.3.49)
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Near the AdS boundary, the scalar field behaves as

ϕ(z, x) = z∆−ϕ−(x)
(
1 +O(z2)

)
+ z∆+ϕ+(x)

(
1 +O(z2)

)
, (1.3.50)

where ϕ−(x) and ϕ+(x) are two a priori arbitrary functions in the near bound-
ary expansion. However, regularity in the interior fixes the function ϕ+ in
terms of ϕ−. I will present this in the next section.

In AdS/CFT, ϕ is dual to the operator O of the boundary field theory.
When the dimension of the operator O is ∆ then the dimension of the source
J is d − ∆. As ϕ is dimensionless, dimensional analysis shows that the
dimensions of ϕ− and ϕ+ are ∆− and ∆+ respectively. In the standard
AdS/CFT dictionary, the scaling dimension of the field is identified with
∆+, i.e. ∆+ = ∆, ϕ− is identified with the source at the boundary J(x) and
ϕ+(x) is related to the vacuum expectation value (vev) of the local operator
O by the following relation [17]

〈O(x)〉 = (2∆+ − d)ϕ+(x) . (1.3.51)

With this identification, correlation functions are obtained from the on-shell
gravity action (1.3.39). Reality of the scaling dimension requires that

− d2

4`2
≤ m2 (1.3.52)

which is known as the Breitenlohner and Freedman (BF) bound.
From (1.3.48), we observe that ∆+ ≥ d/2 and in the standard dictionary

it is identified with the scaling dimension, ∆, of the dual operator. On
the other hand, when the operator has a scaling dimension ∆ < d/2, the
interpretations of ϕ− and ϕ+ are interchanged, i.e. ϕ+ is interpreted as
the source and ϕ− determines the vev. In this case, the on-shell action is
identified with the quantum effective action of the boundary field theory.

1.4 Holographic RG flows in flat space-time

In the previous section, we have discussed the holographic prescription to
obtain CFT correlators from the dual gravity in AdS space-time. CFT is a
scale invariant theory. As a consequence, coupling parameters are indepen-
dent of the energy scale. Conformal invariance can be broken by adding a
deformation. In this way, we can get a QFT by adding an extra term to the
CFT action

SQFT = SCFT +

∫
ddxJ(x)O(x) , (1.4.1)
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where O(x) is an operator of dimension ∆ by which we break the conformal
invariance and J(x) is the source. As a consequence of breaking confor-
mal invariance, coupling parameters of the theory will be energy dependent.
The evolution is governed by first order differential equations known as the
Renormalization Group (RG) equations.

On the dual gravity side, the breaking of boundary conformal symmetry
means that the bulk space-time is no longer AdS everywhere. In this con-
text, the holographic dimension serves as an effective RG scale in the dual
QFT, thus geometrizing the notion of RG flow. In essence, RG flows can
be understood as bulk evolution in the holographic dimensions [18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 5, 35]. In the bulk,
the simplest holographic RG flows are described by Einstein-scalar theory
with a minimally coupled scalar field [21],[5],[36], [37]. It is described by the
following action

S[g, ϕ] = Md−1

∫
du ddx

√
|g|
(
R(g) − 1

2
∂aϕ∂

aϕ− V (ϕ)

)
+ SGHY , (1.4.2)

where the Gibbons-Hawking-York boundary term, SGHY , is added to make
the variational problem well defined. Here M is the Planck mass. The
holographic RG flow solutions can be described by the domain wall ansatz

ϕ = ϕ(u) , ds2 = du2 + e2A(u)ηµνdx
µdxν . (1.4.3)

This ansatz is the most general homogeneous metric (up to diffeomorphisms)
preserving the boundary Poincaŕe invariance. To see this, suppose we use a
seemingly more general ansatz preserving the boundary Poincaŕe invariance

ds2 = e2X(w)dw2 + e2Y (w)ηµνdx
µdxν . (1.4.4)

However, the coordinate transformation defined by

eX(w)dw = du (1.4.5)

will transform the metric (1.4.4) into (1.4.3).
The equations of motions are

2(d− 1)Ä+ ϕ̇2 = 0 , (1.4.6)

d(d− 1)Ȧ2 − 1

2
ϕ̇2 + V = 0 , (1.4.7)

ϕ̈+ dȦϕ̇− V ′ = 0 . (1.4.8)

where the following notation is used

˙ =
d

du
, ′ =

d

dϕ
. (1.4.9)



18 CHAPTER 1. INTRODUCTION

The first two equations (1.4.6)-(1.4.7) are obtained from the Einstein’s equa-
tions and (1.4.8) is the Klein-Gordon equation for the scalar field. These
three equations are not independent. For example, (1.4.8) can be obtained
from Eqs. (1.4.6)-(1.4.7).

The equations of motion are second order differential equations. To make
contact with the RG flows we first introduce the superpotential W (ϕ) such
that

W (ϕ(u)) = −2(d− 1)Ȧ(u) . (1.4.10)

W in terms of ϕ can be defined piecewise in any interval where the scalar
field is monotonic. In terms of this function, Eq. (1.4.6) can be written as

ϕ̇(u) = W ′(ϕ(u)) (1.4.11)

which describes the evolution of the scalar field. Equation (1.4.7) becomes
the following superpotential equation

d

4(d− 1)
W 2 − 1

2
W ′2 + V = 0 . (1.4.12)

Therefore, introduction of the superpotential W (ϕ) has turned the second
order equations of motion into first order ordinary differential equations.

One of the properties of W (ϕ) is that for a negative definite potential, V ,
it lies above a critical curve defined by

B(ϕ) =

√
−4(d− 1)

d
V (ϕ) . (1.4.13)

This property can be seen from (1.4.12):

|W | =

√
4(d− 1)

d

(
1

2
W ′2 − V

)
≥
√
−4(d− 1)

d
V (ϕ) (1.4.14)

for a potential, V , which is always negative. This implies that when W is
positive, it will stay positive as the critical curve is positive definite.

In holography, we identify ϕ(u) with the running coupling corresponding
to the perturbing operator. The energy scale of the renormalization group
flow is identified with

µ = µ0e
A(u) , (1.4.15)

where µ0 is a reference scale. This identification gives the correct trace
identity [34, 38]. Holographic beta function corresponding to the running of
the coupling parameter can be written as

β(ϕ) = µ
dϕ

dµ
=

dϕ

d ln(µ/µ0)
= −2(d− 1)

W ′(ϕ)

W (ϕ)
. (1.4.16)
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Thus the beta function can be obtained from W (ϕ). For simple flows, β(ϕ) =
0 will correspond to a fixed point.

In a simple holographic RG flow, we consider a potential with a maximum
and a minimum. The ultraviolet (UV) and the infrared (IR) fixed points are
identified with the maximum and the minimum of the potential respectively.
Without a loss of generality, assume that the UV fixed point is at ϕ = 0.
The value of the potential sets the negative cosmological constant. The bulk
geometry in the UV is approximately AdS and this is dual to a CFT. In the
u-coordinate, we choose the UV is at u = −∞. Near the AdS boundary, the
bulk metric can be written as

ds2 ≈ du2 + e−
2u
` ηµνdx

µdxν . (1.4.17)

This can be obtained by solving (1.4.7) near ϕ = 0 to find A(u) ≈ −u
`

+ c.
The constant can be set to zero which is equivalent to a boundary coordinate
transformation. The scale factor diverges and consequently the energy scale
µ = µ0e

A(u) diverges. From the RG point of view, this corresponds to the
UV.

When the scalar field is a non-trivial function, the bulk geometry is no
longer AdS everywhere. From the dual quantum field theory point of view,
this corresponds to breaking the conformal invariance of the UV CFT by an
operator with dimension ∆. In general, the potential near the UV (ϕ = 0) is

V (ϕ) = −d(d− 1)

`2
− m2

2
ϕ2 +O(ϕ3) , (1.4.18)

where ` is the UV AdS length and m2 > 0 (for maximum) is the mass
parameter which is related to the dimension of the perturbing operator ∆ by

∆(d−∆) = m2`2 . (1.4.19)

Solutions of this equation are

∆± =
d

2
± d

2

√
1− 4m2`2

d2
. (1.4.20)

As discussed in the previous section, in the standard dictionary (∆ > d/2)
we identify ∆+ = ∆.

From the near UV potential (1.4.18), we can solve Eq. (1.4.12) in a series
of ϕ. There are two types of solutions, given by [5]

W−(ϕ) =
1

`

[
2(d− 1) +

∆−
2
ϕ2 +O(ϕ3)

]
+
C

`
|ϕ|

d
∆− [1 +O(ϕ) +O(C)] ,

(1.4.21)

W+(ϕ) =
1

`

[
2(d− 1) +

∆+

2
ϕ2 +O(ϕ3)

]
. (1.4.22)
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where C is an integration constant. The W− solution is a continuous family
of solutions parametrized by C whereas W+ is an isolated solution. We can
now use Eq. (1.4.11) to obtain the scalar field. We find,

ϕ̇ = W ′
− ⇒ ϕ(u) = ϕ−`

∆−e∆−u/` +
Cd |ϕ−|∆+/∆−

∆−(d− 2∆−)
`∆+e∆+u/` + . . . ,

(1.4.23)

ϕ̇ = W ′
+ ⇒ ϕ(u) = ϕ+`

∆+e∆+u/` + · · · . (1.4.24)

As discussed in the previous section, for the (−) solution we identify ϕ−
with the source J . In this case, the vacuum expectation value (vev) of the
perturbing operator is

〈O〉− =
Cd

∆−
|ϕ−|∆+/∆−(M`)d−1. (1.4.25)

For the (+) solution, source is zero and the vev is given by

〈O〉+ = (2∆+ − d)ϕ+(M`)d−1 . (1.4.26)

In this case the flow is purely driven by the vev.
Near the minimum, the potential takes the same form as (1.4.18) but

m2 < 0. In this case, from Eq. (1.4.20) we see that ∆− < 0 and ∆+ > d.
Similar to what we have done in the UV, we can solve Eq. (1.4.12) to find
[5] :

W±(ϕ) =
1

`

[
2(d− 1) +

∆±
2
ϕ2 +O(ϕ3)

]
. (1.4.27)

Note that, in this case there is no integration constant C. As ∆− < 0 for a
minimum, term like |ϕ|d/∆− will diverge when ϕ→ 0. Hence in the minimum
we need to set C = 0. Using Eqs. (1.4.11) and (1.4.10) we find

ϕ̇ = W ′
− ⇒ ϕ(u) = ϕ−`

∆−e∆−u/` + · · · (1.4.28)

ϕ̇ = W ′
+ ⇒ ϕ(u) = ϕ+`

∆+e∆+u/` + · · · (1.4.29)

A±(u) = −u− u?
`
− 1

8(d− 1)
ϕ2
±e

2∆±u/` + · · · (1.4.30)

where ϕ−, ϕ+ and u? are integration constants. Eqs. (1.4.28) and (1.4.29) are
valid when ϕ is small. As ∆− < 0, (1.4.28) requires u → ∞. Consequently,
µ = µ0e

A(u) goes to 0. Therefore, the W− solution corresponds to the flow
that arrives to the IR. On the other hand, as ∆+ > 0, vanishing ϕ in Eq.
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Figure 1.1: W (ϕ) corresponding to V (ϕ) in Eq. (1.4.31). We use λ = m2/4
such the the minimum is at ϕmin = 1. This superpotential describes the
holographic RG flow from the UV fixed point at ϕ = 0 to the IR fixed point
at ϕ = 1. The blue shaded region is the forbidden region of W (ϕ).

(1.4.29) requires u → −∞. In this case, the energy µ = µ0e
A(u) goes to ∞.

Therefore, the W+ solution corresponds to a vev driven flow leaving from a
UV fixed point.

After discussing the behavior of W (ϕ) near the maximum and the mini-
mum, we now return to the full solution interpolating between them. In the
UV, W− solution has a continuous parameter C. Only one flow leaving from
the UV fixed point reaches the IR fixed point as the W− solution in the IR
is unique. Therefore, the W− solution corresponds to a regular flow leaving
a UV fixed point and reaching a IR fixed point. For this particular solution,
the integration constant C and consequently the vev are fixed.

To present an example of a regular flow, we choose a potential

V (ϕ) = −d(d− 1)

`2
− m2

2
ϕ2 + λϕ4 . (1.4.31)

Local maximum of this potential is located at ϕ = 0. There are two minima
and for convenience we choose λ = m2/4 such that the minima are at ϕmin =
±1. A plot of the superpotential W (ϕ) is shown in Fig. 1.1 which has been
obtained by solving Eq.(1.4.12) for a potential as in (1.4.31) with ` = 1 and
m2`2 = 3.36.

From the superpotential W (ϕ), we can use the equation

ϕ̇(u) = W ′(ϕ(u)) (1.4.32)
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Figure 1.2: Scalar field ϕ as a function of u. The scalar field interpolates
from the UV to the IR value. The arrow denotes the RG flow direction.

to find the scalar field as a function of u. A plot of this is shown in Fig. 1.2
which has been obtained by integrating (1.4.32) with ϕ− = 1 as the source.

From the superpotential W (ϕ), we can also compute the beta function
from Eq. (1.4.16). A plot of this beta function is shown in Fig. 1.3. Note
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Figure 1.3: β(ϕ) as a function of ϕ. The arrow denotes the RG flow direction.

that the beta function vanishes at ϕ = 0 and ϕ = 1 which are the maximum
and the minimum of the potential (1.4.31). Vanishing beta function corre-
sponds to fixed points in a simple holographic RG flow. As β(ϕ) < 0, this
corresponds to a holographic RG flow from the UV CFT to the IR CFT on
flat space-time.

To describe the RG flows on curved space-times, we need to modify the
form of near-boundary metric. We can write the bulk metric in Fafferman-
Graham coordinates

ds2 =
`2

z2

(
dz2 + ωµν(z, x)dxµdxν

)
(1.4.33)

where the boundary is located at z = 0 and ωµν(z, x) has the following
expansion

ωµν = ω(0)
µν + ω(2)

µν z
2 + · · ·+ ω(d)

µν z
d + h(d)

µν z
d log

(
z2
)

+O(zd+1) . (1.4.34)
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The log term appears when d is even and for odd d the series goes into even
powers up to order zd−1. In holography, the QFT metric ζµν is identified
with [39], [40]

ζµν = ω(0)
µν . (1.4.35)

The boundary is curved when the curvature associated with the boundary
metric is non-zero.

In this thesis, I have considered the boundary space-time to be maximally
symmetric which in the Lorentzian signature can be flat, de Sitter or Anti-
de Sitter. To describe the RG flows in Eulcidean signature we consider
the boundary either flat, sphere or the hyperbolic space. The RG flows on
maximally symmetric space-times are the subject of the next chapter.



24 CHAPTER 1. INTRODUCTION



Chapter 2

Holographic RG flows on
curved manifolds

2.1 Introduction

Renormalization group (RG) flows in Quantum Field Theory (QFT) are usu-
ally studied in flat space. There are many reasons to consider QFTs on curved
manifolds and study the associated RG flows.

One reason is that curved manifolds are considered in order to render
QFTs well defined or well controlled in the IR, by taming IR divergences.
There are many facets of this idea, going back to [41], and to [42] for a similar
approach of regulating IR divergences in string theory. On the holographic
side of QFTs, this is the role played by global AdS space. There, the QFT
lives on R× Sd, where the spatial part is a sphere.

One object of interest is the partition function on curved manifolds. In
particular, the partition function on spheres was argued to serve as an ana-
logue of the c-functions in odd dimensions. The case of three dimensions is
well known, [43, 44] but from holographic arguments the case can be made
also for other dimensions, [35, 45]. The dynamics of QFTs on curved mani-
folds may have interesting and different structure from that on flat manifolds,
especially in the case of QFTs on AdS manifolds, [46].

Cosmology is another important context where quantum field theories
on curved space-times may be considered. There is a vast body of work
in this context. In connection to the renormalization group flow aspect,
for example, the non-perturbative RG group on de Sitter backgrounds was
studied for large-N scalar field theories in [47, 48, 49, 50, 51, 52, 53, 54, 55].

There is a folk theorem which says that RG flows of QFTs on curved
manifolds are very similar to those on flat manifolds. The argument for this

25



26CHAPTER 2. HOLOGRAPHIC RG FLOWSON CURVEDMANIFOLDS

is that β-functions are determined by UV/short-distance divergences and the
short distance structure of a given QFT is independent of its curvature. Al-
though the leading intuition of such statements is basically correct, the folk
theorem fails on several grounds. Indeed, the leading UV divergences are in-
dependent of curvature. However, subleading ones do depend on curvature.
We will see this clearly and in a controlled fashion in this chapter, although
it is known [39, 56, 57]. A further observation is that already for CFTs, cur-
vature is a source of breaking of scale invariance via the conformal anomaly,
[58]. For general QFTs driven by relevant couplings, the β functions do in
general depend on curvature, [38]. The same is true for the vacuum expec-
tation values of operators. More generally, one may expect that curvature
becomes very important in the IR and this expectation is, in general, correct.

In this chapter we will discuss the RG behavior of QFTs on maximally
symmetric curved space-times using the framework of holography. The holo-
graphic correspondence, [12, 15, 16], provides a map between QFT and
gravity/string-theories in higher dimensions, at least in the limit of large
N .

We study an Einstein-scalar theory in (d + 1)-dimensions described by
(1.4.2). To study the holographic RG flows, we can employ domain wall
coordinates and choose the following ansatz for ϕ and the (d+1)-dimensional
metric (for both Euclidean and Lorentzian signatures):

ϕ = ϕ(u) , ds2 = du2 + e2A(u)ζµνdx
µdxν . (2.1.1)

Here, A(u) is a scale factor that depends on the coordinate u only, while ζµν
is a metric describing a d-dimensional maximally symmetric space-time. As
a consequence of maximal symmetry we have1

R(ζ)
µν = κζµν , R(ζ) = dκ , with κ =


(d−1)
α2 dSd or Sd

0 Md

− (d−1)
α2 AdSd

,

(2.1.2)

where α is the curvature length scale of ζµν and Md denotes d-dimensional
Minkowski space. We also define the induced metric γµν on a d-dimensional
slice at constant u

γµν ≡ e2A(u)ζµν . (2.1.3)

1In the case of a foliation with positive curvature slices, these can be given by d-
dimensional de Sitter space or a d-sphere. In the rest of the chapter we will mainly refer
to the case of the sphere, keeping in mind that the results will also hold for de Sitter.
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In the following, we will also adhere to the following shorthand notation.
Derivatives with respect to u will be denoted by a dot while derivatives with
respect to ϕ will be denoted by a prime, i.e.:

ḟ(u) ≡ df(u)

du
, g′(ϕ) ≡ dg(ϕ)

dϕ
. (2.1.4)

Varying the action (1.4.2) with respect to the metric and the scalar ϕ
gives rise to the equations of motion:

2(d− 1)Ä+ ϕ̇2 +
2

d
e−2AR(ζ) = 0 , (2.1.5)

d(d− 1)Ȧ2 − 1

2
ϕ̇2 + V − e−2AR(ζ) = 0 , (2.1.6)

ϕ̈+ dȦϕ̇− V ′ = 0 . (2.1.7)

These equations are the same for both Lorentzian and Euclidean signatures,
so all our results will hold for both cases (unless stated explicitly).

2.2 The first order formalism

As in chapter 1, it will be convenient to rewrite the second-order Einstein
equations as a set of first-order equations, which will allow an interpretation
as gradient RG flows. This is locally always possible, except at special points
where ϕ̇ = 0, which we will later refer to as bounces, as previously observed
in [5]. Given a solution, as long as ϕ̇(u) 6= 0, we can invert the relation
between u and ϕ(u) and define the following scalar functions of ϕ:

W (ϕ) ≡ −2(d− 1)Ȧ , (2.2.1)

S(ϕ) ≡ ϕ̇ , (2.2.2)

T (ϕ) ≡ e−2AR(ζ) = R(γ) . (2.2.3)

where the expressions on the right hand side are evaluated at u = u(ϕ).
In terms of the functions defined above, the equations of motion (2.1.5)

–(2.1.7) become

S2 − SW ′ +
2

d
T = 0 , (2.2.4)

d

2(d− 1)
W 2 − S2 − 2T + 2V = 0 , (2.2.5)

SS ′ − d

2(d− 1)
SW − V ′ = 0 , (2.2.6)
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which are coordinate independent, first-order non-linear differential equations
in field space. In the flat case T = 0 and we recover the usual superpotential
equation (1.4.12) for W by setting S = W ′. Thus, the difference between S
and W ′ is a measure of the curvature of the boundary.

Note that equations (2.2.4-2.2.6) are algebraic in T . We can hence par-
tially solve this system by eliminating T so that we are left with the following
two equations

d

2(d− 1)
W 2 + (d− 1)S2 − dSW ′ + 2V = 0 , (2.2.7)

SS ′ − d

2(d− 1)
SW − V ′ = 0 . (2.2.8)

Next, we can solve the second equation (2.2.8) for W algebraically. Substi-
tuting into the first equation (2.2.7) we obtain

dS3S ′′ − d

2
S4 − S2(S ′)2 − d

d− 1
S2V + (d+ 2)SS ′V ′ − dS2V ′′ − (V ′)2 = 0

(2.2.9)
This is a second order equation in S and its integration requires two integra-
tion constants. As we will see in the next section, one integration constant
will be related to the vev of the perturbing operator, while the other inte-
gration constant will be related to the UV curvature.

In the following we will work both with the full set of equations (2.2.4)–
(2.2.6), with the two equations (2.2.7)–(2.2.8) or with (2.2.9) choosing whichever
is more convenient.

A few important properties of the functions W , S and T are discussed
below (see appendix B for more details):

1. At a generic point in field space, there exist two branches of solutions,
with opposite signs of S and W ′. In each branch, S and W ′ have the
same sign.

2. The critical curve B(ϕ) was defined in (1.4.13). In the flat case, W (ϕ)
has to satisfy |W (ϕ)| ≥ B(ϕ), and equality can be reached only where
W ′ = 0. For positive non-zero curvature, the bound is stricter, and the
critical curve cannot be reached, except in the UV where T → 0. On
the other hand, for negative curvature W can cross the critical curve.

3. As shown in appendix A, curvature invariants are finite as long as S(ϕ)
and V (ϕ) are both finite. On the other hand a divergent W (ϕ) does
not necessarily imply that the solution is singular.
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4. Points where S → 0 (i.e. ϕ(u) has an extremum) correspond to points
of enhanced symmetry: In fact, around these points the metric is ap-
proximately maximally symmetric, i.e.

S(ϕ∗) = 0 ⇒ Rab =
V (ϕ∗)

d− 1
gab. (2.2.10)

This has to be confronted with generic points, where R
(g)
µν = kgµν ,

R
(g)
uu = k′guu, with k′ − k = S2/2 as shown in (B.2.2) and (B.2.3) .

Holographic RG flows are in one-to-one correspondence with regular so-
lutions to the equations of motion (2.1.5)–(2.1.7). Assuming the scale factor
plays the same role of energy scale as in the flat case, the holographic β-
function can be expressed in terms of W (ϕ) and S(ϕ):

β(ϕ) ≡ dϕ

dA
= −2(d− 1)

S(ϕ)

W (ϕ)
. (2.2.11)

The space of regular solutions for W (ϕ) and S(ϕ) coincides with the space
of possible RG flows up to a choice of two initial conditions: (1) The value
of the deformation parameter in the UV, ϕ−, which is called the source and
it corresponds to the UV coupling constant of the relevant operator dual to
the scalar. (2) The UV value of the scalar curvature Ruv of the manifold
on which the field theory is defined. Therefore, by classifying all solutions
W (ϕ), S(ϕ) to the equations (2.2.7) and (2.2.8) for a given potential V (ϕ), we
can characterize all possible RG flows corresponding to a given bulk theory.
Hence, in the following we will be interested in solutions to these equations
for various choices of the potential V (ϕ).

To be specific, we will assume that V (ϕ) has at least one maximum,
where V takes a negative value. This ensures that there exists a conformal
fixed point, and a family of asymptotically AdS solutions which correspond
to deforming the theory away from the fixed point by a relevant operator.

In addition, V (ϕ) may have other maxima and/or minima representing
distinct UV or IR fixed points for the dual CFT. The aim of the next section
is to study the solutions at the fixed points in the presence of curvature, but
with the relevant deformation set to zero.

2.3 Conformal fixed points

A conformal fixed point corresponds to a solution of (2.1.5)–(2.1.7) with
ϕ = const., i.e. ϕ̇ = 0 = ϕ̈. Such solutions are associated with extrema ϕext

of the potential, at which V ′(ϕext) = 0.
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In this case, the solution (2.1.1) is always the space-time AdSd+1, writ-
ten in different coordinate systems, regardless of the curvature of the d-
dimensional slices with metric ζµν . Indeed, AdSd+1 admits d-dimensional de
Sitter (or sphere, in the Euclidean version), Minkowski or AdS slicings of the
form (2.1.1), with (see e.g. [59]):

eA(u) =



`

α
sinh

(
−u+ c

`

)
, −∞ < u ≤ −c, dSd or Sd

exp

(
−u+ c

`

)
, −∞ < u < +∞, Md

`

α
cosh

(
u+ c

`

)
, −∞ < u < +∞, AdSd

.

(2.3.1)

Here ` is the AdSd+1 length ` defined via V (ϕext) = −d(d−1)
`2

, while the length
scale α was introduced in (2.1.2). We also chose the boundary of AdSd+1 to
be located at u→ −∞. The parameter c is an integration constant.

Although the bulk space-time is the same, the asymptotic boundary is
different in the three cases. This leads to inequivalent boundary theories. As
the d-dimensional boundaries of the space-times (2.3.1) are all conformally
equivalent, at the fixed point the effect of curvature is completely encoded
in the conformal anomaly. This will change when we consider RG-flows and
introduce an explicit breaking of conformal invariance.

In the case of Minkowski slices, c can be removed by a conformal rescaling
of the boundary metric and we can set c = 0. However, for dS and AdS
slices the constant c contains physical information and cannot be removed.
In particular, c determines the curvature of the d-dimensional slices. To see
this, first note that the length scale α is unphysical and can be chosen freely.
It is an artifact of splitting the induced metric γµν on the d-dimensional
slices into a scale factor eA(u) and ζµν . This can be seen e.g. by evaluating
R(γ), i.e. the scalar curvature associated with the induced metric γµν on the
d-dimensional slices, which is given by

R(γ) = e−2A(u)R(ζ) . (2.3.2)

For a conformal fixed point we hence find

R(γ) =


d(d− 1)

`2
sinh−2 u+ c

`
dSd or Sd

−d(d− 1)

`2
cosh−2 u+ c

`
AdSd

, (2.3.3)
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i.e. the parameter α has dropped out from the expressions. Instead, it is the
parameter c which contains information about the curvature.

An important quantity will be the scalar curvature Ruv, which we define
as the scalar curvature associated with the UV limit of the (rescaled) induced
metric γuv

µν ≡ limu→−∞ e
2u/`γµν . Indeed, the metric γuv

µν is the leading bound-
ary data appearing in the Fefferman-Graham expansion near the boundary,
and in holography it is interpreted as the metric of the dual field theory, as
discussed in chapter 1. The associated curvature Ruv is given by:

Ruv = lim
u→−∞

e−2u/`R(γ) , (2.3.4)

For the case of a conformal fixed point we find

Ruv = ±4d(d− 1)

`2
e2c/` , (2.3.5)

where the positive (negative) sign is appropriate for dS (AdS) curvature.
For later use, it will be convenient to expand the scale factor (2.3.1) in

the vicinity of the boundary u→ −∞. Restricting attention to the cases of
Sd/AdSd slicings we obtain

A(u) = ln
( `

2α

)
− u+ c

`
∓ e2(u+c)/` +O(e4u/`)

= −u
`

+
1

2
ln
(R(ζ)

Ruv

)
− `2Ruv

4d(d− 1)
e2u/` +O(e4u/`) (2.3.6)

where the last line is valid for both Sd/AdSd slicings.
For most practical purposes it will be convenient to set R(ζ) = Ruv, which

we can always achieve by choosing α = `
2
e−c/` for the arbitrary parameter α.

This is the convention that we will adopt throughout this thesis. Note that
in this case the constant term in (2.3.6) vanishes. This also holds for space-
times which only asymptote to AdSd+1 near the boundary: We can always
ensure that R(ζ) = Ruv for an asymptotically AdS space-time by setting the
constant term in the near-boundary expansion of A(u) to zero.

2.4 Perturbative analysis near extrema of the

potential

We will now examine solutions of our system in the vicinity of extremal
points of V . We then proceed to determining the near-boundary geometry.
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Without loss of generality we take the extremum to be at ϕ = 0. It will then
be sufficient to consider the potential

V = −d(d− 1)

`2
− m2

2
ϕ2 +O(ϕ3) , (2.4.1)

where we will choose m2 > 0 for maxima and m2 < 0 for minima. In the
following we will solve equations (2.2.4)–(2.2.6) for W (ϕ), S(ϕ) and T (ϕ)
near ϕ = 0. The relevant calculations are performed in appendix C. Here we
present and discuss the results.

2.4.1 Expansion near maxima of the potential

We work in an expansion in ϕ about the maximum at ϕ = 0. Like in the
case of zero boundary curvature discussed in e.g. [5], there are two branches
of solutions to equations (2.2.4)–(2.2.6), and we will distinguish them by the
subscripts (+) and (−). The (−) solutions are:

W−(ϕ) =
1

`

[
2(d− 1) +

∆−
2
ϕ2 +O(ϕ3)

]
+
R
d`
|ϕ|

2
∆− [1 +O(ϕ) +O(R)]

+
C

`
|ϕ|

d
∆− [1 +O(ϕ) +O(C) +O(R)] , (2.4.2)

S−(ϕ) =
∆−
`
ϕ [1 +O(ϕ)] +

Cd

∆−`
|ϕ|

d
∆−
−1

[1 +O(ϕ) +O(C)] , (2.4.3)

+
1

`
O
(
R|ϕ|

2
∆−

+1
)

+
1

`
O
(
RC|ϕ|

2+d
∆−
−1
)

T−(ϕ) = `−2R|ϕ|
2

∆− [1 +O(ϕ) +O(C) +O(R)] , (2.4.4)

where C and R are integration constants, and we have defined:

∆± =
1

2

(
d±
√
d2 − 4m2`2

)
with 0 < m2 <

d2

4`2
(2.4.5)
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The (+) solution is given by:

W+(ϕ) =
1

`

[
2(d− 1) +

∆+

2
ϕ2 +O(ϕ3)

]
+
R
d`
|ϕ|

2
∆+ [1 +O(ϕ) +O(R)] ,

(2.4.6)

S+(ϕ) =
∆+

`
ϕ [1 +O(ϕ)] +O

(
R|ϕ−|

2
∆+

+1
)
, (2.4.7)

T+(ϕ) = `−2R|ϕ|
2

∆+ [1 +O(ϕ) +O(R)] . (2.4.8)

The above expressions describe two continuous families of solutions, whose
structure is a universal analytic expansion in integer powers of ϕ, plus a
series of non-analytic, subleading terms which, in principle, depend on two
(dimensionless) integration constants C and R. Note that the (−)-branch
of solutions depends on two integration constants C and R, while only the
integration constant R appears in the solutions of the (+)-branch. The
notation O(C) and O(R) does not imply that C or R have to be small.
Rather, this is shorthand to indicate that these terms will be accompanied
by higher powers of ϕ thus justifying their omission.2

The solutions (2.4.2)–(2.4.4) generalize the near-extremum superpoten-
tial solutions that arise in the flat case (1.4.21), where only the integration
constant C was present. Indeed, setting R = 0 we recover the flat result for
W (ϕ) and we also find S = W ′ and T = 0. This indicates that R = 0 is
strictly related to the curvature of the d-dimensional metric, a fact that will
be confirmed explicitly below.

Given our results for W , S and T , we are now in a position to solve for
ϕ(u) and A(u). For the (−)-branch we solve (2.2.2) and (2.2.1) subject to

2For example, the solution for W on the (−)-branch can be written schematically as
the following triple expansion:

W−(ϕ) =
1

`

∞∑
l=0

∞∑
m=0

∞∑
n=0

Al,m,n

(
C |ϕ|d/∆−

)l (
R|ϕ|2/∆−

)m
ϕn (2.4.9)
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(2.4.3) and (2.4.2) to obtain

ϕ(u) = ϕ−`
∆−e∆−u/`

[
1 +O

(
R|ϕ−|2/∆−e2u/`

)
+ . . .

]
(2.4.10)

+
Cd |ϕ−|∆+/∆−

∆−(d− 2∆−)
`∆+e∆+u`

[
1 +O

(
R|ϕ−|2/∆−e2u/`

)
+ . . .

]
+ . . . ,

A(u) = Ā− −
u

`
−
ϕ2
− `

2∆−

8(d− 1)
e2∆−u/` − R|ϕ−|

2/∆− `2

4d(d− 1)
e2u/` (2.4.11)

− ∆+C|ϕ−|d/∆− `d

d(d− 1)(d− 2∆−)
edu/` + . . . .

Here, we introduced the integration constants ϕ− and Ā−. We can repeat the
analysis for the (+)-branch of solutions by solving (2.2.2) and (2.2.1) subject
to (2.4.7) and (2.4.6). We find:

ϕ(u) = ϕ+`
∆+e∆+u/`

[
1 +O

(
R|ϕ+|2/∆+e2u/`

)
+ . . .

]
+ . . . , (2.4.12)

A(u) = Ā+ −
u

`
−
ϕ2

+ `
2∆+

8(d− 1)
e2∆+u/` − R|ϕ+|2/∆+ `2

4d(d− 1)
e2u/` + . . . , (2.4.13)

where we introduced the integration constants ϕ+ and Ā+. A few comments
are in order.

• As our solutions for W , S and T are only valid for small ϕ, the above
results are the leading terms in ϕ(u) and A(u) for u→ −∞.

• For both the (+) and (−)-branch, the result for A(u) exhibits the be-
havior expected for a scale factor in the near-boundary region of an
AdSd+1 space-time with length scale `, as can be seen by comparing
with (2.3.6). As explained in section 2.3, for asymptotically AdS space-
times we can always choose a metric ansatz such that R(ζ) = Ruv. This
amounts to setting Ā± = 0.

• For the (−)-branch of solutions, we identify ϕ− as the source for the
scalar operator O in the boundary field theory associated with ϕ. The
vacuum expectation value of O depends on C and is given by

〈O〉− =
Cd

∆−
|ϕ−|∆+/∆−(MP `)

d−1 . (2.4.14)

Thus the (−)-branch of solutions is a source flow.

• For the (+)-branch of solutions, the bulk field ϕ is also associated with
a scalar operator O in the boundary field theory. However, in this case
the source is identically zero, yet there is a non-zero vev given by

〈O〉+ = (2∆+ − d)ϕ+(MP `)
d−1 . (2.4.15)
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Therefore, the (+) solution is a vev deformation. There is also an
associated moduli space of vevs, as ϕ+ is arbitrary, being an integration
constant of the first order flow equation.

• We can learn even more by comparing the two expressions for A(u) in
(2.4.11) and (2.3.6). Matching the coefficients of e2u/` implies

R ≡
{
Ruv|ϕ−|−2/∆− (−)-branch
Ruv|ϕ+|−2/∆+ (+)-branch

. (2.4.16)

Thus, the integration constant R is related to the curvature, Ruv in
units of the source/vev of the manifold on which the UV QFT is defined.

• Interestingly, the (−) and (+)-branches of solutions are not completely
unrelated. One can check that given a solution of the (−)-branch, we
can arrive at a solution on the (+)-branch by performing the following
rescaling:

ϕ− → 0 , C → +∞ , C|ϕ−|
∆+
∆− = const. , R|ϕ−|

2
∆− = const.

(2.4.17)

To be specific, under this rescaling the solutions in (2.4.10) and (2.4.11)
can be brought into the form of (2.4.12) and (2.4.13). This gives rise
to another interpretation of the (+)-branch of solutions. In particular,
for fixed Ruv a W+ solution is the upper envelope of the family of W−
solutions parameterized by C. This is similar to the flat case [25, 5].

Overall, the above findings imply that, as in the flat case, maxima of the
potential are associated with UV fixed points. The bulk space-time asymp-
totes to AdSd+1 and reaching the maximum of the potential is equivalent to
reaching the boundary. Moving away from the boundary corresponds to a
flow leaving the UV. Flows corresponding to solutions on the (−)-branch are
driven by the existence of a non-zero source ϕ− for the perturbing operator
O. Flows corresponding to solutions on the (+)-branch are driven purely by
a non-zero vev for O, as the source vanishes identically.

Finally, notice that as expected near a UV fixed point, the curvature
terms proportional to R only enter as subleading corrections in W , S and
the bulk solution (2.4.10)–(2.4.13).

2.4.2 Expansion near minima of the potential

In this section, we will display solutions for W (ϕ), S(ϕ) and T (ϕ) corre-
sponding to flows that either leave or arrive at minima of the potential. We
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will again consider the potential (2.4.1), but now we have m2 < 0. In the
following, we present the results, while detailed calculations can be found
in appendix C. Again, we find that there exist (+) and (−)-branches in the
space of solutions, which we will discuss in turn.

(+)-branch

For the (+)-branch the expansions around a minimum of V take the same
form as in the vicinity of a maximum. Therefore, we obtain:

W+(ϕ) =
1

`

[
2(d− 1) +

∆+

2
ϕ2 +O(ϕ3)

]
(2.4.18)

+
R
d`
|ϕ|

2
∆+ [1 +O(ϕ) +O(R)] ,

S+(ϕ) =
∆+

`
ϕ [1 +O(ϕ)] +

1

`
O
(
R|ϕ|

2
∆+

+1
)
, (2.4.19)

T+(ϕ) = `−2R|ϕ|
2

∆+ [1 +O(ϕ) +O(R)] , (2.4.20)

with ∆+ defined as before in (2.4.5), but now we have that m2 < 0. The
integration constant R is continuous and gives rise to a family of solutions.
As before, we can integrate to obtain:

ϕ(u) = ϕ+`
∆+e∆+u/`

[
1 +O

(
R|ϕ+|2/∆+e2u/`

)
+ . . .

]
+ . . . , (2.4.21)

A(u) = Ā+ −
u

`
−
ϕ2

+ `
2∆+

8(d− 1)
e2∆+u/` − R|ϕ+|2/∆+ `2

4d(d− 1)
e2u/` + . . . , (2.4.22)

This solution has the following interpretation:

• Recall that the expansions of W , S and T are valid only for small
ϕ. As ∆+ > d at a minimum, it follows from (2.4.21) that small ϕ
requires u→ −∞. Using (2.4.22), this in turn implies that eA(u) →∞
when approaching the minimum of the potential. This is the behavior
expected when approaching a UV fixed point.

• In the boundary QFT, the bulk field ϕ will be associated with an
operatorO. However, the absence of a term∼ e∆−u/` in (2.4.21) implies
that the source of this operator vanishes. On the other hand, there is
a non-zero vev given by

〈O〉+ = (2∆+ − d)ϕ+(MP `)
d−1 . (2.4.23)

The solution (2.4.21) is to be interpreted as a flow purely driven by a
vev.
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• Matching the expression (2.4.22) with the near-boundary expansion
(2.3.6) we again find that R is related to the curvature Ruv of the
background manifold of the UV QFT:

R = Ruv|ϕ+|−2/∆+ . (2.4.24)

To summarize, as in the flat case, for solutions of the (+)-branch minima
of the potential correspond to UV fixed points. Flows from such UV fixed
points are not driven by a source for the perturbing operator O, but rather
by its vev 〈O〉+. This corresponds to a spontaneous breaking of conformal
invariance.

As in the flat case, these solutions are generically singular in the IR,
because unlike the (−)-branch solutions departing from a UV maximum,
they have no continuous adjustable parameter (beside the UV data Ruv )
which one may vary to select a solution with regular interior geometry. In
the (−)-branch on the other hand, this role is played by the extra integration
constant C. Nevertheless, one can construct specific examples where regular
solutions of the (+) type exist [5].

(−)-branch

Interestingly, we will need to distinguish between the two cases where the
boundary field theory is defined on a curved manifold (Ruv 6= 0) and a flat
manifold (Ruv = 0). A key result is that for Ruv 6= 0 the (−)-branch of
solutions does not exist. A proof (at the level of the functions ϕ(u) and
A(u)) can be found in appendix D. More specifically, there are no solutions
in the (−)-branch corresponding to flows that either leave or arrive at a
minimum of V for Ruv 6= 0. Such a solution only exists if Ruv = 0 and we
recover the result from [5], where RG flows for QFTs on flat manifolds were
studied.

For Ruv = 0 we have that T−(ϕ) = 0 identically. In addition, (2.1.5)
implies that S(ϕ) = W ′(ϕ) and the solution is completely specified by W (ϕ).
Our findings can be summarized as follows:

Ruv 6= 0 : No solution. (2.4.25)

Ruv = 0 : W−(ϕ) =
1

`

[
2(d− 1) +

∆−
2
ϕ2 +O(ϕ3)

]
. (2.4.26)

For the case Ruv = 0 we can determine ϕ(u) and A(u) by integrating (2.2.1),
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(2.2.2) subject to (2.4.26) and S = W ′. One obtains

ϕ(u) = ϕ− `
∆− e∆−u/` + . . . , (2.4.27)

A(u) = Ā− u

`
−

ϕ2
−

8(d− 1)
`2∆− e2∆−u/` + . . . , (2.4.28)

with Ā and ϕ− integration constants. We recover the result from chapter
1 that for Ruv = 0 minima of the potential correspond to IR fixed points,
as ϕ small now requires u → +∞ (as ∆− < 0 at a minimum) which in
turn implies eA(u) → 0. On the other hand, no such IR limit exist in the
presence of curvature, unlike around a UV fixed point, where curvature only
added subleading corrections. One is then led to wonder what is the fate
of curved RG flows in the interior where curvature becomes the dominant
driving parameter. This is the subject of the next section.

2.5 The geometry in the interior

After having analyzed the behavior close to the UV boundary, in this section
we analyze the geometry in the interior. In particular, we will be interested
in the way the space-time can “end” in a regular way, i.e. where the scale
factor shrinks to zero but the bulk curvature invariants are finite. These are
the curved analogs of flat IR fixed points.

Unlike what happens close to the AdS boundary, where curvature leads
only to subleading corrections to the near-boundary asymptotics, in the in-
terior curvature can drastically change the geometry with respect to the flat
case. As we will see, for positive curvature, the RG flow reaches an end be-
fore the (would-be) IR fixed point of the flat theory; for negative curvature,
on the other hand, both the scalar field and the scale factor turn around and
the flow reaches the boundary on both sides. Non-zero curvature can also
deform the geometry near bounces (points where the scalar field inverts its
flow direction [5] but the scale factor is still monotonically decreasing).

In this analysis, a key role is played by the critical points in the 1st
order equations. These are points where φ̇ = 0. Before discussing the non-
zero curvature case, we briefly review the analysis of critical points for zero
curvature.

2.5.1 Review of flat case

In the flat case critical points correspond to points along the flow with van-
ishing W ′. Extrema of W in the interior of the geometry belong to two
classes: regular IR fixed points, and bounces [5].
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• Flat IR fixed points. A regular IR endpoint of the geometry is
attained, in the flat case, when the flow asymptotes to a minimum
(which we denote by ϕIR) of the scalar potential. In this case, ϕ̇ → 0
and the geometry in the interior is asymptotically AdSd+1, with

eA(u) ' e−u/`IR , ϕ(u)→ ϕIR, u→ +∞ (2.5.1)

In the language of the superpotential, as ϕ→ ϕIR, W → 2(d− 1)/`IR
and W ′ → 0, and the (flat) holographic β-function vanishes:

β(ϕ) = −2(d− 1)
W ′

W
→ 0 , ϕ→ ϕIR. (2.5.2)

The condition W ′(ϕIR) = 0 by itself does not imply that the flow has
reached a fixed point: for that, we also need W ′′(ϕ) to be finite, and
this only happens when V ′(ϕIR) = 0, i.e. ϕIR is also a minimum of the
bulk potential as we have assumed above. If the latter condition is not
met, then the geometry features a bounce, as discussed below.

• Flat Bounces. A generic extremum of W , i.e. a point ϕB in field space
such that W ′(ϕB) = 0 but V ′(ϕB) 6= 0, corresponds to a bounce, i.e. a
point where the flow inverts its direction [5]. The superpotential be-
comes singular because ϕ is not a good coordinate around such points.
The flow however can be continued by gluing to another branch, where
ϕ̇ has the opposite sign. Close to a bounce, the superpotential behaves
as:

W (ϕ) ' Wb ± c(ϕB − ϕ)3/2 +O
(

(ϕB − ϕ)2
)
, (2.5.3)

where c is a constant and we have supposed that the flow reaches the
bounce from below (ϕ < ϕB). The two signs correspond to the two
branches of the superpotential along the RG flow before and after the
bounce, which can be glued at ϕ = ϕB giving rise to a regular solution
ϕ(u), A(u), in which all curvature invariants are finite. The holographic
β function still vanishes at ϕB, but it becomes multivalued:

β(ϕ) ' ∓3(d− 1)

Wb

√
ϕB − ϕ+O

(
(ϕB − ϕ)

)
. (2.5.4)

2.5.2 Positive curvature flows: IR endpoints

It is natural to ask what happens to IR fixed points and bounces when the
boundary theory lives on a curved space-time. In the maximally symmetric
case analyzed in this chapter, the condition ϕ̇ = 0 is now the vanishing of
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the function S(ϕ), which in the flat case coincides with W ′. The analysis of
the possible ways in which S can vanish is presented in Appendix E. As it
is shown there, the asymptotic behavior of the functions W , S and T always
takes the general form of an expansion in half-integer powers of x ≡ (ϕ0−ϕ)
(which we assume to be positive, for simplicity):

S(x) =
√
x
(
S0 + S1

√
x+ S2x+ · · ·

)
, (2.5.5)

W (x) =
1√
x

(
W0 +W1

√
x+W2x+ · · ·

)
, (2.5.6)

T (x) =
1

x

(
T0 + T1

√
x+ T2x+ · · ·

)
, (2.5.7)

On the other hand, we have assumed that the potential has a regular expan-
sion around ϕ0:

V (x) = V0 + V1x+ V2x
2 + · · · . (2.5.8)

Depending on the sign of the curvature and on the values of the the coeffi-
cients in (2.5.5-2.5.7), the solution around ϕ = ϕ0 can be of be three possible
types:

1. Fixed points (positive curvature only)

2. Reflection points (negative curvature only)

3. Bounces (both signs of the curvature)

In this section we will discuss the IR endpoints for positively curved case.
Let us suppose that ϕ0 is such that S(ϕ0) = 0, and the leading coefficients

S0, W0 and T0 are all non-vanishing (this corresponds to case (b) in Appendix
E). Then, T = R(ζ)e−2A diverges at ϕ0, implying that the scale factor eA

shrinks to zero size. However, this does not imply a singularity but as we
will see below, it represents a coordinate horizon (or a regular end of space
in the Euclidean signature).

To leading order in ϕ0 − ϕ, we have:

S(ϕ) ' S0(ϕ0 − ϕ)1/2, W (ϕ) ' W0

(ϕ0 − ϕ)1/2
, (2.5.9)

T ' T0

(ϕ0 − ϕ)
, (2.5.10)

where the coefficients are fixed by the equations of motion to be:

S2
0 =

2V1

d+ 1
, W0 = (d− 1)S0, T0 =

d(d− 1)

4(d+ 1)
S2

0 . (2.5.11)
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We see that this solution, obtained assuming ϕ < ϕ0, makes sense only for
V1 > 0, i.e. V ′(ϕ0) < 0 (cfr. equation (2.5.8)). Similarly, it is easy to show
that, for V ′(ϕ0) > 0 we have to reach ϕ0 from above. In both cases, equation
(2.5.10) implies T > 0. From the definition (2.2.3), this in turn implies that
such behavior can occur only for positive curvature.

With expressions (2.5.9-2.5.10) for W , S and T , we can integrate equa-
tions (2.2.1-2.2.2) order by order in (ϕ0 − ϕ) to find the expressions for the
scale factor A(u) and the scalar field ϕ(u). We define the “end of space”
point u0 where

ϕ(u0) = ϕ0, eA(u0) = 0, (2.5.12)

To lowest order, one finds:

ϕ = ϕ0−
S2

0

4
(u−u0)2 +O((u−u0)3) , A(u) = ln(u− u0)+A0 +O(u−u0).

(2.5.13)
The parameter A0 is an integration constant for equation (2.2.1), but it is
determined algebraically by the asymptotic form of the function T (ϕ) close
to ϕ0:

T ≡ R(ζ)e−2A(u) ' T0

ϕ0 − ϕ
(2.5.14)

Inserting the expansions (2.5.13), and using the relations (2.5.11) and the
fact that R(ζ) = d(d− 1)/α2, one easily finds:

A0 = − logα (2.5.15)

Interestingly, it is precisely (and only) for this value of A0 that there is no
singularity at u0. Recall that the metric is given by:

ds2 = du2 + e2A(u)ds2
dSα = du2 + α2e2A(u)ds2

dSα=1
, (2.5.16)

where ds2
dSα

is the de Sitter metric with radius α. Near u→ u0, this becomes,

ds2 ' du2 + α2e2A0(u− u0)2ds2
dSα=1

. (2.5.17)

For A0 = − logα, the d-dimensional part of the metric vanishes exactly
like it does at the “end of space” in the dS slicing of AdSd+1, as can be
seen from equation (2.3.1) by expanding the scale factor around the point
u = −c. Equivalently, if we go to Euclidean signature, unit-curvature dSd
becomes the unit sphere Sd, and for A0 = − logα the metric close to u0 is
approximately:

ds2
E = dρ2 + ρ2dS2

d , ρ ≡ |u− u0| (2.5.18)
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Figure 2.1: The solid lines show the scalar field (left) and scale factor (right)
profiles of a positive curvature RG flow geometry, from the UV (u → −∞,
ϕ→ 0) to the IR endpoint (u = u0, ϕ = ϕ0). The dashed lines represent the
solutions with zero curvature, extending all the way to u→ +∞ and to the
IR fixed point at ϕ = ϕIR.

i.e. the metric around the origin of Euclidean d + 1-space in spherical coor-
dinates.

Notice that the qualitative behavior of the solution is different, and the
IR endpoint discussed here does not exist, if V ′(ϕ0) = 0: indeed, in this
case T0 = 0. Thus, solutions with positive slice curvature cannot reach a
would-be flat IR fixed point ϕIR, which corresponds to a minimum of the
scalar potential. This is in agreement with the result found in Appendix D,
that curved RG flows cannot end at minima of the potential.

From the above analysis we can infer the general structure of a positive
curvature RG flow in a model with a bulk potential having several maxima
and minima. Consider a flat RG flow connecting a UV maximum at ϕ = ϕUV
to an IR minimum at ϕ = ϕIR. In the region ϕUV < ϕ < ϕIR, we have
V ′(ϕ) < 0 by construction. Thus, adding positive curvature forces the flow
to stop at an intermediate point ϕUV < ϕ0 < ϕIR. This behavior is illustrated
in Figure 2.1.

The position of the endpoint in field space is determined by equations
(2.5.11) and by the value of the UV data, i.e. the source term ϕ− in the
scalar field UV asymptotics, and the boundary curvature Ruv. This can be
seen as follows: from the IR equations, choosing the endpoint ϕ0 determines
all the expansion coefficients in the functions, (2.5.11), through the values
of V (ϕ) and its derivatives at ϕ0. On the other hand, the integration con-
stant A0 in the scale factor is fixed by the curvature parameter by equation
(2.5.15). Since all the integration constants are fixed, if we integrate the
equations towards the UV we will find a given value of the UV source and
vev parameters, ϕ− and ϕ+. Turning it around, for a given set of UV data ϕ−
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and Ruv, there exist a single regular solution with a specific vev ϕ+(ϕ−, R
uv)

and a specific endpoint ϕ0(ϕ−, R
uv).

As we will see in the next section, and as expected on general grounds,
the position of the endpoint actually depends only on the dimensionless com-
bination R ≡ Ruv(ϕ−)−2/∆− . Indeed, from the UV expansions (2.4.2-2.4.4)
it is clear that the functions know only about the integration constant R,
and do not depend separately on the source ϕ−. Thus it is the combination
R which determines the endpoint. As R ranges from zero to infinity, the
endpoint moves from ϕIR to ϕUV .

Finally, the IR endpoint discussed in this section, constitutes a special
case of the general result we present as property 5 of functions S(ϕ), T (ϕ),W (ϕ)
in Appendix B, namely that around a point where S = 0, the bulk metric is
approximately maximally symmetric. In other words, the IR fixed point is a
point of enhanced symmetry. This is similar to the flat case, where at an IR
fixed point, Poincaré symmetry is upgraded to conformal invariance.

2.5.3 Negative curvature flows: AdS throat

The endpoint behavior presented in the previous section requires positive
curvature slices. If the curvature is negative, then we must consider (a)
in Appendix E. This generically corresponds to a bounce (which will be
discussed in the next section) except in the special caseW0 = W1 = 0 (referred
to as case (c) in Appendix E):

S2
0 = 2V1, W0 = W1 = 0, T0 = T1 = 0 (2.5.19)

W2 =
4V0

dS0

, T2 = V0. (2.5.20)

At leading order the functions S(ϕ), T (ϕ),W (ϕ) are (assuming ϕ < ϕ0):

S ' S0(ϕ0−ϕ)1/2 + . . . , W ' W2(ϕ0−ϕ)1/2 + . . . , T ' T2 + . . . (2.5.21)

This solution is possible only for negative slice curvature, since T = e−2AR(ζ)

has the same sign as the potential V (ϕ0), which we assumed to be negative
definite. Notice that now W vanishes at ϕ0, and T = e−2AR(ζ) remains
finite. This implies that Ȧ = 0 and A is finite at ϕ0, i.e. the scale factor has
a turning point.

By integrating the first order flow equations, one can show that this
solution corresponds to the following geometry for u→ u0:

ϕ(u) ' ϕ0 −
S2

0

4
(u− u0)2, (2.5.22)

ds2 ' du2 + e2A0

(
1 +

(u− u0)2

`2
IR

)
ds2

AdSd,α
, (2.5.23)
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Figure 2.2: The solid lines show the scalar field (left) and scale factor (right)
profiles of a negative curvature RG flow geometry, from the left boundary
(u → −∞, ϕ → 0) to the turning point (u = u0, ϕ = ϕ0), to the right
boundary (u → +∞, ϕ → 0). The solution is symmetric around u0. The
dashed lines represent the zero-curvature solution interpolating from the UV
boundary to the IR fixed point at ϕ = ϕIR, and featuring a monotonic scale
factor.

where A0 is an integration constant, ds2
AdSd,α

is a metric on AdSd with length
scale α and `2

IR = d(d−1)/|V (ϕ0)|. The behavior around u0 matches that of
space AdSd+1, with length scale `IR, sliced with AdSd hypersurfaces, as seen
in (2.3.1).

The conditions Ȧ(u0) = ϕ̇(u0) = 0 imply that we can continue the ge-
ometry for u > u0 by gluing its reflected image around u0. The resulting
geometry is regular since the metric and scalar field, as well as their deriva-
tives, are all continuous across u0. If the solution starts at a UV fixed point
reached as u → −∞, the resulting doubled geometry will reach a “second”
UV boundary again as u → +∞, connected by a throat where the scale
factor reaches a minimum, as shown in figure 2.2.

This geometry does not really have two disconnected boundaries: rather,
the two boundaries at u = ±∞ are connected through the boundary of the
lower-dimensional AdSd slices. This was discussed in [60] in the case of the
AdSd+1 geometry written in AdSd slices.

As was the case for the endpoint in the positive curvature case, the turning
point ϕ0 is completely determined by the UV data ϕ− and Ruv.

2.5.4 Bounces

The generic situation of such a point ϕB with vanishing S and finite W
corresponds to W0 = 0 but W1 6= 0 (case (a) in Appendix E). To leading
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Figure 2.3: ϕ and A vs. u for an example exhibiting a bounce at u = uB.

order, the functions S(ϕ), T (ϕ),W (ϕ) behave as (assuming (ϕ < ϕB):

S ' S0(ϕB − ϕ)1/2 + . . . , W ' W1 +W2(ϕB − ϕ)1/2 + . . . , T ' T2 + . . .
(2.5.24)

where

S2
0 = 2V1, T2 = V0 +

dW 2
1

4(d− 1)
, (2.5.25)

and W1 is arbitrary (W1 = 0 corresponds to the special case of the AdS
throat analyzed in the previous subsection). In this case, the scalar field has
a turning point, but the scale factor has a non-vanishing derivative. Since
V0 < 0, T2 does not have a definite sign and therefore this solution is allowed
for both positive and negative curvature.

The solution (2.5.25) actually describes two branches, with S0 = ±
√
V1,

corresponding to the two branches of the functions S(ϕ), T (ϕ),W (ϕ) dis-
cussed in section 2.2: at a bounce, these two branches can be glued, giving
rise to a regular geometry, exactly as in the flat case [5]. Integrating the
first order equations we find the bulk solution close to ϕB in terms of the u
coordinate (where u = uB is the bounce point):

ϕ(u) ' ϕB −
S2

0

4
(u− uB)2 + . . . A(u) = AB −

W1

2(d− 1)
(u− uB) + . . .

(2.5.26)
This solution is regular both for u < uB (S(ϕ) > 0) and u > uB (S(ϕ > 0).
The functions S(ϕ),W (ϕ) is singular because at ϕB because ϕ ceases to be
a good coordinate at ϕB, but the geometry (2.5.26) is smooth. The typical
scalar field profile is illustrated in Fig. 2.3a. Like in the flat case, we refer to
this as a bouncing flow.

The fact that the geometry is regular at the bounce can be also be seen
from the fact that all the curvature invariants can be written in terms of
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the potential V (ϕ) and the function S(ϕ) only. As the behavior of S(ϕ) is
regular near the bounce, all the curvature invariants are finite, as one can
see from the expressions in Appendix A.

We can relate the value of the scale factor at the bounce by evaluating
the relation T = R(ζ)e−2A at u = uB, using equations (2.5.24) and (2.5.26):

T2 = R(ζ)e−2AB . (2.5.27)

Using the expression of T2 from Eq. (2.5.25), we find a relation between AB,
W1 and V (ϕB):

AB = − ln(α)− 1

2
ln

∣∣∣∣∣
(

W1

2(d− 1)

)2

− 1

`2
B

∣∣∣∣∣ (2.5.28)

where we have defined

V (ϕB) = −d(d− 1)

`2
B

. (2.5.29)

As S = 0 at the bounce, the bulk geometry is approximately maximally
symmetric, as shown in Appendix B.

2.6 Examples of complete RG flows

In this section, we will display solutions corresponding to full RG flows for
different choices of potentials. The examples are chosen to illustrate various
properties of RG flows of theories on curved manifolds described in the pre-
vious sections. The flows will originate from a UV fixed point at a maximum
of the potential, which we choose to locate at ϕ = 0 for convenience, and
will end at an IR point ϕ0, which does not need to be an extremum of the
potential. We will distinguish between flows where ϕ changes monotonically
between the UV and IR points and situations where the flow in ϕ changes
direction, an effect referred to as a bounce. In addition, we will describe
how the flows are deformed by changes to UV data such as the dimensionless
curvature R.

2.6.1 Generic flows

We will refer to flows as generic if they exhibit the following two properties:
they originate at a maximum of the potential and end in the region between
this maximum and the nearest minimum. In addition, ϕ changes monotoni-
cally along the flow from UV to IR. We call such solutions ‘generic’ as they
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Figure 2.4: Solutions for W (ϕ) with R ≥ 0 and for the potential (2.6.1) with
∆− = 1.2. The five solutions Wi(ϕ) with i = 1, . . . , 5 differ in the value of
their IR endpoint ϕ0. The critical curve is defined as B(ϕ) =

√
−3V (ϕ). In

the case of zero and positive curvature, the function W (ϕ) cannot enter into
the region below the critical curve, which is depicted as the shaded region.

arise for generic potentials as long as they possess at least one maximum and
one minimum.

To illustrate generic flows, a potential exhibiting a maximum and at least
one minimum will be sufficient.3 For this purpose we consider the following
quadratic-quartic potential:

V (ϕ) = −d(d− 1)

`2
− m2

2
ϕ2 + λϕ4 . (2.6.1)

This potential has one maximum at ϕmax = 0. We will also find it convenient
to choose λ = m2/4 such that the minima occur at ϕmin = ±1. We then
proceed to studying RG flows by solving (2.2.7)–(2.2.8) numerically for W (ϕ)
and S(ϕ). In practice, it is easiest to specify boundary conditions for W and
S at or close to the IR end point ϕ0. The relevant boundary conditions
for RG flows are described in sections 2.5.2 and 2.5.3 for the two cases of a
QFT on a sphere or AdS. Given the symmetry of the setup, we restrict our
attention to flows that end in the region ϕ0 ∈ [0, 1].

3In fact, the existence of a minimum at a finite value of ϕ is not strictly necessary, but
will be useful for illustrating further properties of these flows. Similar conclusions apply
also to potentials that extend to infinity in field space, which in the flat case were also
discussed in [5].
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QFT on Sd: R > 0

In Fig. 2.4 we exhibit solutions for the function W (ϕ) corresponding to
generic RG flows for a bulk potential given by (2.6.1) and for R > 0. To be
specific, we have set ∆− = 1.2, but our observations will hold more generally.

• The main result is that for every value of ϕ0 between ϕmax = 0 and
ϕmin = 1 there exists a unique solution to the equations (2.2.4-2.2.6)
corresponding to an RG flow originating from the UV fixed point at
ϕmax = 0 and ending at ϕ0. For illustration, in Fig. 2.4 we have cho-
sen to display five such solutions labelled by Wi(ϕ) with i = 1, . . . , 5,
that differ in the value of the IR endpoint ϕ0. However, there is no
solution for a flow with R > 0 with an endpoint at ϕ0 = ϕmin exactly.
In contrast, such a flow arises for R = 0 and we have included the
corresponding superpotential Wflat in the figure.

• Note that the solutions Wi(ϕ) diverge when approaching their corre-
sponding IR end points. The divergence is of the form ∼ (ϕ0 − ϕ)−1/2

as expected for a RG flow with R > 0 (see sec. 2.5.2). Recall that this
divergence does not imply a singularity in the bulk geometry.

• Returning to Fig. 2.4, in the vicinity of the UV fixed point the solu-
tions are described by the family of solutions collectively denoted by
W−(ϕ) in section 2.4. These solutions depend on the two continuous
parameters R and C. This is consistent with the existence of a unique
solution corresponding to a RG flow for every ϕ0. Picking a solution
with the correct IR behavior for a RG flow fixes one combination of
the two parameters. The remaining freedom is then equivalent to the
choice of IR end point ϕ0.

• Given a numerical solution, we can extract the corresponding values
of R and C explicitly by fitting the UV region with the asymptotics
(2.4.2-2.4.4). An interesting observation is that there exists an inverse
relation between R and ϕ0, i.e. flows with endpoints closer to the UV
fixed points exhibit larger values of R. Further, R diverges when ϕ0

approaches the UV fixed point. On the other hand, when the IR end-
point approaches ϕmin the value of R asymptotes to zero. In fact, for
the potential considered here the evolution of R with ϕ0 is monotonic
and displayed in Fig. 2.5a.

• For completeness, we also exhibit C as a function of ϕ0 in Fig. 2.5b.
We find that C is negative, but its behavior is otherwise similar to that
of R. In particular, its absolute value increases with decreasing ϕ0 and
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Figure 2.5: QFT on Sd: Dimensionless curvature R and dimensionless vev
C as a function of IR endpoint ϕ0 for the potential (2.6.1) with ∆− = 1.2.
Both these quantities diverge as ϕ0 approaches the UV fixed point at ϕ = 0.

diverges when ϕ0 → 0. However, as ϕ0 → ϕmin we find numerically
that C 6= 0 .

• Given a solution Wi(ϕ), we can also determine the corresponding scale
factor eA(u) and scalar field profile ϕ(u). This introduces the remaining
integration constant ϕ− into the solution. In figure 2.6 we plot the
scale factors eA(u) and the scalar field profile ϕ(u) corresponding to the
solutions W1(ϕ), W2(ϕ) and W3(ϕ) in figure 2.4. The scale factor eA(u)

shrinks to zero at a finite value of u, in agreement with our identification
of ϕ0 with an IR endpoint. The scalar field arrives at the IR value ϕ0

at that point.

The above findings can be summarized as follows. Consider a field theory
with fixed source ϕ− on a background with fixed curvature Ruv, such that
R = Ruv|ϕ−|−2/∆− is fixed. The flow will end at a value ϕ0, which is deter-
mined by R. The larger the value of R, the closer this end point ϕ0 will be
to ϕmax. The remaining parameter C is then determined by the requirement
that the solution is has the correct (regular) behavior at the endpoint.

QFT on AdSd: R < 0

We repeat the above analysis for the case with R < 0. We will find that
many properties observed for positive R also hold for negative R. In this
case however the IR endpoint at ϕ0 is replaced by an IR turning point for
both ϕ and A (see section 2.5.3). There are also other important differences
which we will highlight. To be specific, we will again work with the potential
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Figure 2.6: (a): Scale factor eA as a function of u for the flows denoted by
1,2,3 in Fig. 2.4. For the flat case, the scale factor is depicted as the dark
red curve and only shrinks to zero at u → ∞. For the positive curvature
cases, the scale factor eA shrinks to zero at finite values of u. (b): Scalar
field ϕ(u) as a function of u. For the flat case, the scalar field arrives at the
minimum of the potential at ϕ = 1 at the end of the flow. Here it is denoted
by the darker red line. For the curved cases, the scalar field does not reach
the minimum. The figure shows the scalar field profile for flows denoted by
1,2,3 in Fig. 2.4.

given by (2.6.1). In the following, we collect our observations. It will be
convenient to distinguish the cases ∆− < 1 and ∆− > 1.

• For ∆− < 1 there exists a unique solution to equations (2.2.4-2.2.6)
corresponding to a monotonic RG flow for every value of IR turning
point ϕ0 ∈ [0, ϕmin]. This is identical to what we have found for flows
with R > 0, and for any ∆−.

• For ∆− > 1 an RG flow solution exists for every value of IR turning
point ϕ0 ∈ [0, ϕmin], but these are not necessarily monotonic. In par-
ticular, we find that generic flows can only have ϕ0 ∈ [ϕc, ϕmin], where
ϕc > ϕmax is determined by the specific choice of potential. On the
other hand, flows with ϕ0 ∈ [0, ϕc] exist, but are non-monotonic: the
scalar field ϕ(u) starts from 0 towards negative values, before turning
around, crossing ϕ = 0 again and reaching a value ϕ0 ∈ [0, ϕc]. We will
refer to such solutions as bouncing flows and they will be discussed in
more detail in section 2.6.3. Note that these bouncing flows are dual
to a different class of theories than the monotonic flows, since the UV
source must have a different sign in the two cases.

• In Fig. 2.7 we display three solutions for W (ϕ) with R < 0. The
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Figure 2.7: Solutions for W (ϕ) with R < 0 and for the potential (2.6.1)
with ∆− = 1.2. The three solutions Wi(ϕ) with i = 1, 2, 3 have different IR
turning points ϕ0. For negative curvature case, the function W (ϕ) can go
into the area below the critical curve B(ϕ) =

√
−3V (ϕ) which is the shaded

region.

results are obtained for the potential (2.6.1) with ∆− = 1.2. The
three solutions labelled by W1, W2 and W3 differ in the value of their
corresponding IR turning point ϕ0. Note that W (ϕ) goes to zero at ϕ0,
with infinite slope as expected from the analytical results in sec. 2.5.3.
The inverse scale factor eA(u) reaches a minimum at the loci where
W vanishes (see Fig. 2.8). This is due to the fact that A reaches a
minimum at the turning point.

• Returning to figure 2.7, in the vicinity of the UV fixed point the solu-
tions are again described by the family of solutions collectively denoted
by W−(ϕ) in section 2.4. We can extract the constants R and C for
generic flows. As in the positive curvature case, we find that the ab-
solute value |R| increases monotonically with a decrease in the value
of the IR (turning) point ϕ0. For ∆− < 1 we find that the increase in
|R| continues until ϕ0 → 0 at which point |R| diverges. This changes
for ∆− > 1. In this case |R| already diverges when ϕ0 → ϕc for some
positive value ϕc. This is shown in Fig. 2.9a, where we display R as a
function of ϕ0 for the potential (2.6.1) with ∆− = 1.2. In this example
we find that ϕc ≈ 0.49. The reason for this behavior is that the flow
ending at ϕc corresponds to a theory with vanishing source ϕ−, which
in turn implies that R = Ruv|ϕ−|−2/∆− diverges. The rose-colored area
in Fig. 2.9a corresponds to ϕ < ϕc, which is the region where direct
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Figure 2.8: (a): eA(u) vs. u and (b) ϕ(u) vs. u corresponding to the flows
in Fig. 2.7. The coloring is the same as in Fig. 2.7. The dark red curve
corresponds to the solution for the flat case. The vertical lines represent the
reflection points.

flows cannot arrive. Flows with turning points in this region leave the
UV fixed point at ϕ = 0 to the left before reversing direction. We will
discuss such bouncing flows in more detail in section 2.6.3.

• For completeness, we display C as a function of ϕ0 in Fig. 2.9b. The
results are again obtained for the potential (2.6.1) with ∆− = 1.2. For
ϕ0 → ϕmin the parameter C takes some finite value. The value of C then
increases monotonically with decreasing ϕ0 until C diverges for ϕ0 →
ϕc. This can be understood as the divergence of C = ∆−

d
〈O〉|ϕ−|−∆+/∆−

for ϕ− → 0. The rose-colored region again corresponds to the area
ϕ < ϕc where direct flows cannot end.

To summarize, generic flows for R < 0 exhibit many phenomena already
observed for R > 0. In particular, the inverse relation between |R| and ϕ0

persists. A new phenomenon is the appearance of bouncing solutions for
∆− > 1. We will discuss these solutions in detail in section 2.6.3.

2.6.2 The holographic β-function

Having discussed generic flow solutions for W (ϕ) and S(ϕ), let us now turn to
the holographic β-function defined in (2.2.11). In Fig. 2.10 we plot examples
of the holographic β-function for generic flows in the potential (2.6.1) with
∆− = 1.2. The dark red curve is βflat(ϕ) = −2(d − 1)W ′(ϕ)/W (ϕ) for a
flat flow. The remaining curves βi(ϕ) with i = 1, 2, 3 correspond to RG flow
solutions with R = 0.09, 1.29, 7.14 respectively. Note that the β-functions
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Figure 2.9: QFT on AdSd: dimensionless curvature R = Ruv|ϕ−|−2/∆− and
dimensionless vev C = ∆−

d
〈O〉|ϕ−|−∆+/∆− vs. ϕ0 for the potential (2.6.1)

with ∆− = 1.2. Flows with turning points in the rose-colored region leave
the UV fixed point at ϕ = 0 to the left before bouncing and finally ending
at positive ϕ0. Flows with turning points in the white region are direct:
They leave the UV fixed point at ϕ = 0 to the right and do not exhibit a
reversal of direction. The flow with turning point ϕc on the border between
the bouncing/non-bouncing regime corresponds to a theory with vanishing
source ϕ−. As a result, both R and C diverge at this point.

show the same asymptotic behavior in the UV, i.e.

β(ϕ) = −∆−ϕ+ . . . +O
(
R |ϕ|1+ 2

∆−

)
, (2.6.2)

where we have indicated the first non-trivial curvature correction at small
curvature. Moving away from the UV fixed point at ϕ = 0, the β-functions
begin to change due to the curvature. The departure from βflat is the more
pronounced, the higher the value of R. Most notably, depending on the
value of R, the various β-functions vanish at different values of ϕ0. Using
results from sections 2.4.2 and 2.5.2, we find that the β-functions exhibit the
following asymptotic form near their respective IR end-points:

R = 0 : βflat = ∆min
− (ϕmin − ϕ) +O

(
(ϕmin − ϕ)2

)
, (2.6.3)

R > 0 : βi = −2(ϕ0,i − ϕ) +O
(
(ϕ0,i − ϕ)3/2

)
, for i = 1, 2, 3 ,

(2.6.4)

where ϕ0,i are the respective end-points of the flows. The difference in IR
behavior between flat flows and flows with R > 0 can be understood as
follows. For flat flows, IR fixed-points are determined by the potential, as
they correspond to minima of V . Correspondingly, the vanishing of βflat at the
fixed point is set by ∆min

− , which depends on the potential at the minimum.
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Figure 2.10: Solutions for β(ϕ) = −2(d − 1) S(ϕ)
W (ϕ)

with R ≥ 0 and for the

potential (2.6.1) with ∆− = 1.2. The three solutions βi(ϕ) with i = 1, 2, 3
differ in the value of their IR endpoint ϕ0.

In contrast, for flows with R > 0, it is the existence of non-zero curvature
which cuts off the flows in the IR, rather than a property of the potential.
As a result, the behavior of βi in the IR does not depend on the behavior of
the potential at the IR end-point. In fact, the behavior βi = −2(ϕ0,i−ϕ) for
R > 0 is universal regardless of V and R. The effect of non-zero curvature
R is to fix the value of the IR end point ϕ0,i.

Last, we comment on flows with R < 0. The behavior of β(ϕ) in the UV
is again given by (2.6.2). However, at the turning point ϕ0 the β-function
does not vanish, but remains finite. Using our expressions from sec. 2.5.3 one
finds

β(ϕ0) = d(d− 1)
|V ′(ϕ0)|
V (ϕ0)

. (2.6.5)

This indicates that the turning points ϕ0 in the negative curvature case are
not fixed points of an RG flow.

2.6.3 Bouncing Solutions

Bouncing solutions are made possible by the fact that at a generic pointW (ϕ)
and S(ϕ) may be multivalued. We have already observed in the previous
section that bounces are generic for negative curvature. Here we present a
few more examples.
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Figure 2.11: Plot of the potential (2.6.6) with parameters ∆+ = 2.91, σ =
0.01, c = 2000, Γ = 2/
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QFT on Sd: R > 0

The potential (2.6.1), did not exhibit multivalued W (ϕ) and S(ϕ) for the
positively curved case. We now consider the potential:

V =− ∆+(d−∆+)

2`2
ϕ2 +

d(d− 1)

`2

(
Γ

2
ϕ2 − cosh(Γϕ)

)
(2.6.6)

− |c|
`2

(
e−

(ϕ−ϕ∗)2
2σ + e−

(ϕ+ϕ∗)2
2σ + e−

ϕ2
∗

2σ

(
1

σ
− ϕ2

∗
σ2

)
ϕ2 − 2e−

ϕ2
∗

2σ

)
.

which depends on the parameters ∆+, Γ, ϕ∗ and c. The potential is an
inverted parabola superimposed on an inverted cosh. In addition, there are
two inverted Gaussians with peaks at ±ϕ∗ and whose height and width can
be adjusted using c and σ. The potential thus has a maximum at ϕ = 0. In
addition, we choose the parameters Γ, c and σ such that there are also two
minima close to ±ϕ∗. The parameter ∆+ is consistent with the definition
of ∆± in (2.4.5), i.e. it is given by (2.4.5) with m2 = V ′′|ϕ=0. A plot of
this potential is shown in Fig. 2.11 for parameters ∆+ = 2.91, σ = 0.01,
c = 2000, Γ = 2/

√
3, ϕ∗ = 4. This potential is constructed with the intention

to give rise to bouncing solutions. The two Gaussians introduce two steep
features in the potential, which exhibit solution with bounces.

Fig. 2.12 shows two bouncing solutions W1(ϕ) and W2(ϕ) with R > 0.
For comparison, we also plot Wflat, which is the bouncing solution in the
same potential for R = 0. The flows in Fig. 2.12 originate from a UV fixed
point at a maximum of V at ϕmax = 0, departing towards negative values of
ϕ. The flows then exhibit a bounce, reverse direction and eventually flow to
the regime with ϕ > 0. Depending on the precise form of the potential for
ϕ > 0, the flows may bounce again (even repeatedly), diverge, or approach
an IR end point.
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Figure 2.12: Solutions for W (ϕ) for flows exhibiting a single bounce for the
potential (2.6.6) with ∆+ = 2.91, σ = 0.01, c = 2000, Γ = 2/

√
3, ϕ∗ = 4.

W1,2 are solutions with R2 > R1 > 0, while Wflat is the solution in the same
potential with R = 0. The shaded area is the region below the critical curve
B(ϕ) =

√
−3V (ϕ).

For R = 0 the bounce locus is the critical curve, i.e. Wflat(ϕB) = B(ϕB).
In addition W ′

flat ∼ ±(ϕ − ϕB)1/2 in the vicinity of a bounce. As shown in
[5], these two properties are shared by all bouncing solutions for R = 0.

For R > 0 we can make the following observations:

• For R > 0 the bounce locus does not lie on the critical curve (1.4.13).
Instead we find that W (ϕB) > B(ϕB) for R > 0 (see Fig. 2.12). An-
other interesting observation is that W ′ ∼ ±(ϕ−ϕB)−1/2 in the vicinity
of a bounce for R 6= 0. Thus, while W ′ changes sign at the bounce, it
also diverges at this point.

• We can also determine the values R1 and R2 corresponding to the two
flows W1 and W2. Here we have R2 > R1. Studying further bouncing
flows with R 6= 0 the following behavior emerges: the larger the value
of |R|, the closer bounces occur to the UV fixed point.

• For completeness, we also plot the functions S and the inverse scale
factor e−2A corresponding to the two solutions W1 and W2. This is
shown in figures 2.13a and 2.13b respectively. Note that e−2A takes
finite values throughout, including at the bouncing locus ϕB. The bulk
geometry is thus perfectly regular along the flow including the bounces.

We can summarize our findings as follows. Consider a field theory with
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Figure 2.13: Plots of S1,2(ϕ) and e−2A1,2(ϕ) corresponding to the two solutions
W1,2(ϕ) in figure 2.12. The solutions are obtained for the potential (2.6.6)
with ∆+ = 2.91, σ = 0.01, c = 2000, Γ = 2/

√
3, ϕ∗ = 4.

fixed UV source ϕ− and defined on a manifold with UV curvature Ruv.
One observation of this section is that for a suitable potential V , solutions
corresponding to RG flows with bounces exist. Decreasing Ruv (and thus
R = Ruv|ϕ−|−2/∆−), the bounce moves further away from the UV fixed point
and approaches the critical curve B(ϕ). For Ruv → 0 the bounce eventually
reaches the critical curve. On the contrary, increasing Ruv moves the bounce
towards the UV fixed point.

QFT on AdSd: R < 0

Bouncing solutions also exist for R < 0, i.e. for field theories defined on
negatively curved manifolds. Our observations from above also hold here:
Bounce loci ϕB do not occur on the critical curve, but now we have W (ϕB) <
B(ϕB) for R < 0 (see Fig. 2.14). Similarly, increasing |R| moves ϕB towards
the UV fixed point. For example, for the two flows W1 and W2 in Fig. 2.14
we have R2 > R1.

An important difference to the case R > 0 is that for R < 0 bouncing
solutions are generic. Let us explain what we mean by this. For R >
0 bouncing solutions may exist in suitable potentials, but given a generic
potential, one does not expect the existence of bouncing solutions. This is
to be contrasted with the situation for R < 0. There any potential with at
least one maximum with ∆− > 1 will allow for bouncing solutions.

This can be understood analytically from the results of appendix H. There
we study solutions for flows in purely quadratic potentials, where we re-
stricted our focus to flows that end or turn close to the UV fixed point where
they originated from. The main observation of relevance here is as follows:
we find that for R < 0 such flows will always bounce if ∆− > 1. Now note
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ϕ

W (ϕ)

W1 W2

B(ϕ)

Figure 2.14: Plot of solutions for W (ϕ) for flows exhibiting a single bounce
for the potential (2.6.6) with ∆+ = 2.91, σ = 0.01, c = 2000, Γ = 2/

√
3,

ϕ∗ = 4. W1,2 are solutions with R < 0, and |R2| > |R1|.

that sufficiently close to a maximum the potential can always be approxi-
mated by a quadratic function, and the results from appendix H will hold.
Thus we expect that for ∆− > 1 flows with turning points sufficiently close
to this maximum will necessarily bounce. This is indeed what we observe
numerically.

Thus, for R < 0 bounces can occur in very simple potentials, like the
quadratic-quartic potential in (2.6.1) and which we will discuss in the fol-
lowing. However, now we will consider this potential for the range ϕ ∈
[−ϕmin, ϕmin] = [−1, 1]. As we have seen in section 2.6.1, for negative cur-
vature and ∆− > 1 there exists a critical value ϕc for the IR turning point
below which the solution goes through a bounce before reaching the turning
point. The critical value ϕc depends on the details of the potential: for ex-
ample, a numerical analysis shows that, for ∆− = 1.2, ϕc = 0.49, while for
∆− = 1.4 ϕc = 0.63.

We will now examine how the quantities R and C vary as the endpoint
of the flow ϕ0 is varied from ϕmax = 0 to ϕmin = 1. For ∆− = 1.2 this
has already been discussed for the non-bouncing flows with ϕ0 & 0.49. We
will now complement these plots with the results for bouncing flows, i.e. for
|ϕ0| . 0.49. This is shown in fig. 2.9.

Interestingly, in addition to the usual divergence in R and C for ϕ0 →
ϕmax we find that both R and C also diverge when ϕ0 → ϕc, i.e. when ϕ0

approaches the boundary between bouncing and non-bouncing flows. This
can be understood as follows. Non-bouncing flows with turning points in
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Figure 2.15: QFT on AdSd: C/R∆+/2 vs. ϕ0 for the potential (2.6.1) with
∆− = 1.2. Flows with turning points in the rose-colored region exhibit a
bounce.

ϕ0 > ϕc correspond to flows that leave the UV fixed point to the right, and
as a consequence have ϕ− > 0. Bouncing flows with ϕ0 < ϕc leave the UV
fixed point to the left before turning around, and thus have ϕ− < 0. Thus,
when ϕ0 passes through ϕc the source has to change sign. Note that in terms
of the physical UV curvature Ruv and the vev 〈O〉 the two quantities R and
C can be written as:

R =
Ruv

|ϕ−|2/∆−
, C =

∆−
d

〈O〉
|ϕ−|∆+/∆−

, (2.6.7)

The divergence for ϕ0 → ϕc can thus be interpreted as follows. To change
sign the source has to pass through zero. As long as Ruv and 〈O〉 remain
finite, letting ϕ− → 0 makes both R and C diverge.

This interpretation can be checked by plotting the quantity

χ ≡ 〈O〉
(Ruv)∆+/2

=
d

∆−

C

R∆+/2
, (2.6.8)

which is manifestly independent of ϕ− and should thus be finite for ϕ0 → ϕc.
This is indeed what we observe. In fig. 2.15 we plot ∆−χ

d
vs. ϕ0 for the

potential (2.6.1) with ∆− = 1.2. We find that χ is finite and continuous
when ϕ0 passes through ϕc.

In this chapter, we have discussed holographic RG flow solutions with
curved slices, corresponding to QFTs living on curved space-times and showed
different RG flows for various potentials. In the next three chapters, we will
discuss different applications of the holographic RG flows on curved manifolds
discussed in this chapter.
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Chapter 3

F-functions from holography

3.1 Introduction

In the previous chapter, we have discussed the holographic RG flows on
maximally symmetric manifolds, in particular on spheres. The study there
can be used in turn to study QFTs defined on spheres. In this chapter, we
will discuss properties of QFTs on spheres in the context of F-theorems.

By the AdS/CFT dictionary, we can find the partition function of the
boundary field theory from the dual on-shell action. A fundamental property
of QFT is that the number of degrees of freedom decreases under renormal-
ization group flow. The quantitative description of this phenomenon is the
subject of the so called ‘c-theorems’. The first ingredient of any c-theorem
is to identify a c-quantity that measures the number of degrees of freedom
of the QFTs at the UV and IR fixed points of the RG flow. The second in-
gredient is a c-function with the property that it interpolates monotonically
between the UV and IR values of the c-quantity along the flow.

For field theories in an even number of space-time dimensions suitable
c-quantities can be identified with coefficients of the Weyl anomaly. In d = 2
Zamolodchikov proposed a suitable c-function, which at the fixed points re-
duces to the Weyl anomaly coefficient c [61]. In d = 4 it is the anomaly coef-
ficient a which plays the role of the c-quantity [62]. A proof of monotonicity
under RG flow was presented in [63], therefore establishing the a-theorem in
d = 4. In odd space-time dimensions the Weyl anomaly is absent, and hence
a different approach to the c-theorem is required.

Progress in this direction was made by relating the c-theorem to entropic
considerations. In [64] it was shown that the c-theorem in d = 2 can be
derived from strong subadditivity of an entanglement entropy. In [35, 45] it
was observed that the c-quantity in any dimension (even and odd) can be

61
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defined as the universal contribution to an entanglement entropy across a
suitably chosen surface.1

The case of the c-theorem in d = 3, also referred to as the F -theorem,
received particular attention. It was suggested in [43, 44, 66] that the role
of the c-quantity can be played by (the finite part of) the free energy of
the theory on the 3-sphere, F = − ln |ZS3|. For CFTs the free energy on S3

coincides with the entanglement entropy across a spherical surface [67], hence
providing a link to the entropic formulation of [35, 45]. The free energy on S3

was also proposed as a possible c-function (henceforth F -function) in d = 3,
with the radius of the sphere as the parameter along the RG flow [43, 44, 66].
A generalisation of the sphere partition function beyond d = 3 was suggested
as a definition for a c-function in general d [68] (see also [69]). Evidence for
the F -theorem in both supersymmetric and non-supersymmetric theories can
be found in [44, 66, 70, 43, 71, 72].

However, there exist problems with the identification of the free energy
with the F -function. In [66] one curious observation was that for the sim-
ple case of a free massive scalar on S3 the free energy failed to interpolate
monotonically between UV and IR (see also [73]). Only by performing an
ad-hoc subtraction of a suitably chosen function it could be made mono-
tonic, suggesting that the free energy on S3 fails to be a universally valid
F -function.

A more successful definition of the F -function employs an appropriately
defined entanglement entropy. In [74] Liu and Mezei constructed a quantity
termed ‘Renormalized Entanglement Entropy’ (REE), whose functional de-
pendence on the size of the entangling surface is interpreted as describing the
RG flow of the entanglement entropy with distance scale. At the fixed points
of a flow the REE reduces to the central charge of the corresponding CFT.
For Poincaré-invariant field theories in d = 3 space-time dimensions the REE
was proven to decrease monotonically from UV to IR in [75], suggesting that
the REE can play the role of the F -function in d = 3. A different approach
for isolating the finite contribution to the entanglement entropy based on
mutual information was proposed in [76].

The study of c-theorems and in particular the F -theorem remains an
active field with many directions for further study. For example, the ques-
tion of stationarity of the F -function at fixed points is currently unresolved
with evidence against stationarity found in [77]. For a recent work on the
construction of c-functions in defect CFTs see [78].

In this chapter we will address open questions regarding the F -theorem,

1For a recent review of entanglement entropy in holography and its application to RG
flows and c-theorems see [65].
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both in its formulation in terms of the free energy on S3, and in its entropic
formulation. Although the (UV-finite part of the) free energy on a sphere
and the REE coincide at fixed points, the formulation of the F -theorem in
terms of the free energy on S3 [43, 44, 66] seems problematic. As stated
above, the free energy on S3 fails to be monotonic even for the case of a
free massive scalar [66, 73], thus calling into question its identification as a
universally valid F -function. The same conclusion was reached in the context
of holographic RG flows in [79].

Another open question concerns the entropic formulation. In this case
an F -function can be defined as the REE across a spherical surface [74].
While this was proven to be monotonic under RG flow for Poincaré invariant
theories, the status of the REE as an F -function beyond Poincaré-invariant
theories is unclear. For example, in [80] the behaviour of the REE under
renormalization group flow was examined for the theory of a conformally
coupled scalar on dS3. In this case the REE fails to exhibit monotonicity
and it is hence not a good F -function on dS3 (see also [73]).

Finally, it is not clear if and how the two formulations of the F -theorem
are related. In particular, while the two definitions in terms of the entan-
glement entropy and free energy coincide in the UV and IR [67], it is not
known to what extent this relation should persist along the RG flow. While
the F -theorem in three dimensions is by now well established in terms of
the entanglement entropy, an alternative formulation directly in terms of the
sphere partition function may still be desirable as this quantity may be eas-
ier to compute in practice for non-conformal field theories and it may evade
some of the difficulties in the computation of the entanglement entropy in
the presence of a regulator [76].

Motivated by the discussion above, in this chapter we will address the
following questions:

1. Can a true F -function be constructed from the free energy on S3?

2. How can a good F -function be constructed from an entanglement en-
tropy for theories on dS3?

3. How are the formulations of the F -function in terms of the free energy
on S3 and in terms of an entanglement entropy related? In particular,
under what circumstances do they coincide along the whole flow rather
than only at the UV and IR end points?

Here we will use holography to address these questions. Throughout this
chapter we will make use of the understanding of holographic RG flows for
field theories on curved manifolds described in chapter 2.
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3.2 On-shell action and free energy

In this section we will present various quantities which will be instrumental
in the construction of the F -functions, as well as their renormalization.

The basic quantity considered in this section is the (regularised or renor-
malized) bulk on-shell action, which is the action given in (1.4.2) evaluated
on solutions to the field equations (2.1.5)–(2.1.7). This functional reduces
to a function of boundary values, Son-shell = Son-shell(ϕ−, R

(ζ)). However, the
need for regularisation and/or renormalization of this quantity introduces
a dependence on extra parameters: a UV cut-off, or a choice of boundary
counterterms.

As discussed in section 1.3.4 in the dual field theory, the on-shell action
has a different interpretation depending whether one is using standard or
alternative holographic dictionary.

• In the standard dictionary, the on-shell action is related to the free
energy of the theory as2

F (j, R) ≡ −Son-shell(ϕ−, R
(ζ)) , (3.2.1)

with the source j identified with ϕ−.

• In the alternative dictionary, the on-shell action is identified, rather
than with the free energy, with its Legendre transform with respect
to the source j, i.e. the quantum effective potential Γ(〈O〉,R) of the
theory, which depends on the operator vev 〈O〉 rather than the source
j. That is, in alternative quantisation we have

Γ(〈O〉, R(ζ)) ≡ −Son-shell(ϕ−, R
(ζ)) , (3.2.2)

where ϕ− is now identified with 〈O〉.

This distinction will be important later on. However, for simplicity, we
will be referring to the on-shell action as free energy, thereby assuming the
standard dictionary, unless stated explicitly otherwise.

The appropriately renormalized free energy, which will be computed in
subsection 3.2.2, will be the starting point for constructing our proposals for
F -functions in section 3.3.

2In a thermodynamic interpretation of our system one may define the thermodynamic
free energy Fth as βFth = Son-shell,E with β the appropriate inverse temperature and
Son-shell,E the Euclidean on-shell action. Note that this thermodynamic free energy Fth

differs from the free energy F defined here.
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3.2.1 The free energy of a holographic RG flow

We begin by writing the expression for the free energy F for a field theory on
Sd, by using the definition (3.2.1), where Son-shell is given by (1.4.2) evaluated
on a solution.

The on-shell action can be expressed as a functional over A(u) (we re-
fer readers to appendix F for details of the derivation). This leads to the
following expression for the free energy,

F = 2(d− 1)Md−1Vd
[
edAȦ

]
UV
− 2Md−1R

d
Vd

∫ IR

UV

du e(d−2)A(u) , (3.2.3)

where we defined

Vd ≡
∫

ddx
√
|ζ| = Vol(Sd) , (3.2.4)

and R = R(ζ) = RUV = d(d−1)
α2 in our convention. The integration in (3.2.3)

is over the entire geometry of the holographic RG flow from the boundary at
u→ −∞ (referred to as UV) to the interior at some finite u0 (referred to as
IR). There is a similar contribution as the first term in equation (3.2.3) from
the IR. Because of regularity of the IR end-point, the contribution vanishes,
as can be easily seen using equation (2.5.13).

Integrating up to the boundary gives rise to UV-divergences and hence we
will cut off the integration in the UV at some finite value u = ` log ε. Hence,
whenever we write ‘UV’ in the following, this implies that the corresponding
quantity is to be evaluated at

uε ≡ ` log ε or ϕε ≡ ϕ(` log ε) . (3.2.5)

It will be convenient to rewrite the free energy given in (3.2.3) in terms of
the functions W (ϕ), S(ϕ) and T (ϕ). The resulting expression will be more
amenable to numerical analysis as well as analytical considerations compared
to (3.2.3). As a first step, we write

Vd =

∫
ddx
√
|ζ| = 2π

d+1
2

Γ(d+1
2

)
αd = Ω̃dR

− d
2 , with Ω̃d ≡

2d
d
2 (d− 1)

d
2π

d+1
2

Γ(d+1
2

)
.

(3.2.6)

Inserting this into (3.2.3) and using the definitions (2.2.1)–(2.2.3) the free
energy (3.2.3) can be written as

F = −Md−1Ω̃d

([
T−

d
2 (ϕ)W (ϕ)

]
UV

+
2

d

∫ IR

UV

dϕS−1(ϕ)T−
d
2

+1(ϕ)

)
.

(3.2.7)
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We now rewrite the second term. In particular note that we can express3

2

d
S−1(ϕ)T−

d
2

+1(ϕ) dϕ = −d
(
T−

d
2

+1(ϕ)U(ϕ)
)
, (3.2.8)

in terms of a function U(ϕ) which satisfies

SU ′ − d− 2

2(d− 1)
WU = −2

d
. (3.2.9)

As this is a first order differential equation, solving for U introduces in prin-
ciple one integration constant, which we will refer to as B. However, this will
be fixed by a IR condition as we will see shortly. Using the near-boundary
expansions of W and S given in (2.4.2) and (2.4.3), we can derive the near-
boundary behaviour of U from (3.2.9):

U(ϕ) =
ϕ→0

`

[
2

d(d− 2)
+B|ϕ|(d−2)/∆− +O

(
R|ϕ|2/∆−

)]
. (3.2.10)

Notice that the dependence on the integration constant C through W and
S, only enters U at subleading order in the near-boundary expansion. Thus,
in the vicinity of the UV, we find that there is a family of solutions for U ,
which we will denote by UB,R.

The regular IR expansion acts as a boundary condition for the differential
equation (3.2.9). It is given by the regularity condition

U(ϕ) =
ϕ→ϕ0

U0

√
|ϕ− ϕ0|+O

(
|ϕ− ϕ0|

)
, (3.2.11)

where U0 = 4
d(d−1)S0

and S0 was defined in (2.5.11). This fixes the integration
constant B appearing in U uniquely in terms of ϕ0. Therefore, by introducing
the function U(ϕ) we did not introduce any extra freedom or new parameter.
As a result, B becomes a function of ϕ0, B(ϕ0). As R is a function of ϕ0,
we can trade the dependence on ϕ0 in B(ϕ0) with a dependence on R which,
contrary to ϕ0, is one of the boundary data, and write B ≡ B(R). As shown
in sec. 3.4, B(R) computes an appropriately defined entanglement entropy.

Going back to the computation of the free energy, using (3.2.8) the second
term in (3.2.7) becomes:

2

d

∫ IR

UV

dϕS−1(ϕ)T−
d
2

+1(ϕ) = −
[
T−

d
2

+1(ϕ)U(ϕ)
]

IR
+
[
T−

d
2

+1(ϕ)U(ϕ)
]

UV
.

(3.2.12)

3To avoid confusion, in eq. (3.2.8) we denote the differential symbol by d, while the
number of (boundary) space-time dimensions is written as d. In the remainder of this
analysis there is little danger of confusion and so we revert to using d for both differentials
and the number of dimensions.
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One can check that the contribution from the IR to the above expression
vanishes, by inserting the corresponding near-IR expansions for T (ϕ) and
U(ϕ) given in (2.5.10) and (3.2.11). This is ensured by the regularity con-
ditions on U(ϕ) at the IR end-point.4 Collecting all results, we arrive at an
expression for F which is purely a UV boundary term:

F = −Md−1Ω̃d

([
T−

d
2 (ϕε)W (ϕε)

]
+
[
T−

d
2

+1(ϕε)U(ϕε)
])

. (3.2.13)

In the following, we will write the divergent terms in (3.2.13) explicitly.
To this end, we introduce an energy cutoff λε which is defined as

λε =
eA(uε)

`
. (3.2.14)

Furthermore, we introduce the quantities γεµν and ϕε−, which correspond to
the sources for the metric and the dilaton at the cutoff-surface at uε. These
are defined as:

γµν(uε) = γεµν `
2 λ2

ε , ϕε = ϕε− λ
−∆−
ε , (3.2.15)

where the induced metric γµν(u) is given in (2.1.3). Note that with our
definition of the cutoff (3.2.14) the source metric at the cutoff-surface γεµν is
identical to the UV boundary metric ζµν :

γεµν = γµν(uε) `
−2λ−2

ε = ζµν e
2A(uε) e−2A(uε) = ζµν . (3.2.16)

In contrast, for finite ε the cutoff-source ϕε− departs from the UV source ϕ−,
and only reduce to it for ε→ 0:

lim
ε→0

ϕε− = ϕ− . (3.2.17)

As γεµν = ζµν the scalar curvature associated with the cutoff metric is just the
UV curvature R. However, it will be useful to also define the corresponding
dimensionless curvature Rε in units of the cutoff source ϕε− as

Rε ≡ R |ϕε−|−2/∆− , which satisfies lim
ε→0
Rε = R . (3.2.18)

4 While for W IR regularity is a necessary condition for the regularity of the bulk
solution, the regularity of U is a choice, but a particularly convenient one as it allows to
write the free energy purely as a UV boundary term. Any other choice of the integration
constant in the U -equation would have given the same numerical result for F , but this
would arise by a combination of UV and IR terms [34]. This goes against the spirit of
holography, in which one should be able to write the field theory partition function purely
in terms of UV boundary data.
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Similarly, we define a dimensionless cutoff Λε as

Λε ≡
λε

|ϕε−|1/∆−
=

eA(` log ε)

` |ϕε−|1/∆−
, (3.2.19)

i.e. Λε corresponds to the energy cutoff λε in units of the cutoff source ϕε−. It
is important to note that the quantities ϕε− and λε (rather than ϕ− and ζµν)
are the correct set of covariant boundary data one should fix in the cut-off
gravitational theory, i.e. they fix the induced metric and the value of the
scalar field at the cutoff surface. It is therefore natural to write the cutoff
free energy in terms of these quantities.

We are now in a position to enumerate the divergent terms in (3.2.13)
explicitly. As a first step we insert the near-boundary expansions for W (ϕ)
and U(ϕ). Further, noting that T (ϕ) = R(γ)(ϕ) the free energy in (3.2.13)
becomes:

F = −Md−1Ω̃d

{ (
R(γ)(ϕε)

)− d
2

[
2(d− 1)

`
+

∆−
2`
ϕ2
ε +

C

`
|ϕε|d/∆− + . . .

]
(3.2.20)

+
(
R(γ)(ϕε)

)− d
2

+1
[

`

d− 2
+B`|ϕε|

(d−2)
∆− + . . .

]
+O

(
`3
(
R(γ)(ϕε)

)− d
2

+2
)}

.

This can then be written as an expansion in terms of Λε and Rε as follows.
From our above definitions we have that

R(γ)(ϕε) = `−2RεΛ
−2
ε (3.2.21)

|ϕε| = Λ−∆−
ε . (3.2.22)

Inserting this into (3.2.20) we can write the free energy as a double expansion
in Rε and Λε.

As the structure of the UV-divergent terms depends on the number of
dimensions d, it is easiest to give results for a specific value for d. Therefore,
in the remainder of this section we turn to our main case of interest and work
with d = 3.
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The unrenormalized free energy in d = 3

Starting with (3.2.20) and using (3.2.21) and (3.2.22) we find the following
result for d = 3:

F d=3(Λε,Rε) = −(M`)2Ω̃3

{
R−3/2
ε

[
4Λ3

ε

(
1 +O

(
Λ−2∆−
ε

))
+ C(Rε)

]
(3.2.23)

+R−1/2
ε

[
Λε

(
1 +O

(
Λ−2∆−
ε

))
+B(Rε)

]
+O

(
R1/2
ε Λ−1

ε

)}
.

We can then make the following observations:

• There is a leading divergence of the form ∼ Λ3
ε and a subleading diver-

gence ∼ Λε. Depending on the precise value of ∆− there may be many
further divergent terms. However, all UV-divergent terms either come
with a curvature factor R−3/2

ε or R−1/2
ε . Moreover, the integration con-

stants B(Rε) and C(Rε) only contribute finite terms. This observation
will be important later. It is a manifestation of the well-known fact
in holographic renormalization that UV divergences are universal and
vevs only contribute to finite terms in the on-shell action.

• The most important part of F as far as the F -theorem is concerned is
what we will refer to as the ‘universal contribution’. This is the Λε-
independent piece of (3.2.23), in the limit that the cutoff is taken to
infinity:

F d=3
univ = lim

ε→0

[
− (M`)2Ω̃3

(
R−3/2
ε C(Rε) +R−1/2

ε B(Rε)
)]

= −(M`)2Ω̃3

(
R−3/2C(R) +R−1/2B(R)

)
. (3.2.24)

This depends on the boundary parameter R and on the (curvature-
dependent) parameters C(R) and B(R), which in turn are related to
the following field theoretic quantities: C(R) is related to a vev in
standard quantisation:

C(R) =
∆−
d
〈O〉|ϕ−|

−∆+
∆− , (3.2.25)

while B(R) computes an appropriately defined entanglement entropy
(see sec. 3.4). In addition, for R → 0 one can show (see app. J.2) that



70 CHAPTER 3. F-FUNCTIONS FROM HOLOGRAPHY

B(R) is related to a derivative with respect to curvature of the vev 〈O〉
as:

B(R)
∣∣
R=0

= 2
∂C(R)

∂R

∣∣∣∣
R=0

=
2∆−
d
|ϕ−|

−∆+−2

∆−
∂

∂R
〈O〉

∣∣∣∣
R=0

, (3.2.26)

where the last equality holds for fixed ϕ−.

3.2.2 The renormalized free energy

The universal contribution to the free energy written in equation (3.2.24) can
be affected by finite local counterterms. Therefore, to obtain the finite part
of the free energy in a systematic and unambiguous way, we need to resort
to holographic renormalization.

In holographic renormalization of a general dilaton-gravity theory, the
counterterms can be conveniently organised in terms of curvature invariants
associated with the induced metric γµν , multiplied by suitable functions of
the scalar field [30]. The intrinsic curvature appears up to a maximum power
of d/2 (plus logarithmic contributions associated to anomalies) for d even and
(d− 1)/2 for d odd. For example, the first two counterterms are given by

F
(0)
ct = Md−1

∫
UV

ddx
√
|γ|Wct(ϕ) , (3.2.27)

F
(1)
ct = Md−1

∫
UV

ddx
√
|γ|R(γ)Uct(ϕ) , (3.2.28)

...

and these are all the counterterms needed in d = 3. The functions Wct and
Uct satisfy the equations5

d

4(d− 1)
W 2
ct −

1

2

(
W ′
ct

)2
= −V , (3.2.29)

W ′
ct U

′
ct −

d− 2

2(d− 1)
Wct Uct = −1 . (3.2.30)

These are equivalent to the “flat” superpotential equation with T = 0 and
to (a rescaled version of) the “flat” U -equation (3.2.9) with S(ϕ) replaced
by W ′. Therefore they track the flat space holographic RG flow.

As we will be exclusively interested in the case d = 3 in this chapter, the
two counterterms (3.2.27) and (3.2.28) are sufficient and we hence refrain

5The eq. (3.2.29) for Wct is equivalent to the EOM for W in the case R = 0.
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from giving explicit expressions of counterterms at higher orders in R(γ), but
they can be found in [30].

Equations (3.2.29) and (3.2.30) determine the functions Wct and Uct up to
two integration constants, which we call Cct and Bct, respectively and which
we can choose at will. A particular choice of these constants corresponds
to a choice of renormalization scheme. It will also be useful to record the
expansion of the functions Wct and Uct in the vicinity of the UV boundary.
In particular, close to a UV fixed point at ϕ = 0 the functions Wct and Uct
can be expanded in powers of ϕ as follows, [81, 82, 40]:

W0,ct(ϕ) =
2(d− 1)

`
+

∆−
2`
ϕ2 +

Cct
`
|ϕ|d/∆− + . . . , (3.2.31)

Uct(ϕ) =
`

d− 2
+ `Bct |ϕ|(d−2)/∆− + . . . , (3.2.32)

where Cct and Bct now appear explicitly.
The renormalized free energy is then given by the free energy (3.2.13)

with all necessary counterterms added. For d = 3 this gives

F d=3,ren(R|Bct, Cct) = lim
Λε→∞

[
F d=3(Λε,Rε) + F

(0)
ct + F

(1)
ct

]
. (3.2.33)

where we explicitly emphasised the fact that the dependence on Λε has been
traded with a dependence on counterterms.

Renormalized free energy for d = 3

As a first step, it will be convenient to rewrite the counterterms (3.2.27) and
(3.2.28) as follows. Using the fact that

R(γ) = T , and
√
−γ = Rd/2T−d/2

√
−ζ , (3.2.34)

the counterterms become

F
(0)
ct = Md−1Ω̃d

[
T−

d
2 (ϕ)Wct(ϕ)

]
UV
, (3.2.35)

F
(1)
ct = Md−1Ω̃d

[
T−

d
2

+1(ϕ)Uct(ϕ)
]

UV
, (3.2.36)

where Ω̃d is defined in (3.2.6). Using this we find the following expression for
the renormalized free energy in d = 3:

F d=3,ren = −M2
p Ω̃3

([
T−

3
2 (ϕ)

(
W (ϕ)−Wct(ϕ)

)]
UV

+
[
T−

1
2 (ϕ)

(
U(ϕ)− Uct(ϕ)

)]
UV

)
.

(3.2.37)
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Inserting the expressions for the UV expansions for T , W , Wct, U and Uct
from (2.4.4), (2.4.2), (3.2.31), (3.2.10), (3.2.32) we finally arrive at

F d=3,ren(R|Bct, Cct) = −(M`)2Ω̃3

[
R−3/2

(
C(R)− Cct

)
+R−1/2

(
B(R)−Bct

)]
.

(3.2.38)

This now shows the explicit dependence of the free energy on the two renor-
malization constants Cct and Bct.

3.2.3 Expressions at small and large curvature

We begin by collecting the results from the previous sections. There we
presented expressions for the free energy on S3. In particular, we have the
following expressions for the cutoff-regulated and renormalized quantities:

F (Λε,Rε) = −(M`)2Ω̃3

{
R−3/2
ε

[
4Λ3

ε

(
1 +O

(
Λ−2∆−
ε

)
+ C(Rε)

)]
(3.2.39)

+R−1/2
ε

[
Λε

(
1 +O

(
Λ−2∆−
ε

)
+B(Rε)

)]
+O

(
R1/2
ε Λ−1

ε

)}
,

F ren(R|Bct, Cct) = −(M`)2Ω̃3

[
R−3/2

(
C(R)− Cct

)
+R−1/2

(
B(R)−Bct

)]
,

(3.2.40)

where we now suppress the superscript d = 3 to remove clutter.

Generally, we will have to revert to numerical methods to evaluate these
quantities. However, for both large and small curvature we can make ana-
lytical progress. In particular, as shown in appendix H, we can extract the
behaviour of C(R) and B(R) analytically for R →∞ and R → 0. It is these
functions that determine the R-dependence of the renormalized free energy
F ren, the universal contribution Funiv to the cutoff-regulated free energy, and
ultimately our candidate F -functions.

Hence, in this section we will summarise the results for C(R) and B(R)
in the regimes R → ∞ and R → 0 obtained in appendix H, and determine
the resulting expressions for F ren. The corresponding expressions for Funiv

can be computed analogously from (3.2.24).
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Large curvature results: R →∞

From the calculations in Appendix H.1 we obtain:

C(R) =
R→∞

O
(
R3/2−∆−

)
, B(R) =

R→∞
−8π2Ω̃−2

3 R1/2
(
1 +O

(
R−∆−

))
.

(3.2.41)

Inserting this into equation (3.2.39)–(3.2.40) we obtain the corresponding
large-curvature asymptotics for the free energy. To be brief, we give explicit
expressions for the renormalized quantities only. Therefore, for R → ∞ we
obtain:

F ren =
R→∞

(M`)2
(

8π2 + Ω̃3BctR−1/2 + Ω̃3CctR−3/2 +O(R−∆−)
)
.

(3.2.42)

Therefore, F ren is finite for R →∞ approaching the value 8π2(M`)2.
We identify this value as the free energy (or central charge) of the UV

CFT. The reason is as follows. For fixed R taking R → ∞ corresponds
to the limit of vanishing source, i.e. |ϕ−| → 0. Hence the value of the
(renormalized) free energy obtained for R → ∞ can be identified with that
of the corresponding CFT.

The above observation gives rise to the following general result. For a
CFT associated with an extremum of the potential at ϕCFT the (renormal-
ized) free energy is given by

FCFT = 8π2(M`CFT)2 , with `2
CFT ≡ −

6

V (ϕCFT)
. (3.2.43)

This is valid regardless whether the extremum is a maximum or a minimum
of the potential. Also note that the renormalized value of the free energy of
a CFT is unambiguous, i.e. there is no scheme-dependence.

Small curvature expansion: R → 0

From the analysis in appendix H.2 one finds:

C(R) =
R→0

C0 + C1R+O
(
R2
)

+O
(
R3/2−∆IR

−
)
, (3.2.44)

B(R) =
R→0

B0

(
1 +O

(
R
))
− 8π2Ω̃−2

3

`2
IR

`2
R1/2

(
1 +O

(
R−∆IR

−
))

, (3.2.45)

where we have defined

`2
IR ≡ −

d(d− 1)

V (ϕIR)
, ∆IR

− =
1

2
(d−

√
d2 + 4`2

IRV
′′(ϕIR)) , (3.2.46)
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where ϕIR is the minimum of the potential. Note that ∆IR
− < 0 since

V ′′(ϕIR) > 0.
The quantities C0, B0 and C1 appearing in equations (3.2.44)–(3.2.45)

are numerical coefficients. The quantity C0 is the flat-space value of the vev
〈O〉 and C1 is the coefficient of the first curvature correction to 〈O〉. The
coefficient B0 corresponds to the flat-space limit of an appropriately defined
entanglement entropy (see sec. 3.4).6

This leads to the following expression for the renormalized free energy:

F ren =
R→0
−(M`)2Ω̃3

(
C0 − Cct

)
R−3/2 − (M`)2Ω̃3

(
B0 + C1 −Bct

)
R−1/2

(3.2.47)

+ 8π2(M`IR)2 +O(R−∆IR
− ) +O(R1/2) .

Note that in general F ren diverges for R → 0. The leading divergence is of
the form R−3/2 and it can be understood as a volume divergence. This is the
statement that the free energy is an extensive quantity and grows with the
volume of the S3, i.e. Vol(S3) ∼ R−3/2 for fixed ϕ−. The same IR divergence
also occurs in the unrenormalized quantity F (Λε,Rε). The coefficient of that
divergence is the free-energy density of the flat theory.

In addition to the divergent terms, the expression (3.2.47) also exhibits a
finite contribution. From (3.2.43) we identify this term as the central charge
of the IR CFT associated with the IR fixed point at the minimum of the
potential. Interestingly, while this central charge is a property of the IR
CFT only, here it emerges from the free energy of a holographic RG flow
solution from the UV fixed point to this IR.

These observations suggest that we may be able to construct F -functions
(depending on R) out of the free energy, which interpolate between the cen-
tral charges of the UV and IR CFTs, if we can isolate a quantity which
generalises the finite contribution also away from the fixed points. This is
what we will propose in the next section.

3.3 Constructing F -functions from the free

energy

Having collected all the necessary ingredients, we can finally turn to con-
structing candidate F -functions. We start with a definition of the F -theorem.

6In fact, for our setup one finds that B0 = 2C1, This follows from a thermodynamic
relation between the free energy on S3 and an appropriately defined entanglement entropy
and will be explained in sec. 3.4 and app. J.2.
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We then explain how the F -theorem is related to holographic RG flows7.
Finally, using the results from section 3.2 we propose several candidate F -
functions and check their viability numerically.

3.3.1 Definitions and strategy

The F -theorem [44] is a statement about Lorentz-invariant quantum field
theories in d = 3 and their behaviour under renormalization group flow.
In its minimal form, it is concerned with properties of two conformal field
theories which are connected by an RG flow. It states that at both the UV
and IR fixed points one can define a quantity F such that

FUV ≥ FIR . (3.3.1)

A refined version demands that there exists a function F(R), with R some
parameter along the flow, which exhibits the following properties:

• At the fixed points of the flow, the function F(R) takes the values FUV

and FIR respectively.

• The function F(R) evolves monotonically along the flow, i.e.

d

dR
F(R) ≥ 0 , (3.3.2)

for a parameter R that decreases monotonically when going from UV
to IR.

• It is also expected that F(R) should be stationary at the fixed points
of the RG flow. This expectation arises from the observation that the
Zamolodchikov c-function in d = 2 is stationary at the fixed points.
However, as pointed out in [77], there exist F -function candidates that
satisfy the first two requirements (correct values in UV/IR, monotonic-
ity), but violate stationarity. We hence leave it open whether the F -
function should be stationary at the fixed points and focus on the other
two conditions in this work.

Here we will explore several candidate F -functions in a holographic setting
for a field theory on S3. We lay out our strategy in the following:

7This idea was already explored in [79]. As we will see, the key reason that work gave
a negative result lies in how infrared divergences are treated
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1. In the holographic context, the UV theory is the CFT associated with a
maximum ϕmax of the bulk potential V . The IR CFT will be associated
with a neighbouring minimum ϕmin:

CFTUV ←→ ϕ(u) = ϕUV = ϕmax = const. ,

CFTIR ←→ ϕ(u) = ϕIR = ϕmin = const. .

2. We identify the F -quantity with the renormalized free energy of the
corresponding CFT. This can be calculated as follows. Note that at an
extremum of V the bulk geometry is AdS4. The scale factor is then
given by

AUV(u) = ln

(
−`UV

α
sinh

u+ cUV

`UV

)
, with `2

UV = − 6

V (ϕUV)
(3.3.3)

for the UV CFT and associated AdS space, and

AIR(u) = ln

(
−`IR

α
sinh

u+ cIR

`IR

)
, with `2

IR = − 6

V (ϕIR)
. (3.3.4)

for the IR CFT and its associated AdS space.

The UV and IR values of the F -quantity are then given by the renor-
malized action evaluated on these solutions. From (3.2.43) it follows
that this is given by:8

FUV = 8π2(M`UV)2 , FIR = 8π2(M`IR)2 . (3.3.5)

As `UV > `IR these indeed satisfy FUV ≥ FIR.

3. It is the dimensionless curvature R which will play the role of the pa-
rameter along the flow, which we will also refer to as curvature-RG
flow to distinguish it from the holographic RG flow in u. The can-
didate F -functions will be specific functionals for a given holographic
flow solution A(u), ϕ(u). To be precise, we will consider F -functions
constructed out of the (renormalized) free energy introduced in section
3.2. As pointed out there, given a flow solution A(u), ϕ(u) with UV
data R,ϕ− these functionals only depend on the UV sources via the
dimensionless combination R. As a result, the candidate F -functions
we will consider will only depend on UV sources via R, i.e.

F(R) ≡ F
[
AR,ϕ−(u), ϕR,ϕ−(u)

]
. (3.3.6)

8Note that for a CFT the value of the on-shell action is uniquely defined, i.e. there is
no scheme-dependence. Different schemes (in d = 3) correspond to theories with different
coefficients for the finite counterterms ∼

∫
d3x
√
ζ |ϕ−|3/∆− and ∼

∫
d3x
√
ζ R |ϕ−|1/∆− .

However, for a CFT ϕ− = 0 and no such finite counterterms exist.
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4. In terms of curvature-RG flow inR, the notion of UV and IR are defined
as follows. By UV we refer to the limitR →∞. The corresponding UV
value for the F -function is the functional F evaluated on a holographic
RG flow solution A(u), ϕ(u) with end point ϕ0 → ϕUV. Moving away
from the UV corresponds to letting R decrease, which is equivalent to
evaluating F over solutions A(u), ϕ(u) with end points that successively
move away from ϕUV. The IR is defined as R → 0. The related
solutions A(u), ϕ(u) exhibit ϕ0 → ϕIR, i.e. the end point approaches
a minimum of the potential, and the corresponding value F(R) is the
functional evaluated on this solution.9

The upshot is: To calculate F(R) along the RG flow defined by R we have
to evaluate the functional F over a family of holographic RG flow solutions
whose IR end points ϕ0 move successively from ϕUV to ϕIR.

3.3.2 Candidate F -functions

In this section, we will propose several suitable candidate F -functions. The
building blocks will be both the renormalized and unrenormalized free energy,
with the relevant expressions collected in (3.2.39)–(3.2.40). Our candidate
F -functions will be constructed to satisfy two criteria:

1. Any candidate F -function has to be free of both UV and IR divergences.

2. In the UV (R → ∞) and the IR (R → 0) the F -functions should
reproduce the free energy of the corresponding UV and IR CFTs, i.e.

F(R) −→
R→∞

FUV = 8π2(M`UV)2 , (3.3.7)

F(R) −→
R→0

FIR = 8π2(M`IR)2 . (3.3.8)

We begin by examining the various divergent pieces present in the free en-
ergy. The unrenormalized free energy given in (3.2.39) exhibits UV-divergent
terms, which in terms of the dimensionless cutoff Λε defined in (3.2.19) take
the following schematic form:

Λε-dependent terms in F (Λε,Rε) : ∼ R−1/2
ε (Λε + . . .) and ∼ R−3/2

ε (Λ3
ε + . . .) .

9Note that this notion of UV and IR in terms of R → ∞ and R → 0 differs from
the usual definition of UV fixed point and IR end point for a single holographic flow
solution. For a single holographic RG flow the terms UV and IR refer to the limits
(u→ −∞, ϕ→ ϕUV) and (u→ u0, ϕ→ ϕ0), respectively.
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In addition, the unrenormalized free energy contains terms which do not
depend on Λε, but diverge when Rε → 0. These are IR divergences associ-
ated with a diverging volume of S3. The relevant terms take the following
schematic form (see app. H.2 for details):

IR-divergent terms in F (Λε,Rε) : ∼ R−1/2
ε (Bε

0 + Cε
1)
∣∣
Rε→0

and ∼ R−3/2
ε Cε

0

∣∣
Rε→0

,

with Cε
0, Bε

0 and Cε
1 numerical constants.

Alternatively, we can work with the renormalized free energy F ren. While
this is free of UV-divergences, F ren still exhibits IR divergent terms. In this
case, these are schematically given by (see (3.2.47)):

IR-divergent terms in

F ren(R|Bct, Cct) : ∼ R−1/2(B0 + C1 −Bct)
∣∣
R→0

and ∼ R−3/2(C0 − Cct)
∣∣
R→0

.

As one can observe from the above equations, both UV-divergent as well
as IR-divergent terms come with the same functional dependence on R or
Rε, collectively denoted by R(ε). That is, the problematic terms come with

a factor R−3/2
(ε) or R−1/2

(ε) . A similar observation, regarding the entanglement

entropy, has also been made for theories in flat space-time in [74]. There
it was shown that the divergent contribution to the entanglement entropy
across a scalable surface (with, say, scale a) only come with several distinct
powers of that scale a. The same holds in our case for the free energy, with
the scale a given by the curvature R. The main difference is that here the field
theory itself is defined on curved space-time with constant scalar curvature
R.

The challenge for constructing a viable F -function now is to isolate the
finite contributions to the free energy or the entanglement entropy, i.e. we
need to ensure that both UV-cutoff-dependent terms as well as the explicitly
IR-divergent terms do not enter into the F -function. There are at least two
ways of doing this:

1. For one, we can remove any contribution with curvature dependence
R−3/2

(ε) or R−1/2
(ε) by acting on F or F ren (collectively written as F (ren))

with an appropriate differential operator, similarly to what was done
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in [74]. In particular, we define10

D3/2 ≡
(

2

3
R(ε)

∂

∂R(ε)

+ 1

)
, and D1/2 ≡

(
2R(ε)

∂

∂R(ε)

+ 1

)
.

(3.3.9)

These satisfy

D3/2R−3/2
(ε) = 0 , D1/2R−1/2

(ε) = 0 , (3.3.10)

and hence remove the divergent contributions while leaving terms with
any other power of R(ε) intact.

2. By working with the renormalized quantity F ren we can guarantee the
absence of UV-divergences. The observation then is that we can re-
move the remaining IR-divergent pieces by choosing a suitable renor-
malization scheme. This amounts to an appropriate specific choice of
renormalization parameters which we will call Bct,0 and Cct,0:

Bct,0 ≡ B(0) + ∂C(R)
∂R

∣∣∣
R=0

= B0 + C1 , Cct,0 ≡ C(0) = C0 .

(3.3.11)

In order to make clear that these renormalization conditions are well-
defined in terms of the dual field theory language, we show in appendix
J.2 that this choice of renormalization conditions is equivalent to re-
quiring that certain correlation functions involving the renormalized
stress-tensor T ren

µν of the boundary theory vanish for R→ 0.

We are now in a position to propose candidate F -functions. To be spe-
cific, we begin with F -functions constructed out of the renormalized free
energy F ren. This has two IR-divergent terms, one at order R−3/2 and one
at order R−1/2. As stated above, each of these terms can be removed in two
ways, either by differentiation or with the help of counterterms. This gives
four possibilities for removing divergent pieces and we hence define the four

10That is, for a function of R these are defined in terms of derivatives with respect to
R, while for a function of Rε these act as derivatives with respect to Rε. In the cut-off
theory, taking the derivative with respect to Rε is the same as taking a derivative with
respect to R with ϕε− and the cutoff fixed. This is the correct thing to do if we want
to compare theories with different curvatures while fixing all other boundary data. In
contrast, in the renormalized theory the derivative with respect to R is what is needed to
vary the curvature at fixed ϕ−.
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divergence-free quantities F1,2,3,4(R) constructed from F ren:

F1(R) ≡ D1/2D3/2 F
ren(R|Bct, Cct) , (3.3.12)

F2(R) ≡ D1/2 F ren(R|Bct, Cct,0) , (3.3.13)

F3(R) ≡ D3/2 F
ren(R|Bct,0, Cct) , (3.3.14)

F4(R) ≡ F ren(R|Bct,0, Cct,0) . (3.3.15)

with D1/2, D3/2 defined in (3.3.9) and Bct,0, Cct,0 given in (3.3.11). As we
will check explicitly at the end of this section, for R → ∞ and R → 0 the
functions F1,2,3,4 reduce to FUV and FIR, respectively. As a result, they pass
the minimum test and are four good candidate F -functions.

An important observation is that the functions F1,2,3,4 can be written
entirely in terms of R, B(R) and C(R) (as well as the counter-terms). In
particular, inserting (3.2.40) into (3.3.12)–(3.3.12) one obtains

F1(R) = −(M`)2 Ω̃3
4

3
R1/2

(
2B′ + C ′′ +RB′′

)
, (3.3.16)

F2(R) = −(M`)2 Ω̃3 2R−3/2
(
− (C − Cct,0) +RC ′ +R2B′

)
, (3.3.17)

F3(R) = −(M`)2 Ω̃3
2

3
R−1/2

(
(B + C ′ −Bct,0) +RB′

)
, (3.3.18)

F4(R) = −(M`)2 Ω̃3 R−3/2
(

(C − Cct,0) +R(B −Bct,0)
)
, (3.3.19)

where Ω̃3 is defined in (3.2.6). Here we suppressed the argument of B(R)
and C(R) to reduce clutter and ′ refers to a derivative with respect to R.

Similarly, we can start with the unrenormalized free energy F (Λε,Rε).

This again has divergent terms at order R−3/2
ε and R−1/2

ε . Here, from the
various options for cancelling these terms, we can only apply the method
involving differentiation. However, one can check that this does not give rise
to a new F -function. Applying the derivatives D3/2 and D1/2 to (3.2.23) and
subsequently taking the cutoff to infinity one finds:

lim
Λε→∞

D1/2D3/2 F (Λε,Rε) = lim
Λε→∞

[
− (M`)2Ω̃3

4

3
R1/2
ε

(
2B′(Rε) + C ′′(Rε) +RεB

′′(Rε)
)]

= −(M`)2 Ω̃3
4

3
R1/2

(
2B′(R) + C ′′(R) +RB′′(R)

)
= F1(R) . (3.3.20)

As a result, the functions F1,2,3,4 defined in (3.3.12)–(3.3.15) exhaust the
possibilities for candidate F -functions that can be constructed directly from
the free energy on S3 by the procedures mentioned above.
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One can show explicitly that all our candidate F -functions reduce to FUV

and FIR in the UV (R → ∞) and IR (R → 0), respectively. For example,
using the results in sec. 3.2.3 we find the following behaviour for R →∞:

F1(R) =
R→∞

FUV +O(R−∆−) , (3.3.21)

F2(R) =
R→∞

FUV +O(R−∆−) + (M`UV)2Ω̃3Cct,0R−3/2 , (3.3.22)

F3(R) =
R→∞

FUV +O(R−∆−) + (M`UV)2Ω̃3Bct,0R−1/2 , (3.3.23)

F4(R) =
R→∞

FUV +O(R−∆−) + (M`UV)2Ω̃3Bct,0R−1/2 + (M`UV)2Ω̃3Cct,0R−3/2 ,

(3.3.24)

We can also make another observation. From the above it follows that
all our candidate F -functions are also stationary in the UV, i.e. they obey
∂RFi|R→∞ = 0.

Similarly, using the results in sec. 3.2.3 the F -functions behave for R → 0
as

Fi(R) =
R→0

FIR +O(R−∆IR
− ) +O(R1/2) , i = 1 . . . 4 . (3.3.25)

Finally, we need to check whether our functions Fi(R) decrease mono-
tonically with RG flow. Only if this is the case we can declare success and
present them as good F -functions. In section (3.3.4) we will test our pro-
posal numerically on some simple but generic examples and show that all
the proposed F -functions are indeed monotonic. This lends support to our
proposal, and further tests (and eventually a proof) will be left for future
work.

3.3.3 An F -function from holographic RG flow in flat
space-time

Before testing our proposal on examples, in this section we will review a
different type of F -function which arises from holographic RG flow in flat
space-time. This was originally constructed by Liu and Mezei [74] starting
from the entanglement entropy across a spherical region in flat space.

The construction is as follows. We consider a ball of radius α in a flat
space-time quantum field theory, and compute the entanglement entropy be-
tween the points inside the ball and those outside the ball, which we will de-
note by SFEE(α) This quantity is both UV divergent and, once UV-regulated,
has a large-volume divergence as α → ∞, just like the free energy we have
been studying in this section. Liu and Mezei proposed as an F -function the
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z
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   surface

Minimal

surface

z0

Figure 3.1: Cartoon of the minimal surface to compute the entanglement en-
tropy in flat space. The coordinate z is the holographic direction in conformal
coordinates.

“Renormalized entanglement entropy” (REE), which we will denote by F0,
and which is defined as

F0(α) =

(
α
d

dα
− 1

)
SFEE(α) , (3.3.26)

It was subsequently proven to be a good F -function in [75], i.e. it interpolates
monotonically between the values of the CFT central charge at the end-points
of the flat-space RG flow.

In a field theory with a holographic dual, the entanglement entropy across
a region of space is computed via the Ryu-Takayanagi prescription [83]: one
picks a (d − 2)-dimensional surface on the AdS boundary which coincides
with the entangling surface and extends it to a geodesic (d− 1)-dimensional
surface in the bulk. The entanglement entropy is then computed in terms of
the minimal surface area A by

SFEE(α) = A/4Gd+1 , (3.3.27)

where Gd+1 is Newton’s constant in (d+ 1) dimensions.
In the case we are discussing, for d = 3, the entangling surface is a

circle of radius α, and the situation is described schematically in Figure 3.1.
The details of the calculation are given in Appendix I. Notice that for this
calculation we consider the vacuum, flat-space RG flow theory, whose metric
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is (here it is convenient to use conformal coordinates),

ds2 = ρ(z)
(
dz2 + ηµνdx

µdxν
)
. (3.3.28)

where ρ(z) is related to the scale factor introduced in (2.1.1) as ρ(z) = eA(u(z)).
To calculate the minimal surface A we need to choose a solution ρ(z)

relevant to the problem at hand. Here this is ρ(z) = eAflat(u(z)) where Aflat(u)
is a holographic RG flow solution for a field theory in flat space-time. The
minimal surface area is then calculated as

A = 2π

∫ z0

ε

dz a2(z)r(z)
√

1 + (r′(z))2, (3.3.29)

where r(z) describes the embedding of the Ryu-Takayanagi minimal surface,
and z0 is the point where the latter smoothly caps-off. The geodesic equation
and regularity conditions for r(z) are described in appendix I. The entangle-
ment entropy SFEE then follows from (3.3.27).

As in the case of the on-shell action studied in sec. 3.2 we find that in
holography the entanglement entropy SFEE is a function of the dimensionless
combination R = R|ϕ−|−2/∆− . Then the REE can be written as

F0(R) = −D1/2SFEE(R) . (3.3.30)

where D1/2 is the differential operator defined in eq. (3.3.9).
As with the other F -functions, the REE of Liu and Mezei (3.3.30) can be

computed numerically in specific examples. A numerical comparison between
our candidate F -functions and F0 will be performed in the next section.

3.3.4 Numerical tests of monotonicity

To test our proposal, in this section we will evaluate the candidate F -
functions Fi(R) with i = 1, 2, . . . 4 for a set of example RG flows. In our
holographic setting this amounts to choosing a dilaton potential. Here we
will work with the potential:

V (ϕ) = − 6

`2
UV

− ∆−(3−∆−)

2`2
UV

ϕ2 +
λ

`2
UV

ϕ4 . (3.3.31)

This potential has a maximum at ϕUV = 0 and a minimum at ϕIR =√
∆−(3−∆−)

4λ
. We can also define a quantity `IR as in (3.2.46) which by defi-

nition satisfies `IR < `UV. For definiteness, in the following we will set

`2
IR = b `2

UV with b = 0.9 , (3.3.32)
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Figure 3.2: F -functions F1,2,3,4 defined in (3.3.12)–(3.3.15) and Liu-Mezei
F -function F0 (i.e. the REE of [74]) vs. log(R) for a holographic model with
dilaton potential (3.3.31) and ∆− = 1.2.

which we can do by choosing

λ =
∆2
−(3−∆−)2 b

96(1− b)
. (3.3.33)

Then, in the following, we will also set M`UV = 1. With this potential we
can vary the dimensions of perturbing operators and therefore we can check
various different flows.

To construct solutions, and compute the corresponding on-shell action,
in the whole range of R we proceed as follows. We pick a value ϕ0 with
ϕmax < ϕ0 < ϕmin and solve equations (2.2.7), (2.2.8) and (3.2.9) subject
to the boundary conditions (2.5.11) and (3.2.11) to obtain a solution for the
functionsW (ϕ), S(ϕ) and U(ϕ). From the near-boundary (i.e. ϕ→ ϕUV = 0)
behaviour of W (ϕ), S(ϕ) and U(ϕ) we can then extract the corresponding
values of R0, C(R0) and B(R0), respectively.11 By varying the end point ϕ0

from ϕUV to ϕIR and repeating the analysis we can hence extract C(R) and
B(R) as functions of R. This is summarised schematically below:

Choose a value for ϕ0 −→ W (ϕ), S(ϕ), U(ϕ) −→ choose new value for ϕ0 −→ . . .

↓ ↓ ↓
R0 C(R0) B(R0)

Once we have C(R) and B(R) as functions of R we can determine the

11See (2.4.2), (2.4.3) and (3.2.10) for the near-boundary expansions of W (ϕ), S(ϕ) and
U(ϕ), respectively.
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Figure 3.3: F1 vs. log(R) for a holographic model with dilaton potential
(3.3.31) and ∆− = 0.9 (dark blue), 1.1, (light blue), 1.2 (blue) and 1.3
(cyan).

counterterms Bct,0 and Cct,0 from (3.3.11). Finally, using (3.3.16)–(3.3.19)
we can compute the functions Fi(R).

In figure 3.2 we plot F1,2,3,4 vs. log(R) for the potential (3.3.31) with
∆− = 1.2. For comparison, we also display the Liu-Mezei F -function [74]
labelled by F0(R) and given in (3.3.30) for a flat-space RG flow in the same
potential (3.3.31) with ∆− = 1.2.12 We make the following observations.

• In the UV (R → ∞) all four candidate F -functions asymptote to
FUV = 8π2(M`UV)2 as expected. Similarly, in the IR (R → 0) all
four candidate F -functions approach FIR = 8π2(M`IR)2.

• Most importantly, all four candidate F -functions interpolate monoton-
ically between FUV and FIR, that is we observe

∂Fi(R)

∂R
≥ 0 , i = 1, 2, 3, 4 . (3.3.34)

Hence every one of F1,2,3,4 is a good F -function.

• We can also understand the qualitative differences between the plots
for F1,2,3,4. By equations (3.3.21)–(3.3.24), for ∆− = 1.2 the functions
F1,2 behave as F1,2 = FUV +O(R−1.2) for large R, while F3,4 behave as
F3,4 = FUV+O(R−0.5). As a result, we expect F3,4 to fall off faster than
F1,2 when decreasing R. This is exactly what we observe in fig. 3.2.

12In the case of F0(R), the quantity R refers to the curvature of the spherical entangling
surface in units of ϕ− and not the curvature of the background space-time, which is flat
in this case.
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• The REE of Liu and Mezei F0(R) is also a good F -function, interpo-
lating monotonically between FUV and FIR. Note, however, that it does
not coincide with any of our F -functions F1,2,3,4(R), which are mani-
festly different as functions of R. In other words, the formulation of
the F -function in d = 3 in terms of a flat-space entanglement entropy
across a ball with radius α and in terms of the free energy on S3 with
radius α differ as functions of α.

These observations persist beyond the example with ∆− = 1.2. In figure
3.3 we plot F1 vs. log(R) for a holographic model with dilaton potential
(3.3.31) and ∆− = 0.9, 1.1, 1.2 1.3. In all cases F1(R) is a good F -function,
interpolating monotonically between FUV and FIR. The same is true for
F2,3,4, but we refrain from plotting the results explicitly.

3.3.5 Alternative quantisation and the effective poten-
tial as an F -function

So far we have worked with holographic theories in what we referred to
as ‘standard quantisation’. That is, we identified the dimension ∆ of the
operator O perturbing the UV CFT with ∆+. By doing so we restricted our
analysis to (in d = 3)

3

2
< ∆ < 3 . (3.3.35)

For such theories we found four potentially good F -functions F1,2,3,4(R),
which can be constructed from the free energy on S3. The parameter along
the RG flow is R, which is the value of the curvature R of the background
space-time of the field theory in units of the operator source ϕ−.

The question then arises, how the F -theorem is realised for theories per-
turbed by an operator O with dimension ∆ < 3/2. In particular, how can
one define good F -functions for such theories? We can answer this question
by switching to ‘alternative quantisation’. This amounts to identifying the
dimension ∆ of O with ∆−. In general dimension d, this possibility exists
in the range d/2 − 1 < ∆− < d/2. In this range, using the identification
∆ = ∆− we can cover the region

1

2
< ∆ <

3

2
. (3.3.36)

The main point to note is that by swapping the scheme of quantisation
none of the calculations and expressions we obtained so far are changed in
any way. All that changes is the interpretation of the various expressions. As
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we will argue presently, the functions F1,2,3,4(R) defined in (3.3.12)–(3.3.15)
will still be good F -functions for ∆ < 3/2. However, the interpretation in
terms of field theory quantities will change when swapping the quantisation
scheme.

For one, in alternative quantisation ϕ− is identified with the vev of O
and hence R = R |ϕ−|−2/∆− is now the boundary curvature in units of the
operator vev. It is this quantity which is now the parameter describing the
RG flow.

Secondly, note that while in (3.3.12)–(3.3.15) the functions F1,2,3,4(R)
were constructed from what we referred to as the free energy F (ren), this
language was tacitly assuming standard quantisation (as we have specified
at the beginning of section 3.2). In fact, the functions F1,2,3,4(R) can also be
defined in the more general terms of the Euclidean on-shell action,

F1(R) ≡ D1/2D3/2 S
ren
on-shell,E(R|Bct, Cct) , (3.3.37)

F2(R) ≡ D1/2 Sren
on-shell,E(R|Bct, Cct,0) , (3.3.38)

F3(R) ≡ D3/2 S
ren
on-shell,E(R|Bct,0, Cct) , (3.3.39)

F4(R) ≡ Sren
on-shell,E(R|Bct,0, Cct,0) . (3.3.40)

This does not require a distinction between standard and alternative quan-
tisation.

In standard quantisation one has S
(ren)
on-shell,E = F (ren) and (3.3.37)–(3.3.40)

reduce to (3.3.12)–(3.3.15).
In alternative quantisation the on-shell action corresponds to the quan-

tum effective potential Γren, i.e. the Legendre transform of the free energy.
To illustrate this, we momentarily separate R into R and ϕ−. Then, in
alternative quantisation, one has

Sren
on-shell,E(R,ϕ−) = Γren(R,ϕ−) , (3.3.41)

with Γren a function of R and the vev ϕ−. The free energy is denoted by
F ren(R, j), where j is the source. This is then related to Γren(R,ϕ−) as

Γren(R,ϕ−) = F ren
(
R, j(ϕ−)

)
−
∫
d3x
√
γ(0) j(ϕ−)ϕ− , (3.3.42)

where j(ϕ−) is defined by

δF (R, j)

δj

∣∣∣∣
j(ϕ−)

− ϕ− = 0 . (3.3.43)

The key observation is that the functions defined in (3.3.37)–(3.3.40) are
good F -functions (in the examples we considered in the previous section),
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regardless what quantisation is chosen. In standard quantisation they corre-
spond to F -functions for theories where the perturbing operator has dimen-
sion 3

2
< ∆ < 3. Using alternative quantisation, the same expressions now

give F -functions for theories where the perturbing operator has dimension
1
2
< ∆ < 3

2
.

This for example implies that the F -functions (F1,F2,F3,F4) for ∆− =
1.2 plotted in fig 3.2 have two interpretations. Using standard quantisation,
they can be understood as F -functions for a theory with ∆ = 3−∆− = 1.8
with the parameter R the curvature in units of the source. Using alternative
quantisation they become F -functions for a theory with ∆ = ∆− = 1.2 with
R the curvature in units of the vev.

There is another interesting consequence of the observations in this sec-
tion. Our results imply that, depending on the operator dimension ∆, we
have to construct F -functions differently in terms of field-theoretic quanti-
ties. In particular, our findings suggest that for ∆ > 3/2 it is the free energy
F that acts as a F -functions while for ∆ < 3/2 it is the quantum effective
potential Γ that should be used. In section 3.5.2 we will find that this indeed
solves long-standing puzzles regarding the F -theorem for the free massive
boson.

3.4 De Sitter entanglement entropy and the

F -theorem

In this section we make the connection between the quantities introduced so
far (namely the various versions of the UV-finite free energy) and the en-
tanglement entropy across a spherical surface in de Sitter space. The latter
quantity has been discussed earlier in field theoretical context [80] as well
as in holography [67, 84]. Here, both the free energy and the entanglement
entropy are determined as functionals of corresponding holographic RG flows
for theories in curved space-time. In this setting we will observe that the de
Sitter entanglement entropy corresponds to one of the contributions to the
free energy. In the de Sitter static patch, this relation translates into the
relation between free energy and the thermodynamic entropy, computed by
the area law. This is very interesting as it suggests that standard QFT on
a fixed de Sitter background, and non-dynamical gravity satisfy thermody-
namics equations that relate the on-shell action to the entanglement entropy.

As it was observed in [80], starting from the (unrenormalized) entangle-
ment entropy and performing a similar subtraction as the one proposed by
Liu and Mezei in flat space, one can in principle obtain new candidate F -
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functions. We will show that the resulting F -functions are already part of
the set we defined in section 3.3.2.

3.4.1 Entanglement entropy for a spherical surface in
de Sitter space

Here we derive an expression for the entanglement entropy across a spher-
ically symmetric surface for a theory in dSd. While we will be once more
mainly interested in expressions for d = 3, we will work in general d when
possible. In a holographic setup, this amounts to computing the holographic
entanglement entropy across a (d − 2)-dimensional spherical surface on the
dSd boundary of our (d+ 1)-dimensional space-time.

To this end, consider our metric ansatz (2.1.1) for a field theory on dSd
with the following choice of (global) coordinates on dSd:

ds2 = du2 + e2A(u)
[
−dt2 + α2 cosh2(t/α)

(
dθ2 + sin2 θdΩ2

d−2

)]
(3.4.1)

where dΩ2
d−2 is the metric on a (d − 2)-dimensional unit sphere. In global

coordinates the de Sitter metric describes a Sd−1 that starts infinite in the
infinite past, decreases size until a minimum size of the order of the de Sitter
curvature, and then increases again and becomes of infinite size in the infinite
future.

We now wish to calculate the static entanglement entropy for an entan-
gling surface on the boundary QFT given by θ|u→−∞ = π

2
and t = 0. This

splits the spatial Sd−1 into the two hemispheres that touch at the entangling
surface that is the equator (which is a Sd−2).

To calculate this in our holographic setting, we use the prescription of
Ryu and Takayanagi [83]. We hence need to find the minimal surface in the
bulk which has the entangling surface as the boundary. The entanglement
entropy is then given by

SEE =
γ

4Gd+1

(3.4.2)

where γ is the area of the minimal surface whose boundary is the entangling
surface at u→ −∞, and Gd+1 is Newton’s constant in (d+ 1) dimensions.

In the Euclidean signature of the calculation, the t = 0 slice is the Sd−1

corresponding to the equator of the Sd slice. The entangling surface is then
an Sd−2 at fixed θ = π/2, dividing the Sd−1 in two halves. One can show (see
app. G) that the minimal Ryu-Takayanagi surface is described by the curve
θ(u) = π/2. The geometric setup is shown in figure 3.4 (for d = 3 and fixed
t).
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Entangling surface: Sd−2

minimal surface

Figure 3.4: Sketch of the minimal surface which has the spherical surface
θ = π/2 as its boundary.

The detailed calculation is presented in appendix G and here we just
quote the result, which can also be found in [84]:

SEE = Md−1 2R

d
Vd

∫ IR

UV

du e(d−2)A(u) , (3.4.3)

where Vd is the volume of the d-dimensional sphere of radius α.
We can now make the following observation. The expression (3.4.3) for

the entanglement entropy is identical to the 2nd term of the free energy
(3.2.3). As a result, we find that here the entanglement entropy SEE is
related to the free energy F on Sd as

SEE = 2(d− 1)Md−1
p Vd

[
edAȦ

]
UV
− F . (3.4.4)

We will exploit this connection frequently in the following. We can also
show that, just as F , the entanglement entropy SEE only depends on the UV
curvature R only through the dimensionless combination R.

3.4.2 Thermal interpretation

Equation (3.4.4) is suggestive that there should be a thermal interpretation
to the entanglement entropy, and that the first term on the right hand side
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should have the interpretation of an internal energy, to reproduce a relation
of the form13

S = βUth − βFth (3.4.5)

for some appropriate definition of the inverse temperature β and internal
energy Uth.

In fact, as shown in [67], the thermal interpretation becomes manifest if
we go to the static patch of the de Sitter slice, by a coordinate transformation
which does not involve the radial coordinate. Writing the d-dimensional de
Sitter slices in static coordinates, the bulk metric reads

ds2 = du2 + e2A(u)

[
−
(

1− r2

α2

)
dτ 2 +

(
1− r2

α2

)−1

dr2 + r2dΩ2
d−2

]
.

(3.4.6)
where α is the de Sitter radius and 0 < r < α. The details and the explicit
coordinate transformation is given in Appendix J.1.

The metric (3.4.6) has a horizon at r = α, whose associated temperature
is

T =
1

2πα
(3.4.7)

and whose entropy, computed via the horizon area, coincides with the ex-
pression for SEE in equation (3.4.3),

Sth ≡
Area

4Gd+1

= SEE , (3.4.8)

as shown in appendix J.1.
The final ingredient is the identification of Uth in equation (3.4.5): for

static metrics, this corresponds to the ADM mass of the solution. A simple
computation (see again appendix J.1) shows that

βUth = 2(d− 1)Md−1
P

[
edA(u)Ȧ(u)

]
UV
Vd. (3.4.9)

Using the identification (3.4.8)–(3.4.9), equation (3.4.4) takes the first-law
form (3.4.5). From this relation, as shown in appendix J.2, one can derive
an identity relating the scalar-vev and curvature-vev parameters C(R) and
B(R). For d = 3 this is given by

C ′(R) =
1

2
B(R)−RB′(R) , (3.4.10)

13Recall that our “free energy” is related to the usual thermodynamic free energy by a
factor β, i.e. F = βFth. See footnote 12.
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with ′ denoting a derivative with respect to R. In the limit R → 0 of
this equation one obtains a relation between the leading term in B and the
first curvature correction to C in the small R limit, as defined in equations
(3.2.44)–(3.2.45):

C1 =
1

2
B0 (3.4.11)

3.4.3 Renormalized entanglement entropies and asso-
ciated F -functions

The entanglement entropy given in (3.4.3) is UV-divergent and we hence reg-
ulate it. Subsequently, we also define a renormalized entanglement entropy
by adding appropriate counterterms.

The procedure parallels the one used in the case of the free energy, using
the dimensionless cutoff Λε defined in equation (3.2.19). The entanglement
entropy can then be written as a function of Λε and Rε. To be specific, we
now again restrict to d = 3 to find:

Sd=3
EE (Λε,Rε) = (M`)2Ω̃3

{
R−1/2
ε

[
2

3
Λε

(
1 +O

(
Λ−2∆−
ε

)
+B(Rε)

)]

+O
(
R1/2
ε Λ−1

ε

)}
, (3.4.12)

where Ω̃3 was defined in (3.2.6). The function B(R) is the same that ap-
peared before in expressions for the free energy. Note that here all divergent
terms have the same curvature dependence, i.e. they are accompanied by a
factor R−1/2

ε .
We can now also define a renormalized entanglement entropy by adding

appropriate counterterms to (3.4.12) and taking the limit Λε → +∞. Note
that the quantity we define this way differs from and should not be confused
with the ‘Renormalized Entanglement Entropy’ (REE) of Liu and Mezei
defined in [74]. Here we will proceed as in the case of the free energy and
add appropriate counterterms.

Counterterms for the entanglement entropy should be defined in terms of
an integral over the entangling surface or a related surface (see e.g. [85]). In
particular, on the boundary, our entangling ‘surface’ is given by Sd−2 with
radius α. However, using the relation (3.4.4), note that for our setup the
entanglement entropy (3.4.3) can be written in terms of quantities which are
proportional to the volume of Sd (with radius α) rather than the volume
of the entangling surface Sd−2. As a result, we will be able to write down
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counterterms as integrals over Sd. These expressions will however only hold
for the setup discussed here, but this is all that we need.

Given the relation (3.4.4) between SEE and the free energy, the analysis
is similar to the one performed in section 3.2.2 for the free energy. We will
hence be brief and give the main results. As a first step we rewrite the
integral appearing in (3.4.3) in terms of the functions T (ϕ) and U(ϕ), where
U(ϕ) was introduced before in (3.2.9):

SEE = Md−1 2R

d
Vol(Sd)

∫ IR

UV

du e(d−2)A(u) (3.4.13)

= Md−1Ω̃d

[
T−

d
2

+1(ϕ)U(ϕ)
]

UV
,

and with Ω̃d defined in (3.2.6). Then, as in the case of the free energy, we can
cancel divergences with the help of an appropriately defined function Ũct(ϕ).
In d = 3 this will remove all the divergences. Hence, in d = 3 we can write
the renormalized entanglement entropy as follows:

Sd=3,ren
EE = M2

p Ω̃3

[
T−

1
2 (ϕ)

(
U(ϕ)− Ũct(ϕ)

)]
UV
, (3.4.14)

where Ũct(ϕ) has to satisfy

W ′
ct Ũ

′
ct −

d− 2

2(d− 1)
Wct Ũct = −2

d
, (3.4.15)

and Wct a solution to (3.2.29). The function Ũct(ϕ) will contain an integration
constant which we will denote by B̃ct. Fixing a value for B̃ct is equivalent to
choosing a renormalization scheme.

Finally, inserting the near-boundary expansion for T , U and Ũct this
becomes14

Sd=3,ren
EE (R|B̃ct) = (M`)2Ω̃3R−1/2

(
B(R)− B̃ct

)
, (3.4.16)

where we also indicated that Sd=3,ren
EE is a function of R that further depends

on our choice for the parameter B̃ct. In the following, we will work exclusively
in d = 3. Thus, the superscript d = 3 on Sd=3,ren

EE is henceforth obsolete and
will be dropped to remove clutter.

As for the renormalized free energy, we can obtain large-curvature and
small curvature asymptotics for the renormalized entanglement entropy (see

14Note that Ũct satisfies the same equation as Uct, (3.2.30), rescaled by a constant
factor 2/d. As a result, the near-boundary expansion of Ũct will be given by the rescaled
expression for Uct in (3.2.32), but with Bct replaced by B̃ct.
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appendix H for details):

Sren
EE =
R→∞

−(M`)2
(

8π2 + Ω̃3B̃ctR−1/2 +O(R−∆−)
)

(3.4.17)

Sren
EE =
R→0
−(M`)2Ω̃3

(
B0 − B̃ct

)
R−1/2 − 8π2(M`IR)2

(
1 +O(R−∆IR

− )
)

+O(R1/2) ,

(3.4.18)

The leading IR (i.e. small-R) divergence in Sren
EE scales as R−1/2. The rea-

son is that the entanglement entropy scales with the volume of the entangling
surface, which is given by Vol(S1) ∼ R−1/2 for fixed ϕ−. Hence, the diver-
gence of Sren

EE can also be understood as a volume-divergence, but this time
of the entangling surface. Note that a similar IR divergence (i.e. ∼ R−1/2)
also occurs in the unrenormalized quantity SEE(Λε,Rε).

The finite term for R → 0 is the same for F ren and Sren
EE up to an overall

sign and is given by ±8π2(M`IR)2. The same is true for the UV limit as
R → +∞. This suggests that one can also construct candidate F -functions
starting from the entanglement entropy, once the IR divergence is eliminated.
Similarly to the case of the free energy discussed in section (3.3.2) we can
either use the derivative operator D1/2 defined in (3.3.9) (since only theR−1/2

appears) acting on equation (3.4.16), or choose an appropriate scheme such
that the first term in the IR expansion (3.4.18) vanishes. This gives rise to
the following two candidate F -functions:

F5(R) ≡ −D1/2 S
ren
EE(R|B̃ct) = lim

Λε→∞

[
−D1/2 SEE(Λε,Rε)

]
, (3.4.19)

F6(R) ≡ − Sren
EE (R|B̃ct,0) , (3.4.20)

where
B̃ct,0 ≡ B(0) = B0. (3.4.21)

Note that F5 is the analogue of Liu and Mezei’s ‘Renormalized Entanglement
Entropy’ (REE) defined in [74], but for a theory defined on dS3. It can either
be defined in terms of the renormalized or the unrenormalized entanglement
entropy. As one can check from (3.4.17) and (3.4.18), both F5 and F6 reduce
to FUV and FIR in the UV and IR, respectively. From equation (3.4.16) it
follows that we can write F5,6 in terms of B(R) as follows:

F5(R) = −(M`)2 Ω̃3 2R1/2B′(R) , (3.4.22)

F6(R) = −(M`)2 Ω̃3 R−1/2
(
B(R)− B̃ct,0

)
, (3.4.23)
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where again ′ denotes an R-derivative.

As it turns out, equations (3.4.22) and (3.4.23) do not give rise to new
F -functions compared to those defined from the free energy. Rather, as we
will show below

F5(R) ≡ F1(R), F6(R) ≡ F3(R), (3.4.24)

where F1 and F3 are defined in equations (3.3.12) and (3.3.14).

The relations (3.4.24) follow from the thermodynamic relation discussed
in the previous subsection,

SEE = βUth − βFth (3.4.25)

if βUth is identified with the space-time integral of the boundary stress tensor.
As we show in detail in appendix J.2, the relation (3.4.25) is equivalent to
the following two identities

D3/2 F (Λε,Rε) = −SEE(Λε,Rε) , (3.4.26)

D3/2 F
ren(R|Bct, Cct) = −Sren

EE

(
R
∣∣2

3
Bct

)
, (3.4.27)

together with the relation

Bct,0 =
3

2
B̃ct,0 , (3.4.28)

between the counterterm parameters Bct,0 and B̃ct,0.

These in turn imply the identities (3.4.24). For example, starting with
(3.4.19) and using (3.4.26) and (3.3.20) one finds

F5(R)
(3.4.19)

= lim
Λε→∞

[
−D1/2 SEE(Λε,Rε)

]
(3.4.26)

= lim
Λε→∞

[
D1/2D3/2 F (Λε,Rε)

]
(3.3.20)

= F1(R) .

(3.4.29)

Similarly, starting with (3.4.20) and using (3.4.27), (3.4.28) and (3.3.14) one
obtains

F6(R)
(3.4.20)

= −Sren
EE (R|B̃ct,0)

(3.4.27)
= D3/2 F

ren(R|3
2
B̃ct,0, Cct)

(3.4.28)
= D3/2 F

ren(R|Bct,0, Cct)
(3.3.14)

= F3(R) .
(3.4.30)
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3.5 Free field theories

Here we will check whether our four proposals for F -functions also work
more generally beyond a holographic setting. Therefore, we turn to free field
theories where many results can be obtained analytically. We find that all
our F -functions are monotonic in d = 3 for a massive fermion (corresponding
to ∆UV = 2) and for a massive scalar (∆UV = 1). In the latter case the
UV dimension of the deforming operator φ2 is less than d/2 and therefore,
according to our prescription, the F -functions must be constructed from the
quantum effective potential, rather than from the free energy. This leads
indeed to monotonic F -functions, contrary to what one has been observed
using either the free energy on the sphere (see [66]) or the entanglement
entropy on dS3 (see [80]).

3.5.1 Free fermion on S3

Here we consider the theory of a free massive fermion on S3 with action given
by

SD =

∫
d3
√
ζ
[
iψ† /Dψ − imψ†ψ

]
, (3.5.1)

where again ζµν is a metric on S3 with curvature R = 6/α2. This is a con-
formal theory perturbed by the operator ψ†ψ with source m. The dimension
of the perturbing operator is therefore

∆[ψ†ψ] = 2 >
3

2
. (3.5.2)

According to our observations from holography (see sec. 3.3.5), we expect
that the free energy can be used for constructing good F -functions.

Following [66] the free energy can be written as

FD = −
∞∑
n=1

n(n+ 1) log

[(
n+

1

2

)2

+ (αm)2

]
, (3.5.3)

which only depends on m and α through the dimensionless combination
(αm). To make contact with the notation in the previous sections, here we
identify

R = (αm)−2 , (3.5.4)
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which is (proportional to) the curvature in units of the source.15

For m → 0 (R → ∞ for fixed α) the theory given by (3.5.1) becomes
conformal. In this case the free energy (3.5.3) was evaluated explicitly in
[66]. Using zeta-function renormalization one finds

FD,UV =
log 2

4
+

3ζ(3)

8π2
, (3.5.5)

which we will refer to as the ‘UV’ value.
On the other hand, for m→∞ (R → 0 for fixed α), the theory becomes

non-dynamical and empty. We hence expect the corresponding value of the
free energy to be

FD,IR = 0 . (3.5.6)

A good F -function should then interpolate monotonically between the values
FD,UV and FD,IR when going from the UV (R →∞) to the IR (R → 0).

To this end, we now evaluate the free energy for an arbitrary value of R.
We start from the following observation in [66]. There it was shown that,
upon zeta-function renormalization, the free energy satisfies

∂F ren
D

∂(αm)2
=

4(αm)2 + 1

αm
π tanh

(
παm

)
. (3.5.7)

With the help of this, we can then write the zeta-function renormalized free
energy in terms of an integral as

F ren
D (R) = FD,UV +

∫ 1/R

0

dx
4x+ 1√

x
π tanh

(
π
√
x
)
. (3.5.8)

This expression will be sufficient for both the analytical and numerical evalu-
ations in this section. By construction, F ren

D (R) reduces to FD,UV in the UV,
i.e. for R →∞. However, in the IR (R → 0) the expression (3.5.8) does not
reproduce FD,IR, but rather diverges. In particular, one finds

F ren
D (R) =

R→0

π

3
R−3/2 +

π

4
R−1/2 + (vanishing for R → 0) . (3.5.9)

These can again be understood as volume-divergences, with the leading di-
vergent term proportional to the dimensionless volume R−3/2.

15The curvature in units of the source is given by 6(αm)−2, which differs from the
expression in (3.5.4) by a factor of 6. By definingR as in (3.5.4) we can avoid a proliferation
of factors of

√
6 in the following expressions without affecting the monotonicity properties.
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Figure 3.5: F1,2,3,4 given in (3.5.11)–(3.5.14) vs. log(R) for a theory of a free
fermion on S3. The black dashed line indicates the value of FD,UV given in
(3.5.5).

Here we used zeta function renormalization to arrive at a finite expres-
sion for F ren

D . However, we could have equally renormalized the free energy
by adding specific covariant counterterms to the action (3.5.1). In this case
our expression for F ren

D would be scheme-dependent, with different renor-
malization schemes parameterised by two real numbers cct and bct. These
parameters are the coefficients of the two finite (i.e. UV-cutoff-independent)
counterterms

F finite
ct,1 = cct

∫
d3x
√
ζ m3 = 2π2 cctR−3/2 , (3.5.10)

F finite
ct,2 = bct

∫
d3x
√
ζ Rm = 12π2 bctR−1/2 .

As we show in appendix K,16 zeta-function renormalization is equivalent to
renormalization via counterterms, with a particular choice of cct and bct. How-
ever, we can always change renormalization scheme by adding terms of the
form (3.5.10) to F ren

D . In the following, we will now exploit this to construct
the equivalents of the F -functions discussed in the context of holography in
section 3.3.

As explained in Section 3.3.2, we can remove the two divergent terms
∼ R−3/2 and ∼ R−1/2 either with the help of a differential operator, or
by subtracting them with the help of counterterms.17 In analogy with the

16In app. K, we work with the theory of a free massive scalar on S3. However, our
findings can be easily generalised for the case of the Dirac fermion.

17This is to add the counterterms (3.5.10) with cct = −1/(6π) and bct = −1/(48π).
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functions F1,2,3,4 in (3.3.12)–(3.3.15), here we can define four F -functions as
follows:18

F1(R) = D1/2D3/2 F ren
D (R) , (3.5.11)

F2(R) = D1/2

(
F ren
D (R)− π

3
R−3/2

)
, (3.5.12)

F3(R) = D3/2

(
F ren
D (R)− π

4
R−1/2

)
, (3.5.13)

F4(R) =
(
F ren
D (R)− π

3
R−3/2 − π

4
R−1/2

)
, (3.5.14)

with D1/2 and D3/2 given in (3.3.9). As one can check explicitly, the functions
F1,2,3,4 reduce to the values FD,UV and FD,IR for R → ∞ and R → 0,
respectively. In addition, by evaluating them numerically, one finds that
all four functions F1,2,3,4 interpolate monotonically between the UV and IR
values (see fig. 3.5). Therefore, all four functions F1,2,3,4(R) in (3.5.11)–
(3.5.14) are good F -functions for the free fermion. We find that our proposals
for constructing F -functions also hold beyond the context of holographic
theories.

3.5.2 Free boson on S3

We now turn to the case of a free boson on S3. The action is given by

SS =
1

2

∫
d3x

√
ζ

[
(∇φ)2 +

R

8
φ2 +m2φ2

]
, (3.5.15)

where R = 6/α2 is again the scalar curvature of the S3. This is a CFT per-
turbed by the operator φ2 with source 1

2
m2. The dimension of the perturbing

operator is given by

∆[φ2] = 1 <
3

2
. (3.5.16)

If our findings from holographic theories are correct, then a good F -function
can be constructed from the quantum effective potential for the scalar (i.e. the
Legendre transform of the free energy with respect to the source). We will
check this explicitly by first examining the suitability of the free energy as a
F -function before turning to its Legendre transform.

18The function F4 given in (3.5.14) has already been confirmed to be a good F -function
for the free fermion in [66].



100 CHAPTER 3. F-FUNCTIONS FROM HOLOGRAPHY

The free energy as a candidate F -function

As shown in [66], the free energy can be written as the following infinite sum:

FS =
1

2

∞∑
n=1

n2 log

[
n2 − 1

4
+ (αm)2

]
, (3.5.17)

which depends on α and m only through the dimensionless combination
(αm). In the following, it will also be useful to define

χ = (αm)−2 , (3.5.18)

which is proportional to the curvature in units of the source. We do not use
the label R for consistency with our holographic results earlier. There, for
theories with ∆ < 3/2, the quantity R denoted the curvature in units of the
vev, not the source. Here we maintain this convention.

We can now work in analogy of the free fermion discussed above. For
m→ 0 (χ→∞ at fixed α) the theory becomes conformal. For this case the
sum in (3.5.17) was evaluated [66]. Using zeta-function renormalization one
finds

FS,UV =
1

16

(
2 log 2− 3ζ(3)

π2

)
. (3.5.19)

For m→∞ (χ→ 0 at fixed α) the theory becomes empty and we expect.

FS,IR = 0 . (3.5.20)

A good F -function should reduce to these values in the limits χ → ∞ and
χ→ 0, respectively.

Using zeta-function renormalization, it was also shown in [66] that the
renormalized free energy satisfies

∂F ren
S

∂(αm)2
= −π

4

√
(αm)2 − 1

4
coth

(
π

√
(αm)2 − 1

4

)
. (3.5.21)

Therefore, we can again write the zeta-function renormalized free energy as
an integral. Here one finds

F ren
S (χ) = FS,UV −

π

4

∫ 1/χ

0

dx

√
x2 − 1

4
coth

(
π

√
x2 − 1

4

)
, (3.5.22)
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Figure 3.6: F̃1,2,3,4 given in (3.5.24)–(3.5.27) vs. log(χ) with χ = (αm)−2 for
a theory of a free massive scalar on S3. The black dashed line indicates the
value of FS,UV given in (3.5.5).

which by definition reduces to FS,UV for χ → ∞. The expression (3.5.22)
again has IR divergences, which come with powers of χ−3/2 and χ−1/2. In
particular, one finds

F ren
S (χ) =

χ→0
−π

6
χ−3/2 +

π

16
χ−1/2 + (vanishing for χ→ 0) . (3.5.23)

We can again define finite candidate F -functions, where the divergent
terms are removed by differentiation or subtraction or a combination thereof.
By analogy with (3.3.12)–(3.3.15) we hence define the following for candidate
F -functions constructed from the free energy (3.5.22):

F̃1(χ) = Dχ1/2D
χ
3/2 F ren

S (χ) , (3.5.24)

F̃2(χ) = Dχ1/2
(
F ren
S (χ) +

π

6
χ−3/2

)
, (3.5.25)

F̃3(χ) = Dχ3/2
(
F ren
S (χ)− π

16
χ−1/2

)
, (3.5.26)

F̃4(χ) =
(
F ren
S (χ) +

π

6
χ−3/2 − π

16
χ−1/2

)
, (3.5.27)

where Dχ1/2 and Dχ3/2 are defined as in (3.3.9), but with R replaced by χ. By

construction all four functions F̃1,2,3,4 reduce to the values FS,UV and FS,IR for
χ→∞ and χ→ 0, respectively. However, a numerical evaluation shows that
they do not interpolate monotonically between the UV and IR. As shown in
figure 3.6 all four functions F̃1,2,3,4 fail to exhibit monotonicity. Therefore,
they are not good F -functions for the free scalar.
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The fact that the free energy does not straightforwardly give rise to a
good F -function for the free scalar has been observed before. In [66] it was
already found that the function F̃4(χ) defined in (3.5.27) is not monotonic
in χ. To overcome this, a different subtraction of IR-divergent pieces was
suggested. While this indeed solved the problem, the necessary subtraction
is introduced ad hoc leaving the question unanswered how a good F -function
can be constructed systematically.

Similar problems for constructing a good F -function for the free massive
scalar were found in [80]. There the authors examined the equivalent of the
‘Renormalized Entanglement Entropy’ (REE) of Liu and Mezei [74] for the
theory of a free massive scalar on dS3, again observing non-monotonicity.
As can be deduced from the calculations in [80], the relations (3.4.26) and
(3.4.27) between the dS3 entanglement entropy and the free energy on S3

also hold for the free massive scalar. As a result, our function F̃1(χ) defined
in (3.5.24) is nothing but the REE on dS3 studied in [80]. The failure of
finding monotonicity of the REE on dS3 can then be understood as part of
the more general failure of the free energy as an F -function for the free scalar
on S3.

Faced with this obstacle, we will now follow the intuition gained from
our holographic analyses and consider the quantum effective potential rather
than the free energy as an F -function for the free scalar. Interestingly, we
will find that this will indeed give rise to a monotonic function interpolating
between the UV and IR, thus answering the question how a good F -function
for the free scalar on S3 or dS3 can be constructed.

The quantum effective potential as a candidate F -function

We define the quantum effective potential as the Legendre transformation
of the free energy with respect to the source m2. While we found that
the free energy only depends on the radius α and the source m2 through
the combination (αm)2, it will be convenient to write it in the following as
F ren
S (α,m2), with radius and source appearing as separate arguments.

We begin by defining a quantity Gren
S (α, ψ,m2) as the Legendre transfor-

mation of the free energy with respect to m2 as follows:

Gren
S (α, ψ,m2) = F ren

S (α,m2) +

∫
d3x

√
ζ m2ψ

= F ren
S (α,m2) + 2π2 (αm)2(αψ) , (3.5.28)

where we have used that α and m2 are constant in space-time and
∫
d3x
√
ζ =

2π2α3. Here we introduced the variable ψ ‘dual’ to the source m2, and which
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will be proportional to the vev of the operator φ2. Extremising with respect
to m2 gives

∂F ren
S

∂(αm)2
+ 2π2αψ = 0 , (3.5.29)

which can be inverted to findm2(ψ). The quantum effective potential Γren
S (α, ψ)

is then given by

Γren
S (α, ψ) ≡ Gren

S (α, ψ,m2(ψ)) . (3.5.30)

Note that in (3.5.28) and (3.5.29) the source m2 only appears in the
combination (αm)2. Similarly ψ only appears in the combination (αψ). We
already defined χ = (αm)−2 as the dimensionless curvature in units of the
source. Now, we also define

R ≡ (αψ)−2 (3.5.31)

as the curvature in units of the vev, in analogy with our holographic analysis
for theories with ∆ < 3/2. Notice that we can write (3.5.28) and (3.5.29)
using only the dimensionless combinations χ and R as variables without ever
having to refer to α, m2 or ψ individually. Also using the fact that the free
energy is a function of χ only, F ren

S (α,m2) = F ren
S (χ), this implies that the

quantum effective potential (3.5.30) is only a function of R, i.e.

Γren
S (α, ψ) = Γren

S (R) . (3.5.32)

The inversion required for finding m2(ψ) can only be done numerically,
which, given expression (3.5.21) is a straightforward exercise. However, for
small and large ψ we can also obtain analytical results. In particular, we find

m2(ψ) =
ψ→0

16ψ

α

(
1 +O(ψ)

)
, (3.5.33)

m2(ψ) =
ψ→∞

64π2ψ2
(

1 +O(ψ−2)
)
. (3.5.34)

Therefore, for ψ → 0 we find m2(ψ) → 0 and for ψ → ∞ we observe
m2(ψ)→∞.

We can then make the following observations. For ψ → 0 (R → ∞ at
fixed α) the second term in (3.5.28) vanishes and correspondingly

Γren
S (R →∞) = F ren

S (χ→∞)→ FS,UV . (3.5.35)

Therefore, in the UV limit R → ∞ the quantum effective potential reduces
to the value of the free energy of a conformal scalar on S3.
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Figure 3.7: F1,2,3,4 given in (3.5.37)–(3.5.40) vs. log(R) for a theory of a free
massive scalar on S3. The black dashed line indicates the value of FS,UV

given in (3.5.19).

For ψ → ∞ (R → 0 at fixed α) the quantum effective action exhibits
divergences which come with powers R−3/2 and R−1/2. These can be found
by inserting (3.5.23) and (3.5.34) into (3.5.28) and expressing everything in
terms of R. One obtains

Γren
S (R) =

R→0

128π4

3
R−3/2 +

π2

2
R−1/2 . (3.5.36)

We now have all the ingredients to construct the analogues of the F -
functions in (3.3.37)–(3.3.40) for the free scalar on S3. Here these are given
by

F1(R) = D1/2D3/2 Γren
S (R) , (3.5.37)

F2(R) = D1/2

(
Γren
S (R)− 128π4

3
R−3/2

)
, (3.5.38)

F3(R) = D3/2

(
Γren
S (R)− π2

2
R−1/2

)
, (3.5.39)

F4(R) =
(

Γren
S (R)− 128π4

3
R−3/2 − π2

2
R−1/2

)
, (3.5.40)

with D1/2 and D3/2 given in (3.3.9) and Γren
S (R) defined in (3.5.30). These are

four candidate F -functions constructed from the quantum effective potential
(i.e. the Legendre transform of the free energy with respect to the source
m2). They are functions of R, the (dimensionless) curvature in units of the
vev 〈φ2〉.

The candidate F -functions pass the test with flying colours. As one can
check explicitly, they reduce to the values FS,UV and FS,IR in the limits R →
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∞ and R → 0, respectively. In fig. 3.7 we then plot F1,2,3,4 vs. log(R).
The main observation is that all four functions (3.5.37)–(3.5.40) interpolate
monotonically between FS,UV and FS,IR. Therefore, the functions F1,2,3,4(R)
defined in (3.5.37)–(3.5.40) are indeed good F -functions for the free scalar
on S3.

To conclude, for the case of the free massive boson on S3 good F -functions
can be constructed from the quantum effective potential, as suggested by
our holographic analysis. The free energy fails to interpolate monotonically
between FS,UV and FS,IR as observed in [66] and reviewed at the beginning of
this section. For the massive fermion on S3 our holographic findings imply
that a good F -function can be constructed from the free energy, which we
confirmed explicitly in sec. 3.5.1. To test our F -function proposals further one
can check if anything goes wrong if one uses the quantum effective potential
to construct an F -function for the free massive fermion. As the calculation
is very similar to the analysis presented in this section we do not include
it in this work and only quote the result. Interestingly, one finds that the
analogues of (3.5.37)–(3.5.40) are not monotonic in the fermionic case. This
suggests that, when implementing our proposals, the choice between free
energy and quantum effective potential is exclusive in the sense that only one
leads to a good F -function for a given theory. We leave further investigations
of this matter to future work.
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Chapter 4

Holographic quantum phase
transitions driven by curvature

The holographic RG flows on curved manifolds discussed in chapter 2 are
dual to vacua of the boundary field theory. In the framework of holography
there may be multiple RG flows that originate from a single UV fixed point
but flow to different IR end points. From the field theory point of view
this corresponds to a theory that exhibits multiple vacua, with a one-to-one
correspondence between the number of flows and the number of vacua.

This behavior was described in [5] for holographic RG flows of field theo-
ries on flat manifolds. There it was observed that in addition to a flow from
a maximum to the nearest minimum, there may also exist flows that skip the
nearest minimum to end at the next minimum. We find that this situation
persists if we add non-zero curvature: at a fixed curvature and UV source
there may be multiple RG flow emanating from the same UV fixed point, but
terminating at different IR end points. The different flows are distinguished
by the subleading term in Eq. (2.4.2) which determines the vev of the dual
operator.

The various flows correspond to different saddle points of the action and
are hence in one-to-one correspondence with vacua of the field theory. In the
case of multiple flows the question then arises which of these ground states
is the true vacuum. In the dual gravitational picture this is equivalent to the
questions which saddle point is dominant in the gravitational path integral.
This can be answered by comparing the free energies associated with the
various vacua and identifying the ground state with the lowest free energy
as the true vacuum. In the example presented in [5], the skipping flow is the
true vacuum.

If we vary the value of Ruv the RG flows deform and the vevs and free
energies of the various vacua change. Interestingly, under a variation of Ruv
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V(ϕ)

UV1

IR1

UV2

IR2

ϕ

Figure 4.1: Plot of the degree-12 potential which allows skipping solutions.
This potential has several extrema which are denoted as UV1, UV2, IR1 and
IR2.

the identification of the true vacuum may change, i.e. the system may exhibit
a phase transition. This corresponds to a quantum phase transition as our
system is at zero temperature. The control parameter in this case is the
curvature Ruv.

In the following, we choose a specific example based on a suitably chosen
potential exhibiting multiple RG flows originating from the same UV fixed
point. For this example we study the evolution of the free energies for the
various flows under a change of curvature. Ultimately, we will observe a
change of sign of the free energy difference between the different saddle points,
indicating the existence of a phase transition driven by curvature.

4.1 Skipping flows

To illustrate the concept of skipping flows, we set d = 4 and consider a
potential which is a polynomial of degree 12, whose explicit form is not
essential and can be found in [5]. A plot of (part of) this potential is shown
in figure 4.1. It has several extrema, denoted by UV1, UV2, IR1 and IR2

In this section, we will determine the possible RG flows as we increase the
dimensionless UV curvature parameter, R.

Flat case: R = 0

We first consider the RG flow solutions for the QFT in flat space-time. The
corresponding solutions for W (ϕ) are shown in Fig. 4.2. In this case, there
are three RG flows in total, two originating from UV1 and one from UV2.
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ϕ

W (ϕ)

UV1

IR1 UV2

IR2

W12(ϕ)

W11(ϕ)

W21(ϕ)

B(ϕ) =
√
−3V (ϕ)

Figure 4.2: The plot represents the function W (ϕ) corresponding to the three
regular holographic RG flow solutions arising from the potential in figure 4.1.
Two of them are standard interpolating from UV1 to IR1 and from UV2 to
IR1. The third one skips IR1 and ends up at IR2. The shaded region is the
forbidden region below the critical curve B(ϕ). The arrows represent the
direction of the flow from the UV to the IR.

We will focus on the flows emanating from UV1. Among the two RG flows
emanating from the UV1, the one denoted by W11(ϕ) interpolates between
UV1 and the nearest minimum to the right IR1. The second flow denoted
W12(ϕ) skips the fixed point IR1 and ends at IR2.

To decide which solution is the dominant saddle point in the path inte-
gral, we need to compare their corresponding free energies at fixed boundary
condition ϕ−. As described in [5] the flow with the higher value of vev param-
eter C is the dominant saddle point: this is the skipping flow, as the solution
with larger C has a larger W (ϕ) in the UV. Consequently, the skipping flow
represents the true ground-state of the dual QFT in flat space-time.

Although our focus will be on flows starting at UV1, for completeness we
briefly discuss the flow from UV2, also depicted in Fig. 4.2. There is a single
flow which starts from UV2, denoted as W21(ϕ), and it interpolates between
the UV2 and IR1. There is no solution starting from UV2 and ending at IR2

as there can be at most one flow that can end at a given IR point from a
given direction. This is because regular solutions in the IR do not admit
small deformations [5]. Here the fixed point IR2 is already “taken” by the
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ϕ

W (ϕ)

UV1

IR1 UV2

IR2

Ws,1(ϕ)

Wns(ϕ)

Ws,2(ϕ)

B(ϕ) =
√
−3V (ϕ)

W12(ϕ)

W11(ϕ)

Figure 4.3: The solid lines represent the function W (ϕ) corresponding to
the three different solutions starting from UV1 which exist at small positive
curvature. Two of them (red and green curves) are skipping flows and the
third one (orange curve) is non-skipping. For comparison, we also show the
flat RG flows (dashed curves)

skipping flow W12(ϕ).

We now turn on positive curvature on the d-dimensional slice and see how
this affects the various RG flows solutions presented above.

Finite curvature R > 0; Flows from UV1

Turning on a small positive curvature, there are now three flows (instead of
the two at R = 0) emanating from UV1 and shown in the Fig. 4.3. Two of
them are skipping the nearest possible IR region (between ϕ = 0 and IR1)
and end up near IR2. These two are denoted as Ws,1(ϕ) and Ws,2(ϕ) and
represented as red and green curves respectively in the Fig. 4.3. The third
flow is the non-skipping flow and denoted as Wns(ϕ). It starts from UV1 and
ends up in the region between ϕ = 0 and IR1. The two flows Wns(ϕ) and
Ws,1(ϕ) are deformations of the corresponding flat flows (represented as the
dotted black and red curves in Fig. 4.3) and end slightly before the respective
IR fixed points. The flow Ws,2(ϕ) on the other hand is a new branch which
only exists for non-zero curvature.

As R is increased, the flows are deformed as shown in Fig. 4.4. The IR
end points of the skipping flows Ws,2(ϕ) and Ws,1(ϕ), move towards each
other, up to a critical value of R where the two solutions merge. Above this
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W (ϕ)

UV1

IR1 UV2

IR2

Wns(ϕ)

Ws,2(ϕ)

Ws,1(ϕ)

B(ϕ) =
√
−3V (ϕ)

Figure 4.4: As the curvature is increased, IR end points of the skipping flows
move toward each other. The non-skipping IR end point moves closer to
UV1.

value, the skipping solution disappears and only the non-skipping flow is left.
The IR end point of the non-skipping flow Wns(ϕ) moves to the left from the
IR1 and it approaches the UV fixed point point UV1 as R is increased, as
expected in the generic case.

Finite curvature: R > 0; Flows from UV2

For completeness, we will also describe the flows starting from UV2 as we
increase the curvature. In the flat case, there was only one such flow, with a
negative source (see W21(ϕ) in Fig. 4.2). If the curvature is slightly increased,
this flow splits into two. One starts from UV2 and ends in the region between
IR1 and UV2. This is shown as the red curve W2nb,n(ϕ) in Fig. 4.5. The
other flow, represented as the red curve W2b,n(ϕ) in Fig. 4.6, starts form
UV2, bounces in the region between IR1 and UV2 and ends in the region
ϕ > UV2. These two flows, namely the non-bouncing flow and the bouncing
flow with negative source, exist for all values of curvature.

Beyond a certain value of the curvature, two new solutions appear that
emanate from UV2 in addition to the bouncing and the non-bouncing flows.
These have a positive source and have no R = 0 counterpart. They end in
region ϕ > UV2. They are shown as the red curves W2nb,p(ϕ) in Fig. 4.7.
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ϕ

W (ϕ)

UV2

IR1

Non-bouncing
ϕ− < 0

Non-
bouncing
ϕ− > 0

Bouncing
ϕ− < 0

B(ϕ)

W2nb,n(ϕ)

W21(ϕ)

Figure 4.5: Function W2nb,n(ϕ) for a non-bouncing flows starting from UV2.
In this case the source is negative. This type of flow comes from a curvature
deformation of the flat case flow W21 and exists for all values of the curvature.

Full space of solutions

Fig. 4.8, shows the dimensionless UV curvature parameter R as a function
of the IR end point ϕ0 of the flow. Non-skipping flows start from UV1 and
the end in the leftmost blue region. This type of solution exists for all values
of curvature. On the other hand, skipping flows from UV1 end up in the
rightmost purple region, and they come in two branches (i.e. there are two
different endpoints in the right purple region for a given value of R). These
skipping flows exist up to a maximum value of curvature, where the two
branches merge.

We also display the results for flows starting from UV2 in Fig. 4.8. Flows
with a negative source (i.e. going towards the left of UV2) either end in the
light brown region, or bounce and then end in the red region. Both these
bouncing and non-bouncing solutions originate as deformations of the “flat”
flow W21(ϕ) (see Figures 4.5 and 4.6), and exist for any positive value of R.

A particularly interesting set of flows from UV2 are those with end points
in the green region in Fig. 4.8. Note that all flows in this region have R ≥
Rmin for some minimal value of the dimensionless curvature. This implies
that these flows do not arise from a continuous deformation of a flat flow. In
fact, there is no flat flow from UV2 with positive source. This was explained
in [5] as arising from the fact that there is already a regular flow terminating
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ϕ

W (ϕ)

UV2

IR1

Non-bouncing
ϕ− < 0

Non-
bouncing
ϕ− > 0

Bouncing
ϕ− < 0

B(ϕ)

W2b,n(ϕ)

W21(ϕ)

Figure 4.6: Function W2b,n(ϕ) for a bouncing flows starting from UV2. For
bouncing flows, the source is negative. This type of flow also comes from a
curvature deformation of the flat case flow W21 (dotted line) and exist for all
values of the curvature.

at IR2 from the left, and therefore no other regular flows can also arrive from
the same side. The solutions with end points in the green region in Fig. 4.8
thus correspond to new vacua which do not exist for R = 0, but appear when
R becomes large enough.

The fact that there is a regular flow starting at UV2 for negative coupling
(towards the left of UV2) but not positive coupling (towards the right of
UV2) has analogues in QFT. Both for YM and λφ4 theory the coupling must
have a fixed sign. The theories do not exist for negative g2

YM or negative
λ. Something similar also happens here. The unusual occurence however
is that the theory with the ‘wrong’ sign exists for sufficiently large space-
time curvature. In a sense positive curvature cures the sickness of the flat
theory. It would be interesting to understand this phenomenon better and
find examples of a similar behavior in QFT.

Notice that there are several values of the endpoint where the curvature
parameter diverges. Two of them correspond to the UV fixed points UV1

and UV2, in line with the generic behavior found in section 2.6. The third
one (namely the point ϕ∗ in Fig. 4.8 separating the green and red regions)
is more interesting. Across this point the source changes sign. For the
endpoint exactly at ϕ∗ the solution must have zero source, implying that for
finite Ruv, the quantity R diverges (recall the definition in equation (2.4.16))
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ϕ

W (ϕ)

UV2

IR1

Non-bouncing
ϕ− < 0

Non-
bouncing
ϕ− > 0

Bouncing
ϕ− < 0

B(ϕ)
W2nb,p(ϕ)

Figure 4.7: Two non-bouncing flows W2nb,p(ϕ) from UV2 with identical value
of R. Interestingly, flows of this type only exist for R > Rmin, i.e. when the
dimensionless curvature is larger than some minimal value. As a result, such
flows do not come from a curvature deformation of a R = 0 flow.

as we approach ϕ∗. This fact has a remarkable consequence: It implies that,
above some positive threshold value for the curvature, there exist RG flows
with no source (i.e. of the W+ branch, the ones driven by a vev) starting at
UV2 and ending at ϕ∗. Compare this to the flat case, where regular vev flows
are highly non-generic, and require a fine-tuned potential.

Note that there seems to exist an endpoint for flows with R = 0 that
does not coincide with an extremum of the potential. This is the point ϕ! in
Fig. 4.8 separating the purple and red regions. However, one finds that this
endpoint cannot be reached by a flow from UV1 or UV2. To illustrate this, let
us consider what happens for flows ending in both the red and purple regions
of Fig. 4.8 when we let ϕ0 → ϕ!. Flows ending in the red region of Fig. 4.8
leave UV2 to the left before bouncing and reversing direction (see Fig. 4.6).
Taking ϕ0 → ϕ! the bounce point occurs closer and closer to IR1, coinciding
with IR1 for ϕ0 = ϕ!. Once this happens the two branches of the previously
bouncing solution become two independent RG flows. For one, there is the
flow starting from UV2 and ending at IR1 (denoted by W21 in Fig. 4.9). This
is a zero-curvature flow from extremum to extremum. The 2nd branch of
the bouncing flow now becomes a flow starting at the minimum associated
with IR1 and ending at ϕ!. This is shown as W3+ in Fig. 4.9. The minimum
thus plays the role of a UV fixed point, which we label UV3 in Fig. 4.9. This
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Figure 4.8: Dimensionless curvature R vs. flow end point ϕ0. The leftmost
blue region is the IR region where non-skipping flows from UV1 can end.
The rightmost purple area is the IR region for skipping flows from UV1.
The light brown region is the IR region for flows starting from UV2 with a
negative source and no bounces along the flow. The green area is the IR
region for flows starting from UV2 with a positive source. The red region is
the IR region for flows from UV2 with a negative source but which exhibit a
bounce. The blue line is the critical curve B(ϕ) =

√
−3V (ϕ).

corresponds to a W+ solution in the language of section 2.4 with fixed value
R = Ruv|ϕ+|−2/∆+ 6= 0. We can make an analogous observation for flows
ending in the purple region, which originate from UV1 and skip IR1. Taking
ϕ0 → ϕ! the flows miss IR1 with ever decreasing distance, and pass through
IR1 for ϕ0 = ϕ!. Again, in this case we should not continue the flow beyond
IR1, which becomes the endpoint. This corresponds to the solution W11 in
Fig. 4.9.

4.2 A quantum phase transition

We have observed that there are more than one flows with the same di-
mensionless UV curvature parameter, R, and now we will focus on flows
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which start from UV1 and have the same source. These correspond to three
branches of solutions contained in the blue and purple regions in figure 4.8.
Beyond a certain value of the curvature, only the non-skipping solution in
the blue region exists, so this solution it is necessarily the ground state. On
the other hand, as we mentioned at the beginning of this section, at zero cur-
vature one of the skipping solutions is the true ground state. This suggests
that varying R we should encounter a phase transition.

To determine which solution is the dominant vacuum, we need to compare
their free energies. The computation of the free energy has been discussed in
length in section 3.2.1 of the previous chapter. It was mentioned that the free
energy is UV divergent and this divergence can be removed by holographic
renormalization. The number of counter-terms depends on the space-time
dimensions and in the previous chapter the main focus was on d = 3. In this
chapter we are interested in d = 4 and the renormalized free energy is

F d=4,ren(R|Bct, Cct) = lim
ε→0

[
F + F

(0)
ct + F

(1)
ct + F

(2)
ct

]
(4.2.1)

where F, F
(0)
ct , F

(1)
ct were defined in (3.2.13), (3.2.27) and (3.2.28) respectively.

The new counter-term for d = 4 is

F
(2)
ct = −Md−1

P

∫
UV

ddx
√
|γ| (R(γ))2 `3

48∆−
log(ϕ) . (4.2.2)

To compare the free energies, we evaluate expression (4.2.1) numerically,
supplemented by the appropriate counter-terms and we set Bct = Cct =
0. The numerical evaluation of the free energy difference between the two
skipping solutions and the non-skipping solution is shown in Fig. 4.10, which
clearly shows that we are in presence of a first order quantum phase transition
driven by space-time curvature. A similar phase transition was observed in
[86, 87] where temperature is the driving parameter.

At zero curvature, one of the skipping solutions dominates, and the second
one becomes degenerate with the non-skipping solution. As the curvature is
increased, the difference between the free energies decreases. At a certain
value of the dimensionless curvature, R = Rc, the free energy difference
changes sign. (In our example we find Rc ≈ 80.) Now, the non-skipping
solution is the dominant saddle point in the path integral. Finally, the two
skipping solutions merge at a maximal value R and disappear for larger
values of the curvature.



4.2. A QUANTUM PHASE TRANSITION 117

ϕϕ!

W (ϕ)

UV1

IR1

UV3

UV2

IR2

W3+(ϕ)

W11(ϕ)

W21(ϕ)

B(ϕ) =
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Figure 4.9: RG flows with IR endpoint ϕ0 → ϕ!. When the endpoint ϕ0

approaches ϕ! flows from both UV1 and UV2 pass by closely to IR1, passing
through IR1 exactly for ϕ0 = ϕ!. This is shown by the purple and red
curves. Beyond IR1 both these solutions coincide, which is denoted by the
colored dashed curve. These have the following interpretation. The flows
from UV1 and UV2 should not be continued beyond IR1, which becomes the
IR endpoint for the zero curvature flows W11 and W21. The remaining branch
(the colored dashed curve) is now an independent flow denoted by W3+. This
is a flow from a UV fixed point at a minimum of the potential (denoted by
UV3 above) to ϕ! and corresponds to a W+ solution in the notation of section
2.4 with fixed value R = Ruv|ϕ+|−2/∆+ 6= 0. While flows from UV1 and UV2

can end arbitrarily close to ϕ!, the endpoint ϕ0 = ϕ! cannot be reached from
UV1 or UV2.
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RRc

∆F = Fskip − Fnon-skip

Fskip,1 − Fnon-skip
Fskip,2 − Fnon-skip

Figure 4.10: Free energy difference between the skipping and the non-
skipping solution. For a fixed curvature, there are two skipping solutions
for which the function W (ϕ) was denoted as Ws,1(ϕ) and Ws,2(ϕ) (they were
denoted as red and green curves respectively in figures 4.3 and 4.4). In
this figure, the red curve corresponds to the free energy difference between
the Ws,1(ϕ) solution and the non-skipping solution. The green curve corre-
sponds to the free energy difference between the Ws,2(ϕ) solution and the
non-skipping solution Wns(ϕ).



Chapter 5

De Sitter and Anti-de Sitter
branes in self-tuning models

In chapter 2, we have discussed in details the holographic RG flows on maxi-
mally symmetric manifolds which can be either flat, dS or AdS in Lorentzian
signature. These solutions can be used to study a system when a brane (a
codimension-one hypersurface) is embedded in the bulk. On both sides of
the brane, solutions are the holographic RG flows. Introduction of the brane
requires matching solutions of both sides, known as Israel’s junction condi-
tions. In this chapter we study a bulk-brane system and look for solutions
when the brane is curved.

5.1 Braneworlds and holography

Soon after its first introduction in [12, 15, 16], it has been clear that the
holographic gauge/gravity duality is intimately linked to a new way of think-
ing about modified gravity and beyond the standard model phenomenology
which was being developed around the same time: the idea of the braneworld
[88, 89, 90]. In these models, several problems of the Standard Model or its
high-energy completion were addressed by postulating that the observed par-
ticles and fields are confined to a four-dimensional hypersurface (brane) em-
bedded in a higher-dimensional space-time (bulk). The connection to holog-
raphy, observed in [91, 92, 93], stems from the fact that the bulk was often
taken to be (a portion of) Anti-de Sitter space, which may be given a dual
interpretation in terms of a strongly coupled, large-N , four-dimensional field
theory. Since then, holographic duality and braneworld phenomenology have
often been two complementary sides of model building.

One of the earliest applications of braneworlds in this context was aimed
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at addressing the various naturalness problems which afflict the Standard
Model and General Relativity, both from the particle physics side (elec-
troweak hierarchy problem) and from the cosmology side (cosmological con-
stant problem(s)).

On the one hand, cosmological applications led to departures from solu-
tions describing a static flat brane in a static bulk, and prompted the study of
braneworld cosmology [94, 95, 96]. The connection between braneworld mod-
els and gravity modifications was proposed as a way to model the observed
current acceleration of the universe [97, 98].

On the other hand, it was proposed to use braneworld models to resolve
the clash between the huge vacuum energy resulting from quantum effective
field theory calculations and the smallness of the observed cosmological con-
stant of the current de Sitter-like epoch. These proposal aimed at realising
a self-tuning mechanism, first proposed in [99, 100], in which, contrary to
purely four-dimensional models, the vacuum energy from quantum loops has
no effect on the curvature of the brane, which is perceived as (almost) flat
by four-dimensional observers [101, 102].

Although in principle appealing, the models which were proposed at the
time all had issues related to the apparent inevitability of naked singularities
in the bulk and/or an impossibility to have both a successful self-tuning
mechanism and the existence of an effective four-dimensional gravity on the
brane[6].

Recently, a novel framework was developed, which revisits the self-tuning
braneworld approach [7] and which uses holography as a guiding principle for
model building. It consists of a general two-derivative Einstein-dilaton bulk
theory, and a codimension-one brane whose effective world-volume action
contains all possible two-derivative terms (namely a brane potential for the
scalar, an induced kinetic term for the scalar and an Einstein-Hilbert term for
the induced metric) preserving four-dimensional diffeomorphism invariance.
The bulk action is expected to be dual to a strongly coupled, large-N four-
dimensional QFT, while the brane action is expected to contain the Standard
Model fields as its localized fluctuations.

In the spirit of semi-holography (see e.g. [103]), asymptotically anti-de
Sitter solutions of this theory are interpreted as a purely four-dimensional
theory in which the bulk geometry is dual to a strongly interacting UV con-
formal field theory (CFT), deformed by a relevant operator (dual to the
bulk scalar) and coupled to a weakly interacting Standard Model sector (the
brane), a setup whose dual version was advocated in [104].

In the model described above, the brane separates the bulk geometry into
two regions: one side connects to an asymptotically AdS conformal boundary
(UV of the field theory dual). On the other side of the brane, the geometry
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may flow to another, regular, asymptotically AdS region (in which case the
field theory flows to an IR conformal fixed point).1 The two sides of the
geometry must obey the bulk Einstein-dilaton equations and the connection
across the brane must satisfy Israel’s junction conditions. Induced four-
dimensional gravity on the brane is recovered in a range of distance scales
via the DGP mechanism [105, 106] thanks to the localized Einstein-Hilbert
term in the brane action.2

The use of holography as a guideline for model-building, in order to or-
ganise the space of solutions, has allowed to solve or alleviate some of the
difficulties of the earlier models. In particular, holography can give a consis-
tent meaning to certain kinds of bulk singularities [107]. These are indeed
necessary to construct holographic duals of confining theories [26, 27, 108],
and they may be consistently eliminated by uplifting to higher dimensions
[109, 110].

As it was shown in [7], for rather generic choices of the bulk and brane
potentials, enforcing the holographic interpretation of the model results in a
self-tuning mechanism for the four-dimensional cosmological constant. The
model admits solutions in which the geometry on the brane is flat, regard-
less of the vacuum energy arising from quantum loops of the brane fields.
The brane is stabilized in the bulk at an equilibrium position, which is dy-
namically determined by the bulk geometry and brane potentials via Israel’s
junction conditions. Under certain general conditions, all fluctuations around
the equilibrium position have positive energy.

The fact that the framework proposed in [7] allows self-tuning flat so-
lutions opens new questions, and at the same time offers new possibilities
for model building. In [7], brane flatness and four-dimensional Poincaré in-
variance were imposed by design on the solution ansatz, and the self-tuning
mechanism corresponds to the existence of stabilized solutions with this sym-
metry. It is important however to explore, in the same context, other solu-
tions in which the brane has non-zero curvature and/or has a time-dependent
(cosmological) induced metric. One reason is to understand how these solu-
tions compete with the flat solution (which represents the Poincaré-invariant
vacuum). In addition, because we currently live in an accelerating universe,
obtaining a positively curved (e.g. de Sitter) metric on a brane is phenomeno-
logically important. Finally, it is important to clarify what is responsible,
from the dual field theory perspective, for obtaining a curved brane geometry.

In this chapter, we look for solutions of the self-tuning framework in

1It may also have a mild (resolvable) naked singularity, according to the Gubser crite-
rion.

2This term is generated via quantum effects of the brane localized fields.
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uUV

(a)

uUV

(b)
Figure 5.1: A sketch of the solutions allowing for a flat brane (a) and those
allowing for a curved brane (b). The thick black line represents the conformal
boundary of AdS, whereas the brane is represented in red. The direction u
is the holographic direction, and the thin black lines are constant-u hyper-
surfaces. The brane metric is inherited from the UV boundary metric (up to
a rescaling).

which the brane has a curved geometry. Our first result can be formulated
as follows: no vacuum curved-brane solutions generically exist3. A non-trivial
brane geometry can be obtained if one modifies the UV boundary conditions
on the bulk fields, such that they allow domain wall solutions with constant
curvature radial slices. In the dual QFT language this amounts to changing
the dual QFT. As we shall see, a de Sitter brane geometry will be possible
when the domain wall solution is sliced by de Sitter slices. In this case, the
bulk geometry is dual to a QFT defined on a constant positive curvature
manifold. For an AdS brane geometry, the bulk geometry is a domain wall
with negative curvature slices, and the UV field theory is a CFT with an
additional defect [57, 111].

Prompted by the above result, we set forward to study curved domain wall
geometries, and we ask the question whether stabilized curved brane solutions
do arise. We focus in particular on maximally symmetric geometries, in which
both the bulk and the brane preserve four-dimensional de Sitter (dS) or Anti-
de Sitter (AdS) invariance. The structure of these solutions is sketched in
figure 5.1, in which we show a comparison between the flat solutions studied
in [7] and the curved embeddings we discuss in this chapter.

As far as the bulk is concerned, the corresponding solutions describe holo-
graphic RG flows on maximally symmetric spaces and they were discussed

3By “vacuum” solution here we mean one where the bulk has 4d Poincaré invariance,
representing the ground state of the dual QFT.
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in chapter 2. The introduction of the brane amounts to gluing together two
bulk RG-flow solutions of the type described there, to impose regularity on
the IR side of the solution and to solve at the same time for the brane po-
sition and the UV part of the geometry in such a way that Israel’s junction
conditions are satisfied.

In these solutions, the metric on the brane is the same (up to a scaling
factor, which depends on the position in the bulk) as the UV metric to
which the dual CFT is coupled. For example, a de Sitter brane solution
can exist only if the dual CFT is set on de Sitter space, and similarly for
Anti-de Sitter. In the latter case, the holographic interpretation is more
subtle because, in addition to the usual boundary conditions in the radial
direction, one has also to introduce boundary conditions at the boundary of
the slices. As discussed in [8] (see also [57] for a previous similar discussion)
this introduces a codimension-one defect in the dual field theory.

Although the type of geometry of the brane is fixed by the boundary con-
ditions, the magnitude of the brane curvature and its position in the bulk are
determined dynamically by the field equations and the junction conditions.
We refer to this as self-stabilisation, which is the curved counterpart of the
self-tuning mechanism found in [7].4

There is an alternative realisation of the same solutions, which can be
obtained via a bulk coordinate transformation, in which the leading UV
asymptotics correspond instead to a flat metric, but the scalar sources are
varying in space or time. This leads to an inequivalent description in terms
of the dual QFT: instead of a boundary QFT living on a curved space-
time, we have a flat-space QFT driven by a time-varying (in the dS case)
or space-dependent (in the AdS case) source. The two descriptions however
result in the same brane geometry. Although in the bulk the two solutions
are related by a coordinate transformation, the latter acts non-trivially on
the boundary, and it leads therefore to an inequivalent theory with different
boundary sources. In most of the chapter we will work with the curved-CFT
description with constant scalar sources.

5.2 A curved brane in a warped bulk

In this chapter, we will consider Einstein-scalar theory in d + 1 dimensions,
coupled to a d-dimensional dynamical hypersurface (brane)

S = Sbulk + Sbrane . (5.2.1)

4We reserve the phrase self-tuning for the flat solutions, in which the effective cosmo-
logical constant on the brane is dynamically set to zero.
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The bulk action is given in (1.4.2) whereas the brane action is

Sbrane = Md−1
P

∫
ddx
√
−γ
(
−WB(ϕ)− 1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)RB

)
.

(5.2.2)
The framework above was considered in [7] as a way to describe, in a

gravity dual language, the interaction between weakly coupled physics (e.g.
the Standard Model) localized on the brane, and a strongly coupled, large
N CFT, described by the bulk geometry. In this context, the functions
WB(ϕ), Z(ϕ) and U(ϕ) may be thought as generated by integrating out the
brane-localized fields. In particular the function WB(ϕ) contains contribu-
tions from the brane vacuum energy.

It was shown in [7] that, rather generically, this kind of models allow
self-tuning solutions, in which the brane geometry is flat, regardless of the
value of the brane vacuum energy. In that work, the bulk geometry enjoyed
four-dimensional Poincaré invariance of constant-u hypersurfaces, which was
inherited by the brane.

In this chapter, we will move beyond flat brane solutions, and ask the
question, what kind of non-trivial brane geometries one can obtain within
the same framework. After some general considerations, we will then restrict
our attention to constant curvature brane geometries, i.e. either de Sitter or
Anti-de Sitter. We will not study the most general solution of the model
specified by the action (5.2.1), but we will restrict to situations in which
the bulk is static, leaving more general time-dependent geometries for future
work.

The simplest possibility to move in this direction is to look for a solution
in which the curvature is due solely to the embedding of the brane, and
the bulk geometry retains its four-dimensional Poincaré invariance. In this
ansatz, the boundary conditions (which define the dual CFT data) are the
same5 as those studied in [7]. As we will show in section 5.2.1 however, for
generic bulk and brane potentials, no solution of this kind exists. This leads
us to generalize the bulk ansatz, in a way described in chapter 2:

ds2 = du2 + e2A(u)ζµνdx
µdxν , (5.2.3)

where ζµν is the slicing metric.
In general, a co-dimension-one brane configuration preserving space-rotations

is described by an embedding of the form6 F (u, τ) = 0 for some function F ,

5In the dual CFT language such a solution would constitute an alternative state of the
same theory which gave the self-tuning vacuum.

6For definiteness, here we focus on a “cosmological” brane, whose induced metric de-
pends non-trivially on the time-coordinate τ . Similar considerations apply a static curved
brane, after trading τ for one of the space coordinates.
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or more explicitly by giving a trajectory in the holographic direction,

u = u?(τ). (5.2.4)

The situation considered in [7] was the case of a static, flat brane located
at u = u? and separating two different geometries (one for u < u?, one for
u > u?) of the form (5.2.3) with flat slices, ζµν = ηµν , and different scale
factors. Here, we want to look at more general solutions which allow for a
curved brane.

5.2.1 (No) Curved brane in a flat-sliced bulk

First, we address the question whether a constant curvature brane can be
embedded in a flat-sliced bulk, i.e. we take the bulk geometry to be the same
as in [7],

ds2 = du2 + e2A(u)ηµνdx
µdxν , ϕ = ϕ(u) (5.2.5)

but look for a more general brane embedding, specified by a non-trivial func-
tion u?(τ). Such a solution would result in a curved “cosmological” brane.
The bulk scale factor and scalar field on each side of the brane are a priori
different solutions of the the bulk Einstein’s equation,

(A,ϕ) =


(A−(u), ϕ−(u)) u < u?(τ)

(A+(u), ϕ+(u)) u > u?(τ)
(5.2.6)

Israel’s junction conditions then dictate how the left and right solutions must
be glued across the brane. The question is whether, for a given bulk theory
and a given choice of brane potentials, it is possible to find a non-trivial
embedding function such that Israel’s junction conditions are satisfied.

In general, the answer is negative: as we show in detail in Appendix
L, for generic choices of the brane potentials, no solutions to the junction
conditions may be found: for a non-trivial embedding function u?(τ) the
junction conditions require that all world-volume terms in the brane action
(5.2.2) must vanish7. As we discuss in Appendix L, for special choices of the
brane potentials however, non-trivial solutions may be found. These have
the curious property that, although these solutions are exact, there is no
backreaction of the brane onto the bulk (evanescent branes). For example, if

7This may still lead to interesting physics if we can treat the brane as a probe, as is
the case in the so called mirage cosmology [112, 113]. In this case the trajectory u?(t) is
determined by extremizing the world-volume action in a fixed background, ignoring the
backreaction on the bulk. However this is not our goal here, as we want to keep the
backreaction intact.
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WB, U and Z are positive constants, then a de Sitter embedding of the brane
exists if the bulk is Poincaré-AdS space-time with constant scalar field. More
generally, it may be possible to tune the brane potentials so that a certain
FWR embedding is possible in a given bulk solution. These special cases
however require the brane potentials to be tuned to specific functions so that
the corresponding brane embedding is compatible with the bulk solution.
Although this is interesting, this goes against our general philosophy, which
consists in taking the bulk and brane data as unrelated and as generic as
possible.

Given the result above, we have two possibilities for obtaining a curved
brane embedding:

1. We can keep a flat UV metric ζµν = ηµν but generalise the bulk
ansatz (5.2.3), embedding a non-trivial brane trajectory u?(τ) in a
time-dependent bulk of the general form

ds2 = n2(u, τ)du2 + β2(u, τ)dτ 2 + γ2(u, τ)δijdx
ixj (5.2.7)

We can then impose boundary conditions such that the metric reduces
asymptotically to the form

ds2 ' du2 + e−
2u
` [ζµν + . . .] dxµdxν , u→ −∞ (5.2.8)

with ζµν = ηµν , with time-dependent corrections entering only at sub-
leading orders.

2. Alternatively, we can study solutions in which the brane is static, and
at a fixed position u = u?, in a static bulk solution like (5.2.3) where
each slice is curved. The induced metric on the brane will inherit the
curvature of the corresponding constant-u slice. This choice necessarily
leads to a near-boundary expansion of the metric like in (5.2.8), with
a curved UV metric, which amounts to couple the dual UV CFT to a
curved background8. Note that this involves different AdS boundary
conditions and is therefore not in the same class of solutions as asymp-
totically flat conditions. However, as we will see in subsection 5.2.4,

8The same considerations applies to a more general class of bulk metrics than (5.2.3),
of the form

ds2 = du2 − β2(u)dτ2 + a2(τ)γij(u)dxidxj . (5.2.9)

These metrics have the property that any surface at u = u? has a fixed FRW geometry,
which can be brought in standard form after a world-volume coordinate transformation
acting on (τ, xi). However different constant-u slices differ by more than just an overall
rescaling. One can easily show that, also in this case, the near-boundary expansion leads
to a non-trivial time-dependent UV metric.



5.2. A CURVED BRANE IN A WARPED BULK 127

it is possible to rewrite these solutions in terms of a flat space CFT,
which however is coupled to time- or space-dependent external sources.

In the rest of this chapter we will explore the second option, and embed
the brane as a static hypersurface in a bulk metric of the form (5.2.3), where
ζµν is identified with the metric of the dual UV CFT. However these solutions
are not unrelated to the first option described above: as we will discuss in
more detail in section 5.2.4, a coordinate transformation can bring a solution
of the form (5.2.3) to one of the form (5.2.7) with flat asymptotic conditions,
at the cost of introducing a time- or space-dependence in the scalar field
at leading order in the near-boundary expansion. In the holographic dual
language, this situation describes a CFT living on flat space, but driven by
a varying scalar source.

5.2.2 The junction conditions

We are now in the position to introduce the brane as an interface between
two geometries of the form (5.2.3). The dynamics of the brane is encoded in
the junction conditions, as we explain below.

We consider solutions where the geometry to one side of the brane con-
nects to an UV-type region, and the other to an IR-type region. To distin-
guish between the two sides, we label the metric and scalar field on the two
sides of the brane by gUVab , g

IR
ab and ϕUV , ϕIR. When a quantity X exhibits a

jump across the position of the brane, this will be written as
[
X
]UV
IR

. The
Israel matching conditions then result in the following two requirements:

1. The metric and scalar field are continuous across the brane:[
gab

]UV
IR

= 0 ,
[
ϕ
]IR
UV

= 0 . (5.2.10)

2. The extrinsic curvature as well as the normal derivative of ϕ are dis-
continuous:[
Kµν − γµνK

]IR
UV

=
1√
−γ

δSbrane
δγµν

,
[
na∂aϕ

]IR
UV

= − 1√
−γ

δSbrane
δϕ

.

(5.2.11)
Here γµν = e2A(u)ζµν is the induced metric, Kµν is the extrinsic curva-
ture of the brane with K = γµνKµν the trace, and na is a unit vector
normal to the brane with orientation towards the IR.
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For our setup given in (5.2.2) the equations (5.2.11) become[
Kµν − γµνK

]IR
UV

=

[
1

2
WB(ϕ)γµν + U(ϕ)GB

µν −
1

2
Z(ϕ)∂µϕ∂νϕ

+
1

4
Z(ϕ)γµν(∂ϕ)2 + (γµνγ

ρσ∇ρ∇σ −∇µ∇ν)U(ϕ)

]
ϕ?

,

(5.2.12)

[
na∂aϕ

]IR
UV

=

[
dWB

dϕ
− dU

dϕ
RB +

1

2

dZ

dϕ
(∂ϕ)2 − 1√

−γ
∂µ
(
Z
√
−γγµν∂νϕ

) ]
ϕ?

,

(5.2.13)

where ∇µ, GB
µν and RB are the covariant derivative, Einstein tensor and Ricci

scalar computed from the induced metric and ϕ?(x
µ) ≡ ϕ(u?, x

µ) is the scalar
field at the position of the brane. Furthermore, for our setting we find:

Kµν = Ȧγµν , Kµν−γµνK = −(d−1)Ȧγµν =
1

2
Wγµν , na∂aϕ = ϕ̇ = S .

(5.2.14)

From the induced metric on the brane γµν = e2Aζµν , we find that RB
µν = R

(ζ)
µν

and RB = e−2AR(ζ), where R(ζ) is the slicing curvature associated with the
metric ζµν . Hence

GB
µν = Gζ

µν =
1

2
(2− d)κ e−2Aγµν =

2− d
2d

Tγµν , (5.2.15)

where we have used the definitions (2.2.1)–(2.2.3). We introduce WUV , SUV
and WIR, SIR as the functions W and S for the UV and the IR regions,
respectively. Using these quantities we can then write the junction conditions
(5.2.12)–(5.2.13) as:

WIR −WUV |ϕ∗ = WB +
(2− d)

d
U T

∣∣∣∣
ϕ?

, (5.2.16)

SIR − SUV |ϕ∗ = WB
′ − U ′ T |ϕ? . (5.2.17)

From the continuity of the metric (5.2.10), we can infer that the scale factor
is continuous across the brane and the same is true for the function T (ϕ),

TUV (ϕ?) = TIR(ϕ?) . (5.2.18)

Using the continuity of T and ϕ across the brane, it follows from (2.2.5)
that

d

2(d− 1)
W 2
UV − S2

UV

∣∣∣
ϕ?

=
d

2(d− 1)
W 2
IR − S2

IR

∣∣∣
ϕ?

(5.2.19)
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We can write the conditions (5.2.16)–(5.2.17) as

WUV |ϕ∗ = WIR −WB −
2− d
d

UTIR

∣∣∣∣
ϕ?

(5.2.20)

SUV |ϕ∗ = SIR −W ′
B + U ′TIR|ϕ? . (5.2.21)

From the equation of motion we can write

Q2W 2
UV − S2

UV − 2TUV + 2V = 0 (5.2.22)

where Q2 = d
2(d−1)

. Using eqs. (5.2.20)–(5.2.21) and using the fact that T
and ϕ are continuous, we can express everything in terms of IR quantities.
Using also Q2W 2

IR−S2
IR−2TIR+2V = 0 and after a bit of algebra we obtain

the condition:[
− 2Q2WIR

(
WB +

2− d
d

UTIR

)
+Q2

(
WB +

2− d
d

UTIR

)2

+ 2SIR (W ′
B − U ′TIR)− (W ′

B − U ′TIR)
2

]
ϕ?

= 0 . (5.2.23)

Notice that all functions of ϕ involved in this equation are in principle
known, in terms of a few input quantities: V , WB and U are fixed by the
choice of the action; WIR, SIR and TIR are determined by regularity, plus the
choice of the endpoint ϕ0 of the IR solution. Therefore, once the underlying
model and ϕ0 are chosen, (5.2.23) provides a transcendental equation for
the brane position ϕ?, which generically has a finite number of solutions
(including the possibility of no solution).

Once ϕ? is determined, we can use equations (5.2.20)–(5.2.21) as initial
conditions for WUV and SUV , to be used in the system of differential equations
(2.2.7)–(2.2.8) which determines the solution for W and S in the UV and
the corresponding values of R and C (the dimensionless curvature and vev
parameters).

To summarize, one can use the following algorithmic procedure to solve
the system from the IR, across the brane, to the UV:

choice of ϕ0 → WIR, SIR → ϕ? → WUV , SUV → R, C (5.2.24)

The only control parameter here is ϕ0, which determines everything else. In
particular, the choice of ϕ0 at an IR extremum of the potential would result
in the flat-sliced solution with R = 0. For the case when the flat solution IR
is reached as ϕ→∞, things are more subtle, as we will see in section 5.3.
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5.2.3 Junction rules

Here we discuss what are the geometric rules to patch together two geome-
tries across the brane, and which types of junctions give rise to a sensible
holographic interpretation.

In the positive or zero curvature case, the flow of A(u) is monotonically
decreasing from the UV to the IR. Since Ȧ ∝ −W , the scalar function W (ϕ)
cannot change sign.9 At the junction, we must require that one side of the
brane actually connects to a UV region, and the other to an IR region. This
implies that the flow of A(u) must not change direction, i.e. Ȧ should not
change sign, across the brane. Since at the brane position ȦUV ∝ −WUV (ϕ?)
and ȦIR ∝ −WIR(ϕ?), we must discard solutions in which WUV (ϕ?) and
WIR(ϕ?) have opposite signs. If that were the case, we would be joining two
UV or two IR regions.

The above constraint does not apply to solutions with negatively curved
slices: in this case Ȧ (and W ) can change sign in the bulk, and there is no
reason why it should not change sign across the brane. In fact, in this case,
both sides of the brane eventually reach a UV region.

Next, since we will solve the matching conditions in field space, rather
than in coordinate space, we need to understand towards which side (i.e. di-
rection of increasing or decreasing ϕ away from ϕ?) one should follow the
solution WUV (ϕ) on the UV side of the brane. As we discussed at the end of
the previous subsection, if we start from the IR side of the solution, the junc-
tion conditions determine the pair of initial conditions (SUV (ϕ?),WUV (ϕ?))
for the system (5.2.20)–(5.2.21), and we need to know if we should keep the
solution for ϕ > ϕ? or ϕ < ϕ?. To understand what the correct choice is,
recall that in our conventions the coordinate u runs in the same direction
on both sides of the brane, and we take it to be increasing from the UV
to the IR. Therefore if the brane is at u?, the IR side is u > u?, and the
UV side is u < u?. Then, to be consistent with this choice, it is the sign of
ϕ̇(u?) ≡ SUV (ϕ?) which decides which one is the right direction to follow on
the UV side:

• If SUV (ϕ?) > 0, then ϕ̇(u?) > 0 at the brane, and we should take the
UV solution such that ϕ increases towards the brane, i.e. the solution
WUV , SUV for ϕUV < ϕ?.

• Conversely, if SUV (ϕ?) < 0, we should take the other part of the solu-
tion, the one with ϕUV > ϕ?.

This junction rule is summarized graphically in figure 5.2.

9Since the overall sign of W can be changed by sending u→ −u, we will always choose
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φ

UV

WIR

W

φ

IR

WUV

W

SUV (ϕ?) > 0 SUV (ϕ?) < 0

Figure 5.2: Junction rules in field space. The vertical solid line indicates the
locus of the brane.

Finally, due to stability requirements of the solution, some care is needed
when choosing the combination of bulk and brane potentials appearing in the
action. Because we will not pursue phenomenological applications here, and
in general we will not worry about whether the functions chosen can lead to
physics compatible with observation (e.g. the presence of four-dimensional
gravity in the brane), we will try to require that at least the flat solutions be
free of ghosts and tachyonic instabilities. Although this does not straight-
forwardly guarantee stability of the curved solutions, there are strong indi-
cations that this is the case, at least for the positive curvature solutions, as
discussed in section 4.5 of [8].

That there are no instabilities in the bulk is automatically guaranteed if
the scalar field kinetic term has the correct sign, and there are no violations
of the BF bound in the UV or in the IR. However, some unstable modes can
still arise due to the brane fluctuations. For the flat case, the analysis of
[7] showed that there are very simple sufficient conditions which guarantee
the absence of ghosts and tachyonic instabilities for the self-tuning flat brane
solutions. These are:

U(ϕ?) > 0, Z(ϕ?) > 0 (5.2.25)

WB(ϕ?)

WIR(ϕ?)WUV (ϕ?)
>
U(ϕ?)

3
, (5.2.26)

Z(ϕ?)

(
WB(ϕ?)

WIR(ϕ?)WUV (ϕ?)
− U(ϕ?)

3

)
>

(
dU

dϕ

)2

ϕ?

, (5.2.27)

W > 0 for definiteness.
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W ′′
IR(ϕ?)−W ′′

UV (ϕ?) < W ′′
B(ϕ?). (5.2.28)

Conditions (5.2.25) are also necessary : violating either of them would guar-
antee the presence of either a spin-2 or a spin-0 ghost. On the other hand,
the other conditions are only sufficient, but if they are violated the stability
analysis becomes much more involved, and requires a detailed perturbation
analysis of the full bulk solution.

Since here we will not aim to build explicit, realistic phenomenological
models, we will not always strictly enforce the conditions (5.2.26)–(5.2.28),
not to limit too much the scope of the examples we study.

5.2.4 Curved CFT boundary metrics vs. variable scalar
sources

In this section we briefly comment on a possible alternative realisation of
the solutions described so far, in terms of a dual CFT living in Minkowski
space, but coupled to a non-trivial time-dependent (for dS branes) or space-
dependent (for AdS) external source.

In the UV region, the bulk metric (5.2.3) takes the asymptotic form
(5.2.8), where ζµν is the metric to which the dual CFT is coupled, and in the
examples described above is (A)dSd. It is well known (see e.g. [59]) that one
can foliate AdSd+1 by either Minkowski, dSd or AdSd. From the bulk point
of view, these choices only differ by a coordinate transformation. From the
dual field theory point of view, however, different coordinate choices lead to
different physical theories, as the appropriate coordinate transformation acts
non-trivially on the conformal boundary and it changes both the metric and
the scalar sources.10 Therefore, we can use these coordinate transformations
to find new solutions with a different holographic interpretation. In the rest
of this section we consider the case of a dS brane for definiteness.

Let us therefore consider dS-sliced domain walls. Going from a curved
to a flat foliation by a coordinate transformation is only possible if the bulk
is exactly AdSd+1, not only asymptotically. However, we can still perform
a coordinate transformation to new radial and time coordinates (ρ, t) of the
form

u = f(ρ, t), τ = g(ρ, t), (5.2.29)

such that close to the UV boundary it changes a dS slicing into a flat one. If
we take τ to be the conformal time coordinate in the de Sitter metric ansatz,

10A well-known example of this phenomenon is the difference between global and
Poincaré AdS coordinates, which give a different structure of the conformal boundary
metric and describe a dual field theory on R× Sd−1, and R1,d−1, respectively.
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i.e. ζµν = H2

τ2 ηµν , f and g can be two arbitrary smooth functions constrained
only by demanding that their asymptotic form leads to a flat UV metric in
the new coordinates (ρ, t), ζµν = ηµν , in the limit u → −∞. This imposes
the following constraints,

f(ρ, t)→ ρ− ` ln

(
− t
`

)
, g(ρ, t)→ t, ρ→ −∞, (5.2.30)

where −∞ < t < 0 (see e.g. section 4.4 of [8] for the full coordinate trans-
formation, from which the limits (5.2.30) can be easily obtained).

In the original coordinates (u, τ) the brane was located at the equilibrium
position u = u?. In the new coordinates this will result in a non-trivial
trajectory,

f(ρ, t) = u? ⇒ ρ = ρ?(t). (5.2.31)

The important point is that, by construction,

1. The junction conditions are still satisfied, since they have tensorial
nature;

2. The induced metric on the brane is diffeomorphic to the original one
before the change of coordinates.

This implies that we have an alternative embedding of the same dS brane,
which is now moving in an asymptotically AdS space-time whose asymptotic
boundary has a flat metric source. The dual field theory lives therefore in
flat space.

This is not the end of the story however: recall that the bulk has also a
non-trivial scalar field profile. In the old coordinates (u, τ) this is described by
a function ϕ(u), which becomes a time-dependent function ϕ(ρ, t) in the new
coordinates. This has an important implication: writing the near-boundary
scalar field asymptotics (2.4.10) in the new coordinates using (5.2.30), we
find

ϕ(ρ, t) ' ϕ−

(
`

|t|

)∆−

`∆−e∆−ρ/` + . . . ρ→ −∞. (5.2.32)

In the holographic dictionary, this implies that the CFT is coupled to a
time-dependent external source

j =

(
`

|t|

)∆−

ϕ− (5.2.33)

The source is switched on from j = 0 at early times and increases in time as
a power-law. Thus, in this language, cosmological de Sitter expansion of the



134CHAPTER 5. DE SITTER ANDANTI-DE SITTER BRANES IN SELF-TUNINGMODELS

brane is driven by a time-dependent source in a flat-space CFT. This gives
an alternative (and, from the CFT standpoint, inequivalent) description of
the solutions we are discussing.

Notice that the only case in which one can embed a dS brane in a flat CFT
with no sources is the Karch-Randall-like setup, where the bulk is AdS (in
any coordinates), with no scalar field. In this case a non-zero brane tension
and/or induced Einstein term generically require patching together two AdS
spaces with different curvatures, as was the case in [114, 115, 116].

5.3 IR exponential potential

We now present implementations of the self-stabilisation mechanism in one
example model characterized by an infinite range of the bulk field ϕ. Other
models with a IR fixed point are discussed in [10]. Here and in what follows
we set d = 4. A particular model will be characterised by a choice of bulk
potential V (ϕ) and the brane quantities WB(ϕ) and U(ϕ). While the func-
tions V , WB and U should be determined from a microscopic model, this
goes beyond the scope of this analysis. Instead, the functions will be chosen
by hand and the consequences for self-stabilisation studied. Also, we will not
be interested in constructing phenomenologically viable models, as this also
goes beyond the scope of this investigation. The main goal of this section
is to study the viability and efficacy of self-stabilisation in this holographic
setting with non-zero UV curvature. In particular, we wish to answer the
following questions:

1. How do self-stabilising solutions with non-zero UV curvature differ from
the self-tuning solutions with vanishing UV curvature studied in [7]?

2. How does the brane curvature RB depend on the UV curvature R(ζ)?
E.g. can RB be small while R(ζ) is large (in suitable units) and vice
versa.

3. Can the brane curvature RB be small in units of the 4d Planck mass
M4 on the brane without the need of tuning of model parameters?

To be specific, we choose:

V (ϕ) =
1

`2

[
−12− ϕ2

(
1

2
∆(4−∆)− b2

4

)
− V1 sinh2

(
bϕ

2

)]
, (5.3.1)

with 2 < ∆ < 4 and V1 > 0 and b another (dimensionless) parameter. We
will set ` = 1 in the following. The maximum of V is at ϕmax = 0, which, in
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Figure 5.3: The bulk potential (5.3.1) with ∆ = 2.8, ` = 1 and b = 1.2
√

2
3
.

the language of holographic RG flows, is a UV fixed point with corresponding
UV CFT. In this framework the parameter ∆ is interpreted as the dimension
of the operator perturbing this UV CFT. However, as there are no minima
the IR is only reached for |ϕ| → ∞. A plot of this potential is displayed
in Fig. 5.3. One reason for choosing a potential with unlimited range in
ϕ is as follows. In [7], for the case of a flat brane, it was observed that
bulk potentials with a finite range for ϕ do not easily exhibit self-tuning
solutions satisfying the stability criterion (5.2.26), at least not without some
fine-tuning of parameters. However, for potentials with infinite range in ϕ
this difficulty can be overcome, as was shown for the case of a flat brane in
[7] using an example based on bulk potential (5.3.1).

To allow comparisons with the results in [7] we choose a brane potential
with the same mathematical form. Hence we will work with the following
brane quantities:

WB(ϕ) = Λ4

[
−1− ϕ

s
+
(ϕ
s

)2
]
, U(ϕ) = const , (5.3.2)

where Λ and s are numerical parameters (as we have set ` = 1). The brane
potential is chosen such that it has at least one zero for ϕ > 0. The position
of the zero is controlled by s. Again, absent any prior knowledge regarding
U(ϕ) we take it to be constant for simplicity.



136CHAPTER 5. DE SITTER ANDANTI-DE SITTER BRANES IN SELF-TUNINGMODELS

5.3.1 Analytical results

Before moving on to numerical studies, we collect analytical results for the
asymptotic region ϕ → ∞. Note that apart from a region in the vicinity of
ϕmax = 0 the potential is well-approximated by an exponential. As a result,
an analytical understanding of solutions for an exponential potential will turn
out to be very helpful for the interpretation of our numerical findings.

Therefore, we collect analytical solutions for an exactly exponential bulk
potential. To be specific, we will consider

V = −V∞ exp (bϕ) , (5.3.3)

which is the asymptotic form of (5.3.1) for ϕ→∞ if we identify V∞ = V1/4.
For ϕ→∞ the bulk solutions fall into three classes.

1. Continuous branch:
For one there exists a family of solutions of the form

W ' W0 e
Qϕ , S ' W ′ , T ' T0 e

Qϕ , where Q =

√
2

3
. (5.3.4)

In this case W0 and T0 are free parameters. The existence of this branch
of solutions requires

b < 2Q = 2

√
2

3
. (5.3.5)

This branch also exists for flat solutions (albeit with T0 = 0) . For
ϕ → ∞ these solutions exhibit an unacceptable singularity according
to Gubser’s criterion [107]. For more details on this class of solutions
see e.g. [5].

2. A special solution with S = W ′:
There exists an isolated solution of the form

W = W0 e
bϕ/2 , S = W ′ , T = 0 , with W0 =

√
8V∞

4Q2 − b2
,

(5.3.6)

with Q defined as in (5.3.4). Again, this solution only exists for

b < 2Q = 2

√
2

3
. (5.3.7)

This is the special flat solution satisfying Gubser’s criterion, giving rise
to an acceptable IR singularity.
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3. A special solution with S = W/(3b):
Finally, the equations of motion (2.2.4)–(2.2.6) also admit the solution

W = W0 e
bϕ/2, S =

W

3b
, T = T0 e

bϕ , (5.3.8)

with W0 =
√

6V∞ , T0 =

[
2b2 − 4

3

]
V∞ .

This solution exists for any value of b, but we observe that the sign of
the function T depends on b as follows:

b >

√
2

3
⇔ T > 0 ,

b <

√
2

3
⇔ T < 0 ,

b =

√
2

3
⇔ T = 0 .

For b2 = 2/3 the solution of type 3 discussed and the one of type 2
discussed above are identical.

Here we see that non-zero curvature gives rise to a new solution reaching
the asymptotic IR region ϕ → +∞, for which W (ϕ) has the same
exponential growth but different overall magnitude as the special, flat
solution, and for which S 6= W ′. Depending on the value of b these
solution are found either for R > 0 only, or for R < 0 only.

Intriguingly, the critical value separating these cases, b =
√

2/3, is
the same which separates confining from non-confining theories. This
may signal interesting consequences in regards to confining holographic
theories on curved manifolds, whose analysis we leave for further inves-
tigation.

5.3.2 Numerical studies

We now return to a study of the model with the full bulk potential (5.3.1) and
brane quantities (5.3.2). In particular, we now solve numerically for solutions
of the bulk-brane system. For definiteness, we will choose the following values
for the parameters:

∆ = 2.9 , Λ = 3 , s = 8 , V1 = 1 , U = 10−4 , (5.3.9)
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Figure 5.4: Equilibrium brane position ϕ? vs. R for R > 0. Results are
obtained for bulk potential (5.3.1), brane quantities (5.3.2) and parameter
values (5.3.9). The left figure (a) is for b = 1.1×

√
2/3 and the right figure

(b) is for b = 0.9×
√

2/3.

but these values are in no way special. However, a small numerical value for
U will turn out to be favourable for satisfying the stability criteria (5.2.26)
and (5.2.27). We then perform the analysis for two different values of b. In
particular, we will study the cases

b = 1.1
√

2/3 and b = 0.9
√

2/3 . (5.3.10)

We will restrict our analysis to solutions with positive UV curvature R >
0, as this will exhibit all the phenomena that we wish to illustrate with this
example. In fig. 5.4 we show the space of solutions by plotting the equilibrium
brane position ϕ? vs. R. In fig. 5.4a we show the results for b = 1.1

√
2/3

while the results for b = 0.9
√

2/3 are displayed in fig. 5.4b.
One common observation for both values of b is that solutions only exist

for a very narrow range in R. In particular, we find that solutions only exist
for the following values of R:

b = 1.1
√

2/3 : solutions exist for 0.00066 . R . 0.00084 and R = 0 ,

b = 0.9
√

2/3 : solutions exist for 0 ≤ R . 4.5 · 10−6 .

That is, for b = 0.9
√

2/3 we only find solutions with very small absolute

values of R. For b = 1.1
√

2/3 solutions with finite R can only exist in a very
narrow band of width ∆R ∼ 2 ·10−4 about the central value R ∼ 7.5 ·10−4.11

11Here we collect further, but less important observations. For one, we find that there
are typically two solutions for the equilibrium position ϕ? ifR permits a solution. Also, for
completeness, note that for R → 0 the lower branch in fig. 5.4b is continuously connected
to a solution with R = 0, whereas this is not the case for the upper branch.
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Figure 5.5: The brane curvature RBM
−2
4 vs. R for b = 1.1×

√
2/3. Results

are obtained for bulk potential (5.3.1), brane quantities (5.3.2) and parameter
values (5.3.9).

We can understand all these observations with the help of the analytical
results collected in the previous section. To this end note that, for all the so-
lutions, the brane finds it equilibrium position at a value of ϕ where the bulk
potential is well approximated by an exponential.12 As a result, immediately
to the left and the right of the brane the bulk solutions will, at leading order,
be given by the solutions collected in section 5.3.1. More precisely, as the
potential is not exactly exponential, the solutions in the full potential will be
given by those in sec. 5.3.1 up to some small corrections. With this we can
explain the results in fig. 5.4 as follows.

• On the IR side of the brane all solutions for b = 1.1
√

2/3 are small
perturbations of the special solution of type S = W/(3b) (case 3) in
the classification of sec. 5.3.1. As this is a unique solution only a small
subset of solution leaving the UV fixed point will asymptote to this
solution. This explains the narrow range in R for which solutions exist.
In addition, for b = 1.1

√
2/3 this type of solution has T 6= 0, which

implies that R 6= 0. Hence we do not expect these solutions to exist
for arbitrarily small values of R, which is exactly what we observe. In

12Note from fig. 5.4 that for all the solutions obtained the brane equilibrium position
takes values ϕ? & 13. There the bulk potential is well-approximated by

V = −V1

4
ebϕ
(

1 +O
(
ϕ2e−bϕ

))
.
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Figure 5.6: The brane curvature RBM
−2
4 vs. R for b = 0.9×

√
2/3. Results

are obtained for bulk potential (5.3.1), brane quantities (5.3.2) and parameter
values (5.3.9). The plots (a) and (b) exhibit results for the two branches of
solutions separately.

other words, there is a gap in solutions for R > 0.

• In contrast for b = 0.9
√

2/3 the solutions on the IR side of the brane
are small perturbations of the special solution of type S = W ′ (case
2) in the classification of sec. 5.3.1.13 Note that this type of solution
has T = 0 exactly, which would imply R = 0. Since the potential is
not exactly exponential, the solutions are only approximately of type
2 and finite but small values of R are allowed. This is exactly what we
observe in fig. 5.4.

Next, we study the brane curvature across our space of solutions. For
b = 1.1

√
2/3 we plot RBM

−2
4 vs. R in fig. 5.5. The main observation is

that, unless R = 0, the brane curvature RB is always finite and never small.
(In fact, for our unrealistic choice of brane parameters it is also extremely
super-Planckian.) There is no continuous limit where RBM

−2
4 → 0.

For b = 0.9
√

2/3 the findings are qualitatively different. We display the
corresponding results for RBM

−2
4 vs. R in fig. 5.6. In particular, in fig. 5.6a

we show results for the lower branch in fig. 5.4a, while fig. 5.6b contains
the data for the upper branch of fig. 5.4a. Most importantly, the lower
branch exhibits a limit RB → 0 for R → 0 which is continuously connected
to a solution with RB = 0 and R = 0. On the other branch of solutions
(fig. 5.6b) RB is never zero and potentially diverges for R → 0.14

13For b = 0.9
√

2/3 solutions of type 3 have T < 0 and hence R < 0. As we restrict our

attention to configurations with R > 0 we cannot find solutions of type 3 for b = 0.9
√

2/3.
14We could not determine this decisively in our numerical analysis. While we observe

that both ϕ? and RBM
−2
4 increase on this branch when R is decreased, we can neither
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Last, we comment on the stability of the solutions obtained here. In [7]
a set of sufficient criteria (5.2.25)–(5.2.28) was derived which guarantee the
perturbative stability of a flat brane solution. Here we do find a branch
which in the limit R → 0 is connected continuously to a flat brane solution.
By an explicit calculation we find that this solution satisfies the stability
criteria (5.2.25)–(5.2.27), but not (5.2.28). This is not necessarily fatal, as
(5.2.28) is only a sufficient condition for stability. However, a more detailed
analysis is necessary to conclusively determine the stability of this solution,
which is beyond the scope of this analysis. We further expect the stability
properties of the flat solution also to extend to the branch of curved brane
solutions connected to the flat solution. The reason is that the solutions
exhibit positive boundary or brane curvature, which we do not expect to
aversely affect stability.

We are now in a position to summarise our findings for the model studied
in this section.

1. We find the space of solutions in R to be highly restricted. The reason
is that for large ϕ for all solutions have to asymptote to one of the two
unique solutions. In our case these are the two special solutions for an
exponential bulk potential described in sec. 5.3.1. Only a small subset
of solutions departing from the UV fixed point will asymptote to such
a solution and all lie within a narrow range in R.

2. We again find a branch of solutions that in the limitR → 0 is connected
continuously to a flat brane solution with R = 0 and RB = 0. Here we
made sure that flat brane limit satisfies the criteria (5.2.25)–(5.2.27)
for perturbative stability. It does not satisfy the sufficient condition
(5.2.28).

exclude nor confirm whether this continues for arbitrarily small values of R.
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Chapter 6

Conclusions

6.1 Summary of the results

In this thesis, we studied two-derivative Einstein-scalar theory in (d + 1)-
dimensions:

S[g, ϕ] = Md−1
P

∫
du ddx

√
|g|
(
R(g) − 1

2
∂aϕ∂

aϕ− V (ϕ)

)
+ SGHY (6.1.1)

and considered solutions with a scalar field profile ϕ = ϕ(u) and a metric
ansatz given by

ds2 = du2 + e2A(u)ζµνdx
µdxν , (6.1.2)

where the bulk is foliated by maximally symmetric space-times with positive
or negative curvature. With our work, we have extended the systematic anal-
ysis of flat RG flows presented in [5]. Via gauge/gravity duality, the ansatz
(6.1.2) describes RG flows of field theories defined on manifolds with con-
stant positive curvature (Sd or dSd, depending on the signature) or constant
negative curvature (Hd, AdSd). In this thesis, we presented two applications
of the holographic RG flows on curved manifolds. The main results of these
studies are summarized below.

6.1.1 Holographic RG flows on curved manifolds

In chapter 2, we have studied the holographic RG flows on maximally sym-
metric manifolds. What we have found is as follows.

To make the connection between the bulk geometry and the RG flows, first
we defined two independent scalar functions W (ϕ) and S(ϕ) which satisfy:

W (ϕ(u)) ≡ −2(d− 1)
dA(u)

du
, S(ϕ(u)) ≡ dϕ(u)

du
. (6.1.3)

143



144 CHAPTER 6. CONCLUSIONS
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ϕ0
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ϕ

W (ϕ)

WC,R(ϕ)
√
−4(d−1)V (ϕ)

d

Figure 6.1: Family of solutions WC,R(ϕ) in the vicinity of a UV fixed point
located at a maximum of the potential. For a field theory with a given UV
value of the source and fixed Ruv only a finite number of these solutions (here
only one) can be completed into a flow reaching an IR end point at ϕ0. The
shaded region below the blue curve is not accessible for Ruv ≥ 0.

In terms of these functions the equations of motion became a set of non-
linear first order differential equations (2.2.7) and (2.2.8). The holographic
β-function can be expressed in terms of W (ϕ) and S(ϕ):

β(ϕ) ≡ dϕ

dA
= −2(d− 1)

S(ϕ)

W (ϕ)
. (6.1.4)

The holographic RG flows coincide with the space of regular solutions of
W (ϕ) and S(ϕ) which depends on the sources of the boundary field theory
RUV and ϕ−.

It is a well-known result from holography that, when the boundary theory
is in flat space, UV fixed points are associated with extrema of the potential
V . This persists at finite boundary curvature (Ruv 6= 0).

• Maxima of V : For maxima of V , we found solutions describing a rele-
vant deformation away from a UV fixed point. Such solutions came as
two-parameter families WC,R(ϕ), SC,R(ϕ), where C and R are dimen-
sionless parameters related to the vev of the deforming operator and to
the UV value of the scalar curvature Ruv, respectively. At most a finite
subset of these solutions can be extended to globally regular solutions
corresponding to RG flows. This is shown schematically in figure 6.1.

• Minima of V : Flows away from a minimum of V also exist and are
driven by the vev of an irrelevant operator [5]. There is only one free
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Figure 6.2: The solid lines show the scalar field (left) and scale factor (right)
profiles of a positive curvature RG flow geometry, from the UV (u → −∞,
ϕ→ 0) to the IR endpoint (u = u0, ϕ = ϕ0). The dashed lines represent the
solutions with zero curvature, extending all the way to u→ +∞ and to the
IR fixed point at ϕ = ϕIR.

parameter R related to Ruv. These solutions are all badly singular in
generic theories and can only be extended to globally regular solutions
in special cases.

The behavior in the innermost region of the geometry (far from the UV
boundary) depends on the sign of the curvature Ruv of the boundary metric.

• For field theories on manifolds with Ruv > 0, non-singular flows stop at
an IR endpoint, where eA → 0, ϕ takes on a finite value ϕ0, and S(ϕ) =
ϕ̇ = 0. At the endpoint, the function W diverges as W ∼ |ϕ−ϕ0|−1/2.
This behavior is shown schematically in figures 6.1 (function W ) and
6.2 (scalar field and scale factor). The bulk geometry is regular and
becomes approximately AdSd+1 when approaching the IR endpoint.
An important remark is that, when the field theory curvature is non-
vanishing, the IR endpoint cannot be located at a minimum of the
scalar potential.

• For field theories on manifold with Ruv < 0, the flow eventually reaches
a turning point ϕ0 where both A(u) and ϕ(u) invert their direction,
but the value of eA remains finite. These points are characterized by
S(ϕ0) = W (ϕ0) = 0. As u increases past the turning point, the ge-
ometry connects back to the boundary of AdSd+1. Therefore, in this
case, there is no IR endpoint, but rather an IR “throat” connecting
two boundary regions. This behavior is shown schematically in Figure
6.3. This situation was already discussed in [60] in the case of pure
gravity. As it was pointed out there, the two UV regions are part of
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Figure 6.3: The solid lines show the scalar field (left) and scale factor (right)
profiles of a negative curvature RG flow geometry, from the left boundary
(u → −∞, ϕ → 0) to the turning point (u = u0, ϕ = ϕ0), to the right
boundary (u → +∞, ϕ → 0). The solution is symmetric around u0. The
dashed lines represent the zero-curvature solution interpolating from the UV
boundary to the IR fixed point at ϕ = ϕIR, and featuring a monotonic scale
factor.

the same AdSd+1 boundary, and are connected via the AdSd boundary
of the codimension-one slices.

In general, any point ϕ0 can be an IR end point (Ruv > 0) or turning
point (Ruv < 0), as long as ϕ0 is not an extremum of V . However, for
a given curvature Ruv, and for every value ϕ0, there is a unique solution
corresponding to a flow ending at ϕ0 and connecting to the UV boundary.
Such points, for Ruv > 0, are the fixed points of the flow, where the associated
β-function, defined in (6.1.4), vanishes as discussed in section 2.6.2

We have constructed several examples of curved holographic RG flow
solutions that start from a UV fixed point at a maximum of the potential,
and have a regular interior where the geometry displays the general features
described in the previous paragraphs.

The value ϕ0 (be it an endpoint or a turning point) for a given regular
flow is determined by the values of Ruv and ϕ− governing the leading UV
asymptotics. More precisely, the value ϕ0 is completely determined by the
dimensionless combination R ≡ Ruv|ϕ−|2/(d−∆), where ∆ is the dimension of
the dual operator corresponding to ϕ.

In particular, the following observations hold for generic potentials and
either sign of the curvature: Increasing |Ruv| while keeping the UV source
ϕ− fixed causes the IR endpoint (or turning point) ϕ0 to move closer to the
starting point of the flow at the UV maximum. Conversely, decreasing |Ruv|
while keeping the the UV source ϕ− fixed causes ϕ0 to move away from the
starting point of the flows at the UV maximum. For Ruv → 0 the IR endpoint
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ϕUVIR

Figure 6.4: Schematic structure of a field theory with an RG flow exhibiting
a “bounce”.

(or turning point) approaches a minimum of V .
In the simplest RG flow solutions, the scalar field is monotonic between

the UV fixed point and the IR critical point ϕ0, which typically is reached
before the (would-be flat) IR fixed point (as in figure 6.2a). This is, however,
not always the case. For example, already in the flat case it was shown in [5]
that holographic RG flows may exhibit phenomena which seem exotic from
the point of view of QFT perturbation theory. For one, holographic RG flows
may bounce, i.e. the flow may reverse direction in coupling constant space
(see fig. 6.4) without stopping.

In this work we found that flows exhibiting bounces persist for field the-
ories on curved manifolds. Interestingly, for field theories on AdS4 we found
that bounces are generic features of RG flows if the UV operator dimension
is 3 < ∆ < 4. This is unlike the situation in the flat or positively curved
case, where this does not occur generically.

6.1.2 F-functions from holography

In chapter 3, we presented how to construct holographically F-functions in
d = 3. In that chapter we provided evidence, from both holography and
free theories, that for 3d QFTs it is indeed possible to construct monotonic
F -functions starting from the free energy on S3 and avoid the difficulties
encountered in the past. As we showed, this is possible as long as one properly
takes into account the following two considerations:

1. As the sphere path integral is UV divergent one has to work with renor-
malized quantities to define anything meaningful. Away from the fixed
points, this introduces a scheme dependence of the resulting finite func-
tions. In a generic scheme, the renormalized sphere free energy is finite
but non-monotonic, as simple holographic examples have already shown
[79]. The key is to adopt renormalization schemes which, at the same
time as the UV divergences, remove also the IR divergences associated
with taking the volume of the S3 to infinity. We have identified four
different schemes which accomplish this: three of them involve acting
with differential operators (in the curvature) on the regulated partition
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function; the last one consists of a specific choice of counterterms, and
in particular can be related to specific renormalization conditions on
correlators of the flat space field theory.

2. Defining the subtraction procedure as outlined above is not enough.
We found the definition of the F -function is different depending on the
dimension ∆ of the relevant operator which deforms the CFT away
from the UV fixed point. We have found that, if ∆ > 3/2, then the
F -functions are given by the (renormalized) free energy. If ∆ < 3/2 on
the other hand, they have to be defined with the same subtractions,
but on its Legendre transform, i.e. the quantum effective potential. It
is here that holography has played a crucial role, as this would have
been very hard to guess from purely field theoretical considerations.
Instead, the natural quantity to work with on the gravity side is the
on-shell action, and it is the same quantity which, depending on ∆,
plays the role of either the QFT free energy or its Legendre transform.

We have found evidence that one can construct a good F -function from
the de Sitter entanglement entropy. Like in the case of the free energy or its
Legendre transform, an appropriate subtraction procedure has to be used,
either by applying a differential operator à la Liu and Mezei, or by a countert-
erm subtraction. We found that for ∆ > 3/2 the corresponding F -functions
coincide with a subset of those constructed from the free energy on S3, while
for ∆ < 3/2 they correspond to a subset of those obtained from the Legendre
transform of the free energy.

6.1.3 Quantum phase transitions driven by boundary
curvature

In chapter 4 we studied a quantum phase transition driven by the UV cur-
vature. A field theory on a curved manifold, defined by a value of the UV
source ϕ− and of the UV curvature Ruv may display several saddle points,
which in the holographic dual framework correspond to different RG flow
geometries. The true vacuum can be determined by calculating the free en-
ergies of the flows corresponding to the various saddle points. The solution
with the lowest free energy is the true vacuum.

The example we discussed is based on a potential which was already
studied in [5] in the flat case. Its main feature is to allow two regular flows in
the zero-curvature case, one connecting two neighboring (UV and IR) fixed
points, the second skipping the closest available IR fixed point and ending
at a fixed point at larger field value. This is represented schematically in
fig. 6.5.
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ϕUV1 IR1 UV2 IR2

Figure 6.5: Schematic structure of a field theory which presents multiple RG-
flows: In particular, there are two flows starting at the fixed point UV1, one
going to the closer IR fixed point IR1, the second skipping IR1 and ending
at IR2.

In [5], it was found that, for the theory in flat space, the preferred ground
state is the skipping solution. Turning on a small positive curvature, the skip-
ping and non-skipping solutions persist, their free-energy difference decreases
up to a critical value Rc where it changes sign: for R > Rc the dominant
saddle point is now the shorter (non-skipping) flow. Finally, skipping flows
disappear beyond a finite value larger than Rc (see figure 4.10).

This is the typical structure of a first order phase transition, where a
stable phase becomes unstable then disappears, as a function of a control
parameter. Usually these kinds of phase transitions are driven by tempera-
ture (e.g. Hawking-Page transition for global AdS-Schwarzschild black holes).
Here it takes place at zero temperature and is driven by one of the “couplings”
of the UV theory.

6.1.4 Self-stabilisation of curved brane

In chapter 5, we studied self-stabilising solutions of a 4-dimensional brane
embedded into a 5-dimensional bulk, where the curvature of the brane is
adjusted dynamically. This was in the spirit of self-tuning mechanisms of
the cosmological constant in braneworld scenarios [101, 102, 6, 7], with the
difference that we were not exclusively interested in solutions where the brane
is flat. For simplicity, we considered the background of the CFT to be a
(locally) maximally symmetric 4-dimensional space-time (dS4,M4 or AdS4)
which we characterise by its scalar curvature R(ζ): curvature associated to
the slicing metric ζµν .

The first observation was that generic self-stabilising solutions withR(ζ) =
0 (i.e. ζµν = ηµν) only exist if the world-volume of the brane is also flat.
That is, if the boundary CFT resides on Minkowski space, the world-volume
of the brane is also given by Minkowski space, which is the scenario studied
previously in [7]. Exceptions exist, but are non-generic as they require a
tuning of model-parameters (e.g. a precise choice of the dilaton potential on
the brane, see appendix L for details). This no-go result can also be overcome
if the 5d bulk is not static , but time-dependent. However, in this case the
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dual interpretation in terms of RG flows does not apply any more.
To find self-stabilising solutions with a curved brane in a static bulk, one

is hence forced to modify the UV boundary conditions of the bulk fields. In
chapter 5, we mainly did so by choosing R(ζ) 6= 0. We then worked with a
simple brane embedding in which the brane geometry is inherited from the
boundary. For a bulk described by (6.1.2) this amounts to locating the brane
at some fixed u = u?. This choice is equivalent to restricting to branes with
maximally symmetric world-volume with scalar curvature RB. The brane
curvature is then related to R(ζ) as

RB = R(ζ) e−2A(u?) . (6.1.5)

To find solutions for a brane with world-volume given by (A)dS4, the bound-
ary CFT has to reside on (A)dS4.

There exists an alternative realisation of the same solutions, which can
be obtained via a bulk coordinate transformation. In this formulation the
boundary metric is flat (R(ζ) = 0), but the scalar sources are no longer
constant on the boundary: they now vary in space or time. As a result, the
holographic interpretation is also modified. Instead of the boundary QFT
living on a curved space-time, we then have a flat-space QFT driven by a
time-varying (in the dS case) or space-dependent (in the AdS case) source.
In the dS case one requires the source j to vary as j ∼ |t|∆−d, where t is the
de Sitter conformal time on the brane and ∆ is the dimension of the relevant
operator deforming the CFT.

We then studied how the brane curvature RB depends on R(ζ) quanti-
tatively. This was done mostly numerically by searching for self-stabilising
solutions while scanning over all possible values of R(ζ). To perform a nu-
merical analysis, we have to specify a particular model by choosing a bulk
dilaton potential V (ϕ), a brane dilaton potential WB(ϕ), and the (dilaton-
dependent) Newton’s ‘constant’ term U(ϕ) on the brane. Given a UV com-
pletion of our model, these functions can in principle be determined, but
this goes beyond the scope of this work. For the numerical study we chose
an exponential potential on the brane and we have found that: the space
of solutions in R is highly restricted and there is a branch of solutions that
in the limit R → 0 is connected continuously to a flat brane solution with
R = 0 and RB = 0.

6.2 Open questions and outlook

From the point of view of field theory, this work offers a new (holographic)
insight on RG flows on curved manifolds. It also opens new directions to
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explore. We mention some of these in the following.
We have seen that positive curvature flows end at points of maximal

symmetry. From the gravity side, this symmetry is just the full set of AdS
isometries. However, it is unclear how this symmetry is realized on the field
theory side, since (unlike in the case of flat IR fixed points) it does not obvi-
ously reduce to conformal transformations (or rather conformal isometries)
on the field theory coordinates. It would be interesting to investigate this
further.

One important question is whether the solutions discussed in this work
are perturbatively stable. In the case of flat sections, it was shown in [5] that,
regardless of the details of the bulk geometries, solutions which reach an IR
fixed point are stable under small perturbations. This includes bouncing
solutions, as the bounce does not introduce any particular features in the
fluctuation equations which may trigger instabilities. In the curved case
the situation is less clear. To reach the same conclusion one would have
to develop a complete fluctuation analysis around the ansatz (6.1.2). This
is an important direction to explore in the future work. Another important
question concerns the boundary conditions and stability for solutions in which
the field theory is on a negatively curved space. When the field theory
space-time is AdSd, the solution is not single valued on the boundary, but
it must contain a defect along the portion of the AdSd+1 boundary which
corresponds to the AdSd boundary . This can be avoided by quotienting
the AdSd slices by a finite group, but as argued in [60], this may introduce
perturbative instabilities. It would be interesting to understand these issues
in more detail.

There remain many directions for further investigation in the context
of F-theorem. An open question concerns the relation of our proposed F -
functions to the one obtained from the Renormalized Entanglement Entropy
(REE) of a spherical region in the Minkowski QFT [74]. For a CFT at a fixed
point, the corresponding F -quantity coincides with the one defined from both
the free energy and the de Sitter entanglement entropy. This follows from
the fact that, for a CFT, one can use a conformal transformation to map the
spherical region in flat space to a similar region in de Sitter [67]. Away from
the fixed point however this no longer holds, and we show explicitly that the
F -functions obtained from the free energy differ from the flat space REE. It
would be interesting to understand whether these are related in some deeper
way.

It will be interesting to gather additional evidence that the functions
F1,2,3,4(R) defined in (3.3.12)–(3.3.15) are indeed good F -functions. While
we checked this explicitly for a wide range of theories in holography and for
free field theories, further tests are desirable. In the context of holography, we
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worked with bottom-up four-dimensional models, and it would be interesting
to check whether our proposal holds in top-down models from string theories.
For three-dimensional field theories, there are many examples of gravity dual
holographic RG flows in gauged N = 8, d = 4 supergravity [117, 118, 119,
120], and their M-theory uplifts[121, 122]. One could also consider three-
dimensional theories with flavor, whose RG flows were studied e.g. in [123,
124, 125] (in the quenched flavor limit) and [126]. The quenched flavor case
looks particularly treatable, as one does not need to find the curved domain
wall solution in the full 11-dimensional bulk theory, but only restrict to the
contribution to the F -functions from the flavor degrees of freedom coming
from the D6 branes wrapped on AdS4 ×S7 using curved slicing of AdS4, and
use the flavor mass as the deformation parameter.

Further open question is to what extent an F -theorem exists in higher
odd dimensions, i.e. d = 5, 7, . . .. Several proposals for F -functions in higher
odd dimensions exist [35, 45, 66, 68] and evidence for an F -theorem in d = 5
can be found in [127, 128]. However, so far there is no proof of monotonicity
for dimensions with d ≥ 5. The F -functions introduced in this work, while
constructed for d = 3, allow for a straightforward generalisation to any odd
d and are hence suitable for exploring the F -theorem beyond d = 3.

The bulk-brane setup studied here is a promising framework for further
phenomenological investigation. However, before a realistic model can be
constructed, there are several open questions that should be addressed. For
one, it is important to determine to what extent our results are general, or
model-dependent. In particular, is it a generic feature of this construction
that RB � M2

4 only occurs when perturbing a solution for a flat brane? In
addition, more work is also needed regarding the theoretical foundations of
the model. It would be desirable if the quantities V (ϕ), WB(ϕ) and U(ϕ)
could be constrained, either by direct calculation or from physical principles.
For example, it is expected that consistency with quantum gravity gives
stringent constraints on the physics of scalar fields [129, 130, 131, 132, 133,
134, 135], restricting their field range and even constraining the shape of the
potential. It would be interesting to study to what extent these conditions,
also known as ‘swampland conjectures’, can be used to constrain this model.

An important question regards the stability of the solutions obtained
here. The perturbative stability of self-stabilising solutions for a flat brane
was analysed in [7]. The result of this analysis is a set of certain sufficient
conditions for stability involving the bulk solutions and the brane quantities
evaluated at the position of the brane. Here, we expect that the presence of
positive brane curvature will not introduce any additional instabilities (see [8]
for more details). Hence we expect any solutions, which can be obtained from
a stable flat brane solution by turning on positive (boundary and brane) cur-
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vature to be stable. On the other hand, the presence of negative (boundary
and brane) curvature may introduce new instabilities. In this case, pertur-
bative stability has to be checked explicitly case by case, which goes beyond
the scope of this work. As our priority in this work was to explore the space
of self-stabilising solutions rather than to perform realistic model-building,
the solutions explored in this work do not always satisfy all of the sufficient
conditions for stability. For example, the solutions in sec. 5.3 satisfy all but
one of the sufficient stability conditions. This does not imply that these
solutions are necessarily unstable, but a more detailed analysis is required.

Last, some of our findings may have interesting applications in the study
of holographic RG flows. In particular, certain bulk solutions studied in the
theory with V (ϕ) ∼ − exp(ϕ) should be relevant for the study of the RG
behaviour of confining theories [27] on curved backgrounds in holography.
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Appendix A

Curvature Invariants

In this appendix we record expressions for various curvature invariants. In
particular, for the metric (2.1.1), we will computeR, RABR

AB andRABCDR
ABCD

and we will express them in terms of the functions W , S and T defined in
(2.2.1)–(2.2.3).

Ricci scalar
The expression for the Ricci scalar is found as,

R = −
[
2dÄ(u) + d(d+ 1)Ȧ2(u)

]
+ e−2A(u)R(ζ) (A.1)

which in terms of W (ϕ), S(ϕ) and T (ϕ) can be written as,

R =
d

d− 1
W ′S − d(d+ 1)

4(d− 1)2
W 2 + T =

S2

2
+
d+ 1

d− 1
V . (A.2)

In the last step we have used equations (2.2.4)–(2.2.6) to simplify. This shows
that the scalar curvature diverges when the potential V (ϕ) diverges or when
S(ϕ) diverges.

Ricci squared
The square of the Ricci tensor is given as,

RABR
AB = d2

(
Ä(u) + Ȧ2(u)

)2

+
(R(ζ))2

d
e−4A(u) − 2R(ζ)e−2A(u)(Ä(u)

+ dȦ2(u)) + d
(
Ä(u) + dȦ2(u)

)2

. (A.3)

On shell, this can be written in terms of V and S as

RABR
AB = d2

(
S2

2d
+

V

d(d− 1)

)2

+
dV 2

(d− 1)2
. (A.4)
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This also diverges when V (ϕ)→∞ or when S(ϕ) diverges.

Riemann squared
The so-called Kretschmann scalar is found as,

RABCDR
ABCD = 4d

(
Ä(u) + Ȧ2(u)

)2

+ 2d(d− 1)

(
e−2A(u)

α2
− Ȧ2(u)

)2

.

(A.5)
Using the equations of motion this can be written as,

RABCDR
ABCD =

4

d

(
S2

2
+

V

d− 1

)2

+
1

2d(d− 1)

(
S2 − 2V

)2
. (A.6)

Again, this diverges whenever the potential V (ϕ) or the function S(ϕ) di-
verge.



Appendix B

Properties of the functions W ,
S and T

B.1 Positive curved case (Sd or dSd)

1. There are two branches of solutions W and S at a generic point. On
a single branch the signs of S and W ′ coincide. This can be seen from
Eq. (2.2.4) which we can write as:

SW ′ = S2 +
2

d
T . (B.1.1)

The RHS is always positive. Therefore the signs of S and W ′ must
be same. The two possible signs for S and W ′ give rise to the two
branches.

2. The absolute value of W (ϕ) is bounded by the critical curve B(ϕ) =√
−4(d−1)

d
V (ϕ) and on this critical curve the two functions S(ϕ) and

T (ϕ) go to zero. This can be shown from Eq. (2.2.5) which we can
write as

d

2(d− 1)
W 2 = S2 + 2T − 2V ≥ −2V . (B.1.2)

Therefore, we can write,

W 2(ϕ) ≥ −4(d− 1)

d
V (ϕ) = B2(ϕ). (B.1.3)

On the critical curve d
2(d−1)

W 2(ϕ) = −2V (ϕ). So Eq. (2.2.5) can be
written as

S2 + 2T = 0 . (B.1.4)
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This is a sum of two positive numbers which can be zero iff the individ-
ual contributions are zero. Hence, on the critical curve, the functions
S(ϕ) and T (ϕ) vanish.

3. Bounces cannot happen on the critical curve. Let us assume that along
a flow originating from a UV fixed point a bounce occurs at ϕ = ϕ∗,
which happens to lie on the critical curve. From property 2, we see
that at ϕ = ϕ∗, T (ϕ∗) = 0. But we started from the UV, which is also
on the critical curve and consequently had T (ϕUV ) = 0. So T (ϕ) is
starting from a value of 0 and ending with a value of 0. This cannot
happen because dT

du
= TW

d−1
≥ 0 (assuming W ≥ 0). Instead, a bounce

can happen when S = 0 and

W 2 =
2(d− 1)

d
(2T − 2V ) where T > 0 . (B.1.5)

B.2 Positive and negative curved case

4. The functions W (ϕ), S(ϕ) and T (ϕ) satisfy the following relation:

T ′S =
TW

d− 1
. (B.2.1)

This comes from the definition of the functions W (ϕ), S(ϕ) and T (ϕ).
We can take a u-derivative of T = e−2A(u)R(ζ) and then use the defini-
tions (2.2.3)–(2.2.1) .

5. At the zeros of the function S(ϕ), the geometry is approximately max-
imally symmetric. We can express the Ricci tensor in terms of the
function S(ϕ). The only non-zero components of the Ricci tensor are:

Ruu =

(
S2

2
+

V

d− 1

)
guu, (B.2.2)

Rµν =
V

d− 1
gµν . (B.2.3)

Let S be zero at a value ϕ = ϕ∗. Then at this point the Ricci tensor
can be written as

RAB =
V (ϕ∗)

d− 1
gAB. (B.2.4)

Therefore the space is maximally symmetric near the zeros of S. As
the potential is negative, this space is approximately AdS.
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6. Symmetry properties. Let W (ϕ), S(ϕ) and T (ϕ) satisfy the equations
(2.2.4)–(2.2.6) for a generic potential V (ϕ). Then

S̄(ϕ) = −S(ϕ) , (B.2.5)

W̄ (ϕ) = −W (ϕ) , (B.2.6)

T̄ (ϕ) = T (ϕ) (B.2.7)

are also solutions of the equations (2.2.4)–(2.2.6). The scale factor and
the curvature invariants behave as

Ā(u) = A(u) , (B.2.8)

R̄(ϕ) = R(ϕ) , (B.2.9)

R̄ABR̄
AB(ϕ) = RABR

AB(ϕ) , (B.2.10)

R̄ABCDR̄
ABCD(ϕ) = RABCDR

ABCD(ϕ) . (B.2.11)

This means that we have two equivalent copies of geometries below and
above the ϕ axis.

If V (ϕ) is an even function of ϕ, then

S̃(ϕ) = −S(−ϕ) , (B.2.12)

W̃ (ϕ) = W (−ϕ) , (B.2.13)

T̃ (ϕ) = T (−ϕ) , (B.2.14)

satisfy the equations (2.2.4)–(2.2.6). This is because the above relations
imply

S̃ ′(ϕ) = S ′(−ϕ) , (B.2.15)

W̃ ′(ϕ) = −W ′(−ϕ) , (B.2.16)

and we also have that V ′(ϕ) = −V ′(−ϕ). The scale factor and the
curvature invariants behave as

Ã(u) = A(u) , (B.2.17)

R̃(ϕ) = R(−ϕ) , (B.2.18)

R̃ABR̃
AB(ϕ) = RABR

AB(−ϕ) , (B.2.19)

R̃ABCDR̃
ABCD(ϕ) = RABCDR

ABCD(−ϕ) . (B.2.20)

This shows we have two equivalent copies of geometries on the positive
and negative side of ϕ axis.
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Appendix C

Near boundary solution: Small
curvature expansion

In this appendix we will collect analytical expressions for W (ϕ), S(ϕ) and
T (ϕ) describing the geometry in the vicinity of the boundary of the asymp-
totically AdSd+1 space-time.

It will be advantageous to organize the solution as a perturbative expan-
sion in Ruv, expanding about the result for Ruv = 0. The reason is as follows.
We will find that for asymptotically AdSd+1 space-times a near-boundary ex-
pansion of the quantities ϕ, A, W , S and T will automatically give rise to an
expansion in Ruv. We have already encountered this in (2.3.6) where we ex-
panded the scale factor A(u) for AdSd+1 in the vicinity of the boundary. We
found that Ruv enters the expansion exclusively in the combination Ruve2u/`.
Expanding A(u) in powers of e2u/` in the vicinity of the boundary at u→ −∞
is thus is equivalent to expanding in powers of Ruv. This observation will
also hold more generally for asymptotically AdSd+1 space-times.

Consequently, we will expand W (ϕ), S(ϕ) and T (ϕ) as follows:

W (ϕ) =
∞∑
n=0

Wn(`2Ruv)n , (C.1)

S(ϕ) =
∞∑
n=0

Sn(`2Ruv)n , (C.2)

T (ϕ) =
∞∑
n=0

Tn(`2Ruv)n+1 , (C.3)

where ` will be identified with the AdS length scale of the asymptotically
AdSd+1 bulk space-time. Note that the expansion of T (ϕ) ≡ Ruve−2A(ϕ)

starts at linear order in Ruv. We proceed by inserting the above expansions
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into the equations of motion (2.2.4)–(2.2.6) and solve these order by order in
Ruv.

Calculating Sn

Inserting the above expansions into (2.2.4) the resulting equations at order
(Ruv)0 and (Ruv)1 can be rewritten as

S0 = W ′
0 , (C.4)

S1 = −2

d

T0

W ′
0

+W ′
1 , (C.5)

where we assumed S0 6= 0 as we are interested in non-zero flows. In virtue
of (C.4) we will freely replace S0 by W ′

0 whenever convenient. Eq. (C.5) will
allow us to calculate S1 once T0, W0 and W1 have been determined.

Calculating Tn

Note that we can write

−2A = −2A0 +
1

d− 1

∫ ϕ

ϕ0

W

S
dϕ

= −2A0 +
1

d− 1

∫ ϕ

ϕ0

W0

S0

dϕ− `2Ruv

d− 1

∫ ϕ

ϕ0

S1W0 − S0W1

S2
0

dϕ+ . . .

(C.6)

= −2A0 +
1

d− 1

∫ ϕ

ϕ0

W0

W ′
0

dϕ− `2Ruv

d− 1

∫ ϕ

ϕ0

S1W0 −W ′
0W1

(W ′
0)2

dϕ+ . . . ,

(C.7)

where we defined A0 ≡ A(ϕ0) for some ϕ0. Despite the explicit appearance
ϕ0 above, the result is independent of ϕ0. Then, from the defining expression
T ≡ Ruve−2A we obtain

T0 = `−2 e−2A0e
1
d−1

∫ ϕ
ϕ0

W0
W ′0

dϕ
, (C.8)

T1 = −`−2 e−2A0e
1
d−1

∫ ϕ
ϕ0

W0
W ′0

dϕ 1

d− 1

∫ ϕ

ϕ0

S1W0 −W ′
0W1

(W ′
0)2

dϕ . (C.9)

We will calculate T0 explicitly in section C.1.
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Calculating Wn

Inserting the expansions into (2.2.5) we obtain the following two equations
at the orders (Ruv)0 and (Ruv)1:

d

4(d− 1)
W 2

0 −
1

2
(W ′

0)2 = −V , (C.10)

W ′
1 −

d

2(d− 1)

W0

W ′
0

W1 +
d− 2

d

T0

W ′
0

= 0 . (C.11)

Inserting our expression (C.8) for T0 into the last equation, this can be inte-
grated to give

W1 = e
d

2(d−1)

∫ ϕ
ϕ0

W0
W ′0

C̃1 +
2− d
d

e−2A0

∫ ϕ

ϕ0

e
2−d

2(d−1)

∫ ϕ
ϕ0

W0
W ′0

W ′
0

 , (C.12)

where C̃1 is an integration constant.
Overall, given a solution for W0 and W ′

0 we can now determine W1 and T0,
which in turn will allow us to calculate S1 and finally T1. While these results
will be sufficient for the scope of this work, the analysis in this appendix can
in principle be extended to determine the coefficients Wn, Sn and Tn to an
arbitrarily high order.

C.1 Extrema of V

Here we will derive solutions for W , S and T in the vicinity of extrema of
the potential, using the small curvature expansion introduced in section C.1

To this end, it will be sufficient to consider the potential

V = −d(d− 1)

`2
− m2

2
ϕ2 +O(ϕ3) , (C.1.1)

where we will choose m2 > 0 for maxima and m2 < 0 for minima.

Calculating W0

At order (Ruv)0 the analysis of our system reduces to a study of holographic
RG flows for field theories on flat manifolds. This has been studied exten-
sively in the past and we can hence be brief. For details we will refer readers

1This is consistent as long as extrema of the potential coincide with the boundary of
the bulk space-time. We check this explicitly when discussing the resulting geometries in
section 2.4.
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to e.g. [5]. To be specific, at order (Ruv)0 we have W = W0, S = S0 = W ′
0

and T = 0. Thus at order (Ruv)0 the solution is completely determined by
W0.

We can determine W0 by solving (C.10). In the vicinity of the extremum
of V at ϕ = 0 this can be done by writing W0 as a regular expansion in
powers of ϕ. There exist two independent solutions, which we will label by
the two subscripts (±):

W reg
0,± =

2(d− 1)

`
+

∆±
2`
ϕ2 +O(ϕ3) , (C.1.2)

with ∆± =
1

2

(
d±
√
d2 − 4m2`2

)
.

Terms in W reg
0,± of order ϕ3 and higher will depend on cubic and higher terms

in V , which we ignore in the vicinity of extrema.
The solution permits a continuous deformation δW01 as long as the defor-

mation is subleading compared to W reg
0,±. We will make this condition precise

at the end of this section. The deformation can be determined by inserting
W0 = W reg

0,± + δW01 into (C.10) and solving for δW01:

δW01 =
C

`
exp

(
d

2(d− 1)

∫ ϕ

dϕ
W reg

0,±

(W reg
0,±)′

)
=
C

`
|ϕ|

d
∆± [1 +O(ϕ)] , (C.1.3)

where we introduced the dimensionless integration constant C. Putting ev-
erything together, we thus obtain:

W0 =
2(d− 1)

`
+

∆±
2`
ϕ2 +O(ϕ3) +

C

`
|ϕ|

d
∆± [1 +O(ϕ) +O(C)] . (C.1.4)

From this we also have that

S0 = W ′
0 =

∆±
`
ϕ+O(ϕ2) +

Cd

∆±`
|ϕ|

d
∆±
−1

[1 +O(ϕ) +O(C)] . (C.1.5)

We can now return to the question under which circumstances the deforma-
tion ∝ C is permitted. To this end consider eq. (2.2.9) which involves S only
and which any solution for S must satisfy. It is easy to check that the cor-
responding equation at order (Ruv)0 is only satisfied by S0 if the linear term
in (C.1.5) dominates over the term involving C. This implies that solutions
for S and W permit a deformation only if

d

∆±
> 2 . (C.1.6)

If this is not the case, no deformation is permitted, which is equivalent to
setting C = 0.
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Calculating T0:

Given the expression for W0 in (C.1.4), we can now proceed to determining
T0 from (C.8). In particular, the exponent in (C.8) is given by

− 2A(ϕ0) +
1

(d− 1)

∫ ϕ

ϕ0

dϕ
W0

W ′
0

=− 2A(ϕ0) +
2

∆±

∫ ϕ

ϕ0

dϕ

ϕ

[
1 +O(ϕ) +O(C|ϕ|d/∆±−2)

]
, (C.1.7)

where we have used (C.1.4) to get to the second line. One unattractive feature
is the explicit appearance of the arbitrary parameter ϕ0. In particular, there
is physical information in A(ϕ0) which is obscured by this notation. Thus,
in the following, we will explain how we can remove ϕ0 from the expression
for T0. The idea is to trade the arbitrary parameter ϕ0 for ϕ− or ϕ+ which
are physical parameters of the boundary field theory.

To this end, given our expression (C.1.4) for W0, let us calculate the
corresponding solutions for A(u) and ϕ(u) using W0 = −2(d − 1)Ȧ and
W ′

0 = ϕ̇:

ϕ(u) =

{
ϕ+ `

∆+ e∆+u/` +O(e2∆−u/`) (+)-branch,
ϕ− `

∆− e∆−u/` +O(e2∆−u/`, e∆+u/`) (−)-branch,
(C.1.8)

A(u) = Ā− u

`
+O(e2∆±u/`, edu/`) , (C.1.9)

where we introduced ϕ+, ϕ− and Ā as integration constants.2 We can always
set Ā = 0 as argued in section 2.3 and we will do so in the following. As
explained in section 2.4, ϕ− is interpreted as the UV value of source for the
operator O in the boundary field theory. The parameter ϕ+ is related to the
vev of O as follows: 〈O〉 = (2∆+ − d)ϕ+. Using these expressions we can
now invert ϕ(u) and insert the result into A(u) to arrive at an expression for
A(ϕ0):

A(ϕ0) = − 1

∆±
ln

(
ϕ0

ϕ±`∆±

)
+O(ϕa0)

= − 1

∆±

∫ ϕ0

ϕ±`
∆±

dϕ

ϕ
+O(ϕa0) . (C.1.10)

Here a is an exponent that will depend on the precise values of ∆±. The most
important fact for this analysis is that a > 0, as can be verified explicitly.

2The leading terms in ϕ(u) and A(u) will turn out to be universal, i.e. higher order
corrections in Ruv to W and S will not affect the leading terms.
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Inserting this expression for A(ϕ0) into (C.1.7) we find

− 2A(ϕ0) +
2

∆±

∫ ϕ

ϕ0

dϕ

ϕ

[
1 +O(ϕ) +O(C|ϕ|d/∆±−2)

]
=

2

∆±

∫ ϕ0

ϕ±`
∆±

dϕ

ϕ
+

2

∆±

∫ ϕ

ϕ0

dϕ

ϕ
+

∫ ϕ

ϕ0

dϕ
[
O(ϕ0) +O(Cϕd/∆±−3)

]
+O(ϕa0)

=
2

∆±

∫ ϕ

ϕ±`
∆±

dϕ

ϕ
+

∫ ϕ

ϕ0

dϕ
[
O(ϕ0) +O(Cϕd/∆±−3)

]
+O(ϕa0)

=
2

∆±
ln

(
ϕ

ϕ±`∆±

)
+

∫ ϕ

ϕ0

dϕ
[
O(ϕ0) +O(Cϕd/∆±−3)

]
+O(ϕa0) . (C.1.11)

The main observation is that we can now remove ϕ0 by setting ϕ0 → 0.3

There is no danger of picking up a divergence from the integral. (Recall that
the term involving C is only present if d/∆± > 2.) The lower limit of the
integral simply becomes 0 while the term O(ϕa0) simply vanishes as a > 0.
We are thus finally in a position to state the result for T0. Using (C.1.11) in
(C.8) we obtain:

T0 = `−4

(
ϕ

ϕ±

) 2
∆± [

1 +O(ϕ) +O(C|ϕ|d/∆±−2)
]
. (C.1.12)

Thus, in the vicinity of an extremum we find that T has an expansion of the
form

T±(ϕ) = `−2
(
Ruv|ϕ±|−2/∆±

)
|ϕ|2/∆±

[
1 +O(ϕ) +O(C|ϕ|d/∆±−2)

+O(`2Ruv)
]
. (C.1.13)

Here we wish to highlight the appearance of the dimensionless combination of
quantities Ruv|ϕ±|−2/∆± . This is not a coincidence. In fact, we will find that
in W , S and T the quantity Ruv will exclusively appear in the combination
Ruv|ϕ±|−2/∆± . Thus, it will be useful in assigning a label to this particular
combination and we hence define

R =

{
Ruv|ϕ+|−2/∆+ on the (+)-branch
Ruv|ϕ−|−2/∆− on the (−)-branch

. (C.1.14)

Strictly speaking, we should understand the small curvature expansions in
(C.1)–(C.3) as expansions in R.

3However, we could in principle also choose some finite value for ϕ0. It is easy to check
that this would have the same effect as a shift in the integration constant Ā.
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Calculating W1 and S1:

Given our expressions (C.1.4) and (C.1.12) for W0 and T0 we are now in a
position to calculate W1 and S1 from (C.12) and (C.5), respectively. Starting
with W1, after some work one finds

W1 =
1

d`3

(
ϕ

ϕ±

) 2
∆± [

1 +O(ϕ) +O(C|ϕ|d/∆±−2)
]

(C.1.15)

+
C1

`
|ϕ|d/∆±

[
1 +O(ϕ) +O(C|ϕ|d/∆±−2)

]

Most importantly, any dependence on the arbitrary parameter ϕ0 appearing
in (C.12) can be absorbed into the integration constant C1. Another obser-
vation is that the term C1|ϕ|d/∆± in W1 combines with the term C|ϕ|d/∆± in
W0 and thus C1 does not represent an independent integration constant.

We are now in a position to calculate S1. We obtain:

S1 =
C1d

∆±`
|ϕ|

d
∆±
−1
[
1 +O(ϕ) +O

(
C|ϕ|

d
∆±
−2
)]

+
1

`
O
(
|ϕ|

2
∆±

+1
)

+
1

`
O
(
C|ϕ|

2+d
∆±
−1
)
. (C.1.16)

Here, the term involving C1 will combine with the corresponding term in S0.
We also determined the leading order in ϕ of the terms not containing C1.
One can check that the exact numerical coefficients will depend on the cubic
and quartic terms in the potential, and which we hence leave implicit.

C.2 Summary

Putting everything together, we are now in a position to write down expres-
sions for W , S and T in the vicinity of an extremum of V and up to order



168APPENDIX C. NEAR BOUNDARY SOLUTION: SMALL CURVATURE EXPANSION

Ruv (or R):

W±(ϕ) =
1

`

[
2(d− 1) +

∆±
2
ϕ2 +O(ϕ3)

]
(C.2.1)

+
R
d`
|ϕ|

2
∆± [1 +O(ϕ) +O(C) +O(R)]

+
C

`
|ϕ|

d
∆± [1 +O(ϕ) +O(C) +O(R)] ,

S±(ϕ) =
∆−
`
ϕ [1 +O(ϕ)] +

Cd

∆−`
|ϕ|

d
∆−
−1

[1 +O(ϕ) +O(C)] , (C.2.2)

+
1

`
O
(
R|ϕ|

2
∆−

+1
)

+
1

`
O
(
RC|ϕ|

2+d
∆−
−1
)

T±(ϕ) = `−2R|ϕ|
2

∆− [1 +O(ϕ) +O(C) +O(R)] , (C.2.3)

where R has been defined in (C.1.14). While we write O(C) and O(R)
to remove clutter when possible, it is to be understood that C and R are
always accompanied by an appropriate power in ϕ. Also, we absorbed the
integration constant C1 into C. Further, if d/∆± < 2 we have to set C = 0,
otherwise S is not a solution of (2.2.9). While this is the most general result
for an extremum of V , we now look at maxima and minima of V in turn.

Maxima of V

At a maximum of V we have:

d

2
< ∆+ < d , 0 < ∆− <

d

2
, (C.2.4)

1 <
d

∆+

< 2 ,
d

∆−
> 2 . (C.2.5)

As d/∆+ < 2 we have to set C = 0 in the (+)-branch of solutions. This is not
required for the (−)-branch as we have d/∆− > 2. The resulting solutions
are shown in discussed in section 2.4.1.

Minima of V

At a minimum of V we have:

∆+ < d , ∆− < 0 , (C.2.6)

d

∆+

< 1 ,
d

∆−
< 0 . (C.2.7)
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As d/∆+ < 2 we have to set C = 0 in the (+)-branch of solutions. However,
on the (−)-branch we have ∆− < 0 and as a result, any term involving C or
R in (C.2.1)–(C.2.3) diverges! To arrive at an acceptable solution, we have
to set both C and Ruv (and thus R) to zero. We then recover the solution
for RG flows for field theories on flat manifolds. A more comprehensive
discussion of the solutions on both the (+) and (−)-branches can be found
in the main text in section 2.4.2.
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Appendix D

Solution in the vicinity of
minima of V

Here we will examine solutions for A(u) and ϕ(u) in the vicinity of a mini-
mum. In particular, we will be interested in flows starting or ending at the
minimum. The potential is given by (2.4.1) with m2 < 0. As we work in the
vicinity of the minimum, we will express solutions as a perturbation about
the solution for an AdS fixed point:

A(u) = A0(u) + ε2A2(u) +O(ε4) , (D.1)

ϕ(u) = 0 + εϕ1(u) +O(ε3) , (D.2)

with

A0(u) =


ln
(
− `
α

sinh u+c
`

)
Sd or dSd

−u+c
`

Md

ln
(

`
α

cosh u+c
`

)
AdSd

. (D.3)

With this ansatz we proceed to solving the equations of motion (2.1.5)–(2.1.7)
order by order in ε. To be specific, at order O(ε) we obtain:

ϕ̈1 + dȦ0ϕ̇1 +m2ϕ1 = 0 . (D.4)

Minima as UV fixed points First, we wish to show that a minimum can
indeed give rise to a UV fixed point. At a UV fixed point the scale factor
diverges as A(u) → ∞ which is the case for u → −∞. A flow leaving a
UV fixed point will thus correspond to a solution to (D.4) subject to the
boundary conditions ϕ1(u→ −∞)→ 0 and ϕ̇1(u→ −∞)→ 0.

We can discuss the case of dS, AdS and Minkowski slices in a unified way,
due to A0(u → −∞) → −u

`
for all three cases. Thus, for u → −∞ (D.4)
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becomes

ϕ̈1 −
d

`
ϕ̇1 +m2ϕ1 = 0 , (D.5)

which is solved by

ϕ1(u) = c1 e
∆−u/` + c2 e

∆+u/` + . . . , (D.6)

where c1,2 are integration constants and ∆± have been defined before in
(2.4.5). This is just the usual asymptotic form of the scalar field in the
vicinity of a UV fixed point, with c1 related to the source of the perturbing
operator and c2 related to its vev. However, note that for m2 < 0 we have
∆− < 0 while ∆+ > d. The boundary conditions hence require that we set
c1 = 0. As a result, flows away from a UV fixed point at a minimum of
the potential are purely driven by a vev. As the leading behavior of ϕ is
determined by ∆+, solutions with minima as UV fixed points are associated
with the (+)-branch of solutions for W , S and T .

Minima as IR fixed points For the case of Minkowski slicings it is well-
known that minima of the potential can be identified as IR fixed points, a
fact we will confirm presently. We define an IR endpoint as the locus where
the scale factor diverges as A(u) → −∞. For the case of flat slicings this
occurs for u → ∞. The relevant equation is again (D.5), but the boundary
conditions now read ϕ1(u→∞)→ 0 and ϕ̇1(u→∞)→ 0. The general so-
lution is, as before, given by (D.6), but the boundary conditions now require
that c2 = 0 instead. Thus, for Ruv = 0 minima of the potential can play the
role of IR endpoints of RG flows. When rewritten in terms of W , S and T ,
this is a solution on the (−)-branch.

In the following we will show that in space-times with a curved foliation
RG flows cannot end at a minimum of the potential. For the case of dS and
AdS slicings the IR is identified with u → −cIR where the bulk geometry
asymptotes to AdSd+1:

A0(u) →
u→−cIR

 ln
(
− `
α

sinh u+cIR
`IR

)
Sd or dSd

ln
(

`
α

cosh u+cIR
`IR

)
AdSd

. (D.7)

For the following analysis it will be useful to introduce the coordinate w ≡
u+cIR
`IR

. In the remainder of this subsection we will also define ˙ ≡ d
dw

. RG
flows ending at an IR endpoint at the minimum of the potential will then
correspond to solutions to (D.4) subject to the boundary conditions ϕ̇1(w =
0) = 0 and ϕ(w = 0) = 0.
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In the vicinity of the IR locus equation (D.4) becomes

Sd or dSd: ϕ̈1 + d

(
1

w
+
w

3
+O(w3)

)
ϕ̇1 +m2`2

IRϕ1 = 0 , (D.8)

AdSd: ϕ̈1 + d

(
w − w3

3
+O(w5)

)
ϕ̇1 +m2`2

IRϕ1 = 0 . (D.9)

Solving and implementing the boundary condition ϕ̇1(w = 0) = 0 we find

Sd or dSd: ϕ1(w) = c1

(
1− m2`2

IR

2(d+ 1)
w2 +O(w4)

)
, (D.10)

AdSd: ϕ1(w) = c1

(
1− m2`2

IR

2
w2 +O(w4)

)
, (D.11)

with c1 the remaining constant of integration. Note that the only way of
satisfying the second boundary condition ϕ1(w = 0) = 0 is to set c1 =
0, which causes ϕ(w) to vanish identically. Hence there are no solutions
that smoothly arrive at a minimum of the potential for Sd/dSd and AdSd
slicings. The only solutions that exist for Ruv 6= 0 are solutions with ϕ = 0,
i.e. conformal fixed points. Most importantly, there are no RG flows for
Ruv 6= 0 that end at a fixed point at a minimum of the potential. This is
equivalent to the absence of the (−)-branch of solutions for W , S and T in
the vicinity of a minimum of V for Ruv 6= 0.
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Appendix E

Extremal points of the first
order flow equations

We will start by examining the critical power behavior for the first order
functions that is allowed by the equations of motion (2.2.4)–(2.2.6). Then
we will proceed to examine the solutions in the regime where the flow stops.
To find where the flow of ϕ stops, we need to find (finite) points ϕ0 where S
vanishes.

We parametrize S as

S ' C0 (ϕ0 − ϕ)a , ϕ→ ϕ0 , a > 0 (E.1)

We assume without loss of generality that ϕ is approaching to ϕ0 from the
left, i.e. ϕ < ϕ0. As the flow does not end up at the minimum at the presence
of curvature, ϕ0 is a generic point and therefore

V (ϕ) = V0 + V1(ϕ0 − ϕ) + V2(ϕ0 − ϕ)2 +O((ϕ0 − ϕ)3) . (E.2)

Near ϕ0 the various terms of (2.2.9) behave as follows

S4 ∼ (ϕ0 − ϕ)4a, S3S ′′, S2S ′2 ∼ (ϕ0 − ϕ)4a−2, S2V ∼ (ϕ0 − ϕ)2a,

SS ′V ′ ∼ (ϕ0 − ϕ)2a−1, S2V ′′ ∼ (ϕ0 − ϕ)2a, V ′2 ∼ (ϕ0 − ϕ)0. (E.3)

It is apparent that near ϕ0, if a = 1/2, then to leading order Eq. (2.2.9) is
satisfied. After getting the leading order power law behavior, it is clear that
the functions have a square root series expansion near the IR end-point. For
brevity, let us write x = ϕ0 − ϕ. Let us also write the following expansions
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near x = 0 :

S(x) =
√
x
(
S0 + S1

√
x+ S2x+ · · ·

)
, (E.4)

W (x) =
1√
x

(
W0 +W1

√
x+W2x+ · · ·

)
, (E.5)

T (x) =
1

x

(
T0 + T1

√
x+ T2x+ · · ·

)
, (E.6)

V (x) = V0 + V1x+ V2x
2 + · · · . (E.7)

Now we can use Eqs. (2.2.7) and (2.2.8) to find the various coefficients. There
are two cases which are generic.

Case (a):

S2
0 = 2V1 , S1 =

−dW1

3(d− 1)
, S2 =

36(d− 1) ((d− 1)V2 + V0) + d(d+ 9)W 2
1

36(d− 1)2S0

(E.8)

W0 = 0 , W1 = arbitrary , W2 = −4(d− 1)V0 + dW 2
1

d(d− 1)S0

(E.9)

T0 = 0 , T1 = 0 , T2 =
dW 2

1

4(d− 1)
+ V0 , T3 = −W1 (4(d− 1)V0 + dW 2

1 )

2(d− 1)2S0

(E.10)

In this case ϕ̈ = 1
2
d
dx
S2 = S2

0 = 2V1 6= 0. So the flow does not stop here.
We will find that this corresponds to a bouncing solution. Note that S0 =
±
√

2V1, i.e. there are two branches. These will be the two branches those
meet at the bouncing point. As V0 < 0 we find that T can be both positive
or negative, depending on the value of W1. Hence bounces are expected to
exist for both positively and negatively curved slices.

Case (b):

S2
0 =

2V1

d+ 1
, S1 = 0, S2 =

V0 + 3(d− 1)V2

(d− 1)(d+ 3)S0

(E.11)

W0 = (d− 1)S0 ,W1 = 0 ,W2 = −(d+ 4)V0 − (d− 1)dV2

d(d+ 3)S0

(E.12)

T0 =
d(d− 1)

4
S2

0 , T1 = 0 , T2 =
dS0W2

2
+ V0. (E.13)
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In this case, ϕ̈ = 1
2
d
dx
S2 = S2

0 = 2V1

d+1
6= 0. Although the flow does not stop

here, the space-time ends. Hence this is an IR solution. Again, it seems

that there are two possible solutions with S0 = ±
√

2V1

d+1
. However, note

that W0 = (d − 1)S0. As we have chosen W > 0, only the solution with

S0 = +
√

2V1

d+1
is acceptable. Furthermore, here we have tacitly assumed that

V1 > 0. As T0 > 0, this solution only occurs for positive curvature (e.g. a dS
slicing).1

Case (c): It is worthwhile to highlight another solution, which corresponds
to a special case of situation (a) described above. In particular, this is the
case with W = 0 at x = 0, i.e. we have W0 = 0 = W1. The solution is given
by

S2
0 = 2V1 , (E.14)

W0 = 0 , W1 = 0 , W2 =
4V0

dS0

, (E.15)

T0 = 0 T1 = 0 , T2 = V0 . (E.16)

As V0 < 0 we find T < 0 in this case. Hence this corresponds to the IR
solution with negatively curved slices.

1If V1 < 0 we can replace V1 by |V1| in all expressions. The solution persists and
corresponds to a space-time with positively curved d-dimensional slices.
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Appendix F

Calculation of the on-shell
action

We begin with on-shell action in the case of a field theory on a Lorentzian
manifold. The starting point is the action (1.4.2) which we proceed to rewrite
as a functional of A(u). As a first step note that for our ansatz the curvature
scalar R(g) of the (d+ 1) space-time can be written as:

R(g) = −
(

2dÄ+ d(d+ 1)Ȧ2
)

+ e−2AR(ζ) =
1

2
ϕ̇2 +

d+ 1

d− 1
V .

where in the last step we used the equations of motion (2.1.5)–(2.1.7). In-
serting this into (1.4.2) we find

Son-shell =
2

d− 1
Md−1Vd

∫ IR

UV

du edAV + SGHY , (F.1)

i.e. we have successfully eliminated the explicit dependence on R(g) and ϕ̇2.
Here we also defined

Vd ≡
∫
ddx
√
|ζ| . (F.2)

In the next step we use (2.1.5)–(2.1.6) to replace the potential V in (F.1) by

V = −(d− 1)Ä− d(d− 1)Ȧ2 +
d− 1

d
e−2AR(ζ) . (F.3)

Inserting and after some manipulations we obtain:

Son-shell = 2Md−1Vd
[
edAȦ

]
UV
− 2Md−1Vd

[
edAȦ

]
IR

+
2Md−1R(ζ)

d
Vd

∫ IR

UV

du e(d−2)A + SGHY , (F.4)
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where the subscript UV/IR denotes that the expression is to be evaluated at
the UV/IR locus. One can check that, given the asymptotic form of A(u) in
the IR (2.5.13) the second term in (F.4) vanishes (as long as d ≥ 2). Last,
we turn to the Gibbons-Hawking-York term, This is given by

SGHY = 2Md−1

[∫
ddx
√
|γ|K

]
UV

= −2dMd−1Vd
[
edAȦ

]
UV
, (F.5)

where K = −dȦ is the extrinsic curvature of the boundary and the induced
metric γµν was defined in (2.1.3). Putting everything together we obtain

Son-shell = −2(d− 1)Md−1Vd
[
edAȦ

]
UV

+
2Md−1R

d
Vd

∫ IR

UV

du e(d−2)A . (F.6)

Here we also replaced R(ζ) by R as the two are identical in our conventions.
The expression (F.6) is the on-shell action for a holographic RG flow on a
Lorentzian manifold. For the corresponding expression in the Euclidean case
we simply have to swap the sign, i.e. we have

Son-shell,E = −Son-shell . (F.7)



Appendix G

Calculation of the
entanglement entropy

In this appendix, we review the calculation of the entanglement entropy
which will be used for constructing F -functions. Here we work with a field
theory on dSd, which in our holographic setting corresponds to a bulk space-
time with dSd boundary. To calculate an entanglement entropy, we then
need to specify an entangling surface on the boundary. To this end, we first
specify the bulk metric. Here we will work with

ds2 = du2 + e2A(u)
[
−dt2 + α2 cosh2(t/α)

(
dθ2 + sin2 θdΩ2

d−2

)]
(G.1)

where dΩ2
d−2 is the metric on a (d− 2)-dimensional unit sphere. To find the

static entanglement entropy we set t = 0 so that the bulk metric becomes:

ds2 = du2 + α2e2A(u)
(
dθ2 + sin2 θdΩ2

d−2

)
(G.2)

Our choice of entanglement surface is then given by θ|u→−∞ = π
2
. This

corresponds to calculating the entanglement entropy between two cap-like
regions as shown in fig. 3.4.

The entanglement entropy in our holographic setting is then calculated
following the prescription of Ryu and Takayanagi [83]. According to this we
need to find the minimal surface in the bulk which has the entangling surface
as the boundary. The entanglement entropy is then given by

SEE =
γ

4Gd+1

(G.3)

where γ is the area of the minimal surface. The equation for the surface is
θ = θ(u). Then the metric on the surface is

ds2 =

[
1 + α2e2A(u)

(
dθ

du

)2
]
du2 + α2 sin2 θe2A(u)dΩ2

d−2. (G.4)
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From this the surface area functional is obtained as:

γ = αd−2Vol(Sd−2)

∫
du

[
1 + α2e2A(u)

(
dθ

du

)2
]1/2

sind−2 θ e(d−2)A(u) (G.5)

where Vol(Sd−2) is the volume of a unit radius (d − 2)-dimensional sphere.
To minimise the area the surface θ(u) has to satisfy the following equation:

α2e2A(u)
[
Ȧ(u)θ̇(u) sin(θ(u))

{
α2(d− 1)e2A(u)(θ̇(u))2 + d

}
−(d− 2)(θ̇(u))2 cos(θ(u)) + θ̈(u) sin(θ(u))

]
− (d− 2) cos(θ(u)) = 0 (G.6)

subject to the boundary condition

lim
u→−∞

θ(u) =
π

2
. (G.7)

We also impose regularity on the surface. The solution of the equation (G.6)
subject to the boundary condition (G.7) is:

θ(u) =
π

2
. (G.8)

Then the minimal surface area is

γ = αd−2Ωd−2

∫ IR

UV

du e(d−2)A(u) , with Ωn =
2π

n+1
2

Γ(n+1
2

)
. (G.9)

Using Ωd = 2π
d−1

α2Ωd−2 and R = d(d−1)
α2 the minimal surface area can be

written as

γ =
2R

d

1

4π
Vol(Sd)

∫ IR

UV

du e(d−2)A(u) . (G.10)

The holographic entanglement entropy is then

SEE =
γ

4Gd+1

= Md−1 2R

d
Vol(Sd)

∫ IR

UV

du e(d−2)A(u) , (G.11)

where we also rewrote Newton’s constant as Gd+1 = 1/(16πMd−1
p ).



Appendix H

Analytical results for large and
small boundary curvature

H.1 Large curvature expansion

RG flows with large dimensionless curvature R are found when the IR end
point is very close to the corresponding UV fixed point ϕUV. In particular,
when ϕ0 → ϕUV we find R → ∞. In this regime we can find solutions
analytically by solving perturbatively in ϕ? ≡ |ϕ0 − ϕUV|.

UV fixed points are associated with extrema of the potential, so that in
the vicinity of ϕUV we can write the potential as1

V (ϕ) = −d(d− 1)

`2
− ∆−(d−∆−)

2`2
(ϕ− ϕUV)2 +O

(
(ϕ− ϕUV)3

)
. (H.1.1)

The solutions for A(u) and ϕ(u) can then be organised as an expansion
in ϕ? about the solution associated with the UV fixed point ϕUV, which we
will refer to as A0(u) and ϕ0(u). At the fixed point, the scale factor A(u) is
that of AdSd+1 space-time given in (2.4.11) :

Sd/dSd: A0(u) = log

(
− `
α

sinh
u+ c

`

)
, (H.1.2)

AdSd: A0(u) = log

(
`

α
cosh

u+ c

`

)
, (H.1.3)

1The calculation performed here only applies to UV fixed points at maxima of the po-
tential, as these fixed points come with a family of RG flow solutions with ϕ0 a continuous
parameter over this family. In contrast, UV fixed points at minima only exist as individual
solutions with a discrete set of IR end points ϕ0. Hence the limit of taking ϕ0 → ϕUV is
ill-defined in this case.
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and ϕ0(u) = ϕUV is constant. We then find that the system of equations
(2.1.5)–(2.1.7) can be solved self-consistently by expanding about (A0(u),
ϕ0(u)) as follows:

A(u) = A0(u) +O(ϕ2
?) , (H.1.4)

ϕ(u) = ϕ0(u) + ϕ1(u) +O(ϕ2
?) , (H.1.5)

and where the subscript indicates the order in the expansion in ϕ?.
In the following, we will solve explicitly for ϕ1(u). Also, for simplicity,

we will set ϕUV = 0 in the following. Inserting the ansatz for A0(u) into
the Klein-Gordon equation (2.1.7) then results in a differential equation for
ϕ1(u), which will allow us to determine the leading order contribution to
flows ϕ(u). The resulting equations take the form:

Sd/dSd: ϕ̈1 +
d

`
coth

(
u+ c

`

)
ϕ̇1 +m2ϕ = 0 , (H.1.6)

AdSd: ϕ̈1 +
d

`
tanh

(
u+ c

`

)
ϕ̇1 +m2ϕ = 0 . (H.1.7)

The leading contributions to RG flows are given by regular solutions to these
equations subject to the boundary conditions:

ϕ(−c) = ϕ0 , ϕ̇(−c) = 0 , or, equivalently ϕ1(−c) = ϕ? , ϕ̇1(−c) = 0 .
(H.1.8)

These boundary conditions ensure that flows end at uIR = −c, the value at
which the scale factor eA(u) vanishes.

We can discuss both equations (H.1.6) and (H.1.7) in a unified way if we
define a new coordinate U as follows:

U ≡
{
− coth u+c

`
, Sd/dSd

− tanh u+c
`
, AdSd

. (H.1.9)

Equations (H.1.6) and (H.1.7) then become

(1− U2)2ϕ′′1 + (d− 2)U(1− U2)ϕ′1 + ∆−(d−∆−)ϕ1 = 0 , (H.1.10)

where we defined ′ ≡ d
dU

. The general solution is given by:

ϕ1(U) =

[
C̃1 (U − 1)

∆−
2 (U + 1)

d−∆−
2 2F1

(
2− d

2
,
d

2
,
2− d+ 2∆−

2
,
1− U

2

)
(H.1.11)

−C̃2 (U − 1)
∆+
2 (U + 1)

d−∆+
2 2F1

(
2− d

2
,
d

2
,
2− d+ 2∆+

2
,
1− U

2

)]
,
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where C̃1,2 are integration constants. Imposing the boundary conditions re-
sults in the following solution for ϕ(u):

ϕ(u) = ϕ?
2
d
2
−1
√
π

sin
(
π
(
d−2∆−

2

)) Γ
(
d+1

2

)
Γ(∆−)Γ(d−∆−)(U − 1)

∆−
2 (U + 1)

d−∆−
2

Γ(∆−)

Γ
(

2−d+2∆−
2

) 2F1

(
2− d

2
,
d

2
;
2− d+ 2∆−

2
;
1− U

2

)

−(U − 1)
d−∆−

2 (U + 1)
∆−

2
Γ(d−∆−)

Γ
(

2+d−2∆−
2

) 2F1

(
2− d

2
,
d

2
;
2 + d− 2∆−

2
;
1− U

2

)
+O(ϕ2

?) . (H.1.12)

The above result is valid for general d. Now we collect the results d = 4
which have been discussed in chapter 2. An additional benefit is that this
will make the expressions more manageable. For d = 4 we find :

S4/dS4: A(u) = log

(
− `
α

sinh
u+ c

`

)
+O(ϕ2

?) , (H.1.13)

ϕ(u) =
3ϕ?

2δ(δ2 − 1)

1

sinh2 u+c
`

[
eδ

u+c
`

(
δ − coth

u+ c

`

)
(H.1.14)

+e−δ
u+c
`

(
δ + coth

u+ c

`

)]
+O(ϕ3

0) ,

AdS4: A(u) = log

(
`

α
cosh

u+ c

`

)
+O(ϕ2

?) , (H.1.15)

ϕ(u) =
ϕ?
2δ

1

cosh2 u+c
`

[
eδ

u+c
`

(
δ − tanh

u+ c

`

)
(H.1.16)

+ e−δ
u+c
`

(
δ + tanh

u+ c

`

)]
+O(ϕ3

0) ,

with δ ≡
√

4−m2`2 and ϕ0 �
√
|V0|
m2

.

There is one interesting feature which we wish to point out. One can check
that for S4/ dS4 slicings ϕ(u) grows strictly monotonically along a flow from
UV to IR. For the AdS4 case, this is only true as long as ∆− < 1. For ∆− > 1
we find that ϕ(u) changes direction along the flow: The flow leaves the UV
point at ϕ = 0 in one direction, then turns around, before terminating on the
other side of ϕ = 0. This is what was referred to as a ‘bounce’. Interestingly,
we find that in the regime of small ϕ0 bounces are generic for ∆− > 1.
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Analytical relations between UV data

Given the analytical solutions for A(u) and ϕ(u), we can then find how the
UV data (ϕ−, R,B,C) are related to one another and also to the IR quantity
ϕ0.

For one, note that both ϕ− and C appear in the near-boundary expansion
of ϕ(u) given in (2.4.10) and which we reproduce here for convenience:

ϕ(u) = ϕ−`
∆−e∆−u/` +

Cd|ϕ−|∆+/∆−

∆−(d− 2∆−)
`∆+e∆+u/` + . . . . (H.1.17)

We can hence find relations involving ϕ− and C by comparing with the
near boundary behaviour of (H.1.12) above. The boundary is reached for
u→ −∞. In this limit the expression (H.1.12) becomes:

ϕ(u) =
u→−∞

ϕ?
2d−1
√
π

sin
(
π
(
d−2∆−

2

)) Γ
(
d+1

2

)
Γ(∆−)Γ(d−∆−)

× (H.1.18)

×

 Γ(∆−)

Γ
(

2−d+2∆−
2

) e∆−c/` e∆−u/`
(
1 +O(e2u/`) +O(e2∆−u/`)

)

+
Γ(∆+)

Γ
(

2−d+2∆+

2

) e∆+c/` e∆+u/`
(
1 +O(e2u/`) +O(e2∆+u/`)

)
+O(ϕ2

?) ,

where c is related to the UV curvature as `2R = 4d(d−1)e2c/`. By comparing
the coefficients of e∆−u/` and of e∆+u/` we can then find

ϕ? ∼ R−
∆−

2

(
1 +O

(
R−

∆−
2

))
, (H.1.19)

where we neglected extracting the exact numerical prefactor, as this will not
be important. This confirms that an expansion in small ϕ? is indeed an
expansion for large R. Similarly, we find

C ∼ O
(
R

d
2
−∆−

)
, (H.1.20)

where again we ignored numerical prefactors.
So far, the discussion is valid for general d. Now we restrict to d = 3.

For this case, we will extract B by calculating the entanglement entropy SEE

explicitly for large R. Recall that the unrenormalized entanglement entropy
is given by (see e.g. equation (3.4.12))

SEE(Λε,Rε) = (M`)2Ω̃3R−1/2
ε

(
Λε-dependent part +B(Rε)

)
. (H.1.21)
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That is the parameter B corresponds to what we will call the ‘universal
contribution’ to the entanglement entropy, i.e. the part of the entanglement
entropy that does not depend on the cutoff Λε defined in (3.2.19). This
observation will allow us to extract B as follows. From (3.4.3) recall that the
entanglement entropy (in d = 3) can also be written as

SEE(Λε,Rε) =
2

3
M2Ω̃3R

−1/2

∫ −c
uε

du eA(u) , (H.1.22)

with uε = ` log ε. The idea is to insert our analytic solution A(u) = A0(u) +
O(ϕ2

?) into (H.1.22) and evaluate the integral. After isolating the cutoff-
independent part we can then read off B. One obtains

SEE(Λε,Rε) = −2

3
M2Ω̃3R

−1/2

∫ −c
uε

du
`

α
sinh

(
u+ c

`

)(
1 +O(ϕ2

?)
)

(H.1.23)

= −2

3
(M`)2Ω̃3 α

−1R−1/2

[
cosh

(
u+ c

`

)]−c
uε

− 1

α
O(ϕ2

?)

(H.1.24)

= −8π2(M`)2Ω̃3

[
cosh

(
u+ c

`

)]−c
uε

−R1/2O(ϕ2
?) , (H.1.25)

where we have used R = 6/α2 and Ω̃3 = 12
√

6π2. Any contribution from the
lower integration limit will depend on ε and hence Λε. The universal contri-
bution purely comes from the upper integration limit −c. Then, comparing
with (H.1.21) one finds

B(R) = lim
ε→0

[
− 8π2Ω̃−2

3 R1/2
ε

(
1 +O

(
R−∆−
ε

))]
= −8π2Ω̃−2

3 R1/2
(

1 +O
(
R−∆−

))
. (H.1.26)

where we also used (H.1.19).

H.2 Small curvature expansion

Here we will derive analytical expressions for RG flow solutions for small
values of the dimensionless curvature R. The results will be obtained by
expanding about a flat flow solution. We will derive two expansions, one
valid in the vicinity of the UV fixed point, and one appropriate when close
to the IR end point. With the help of these we will then find expressions for
C(R) and B(R) valid for small R.
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Expansion in the vicinity of the UV fixed point

Consider a potential with a maximum at ϕ = ϕUV which gives rise to a UV
fixed point. In the vicinity of ϕUV the potential can then be expanded as
in (H.1.1). We also choose the UV to be reached for u → −∞. An RG
flow solution with R = 0 then has the following well-known expansion in the
vicinity of the UV (see e.g. [17, 5]):

Aflat(u) = Ā− u

`
−
ϕ2
−`

2∆−

8(d− 1)
e2∆−u/` + . . . , (H.2.1)

ϕflat(u) = ϕUV + ϕ−`
∆−e∆−u/` + ϕ+`

∆+e∆+u/` + . . . , (H.2.2)

with Ā, ϕ− and ϕ+ integration constants.
Once we switch on a small finite value for `2R, we write the solution for

(A(u), ϕ(u)) as an expansion in powers of `2R about the flat solution. In
particular, one can check that the equations of motion (2.1.5)–(2.1.7) can be
solved self-consistently with the ansatz:

A(u) = Aflat(u) + `2RA1(u) +O
(
(`2R)2

)
, (H.2.3)

ϕ(u) = fflat(u) + `2Rϕ1(u) +O
(
(`2R)2

)
. (H.2.4)

Instead of solving for (A(u), ϕ(u)) we could have equally considered the
functions W (ϕ) and S(ϕ). Again, the solution in the vicinity of ϕUV can
be organised as an expansion about the flat solutions Wflat(ϕ) and Sflat(ϕ),
but now expanding in powers of R. Explicit solutions for (A(u), ϕ(u)) and
(W (ϕ), S(ϕ)) in the vicinity of a UV fixed point at a maximum of the po-
tential are given in appendix C.

However, in the vicinity of the IR end point ϕ0 of an RG flow the above
expansion is not sufficient. As can be seen from the results in section 2.4.1
a power of `2R in (A(u), ϕ(u)) always comes together with e2u/`, so that the
effective expansion parameter is `2Re2u/`. Note that for small R the IR end
point will will be at u = u0 � 1 with u0 → +∞ for R→ 0. As a result, in the
vicinity of the IR the combination `2Re2u/` ceases to be a good expansion
parameter. Hence, in the following, we will find a different expansion for
(A(u), ϕ(u)) valid in the vicinity of the IR end point.

Expansion in the vicinity of the IR end point

Here, we will again expand about the solution for a flat flow. Recall that a
flow with R = 0 has its IR end point ϕIR at a minimum of the potential.
In contrast, a flow with finite R can never reach the minimum and ends
at a generic point ϕ0 (see [8] for details). For R → 0 the IR end point will
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approach the minimum, i.e. ϕ0 → ϕIR. Here, we will be interested in solutions
valid in the vicinity of ϕ0, and hence close to ϕIR. As we will confirm later, a
good expansion parameter at small R for obtaining solutions perturbatively
is then ϕ∗ ≡ |ϕIR − ϕ0|.

To begin, we record the expressions for the scale factor Aflat(u) and the
dilaton ϕflat(u) for a flat RG flow solution. The IR fixed point ϕIR is reached
for u→ +∞ and in its vicinity one finds [5]:

Aflat(u) = ¯̄A− u

`IR

+O
(
e2∆IR

− u/`IR
)
, (H.2.5)

ϕflat(u) = ϕIR + ϕ̄− e
∆IR
− u/`IR +O

(
e2∆IR

− u/`IR
)
, (H.2.6)

where ¯̄A and ϕ̄− are integration constants, `IR and ∆IR
− are given in (3.2.46).

On the contrary, for finite R the IR end point ϕ0 is reached for u→ u0 with
u0 finite. The scale factor and dilaton in the vicinity of the IR are given by
(see [8]):

A(u) =
u→u0

ln

(
−`0

α
sinh

u− u0

`0

)
, ϕ(u) = ϕ0 +O

(
(u− u0)2

)
, (H.2.7)

and

`2
0 ≡ −

d(d− 1)

V (ϕ0)
. (H.2.8)

We are now in a position to set up the small-curvature expansion. The
idea is to expand about a solution of the form (H.2.7) but with `0 → `IR

and ϕ0 → ϕIR. That is, we expand about a curved ansatz in the flat limit.
Also, u0 is taken to be large and positive, i.e. u0 � 1. The full solution
can then be constructed in a perturbative expansion in ϕ∗ ≡ |ϕIR − ϕ0| � 1
about the leading order expressions. In particular, the equations of motion
(2.1.5)–(2.1.7) can be solved self-consistently with the following expansion:

A(u) = AIR(u) +O(ϕ2
∗) , with AIR(u) = ln

(
−`IR

α
sinh

u− u0

`IR

)
,

(H.2.9)

ϕ(u) = ϕIR + ϕ1(u) +O(ϕ2
∗) , (H.2.10)

subject to the boundary conditions Ȧ(u)|u→u0 → 1
(u−u0)

, ϕ(u0) = ϕ0 and

ϕ̇(u0) = 0. The subscript on ϕ1 indicates that this term is of order O(ϕ∗).
Furthermore, note that in the regime of interest, the potential can be ex-
panded as

V = −d(d− 1)

`2
IR

+
1

2
m2

IR(ϕ− ϕIR)2 +O
(
(ϕ− ϕIR)3

)
. (H.2.11)
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We can now make the following observation. Consider a point u = u1

towards the IR end of the flow, but not close to u0, that is

u1 � 1, , with u1 < u0 , and |u0 − u1| � 1 . (H.2.12)

We choose u1 sufficiently large such that our expansion (H.2.9) is expected
to hold. At the same time, any flow that reaches u1 � 1 must be a small
correction to a flat flow and hence the expression (H.2.5) should also be a
good approximation at u = u1. We can then write two expressions for A(u1).
From (H.2.9) we find

A(u1) = ln

(
−`IR

α
sinh

u1 − u0

`IR

)∣∣∣∣
u0�1
u1�u0

+O
(
ϕ2
∗
)

= ln
(`IR

2α

)
+
u0

`IR

− u1

`IR

+O
(
e−2(u0−u1)/`IR

)
+O

(
ϕ2
∗
)
. (H.2.13)

while from (H.2.5) one obtains:

A(u1) = ¯̄A− u1

`IR

+O
(
e2∆IR

− u1/`IR
)
, (H.2.14)

At leading order, the two expressions for A(u1) for are consistent if we make
the following identification:

u0

`IR

= ln

(
2α

`IR

)
+ ¯̄A =

1

2
ln

(
4d(d− 1)

`2
IR R

)
+ ¯̄A , (H.2.15)

i.e. the value of u0 is related to the UV curvature R. It is this observation
which will be useful in the following. Note that, as expected, we find that
u0 → +∞ for R→ 0.

We can then make one more observation. For u0 � 1 we also expect that
the flat solution for ϕ(u) given in (H.2.6) should be a good approximation
to the full result. In particular, at u = u0 the exact result is given by
ϕ(u0) = ϕ0. Comparing this to the flat expression at u = u0 one finds

ϕ0 = ϕIR + ϕ̄− e
∆IR
− u0/`IR +O

(
e2∆IR

− u0/`IR
)
.

Using the relation (H.2.15) between u0 and R this can be rewritten as

ϕ∗ ∼ (`2
IRR)−

∆IR
−
2 +O

(
(`2

IRR)−∆IR
−
)
. (H.2.16)

This confirms that an expansion in ϕ∗ is indeed an expansion for small UV
curvature R (recalling that ∆IR

− < 0).
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Expressions for B(R) and C(R) at small R
While above we have been working with general d here we again specialise to
d = 3. To extract B we use our insight developed in the previous section H.1.
There we used the fact that the parameter B(R) is given by the universal
(i.e. cutoff-independent) contribution to the following integral:

B(R) = lim
ε→0

[
2

3
`−2|ϕε−|−1/∆−

∫ u0

uε

du eA(u) − (Λε-dependent terms)

]
.

(H.2.17)

Here we wish to determine B(R) for small R. In particular, we want to
write B(R) in terms of an expansion about B0 = B(0), which in terms of an
integral is given by

B0 = lim
ε→0

[
2

3
`−2|ϕε−|−1/∆−

∫ ∞
uε

du eAflat(u) − (Λε-dependent terms)

]
.

(H.2.18)

The main difficulty in determining B is to calculate the integral appear-
ing in (H.2.17). For small R this can be done perturbatively by using the
expansions developed above. The main idea is to to split the integration in-
terval [uε, u0] into two and integrate over [uε, u1] and [u1, u0] separately. Here
u1 is an auxiliary parameter and can take any value as long as it satisfies
(H.2.12). We therefore write the integral in (H.2.17) as:

I =

∫ u0

uε

du eA(u) =

∫ u1

uε

du eA(u) +

∫ u0

u1

du eA(u) . (H.2.19)

Then, on the interval [uε, u1] we can use the expansion (H.2.3) for A(u) in
powers of R. On the interval [uε, u1] close to the IR we instead use the
expansion given in (H.2.9). This is summarised below:

A(u) =

{
Aflat(u) +O(R) , u < u1 ,
AIR(u) +O(ϕ2

∗) , u > u1 ,
(H.2.20)

with the two solutions matched at u = u1 up to the required order. Inserting
this, the integral becomes:

I =

∫ u1

uε

du exp (Aflat(u) +O(R)) +

∫ u0

u1

du exp
(
AIR(u) +O(ϕ2

∗)
)

=

∫ u1

uε

du eAflat(u) +

∫ u1

uε

duO(R) +

∫ u0

u1

du eAIR(u)+O(ϕ2
∗) . (H.2.21)
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In the next step, we split the first integral in (H.2.21) into two as follows:

I =

∫ ∞
log ε

du eAflat(u) −
∫ ∞
u1

du eAflat(u) +

∫ u1

log ε

duO(R) +

∫ u0

u1

du eAIR(u)+O(ϕ2
∗) .

(H.2.22)

Also, as the two solutions for u < u1 and u > u1 are matched at u1, the
contributions to the integrals in (H.2.22) from the limit u1 will vanish. Hence
we need to evaluate

I =

∫ ∞
uε

du eAflat(u) −
∫ ∞

du eAflat(u) +

∫
uε

duO(R) +

∫ u0

du eAIR(u)+O(ϕ2
∗)

(H.2.23)

= I1 + I2 + I3 + I4 .

The first term I1 in the above is then the same integral that appears in the
expression for B0 given in (H.2.18). Therefore, the first term will indeed
contribute a term B0 to B(R) while the remaining terms will give rise to
corrections.

We will then proceed as follows. In the next step we will insert the
appropriate expressions for Aflat and AIR into the 2nd (I2) and 4th term (I4)
in (H.2.23) and perform the integrations. In particular, in the 2nd integral
we replace Aflat by its near IR-expansion given in (H.2.5). In the 4th term
we insert expression (H.2.9). To remove clutter we will set ¯̄A = 0 in the
following. Then these two integrals become:

I2 + I4 = −
∫ ∞

du eAflat(u) +

∫ u0

du eAIR(u)+O(ϕ2
∗)

= −
∫ ∞

du e
− u
`IR

(
1 +O

(
e2∆IR

− u/`IR
))
− `IR

α

∫ u0

du sinh
(
u−u0

`IR

) (
1 +O(ϕ2

∗)
)

= `IR

[
e
− u
`IR +O

(
e(2∆IR

− −1)u/`IR
)]∞
− `2

IR

α

[
cosh

(
u− u0

`IR

)]u0

+
`IR

α
O
(
ϕ2
∗
)

= − `2
IR

α

(
1 +O(ϕ2

∗)
)

= − `2
IR√
6
R1/2

(
1 +O

(
R−∆IR

−
))

, (H.2.24)

where in the last step we have used R = 6/α2 and (H.2.16). Then, putting
everything together, we are left with

I =

∫ ∞
uε

du eAflat(u) +O(R)− `2
IR√
6
R1/2

(
1 +O

(
R−∆IR

−
))

. (H.2.25)
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Inserting this back into (H.2.17) we obtain

B(R) = lim
ε→0

[
2

3
`−2|ϕε−|−1/∆−

∫ ∞
uε

du eAflat(u) +O(Rε) (H.2.26)

− 8π2Ω̃−2
3

`2
IR

`2
R1/2
ε

(
1 +O

(
R−∆IR

−
ε

))
− (Λε-dependent terms)

]
,

As stated before, the first term contributes B0. Therefore, overall we find

B(R) =
R→0

B0 +O(R)− 8π2Ω̃−2
3

`2
IR

`2
R1/2

(
1 +O

(
R−∆IR

−
))

. (H.2.27)

We can perform a similar analysis for extracting C(R) for small R. In
particular, we can determine C(R) from the first term in (3.2.3). After
introducing a cutoff Λε as in (3.2.19) this term gives rise to the first line in
expression (3.2.23). From this it follows that C(R) can be determined as

C(R) = lim
ε→0

[
− 4`−2|ϕε−|−3/∆− e3A(u)Ȧ(u)

∣∣∣
u=uε
− (Λε-dependent terms)

]
.

(H.2.28)

We define C0 = C(0) as the value of C(R) for R = 0. This can be calculated
as

C0 = lim
ε→0

[
− 4`−2|ϕε−|−3/∆− e3Aflat(u)Ȧflat(u)

∣∣∣
u=uε
− (Λε-dependent terms)

]
.

(H.2.29)

In the following, it will be useful to write C(R) in terms of an integral. In
particular note that∫ u0

uε

du e3A(Ä+ 3Ȧ2) =
[
e3AȦ

]u0

uε
= − e3AȦ(u)

∣∣∣
u=uε

, (H.2.30)

where we observe that the integral does not receive any contributions from
its IR limit. Hence we can write C(R) as

C(R) = lim
ε→0

[
4`−2|ϕε−|−3/∆−

∫ u0

uε

du e3A(Ä+ 3Ȧ2)− (Λε-dependent terms)

]
.

(H.2.31)

As before, we again split the integration range into the two intervals [uε, u1]
and [u1, u0] with u1 satisfying (H.2.12). We then insert for A(u) with the
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appropriate expansions as detailed in (H.2.20). Then the integral in (H.2.31)
becomes

I =

∫ u0

uε

du e3A(Ä+ 3Ȧ2)

=

∫ u1

uε

du e3Aflat(Äflat + 3Ȧ2
flat)

+ `2
IRR

∫ u1

uε

du e3Aflat

(
Ä1 + 3Ȧ2

1 + 3A1(Äflat + 3Ȧ2
flat)
)

+

∫ u1

uε

duO(R2) +

∫ u0

u1

du e3AIR(ÄIR + 3Ȧ2
IR)
(

1 +O(ϕ2
∗)
)

(H.2.32)

To make contact with the expression for C0 we rewrite the first integral in
(H.2.32) as∫ u1

uε

du e3Aflat(Äflat + 3Ȧ2
flat)

=

∫ ∞
uε

du e3Aflat(Äflat + 3Ȧ2
flat)−

∫ ∞
u1

du e3Aflat(Äflat + 3Ȧ2
flat) . (H.2.33)

By ensuring that the solutions for u < u1 and u > u1 match at u = u1 to
the appropriate order, we can ensure that u1 does not appear in the final
expression and can therefore be deleted from (H.2.32). We are hence left
with

I =

∫ ∞
uε

du e3Aflat(Äflat + 3Ȧ2
flat)−

∫ ∞
du e3Aflat(Äflat + 3Ȧ2

flat)

+ `2
IRR

∫
uε

du e3Aflat

(
Ä1 + 3Ȧ2

1 + 3A1(Äflat + 3Ȧ2
flat)
)

+

∫
uε

duO(R2) +

∫ u0

du e3AIR(ÄIR + 3Ȧ2
IR)
(

1 +O(ϕ2
∗)
)

=
[
e3AflatȦflat

]
uε

+ `2
IRR

∫
uε

du e3Aflat

(
Ä1 + 3Ȧ2

1 + 3A1(Äflat + 3Ȧ2
flat)
)

+O(R2) +
[
e3AIRȦIR

]u0

− `3
IR

α3
O(ϕ2

∗) . (H.2.34)

Inserting for AIR from (H.2.9) one finds that[
e3AIRȦIR

]u0

= 0 . (H.2.35)
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Hence we are left with

I =
[
e3AflatȦflat

]
uε

+ `2
IRR

∫
uε

du e3Aflat

(
Ä1 + 3Ȧ2

1 + 3A1(Äflat + 3Ȧ2
flat)
)

+O(R2) +O
(
R

3
2
−∆IR
−

)
. (H.2.36)

where we have also used R = 6/α2 and (H.2.16). Inserting this back into
(H.2.28) we then find the following. We identify the first term in (H.2.36)
with C0, while the second term gives a contribution ∼ RC1. Overall we
hence find that for small R we can write

C(R) =
(
C0 +RC1 +O(R2)

)
+O

(
R

3
2
−∆IR
−

)
, (H.2.37)

where we also used that C(R) depends on R only via R.
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Appendix I

Holographic entanglement
entropy of a spherical region in
flat space

In this appendix, we will calculate the holographic entanglement entropy
of a spherical entangling region in flat space. In this regard, we write the
(d+ 1)-dimensional bulk in flat slicing as

ds2 = du2 + e2A(u)
(
−dt2 + dr2 + r2dΩ2

d−2

)
. (I.1)

At constant time slicing we can write the metric in conformal coordinates as

ds2 = ρ2(z)
(
dz2 + dr2 + r2dΩ2

d−2

)
(I.2)

where the coordinate z and the scale factor a(z) are defined as

e−A(u)du = dz , ρ(z) = eA(u(z)) . (I.3)

We are interested in computing the entanglement entropy between a ball of
radius α , r ≤ α, and the rest on the boundary. That means the entan-
gling “surface” is a (d− 2)-dimensional sphere of radius α on the boundary.
To compute the entanglement entropy holographically, we need to find the
minimal (d − 1)-dimensional “surface” in the bulk which coincides with a
(d − 2)-dimensional sphere of radius α on the boundary. To find this, we
take the ansatz: r = r(z) while the angular coordinates coincide. The in-
duced metric on this “surface” becomes

ds2
ind = ρ2(z)

[(
1 + r′2(z)

)
dz2 + r2(z)dΩ2

d−2

]
. (I.4)

From this induced the metric we can find the area functional

S[r(z)] = Ωd−2

∫
dz ρd−1(z)rd−2(z)

√
1 + r′2(z). (I.5)
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which needs to be minimized subject to the boundary condition that r(ε) = α,
where z = ε is the boundary. Variation of the area functional leads to the
equation

ρ(z)
(
(d− 2)r′(z)2 + d− 2− r(z)r′′(z)

)
−(d−1)r(z)ρ′(z)r′(z)

(
r′(z)2 + 1

)
= 0 .

(I.6)
This equation needs two boundary conditions. One is fixed by asking that
the surface intersects the (regulated) boundary at z = ε on a circle of radius
α; The second condition is that the surface is regular where it closes off: if
the minimal surface ends z = z0, we must impose

z(0) = z0 , z′(0) = 0 . (I.7)

for regularity. Near r = 0 we then have

z(r) ≈ z0 + κr2 , (I.8)

where κ can be taken to 1 which is equivalent to a coordinate rescaling.
Eq. (I.8) sets the initial condition for r(z0) and r′(z0) and then we solve the
eq. (I.6) numerically.

Denoting the solution of this equation as r = r0(z), we find the minimal
area is

A = Ωd−2

∫
dz ρd−1(z)rd−2

0 (z)
√

1 + r′20 (z) . (I.9)

The entanglement entropy calculated by this way is divergent near the UV
boundary z = ε and requires regularisation. The holographic entanglement
entropy is then

SFEE =
A

4Gd+1

= 4πMd−1A . (I.10)



Appendix J

De Sitter entanglement entropy
and thermodynamics

In this appendix we show that the entanglement entropy computed in section
3.4 is the same as the bulk gravitational entropy of the space-time which one
obtains by writing the slice metric in de Sitter static coordinates. This gives
rise to a horizon in the bulk, with an associate temperature and entropy. The
internal energy is identified with the ADM mass associated to the timelike
killing vector.

Using the thermodynamic relation between free energy, internal energy
and entropy, it is possible to derive relation (3.4.10) relating the functions
B(R) and C(R) which appear in the F-functions.

J.1 The de Sitter static patch: thermal en-

tropy, and the ADM mass

The metric of dS in the expanding patch is

ζµνdx
µdxν = −dt2 + α2 cosh2(t/α)

(
dθ2 + sin2 θdΩ2

d−2

)
. (J.1.1)

On the other hand the dS metric in the static patch is

ζµνdx
µdxν = −

(
1− r2

α2

)
dτ 2 +

(
1− r2

α2

)−1

dr2 + r2dΩ2
d−2 . (J.1.2)
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The coordinate transformations from the expanding patch to the static patch
is

τ = α sinh−1

 sinh(t/α)√
1− cosh2(t/α) sin2 θ

 , (J.1.3)

r = α cosh(t/α) sin θ , (J.1.4)

and all the other angular coordinates are the same.

The bulk metric in the static patch coordinates is

ds2 = du2 + e2A(u)

[
−
(

1− r2

α2

)
dτ 2 +

(
1− r2

α2

)−1

dr2 + r2dΩ2
d−2

]
.

(J.1.5)
We can see that there is a horizon at r = α, parametrized by the coordinates
(u,Ωd−2). The associated temperature is

T =
1

2πα
. (J.1.6)

as can be easily seen by going to Euclidean time and imposing the right
periodicity to demand regularity at r = α, i.e. τ ∼ τ + i2πα.

Entropy

The thermodynamic entropy associated to the horizon is given by

Sth =
Area

4Gd+1

= 4πMd−1Vol(Sd−2) ,

∫ IR

UV

du e(d−2)A(u) (J.1.7)

where we have also used Gd+1 = (16πMd−1)−1. Using the fact that α2 =
d(d− 1)/R and the geometric relation Vol(Sd−2) = d−1

2π α2 Vol(Sd), we obtain

Sth = 2Md−1R

d
Vd

∫ IR

UV

du e(d−2)A(u) = SEE, (J.1.8)

where we have used the explicit expression for SEE established in equation
(3.4.3) for the last identification, and the definition Vd = Vol(Sd).
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ADM Mass

For a static metric such as the one in equation (J.1.5) the internal energy is
identified with the ADM mass, defined as

MADM = −2Md−1

∫
UV

dd−1x
√
hNKADM

= 2(d− 1)Md−1
[
edA(u)Ȧ(u)

]
UV

Ωd−2

∫ α

0

drrd−2 . (J.1.9)

On the fixed time slice and on boundary the metric is

habdx
adxb =

[
e2A(u)

]
UV

[(
1− r2

α2

)−1

dr2 + r2dΩ2
d−2

]
(J.1.10)

where
[
e2A(u)

]
UV

means e2A(u) evaluated at the UV boundary. The extrinsic
curvature of this hypersurface of codimension 2 is

KADM = −(d− 1)[Ȧ(u)]UV . (J.1.11)

and the lapse function is

N = eA(u)

(
1− r2

α2

)1/2

. (J.1.12)

Using the relation Ωd = 2π
d−1

Ωd−2 and evaluating the integral in equation
(J.1.9) we find,

MADM = 2(d− 1)Md−1
[
edA(u)Ȧ(u)

]
UV

Ωd
αd−1

2π
. (J.1.13)

Using the relations β = 2πα and Vd = αdΩd, we arrive at

βMADM = 2(d− 1)Md−1
[
edA(u)Ȧ(u)

]
UV
Vd (J.1.14)

Identifying the ADM mass with the internal energy, MADM = Uth, equa-
tion (3.2.3) becomes the (integrated) first law.

βFth = βUth − Sth (J.1.15)
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J.2 Identities from thermodynamic relations

We begin with the renormalized stress-tensor, which is computed holograph-
ically by

〈T (ren)
µν 〉 = − 2√

ζ

δS
(ren)
on-shell

δ ζµν
, (J.2.1)

where ζµν denotes the metric on S3. Expressions for both the cutoff-regulated
and the renormalized free energy F = −Son-shell are collected in (3.2.39) and
(3.2.40). Using these expressions we obtain

〈T (ren)
µν 〉 = −1

3
R3/2 C(ren) ζµν , (J.2.2)

with

C = −(M`)2Ω̃3

(
3R−3/2

ε

[
4Λ3

ε(1 + . . .) + C
]

+R−1/2
ε

[
Λε(1 + . . .) +B − 2C ′

]
− 2R1/2

ε B′
)
, (J.2.3)

Cren = −(M`)2Ω̃3

(
3R−3/2(C − Cct) +R−1/2(B −Bct)− 2R−1/2C ′ − 2R1/2B′

)
,

(J.2.4)

where (. . .) contain all remaining terms that depend on the cutoff Λε ex-
plicitly. Furthermore, starting with (3.2.39) and (3.2.40) one can also show
that

R(ε)
∂

∂R(ε)

F (ren) = −1

2
C(ren) . (J.2.5)

We now use the thermodynamic identifications discussed in the first part
of this appendix,

βFth = F (ren) , (J.2.6)

Sth = S
(ren)
EE , (J.2.7)

βUth =

∫
d3x

√
ζ 〈T 0

0 〉 =
1

3
C(ren) . (J.2.8)

Then the thermodynamic relation (J.1.15) implies:

S
(ren)
EE =

1

3
C(ren) − F (ren)

= −2

3
R(ε)

∂

∂R(ε)

F (ren) − F (ren)

= −D3/2 F
(ren) (J.2.9)
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where when going from the 1st to the 2nd line we used (J.2.5) and where D3/2

is defined in (3.3.9). Therefore, starting with the thermodynamic relation
(J.1.15) we successfully reproduced the relations (3.4.26)–(3.4.27).

In addition, consider once more the thermodynamic relation (now in
terms of the cutoff-regulated quantities only)

SEE(Λε,Rε) =
1

3
C − F (Λε,Rε) . (J.2.10)

Inserting (3.4.12), (J.2.3) and (3.2.39) and taking the limit Λε →∞ one can
show that this reduces to

C ′(R) =
1

2
B(R)−RB′(R) , (J.2.11)

We also confirmed this identity numerically for a wide range of examples.
Note that to arrive at (J.2.9) and (J.2.11) it was crucial that the the

entanglement entropy S
(ren)
EE is identified with a thermal entropy as in (J.2.7).

Our numerical evidence for the validity of (J.2.9) and (J.2.11) can therefore
be seen as evidence for the validity of this assertion.

From (J.2.11) we can make another observation. As shown in app. H.2
for small R the functions B(R) and C(R) can be expanded as

B(R) = B0 +B1/2R1/2 +O(R) +O(R1/2−∆IR
− )

C(R) = C0 + C1R+O(R2) +O(R3/2−∆IR
− ) .

Then (J.2.11) implies that

B0 = 2C1 ⇒ B(R)
∣∣
R=0

= 2
∂C(R)

∂R

∣∣∣∣
R=0

. (J.2.12)

This in turn gives the following relation between the renormalization scheme
parameters Bct,0 and B̃ct,0 defined in (3.3.11) and (3.4.21):

Bct,0 = B0 + C1
(J.2.12)

=
3

2
B0 =

3

2
B̃ct,0 . (J.2.13)

In this section we will give further physical insight into the renormaliza-
tion scheme employed in section 3.3.2. There we found that for constructing
good F -function from the on-shell action for a theory on S3, we need to
choose the two counterterms Cct,0 and Bct,0 as

Cct,0 = C(0) = C0 , Bct,0 = B(0) + C ′(0) = B0 + C1 . (J.2.14)
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Here we will relate (J.2.14) to a renormalization condition for correlation
functions of the stress tensor for the field theory on S3. The key ingredient
will be a set of identities already derived in [80]. Here we we reproduce the
relevant equations, rewriting them using our notation.

We start by collecting the relevant expressions. The (expectation value of
the) renormalized stress tensor can be written in terms of the renormalized
on-shell action as

〈T ren
µν (x)〉 = − 2√

ζ(x)

δ Sren
on-shell(R|Bct, Cct)

δ ζµν(x)

= −1

3
|ϕ−|3/∆−R3/2 Cren(R|Bct, Cct) ζµν(x) , (J.2.15)

with Cren given in (J.2.4). We also have the two-point function

〈T ren
µν (x)T ren

ρσ (y)〉 =
4√

ζ(x)
√
ζ(y)

δ2 Sren
on-shell(R|Bct, Cct)

δ ζµν(x) δ ζρσ(y)
. (J.2.16)

If we consider variations with respect to ζµν respecting the spherical sym-
metry of S3 (i.e. restricting to homogeneous Weyl rescalings,) the following
holds ∫

d3y ζρσ(y)
δ

δ ζρσ(y)
= R ∂

∂R
. (J.2.17)

By applying the above operator to (J.2.15) one can derive the following
identity:〈(∫

d3y
√
ζ(y)T ren(y)

)
T ren
µν (x)

〉
− 3〈T ren

µν (x)〉

=
2

3
|ϕ−|3/∆−R

∂

∂R

(
R3/2 Cren

)
ζµν(x) +

2

3
|ϕ−|3/∆−R3/2 Cren ζµν(x) ,

(J.2.18)

where we have also used (J.2.16) and T ren ≡ ζµνT ren
µν .

We are now in a position to rewrite the conditions (J.2.14) as a set of
conditions on the 1pt and 2pt-functions of T ren

µν . To this end we take expres-
sion (J.2.15) and expand Cren for small R. Using our results from appendix
H.2 one finds

〈T ren
µν (x)〉 = −1

3
|ϕ−|3/∆−R3/2 Cren(R|Bct, Cct) ζµν(x)

=
R→0

(M`)2|ϕ−|3/∆−
(

(C0 − Cct) +O(R) +O
(
R

3
2
−∆IR
−
))
ζµν(x) .



J.2. IDENTITIES FROM THERMODYNAMIC RELATIONS 205

Rearranging this we find

(C0 − Cct) ζµν(x) = (M`)−2|ϕ−|−3/∆− 〈T ren
µν (x)〉

∣∣∣
R→0

. (J.2.19)

If we recall the identification of ϕ− with the source j and C with the (dimen-
sionless) vev of the deforming operator, equation (J.2.19) is nothing but the
trace identity 〈T 〉 = β(j)〈O〉 in the R = 0 theory. Equation (J.2.19) implies
that renormalizing with Cct = Cct,0 = C0 is equivalent to the renormalization
condition, that the renormalized stress tensor 〈T ren

µν (x)〉 (or, equivalently, the
renormalized operator vev 〈O〉) of the flat theory (R = 0) vanishes.

For the 2nd renormalization condition, we start with expression (J.2.18),
adding 2〈T ren

µν (x)〉 on both sides:〈(∫
d3y

√
ζ(y)T ren(y)

)
T ren
µν (x)

〉
− 〈T ren

µν (x)〉 =
2

3
|ϕ−|3/∆−R

∂

∂R

(
R3/2 Cren

)
ζµν(x) .

(J.2.20)

Inserting for Cren with (J.2.4) and using our results from appendix H.2 this
becomes:〈(∫

d3y
√
ζ(y)T ren(y)

)
T ren
µν (x)

〉
− 〈T ren

µν (x)〉

= − 2

3
(M`)2|ϕ−|3/∆−

(
R(B + C ′ −Bct)−R2B′ − 2R2C ′′ − 2R3B′′

)
ζµν(x)

=
R→0

− 2

3
(M`)2|ϕ−|3/∆−

(
R(B0 + C1 −Bct) +O(R2) +O

(
R

3
2
−∆IR
−
))
ζµν(x) .

(J.2.21)

This can be rearranged as follows:

(B0 + C1 −Bct) ζµν(x)

=
3

2
(M`)−2|ϕ−|−1/∆−

[
1

R

(〈(∫
d3y

√
ζ(y)T ren(y)

)
T ren
µν (x)

〉
− 〈T ren

µν (x)〉

)]
R→0

.

(J.2.22)

Therefore, the choice Bct = Bct,0 = B0 + C1 is again related to a vanishing
condition on correlators involving T ren

µν for R→ 0.
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Appendix K

Zeta-function renormalization
vs. covariant counterterms

Here we calculate the free energy for conformally coupled massive boson on
S3 and renormalize it with the help of covariant counterterms. We then
compare with the corresponding expression obtained via zeta-function renor-
malization.

The action for a conformally coupled massive scalar on S3 is given by

S =
1

2

∫
ddx

√
ζ

(
(∇φ)2 +

d− 2

4(d− 1)
Rφ2 +m2φ2

)
. (K.1)

where ζµν is a metric on S3 of radius α. The free energy is then calculated
as

FS = − log |Z| = 1

2
log det

(
µ−2

0 OS
)
, with OS = −∇2 +

d− 2

4(d− 1)
R +m2 ,

(K.2)

and µ0 is a scale introduced to make the functional determinant well-defined.

The determinant ofOS can be calculated as the product of its eigenvalues.
In d = 3 these are given by (see e.g. [66])

λj =
1

α2

(
j +

3

2

)(
j +

1

2

)
+m2 , j ≥ 0 . (K.3)

The multiplicity of each level n is

mj = (j + 1)2 . (K.4)
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Putting everything together and defining n = j+1, we arrive at the following
expression for the free energy:

FS =
1

2

∞∑
n=1

n2 log

(
n2 − 1

4
+ (αm)2

(αµ0)2

)
. (K.5)

To regulate this expression, we cut off the sum at a maximum level nmax =
N . Also, for µ0 we choose the corresponding eigenvalue at this level, i.e.

µ2
0 = λjmax = λN−1 =

1

α2

(
N2 − 1

4
+ (αm)2

)
. (K.6)

Thus we arrive at an expression for the regulated free energy which is given
by

F reg
S (N,αm) =

1

2

N∑
n=1

n2 log

(
n2 − 1

4
+ (αm)2

N2 − 1
4

+ (αm)2

)
, (K.7)

where we made it manifest that it is a function of the cutoff N and the
dimensionless combination αm.

We will be particularly interested in the divergent terms (i.e. terms with
positive powers of N) and finite terms (∼ O(N0)) in FS for N → ∞. One
can extract those explicitly by rewriting the sum in FS with the help of the
Euler-Maclaurin formula:

b∑
n=a

f(n) =

∫ b

a

dx f(x) +
f(a) + f(b)

2
+

bp/2c∑
k=1

B2k

(2k)!

(
f (2k−1)(b)− f (2k−1)(a)

)
+Rp ,
(K.8)

with

Rp = (−1)p+1

∫ b

a

dx
Bp(x− bxc)

p!
f (p)(x) , (K.9)

where bxc is the largest integer that is not greater than x. Here B2k denote
Bernoulli numbers and Bp(x) is the p-th Bernoulli polynomial.

Then, in the limit N →∞ one finds that

F reg
S (N,αm) = −1

9
N3 +

(αm)2

3
N + F finite

S (αm) +O(N−1) , (K.10)

where we denoted the O(N0)-term by F finite
S (αm). It is a function of (αm)

and we can only evaluate it numerically.
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Having arrived at a regulated expression for FS, we now renormalize by
adding appropriate counterterms to the action (K.1). As a fist step, we define
a dimensionful cutoff Λ as

Λ ≡ N

α
. (K.11)

We then add covariant counterterms of the form

Sct,1 =

∫
d3x
√
ζ Λ3 f1(m/Λ) , Sct,2 =

∫
d3x
√
ζ RΛ f2(m/Λ) , (K.12)

where the functions f1(m/Λ) and f2(m/Λ) are to be chosen such that one
arrives at a finite expression for the free energy. Given the divergences in
(K.10), the appropriate counterterms are

Sct,1 =

∫
d3x
√
ζ

(
Λ3

18π2
− m2Λ

6π2
+ cctm

3

)
=

1

9
N3 − (αm)2

3
N + 2π2cct(αm)3 ,

(K.13)

Sct,2 =

∫
d3x
√
ζ R bctm = 12π2bct αm . (K.14)

Here cct and bct are two unspecified coefficients that multiply finite coun-
terterms, i.e. UV-cutoff-independent terms. Picking values for cct and bct
modifies the finite part of FS and hence a choice of cct and bct amounts to
choosing a renormalization scheme.

Hence, we arrive at an expression for the (counterterm-)renormalized free
energy. This is given by

F ren
S (αm | bct, cct) = lim

N→∞

(
F reg(N,αm) + Sct,1(αm | cct) + Sct,2(αm | bct)

)
,

(K.15)

where we also indicated the dependence on the renormalization-scheme pa-
rameters bct, cct.

We are now in a position to compare the expression (K.15) with the zeta-
function-renormalized expression for FS given in (3.5.22). While we cannot
do this analytically, a numerical evaluation shows that

F ren
S (αm | ζ-function-renormalized) = F ren

S (αm | bct = 0, cct = 0) . (K.16)

Thus, in the case of the free massive scalar on S3, zeta-function-renormalization
is equivalent to adding counterterms with all finite counterterms chosen to
vanish (bct = 0, cct = 0).
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Appendix L

Junction conditions for curved
brane embeddings in a
flat-sliced bulk

Here we consider a brane describing a curve u = u?(τ), which constitutes the
interface between solutions of the form

ds2 = du2 + e2A(u)ηµνdx
µdxν , ϕ = ϕ(u) (L.1)

in which the scale factor and scalar field profile are, a priori, different on each
side of the interface,

(A,ϕ) =


(A−(u), ϕ−(u)) u < u?(τ)

(A+(u), ϕ+(u)) u > u?(τ)
(L.2)

The connection across the brane is specified by Israel’s junction conditions:

1. The metric and scalar field are continuous:[
gab

]UV
IR

= 0,
[
ϕ
]IR
UV

= 0 (L.3)

2. The extrinsic curvature and normal derivative of ϕ are discontinuous:[
Kµν − γµνK

]IR
UV

=
1√
−γ

δSbrane
δγµν

,
[
na∂aϕ

]IR
UV

= − 1√
−γ

δSbrane
δϕ

,

(L.4)
where γµν = e2A(u)ηµν is the induced metric, Kµν is the extrinsic curva-
ture of the brane with trace K = γµνKµν , and na a unit vector normal
to the brane with orientation towards the IR.
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The first of these conditions, the continuity of the metric and scalar field
across the interface, implies

A−(u?(τ)) = A+(u?(τ)), ϕ−(u?(τ)) = ϕ+(u?(τ)). (L.5)

If u?(τ) is a non-trivial function, equation (L.5) implies the identity of
the functions A−(u) and A+(u), and of ϕ−(u) and ϕ+(u), over a continuous
set of values. Since in the bulk these functions satisfy a system of ordi-
nary differential equations, this implies that the solutions on each side must
coincide,

A−(u) = A+(u), ϕ−(u) = ϕ+(u), ∀u. (L.6)

Therefore, not only A and ϕ but also their derivatives must be continuous.
Then, the second junction conditions require

δSbrane
δγµν

= 0,
δSbrane
δϕ

= 0. (L.7)

In other words, the induced metric and the scalar on the brane must satisfy
their lower-dimensional field equations, as dictated by the brane action alone.
Recall however that the induced metric γµν and the brane scalar field ϕ are
not independent quantities, but they are determined by the bulk metric and
scalar field, via the embedding function u?(τ): therefore, generically the
solution of equations (L.7) will be incompatible with the bulk solution.

To illustrate this more explicitly, we write the induced metric and scalar
field for a general embedding u∗(τ):

ds2
ind =

[(
du?
dτ

)2

− e2A(u?(τ))

]
dτ 2 + e2A(u?(τ))dxidx

i, φ(τ) = ϕ(u?(τ))

(L.8)
where we have used a different notation φ(τ) to denote the induced scalar
field. We can change coordinates on the brane to proper time η, where the
induced metric takes the canonical FRW form

ds2
ind = −dη2 + a2(η)dxidx

i, a(η) ≡ eA(u?(η)). (L.9)

Because of (L.7), the induced scale factor a(η) and scalar field φ(η) must
satisfy the brane Einstein-scalar equations, whose solution is determined
purely by the brane potentials without reference to the bulk.

Given a solution (a(η), φ(η)) of the brane Einstein’s equations and know-
ing the bulk geometry A(u) we can determine the embedding u?(η) by in-
verting the implicit relation

A(u?(η)) = log a(η) (L.10)
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Having found u?(η) we can go back to the bulk time coordinate τ by solving
the differential equation

dη

dτ
=

a(η)[
1 +

(
du?
dη

)2
]1/2

, (L.11)

which follows from the change of coordinates between (L.8) and (L.9).
The embedding u?(η) must be such that, at the same time as (L.10), one

must also satisfy the relation

ϕ(u?(η)) = φ(η) (L.12)

On the other hand, the functions A(u) and ϕ(u) are determined by the
bulk Einstein equations, which generically know nothing about the brane
potentials. Therefore, if we determine u?(τ) from knowledge of a(η) and
A(u) as explained above, generically the relation (L.12) will not hold, and
we are forced to conclude that the ansatz we started from does not lead to a
solution of the full system.

The argument above assumes generic (and unrelated) bulk and brane
potentials. However, if we abandon genericity, it may be possible to tune
the model such that equations (L.10)–(L.12) are indeed compatible, and a
solution exists. This leads to the curious case which we call an evanescent
brane, i.e. an exact solution of the bulk-brane system in which the brane has
no backreaction on the bulk.

Evanescent branes

As we have seen in the previous discussion, embedding a non-trivial brane
trajectory in a flat-slicing is possible if the induced quantities on the brane
satisfy their lower-dimensional field equations governed by the brane poten-
tials. If that is the case, the bulk is smooth across the brane, and the interface
is transparent (or invisible), although all bulk equations and junction con-
ditions are exactly satisfied: curiously, we have a fully backreacted system
where the backreaction is exactly vanishing.

A simple example of such a situation is given by a bulk solution which
is Poincaré-AdS with constant scalar field (realised e.g. at an extremum of
V (ϕ), say at ϕ = 0),

A(u) = −u
`
, ϕ(u) = 0, (L.13)

and a brane action of the form (5.2.2) with constant U and Z and a potential
WB(ϕ) such that it also has an extremum at ϕ = 0, with WB(0) > 0. In this
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case, the brane field equations (L.7) admit a de Sitter solution with constant
scalar φ = 0 and Hubble constant H =

√
WB(0)/M2

p , where M2
p = M3U ,

a(η) = eHη, φ(η) = 0. (L.14)

Comparing equations (L.13) and (L.14) we can read-off the trajectory using
equation (L.10),

u?(η) = −`Hη. (L.15)

Equation (L.11) becomes

dη

dτ
=

eHη

[1 +H2`2]1/2
, (L.16)

and by integrating it we can find the trajectory in the original bulk coordi-
nates,

u?(τ) = ` log

[
− H

(1 +H2`2)1/2
τ

]
, −∞ < τ < 0. (L.17)

From the brane point of view, τ is the de Sitter conformal time. Finally, and
crucially, ϕ(u(τ)) = φ(τ) since both sides vanish identically, by equations
(L.13-L.14). Therefore, we have an exact solution of the full system, includ-
ing the junction conditions. This was possible because we have tuned the
brane theory such that an extremum of the brane potential coincides with
an extremum of the bulk potential. It is likely that similar examples can be
constructed with a non-trivial bulk scalar field profile, e.g. by appropriate
combinations of bulk and brane exponential potentials.

We stress that in these solutions the bulk does not detect at all the pres-
ence of the brane: the bulk AdS solution would be the same were the brane
absent. What we have here is a non-trivial generalization of the fact that, if
the world-volume action has only a potential term, then a tensionless brane
produces no backreaction. In our case instead, we have a non-vanishing ten-
sion, but induced kinetic terms for gravity and the scalar. The corresponding
statement is that a brane satisfying its own world-volume Einstein equation
behaves (from the point of view of the bulk) as if it were tensionless.
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