J. C. Marignac and ;. Yamase, Chim.Phys, vol.1864, issue.1, pp.307-326, 1998.

I. A. Weinstock, Chem. Rev, vol.98, issue.1, pp.389-390, 1998.

I. A. Weinstock, Chem. Rev, vol.98, issue.1, pp.113-170, 1998.

M. Sadakane and E. Steckhan, Chem. Rev, vol.98, issue.1, pp.219-238, 1998.

J. T. Rhule, C. L. Hill, D. A. Judd, and R. F. Schinazi, Chem. Rev, vol.98, issue.1, pp.239-272, 1998.

N. Mizuno and M. Misono, Chem. Rev, vol.98, issue.1, pp.199-218, 1998.

I. V. Kozhevnikov, Chem. Rev, vol.98, issue.1, pp.171-198, 1998.

W. G. Klemperer and C. G. Wall, Chem. Rev, vol.98, issue.1, pp.297-306, 1998.

D. E. Katsoulis, Chem. Rev, vol.98, issue.1, pp.359-388, 1998.

Y. P. Jeannin, Chem. Rev, vol.98, issue.1, pp.51-76, 1998.

C. L. Hill, Introduction: Chem. Rev, vol.98, issue.1, pp.1-2, 1998.

P. Gouzerh and A. Proust, Chem. Rev, vol.98, issue.1, pp.77-112, 1998.

E. Coronado and C. J. Gómez-garcía, Chem. Rev, vol.98, issue.1, pp.273-296, 1998.

L. C. Baker and D. C. Glick, Chem. Rev, vol.98, issue.1, pp.4893-4962, 1998.

Y. Zhou, G. Chen, Z. Long, J. Wang, and . Adv, , vol.4, pp.42092-42113, 2014.

Q. Chen, C. Shen, and L. He, Acta Crystallogr., Sect. C: Cryst. Struct. Commun, vol.74, issue.11, pp.1182-1201, 2018.

X. López, J. A. Fernández, and J. M. Poblet, , vol.0, pp.1162-1167, 2006.

H. Firouzabadi and A. A. Jafari, J. Iran. Chem. Soc, vol.2, issue.2, pp.85-114, 2005.

G. Hervé, A. Tézé, and R. Contant, General Principles of The Synthesis of Polyoxometalates in Aqueous Solution, In Polyoxometalate Molecular Science

J. J. Borrás-almenar, E. Coronado, and A. , NATO Science Series, pp.33-54, 2003.

G. M. Maksimov, Russ. Chem. Rev, vol.64, issue.5, p.445, 1995.

A. Balaska, R. Belghiche, M. Samar, T. Chouchane, and R. Haseneder, MATEC Web of Conferences, p.4019, 2013.

M. T. Pope, H. , and I. Oxometalates, , pp.23-27, 1983.

J. M. Cameron, D. J. Wales, and G. N. Newton, Dalton Trans, vol.47, issue.15, pp.5120-5136, 2018.

J. F. Keggin, Proc Roy Soc London, vol.144, p.75, 1934.

B. Dawson, Acta Crystallogr, vol.6, p.113, 1953.

M. T. Pope and A. Müller, Angew. Chem. Int. Ed, vol.30, issue.1, pp.34-48, 1991.

J. S. Anderson, Nature, issue.3550, p.850, 1937.

H. T. Evans, J. Am. Chem. Soc, vol.70, issue.3, pp.1291-1292, 1948.

D. D. Dexter and J. V. Silverton, J. Am. Chem. Soc, vol.90, issue.13, pp.3589-3590, 1968.

X. López, J. J. Carbó, C. Bo, and J. M. Poblet, Chem. Soc. Rev, vol.2012, issue.22, pp.7537-7571

H. Hattori and Y. Ono, Isopolyanions and heteropolyanions in Heteropolyacids in Solid Acid Catalysis: From Fundamentals to Applications, pp.187-189, 2015.

X. López, L. Vilà-nadal, X. Aparicio-anglès, J. M. Poblet, ;. S. Ganapathy et al., J. Am. Chem. Soc, vol.8, issue.26, pp.7821-7828, 2002.

J. M. Poblet, X. López, C. Bo-;-c.-rocchiccioli-deltcheff, M. Fournier, R. Franck et al., Chem. Soc. Rev, vol.32, issue.5, pp.4528-4538, 1983.

F. Bottino, M. D. Grazia, P. Finocchiaro, F. R. Fronczek, A. Mamo et al., J. Org. Chem, issue.15, pp.3521-3529, 1988.

C. Hureau, G. Blondin, M. Charlot, C. Philouze, M. Nierlich et al., Inorg. Chem, issue.10, pp.3669-3683, 2005.

S. J. Grant, P. Moore, H. A. Omar, and N. W. Alcock, J. Chem. Soc, vol.22, issue.9, pp.4841-4848, 1994.

C. M. Wallen, L. Palatinus, J. Bacsa, and C. C. Scarborough, Angew. Chem. Int. Ed, vol.55, issue.39, pp.11902-11906, 2016.

C. M. Wallen, J. Bacsa, and C. C. Scarborough, J. Am. Chem. Soc, vol.137, issue.46, pp.14606-14609, 2015.

G. S. Matouzenko, A. Bousseksou, S. A. Borshch, M. Perrin, S. Zein et al., Inorg. Chem, vol.43, issue.1, pp.227-236, 2004.

M. L. Turonek, P. Moore, H. J. Clase, and N. W. Alcock, J. Chem. Soc, pp.3659-3666, 1995.

T. Ollevier and G. Lavie-compin, Tetrahedron Lett, issue.44, pp.7891-7893, 2002.

S. Lorenz and B. Plietker, ChemCatChem, vol.2016, issue.20, pp.3203-3206

M. E. Ahmed, S. Dey, M. Y. Darensbourg, and A. Dey, Fontecilla-Camps, J. Am. Chem. Soc, vol.140, issue.39, pp.1596-1601, 2001.

A. Silakov, B. Wenk, E. Reijerse, and W. Lubitz, Physical Chemistry Chemical Physics, vol.11, issue.31, pp.6592-6599, 2009.

A. Berkessel, Modern Oxidation Methods, pp.117-145, 2010.

A. Call, Z. Codolà, and F. Acuña-parés, J. Lloret-Fillol, vol.20, issue.20, pp.6171-6183, 2014.

J. R. Khusnutdinova, J. Luo, N. P. Rath, and L. M. Mirica, Inorg. Chem, issue.7, pp.3920-3932, 2013.

T. Shimoda, T. Morishima, K. Kodama, T. Hirose, D. E. Polyansky et al., Inorg. Chem, vol.57, issue.9, pp.5486-5498, 2018.

R. Mas-ballesté and L. Que, J. Am. Chem. Soc, vol.129, issue.51, pp.15964-15972, 2007.

M. C. White, A. G. Doyle, and E. N. Jacobsen, J. Am. Chem. Soc, vol.123, issue.29, pp.7194-7195, 2001.

S. Lorenz and B. Plietker, ChemCatChem, vol.8, issue.20, pp.3203-3206, 2016.

E. A. Duban, K. P. Bryliakov, E. P. Talsi, ;. W. Wang, D. Agustin et al., J. Mol. Catal. A: Chem, vol.2, issue.6, pp.117-126, 2007.

D. Cvijanovi?, J. Pisk, G. Pavlovi?, D. ?i?ak-jung, D. Matkovi?-?alogovi? et al., New J. Chem, vol.43, issue.4, pp.1791-1802, 2019.

C. Cordelle, D. Agustin, J. Daran, and R. Poli, Inorg. Chim. Acta, vol.364, issue.1, pp.601-611, 2010.

M. Yao, Y. Huang, X. Niu, and H. Pan, ACS Sustainable Chem. Eng, vol.2016, issue.7, pp.3840-3849

N. N. Schwartz and J. H. Blumbergs, J. Org. Chem, issue.7, pp.1976-1979, 1964.

R. N. Mcdonald, R. N. Steppel, and J. E. Dorsey, Org. Synth, vol.50, pp.15-18, 1970.

E. Brulé and Y. R. De-miguel, Tetrahedron Lett, issue.47, pp.8555-8558, 2002.

D. R. Burfield, A. Eng, and P. , , vol.30, pp.2019-2022, 1989.

V. G. Dryuk, Russ. Chem. Rev, vol.54, issue.10, pp.986-1005, 1985.

D. Swern-in-org, Peroxides, vol.2, pp.355-533, 1971.

Y. Shen, P. Jiang, P. T. Wai, Q. Gu, W. Zhang et al., J. Am. Chem. Soc, vol.9, issue.1, pp.2309-2320, 1986.

J. Rudolph, K. L. Reddy, J. P. Chiang, and K. B. Sharpless, J. Am. Chem. Soc, vol.119, issue.26, pp.6189-6190, 1997.

M. Bagherzadeh, L. Tahsini, R. Latifi, and L. K. Woo, J. Mol. Catal. A: Chem, vol.362, issue.10, pp.43-46, 2002.

M. Yamazaki, H. Endo, M. Tomoyama, and Y. Kurusu, Bull. Chem. Soc. Jpn, vol.56, issue.11, pp.3523-3524, 1983.

J. C. Anderson, N. M. Smith, M. Robertson, and M. S. Scott, Tetrahedron Lett, issue.38, pp.5344-5346, 2009.

J. Sherwood, Angew. Chem. Int. Ed, vol.57, pp.14286-14290, 2018.

C. Miao, B. Wang, Y. Wang, C. Xia, Y. Lee et al., J. Am. Chem. Soc, vol.138, issue.3, pp.936-943, 2016.

R. V. Ottenbacher, D. G. Samsonenko, E. P. Talsi, and K. P. Bryliakov, ACS Catal, vol.6, issue.2, pp.4528-4538, 2016.

D. Clemente-tejeda and F. A. Bermejo, Tetrahedron, vol.2014, issue.49, pp.9381-9386

D. Clemente-tejeda, A. López-moreno, and F. A. Bermejo, Tetrahedron, issue.14, pp.2977-2986, 2013.

D. Clemente-tejeda, ;. E. Duban, K. P. Brylyakov, and E. P. Talsi, Tetrahedron, vol.68, issue.45, pp.379-385, 2008.

S. Taktak, S. V. Kryatov, T. E. Haas, and E. V. Rybak-akimova, J. Mol. Catal. A: Chem, vol.259, issue.1, pp.24-34, 2006.

K. Chen and L. Que, Angew. Chem. Int. Ed, vol.38, issue.15, pp.2227-2229, 1999.

O. Cussó, I. Garcia-bosch, J. Ribas, M. Lloret-fillol, and . Costas, J. Am. Chem. Soc, vol.135, issue.39, pp.14871-14878, 2013.

J. Bautz, P. Comba, C. Lopez-de-laorden, M. Menzel, and G. Rajaraman, Angew. Chem. Int. Ed, vol.46, issue.42, pp.681-687, 2007.

R. Cohen and C. N. Sukenik, Colloids Surf., A, vol.504, pp.242-251, 2016.

A. Feinle, F. Leichtfried, S. Straßer, and N. Hüsing, J. Sol-Gel Sci. Technol, vol.2017, issue.1, pp.143-150, 2012.

F. A. Ghaida, S. Clément, and A. Mehdi, Heterogenized Catalysis on Metals Impregnated Mesoporous Silica, Novel Nanoscale Hybrid Materials
URL : https://hal.archives-ouvertes.fr/hal-01624826

, John Wiley & Sons, Ltd, pp.323-349, 2018.

N. Touisni, N. Kanfar, S. Ulrich, P. Dumy, C. T. Supuran et al., Chem. Eur. J, vol.21, issue.29, pp.10306-10309, 2015.

Y. Chen, Y. Zhou, H. Pi, G. Zeng, and . Adv, Key Eng. Mater, vol.9, issue.6, pp.316-324, 2018.

M. Yadav, T. Akita, N. Tsumori, and Q. Xu, J. Materials Chem, vol.2012, issue.25, pp.1258-12586

R. Van-den, T. E. Berg, C. F. Parmentier, C. J. Elkjaer, J. Gommes et al., ACS Catal, vol.5, issue.7, pp.4439-4448, 2015.

W. Yantasee, R. D. Rutledge, W. Chouyyok, V. Sukwarotwat, G. Orr et al., ACS Appl. Mater. Interfaces, vol.2, issue.10, pp.118-121, 2000.

P. A. Ignacio-de-leon, C. A. Contreras, N. E. Thornburg, A. B. Thompson, and J. M. Notestein, Appl. Catal. A: Gen, vol.511, pp.78-86, 2016.

N. J. Schoenfeldt, Z. Ni, A. W. Korinda, R. J. Meyer, J. M. Notestein-;-r et al., J. Am. Chem. Soc, vol.133, issue.46, pp.30-39, 2011.

O. Cussó, J. Serrano-plana, and M. Costas, , vol.7, pp.5046-5053, 2017.

C. Hureau, G. Blondin, M. Charlot, C. Philouze, M. Nierlich et al., Inorg. Chem, vol.44, pp.3669-3683, 2005.

T. W. Chow, E. L. Wong, Z. Guo, Y. Liu, J. Huang et al., J. Am. Chem. Soc, issue.38, pp.13229-13239, 2010.

W. To, T. W. Chow, C. Tse, X. Guan, J. Huang et al., Chem. Sci, vol.6, issue.10, pp.5891-5903, 2015.

A. Murphy, G. Dubois, and T. D. Stack, J. Am. Chem. Soc, vol.125, pp.5250-5251, 2003.

W. Dexuan, L. Guian, H. Qingyan, W. Ziqiang, P. Liping et al., J. Nanosci Nanotechnol, vol.16, issue.4, pp.3821-3826, 2016.

M. A. Bourebrab, D. T. Oben, G. G. Durand, P. G. Taylor, J. I. Bruce et al., J. Sol-Gel Sci. Technol, vol.88, issue.2, pp.430-441, 2018.

D. L. Green, S. Jayasundara, Y. Lam, M. T. Harris, ;. Suratwala et al., J. Non-Cryst. Solids, vol.315, issue.1, pp.368-376, 2003.

W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci, vol.26, issue.1, pp.62-69, 1968.

X. Wang, Z. Shen, T. Sang, X. Cheng, M. Li et al., J. Colloid Interface Sci, vol.341, issue.1, pp.23-29, 2010.

D. L. Green, J. S. Lin, Y. Lam, M. Z. Hu, D. W. Schaefer et al., J. Colloid Interface Sci, vol.266, issue.2, pp.351-361, 2003.

S. Sadasivan, A. K. Dubey, Y. Li, and D. H. Rasmussen, J. Sol-Gel Sci. Technol, vol.12, issue.1, pp.5-14, 1998.

J. Bu, R. Li, C. W. Quah, and K. J. Carpenter, Macromolecules, vol.37, issue.18, pp.6687-6694, 2004.

K. S. Aneja, S. Bohm, A. S. Khanna, H. L. Bohm-;-das, Y. Yang et al., Nanoscale, vol.7, issue.42, pp.1-12, 2014.

S. C. Feifel and F. Lisdat, J. Nanobiotechnol, vol.2011, issue.1, p.59

J. Trébosc, J. W. Wiench, S. Huh, V. S. Lin, and M. Pruski, J. Am. Chem. Soc, vol.127, pp.3057-3068, 2005.

R. Mouawia, A. Mehdi, C. Reyé, and R. Corriu, J. Mater. Chem, vol.17, pp.616-618, 2007.

R. K. Sharma, S. Sharma, S. Gulati, and A. Pandey, Anal. Methods, issue.5, 1414.

S. O. Ribeiro, C. M. Granadeiro, P. L. Almeida, J. Pires, M. C. Capel-sanchez et al., Mater. Sci. (Med?iagotyra), vol.333, issue.1, pp.287-290, 2004.

S. Li, Q. Wan, Z. Qin, Y. Fu, and Y. Gu, Langmuir, vol.2015, issue.2, pp.824-832

A. Labrosse, A. Burneau, J. Non-cryst, ;. Q. Wan, C. Ramsey et al., Sci. Technol. Adv. Mater, vol.221, issue.2, p.15, 1997.

S. V. De-vyver and Y. Román-leshkov, Catal. Sci. Technol, vol.2013, issue.3, pp.1465-1479

F. Cavani and S. Alini, Sustainable Industrial Processes, pp.367-425, 2009.

K. Chen, M. Costas, J. Kim, A. K. Tipton, and L. Que, J. Am. Chem. Soc, vol.124, issue.12, pp.3026-3035, 2002.

A. Gelasco, A. Askenas, and V. L. Pecoraro, Inorg. Chem, issue.6, pp.1419-1420, 1996.

H. J. Fenton, J. Chem. Soc. Trans. 1894, vol.65, pp.899-910

F. Jaouen and J. Dodelet, J. Phys. Chem. C, vol.113, issue.34, pp.15422-15432, 2009.

K. Sengupta, S. Chatterjee, and A. Dey, , vol.6, pp.1382-1388, 2016.

M. Nourian, F. Zadehahmadi, R. Kardanpour, S. Tangestaninejad, M. Moghadam et al., Appl. Organomet. Chem, vol.32, issue.1, p.3957, 2018.

J. Y. Wang, M. D. Zhou, Y. G. Yuan, N. H. Fu, and S. L. Zang, Russ. J. Gen. Chem, issue.10, pp.2378-2385, 2015.

J. Chen, M. Chen, B. Zhang, R. Nie, A. Huang et al., , vol.21, pp.3629-3636, 2019.

S. A. Chavan, D. Srinivas, and P. Ratnasamy, J. Catal, vol.212, issue.1, pp.39-45, 2002.

U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. Da-cruz et al., Appl. Catal. A: Gen, vol.211, issue.1, pp.1-17, 2001.

D. Shen, C. Miao, D. Xu, C. Xia, and W. Sun, Org. Lett, vol.17, issue.1, pp.54-57, 2015.

N. Kasi, S. Kim, I. Kim, M. S. Seo, Y. Kim et al., Chem. Commun, vol.44, pp.4623-4625, 2007.

, Ammonium hydroxide solution (25%, Aldrich), 3-Aminopropyltriethoxysilane (APTES, 99%, Aldrich), cis-cyclooctene (CO, 95%, Alfa Aesar), cyclooctene oxide (COE, 99%, Aldrich), cyclohexene (CH, 99%, Acros), cyclohexene oxide (CHO, 98%, Aldrich), 2-cyclohexen-1-ol (CHol, 95%, TCI), 2-cyclohexen-1-one, L-carveol (C ol cis/trans mixture, 95%, Aldrich), (R)-(-) Carvone (C one 98%, Aldrich), cyclohexanol (CYol, 99%, Alfa Aesar), cyclohexanone (CYone, 99.8%, Acros)

X. Powder and . Diffraction, The solids were analysed by X-ray diffraction (XRD) with a Bruker D2 X'Pert PRO diffractometer using Cu K? radiation (40 kV and 40 mA)

, Sonication of particles suspension was made before DLS analysis during 10 min at 350 W (FB705 Fisherbrand Ultrasonic Processor) and using an ice bath, facilitating the dispersion of Silica Particles. -Hydrodynamic diameters of the particles in suspension were obtained with a ZetaSizer Nano-ZS (Malvern Instruments Ltd) at 25°C. This equipment uses a laser (He-Ne at ?=633 nm, under voltage of 3 mV) and the detector is located at 173 ° to analyse the scattered intensity fluctuations. TEM: Particles morphology were performed with a JEOL JEM1011 transmission electron microscope equipped with 100 kV voltage acceleration and tungsten filament (Service Commun de Microscopie Electronique TEMSCAN, Centre de Microcaractérisation Raimond Castaing, Dynamic Light Scattering: in order to be able to obtain repetitive and correct data analysis

, mol) of H2O, 60 mL of ammonic solution (28%wt) were mixed in 630 mL

H. Nmr, 400 MHz, D2O/NaOH-Benzoic acid) ? 7.65 (m, 2H, Ar-H), 7.29 (m, 3H, Ar-H), 3.10 (s, 3H, CH3)

C. P. Si and . Mas-nmr,

, Elem. Anal. Found: C, 1, p.9

?. Ir-(atr, , vol.942, pp.3707-2930

, 5 g of SiO2 particles were mixed with 12.08 mL (51.6 mmol) of APTES in 87.5 mL (823.3 mmol) of toluene. The mixture was refluxed under stirring for 18h. The product was washed by toluene (5x40 mL) and collected by centrifugation. The collected powder was dried under vacuum at 120°C overnight, vol.2

, H NMR for the quantification (400 MHz, D2O/NaOH-Benzoic acid) ? 7.6 (m, 2H, Ar-H), 7.25 (m, 3H, Ar-H), vol.3

C. P. Si and . Mas-nmr, 62.1 ppm (T 2 ), -67.7 ppm (T 3 ), -92.8 ppm

C. Cp-mas-nmr, 60.4 ppm (CH2O), 58.2 ppm (CH2O), 50.9 ppm (CH2N), 42.3 ppm (CH2N), 21.5 ppm (CH2), 16.5 ppm (CH3), vol.9, p.ppm

. Ea and . Found,

?. Ir-(atr, 1485 (CH2 and NH2), 1049 (Si-O-Si), vol.939, p.429

, 1 mmol) of H3PW12O40-15H2O (0.23 g for H3PMo12O40-26H2O) were mixed in 10 mL of H2O at 60°C and stirred for 24 hours. The product was washed by H2O (3x40 mL), collected by centrifugation as a powder and dried under vacuum at 120°C overnight, vol.2

, H NMR for the quantification (400 MHz, D2O/NaOH-Benzoic acid) ? 7.66 (m, 2H, Ar-H), 7.31 (m, 3H, Ar-H), vol.3

C. P. Si and . Mas-nmr,

C. Cp-mas-nmr, 59.9 ppm (CH2O), 58.2 ppm (CH2O), 50.8 ppm (CH2N), 42.8 ppm (CH2N), 20.6 ppm (CH2), 16.6 ppm (CH3), vol.9, p.ppm

P. Cp-mas-nmr, , vol.8, p.12

, OH and -NH), 1485 (CH2 and NH2), 1065 (P-O),1067 (Si-O-Si), vol.981, p.429

. Ea and . Found,

, Ar-H), 7.30 (m, 3H, Ar-H), H NMR for the quantification (400 MHz, D2O/NaOH-Benzoic acid) ? 7.65 (m, 2H, vol.3

C. P. Si and . Mas-nmr, 58.6 ppm (T 2 ), -68.2 ppm (T 3 ), -93 ppm
URL : https://hal.archives-ouvertes.fr/in2p3-00005934

C. Cp-mas-nmr, 59.9 ppm (CH2O), 58.2 ppm (CH2O), 50.9 ppm (CH2N), 42.9 ppm (CH2N), 20.7 ppm (CH2), 16.6 ppm (CH3), 8.8 ppm

P. Cp-mas-nmr,

, OH and -NH), 1485 (CH2 and NH2), 1065 (P-O),1068 (Si-O-Si), vol.944, p.443

, Elem. Anal

, 89 mmol) of cyclooctene, a quantity of catalyst (24.6 mg (7.8 ?mol) of 25 mL flask. 2.05 mL (14.84 mmol) of TBHP (70wt.% in H2O) were added into the mixture when the temperature was stabilized at 80°C. The reaction mixture was heated at 80 °C under stirring for 24h, The reaction was followed by GC-FID

, ? Epoxidation of cyclohexene With free-POM: 5 g (60.9mmol) of cyclohexene were mixed with 26

, mmol) of acetophenone (internal standard). 12.5 mL (91.3mmol) of TBHP (70wt.% in H2O) were added into the mixture at 60°C and the solution was left under stirring for 48h. The reaction was followed by GC-FID

, 77 mmol) of cyclohexene, 75 mg SiO2@PM (11.5 mol for PW12, 8.14 ?mol for PMo12) and 0.7 mL (5.66 mmol) of acetophenone (internal standard) were mixed in a 50 mL flask. 15.2 mL (111.3 mmol) of TBHP (70 wt.% in H2O) were added into the mixture at 60°C and left under stirring for 48h

, ?mol) of H3PW12O40.15H2O or 19.6 mg (8.6 ?mol) of H3PMo12O40.26H2O) or 75 mg of SiO2@PM (11.5 ?mol for PW12, 8.6 ?mol for PMo12) and 0.7 mL (5.66 mmol) of acetophenone (internal standard) were mixed in a 50 mL flask. 3.05 mL (22.3 mmol) of TBHP (70 wt.% in H2O) were added into the mixture at 80°C. Then the mixture was heated at 80°C under stirring for 24h, The reaction was followed by GC-FID

, 14 ?mol) of H3PW12O40-reaction was followed by GC-FID. With SiO2@PM: 1.46 g (14.6 mmol) of cyclohexanol were mixed with 75 mg of SiO2@POM (11.52 ?mol of POM for SiO2@PW, 8.6 ?mol of POM for SiO2@PMo12) and 0.35 mL (2.83 mmol) of acetophenone (internal standard), ? Oxidation of cyclohexanol With free-POM: 2 g (20 mmol) of cyclohexanol, 49.7 mg

, ? Recycling of SiO2@PM SiO2@PM was recycled by centrifugation (Fisher 2-16P with 11192 rotor

I. M. Pastor and M. Yus, Curr. Org. Chem, vol.9, pp.1-29, 2005.

P. L. Matlock, W. L. Brown, and N. A. Clinton, Chem. Ind, vol.77, pp.159-193, 1999.

Z. S. Petrovic, Polym. Rev, vol.48, pp.109-155, 2008.

S. D. Mccann and S. S. Stahl, Acc. Chem. Res, vol.48, pp.1756-1766, 2015.

S. Davis, M. S. Ide, R. J. Davis, and G. Chem, , vol.15, pp.17-45, 2013.

R. Ciriminna, V. Pandarus, F. Béland, Y. Xu, and M. Pagliaro, Org. Process Res. Dev, vol.19, pp.1554-1558, 2015.

C. Parmeggiani, C. Matassini, F. Cardona, and G. Chem, , vol.19, pp.2030-2050, 2017.

R. A. Sheldon, Catal. Today, vol.247, pp.4-13, 2015.

L. Marais and A. J. Swarts, Catalysts, vol.9, p.395, 2019.

X. Bai, X. Huang, L. Wen, N. Song, J. Zhang et al., Chem. Commun, vol.55, issue.25, pp.3598-3601, 2019.

R. N. Mcdonald, R. N. Steppel, and J. E. Dorsey, Org. Synth, vol.50, pp.15-18, 1970.

E. Rose, B. Andrioletti, S. Zrig, and M. Quelquejeu-ethève, Chem. Soc. Rev, vol.34, issue.7, pp.573-583, 2005.

D. Swern, Organic Peroxides, vol.2, pp.355-533, 1971.

B. Plesnicar, O. Chemistry, C. Part, W. C. Trahanovsky, and . Ed, , pp.211-294, 1978.

S. Kobayashi, K. Tahara, and . Jpn, Kokai Tokkyo Koho) JP, 2007.

J. Sherwood, Angew. Chem. Int. Ed, vol.57, pp.14286-14290, 2018.

R. A. Sheldon, I. Arends, and U. Hanefeld, Green Chemistry and Catalysis, 2007.

P. Anastas and J. Warner, Green Chemistry: Theory and Practice, 1998.

P. Tundo, P. Anastas, D. S. Black, J. Breen, T. Collins et al., Pure Appl. Chem, vol.72, pp.1207-1228, 2000.

J. Pisk, D. Agustin, V. Vrdoljak, and R. Poli, Adv. Synth. Catal, vol.353, issue.16, pp.2910-2914, 2011.

J. Pisk, B. Prugovecki, D. Matkovic-calogovic, R. Poli, D. Agustin et al., Polyhedron, vol.33, issue.1, pp.441-449, 2012.

J. Morlot, N. Uyttebroeck, D. Agustin, and R. Poli, ChemCatChem, vol.5, issue.2, pp.601-611, 2013.

B. Guerin, D. M. Fernandes, J. Daran, D. Agustin, R. Poli et al., Inorg. Chim. Acta, vol.2013, issue.11, pp.144-149, 2010.

M. Loubidi, D. Agustin, A. Benharref, R. Poli, and C. R. Chim, , vol.17, pp.549-556, 2014.

J. Pisk, B. Prugovecki, D. Matkovic-calogovic, T. Jednacak, P. Novak et al., , vol.4, pp.39000-39010, 2014.

W. Wang, T. Vanderbeeken, D. Agustin, and R. Poli, Catal. Commun, vol.63, pp.26-30, 2015.

V. Vrdoljak, J. Pisk, D. Agustin, P. Novak, J. Vukovic et al., New J. Chem, vol.38, issue.12, pp.6176-6185, 2014.

W. Wang, T. Guerrero, S. R. Merecias, H. Garcia-ortega, R. Santillan et al., J. Mol. Cat. A.: Chem, vol.431, pp.117-126, 2015.

V. Vrdoljak, J. Pisk, B. Prugovecki, D. Agustin, P. Novak et al., , vol.6, pp.36384-36393, 2016.

W. Wang, D. Agustin, R. Poli, and . Mol, , vol.443, pp.52-59, 2017.

J. Pisk, M. Rubcic, D. Kuzman, M. Cindric, D. Agustin et al., New J. Chem, vol.2019, issue.14, pp.5531-5542

D. Cvijanovic, J. Pisk, G. Pavlovic, D. Sisak-jung, D. Matkovic-calogovic et al., New J. Chem, vol.43, issue.4, pp.1791-1802, 2019.

V. Vrdoljak, M. Mandaric, T. Hrenar, I. Djilovic, J. Pisk et al., Cryst. Growth & Des, vol.19, issue.5, pp.3000-3011, 2019.

M. Cindric, G. Pavlovic, R. Katava, and D. Agustin, J. Mol. Cat. A.: Chem, vol.2017, issue.2, pp.52-63, 2015.

V. Damjanovi?, J. Pisk, D. Kuzman, D. Agustin, V. Vrdoljak et al., , vol.48, pp.9974-9983, 2019.

R. Landau, G. A. Sullivan, and D. Brown, Chemtech, vol.9, pp.602-607, 1979.

J. Pisk, D. Agustin, R. Poli, ;. Richards, U. Kortz et al., Molecules, vol.24, issue.4, 2007.

S. S. Balula, L. Cunha-silva, I. C. Santos, A. Estrada, A. C. Fernandes et al., New J. Chem, vol.37, p.2341, 2013.

V. N. Panchenko, I. Borbath, M. N. Timofeeva, S. Gobolos, and J. Mol, Cat. A.: Chem, vol.319, pp.119-125, 2010.

X. Li, P. Jiang, Z. Wang, and Y. Huang, Catalysts, vol.6, issue.1, 2016.

R. Neumann and H. Miller, J. Chem. Soc., Chem. Commun, pp.2277-2778, 1995.

A. Simon, T. Cohen-bouhacina, M. C. Porte, J. P. Aime, and C. Baquey, J. Colloid Interface Sci, vol.251, pp.278-283, 2002.

F. Cuoq, A. Masion, J. Labille, J. Rose, F. Ziarelli et al., Appl. Surf. Sci, vol.266, pp.155-160, 2013.

B. Qiao, T. Wang, H. Gao, Y. ;. Jin, T. M. Okun et al., J. Mol. Cat. A.: Chem, vol.351, pp.2234-2242, 2003.

J. Wang and Q. Hao, J. Alloys Compd, vol.482, pp.235-239, 2009.

R. K. Sharma, S. Sharma, S. Gulati, and A. Pandey, Anal. Methods, issue.5, pp.1414-1426, 2013.

J. H. Lee, J. H. Kim, K. Choi, H. G. Kim, J. A. Park et al., J. Lee, W. Sci. Rep, vol.8, issue.1, p.12078, 2018.

J. Goscianska, A. Olejnik, I. Nowak, and C. Surf, , vol.533, pp.187-196, 2017.

L. S. Nogueira, S. Ribeiro, C. M. Granadeiro, E. Pereira, G. Feio et al., Dalton Trans, vol.43, pp.9518-9528, 2014.

N. M. Okun, M. D. Ritorto, T. M. Anderson, R. P. Apkarian, and C. L. Hill, Chem. Mater, vol.16, pp.2551-2558, 2004.

A. Naz, S. Arun, S. S. Narvi, M. S. Alam, A. Singh et al., Int. J. Biol. Macromol, vol.110, pp.215-226, 2018.

K. Talreja, I. Chauhan, A. Ghosh, A. Majumdar, B. S. Butola et al., , vol.7, pp.49787-49794, 2017.

R. Van-den, T. E. Berg, C. F. Parmentier, C. J. Elkjaer, J. Gommes et al., ACS Catal, vol.5, issue.7, pp.4439-4448, 2015.

M. Sándor, C. L. Nistor, G. Szalontai, R. Stoica, C. A. Nicolae et al., Materials, vol.2016, issue.1, p.34

W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci, vol.26, issue.1, pp.62-69, 1968.

J. Bu, R. Li, C. W. Quah, and K. J. Carpenter, Macromolecules, vol.37, issue.18, pp.6687-6694, 2004.

A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane, Chem. Rev, issue.10, pp.6009-6048, 2010.

T. Gholami, M. Salavati-niasari, M. Bazarganipour, and E. Noori, Z. A Aboosadi, Energy Explor. Exploit, vol.61, issue.6, pp.685-697, 2013.

W. Cai, Y. Zhou, R. B. Bao, H. Yue, and C. He, J. Catal, vol.34, issue.1, pp.193-199, 2013.

J. Stetefeld, S. A. Mckenna, and T. R. , Patel Biophys Rev, vol.8, pp.409-427, 2016.

M. Kobayashi, F. Juillerat, P. Galletto, P. Bowen, and M. Borkovec, Langmuir, vol.21, pp.5761-5769, 2005.

E. D. Mansfield, Y. Pandya, E. A. Mun, S. E. Rogers, I. Abutbul-ionita et al., RSC Adv, vol.8, pp.6471-6478, 2018.

C. S. Neves, C. M. Granadeiro, L. Cunha-silva, D. Ananias, S. Gago et al., Eur. J. Inorg. Chem, pp.2877-2886, 2013.

S. L. Greasley, S. J. Page, S. Sirovica, S. Chen, R. A. Martin et al., J. Colloid Interface Sci, vol.469, pp.213-223, 2016.

V. Mahalingam, S. Onclin, M. Peter, B. J. Ravoo, J. Huskens et al., Langmuir, vol.20, pp.11756-11762, 2004.

S. Martín, Y. Takashima, C. Lin, Y. Song, H. N. Miras et al., Cronin Inorg. Chem, vol.58, issue.7, pp.4110-4116, 2019.

K. S. Aneja, K. S. Bohm, A. S. Khanna, and H. L. Bohm, ChemCatChem, vol.2015, issue.42, pp.1889-1899

S. Tighadouini, S. Radi, A. Elidrissi, M. Zaghrioui, and Y. Garcia, Eur. J. Inorg. Chem, issue.27, pp.3180-3186, 2019.

X. Luo and C. Yang, Phys. Chem. Chem. Phys, vol.13, issue.17, pp.7892-7902, 2011.

D. Kumar and C. C. Landry, Microporous Mesoporous Mater, vol.98, issue.1, pp.309-316, 2007.

M. Misono, N. Mizuno, K. Katamura, A. Kasai, Y. Konishi et al., Bull. Chem. Soc. Jpn, vol.55, issue.2, pp.400-406, 1982.

J. Trébosc, J. W. Wiench, S. Huh, V. S. Lin, and M. Pruski, J. Am. Chem. Soc, vol.127, pp.3057-3068, 2005.

J. C. Hicks and C. W. Jones, Langmuir, vol.22, issue.6, pp.2676-2681, 2006.

S. O. Ribeiro, C. M. Granadeiro, P. L. Almeida, J. Pires, M. C. Capel-sanchez et al., Catal. Today, vol.333, pp.226-236, 2019.

F. Bentaleb, O. Makrygenni, D. Brouri, C. Diogo, A. Mehdi et al., Inorg. Chem, vol.54, pp.7607-7616, 2015.

C. Cheng, K. Lin, M. R. Prasad, S. Fu, S. Chang et al., Catal. Commun, vol.8, pp.1060-1064, 2007.

Y. Xiao, D. Chen, N. Ma, Z. Y. Hou, M. B. Hu et al., , vol.3, pp.21544-21551, 2013.

N. Mizuno, K. Yamaguchi, and K. Kamata, Catal Surv Asia, vol.15, issue.2, pp.68-79, 2011.

I. V. Kozhevnikov, K. R. Kloetstra, A. Sinnema, H. W. Zandbergen, and H. Van-bekkum, J. Mol. Catal. A: Chem, vol.114, pp.287-298, 1996.

R. Canioni, C. Roch-marchal, F. Secheresse, P. Horcajada, C. Serre et al.,

F. Greneche, J. Lefebvre, Y. Chang, O. Hwang, S. Lebedev et al., J. Mater. Chem, vol.21, pp.1226-1233, 2011.

C. I. Crucho, C. Baleizão, and J. P. Farinha, Anal. Chem, vol.2017, issue.1, pp.681-687

S. Li, Q. Wan, Z. Qin, Y. Fu, and Y. Gu, Langmuir, vol.2015, issue.2, pp.824-832

A. Labrosse, A. Burneau, J. Non-cryst, ;. Q. Wan, C. Ramsey et al., Sci. Technol. Adv. Mater, vol.221, issue.2, p.15, 1997.

M. Carraro, A. Sartorel, N. Ibrahim, . Nsouli, S. Jahier et al., Polyoxometalate as Homogeneous Oxidation Catalysts in Innovative Catalysis in Organic Synthesis: Oxidation, Hydrogenation, and C-X Bond Forming Reaction, pp.3-24, 2012.

R. Neumann-;-borrás-almenar, J. J. Coronado, E. Müller, and A. , Applications of Polyoxometalates in Homogeneous Catalysis, Polyoxometalate Molecular Science, pp.327-349, 2003.

E. Rafiee and S. Eavani, Curr. Org. Chem, vol.2017, issue.9, pp.752-778

D. Duprez, F. Cavani, ;. Carraro, G. Fiorani, A. Sartorel et al., Handbook of Advanced Methods And Processes In Oxidation Catalysis: From Laboratory To Industry, vol.157, pp.107-113, 2010.

L. Zhang, S. Song, N. Yang, X. Tantai, X. Xiao et al., Ind. Eng. Chem. Res, vol.58, issue.9, pp.3618-3629, 2019.

M. Masteri-farahani and M. Modarres, J. Mol. Catal. A: Chem, vol.417, pp.81-88, 2016.

X. Song, W. Zhu, K. Li, J. Wang, H. Niu et al., Catal. Today, vol.259, pp.59-65, 2015.

Z. Karimi, A. R. Mahjoub, and S. M. Harati, Inorg. Chim. Acta, vol.376, pp.1-9, 2011.

W. Gao, X. Sun, H. Niu, X. Song, K. Li et al., Microporous Mesoporous Mater, vol.213, pp.59-67, 2015.

X. Song, D. Hu, X. Yang, H. Zhang, W. Zhang et al., ACS Sustainable Chem. Eng, vol.7, issue.3, pp.3624-3631, 2019.

M. Mohammadi, A. Khazaei, A. Rezaei, Z. Huajun, and S. Xuwei, ACS Sustainable Chem. Eng, vol.7, issue.5, pp.5283-5291, 2019.

C. Jiménez-gonzález, A. D. Curzons, D. J. Constable, and V. L. Cunningham, Clean Technol. Environ. Policy, vol.7, issue.1, pp.42-50, 2004.

J. Y. Wang, M. D. Zhou, Y. G. Yuan, N. H. Fu, and S. L. Zang, Russ. J. Gen. Chem, issue.10, pp.2378-2385, 2015.

M. Blair, P. C. Andrews, B. H. Fraser, C. M. Forsyth, P. C. Junk et al., Synthesis, pp.1523-1527, 2007.

M. J. Van-der-werf, H. Jongejan, and M. C. Franssen, Tetrahedron Lett, vol.42, pp.5521-5524, 2001.

D. Steiner, L. Ivison, C. T. Goralski, R. B. Appell, J. R. Gojkovic et al., Tetrahedron: Asymmetry, vol.13, pp.2359-2363, 2002.

, Résumé Afin de développer une chimie plus respectueuse de l'environnement, l'accès à de nouveaux procédés est nécessaire. Plus spécifiquement, dans le domaine de l'oxydation, l'utilisation d'oxydants toxiques doit être bannie, l'utilisation de solvants limitée et l'utilisation de catalyseurs recyclables développée

, favorise la formation exclusive d'époxydes lors d'oxydation d'alcènes. Pour cela, deux stratégies ont été testées. La première consiste à introduire dans la seconde sphère de coordination de complexes de Fe(III) et de Mn(II) des fonctions fluoroalcools devant faciliter l'activation d'H2O2. Comparés aux complexes analogues non modifiés, aucune amélioration de l'activité catalytique pour l'oxydation de cyclooctène n'est observée. Cependant, des complexes de Ni(II) et de Co(II) à ligands non modifiés ont démontré une activité catalytique élevée pour la photoproduction d'hydrogène. La seconde stratégie est basée sur le remplacement de l'acide acétique. Pour cela, en utilisant des billes de silice fonctionnalisées par des fonctions COOH (SiO2@COOH) comme co-réactif, une sélectivité significative en faveur de l'époxyde est observée lors de l

, Avec une faible charge catalytique, les deux catalyseurs sont efficaces lors de réactions d'oxydation avec une meilleure sélectivité que les POM libres. De plus, les deux catalyseurs réutilisés ont donné des conversions et des sélectivités similaires après deux recyclages. Mots clés : Chimie verte, Catalyse, (Ep)oxydation, Recyclage du catalyseur par greffage, Nanoparticule, Procédé sans solvant organique, La seconde approche concerne des réactions d'(ép)oxydation sans solvant et utilisant des catalyseurs recyclables à base de polyoxométallates (POMs)