. .. Cellulaire, 2.3 Eléments de base d'un milieu de culture cellulaire, III. 2 Notions bibliographiques sur les milieux de culture

, 2.5 Influence de la composition chimique des milieux physiologiques simulés sur la réactivité des biomatériaux métalliques

, Sélection du milieu de croissance approprié pour la culture in vitro

.. .. Absorbance, 3.3 Viabilité/prolifération à long terme des cellules dans le RPMI-1640 supplémenté, p.55

. Ensuite, essai est divisé en trois séquences répétées plusieurs fois : friction, relaxation des contraintes de compression et rhéologie, notées respectivement 1, vol.2

, Lors de l'essai de frottement (Frot), des déplacements horizontaux d'amplitude 10 mm (Dx) sont

, La relaxation des contraintes de compression (RCC) consiste à appliquer une charge normale, p.35

, 9b-3'') le contact. La charge est ensuite maintenue à 5 N et des mouvements sinusoïdaux verticaux d'amplitude 40 µm (Dz) sont effectués à des fréquences de 0,5 à 2 Hz. Il est possible de caractériser la rhéologie du troisième corps en déterminant sa force élastique Fe, sa force visqueuse Fv et son module d'élasticité E. Quand elle intervient après l'étape 2, le test rhéologique conduit également à des mouvements de convection, La troisième phase, le test rhéologique (Rh), consiste à décharger complètement (Figure VI. 9b-2') ou partiellement (Figure VI

, Rh et Frot, est répété trois fois. Les valeurs du potentiel de corrosion (EOCP), des forces normales et tangentielles et du déplacement horizontal sont enregistrées. L'imagerie par fluorescence a été réalisée après chaque séquence glissante, c'est-à-dire pendant les séquences RCC+Rh

, La stabilisation finale (Final) clôture le test de biotribocorrosion en éliminant la charge de contact normale et en contrôlant la morphologie cellulaire par fluorescence

N. E. Gougoulias, A. Khanna, and N. Maffulli, History and evolution in total ankle arthroplasty, Br. Med. Bull, vol.89, issue.1, pp.111-151, 2009.

S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, Projections of primary and revision hip and knee arthroplasty in the United States from, J. Bone Jt. Surg. -Ser. A, vol.89, pp.280-285, 2005.

S. M. Kurtz, E. Lau, K. Ong, K. Zhao, M. Kelly et al., Future young patient demand for primary and revision joint replacement: National projections from, Clin. Orthop. Relat. Res, vol.467, pp.2606-2612, 2009.

G. Labek, M. Thaler, W. Janda, M. Agreiter, and B. Stöckl, Revision rates after total joint replacement: cumulative results from worldwide joint register datasets, J. Bone Joint Surg. Br, vol.93, issue.7, p.998, 2011.

E. Jämsen, H. Huhtala, T. Puolakka, and T. Moilanen, Risk factors for infection after knee arthroplasty a registerbased analysis of 43,149 cases, J. Bone Jt. Surg. -Ser. A, vol.91, issue.1, pp.38-47, 2009.

M. Khatod, G. Cafri, R. S. Namba, M. C. Inacio, and E. W. Paxton, Risk factors for total hip arthroplasty aseptic revision, J. Arthroplasty, vol.29, issue.7, pp.1412-1417, 2014.

K. L. Ong, F. S. Mowat, N. Chan, E. Lau, M. T. Halpern et al., Economic burden of revision hip and knee arthroplasty in medicare enrollees, Clin. Orthop. Relat. Res, vol.446, pp.22-28, 2006.

J. Crowe, T. Sculco, B. Kahn, and O. N. Rn, Revision Total Hip Arthroplasty: Hospital Cost and Reimbursement Analysis, Clin Orthop, vol.413, pp.175-182, 2003.

N. Eliaz, Degradation of implant materials, 2012.

Z. Chiri and A. Guerci, Prothèses moléculaires -L'homme en pièces détachées, EME éditio, 2015.

S. Ramakrishna, M. Ramalingam, T. S. Kumar, and W. O. Soboyejo, Biomaterials a nano approach, 2010.

G. Rohman, Materials Used in Biomaterial Applications, 2014.

Y. K. Kim and J. B. Park, Metallic biomaterials, pp.1-22, 2007.

M. Valko, H. Morris, and M. Cronin, Metals, Toxicity and Oxidative Stress, vol.12, pp.1161-1208, 2005.

P. J. Andersen and A. M. Llc, Metals for Use in Medicine, In: Comprehensive Biomaterials, pp.5-20, 2011.

D. F. Williams, The Williams dictionary of biomaterials, 1999.

V. Migonney and N. Biocompatibility, , 2014.

S. Ramakrishna, M. Ramalingam, T. S. Kumar, and W. O. Soboyejo, Degradation and Corrosion of Biomaterials, Biomaterials a nano approach, pp.57-80, 2010.

M. Maestro and B. Ferre, Anatomie fonctionnelle du pied et de la cheville de l'adulte, Rev. Du Rhum. Monogr, 2014.

N. Fusco, Analyse, modélisation et simulation de la marche pathologique, 2008.

R. N. Stauffer, E. Y. Chao, and R. C. Brewster, Force and Motion Analysis of the Normal, Diseased, and Prosthetic Ankle Joint, Clin. Orthop. Relat. Res, vol.127, 1977.

. September, , pp.189-196

A. Lundberg, Kinematics of the Normal Ankle Joint, 1998.

B. Reggiani, A. Leardini, F. Corazza, and M. Taylor, Finite element analysis of a total ankle replacement during the stance phase of gait, J. Biomech, vol.39, issue.8, pp.1435-1443, 2006.

T. D. Brown, R. C. Johnston, C. L. Saltzman, J. L. Marsh, and J. A. Buckwalter, Posttraumatic osteoarthritis: A first estimate of incidence, prevalence, and burden of disease, Journal of Orthopaedic Trauma, 2006.

J. A. Buckwalter, C. Saltzman, and T. Brown, The impact of osteoarthritis: Implications for research, 2004.

M. Glazebrook, T. Daniels, A. Younger, C. J. Foote, M. Penner et al., Comparison of health-related quality of life between patients with end-stage ankle and hip arthrosis, J. Bone Jt. Surg. -Ser. A, 2008.

X. F. Courville, P. J. Hecht, and A. N. Tosteson, Is total ankle arthroplasty a cost-effective alternative to ankle fusion?, Clin. Orthop. Relat. Res, vol.469, issue.6, pp.1721-1727, 2011.

R. Thomas, T. R. Daniels, and K. Parker, Gait analysis and functional outcomes following ankle arthrodesis for isolated ankle arthritis, J. Bone Jt. Surg. -Ser. A, 2006.

N. F. Soohoo and G. Kominski, Cost-effectiveness analysis of total ankle arthroplasty, Journal of Bone and Joint Surgery -Series A, 2004.

G. Lord and J. Marotte, Total ankle prosthesis. Technic and 1st results, Rev. Chir. Orthopédique Réparatrice l Appar. Mot, vol.59, pp.139-151, 1973.

M. Freeman, M. Kempson, and M. Tuke, Total replacement of the ankle with the ICLH prothesis, Int. Orthop, 1979.

A. Wynn and A. Wilde, Long-term follow up of the

. Conaxial, Beck-Steffee) total ankle arthroplasty, Foot Ankle, vol.13, issue.6, pp.303-339, 1992.

B. Zerahn and H. Kofoed, Bone mineral density, gait analysis, and patient satisfaction, before and after ankle arthroplasty, Foot Ankle Int, vol.25, pp.208-214, 2004.

B. Hintermann, Total ankle arthroplasty. Historical overview, current concepts and future perspectives, SpringerWi, 2005.

T. S. Roukis, G. C. Berlet, C. Bibbo, C. F. Hyer, M. J. Penner et al., Primary and Revision Total Ankle Replacement, 2015.

T. S. Roukis and A. F. Bartel, Survivorship of First-, Second-, and Third-Generation Total Ankle Replacement Systems, 2015.

J. A. Vickerstaff, A. W. Miles, and J. L. Cunningham, A brief history of total ankle replacement and a review of the current status, Med. Eng. Phys, vol.29, pp.1056-64, 2007.

A. P. Saad, A. Syahrom, M. N. Harun, and M. R. Kadir, Wear Prediction on Total Ankle Replacement Effect of Design Parameters, 2016.

A. Saxena, International advances in foot and ankle surgery, 2012.

J. Deorio and M. Easley, Total ankle arthroplasty, Instr. Course Lect, vol.57, pp.383-413, 2008.

M. H. Feldman and J. Rockwood, Total ankle arthroplasty: A review of 11 current ankle implants, Clin. Podiatr. Med. Surg, vol.21, pp.393-406, 2004.

S. G. Urwin, D. F. Kader, N. Caplan, A. St-clair-gibson, and C. S. Stewart, Gait analysis of fixed bearing and mobile bearing total knee prostheses during walking: Do mobile bearings offer functional advantages?, Knee, vol.21, pp.391-395, 2014.

V. Valderrabano, G. I. Pagenstert, A. M. Müller, J. Paul, H. B. Henninger et al., Mobile-and fixed-bearing total ankle protheses, Foot Ankle Clin, vol.17, pp.565-585, 2012.

N. J. Hallab and J. J. Jacobs, Biologic effects of implant debris, Bull. NYU Hosp. Jt. Dis, vol.67, issue.2, pp.182-188, 2009.

Y. Takakubo, A. Berce, R. Treb?e, Y. Tamaki, I. Milo?ev et al., Wear and corrosion in the loosening of total joint replacements (TJRs), In: Bio-Tribocorrosion in Biomaterials and Medical Implants, pp.74-110, 2013.

D. Bitar and J. Parvizi, Biological response to prosthetic debris, World J. Orthop, vol.6, issue.2, pp.172-189, 2015.

B. Ollivere, J. A. Wimhurst, I. M. Clark, and S. T. Donell, Current concepts in osteolysis, J. Bone Joint Surg. Br, vol.94, pp.10-15, 2012.

A. Sargeant and T. Goswami, Hip implants -Paper VI -Ion concentrations, Mater. Des, vol.28, issue.1, pp.155-171, 2007.

H. S. Dobbs and M. J. Minski, Metal ion release after total hip replacement, Biomaterials, vol.1, pp.193-198, 1980.

R. Shrivastava, R. K. Upreti, P. K. Seth, and U. C. Chaturvedi, Effects of chromium on the immune system, FEMS Immunol. Med. Microbiol, vol.34, pp.1-7, 2002.

J. Y. Wang, B. H. Wicklund, R. B. Gustilo, and D. T. Tsukayama, Prosthetic metals interfere with the functions of human osteoblast cells in vitro, Clin. Orthop. Relat. Res, vol.339, pp.216-226, 1997.

L. Anissian, A. Stark, H. Dahlstrand, B. Granberg, V. Good et al., Cobalt ions influence proliferation and function of human osteoblast-like cells, Acta Orthop. Scand, vol.73, pp.369-374, 2002.

K. M. Shah, J. M. Wilkinson, and A. Gartland, Cobalt and chromium exposure affects osteoblast function and impairs the mineralization of prosthesis surfaces in vitro, J. Orthop. Res, vol.33, issue.11, pp.1663-1670, 2015.

J. M. Anderson, A. Rodriguez, and D. T. Chang, Foreign body reaction to biomaterials, Semin. Immunol, vol.20, issue.2, pp.86-100, 2008.

N. Hallab, K. Merritt, and J. J. Jacobs, Metal sensitivity in patients with orthopaedic implants, J. Bone Jt. Surg. -Ser. A, vol.83, pp.428-436, 2001.

N. Martinelli, S. Baretta, J. Pagano, A. Bianchi, T. Villa et al., Contact stresses, pressure and area in a fixed-bearing total ankle replacement: A finite element analysis, BMC Musculoskelet. Disord, 2017.

T. Mciff, C. Saltzman, and T. Brown, Contact pressure and internal stresses in a mobile bearing total ankle replacement, In: 47th Annual Meeting, 2001.

K. Iwakiri, Y. Minoda, A. Kobayashi, R. Sugama, H. Iwaki et al., In Vivo Comparison of Wear Particles Between Highly Crosslinked Polyethylene and Conventional Polyethylene in the Same Design of Total Knee Arthroplasties, J. Biomed. Mater. Res. Part B Appl. Biomater, vol.91, pp.799-804, 2009.

G. Mccollum and M. S. Myerson, Failure of the Agility Total Ankle Replacement System and the Salvage Options, Clin. Podiatr. Med. Surg, vol.30, issue.2, pp.207-223, 2013.

J. L. Besse, Osteolytic cysts with total ankle replacement: Frequency and causes?, Foot Ankle Surg, vol.21, issue.2, pp.75-76, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01286726

J. L. Besse, C. Lienhart, and M. H. Fessy, Outcomes Following Cyst Curettage and Bone Grafting for the Management of Periprosthetic Cystic Evolution After AES Total Ankle Replacement, Clin. Podiatr. Med. Surg, vol.30, issue.2, pp.157-170, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00919780

F. Dalat, R. Barnoud, M. H. Fessy, and J. L. Besse, Histologic study of periprosthetic osteolytic lesions after AES total ankle replacement. A 22 case series, Orthop. Traumatol. Surg. Res, vol.99, pp.285-295, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00916766

M. Bonnin, F. Gaudot, J. Laurent, S. Ellis, and J. ,

T. Colombier and . Judet, The Salto Total Ankle Arthroplasty, Clin Orthop Relat Res, vol.469, pp.225-236, 2011.

Y. Kadoya, A. Kobayashi, and H. Ohashi, Wear and osteolysis in total joint replacements, Acta Orthop. Scand. ISSN, vol.69, pp.1-16, 1998.

J. K. Steck and J. B. Anderson, Total Ankle Arthroplasty : Indications and Avoiding Complic ations, Clin Pod. Med Surg, vol.26, pp.303-324, 2009.

S. Gupta, J. K. Ellington, and M. S. Myerson, Management of specific complications after revision total ankle replacement, Semin. Arthroplasty, vol.21, pp.310-319, 2010.

F. G. Krause, M. Windolf, B. Bora, M. J. Penner, K. J. Wing et al., Impact of complications in total ankle replacement and ankle arthrodesis analyzed with a validated outcome measurement, J. Bone Jt. Surg, vol.93, issue.9, pp.830-839, 2011.

C. L. Saltzman, A. Amendola, R. Anderson, C. Coetzee, R. J. Gall et al., Surgeon Training and Complications in Total Ankle Arthroplasty, Foot Ankle Int, vol.24, issue.6, pp.514-518, 2003.

A. Haskell and R. A. Mann, Perioperative Complication Rate of Total Ankle Replacement Is Reduced by Surgeon Experience, Foot Ankle Int, vol.25, issue.5, pp.283-289, 2004.

, Standard Specification for Wrought Cobalt-28 Chromium-6 Molybdenum Alloys for Surgical Implants, ASTM Standard F-1537-11, 2007.

, ISO Standard 5832-12 Implants for Surgery -Metallic Materials, Part 12: Wrought Cobalt-Chromium-Molybdenum Alloy, 2007.

S. Geneva,

A. Kocijan, I. Milo?ev, and B. Pihlar, Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis, J. Mater. Sci. Mater. Med, vol.15, issue.6, pp.643-650, 2004.

M. Metikos-hukovic, S. Omanovic, R. Babic, and I. Milosev, An electrochemical study of the passive film formed on Ni-Cr (80/20) coating, Berichte Der Bunsengesellschaft Phys. Chem, vol.98, pp.1243-1249, 1994.

R. M. Berlin, L. J. Gustavson, and A. K. Wang, Influence of Post Processing on the Mechanical Properties of Investment Cast and Wrought CoCrMo Alloys, In: Cobalt-base Alloys for Biomedical Applications STP 1481, p.62, 1999.

A. J. Clemow and B. L. Daniell, Solution treatment behavior of Co-Cr-Mo alloy, J. Biomed. Mater. Res, vol.13, pp.265-279, 1979.

F. Onderka and J. Kadlec, Chemical Composition and Hardness of As-Cast Biocompatible CoCrMo Alloy, Littera Scr, vol.6, pp.184-194, 2013.

W. D. Callister and E. , Materials Science and Engineering, An Introduction, 2007.

L. A. Pruitt, Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene, Biomaterials, vol.26, pp.905-915, 2005.

J. Zhou, A. Chakravartula, L. Pruitt, and K. Komvopoulos, Tribological and Nanomechanical Properties of Unmodified and Crosslinked Ultra-High Molecular Weight Polyethylene for Total Joint Replacements

, INSA Lyon, tous droits réservés Tribol, vol.126, issue.2, p.386, 2004.

K. C. Dee, D. A. Puleo, and R. Bizios, Biomaterials, 2002.

B. Ratner, A. Hoffman, and F. Schoen, Biomaterials science. An introduction to materials in medicine, 1996.

. Astm-f648, Standard Specification for Ultra-High-Molecular-Weight Polyethylene Powder and Fabricated Form for Surgical Implants, 2014.

, Polyéthylène à très haute masse moléculaire. Partie 1: Produits sous forme de poudre, 2019.

N. Wang, Greffage de polymères biomimétiques sur implants articulaires en polyéthylène : contrôle du comportement tribologique, 2013.

E. M. Czeka?ska, In vitro cell and culture models for osteoblasts and their progenitors By Supervised by, 2014.

, Gibco TM Education ThermoFisher Scientific, 2016.

S. B. Rodan, Y. Imai, M. A. Thiede, G. Wesolowski, D. Thompson et al., Characterization of a Human Osteosarcoma Cell Line (Saos-2) with Osteoblastic Properties, Cancer Res, vol.47, pp.4961-4966, 1987.

R. Richards, E. Czekanska, J. Hayes, and M. Stoddart, In search of an osteoblast cell model for in vitro research, Eur. Cells Mater, vol.24, pp.1-17, 2016.

M. Keddam, R. Oltra, and C. Duret-thual, Contrôle et suivi de la corrosion: Tests et méthodes, In: Prévention et lutte contre la corrosion, pp.445-482, 2004.

M. Keddam and J. P. Millet, Caractérisation électrochimique de la corrosion, Corrosion des métaux et alliages-Mécanismes et phénomènes, pp.139-160, 2002.

P. Bommersbach, C. Alemany-dumont, J. P. Millet, and B. Normand, Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods, Electrochim. Acta, vol.51, issue.6, pp.1076-1084, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00436826

R. G. Kelly, J. R. Scully, D. W. Shoesmith, and R. G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, 2003.

E. Ghali, V. S. Sastri, and M. Elboujdaini, Corrosion Prevention and Protection: Practical Solutions, 2007.

E. Bardal, Corrosion and Protection, 2003.

P. Marcus and T. Magnin, Corrosion Mechanisms in Theory and Practice. Third Edition, 2012.

J. Wang, Analytical Electrochemistry, 2000.

C. Gabrielli, Identification of electrochemical processes by frequency response analysis, 1998.

M. E. Orazem, N. Pébère, and B. Tribollet, Enhanced graphical representation of electrochemical impedance data, J. Electrochem. Soc, vol.153, pp.129-136, 2006.

P. Córdoba-torres, M. Keddam, and R. P. Nogueira, On the intrinsic electrochemical nature of the inductance in EIS, Electrochim. Acta, vol.54, issue.2, pp.518-523, 2008.

S. Zanna, C. Compere, and P. Marcus, Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers, pp.365-370, 2006.

I. Frateur, L. Lartundo-rojas, C. Méthivier, A. Galtayries, and P. Marcus, Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron-chromium alloy, Electrochim. Acta, vol.51, pp.1550-1557, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080432

C. Tkaczyk, O. L. Huk, F. Mwale, J. Antoniou, D. J. Zukor et al., The molecular structure of complexes formed by chromium or cobalt ions in simulated physiological fluids, Biomaterials, vol.30, pp.460-467, 2009.

T. Hanawa, S. Hiromoto, and K. Asami, Characterization of the surface oxide film of a Co-Cr-Mo alloy after being located in quasi-biological environments using XPS, Appl. Surf. Sci, vol.183, issue.2, pp.68-75, 2001.

M. Ben-salah, R. Sabot, P. Refait, I. Liascukiene, C. Méthivier et al., Passivation behaviour of stainless steel (UNS N-08028) in industrial or simplified phosphoric acid solutions at different temperatures, Corros. Sci, vol.99, pp.320-332, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02478375

I. Milo?ev and H. H. Strehblow, The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution, Electrochim. Acta, vol.48, pp.2767-2774, 2003.

M. Schmidt, X-ray photoelectron spectroscopy studies on adsorption of amino acids from aqueous solutions onto oxidised titanium surfaces, Arch. Orthop. Trauma Surg, vol.121, pp.403-410, 2001.

A. Foelske and H. H. Strehblow, Passivity of cobalt in borate buffer at pH 9.3 studied by X-ray photoelectron spectroscopy, vol.29, pp.548-555, 2000.

F. Grellner, B. Klingenberg, D. Borgmann, and G. Wedler, Electron spectroscopic study of the interaction of oxygen with Co(1120) and of coadsorption with water, J. Electron Spectros. Relat. Phenomena, vol.71, issue.2, pp.107-115, 1995.

M. Peuckert, XPS investigation of surface oxidation layers on a platinum electrode in alkaline solution, Electrochim. Acta, vol.29, pp.1315-1320, 1984.

A. Ouerd, C. Alemany-dumont, B. Normand, and S. Szunerits, Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface, Electrochim. Acta, vol.53, pp.4461-4469, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00433988

A. I. Mun?oz and S. Mischler, Interactive Effects of Albumin and Phosphate Ions on the Corrosion of CoCrMo Implant Alloy, J. Electrochem. Soc, vol.154, pp.562-570, 2007.

T. Hanawa, Characterization of surface films formed on titanium in electrolyte using XPS, Appl. Surf. Sci, 1992.

B. Demri and D. Muster, XPS study of some calcium compounds, J. Mater. Process. Technol, vol.55, pp.311-314, 1995.

T. Moffat and R. Latanision, An Electrochemical and X-Ray Photoelectron Spectroscopy Study of the Passive State of Chromium, J. Electrochem. Soc, vol.139, issue.7, pp.1869-1879, 1992.

I. Grohmann and E. Kemnitz, Curve fitting of Cr 2p photoelectron spectra of Cr2O3 and CrF3, Surf. Interface Anal, vol.23, pp.887-891, 1995.

T. Chuang, C. Brundle, and D. Rice, Interpretation of the Xray photoemission spectra of cobalt oxides and cobalt oxide surfaces, Surf. Sci, vol.59, pp.413-429, 1976.

J. Haber and L. Ungier, On chemical shifts of ESCA and auger lines in cobalt oxides, J. Electron Spectros. Relat. Phenomena, vol.12, pp.305-312, 1977.

Y. Yan, A. Neville, and D. Dowson, Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments, Wear, vol.263, pp.1105-1111, 2007.

A. W. Hodgson, S. Kurz, S. Virtanen, V. Fervel, C. O. Olsson et al., Passive and transpassive behaviour of CoCrMo in simulated biological solutions, Electrochim. Acta, vol.49, pp.2167-2178, 2004.

C. O. Olsson, H. J. Mathieu, and D. Landolt, Angle-resolved XPS analysis of molybdenum and tungsten in passive films on stainless steel PVD alloys, Surf. Interface Anal, vol.34, issue.1, pp.130-134, 2002.

B. Brox and I. Olefjord, ESCA Studies of MoO2 and MoO3, Surf. Interface Anal, vol.13, issue.1, pp.3-6, 1988.

M. Xu, D. J. Mccanna, and J. G. Sivak, Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells, J. Pharmacol. Toxicol. Methods, vol.71, pp.1-7, 2015.

D. M. Morgan, Tetrazolium (MTT) Assay for Cellular Viability and Activity, Polyam. Protoc, vol.79, pp.179-184, 2003.

J. Van-meerloo, G. J. Kaspers, and J. Cloos, Cell Sensitivity Assays: The MTT Assay Johan, 2011.

A. J. Racher, D. Looby, and J. B. Griffiths, Use of lactate dehydrogenase release to assess changes in culture viability, Cytotechnology, vol.3, pp.301-307, 1990.

D. Koley and A. J. Bard, Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM), Proc. Natl. Acad. Sci, vol.107, pp.16793-16787, 2010.

, Handbook of histology methods for bone and cartilage, 2003.

S. C. Marks and S. N. Popoff, Bone cell biology: The regulation of development, structure, and function in the skeleton, Am. J. Anat, vol.183, pp.1-44, 1988.

D. C. Morris, K. Masuhara, K. Takaoka, K. Ono, and H. ,

A. , Immunolocalization of alkaline phosphatase in osteoblasts and matrix vesicles of human fetal bone, Bone Miner, vol.19, pp.287-292, 1992.

T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, Solutions able to reproduce in vivo surfacestructure changes in bioactive glass ceramic A-W3, J. Biomed. Mater. Res, vol.24, issue.6, pp.721-734, 1990.

A. Ouerd, Comportement électrochimique et triboélectrochimique de l'alliage CoCrMo en milieu physiologique simulé: Influence des protéines, 2009.

M. Haeri, S. Goldberg, and J. L. Gilbert, The voltagedependent electrochemical impedance spectroscopy of CoCrMo medical alloy using time-domain techniques: Generalized Cauchy-Lorentz, and KWW-Randles functions describing non-ideal interfacial behaviour, Corros. Sci, vol.53, issue.2, pp.582-588, 2011.

J. J. Ryu and P. Shrotriya, Mechanical load assisted dissolution response of biomedical cobalt-chromium and titanium metallic alloys: Influence of in-plane stress and chemical environment, Wear, pp.662-668, 2015.

L. N. Wang, X. Q. Huang, A. Shinbine, and J. L. Luo, Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions, J. Mater. Sci. Mater. Med, vol.24, issue.2, pp.295-305, 2013.

K. Khan and M. Elia, Factors affecting the stability of Lglutamine solution, Clin. Nutr, vol.10, pp.186-192, 1991.

M. J. Davies and R. J. Truscott, Photo-oxidation of proteins and its role in catractogenesis, J. Photochem. Photobiol. B, vol.63, pp.114-125, 2001.

M. J. Davies, Singlet oxygen-mediated damage to proteins and its consequences, Biochem. Biophys. Res. Commun, vol.305, pp.761-770, 2003.

B. Sjöberg, Oxydation des protéines par les espèces réactives de l'oxygène: l'importance de l'environnement protéique, 2013.

J. Combes and E. De, Etude de l'adhésion d'ostéoblastes sur substituts apatitiques par microscopie à force atomique, 2009.

R. K. Sinha and R. S. Tuan, Regulation of human osteoblast integrin expression by orthopedic implant materials, vol.18, pp.451-458, 1996.

J. M. Davis, Basic Techniques and Media, the Maintenance of Cell Lines, and Safety, pp.91-151, 2011.

R. G. Ham and W. L. Mckeehan, Media and growth requirements, Cell Cult, vol.58, pp.44-93, 1979.

P. Gillery, Stress oxydant et glycation des protéines au cours du diabète sucré, vol.64, pp.309-314, 2006.

R. Singh, A. Barden, T. Mori, and L. Beilin, Advanced glycation end-products : a review, Diabetologia, 2001.

P. Gillery, J. Monboisse, F. Maquart, and J. Borel, Glycation of proteins as a source of superoxide, Diabetes Metab, vol.14, pp.25-30, 1988.

Z. Jian, A. Woollard, and S. Wolff, Hydrogen peroxide production during experimental protein glycation, FEBS Lett, vol.268, pp.69-71, 1990.

I. Slavin and J. P. Schell, Contamination, In: Human Stem Cell Manual, pp.41-51, 2012.

R. Festen, Understanding Animal Sera: Considerations for Use in the Production of Biological Therapeutics, In: Medicines from Animal Cell Culture, pp.45-58, 2007.

W. Bal, M. Soko?owska, E. Kurowska, and P. Faller, Binding of transition metal ions to albumin: Sites, affinities and rates, Biochim. Biophys. Acta -Gen. Subj, vol.1830, pp.5444-5455, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02907481

R. G. Narins and M. Emmett, Simple and mixed acid-base disorders a pratical approach.pdf, Medicine (Baltimore), vol.59, 1980.

M. Hong and S. Pyun, Corrosive wear behaviour of 304-L stainless steel in 1 N H2S04 solution Part 1. Effect of applied potential, Wear, vol.147, pp.59-67, 1991.

C. Vidal and A. Munoz, Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy, Electrochim. Acta, 2010.

X. Cheng and S. G. Roscoe, Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins, Biomaterials, vol.26, pp.7350-7356, 2005.

T. Kokubo, Surface chemistry of bioactive glassceramics, J. Non. Cryst. Solids, vol.120, pp.138-151, 1990.

K. C. Dee, D. A. Puleo, and R. Bizios, An Introduction to Tissue-Biomaterial Interactions, pp.37-52, 2002.

P. , Protein Interactions with Biomaterials, pp.63-73, 2011.

K. B. Sagomonyants and G. Gronowicz, Integrin-Activated Reactions to Metallic Implant Surfaces, pp.101-113, 2011.

M. Wahlgren, Protein adsorption to solid surfaces, Trends Biotechnol, vol.9, issue.1, pp.201-208, 1991.

S. Hiromoto, E. Onodera, A. Chiba, K. Asami, and T. Hanawa, Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Cocci Cr-Mo alloys, Biomaterials, vol.26, pp.4912-4923, 2005.

G. C. Clark and D. F. Williams, The effects of proteins on metallic corrosion, J. Biomed. Mater. Res, vol.16, issue.2, pp.125-134, 1982.

S. Omanovic and S. G. Roscoe, Electrochemical Studies of the Adsorption Behavior of Bovine Serum Albumin on Stainless Steel, Langmuir, vol.15, pp.8315-8321, 1999.

C. W. Svare, C. Dentistry, I. Iowa, and I. City, The Role of Organics in Metallic Passivation, J Biomed Master Res, vol.4, pp.457-467, 1970.

J. Woodman, J. Black, and S. Jiminez, Isolation of serum protein organornetallic corrosion products from 316LSS and HS-21 in vitro and in vivo, J. Biomed. Mater. Res, vol.18, pp.99-114, 1984.

M. B.-alemón, W. Flores, J. C. Ramírez, E. Huegel, and . Broitman, Tribocorrosion behavior and ions release of CoCrMo alloy coated with a TiAlVCN/CNx multilayer in simulated body fluid plus bovine serum albumin, Tribol. Int, vol.81, pp.159-168, 2015.

Y. Yan, A. Neville, and D. Dowson, Biotribocorrosion of CoCrMo orthopaedic implant materials -Assessing the formation and effect of the biofilm, Tribol. Int, vol.40, pp.1492-1499, 2007.

F. Contu, B. Elsener, and H. Böhni, Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I. Mechanically polished samples, J. Biomed. Mater. Res. A, vol.67, issue.1, pp.246-54, 2002.

D. Sun, J. A. Wharton, and R. J. Wood, Effects of proteins and pH on tribocorrosion performance of cast CoCrMo -a combined electrochemical and tribological study, Tribol. -Mater. Surfaces Interfaces, vol.2, pp.150-160, 2008.

V. Hlady and J. Buijs, Protein adsorption on solid surfaces, Curr. Opin. Biotechnol, vol.7, issue.1, pp.72-77, 1996.

T. Groth, K. Klosz, C. Ej, R. New, H. B. et al., Protein adsorption, lymphocyte adhesion and platelet adhesion/activation on polyurethane ureas is related to hard segment content and composition, J Biomater Sci Polym. Ed, vol.6, issue.6, pp.497-510, 1994.

C. Vidal and A. Muñoz, Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids, Corros. Sci, vol.50, issue.7, pp.1954-1961, 2008.

C. Vidal, A. Juan, and A. Munoz, Adsorption of bovine serum albumin on CoCrMo surface: Effect of temperature and protein concentration, Colloids Surfaces B Biointerfaces, 2010.

L. Lartundo-rojas, I. Frateur, A. Galtayries, and P. Marcus, BSA adsorption on Fe-17Cr in acid solution : electrochemical behaviour and surface composition, Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers, pp.357-363, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00109508

Y. Hedberg, X. Wang, J. Hedberg, M. Lundin, E. Blomberg et al., Surface-protein interactions on different stainless steel grades: Effects of protein adsorption, surface changes and metal release, J. Mater. Sci. Mater. Med, vol.24, pp.1015-1033, 2013.

J. T. Lee, Y. Leng, K. L. Chow, F. Ren, X. Ge et al., Cell culture medium as an alternative to conventional simulated body fluid, Acta Biomater, 2011.

P. A. Marques and M. C. ,

R. N. Magalhaes and . Correia, Inorganic plasma with physiological CO2/HCO3-buffer, Biomaterials, vol.24, pp.1541-1548, 2003.

M. Bohner and J. Lemaitre, Can bioactivity be tested in vitro with SBF solution?, Biomaterials, vol.30, pp.2175-2179, 2009.

J. A. Calderón, O. R. Mattos, O. E. Barcia, S. I. Córdoba-de-torresi, J. E. Pereira-da et al., Electrodissolution of cobalt in carbonate/bicarbonate media, Electrochim. Acta, vol.47, pp.4531-4541, 2002.

A. Yamamoto and S. Hiromoto, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro, Mater. Sci. Eng. C, vol.29, issue.5, pp.1559-1568, 2009.

S. G. Real, S. B. Ribotta, and A. J. Arvia, The electrochemical dissolution of cobalt in carbonate-bicarbonate solutions from EIS and steady polarization data, Corros. Sci, 2008.

N. J. Hallab, C. Vermes, C. Messina, K. A. Roebuck, T. T. Glant et al., Concentration-and compositiondependent effects of metal ions on human MG-63

J. Osteoblasts, Biomed. Mater. Res, vol.60, pp.420-433, 2002.

E. M. Hudak, J. T. Mortimer, and H. B. Martin, Platinum for neural stimulation: voltammetry considerations, J. Neural Eng, vol.7, issue.2, p.26005, 2010.

L. D. Burke and M. B. Roche, Hydrous oxide formation on platinum-A useful route to controlled platinization, J. Electroanal. Chem, vol.164, issue.2, pp.315-334, 1984.

L. D. Burke and M. M. Murphy, Effect of solution pH on hydrous oxide growth and reduction on polycrystalline platinum, J. Electroanal. Chem, vol.305, issue.2, pp.301-312, 1991.

L. D. Burke, Premonolayer oxidation and its role in electrocatalysis, Electrochim. Acta, vol.39, pp.1841-1848, 1994.

L. D. Burke and D. T. Buckley, Formation and reduction of hydrous oxide films on platinum in aqueous solution at

, J. Appl. Electrochem, vol.25, pp.913-922, 1995.

V. I. Birss, M. Chang, and J. Segal, Platinum oxide film formation-reduction : measurement study an in-situ mass measurement study, J. Electroanal. Chem, 1993.

M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 1966.

M. Pourbaix, J. Van-muylder, and N. Zoubov, Electrochemical properties of the platinum metals, Platin. Met. Rev, vol.3, issue.2, pp.47-53, 1959.

, Biological interactions on materials surfaces. Understanding and Controlling Protein, Cell, and Tissue Responses, 2009.

P. Daubinger, J. Kieninger, T. Unmüssig, and G. Urban, Electrochemical characteristics of nanostructured platinum electrodes -a cyclic voltammetry study, Phys. Chem. Chem. Phys, vol.16, pp.8392-8401, 2014.

P. Bernabeu, L. Tamisier, A. D. Cesare, and A. Caprani, Study of the adsorption of albumin on a platinum rotating disk electrode using impedance measurements, Electrochim. Acta, vol.33, issue.8, pp.1129-1136, 1988.

P. Bernabeu and A. Caprani, Influence of surface charge on adsorption of fibrinogen and/or albumin on a rotating disc electrode of platinum and carbon, Biomaterials, vol.11, pp.258-264, 1990.

M. Farcas, N. P. Cosman, D. K. Ting, S. G. Roscoe, and S. Omanovic, A comparative study of electrochemical techniques in investigating the adsorption behaviour of fibrinogen on platinum, J. Electroanal. Chem, vol.649, issue.2, pp.206-218, 2010.

B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur et al., Determination of effective capacitance and film thickness from constant-phaseelement parameters, Electrochim. Acta, vol.55, pp.6218-6227, 2010.

B. L. Gorrec, C. Montella, B. Chang, S. Park, E. I. Analysis et al.,

, Electrochemical Impedance Spectroscopy, Annu. Rev. Anal. Chem. (Palo Alto. Calif), vol.3, pp.207-229, 2009.

F. Contu, B. Elsener, and H. Böhni, Corrosion behaviour of CoCrMo implant alloy during fretting in bovine serum, Corros. Sci, vol.47, issue.8, pp.1863-1875, 2005.

M. Stenberg, H. Arwin, and A. Nilsson, Silicon-silicon dioxide as an electrode for electrical and ellipsometric measurements of adsorbed organic molecules, J. Colloid Interface Sci, vol.72, issue.2, pp.255-264, 1979.

J. Helsen and H. ,

. Breme, Metals as biomaterials, 1998.

C. G. Malmberg and A. A. Maryott, Dielectric constant of water from 0 to 100 C, J. Res. Natl. Bur. Stand, vol.56, issue.1, p.1, 1934.

G. J. Brug, A. L. Van-den-eeden, M. Sluyters-rehbach, and J. H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, J. Electroanal. Chem, vol.176, issue.2, pp.275-295, 1984.

M. C. García-alonso, L. Saldaña, C. Alonso, V. Barranco, M. A. Muñoz-morris et al., In situ cell culture monitoring on a Ti-6Al-4V surface by electrochemical techniques, Acta Biomater, vol.5, pp.1374-1384, 2009.

T. S. Light, E. A. Kingman, A. C. Bevilacqua, and T. Associates, The conductivity of low concentrations of CO2 dissolved in ultrapure water from 0-100°C, In: 209th American Chemical Society National Meeting, pp.0-17, 1995.

A. Bard and L. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2001.

M. T. Ehrensberger and J. L. Gilbert, The effect of static applied potential on the 24-hour impedance behavior of commercially pure titanium in simulated biological conditions, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.93, issue.1, pp.106-112, 2010.

P. Huetz, V. Ball, J. Voegel, and P. Schaaf, Exchange kinetics for a heterogeneous protein system on a solid surface, Langmuir, vol.11, pp.3145-3152, 1995.

C. A. Haynes and W. Norde, Globular proteins at solid-liquid interfaces, Colloids Surfaces B Biointerfaces, vol.2, pp.517-566, 1994.

W. Norde, Driving forces for protein adsorption at solid surfaces, Biopolymers at Interfaces,M. Dekker, 2003.

G. Stoner and S. Srinivasan, Adsorption of blood proteins on metals using capacitance techniques, J. Phys. Chem, vol.74, pp.1088-1094, 1970.

B. Ivarsson and I. Lundstrom, Physical characterization of protein adsorption on metal and metaloxide surfaces, Crit. Rev. Biocompat, vol.2, pp.1-96, 1986.

B. G. Pound, Passive films on metallic biomaterials under simulated physiological conditions, J. Biomed. Mater. Res. -Part A, vol.102, issue.5, pp.1595-1604, 2014.

M. Metiko?-hukovi?, Z. Pili?, R. Babi?, and D. Omanovi?, Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution, Acta Biomater, vol.2, issue.6, pp.693-700, 2006.

R. Singhvi, A. Kumar, G. Lopez, G. Stephanopeulos, D. Wang et al., Engineering cell shape and function, Science, vol.264, pp.696-698, 1994.

S. S. Ozturk and B. Ø. Palsson, Chemical decomposition of glutamine in cell culture media: Effect of media type, and serum concentration, Biotechnol. Prog, vol.6, pp.121-128, 1990.

L. Frauchiger, M. Taborelli, B. O. Aronsson, and P. Descouts, Ion adsorption on titanium surfaces exposed to a physiological solution, Appl. Surf. Sci, vol.143, issue.1, pp.67-77, 1999.

Y. Yang, K. Kim, C. M. Agrawal, and J. L. Ongad, Interaction of hydroxyapatite-titanium at elevated temperature in vacuum environment, Biomaterials, vol.25, pp.2927-2932, 2004.

C. Tkaczyk, O. L. Huk, F. Mwale, J. Antoniou, D. J. Zukor et al., Investigation of the binding of Cr(III) complexes to bovine and human serum proteins: a proteomic approach, J. Biomed. Mater. Res. A, 2010.

J. Lima, S. R. Sousa, A. Ferreira, and M. A. Barbosa, Interactions between calcium, phosphate, and albumin on the surface of titanium, J. Biomed. Mater. Res, 2001.

A. Klinger, D. Steinberg, D. Kohavi, and M. N. Sela, Mechanism of adsorption of human albumin to titanium in vitro, J Biomed Mater Res, vol.36, pp.387-392, 1997.

X. Cheng, M. Filiaggi, and S. G. Roscoe, Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy, Biomaterials, vol.25, pp.5395-5403, 2004.

J. Baggott-;-t, Gas transport and pH regulation, Textbook of Biochemistry with Clinical Correlations

. Devlin, , pp.1025-1036, 1982.

S. Chatterjee, S. Rayalu, S. D. Kolev, and R. J. Krupadam, Adsorption of carbon dioxide on naturally occurring solid amino acids, J. Environ. Chem. Eng, vol.4, pp.3170-3176, 2016.

D. H. Davies and P. Street, The Electrochemical Behaviour of Cobalt in bicarbonate and borate electrolytes, Corros. Sci, vol.20, pp.973-987, 1980.

C. Vidal and A. Muñoz, Effect of physicochemical properties of simulated body fluids on the electrochemical behaviour of CoCrMo alloy, Electrochim. Acta, vol.56, pp.8239-8248, 2011.

A. Ornberg, J. Pan, M. Herstedt, and C. Leygraf, Corrosion Resistance, Chemical Passivation, and Metal Release of 35N LT and MP35N for Biomedical Material Application, J. Electrochem. Soc, vol.154, issue.9, pp.546-551, 2007.

M. Spector, V. A. Boston, and H. System, The Concept of Biocompatibility, In: Comprehensive Biomaterials, pp.1-6, 2011.

K. C. Dee, D. A. Puleo, R. Bizios, and . Biocompatibility, , 2002.

S. C. , Methods, Biomaterial Surfaces and the Physiological Environment, pp.149-172, 2002.

J. D. Andrade, Interfacial phenomena and biomaterials, Med. Instrum, vol.7, pp.110-119, 1973.

S. Ramakrishna, M. Ramalingam, T. S. Kumar, and W. O. Soboyejo, Biomaterials a nano approach, 2010.

D. R. Jackson, S. Omanovic, and S. G. Roscoe, Electrochemical studies of the adsorption behavior of serum proteins on titanium, Langmuir, vol.16, pp.5449-5457, 2000.

J. R. Goldberg and J. L. Gilbert, Electrochemical response of CoCrMo to high speed fracture of its metal oxide using an electrochemical stratch, J. Biomed. Mater. Res, 1997.

A. C. Lewis, M. R. Kilburn, P. J. Heard, T. B. Scott, K. R. Hallam et al., The Entrapment of Corrosion Products from CoCr Implant Alloys in the Deposits of Calcium Phosphate: A Comparison of Serum, Synovial Fluid, Albumin, EDTA, and Water, J. Orthop. Res, vol.24, pp.1587-1596, 2006.

A. C. Lewis and P. J. Heard, The effects of calcium phosphate deposition upon corrosion of CoCr alloys and the potential for implant failure, J. Biomed. Mater. Res. -Part A, vol.75, issue.2, pp.365-373, 2005.

A. Petit, F. Mwale, D. J. Zukor, I. Catelas, J. Antoniou et al., Effect of cobalt and chromium ions on bcl-2, bax, caspase-3, and caspase-8 expression in human U937 cciii macrophages, Biomaterials, vol.25, issue.11, pp.2013-2018, 2004.

K. Magone, D. Luckenbill, and T. Goswami, Metal ions as inflammatory initiators of osteolysis, Arch. Orthop. Trauma Surg, vol.135, issue.5, pp.683-95, 2015.

D. Landolt, Corrosion and surface chemistry of metals, 2007.

K. Kim, Y. M. Biomaterials, E. J. Bronzino, and J. B. Park, Metallic Biomaterials, 2000.

Y. Yan, Growth of passive tribofilms in medical implants, In: Bio-tribocorrosion in biomaterials and medical implants, pp.147-168, 2013.

J. L. Gilbert, Electrochemical Behavior of Metals in the Biological Milieu, In: Comprehensive Biomaterials, pp.21-48, 2011.

J. J. Ryu and P. S. Hrotriya, Synergistic mechanisms of biotribocorrosion in medical implants, Biotribocorrosion in biomaterials and medical implants, pp.25-44, 2013.

O. L. Huk, I. Catelas, F. Mwale, J. Antoniou, D. J. Zukor et al., Induction of apoptosis and necrosis by metal ions in vitro, J. Arthroplasty, vol.19, issue.8, pp.84-87, 2004.

Y. S. Li, R. Wang, P. He, B. X. Huang, and P. Kovacs, Surfaceenhanced Raman spectroelectrochemical studies of corrosion films on implant Co-Cr-Mo alloy in biosimulating solutions, J. Raman Spectrosc, vol.30, issue.2, pp.97-103, 1999.

A. Kocijan, I. Milo?ev, D. K. Merl, and B. Pihlar, Electrochemical study of Co-based alloys in simulated physiological solution, J. Appl. Electrochem, vol.34, issue.5, pp.517-524, 2004.

Y. Yan, Corrosion and Tribo-Corrosion Behaviour of Metallic Orthopaedic Implant Materials, 2006.

B. G. Pound, Electrochemical behavior of cobalt -Chromium alloys in a simulated physiological solution, J. Biomed. Mater. Res. -Part A, vol.94, issue.1, pp.93-102, 2010.

M. S. Caicedo, R. Desai, K. Mcallister, A. Reddy, J. J. Jacobs et al., Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: A novel mechanism for implant debris reactivity, J. Orthop. Res, vol.27, issue.7, pp.847-854, 2009.

M. T. Ehrensberger and J. L. Gilbert, The effect of scanning electrochemical potential on the short-term impedance of commercially pure titanium in simulated biological conditions, J. Biomed. Mater. Res. -Part A, vol.94, pp.781-789, 2010.

K. Merritt and S. A. Brown, Effect of proteins and pH on fretting corrosion and metal ion release, J. Biomed. Mater. Res, vol.22, issue.2, pp.111-120, 1988.

S. Petrén, Determination of transferrin isoproteins in human cerebrospinal fluid using isoelectric focusing and zone immunoelectrophoresis assay, Electrophoresis, vol.8, pp.515-517, 1987.

M. Salim, B. O'sullivan, S. L. Mcarthur, and P. C. Wright, Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA, R. Soc. Chem, 2007.

D. T. Wassell and G. Embery, Adsorption of bovine serum albumin on to titanium powder, Biomaterials, vol.17, issue.9, pp.859-864, 1996.

J. J. Jacobs, N. J. Hallab, A. K. Skipor, and R. M. Urban, Metal degradation products: a cause for concern in metal-metal bearings?, Clin. Orthop. Relat. Res, 2003.

P. Ying, A. S. Viana, L. M. Abrantes, and G. Jin, Adsorption of human serum albumin onto gold: A combined electrochemical and ellipsometric study, J. Colloid Interface Sci, vol.279, issue.1, pp.95-99, 2004.

S. Virtanen, I. Milo?ev, E. Gomez-barrena, R. Treb?e, J. Salo et al., Special modes of corrosion under physiological and simulated physiological conditions, Acta Biomater, vol.4, pp.468-476, 2008.

J. P. Laussac and B. Sarkar, Characterization of the Copper(II)-and Nickel(II)-Transport Site of Human Serum Albumin. Studies of Copper(II) and Nickel(II) Binding to Peptide 1-24 of Human Serum Albumin by 13C and 1H NMR Spectroscopy, Biochemistry, 1984.

W. Bal, J. Christodoulou, P. Sadler, and A. Tucker, Read at DeepDyve »Multi-metal binding site of serum albumin, J. Inorg, vol.70, pp.33-39, 1998.

S. Karimi, T. Nickchi, and A. M. Alfantazi, Long-term corrosion investigation of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in simulated body solutions, Appl. Surf. Sci, vol.258, pp.6087-6096, 2012.

N. Espallargas, C. Torres, and A. I. Muñoz, A metal ion release study of CoCrMo exposed to corrosion and tribocorrosion conditions in simulated body fluids, Wear, pp.669-678, 2015.

C. O. De, Equilibres calco-carboniques, pp.1-17

D. C. Mears, The use of dissimilar metals in surgery, J. Biomed. Mater. Res, vol.9, pp.133-148, 1975.

I. Milosev and H. H. Strehblow, The behavior of stainless steels in physiological solution containing complexing agent studied by x-ray photoelectron spectroscopy, J. Biomed. Mater. Res, vol.52, issue.2, pp.404-412, 2000.

G. T. Burstein and D. H. Davies, The analysis of anodic films formed on cobalt in bicarbonate and borate electrolytes, Corros. Sci, vol.20, pp.989-995, 1980.

C. A. Gervasi and P. E. Alvarez, Anodic oxide films on tin in carbonate-bicarbonate buffer solution, Corros. Sci, vol.47, issue.1, pp.69-78, 2005.

S. Virtanen, Corrosion in Biomedical Applications, Ref. Modul. Chem. Mol. Sci. Chem. Eng, pp.128-133, 2017.

N. Ramasubramanian, N. Precanin, and R. D. Davidson, Analysis of passive films on stainless steel by cyclic voltammetry and Auger spectroscopy, J. Electrochem. Soc, vol.132, pp.793-798, 1985.

M. Bojinov, I. Betova, G. Fabricius, T. Laitinen, R. Raicheff et al., The stability of the passive state of iron-chromium alloys in sulphuric acid solution, Corros. Sci, vol.41, pp.1557-1584, 1999.

C. H. Hsu and F. Mansfeld, Concerning the conversion of the constant phase element parameter Y0 into a capacitance, Corrosion, vol.57, p.747, 2001.

G. V. Samsonov and E. , The oxide handbook, IFI/Plenum, 1982.

P. H. Fang and W. S. Brower, Dielectric Constant of Cr2O3 Crystals, Phys. Rev, vol.129, pp.1561-1561, 1963.

K. V. Rao and A. Smakula, Dielectric properties of cobalt oxide, nickel oxide, and their mixed crystals, J. Appl. Phys, vol.36, issue.6, pp.2031-2038, 1965.

F. Contu, B. Elsener, and H. Bo?hni, Electrochemical Behavior of CoCrMo Alloy in the Active State in Acidic and Alkaline Buffered Solutions, J. Electrochem. Soc, 2003.

Y. Yan, D. Dowson, and A. Neville, In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators, J. Mech. Behav. Biomed. Mater, vol.18, pp.191-199, 2013.

I. Milo?ev, The effect of biomolecules on the behaviour of CoCrMo alloy in various simulated physiological solutions, Electrochim. Acta, vol.78, pp.259-273, 2012.

S. Storp and R. Holm, ESCA investigation of the oxide layers on some Cr containing alloys, Surf. Sci, vol.68, pp.10-19, 1977.

M. Metikos-hukovic, Behavior of Chromium Oxide as a Function of the Applied Potential, J. Electrochem. Soc, vol.134, issue.9, pp.2193-2197, 1987.

S. Haupt and H. Strehblow, The formation of the passive layer on Cr in 0.5M H2SO4. A combined electrochemical and surface analytical study, J. Electroanal. Chem, 1987.

A. I. Muñoz, J. Schwiesau, B. M. Jolles, and S. Mischler, In vivo electrochemical corrosion study of a CoCrMo biomedical alloy in human synovial fluids, Acta Biomater, vol.21, pp.228-236, 2015.

H. R. Nordlund, V. P. Hytönen, O. H. Laitinen, S. T. Uotila, E. A. Niskanen et al., Introduction of histidine residues into avidin subunit interfaces allows pH-dependent regulation of quaternary structure and biotin binding, FEBS Lett, vol.555, pp.449-454, 2003.

S. Fukuzaki, H. Urano, and K. Nagata, Adsorption of bovine serum albumin onto metal oxide surfaces, J. Ferment. Bioeng, vol.81, issue.2, pp.163-167, 1996.

C. M. Pradier, F. Kármán, J. Telegdi, E. Kálmán, and P. Marcus, Adsorption of Bovine Serum Albumin on Chromium and Molybdenum Surfaces Investigated by Fourier-Transform Infrared Reflection?Absorption Spectroscopy (FT-IRRAS) and X-ray Photoelectron Spectroscopy, J. Phys. Chem. B, vol.107, pp.6766-6773, 2003.

Q. Huai, Y. L. He, F. L. Sheng, and Z. Y. Tao, Effects of pH and metal ions on the conformation of bovine serum albumin in aqueous solution -An Attenuated Total Reflection (ATR) FTIR spectroscopic study, Spectrochim. Acta Part A, vol.52, pp.1795-1800, 1996.

D. L. Kirchman, D. L. Henry, and S. C. Dexter, Adsorption of proteins to surfaces in seawater, Mar. Chem, vol.27, pp.201-217, 1989.

A. Klinger, D. Steinberg, D. Kohavi, and M. N. Sela, Mechanism of adsorption of human albumin to titanium in vitro, J Biomed Mater Res, vol.36, pp.387-392, 1997.

P. R. Roberge and R. Pierre, Handbook of Corrosion Engineering Library of Congress Cataloging-in-Publication Data, 1999.

P. Schmuki, S. Virtanen, A. J. Davenport, and C. M. Vitus, Transpassive Dissolution of Cr and Sputter-Deposited Cr Oxides Studied by In Situ X-Ray Near-Edge Spectroscopy, J. Electrochem. Soc, vol.143, p.3997, 1996.

A. Foelske and H. H. Strehblow, Structure and composition of electrochemically prepared oxide layers on Co in alkaline solutions studied by XPS, Surf. Interface Anal, vol.34, issue.1, pp.125-129, 2002.

D. Gallant and S. Simard, A study on the localized corrosion of cobalt in bicarbonate solutions containing halide ions, Corros. Sci, vol.47, issue.7, pp.1810-1838, 2005.

M. Kalbacova, S. Roessler, U. Hempel, R. Tsaryk, K. Peters et al., The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages, Biomaterials, vol.28, pp.3263-3272, 2007.

S. S. Jakobsen, G. Danscher, M. Stoltenberg, A. Larsen, J. M. Bruun et al., Cobaltchromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney, Basic Clin. Pharmacol. Toxicol, 2007.

J. Y. Wang, B. H. Wicklund, R. B. Gustilo, and D. T. Tsukayama, Prosthetic metals impair murine immune response and cytokine release in vivo and in vitro, J. Orthop. Res, vol.15, issue.5, pp.688-699, 1997.

M. Khan, J. H. Kuiper, and J. B. Richardson, Can cobalt levels estimate in-vivo wear of metal-on-metal bearings used in hip arthroplasty?, Proc. Inst, vol.221, pp.929-942, 2007.

L. S. De-morais, G. G. Serra, E. F. Palermo, L. R. Andrade, C. A. Müller et al., Systemic levels of metallic ions released from orthodontic mini-implants, Am. J. Orthod. Dentofac. Orthop, vol.135, pp.522-529, 2009.

G. Mabilleau, Y. M. Kwon, H. Pandit, D. W. Murray, and A. Sabokbar, Metal-on-metal hip resurfacing arthroplasty: A review of periprosthetic biological reactions, Acta Orthop, vol.79, issue.6, pp.734-747, 2008.

L. Savarino, D. Granchi, G. Ciapetti, S. Stea, M. E. Donati et al., Effects of metal ions on white blood cells of patients with failed total joint arthroplasties, J. Biomed. Mater. Res, vol.47, pp.543-550, 1999.

S. Kawanishi, Y. Hiraku, M. Murata, and S. Oikawa, The role of metals in site-specific DNA damage with reference to carcinogenesis, Free Radic, Biol. Med, vol.32, issue.9, pp.822-832, 2002.

J. L. Gilbert, L. Zarka, E. Chang, and C. H. Thomas, The reduction half cell in biomaterials corrosion: Oxygen diffusion profiles near and cell response to polarized titanium surfaces, J. Biomed. Mater. Res, vol.42, issue.2, pp.321-330, 1998.

M. Haeri, T. Wöllert, G. M. Langford, and J. L. Gilbert, Electrochemical control of cell death by reductioninduced intrinsic apoptosis and oxidation-induced necrosis on CoCrMo alloy in vitro, Biomaterials, 2012.

J. Jacobs, J. Gilbert, and R. Urban, Current concepts review. Corrosion of metal orthopaedic implants, J. Bone Joint Surg. Am, vol.80, pp.268-282, 1998.

J. Black and T. J. Baranowski, Electrochemical aspects of d.c stimulation of osteogenesis, Bioelectrochemistry Bioenerg, vol.12, pp.323-327, 1984.

S. M. Dymecki, J. Black, D. S. Nord, S. B. Jones, T. J. Baranowski et al., Medullary osteogenesis with platinum cathodes, J. Orthop. Res, vol.3, issue.2, pp.125-136, 1985.

C. E. Campbell, D. V. Higginbotham, and T. J. Baranowski, A constant cathodic potential device for faradic stimulation of osteogenesis, Med. Eng. Phys, vol.17, issue.5, pp.337-346, 1995.

Q. Wang, S. Z. Zhong, O. Y. Jun, L. X. Jiang, Z. K. Zhang et al., Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions, Clin. Orthop. Relat. Res, 1998.

J. A. Spadaro, Electrically enhanced osteogenesis at various metal cathodes, J. Biomed. Mater. Res, vol.16, pp.861-873, 1982.

C. A. Bassett and R. O. Becker, Generation of Electric Potentials by Bone in Response to Mechanical Stress obtained in a highly purified state . For the detector response used , the sensi-tivity was of the order of 0 . 02 fig . Infrared spectra obtained by means not dependent upon cell, Science, vol.137, pp.1063-1064, 1962.

C. A. Bassett and R. J. Pawluk, Effects of electric currents on bone in vivo, Nature, vol.204, pp.652-654, 1964.

E. Fukada and I. Yasuda, On the piezoelectric effect of bone, J. Phys. Soc. Japan, vol.12, pp.1158-1162, 1957.

K. Chamaon, P. Schönfeld, F. Awiszus, J. Bertrand, and C. H. Lohmann, Ionic cobalt but not metal particles induces ROS generation in immune cells in vitro, J. Biomed. Mater. Res. -Part B Appl. Biomater, pp.1-8, 2018.

J. Pan, D. Thierry, and C. Leygraf, Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide, J. Biomed. Mater. Res, vol.28, pp.113-122, 1994.

L. Luo, A. Petit, J. Antoniou, D. J. Zukor, O. L. Huk et al., Effect of cobalt and chromium ions on MMP-1, TIMP-1, and TNF-a gene expression in human U937 macrophages: A role for tyrosine kinases, Biomaterials, vol.26, pp.5587-5593, 2005.

R. Plonsey, Bioelectric phenomena, pp.338-357

U. Zimmermann, G. Pilwat, and F. Riemann, Dielectric Breakdown of Cell Membranes, Biophys. J, vol.14, issue.11, pp.881-899, 1974.

M. Sencia, J. Takeda, S. Abe, and T. Nakamura, Induction of cell fusion of plant protoplasts by electrical stimulation, Plant Cell Physiol, vol.20, issue.7, pp.1441-1443, 1979.

I. P. Sugar, W. Förster, and E. Neumann, Model of cell electrofusion. Membrane electroporation, pore coalescence and percolation, Biophys. Chem, vol.26, issue.2-3, pp.321-335, 1987.

T. Y. Tsong, On electroporation of cell membranes and some related phenomena, Bioelectrochemistry, 1990.

A. L. Kierszenbaum, Histologie et biologie cellulaire: Une introduction à l'anatomie pathologique, 2006.

M. De-vernejoul and P. Marie, Cellules osseuses et remodelage osseux, vol.9, pp.192-203, 1993.

H. K. Väänänen and T. Laitala-leinonen, Osteoclast lineage and function, Arch. Biochem. Biophys, vol.473, issue.2, pp.132-138, 2008.

R. Lüllmann-rauch, D. Histologie, and . Boeck-supérieur, , 2008.

J. D. Currey, Bones : structure and mechanics, 2002.

B. Corradetti, The Immune Response to Implanted Materials and Devices, 2017.

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, pp.677-686, 2004.

B. N. Brown, R. Londono, S. Tottey, L. Zhang, K. A. Kukla et al., Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials, Acta Biomater, 2012.

B. D. Ratner, A History of Biomaterials, Biomater. Sci. An Introd. to Mater. Third Ed, 2013.

J. Anderson, Soft tissue response, Handbook of biomaterial properties, 1998.

L. Tang and J. Eaton, Natural responses to unnatural materials: A molecular mechanism for foreign body reactions, Mol Med, vol.5, issue.6, pp.351-358, 1999.

L. Tang, Fibrinogen mediates acute inflammatory responses to biomaterials, J. Exp. Med, vol.178, issue.6, pp.2147-2156, 1993.

R. F. Padera and C. K. Colton, Time course of membrane microarchitecture-driven neovascularization, Biomaterials, vol.17, pp.277-284, 1996.

Y. Okazaki and E. Gotoh, Comparison of metal release from various metallic biomaterials in vitro, Biomaterials, vol.26, issue.1, pp.11-21, 2005.

T. Hanawa, Y. Kohayama, S. Hiromoto, and A. Yamamoto, Effects of Biological Factors on the Repassivation Current of Titanium, vol.45, pp.1635-1639, 2004.

R. E. Andrews, K. M. Shah, J. M. Wilkinson, and A. Gartland, Effects of cobalt and chromium ions at clinically equivalent concentrations after metal-on-metal hip replacement on human osteoblasts and osteoclasts: Implications for skeletal health, Bone, vol.49, pp.717-723, 2011.

J. M. Smolders, P. Bisseling, A. Hol, C. Van-der-straeten, B. W. Schreurs et al., Metal ion interpretation in resurfacing versus conventional hip arthroplasty and in whole blood versus serum. How should we interpret metal ion data?, HIP Int, vol.21, issue.5, pp.587-595, 2011.

Y. Mu, T. Kobayashi, M. Sumita, A. Yamamoto, and T. Hanawa, Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro, J. Biomed. Mater. Res, vol.49, issue.2, pp.238-243, 2000.

L. Savarino, M. Greco, E. Cenni, L. Cavasinni, R. Rotini et al., Differences in ion release after ceramic-on-ceramic and metal-on-metal total hip replacement, J. Bone Joint Surg. Br, vol.88, issue.4, pp.472-476, 2006.

C. Jantzen, H. L. Jørgensen, B. R. Duus, S. L. Sporring, and J. B. Lauritzen, Chromium and cobalt ion concentrations in blood and serum following various types of metal-onmetal hip arthroplasties: A literature overview, Acta Orthop, vol.84, pp.229-236, 2013.

H. C. Amstutz, P. Campbell, H. Mckellop, T. P. Schmalzried, W. J. Gillespie et al., Metal on metal total hip replacement workshop consensus document, pp.297-303, 1996.

P. F. Doorn, P. A. Campbell, J. Worrall, P. D. Benya, H. A. Mckellop et al., Metal wear particle characterization from metal on metal total hip replacements : Transmission electron microscopy study of periprosthetic tissues and isolated particles, 1998.

I. Catelas, A. Petit, H. Vali, C. Fragiskatos, R. Meilleur et al., Quantitative analysis of macrophage apoptosis vs. necrosis induced by cobalt and chromium ions in vitro, Biomaterials, vol.26, pp.2441-2453, 2005.

D. A. Puleo, L. A. Holleran, R. H. Doremus, and R. Bizios, Osteoblast responses to orthopedic implant materials in vitro, J. Biomed. Mater. Res, vol.25, issue.6, pp.711-723, 1991.

S. Koyama, T. Haruyama, E. Kobatake, and M. Aizawa, Electrically induced NGF production by astroglial cells, Nat. Biotechnol, vol.15, pp.164-166, 1997.

K. Kinosita and T. Tsong, Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Nature, vol.268, pp.438-441, 1977.

S. Kar, L. Mohan, K. Dey, P. Shinde, H. Chang et al., Single-Cell Electroporation: Current Trends, Applications and Future Prospects, 2007.

M. Yaoita, H. Shinohara, M. Aizawa, Y. Hayakawa, T. Yamashita et al., Potential-controlled morphological change and lysis of HeLa cells cultured on an electrode surface, J. Electroanal. Chem, vol.254, pp.169-177, 1988.

J. Kojima, H. Shinohara, Y. Ikariyama, M. Aizawa, K. Nagaike et al., Electrically controlled proliferation of human carcinoma cells cultured on the surface of an electrode, J. Biotechnol, vol.18, issue.2, pp.129-139, 1991.

P. Chiarugi, G. Pani, E. Giannoni, L. Taddei, R. Colavitti et al., Reactive oxygen species as essential mediators of cell adhesion: The oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion, J. Cell Biol, vol.161, issue.5, pp.933-944, 2003.

H. T. Tien, Redox reactions in lipid bilayers and membrane bioenergetics, vol.15, pp.19-38, 1986.

T. Zhou, S. J. Braunhut, D. Medeiros, and K. A. Marx, Potential dependent endothelial cell adhesion, growth and cytoskeletal rearrangements, Mater Res Soc Symp Proc, vol.489, pp.211-216, 1998.

I. Lassing, F. Schmitzberger, M. Björnstedt, A. Holmgren, P. Nordlund et al., Molecular and Structural Basis for Redox Regulation of ?-Actin, J. Mol. Biol, vol.370, issue.2, pp.331-348, 2007.

M. Szibor, C. Richter, and P. Ghafourifar, Redox Control of Mitochondrial Functions, Antioxid. Redox Signal, 2001.

R. T. Gettens and J. L. Gilbert, Fibrinogen adsorption onto ccvi 316L stainless steel under polarized conditions, J. Biomed. Mater. Res. -Part A, vol.85, issue.1, pp.176-187, 2008.

M. T. Stankovich and A. J. Bard, The electrochemistry of proteins and related substances Part III. Bovine serum albumin, J. Electroanal. Chem, vol.86, issue.1, pp.189-199, 1978.

M. Haeri, T. Wöllert, G. M. Langford, and J. L. Gilbert, Voltage-controlled cellular viability of preosteoblasts on polarized cpTi with varying surface oxide thickness, Bioelectrochemistry, vol.94, pp.53-60, 2013.

C. Fonseca and M. A. Barbosa, Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy, Corros. Sci, vol.43, pp.547-559, 2001.

M. Kalbacova, S. Roessler, U. Hempel, R. Tsaryk, K. Peters et al., The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages, Biomaterials, vol.28, pp.3263-3272, 2007.

C. T. Brighton, S. Adler, J. Black, N. Itada, and Z. B. Friedenberg, Cathodic oxygen consumption and electrically induced osteogenesis, Clin. Orthop. Relat. Res, 1975.

O. C. Tuncay, D. Ho, and M. K. Barker, Oxygen tension regulates osteoblast function, Am. J. Orthod. Dentofac. Orthop, vol.105, issue.5, pp.457-463, 1994.

K. K. Kaysinger, W. K. Ramp, and N. Carolina, Extracellular pH Modulates the Activity of Cultured Human Osteoblasts, vol.89, pp.83-89, 1998.

J. , T. J. Baranowski, and J. Black, Electrochemically controlled faradic stimulation of osteogenesis, vol.005458627, 1995.

S. Bierbaum, T. Douglas, T. Hanke, D. Scharnweber, S. Tippelt et al., Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: Characterization and influence on osteoblastic cells, J. Biomed. Mater. Res. -Part A, vol.77, pp.551-562, 2006.

C. J. Kirkpatrick and C. Mittermayer, Theoretical and practical aspects of testing potential biomaterials in vitro, J. Mater. Sci. Mater. Med, vol.1, issue.1, pp.9-13, 1990.

S. Yang, K. Zhang, F. Li, J. Jiang, T. Jia et al., Biological responses of preosteoblasts to particulate and ion forms of Co-Cr alloy, J Biomed Mater Res Part A, vol.103, pp.3564-3571, 2015.

I. Catelas, Characterization and biological effects of wear particles from metal-metal hip implants, 2001.

C. Fleury, A. Petit, F. Mwale, J. Antoniou, D. J. Zukor et al., Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: Morphology, cytotoxicity, and oxidative stress, 2006.

Z. U. Rahman, W. Haider, L. Pompa, and K. M. Deen, Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys, Mater. Sci. Eng. C, vol.58, pp.160-168, 2016.

A. H. Kyle, C. T. Chan, and A. I. Minchinton, Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy, Biophys. J, vol.76, issue.5, pp.2640-2648, 1999.

H. H. Huang, S. J. Pan, and F. H. Lu, Surface electrochemical impedance in situ monitoring of cell-cultured titanium with a nano-network surface layer, Scr. Mater, 2005.

H. H. Huang, In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells, Biochem. Biophys. Res. Commun, vol.314, pp.787-792, 2004.

S. Hiromoto, K. Noda, and T. Hanawa, Development of electrolytic cell with cell-culture for metallic biomaterials, Corros. Sci, vol.44, issue.5, pp.955-965, 2002.

S. Hiromoto, K. Noda, and T. Hanawa, Electrochemical properties of an interface between titanium and fibroblasts L929, Electrochim. Acta, vol.48, pp.387-396, 2002.

J. Wroblewski, K. Mustafa, C. Leygraf, J. Pan, and K. Arvidson, Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy analysis of titanium surfaces cultured with osteoblast-like cells derived from human mandibular bone, J. Biomed. Mater. Res, 2002.

J. Pan, H. Liao, C. Leygraf, D. Thierry, and J. Li, Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment, J. Biomed. Mater. Res, 1998.

C. Pulletikurthi, N. Munroe, D. Stewart, W. Haider, S. Amruthaluri et al., Utility of magneto-electropolished ternary nitinol alloys for blood contacting applications, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.103, issue.7, pp.1366-1374, 2015.

M. S. Caicedo, P. H. Pennekamp, K. Mcallister, J. J. Jacobs, and N. J. Hallab, Soluble ions more than particulate cobalt-alloy implant debris induce monocyte costimulatory molecule expression and release of proinflammatory cytokines critical to metal-induced lymphocyte reactivity, J Biomed Mater Res A, vol.93, pp.1312-1321, 2010.

M. S. Caicedo, R. Desai, K. Mcallister, A. Reddy, J. J. Jacobs et al., Soluble and Particulate Co-Cr-Mo Alloy Implant Metals Activate the Inflammasome Danger Signaling Pathway in Human Macrophages: A Novel Mechanism for Implant Debris Reactivity, J Orthop Res, vol.27, pp.847-854, 2008.

I. Catelas, A. Petit, D. J. Zukor, J. Antoniou, and O. L. Huk, TNF-a secretion and macrophage mortality induced by cobalt and chromium ions in vitro -Qualitative analysis of apoptosis, Biomaterials, vol.24, pp.383-391, 2003.

A. Dalal, V. Pawar, K. Mcallister, C. Weaver, and N. J. Hallab, Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro , in human osteoblasts , fibroblasts , and macrophages, J Biomed Mater Res Part A, 2012.

, 100A, pp.2147-2158

M. J. Runa, M. T. Mathew, M. H. Fernandes, and L. A. Rocha, First insight on the impact of an osteoblastic layer on the bio-tribocorrosion performance of Ti6Al4V hip implants, Acta Biomater, vol.12, pp.341-351, 2015.

H. Y. Lin and J. D. Bumgardner, In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells, J. Orthop. Res, vol.22, issue.6, pp.1231-1236, 2004.

H. Y. Lin and J. D. Bumgardner, Changes in the surface oxide composition of Co-Cr-Mo implant alloy by macrophage cells and their released reactive chemical species, Biomaterials, vol.25, pp.1233-1238, 2004.

M. Harmand, A. Naji, and P. Gonfrier, In vitro study of biomaterials biodegradation using human cell cultures, Clin. Mater, vol.15, pp.281-285, 1994.

M. Gabi, T. Sannomiya, A. Larmagnac, M. Puttaswamy, and J. Vörös, Influence of applied currents on the viability of cells close to microelectrodes, Integr. Biol, vol.1, issue.1, pp.108-115, 2009.

C. C. Shih, S. J. Lin, K. H. Chung, Y. L. Chen, and Y. Y. Su, Increased corrosion resistance of stent materials by converting current surface film of polycrystalline oxide into amorphous oxide, J. Biomed. Mater. Res, vol.52, issue.2, pp.323-332, 2000.

J. Lincks, B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu et al., Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition, The Biomaterials: Silver Jubilee Compendium, 2006.

B. A. Scheven, D. Marshall, and R. M. Aspden, In Vitro Behaviour of Human Osteoblasts on Dentin and Bone, vol.26, pp.337-346, 2002.

D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos, and Y. F. Missirlis, Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials, 2001.

C. H. Lohmann, L. F. Bonewald, M. A. Sisk, V. L. Sylvia, D. L. Cochran et al., Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3, J. Bone Miner. Res, 2000.

M. Haeri and J. L. Gilbert, Study of cellular dynamics on polarized CoCrMo alloy using time-lapse live-cell imaging, Acta Biomater, vol.9, issue.11, pp.9220-9228, 2013.

S. M. Haerihosseini, Voltage Effects on Cells Cultured On Metallic Biomedical Implants, 2012.

H. He, D. C. Chang, and Y. K. Lee, Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells, Bioelectrochemistry, vol.70, issue.2, pp.363-368, 2007.

J. A. Stolwijk, C. Hartmann, P. Balani, S. Albermann, C. R. Keese et al., Impedance analysis of adherent cells after in situ electroporation: Noninvasive monitoring during intracellular manipulations, Biosens. Bioelectron, vol.26, pp.4720-4727, 2011.

M. A. Wimmer, M. P. Laurent, M. T. Mathew, C. Nagelli, Y. Liao et al., The effect of contact load on CoCrMo wear and the formation and retention of tribofilms, Wear, pp.643-649, 2015.

D. Sun, Abrasion-corrosion of Cast CoCrMo in Simulated Hip Joint Environments, 2009.

M. Tominaga, E. Kumagai, and S. Harada, Effect of electrical stimulation on HIV-1-infected HeLa cells cultured on an electrode surface, Appl. Microbiol. Biotechnol, 2003.

Q. Wang, S. Zhong, Y. Xie, Z. Zhang, and G. Yang, Electrochemical reactions during constant DC Current stimulation: An in vitro experiment with cultured rat calvarial cells, Electromagn. Biol. Med, vol.14, issue.1, pp.31-40, 1995.

Y. Wang, Y. Yan, Y. Su, and L. Qiao, Release of metal ions from nano CoCrMo wear debris generated from tribocorrosion processes in artificial hip implants, J. Mech. Behav. Biomed. Mater, vol.68, pp.124-133, 2016.

T. Visuri and M. Koskenvuo, Cancer risk after McKee-Farrar total hip replacement, Orthopedics, vol.14, pp.137-142, 1991.

M. M. Morlock, J. Kunze, M. A. Wimmer, and C. H. Lohmann, Metal-on-Metal: Ion Levels as an Intervention Strategy, Semin. Arthroplasty, vol.23, pp.283-285, 2012.

J. Hesketh, M. Ward, D. Dowson, and A. Neville, The composition of tribofilms produced on metal-on-metal hip bearings, Biomaterials, vol.35, issue.7, pp.2113-2119, 2014.

Y. Yan, A. Neville, J. Hesketh, D. Dowson, S. Williams et al., M-16 A New Tool to Assess Corrosion and Metal Ion Release in Artificial Hip Joints, J. Biomchanics, vol.43, p.58, 2010.

A. Petit, F. Mwale, C. Tkaczyk, J. Antoniou, D. J. Zukor et al., Induction of protein oxidation by cobalt and chromium ions in human U937 macrophages, Biomaterials, vol.26, pp.4416-4422, 2005.

H. J. Wiegand, H. Ottenwälder, and H. M. Bolt, Recent advances in biological monitoring of hexavalent chromium compounds, Sci. Total Environ, vol.71, pp.309-324, 1988.

J. Ning and M. H. Grant, The role of reduced glutathione and glutathione reductase in the cytotoxicity of chromium (VI) in osteoblasts, Toxicol. Vitr, vol.14, pp.329-335, 2000.

M. Sugiyama, Role of physiological antioxidants in chromium(VI)-induced cellular injury, Free Radic, Biol. Med, vol.134, issue.2, pp.191-202, 1992.

M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact, vol.160, issue.1, pp.1-40, 2006.

M. Gunaratnam and M. H. Grant, Damage to F-actin and cell death induced by chromium VI and nickel in primary monolayer cultures of rat hepatocytes, Toxicol. Vitr, vol.18, pp.245-253, 2004.

J. Ning, C. Henderson, and M. H. Grant, The cytotoxicity of chromium in osteoblasts: Effects on macromolecular synthesis, J. Mater. Sci. Mater. Med, vol.13, issue.1, pp.47-52, 2002.

J. Y. Wang, B. H. Wicklund, R. B. Gustilo, and D. T. Tsukayama, Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro, Biomaterials, vol.17, pp.2233-2240, 1996.

A. Lalaouni, C. Henderson, C. Kupper, and M. H. Grant, The interaction of chromium (VI) with macrophages: Depletion of glutathione and inhibition of glutathione reductase, Toxicology, vol.236, issue.2, pp.76-81, 2007.

R. M. Urban, J. J. Jacobs, M. J. Tomlinson, J. Gavrilovic, J. Black et al., Peoc'h, Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement, J. Bone Jt. Surg. -Ser. A, vol.82, pp.457-463, 2000.

V. G. Langkamer, C. P. Case, P. Heap, A. Taylor, C. Collins et al., Systemic distribution of wear debris after hip replacement. A cause for concern?, J. Bone Joint Surg. Br, vol.74, pp.831-839, 1992.

K. G. Shea, G. A. Lundeen, R. D. Bloebaum, K. N. Bachus, and L. Zou, Lymphoreticular dissemination of metal particles after primary joint replacements, Clin. Orthop. Relat. Res, vol.338, pp.219-226, 1997.

J. Takadoum, Materials for Tribology, Materials and Surface Engineering in Tribology, pp.109-204, 2008.

S. Mischler, Wear-Accelerated Corrosion of Passive Metals in Tribocorrosion Systems, J. Electrochem. Soc, vol.145, pp.750-758, 1998.

J. P. Celis, P. Ponthiaux, and F. Wenger, Tribo-corrosion of materials: Interplay between chemical, electrochemical, and mechanical reactivity of surfaces, Wear, vol.261, pp.939-946, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133265

J. Williams, Engineering tribology, 2005.

J. R. Davis, Surface engineering for corrosion and wear resistance, ASM intern, 2001.

I. M. Hutchings, Tribology: friction and wear of engineering materials, 1992.

M. C. Galetz, S. H. Seiferth, B. Theile, and U. Glatzel, Potential for adhesive wear in friction couples of UHMWPE running against oxidized zirconium, titanium nitride coatings, and cobalt-chromium alloys, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.93, issue.2, pp.468-475, 2010.

L. V. Wilches, J. A. Uribe, and A. Toro, Wear of materials used for artificial joints in total hip replacements, Wear, vol.88, pp.9-16, 2008.

K. Marcus and C. Allen, The sliding wear of ultrahigh molecular weight polyethylene in an aqueous ccviii environment, Wear, vol.178, issue.2, pp.17-28, 1994.

P. J. Blau, ASM Handbook: Friction, Lubrication, and Wear Technology, vol.18, 1992.

V. Vignal, N. Mary, P. Ponthiaux, and F. Wenger, Influence of friction on the local mechanical and electrochemical behaviour of duplex stainless steels, Wear, vol.261, pp.947-953, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00436204

A. Munoz and N. Espallargas, Tribocorrosion mechanisms in sliding contacts, Tribocorrosion of passive metals and coatings, pp.118-147, 2011.

H. Abd-el-kader and S. M. El-raghy, Wear-corrosion mechanism of stainless steel in chloride media, Corros. Sci, vol.26, issue.8, pp.647-653, 1986.

I. Garcia, D. Drees, and J. Celis, Corrosion-wear of passivating materials in sliding contacts based on a concept of active wear track area, Wear, vol.249, pp.452-460, 2001.

M. Hong and S. Pyun, Corrosive wear behaviour of 304-L stainless H2S04 solution Part 2 . Effect of chloride ion concentration steel in 1 N, Wear, vol.147, pp.69-78, 1991.

S. Tao and D. Y. Li, Investigation of corrosion -wear synergistic attack on nanocrystalline Cu deposits, Wear, vol.263, pp.363-370, 2007.

X. Jiang, S. Li, D. Tao, and J. Yang, Accelerative effect of wear on corrosion of high-alloy stainless steel, Corrosion, vol.49, 1993.

T. Zhang, X. Jiang, S. Li, and X. Lu, A quantitative estimation of the synergy between corrosion and abrasion, Corros. Sci, vol.36, pp.1953-1962, 1994.

J. Jiang, M. M. Stack, and A. Neville, Modelling the tribocorrosion interaction in aqueous sliding conditions, Tribiology Int, vol.35, pp.669-679, 2002.

R. Bailey, Surface Engineered Titanium for Improved Tribological, Electrochemical and Tribo-electrochemical Performance, 2015.

S. Mischler, Triboelectrochemical techniques and interpretation methods in tribocorrosion : A comparative evaluation, Tribol. Int, vol.41, pp.573-583, 2008.

M. T. Mathew and M. A. Wimmer, Tribocorrosion in artificial joints: In vitro testing and clinical implications, Tribocorrosion of Passive Metals and Coatings, pp.368-400, 2011.

S. Mischler and A. I. Muñoz, Wear of CoCrMo alloys used in metal-on-metal hip joints: A tribocorrosion appraisal, Wear, vol.297, issue.2, pp.1081-1094, 2013.

D. Sun, J. A. Wharton, R. J. Wood, L. Ma, and W. M. Rainforth, Microabrasion -corrosion of cast CoCrMo alloy in simulated body fluids, Tribol. Int, vol.42, pp.99-110, 2009.

A. C. Vieira, A. R. Ribeiro, L. A. Rocha, and J. P. Celis, Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva, Wear, vol.261, issue.9, pp.994-1001, 2006.

J. Qu, P. J. Blau, T. R. Watkins, O. B. Cavin, and N. S. Kulkarni, Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces, Wear, 2005.

A. Berradja, F. Bratu, L. Benea, G. Willems, and J. P. Celis, Effect of sliding wear on tribocorrosion behaviour of stainless steels in a Ringer's solution, Wear, vol.261, issue.9, pp.987-993, 2006.

Y. Sun and R. Bailey, Improvement in tribocorrosion behavior of 304 stainless steel by surface mechanical attrition treatment, Surf. Coatings Technol, vol.253, pp.284-291, 2014.

G. Prieto and W. R. Tuckart, Influence of Cryogenic Treatments on the Wear Behavior

, Martensitic Stainless Steel, J. Mater. Eng. Perform, 2017.

T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006.

J. J. Ryu and P. Shrotriya, Mechanical load assisted dissolution response of biomedical cobalt-chromium and titanium metallic alloys: Influence of in-plane stress and chemical environment, Wear, pp.662-668, 2015.

Y. Yan, A. Neville, J. Hesketh, and D. Dowson, Real-time corrosion measurements to assess biotribocorrosion mechanisms with a hip simulator, Tribol. Int, vol.63, pp.115-122, 2013.

M. T. Mathew, P. Pai, R. Pourzal, M. A. Fischer, and . Wimmer, Significance of tribocorrosion in biomedical applications: Overview and current status, Adv. Tribol, pp.1-12, 2009.

B. Normand, N. Pébère, C. Richard, and M. Wery, Prévention et lutte contre la corrosion. Une approche scientifique et technique, 2004.

V. Dalbert, Etude du comportement en tribocorrosion d'aciers inoxydables en milieu aqueux: évaluation de la synergie entre sollicitations mécaniques superficielles et réactions électrochimiques de surface, effet de la microstructure, 2014.

L. Hongtao, G. Shirong, C. Shoufan, and W. Shibo, Comparison of wear debris generated from ultra high molecular weight polyethylene in vivo and in artificial joint simulator, Wear, vol.271, pp.647-652, 2011.

R. Büscher, G. Täger, W. Dudzinski, B. Gleising, M. A. Wimmer et al., Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.72, issue.1, pp.206-214, 2005.

M. M. Stack, J. Rodling, M. T. Mathew, H. Jawan, W. Huang et al., Micro-abrasion-corrosion of a Co-Cr/UHMWPE couple in Ringer's solution : An approach to construction of mechanism and synergism maps for application to bio-implants, Wear, vol.269, pp.376-382, 2010.

C. G. Figueiredo-pina and A. ,

B. M. Matos-neves, Bandarra das Neves, Corrosion-wear evaluation of a UHMWPE/Co-Cr couple in sliding contact under relatively low contact stress in physiological saline solution, Wear, vol.271, pp.665-670, 2011.

D. Tetreault and F. Kennedy, Friction and wear behavior of ultrahigh molecular weight polyethylene on Co-Cr and titanium alloys in dry and lubricated environments, Wear, vol.133, pp.295-307, 1989.

D. W. Van-citters, 14 -Failure analysis of orthopaedic implants, Wear Orthop. Implant. Artif. Joints

M. J. Nine, D. Choudhury, A. C. Hee, R. Mootanah, and N. A. Osman, Wear debris characterization and corresponding biological response: Artificial hip and knee joints, Materials (Basel), vol.7, issue.2, pp.980-1016, 2014.

H. O. Catelas, I. Bobyn, J. D. Zukor, D. J. Petit, and A. , The effect of digestion protocols on the isolation and characterization of metal-metal wear particles. II. Analysis of ion concentrations and particle composition, J Biomed Mater Res, vol.55, pp.330-337, 2001.

I. Catelas, J. Dennis-bobyn, J. J. Medley, D. J. Zukor, A. Petit et al., Effects of digestion protocols on the isolation and characterization of metal-metal wear particles. I. Analysis of particle size and shape, J. Biomed. Mater. Res, vol.55, pp.320-329, 2001.

A. Kocijan, I. Milo?ev, and B. Pihlar, The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components, J. Mater. Sci. Mater. Med, vol.14, issue.1, pp.69-77, 2003.

E. Ingham and J. Fisher, The role of macrophages in ccix osteolysis of total joint replacement, Biomaterials, 2005.

I. Catelas, R. Vanos, L. L. Lildhar, E. A. Lehoux, and P. E. Beaul, In vitro macrophage response to nanometer-size chromium oxide particles, pp.149-159, 2013.

S. D. Neale, D. R. Haynes, D. W. Howie, D. W. Murray, and N. A. Athanasou, The effect of particle phagocytosis and metallic wear particles on osteoclast formation and bone resorption in vitro, J. Arthroplasty, vol.15, issue.5, pp.654-662, 2000.

M. S. Caicedo, L. Samelko, K. Mcallister, J. J. Jacobs, and N. J. Hallab, Increasing both CoCrMo-alloy particle size and surface irregularity induces increased macrophage inflammasome activation in vitro potentially through lysosomal destabilization mechanisms, J Orthop Res, vol.31, pp.1633-1642, 2013.

B. T. Perez-maceda, M. E. López-fernández, I. Díaz, A. Kavanaugh, F. Billi et al., Macrophage biocompatibility of CoCr wear particles produced under polarization in hyaluronic acid aqueous solution, Materials (Basel), vol.11, 2018.

A. Butt, N. B. Lucchiari, D. Royhman, M. J. Runa, M. T. Mathew et al., Design, Development, and Testing of a Compact Tribocorrosion Apparatus for Biomedical Applications, J. Bio-and Tribo-Corrosion, vol.1, issue.1, p.4, 2014.

M. M. Sava, B. Munteanu, E. Renault, Y. Berthier, and A. M. Trunfio-sfarghiu, Tribological analysis of UHMWPE tibial implants in unicompartmental knee replacements: From retrieved to in vitro studies, Biotribology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02324413

A. Seireg and R. J. Arvikar, The Prediction of Musclular Load Sharing and Joint Forces in Lower Extremities during Walking, J. Biomech, vol.8, pp.89-102, 1975.

M. Lyvers, D. Bijukumar, A. Moore, P. Saborio, D. Royhman et al.,

K. Wimmer, M. T. Shull, and . Mathew, Electrochemically induced tribolayer with molybdenum for hip implants: Tribocorrosion and biocompatibility study, vol.644, pp.82-91, 2017.

A. M. Trunfio-sfarghiu, Y. Berthier, M. H. Meurisse, and J. P. Rieu, Multiscale analysis of the tribological role of the molecular assemblies of synovial fluid. Case of a healthy joint and implants, Tribol. Int, vol.40, pp.10-12, 2007.

. I. Spec, , pp.1500-1515

L. Vroman, A. L. Adams, and M. Klings, Interactions among human blood proteins at interfaces, Fed. Proc, vol.30, pp.1494-1502, 1971.

A. Smyth, J. Fisher, S. Suñer, and C. Brockett, Influence of kinematics on the wear of a total ankle replacement, J. Biomech, vol.53, pp.105-110, 2017.

B. Kincaid, F. Gillard, D. Wentorf, O. Popoola, and J. Bischoff, Gravimetric Wear Testing of a Fixed-Bearing Bicondylar Total Ankle Replacement, 2013.

C. J. Bell and J. Fisher, Simulation of Polyethylene Wear in Ankle Joint Prostheses, J. Biomed. Mater. Res. B. Appl. Biomater, vol.81, pp.162-167, 2007.

O. N. Schipper, S. L. Haddad, S. Fullam, R. Pourzal, and M. A. Wimmer, Wear Characteristics of Conventional Ultrahigh-Molecular-Weight Polyethylene Versus Highly Cross-Linked Polyethylene in Total Ankle Arthroplasty, Foot Ankle Int, pp.1-10, 2018.

A. Kobayashi, Y. Minoda, Y. Kadoya, H. Ohashi, K. Takaoka et al., Ankle arthroplasties generate wear particles similar to knee arthroplasties, Clin. Orthop. Relat. Res, vol.424, pp.69-72, 2004.

B. Hintermann and V. Valderrabano, Total ankle replacement, Foot Ankle Clin, vol.8, issue.2, pp.375-405, 2003.

W. A. Soskolne, L. Sennerby, and A. Wennerberg, The effect of titanium surface roughness on the adhesion of monocytes and their secretion of TNF-a and PGE 2, Clin Oral Implant. Res, vol.13, pp.86-93, 2002.

W. G. Brodbeck, M. S. Shive, E. Colton, Y. Nakayama, T. Matsuda et al., Influence of biomaterial surface chemistry on the apoptosis of adherent cells, J Biomed Mater Res A, vol.55, pp.661-668, 2001.

D. B. Warheit, L. H. Hill, and A. R. Brody, Surface morphology and correlated phagocytic capacity of pulmonary macrophages lavaged from the lungs of rats, Exp. Lung Res, vol.6, issue.1, pp.71-82, 1984.

A. S. Shanbhag, J. J. Jacobs, J. Black, J. O. Galante, and T. T. Glant, Macrophage/particle interactions: Effect of size, composition and surface area, J. Biomed. Mater. Res, vol.28, issue.1, pp.81-90, 1994.

I. Voronov, J. P. Santerre, A. Hinek, J. W. Callahan, J. Sandhu et al., Macrophage phagocytosis of polyethylene particulate in vitro, J. Biomed. Mater. Res, vol.39, issue.1, pp.40-51, 1997.

T. R. Green, J. Fisher, M. Stone, B. M. Wroblewski, and E. Ingham, Polyethylene particles of a "critical size" are necessary for the induction of cytokines by macrophages in vitro, Biomaterials, vol.19, pp.2297-2302, 1998.

J. B. Matthews, A. A. Besong, T. R. Green, M. H. Stone, B. M. Wroblewski et al., Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose, J. Biomed. Mater. Res, vol.52, issue.2, pp.296-307, 2000.

M. Endo, J. L. Tipper, D. C. Barton, M. H. Stone, E. Ingham et al., Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses, Proc. Inst. Mech. Eng. Part H J. Eng. Med, vol.216, issue.2, pp.111-122, 2002.

N. Ishiguro, T. Kojima, T. Ito, S. Saga, H. Anma et al., Macrophage activation and migration in interface tissue around loosening total hip arthroplasty components, J. Biomed. Mater. Res, vol.35, pp.399-406, 1997.

E. Ingham and J. Fisher, Biological reactions to wear debris in total joint replacement, In: Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, pp.21-37, 2000.

F. Billi, P. Benya, E. Ebramzadeh, P. Campbell, F. Chan et al., Metal wear particles: What we know, what we do not know, and why, SAS J, vol.3, pp.133-142, 2009.

S. Yang, W. Ren, Y. Park, A. Sieving, S. Hsu et al., Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation, Biomaterials, vol.23, pp.3535-3543, 2002.

A. Sieving, B. Wu, L. Mayton, S. Nasser, and P. H. Wooley, Morphological characteristics of total joint arthroplastyderived ultra-high molecular weight polyethylene ( UHMWPE ) wear debris that provoke, J Biomed Mater Res A, vol.64, pp.457-64, 2003.

L. D. Dorr, R. Bloebaum, J. Emmanual, and R. Meldrum, Histologic, biochemical, and ion analysis of tissue and fluids retrieved during total hip arthroplasty, Clin. Orthop. Relat. Res, vol.261, pp.82-95, 1990.

M. Böhler, F. Kanz, B. Schwarz, I. Steffan, A. Walter et al., Adverse tissue reactions to wear particles from Co-alloy articulations, increased by alumina-blasting particle contamination from cementless Ti-based total hip implants, J. Bone Jt. Surg, vol.84, issue.1, pp.128-136, 2002.

R. Meldrum, B. Roy, and D. Lawrence, Metal ion concentrations in retrieved polyethylene total hip inserts and implications for artifactually high readings in tissue, J Biomed Mater Res, vol.27, pp.1349-1355, 1993.

M. T. Mathew, C. Nagelli, R. Pourzal, A. Fischer, and M. P. Ccx,

J. J. Laurent, M. A. Jacobs, and . Wimmer, Tribolayer formation in a metal-on-metal (MoM) hip joint: An electrochemical investigation, J. Mech. Behav. Biomed. Mater, vol.29, pp.199-212, 2014.

T. Veselack, G. Aldebert, A. Trunfio-sfarghiu, T. Schmid, M. Laurent et al., Phospholipid Vesicles in Media for Tribological Studies against Live Cartilage, Lubricants, vol.6, issue.1, p.19, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02133473

K. Friedrich, J. Flöck, K. Váradi, and Z. Néder, Experimental and numerical evaluation of the mechanical properties of compacted wear debris layers formed between composite and steel surfaces in sliding contact, Wear, pp.1202-1212, 2001.

L. Chang, Z. Zhang, L. Ye, and K. Friedrich, Tribological properties of epoxy nanocomposites. III. Characteristics of transfer films, Wear, vol.262, pp.699-706, 2007.

C. Gray and D. Zicha, Microscopy of living cells, In: Animal Cell Culture: Essential Methods, pp.61-90, 2011.

K. L. Johnson, Contact mechanics