6°QK :HQ# HiQ HQ+ HbT iB HKQ/2Hb 7Q°
T'2/B+iBQM Q7 m BM v iQtB+Biv 7TQHHQrBN
S IBQi?2° Tv
Im;2MB JvHQM

hQ +Bi2 i?Bb p2 ' bBQM,

1m;2MB JVHQM X 6 QK :HQ# HiQ HQ+ HbT iB H KQ/2Hb 7Q° BKT Qg
7QHHQIBM; T Qbi i2 + M+2 " /BQi?2  TvX h> Bi2K2Mi/m bB:M H 2i/2 Hi
R- kyRNX 6° Mi BbX LLh, kyRN_1LRaRyN X i2H@ykN8eR3R

> G A/, i2ZH@ykN8eR3R
21iTb,ffi2HX "+?Bp2b@Qmp2 i2bX7 fi2ZH@ykN8
am#KBii2/ QM k P+i kyky

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X



THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1
CoOMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601

Mathématiques et Sciences et Technologies
de I'Information et de la Communication
Spécialité : AST — Signal, Image, Vision

Par

Eugenia MYLONA

From global to local spatial models for
improving prediction of urinary toxicity
following prostate cancer radiotherapy

Thése présentée et soutenue a Rennes, le 02 décembre 2019
Unité de recherche : LTSI-INSERM UMR 1099

Thése N° :

Rapporteurs avant soutenance

Laura Cella

Adjunct Professor, University Federico Il Napoli, Italy

Javier Pascau Associate Professor, Universidad Carlos 11l de Madrid, Spain

Composition du Jury :

Président :
Examinateurs :

Dir. de thése :

Invité(s)

Juliette Thariat
Laura Cella

Javier Pascau
Dimitri Lefkopoulos
Oscar Acosta

PU/PH, LPC, Université de Caen

Adjunct Professor, University Federico Il Napoli, Italy
Associate Professor, Universidad Carlos Il de Madrid, Spain
Physicien Médical/HDR, Institut Gustave Roussy — Villejuif
MCU, LTSI, Université de Rennes 1

Renaud de Crevoisier PU/PH, LTSI, Université de Rennes 1

Tiziana Rancati

Medical physicist, INT Milan, Italy






ACKNOWLEDGEMENTS

I would like to express ngeepestappreciation to every person than one way or anothercontributed
in the completion of thi®hDthesis.

First and foremost, | thank ntiesis supervisqiRenaud de Crevoisierhose expertise was invaluable in
formulating the research questions and methodoloblsinsightful feedback pushed me to sharpen my
thinking and brought my work to a higher level.

I cannot thank enough my mentor, Oscar Acosta, fothallguidance time investmentand hisinfinite
support. Fom the first until the last dayhe stood up for meproviding research assistantshiglways
encouraging me to work hardhut alsohe gave memoral supportthrough the rough road to finish this

thesis.He helped me press on even when | thBiZsS / }upo v|[S$§ Z] A uC P} oeU oA C-

and motivating me to give my besie haseen anconstant sourcénspiration

The work presented irthis thesis has been critically assessed and approved byutstanding
committee to whom | am more than gratefululiette ThariatLaura Cella, Javier Pascau and Dimitri
Lefkopoulosl feel proud and honored thahey have accepted to bmembers of myyry committee.

| consider myself privileged to hawempleted my thesis in LTSt only because ¢ollaborated with
suchtalented and devatd researchesut, above all because lhad the chance to meeand share
moments withsomewonderful people Fom the director of LTSLotfi Senhadjito my colleagues in the
office, particularly Axel, Jeremy, Carland Pierre | am deeply grateful to everyone for thdimdness
andgenuinesupportduring various stages of my PhD.

From the bottom of my heart, manthanks toall my friends in the labwho provided stimulating
discussions as well as happy distractions to rest my mind outside of my res@avely special thank
you toPablo, Kém, Elena, Helene and Gustavo as well as Kleo and Rapthaehaveacconpanied me
through thisjourney, suffering and celebrating every step witte. More than friends, they have been a
familyto me.

As | was fortunate enough to work with exceptional scientists across the worldagthvelyparticipated

in the research premnted in thisthesis | want to express my deepest appreciation for the hospitality
they offered me, the excellent collaboration we haild for all of the opportunities | was given to further
my researchl am, therefore, indebted ta\lessandro Cicchetti, a true friend, and Tiziana Rancati from
Istituto Nazionale dei Tumoim Milan, Italy, as well as Martin Ebert and Angel Kennedy from Sir Charles
Gairdner Hospital in Perth, Australia.

&]v o0oCU §Z]e A}po v[§ Z Aouttheinfiaile siipport Afl @y familyThanks to mynother,
whose strength and love inspires me every day.

o



Contents

&RQWHQWYV
$FURQ\PV
ILVW RI ILIXUHV
/ILVW Rl WDEOHYV
5pVXPp HQ IUDQoDLYV
,QWURGXFWLRQ
3DUW ,
&OLQLFDO FRQWNBHIW RREHON DQG REMHFWLYHYV
&OLQLFDO DQG VFLHQWLILF FRQWH[W DQG SUREOHP GHILQ

1.1 PrOSEAIECANCEL. ... .cciiiiieiiiiei ettt e et et et e e e e e e e e e et e e e bbb e e e e e e e eeeeeennennan s 22
111 Prostate and ProsState CANCET............cuiii i 22
1.1.2  Treatment 0ptions fOr ProState CANCEL...........c.uvviiiieiiiiiiieee e 24

1.2  External beam radiation therapy (EBRT)........cooooiiiiiii e 26
1.2.1 Radiation tECHNIQUES....... ..ttt e e e e e e e e e e e e e e e e e e e e e e e s eeaannes 27
1.2.2 Doseeffect relationships in local CONTLOL..........ooooiiiiiiiiiie e 31

1.3  Radiation toxicity followingrostate cancer radiotherapy...........cccccceeeevviiinnieeeeeinsciiieeenn. 32
1.3.1  Genitourinary (GU) tOXICILY........ccoeeiiiiiiiii i ee e e e e e e e e e e e e e e e eeaaeeas 34

1.4  Predictive models of toxicity: state of the art...........cccocciiiiieeer s 36
14.1 DVHbased models: Global Organ Analysis of EEféect Relationships.................... 36
14.2 Beyond DVH: Local Analysis of DESect Relationships............ccccviiiiiiieeeeeiiiiinee, 38
1.4.3 2D DSM and 3D DVM Methodological Challenges..........ccccvveeeiiiiiiiiiieeeniiiieeeenn 41

1.5 Motivation and thesiS ODJECHVES.........coiiiiiiiii e 45

3bUw .,

4XDQWLI\LQJ WKH GRVH WR WKH SURVWDWLF XUHWKUD

6HIPHQWDWLBQRRWDYWHDXUHWKUD IURP SODIQ QaRVH&7
GLVWULEXWLRQ LQ H[WHUQDO UDGLRWKHUDS\

2200 R [ 11 o o U Tod T o PP PPPRRSRSRRRRRRTS 50
2.2 Material and MethOdS ... ... 50
221 Multi-atlas based urethra segmentation (MABUS) method description.................. 51
222 Evaluation of the accuracy of the segmentation method................ccccccocl. 54
2.2.3 Dosimetric study: assessment of the dose received by the urethra in prostate cancer IMRT
55
A T =T | O 55

2.3.1 PN PR oT0 ] ) A U (o1 (o o TR PR 55



2.3.2 Urethra Segmentation GCCUIACY........uutieiiiiirrieieeee e et et e e e s s e e e e e s s snreeeeeeeesannes 56

2.3.3 DOSIMELIC STUAY. ...t e e e e e e r e e e e e s 59

A I 1= od 1 1= (o o PRSP 59

P2 T ©7o ] [od [0 1 o] o ISP P PRSPPI 62
3buw ,,,

*RLQJ EH\RQG EFRGEBPRHM IGRWWRJUDPV QRYHO PHWKRGV IRU V
GLVWULEXWLRQ

8ULQDU\ WR[LFLW\ SUHGLIBWHRRD®2VLQJ GRVH

G 700 R [ 011 o o 1 Tox 1 T o PSSR 66
3.2 Population data set, treatment, and urinary tOXICity...............cooviiiicccciniiiiiinree e 66
3.3 Materials and MethOUS.........oiiiiiiiiiie e e e e e e 68
3.3.1 DSM construction and pixelise analysis to identify sedurfaces...........cccccceeevviiinnen. 68
3.3.2 Predictioncapability of dosimetric and clinical parameters................c..ooeeeeeiiecinnnnes 69
K LT L O PRPR PRI 70
I T B =T od U =1 o] PR POTPPRRR 77
3.6 Ju% EJe}v A]SZ % E Al}pes *3p ] « $H(+u.5..82..1.1Z2Z}E28
1 T A o ] o (1] T o 80
8ULQDU\ WR[LFLW\ SUHRCQOXPH. PO SXWLQJ GRVH
1 1o o 11 ox {0 o SR PRPPSRRR 84
4.1  Materials and METNOUS......uuuiiiiiiiiiiiiiee e 84
4.1.1  Automatic urethra segmentation on planning CT images (Step.1)........ccccceerrrivnnnn. 85
4.1.2  Template selection, regiration of population to the template, and dose propagation
(SEPS 2, 3, AN 4o a e e e e e e e e e e e e e e e e e e 86
4.1.3 DVM construction and definition of salmlumes on the template (step 5).................. 88

4.1.4  Inverse mapping of suBolumes to the native patient space and toxicity prediction (steps
6 and 7) 88

4.2 RESUIS . i e e e e e e e e e e e e e e et 89
4.2.1  Accuracy of spatial NOrmaliZation...............eeeeiieiiiiiiiiiiiee 89

4.2.2 Identification of the symptorrelated Subvolumes with significant dose differences
between patients with/without toxicity, in the template..............cccc e 90

4.2.3 Dose differences in the sumlumes and in the whole bladder between patients
with/without toxicity in the native patient SPACE............ccooiiiiiiiiiiee e 93

4.2.4  Predictive capabilities of the Svol and whole bladder DVHs in the native spaces..95
G T B 1o L1 (o] o PP PPPRRPRRP 101
4.4 S Ev o A o] 3]}v 3} o3 u(3 88Z. .0} ZIES e, 102

4.4.1 Population dataset, treatment and tOXICILY...........ccuvrrrrieeeriiiiineieee e 102



4.4.2 DVM construction and statistical analySiS............ccceeveeeiiiiiiiiiee e 103

443 LRSI UL T 104
4.5 (@0] 8 1o3 11 130 ] o TR 105
3DUW ,9

)JXWXUH GLUHFWLRQV IRU LPSURYLQJ XULQDU\ WR[LFLW\ SUH(

&RPIINVBRQ RI PDFKLQH OHDUQLQJ DOJRULWKPV DQG RYH
WR[LFLW\ SUHGLFWLRQ DIWHU SURVWDWH FDQFHU UDGLRWKH

LG 0 R [ 11 o o 1 Tox 1 o] o PSP 109
5.2 Materials and MEthOUS . .......ooviiiiiiiei e e e e e e e e e e aaeeas 110
5.2.1 o] oW1 F= a1 g0 F= 1 = =) S 110
I O 1= L 1= £ TP RPT PRI 110
5.2.3  Oversampling tEChNIQUES..........ouiiiiiiiiiiiiie e 111
5.2.4  EXPErimMental DESIGN......cuuiiiiiiiiiiiiiie ettt s s 112
TR T =TS | TP EPPR 113
S B 1Yol U L= o o PRSPPI 116
S T @70 [od [U 13 o] o 1SR PPPPR P 118
*HQHUDO GLVFXVVLRQ FRQFOXVLRQV DQG SHUVSHFWLYHYV
6.1 Comparison of 2D DSM and 3D DVM Methods.........ccccuviiiiiiiieiieiiiciiccceeeeeeeeeeeeeeeeee e, 122
6.2 Limitations Of the WOTK..........oviiiiiiieiie e e e e e e e e e e aaeeeas 124
6.3 POISPECHIVES.....ciiiiiiiiie ittt e e e e e e 125

/ILVW RI 3SXEOLFDWLRQV
,(QWHUQDWLRQDO ORELOLWLHYV
%LEOLRJUDSK\



Acronyms

3D conformal radiotherapy (3BRT)

Adaptive Synthetic oversampling (ADASYN)

androgen deprivation therapy (ADT)

area under the ROC curve (AUC)

area under the timedependent ROC curve (tAUGAUC)
centerline distance (CLD)

common coordinate system (CCS)

common terminology criteria for adverse events (CTCAE)
computed tomography (CT)

cone beam computed tomography (CBCT)

Dice Similarity Coefficient (DSC)

digital rectal examination (DRE)

doseorgan overlap (DOO)

dosesurface map (DSM)

dosevolume histogram (DVH)

dosevolume map (DVM)

Edited Nearest Neighbor (ENN)

external beam radiotherapy (EBRT)

gastrointestinal (GI)

Generalized Linear Models with likelihood based boosting (GLMboost)
genitourinary (GU)

Groupe [ S e Spyu HEes PE}IP v]S 0 ¢ ~" dh'e
High Intensity Focused Ultrasound (HIFU)

imageguided radiotherapy (IGRT)

intensity-modulated radiotherapy (IMRT)

KaplanMeier (KM)

least absolute shrinkage and selection operator (LASSO)
LymantKutchertBurman(LKB) model

machine learning (ML)

Modified Hausdorff Distance (MHD)

Multi-AtlasBased Urethra Segmentation (MABUS)
multileaf collimator (MLC)

normal tissue complication probability (NTCP)

organ at risk (OAR)

Partial Least Squares Discriminant AnalyBLSA)
planning tumor volume (PTV)

prostate specific antigen (PSA)

quality-of-life (QoL)

Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC)
Radiation Therapy Oncology Group (RTOG)

Random Forests (RF)

Regularized Discrimina#nalysis (RDA)

subsurfaces (Ssurf)

subvolume (Svol)

Support vector machines (SVM)

Synthetic Minority Oversampling Technique (SMOTE)
thresholdfree cluster enhancement (TFCE)

transurethral resection of the prostatd URP)

treatment planning syster(iTPS)

volumetric modulated arc therapy (VMAT)



List of figures

Figure 1.1 lllustration of the anatomy of the male reproductive system...........ccccuvvvueeiiieeennnnnnnnns 22
Figure 1.2 The evolution Of EBRT........uuuuiiiiiiiiiiieieiiiieee et e e e e e e e aaeeeeeeeenaseeeaaaeeeeeeeseens 26
Figure 1.3 Patient positioned on the linear aCCElErator..........uuuuuiiiiiiiieiiiieeiiieiee e eeeeeeeeeeeeeeannan 27
Figure 1.4 Sematic of multileaf collimatqgrindividually positioned lebdts shape the beam to the target
...................................................................................................................................................... 28
Figure 1.5 Treatment plan for prostate cancer:GRT (left side) and IMRT (right side).................. 29
Figure 1.6 Representation of a Degelume Histogram (DVH).............uueiiiiiiiiiiiiiiiiiiei e 32
Figure 1.7 Anatomy of urinary BIadder..............uuuiiiiiiiiiiiiiiiiiiiiiiccceeeeeeecc e 35
Figure 1.8 CT scan in sagittal (left) and axial (right) view and organ deligneatians..................... 36
Figure 1.9 lllustrations of DVH (c) calculated for PTV, bladder and rectum from manual organ delipeations
(a) and planning dose diStrIDULION (D).............ovuuuuuuuiiiiiieeiiiiieieeiiee e eeeeeeeeevet e eeeeeeeeeeeeerernrnnnns 37
Figure 1.10 Bladder dossirface map (DSM) extracted from VODCA software in 3D (a) and unfolded in a
2D PLANE (1)t ettt e e et e e e e ettt e e—at b aaeeaeaeerrerbrbraaaeaaeeees 40
Figure 1.11 A 3D dos®lume map (DVM) of the bladder and the urethra..................cccccuuuuennn..... 41
Figure 1.12 Methodological aspects of voxel/pixel based models..........cccceeeiiiiiiiiiiieiiiiiiiiinnnn.... 43
Figure 1.13 Schematic overview of the thesis StIUCIULE...............uuuviiiiiiiieiiiiiieiieeeieeeeeeeeeeeviannn 46
Figure 2.1 Atlabased segmentation framewWRIL...............ueeeiiiiiiiiiiiiicieieee e e eeeennd 51
Figure 2.2 Overall proposed framework of naliias based urethra segmentation (MABUS) methdé&®
Figure 2.3 Inteindividual diStanCe MaAP........uuviiiiiiiiiiieeeeeeee ettt eeeeeeeeeees 56
Figure 2.4 Centerline distance (CLD) definition and leave one out validation results of the proposed
method compared with previously proposed surrogate models..............c.veeveiiieniiiiiiiiiiiiniiinnnnnn.. 57
&IPUE XA W E vS P 1}( « Py lyidg withim & ré@iag PWRY of 3.5 or 5mm around|the
PEIUV SEUSZ g)V.8. 0.l Moo e e e e e e e e e eeee et eaeeseeeaeseeeeeseennnnnns 57

Figure 2.6 Examples of urethra segmentations (white) overlaid on the actual urinary catheter (red).

Top

row: Comparison of MABUS with two surrogate models. Low row: .different results for individual

configurations with the proposed methodology (MABUS) ONIY.......iiiiiiiiiiiiiiiiiiiiiiciiceeeeeeeeeeiiiiians 58
Figure 2.7 DVH differences between urethra and prostate in case ofdbIR@&ring 80Gy to the prosta
...................................................................................................................................................... 59
Figure 2.8 Example of urethra segmentation and dose distribution in IMRT planning deliveringp80
BN PIOSTALE. ... .ciceeiiieeeeeee ettt e e e ettt et e e e e e e e e e eeeeeeataasaeeeaaseeeensennnnnsnneaaeeeeeeernnnnnn 60
Figure 3.1 Workflow of dossurface map (DSM) CONSIIUCLION. ...........uuueeiiieeeiiiiiiiiiiieeeeeeeeeaeerennnnnd 68
Figure 3.2 Symptorrelated subsurfaces (Ssurf) of statistically significant dose differences betweern
patients with/without toxicity from DSM analySiS...........ccccooiiiiiiiiiiuuiiieiiiieiiiiieeeeeeeieeeeeeeeeeea 71
Figure 4.1 Workflow of the StUdY iN 7 STERS..........uuuuueeiiiiiiiiiiieeeeeee e eeeteeeeeeeeeeaeeeeeeeenens 85

Figure 4.2 Workflow of registration via structural description of the bladder, prostate and urethr87

Figure 4.3 Symptorrelated subregions (SRS) of statistically significant dose differences between

patients with/without toxicity in the common coordinate system (CCS)........cccoccovvvveeeeerennnnenannn.. 91
Figure 4.4 Identified sutolumes (Svol) in the in the common coordinate system.......................... 92
Figure 4.5 DHs of patients with and without urinary toxicity for the whole bladder and the Svol in t
ALV SPACE .. eeuttttte e e e eeee it eeeettett e e eeeeeeeeeeeeetttaasaaeeeeaasseesssstanaeaaasaeesseeessssbnnn s aeeaeseeerrrernrnnanannns 95
Figure 5.1 Workflow ofte nested crossalidation..............ouvuueiiieiieeoee e 112
Figure 5.2 Pairwise comparisons between ClassSifierS.........cccouvuuiviiiiiiiiiiiiiiiiiieieeceeeeeeeaeaeeaeeenn 114
Figure 5.3 Pairwise comparisons between oversampling techniquUes...........cccccccceeveieeeeeiieeeennnnn.. 115
Figure 6.1 Spatial overlap between ssilrfaces (Ssurf) and sulmlumes (SVOl)..........eeevieeeeennnnnne. 123

Figure 6.2 Schematic overview of the thesis structure, contributions and perspectives............. 127

e

Gy



List of tables

Table 1.1 Randomized controlled trials evaluating the efficacy of radiation dose eschiafioostate

(0= 1 o = 31
Table 1.2 GETUG degelume constraint recommendations for PTV and OARSs in prostate cancer
10 01T 7= 0 ) PP 32

Table 1.3 Sideffects of prostate cancer radiotherapy classified according to their frequency......33

Table 1.4 Summary of works using 2D Basdace maps (DSM) and 3D Desdume maps (DVM) for

100214 VA 1 (=0 o ¥ o 41

Table 3.1 Patient and treatment characteristics of the populatian.................ccccuvvvveeiiiieneniinnnnnns 67

d o iIX1 28§ «1}(PE Hi v PE H1 upus8 v o §..uE]JV.EGB7

5}AE] 1SC

Table 3.3Jnivariate analysis of the DVH/DSH for the whole bladder and thswitiaices (Ssurf)....... 72

Table 3.4 Univariate analysis testing theant of patient/ treatment characteristics on acute urinary

O K I vttt ettt ettt e e e e ettt ettt e e e e e ettt e ettt bt e e eeaeeeeeee bt bbb neeeaetteeeetbbanantneaeaerererrrrrnnnnnan 73
Table 3.5 Univariate analysis testing the impact of patietitment characteristics on late urinary

O K G vttt ettt ettt e e e ettt ettt e e et ettt e ea e bbb eeeeeeeeeeeee bt bbb eeeaeteeeeerbbnnananeaeaeeeeerrrrrnnnnnns 14
Table 3.6 Parameters affecting acute and late urinary toxicity in multivaaiebysis using backward
(2110011 F= LT o PP 75
Table 3.7 Parameters affecting acute and late urinary toxicity in multivariate anadysisLASSQ....76
Table 3.8 Overview of existing bladder DSM StUAIES............uuuuriruiiiiiiiiiiiiiiieieeeeeeeeeeeeeaaaaaaeaeaeeaaeens 79
Table 4.1 Coegistration scores after norigid registration for the prostate and the bladder............ 89
Table 4.2 Dose differences between patients with/without acute (A) and late (B) urinary toxicity in|the
whole bladder, the urethra and in the stEIUMES (SVOL).......coiiviiiiiiiiiiiccecccceceeeeeeeceeee e e 93
Table 4.3 Urinary toxicity prediction capability of the mean dose and the DVH for the whole bladdgr and
the identified symptorarelated subvolumes (Svol) in the native space of the patients................... 96
Table 4.4 Parameters impacting on acute and late urinary toxiciultivariate analysis using backwgrd
(=211 0T =1 (o] o PP PPTr 97
Table 4.5 Parameters impacting on acute and late urinary toxicity in multieamelysis using LASSO

d o 0X0 Z S » }( PE Hi v PE Hi pusS v o S..uEJv.EH@S}IA] ]SC
Table 4.7 Urinary toxicity prediction capability of the mean dose and the DVH for the whole bladdgr and
the identified subvolumes (Svol) in the native spacetlod patients..........cccoceeeeevviiieeevivueeeeeeieeeannn... 104
Table 5.1 The AUC for each classifier after repeat®ttdoCV.............ooovveevuveeeiiiiiieiiiiieeeeeen. 113
Table 5.2 The average AUC of the{mst for each classifier and resampling technique................ 115

Table 5.3 The averagenteasure of the tesbut for each classifier and resampling technigue....... 116







Résumé en francais

Ameélioration de la prédiction de la toxicité urinaire apres radiothérapie du
cancer de la prostate a partir de modeéles spatiaux mudlthelle de la dose:
depuis les organes a risque aux senégjions

Le cancer de la prostate estdeuxiemecancer le plugréquente chezo [ Z} u et la cinquiéme cause de

décés par cancer dans le monde. En 2018, cela représentait 1,3 million de houveaux cas et 359 000 décés
dans le monde. En France, v & 0 % E}e3 § +5 0 Hanumes. (Enombredle &sl o]
estimé pour 2018 est de 65 000 et le nombre de déceés estimé a 9 000.

De nombreuses options thérapeutiques existent pour traiter cette maladie. Parmi elles, la radiothérapie
externe (EBRT)*S %o & }v]e Y%o}UE %oOue LA §] & eou norfa Uik chiretdie v o ¢}
et/ou a une chimiothérapielLe but de ce traitemerdstde délivrer sur plusieurs séances de traitement,

une forte dose de rayonnement ionisant au volume cible, a savoir la prostate et les vésicules séminales.

> v (] [uv  pPu vs 8]}v 0 Jenterroes the @hwéledodal et de survie globale,
estatténué par la présence desganes a risque (OAR), tels que la vessie et le rectum, qui entoarent |
volume cible Les effets secondairesdus a o[]@E E 4duX Jtjssus sains peuvent entrainer des
événements indésirables importants de nature urinaire, rectale ou sexuelle.

Les développements technologiques récentss C+S u SE ]S uvsU [Ju P E] S

% Eule [uo]}]J& € 0o & %%}ES V (] *bPEMS(EP WOF]}v 0 SZ AW ] %] X

traitement modernes, telles que la radiothérapied  u} po 3itensifé (IMRT) et la radiothérapie

guidée @r limage (IGRT), ont permis umscalade de la dosd.a radiothérapie avec modulation

[Jvd ve]E }ved]3pu puv Av Ju%}ES vE % }pE o 0]AE v [puv e
% E ]J*]}vX 00 % Eu § v}S uu vsS [ wollE]|EG& ]}¥[IEU S} (}EU ¢ Spu]
Ju%o0 £ » 5§ Jv A X > 0]*3]<u SE ]5 uvd 3 <p vs 00 0 MO
% EuU $3 vS§ eJupo E S [}%S]u]e E o ]*SE] ps]}v }o Al MV %o %o
>[} i S9% [}%0S]u]le E 0 %00 V SE ]S u vs ( }v }SV]E pv }- E
le volume tumoral mais aussi limitée que possible dans les organes a risque voisins.

Malgré les améliorations récentes dans la planification et la délivrance’$o v-. p SE& ]S u v3U ]Jo v][

vV JE %}e+] 0 [ % EPv E $}3 o0uvs o0 }JEP v E]ecu o VA]JE}IVY
secondaires liés a la toxicité du traitemesint toujours observés, en particulier dans les contextes

[« o }+ Xstikgue les effets secondaires qui se produisent pendant le traitement et les
guelques semaines qui suivent, dits «aigus». Et les effets secondaires qui peuvent apparaitre plusieurs
mois/années apres la fin du traitement, appelés effets « tardifs ». Cetiel & v [ %0% E]S]}v ve
temps est liée a la vitesse variable de prolifération des tidsess effets secondaires différent largement

[MV %o Ee}vv o[ USE <« o}v o o0} o] 8]}v 3 o A}lopu JEE ] U o



individuelle du patient et son état général. Les effets secondaires tardifs de la radiothérapie externe
peuvent apparaitre aprés la fin du traitement, au niveau urinaire, digestif ou sexuel. Au niveau digestif, il
est possible que des saignements apparaissensdas selles (on parle de rectorragie®ien quela
toxicité gastreintestinale (Gl)soit relativemert réduite par l'introduction detechniques fortement
conformationelles les taux de toxicité génitarinaire (GU) restent relativement stables. Comme
l'indique le projet«Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEE)Eponse
similaire & celle de la toxicité gastimtestinale est loin d'étre établie pour la toxicité GU.

La compréhension de llation dosevolume avec la ticité urinaire etle développement denodéles
prédictifs fiables est d'une importance primordialea prédiction detoxicité peut étre utile pour
informer les patients sur les complications possilliéss au traitementet pour aider lescliniciens a

mieux adapter le traitement aux caractéristiques du patient avec I'objectif de diminuer le risque d'effets
secondaires. Cependant, la modélisation de la toxicité urinaire est un probléme difficile, non seulement
en raison de la variété desmaptdmes associés, mais aussi en raison des limites des descripteurs de dose
et des difficultés a identifier les régions potentiellement responsables de ces symptdmes. La vessie, par
exemple, présente d'importantes variations inter fraction de forme, catisdas incertitudes
géométriques et de dose qui limitent la possibilité de modéliser avec précision la réponseciiose.

Une autre structure potentiellementmpliquée est l'urétre intraprostatique qui reste, cependant,
largement inexploré dans la littéature en raison de la difficulté idn E v § 1ISE ] vs](] *UE of .
de planification fomodensitométrie 3Dou scannerCT). Bien qu'il y ait desvidences [Ju%.0] S§]}v

o[ u Edartk la curiethérapie de cancer de la prostate ceci n'a pas encdreméntré dansla
radiothérapie externe.La quantification de la doséélivrée a l'uréetre peut donc améliorer notre
compréhension de la toxicité urinaire ou au moins certains des symptdmes, mais nécessite
l'identification de cet organe dans les imagespiBmnification.

(Jv [ A%o]<pu E o 3§}HAsjeds étudeditilised I'histégramme dosevolume (HDV)de la
vessie entiéresans un consensus clalres modeles prédictifs de toxicité généralement basésHi
réduisent la distribution de doselBdans l'organe a une représentation unidimensionnelle de la relation
dosevolume. L'information spatiale est donc perdue, ignorant la variabilité locale de la distribution de la
dose 3D, ce qui peut limiter les capacités de prédiction. Les motEdsupgosent que l'organe est
homogéne en termes de radiosensibilité et de statut fonctionnel. En fait, certaines manifestations
individuelles de dysfonctionnement urinaire peuvent étre liées a l'irradiation de régions spécifiques des
voies urinaires inférieuresa savoir l'urétre et lecol de la vessienon expliquées par les méthodes
traditionnelles HDV.

Cette hypothése de radiosebdiité hétérogéne intraorgane a déclenché pi}u @& (&g évolution
méthodologique de approches de prédictionqui ne considegnt plus I'organe en entier, mais qui

v ¢¢]S vS o[ v oC-organes-gyee e modeles prédictifs plus sophistiqués qui intégrent des
descripteurs des distributionsle dose 3D En ce qui concerne la toxicité urinaire, I'analyse de la
distribution lccale dela dose a des échelles spatial@sis fines peut améliorer notre compréhension de

la symptomatologie urinaire aprés RT. Jusqu'a présent, seulement un petit nombre d'études onécherch
a étudier I'effet local de doseolumedans la vessie fournissant quelguegdencesde radiosensibilité



intra-organe quasthétérogéne tandis que le rble de l'urétre resta démontrer Déméler la relation
entre la dose locale a la vessie et l'urétre et la toxicité urinaire, peut étre traduiecommandations
pour la planification du traitement dans la pratique clinique.

En partant des modeles globaux qui utilisent la doseaganes entieret en allant verglesméthodes
plus locales, qui considéerent desusorganes, cette these vise an@liorer notre compréhension de la
toxicité urinaire aprés irradiation prostatiqudlus précisément, les objectifs de cette thése dest
suivants:

iX Aopy E o[]Ju%o] 3]} Va toxiciteumageE Ve
iX A op E ol]dedwsauppagtissvspécifiques de la vessie et de l'urétre dans la toxicité
urinaire.

3. Etuder le potentiel d'une amélioration complémentaide la prédiction en exploitantle
nouvelles méthodes d'apprentissage automatique.

Afiv — A op E o } v § @Eédtre &)l vtoxicitd [rinaire, il a été nécessaire d'identifier cette
structure sur la planification @mages des patientsaités par radiothérapie externg?our ce fairenous

avons proposé une approche de segmentation muétlas permettant [dentifier et segnenter avec
précision l'urétre sur les images CT. L'atlas se compose d'un ensemble d'images CT de patients traités par
curiethérapie, ou l'urétre est visible grace a l'utilisation d'une sonde urinaire. Pour un nouveau patient,
les caractéristiqgues géométrigs sont extraites de l'image a segmenter et comparéesraiixidusde la

base de données. L'urétre pour ce nouveau patient est, alors, défini en combinant les urétres des atlas
les plus semblables dans un processdefusionpondérée

Différentes approkes peuvent étre utilisées pour évaluer les relations dosécité a deséchelles
spatialesplus fines Tout d'abord, une analyse de la dem# lasurface(DSM)de la vessie a été effectuée

pour différents symptdmes urinaires. Les résultats ont été cadpaaux études précédentegui
utilisent lesDSM afin d'évaluer l'impact des différentes cohortes dans l'identification desrégims
radiosensibles. Cette analyse, limitée a la surface de I'organe, a été suivie par I'exploitation de I'ensemble
de la distribution de la dose de planification 3Dndda vessie et l'urétre saaeshypothéses préalables

guant al'emplacement des régions a risque. Une nouvelle approche basée sur l'analyse de la carte 3D
dosevolume (DVM) a ainsi été proposée permettant I'exploration de la relation ttsdeeffet, au

niveau du voxelCette méthode, validée rigoureusement, requiert plusieurs étapgsne normalisation
spatialedes anatomies vers un référentiel commui) la % E} n $]} vcarfegvaphie des doses a
analyser et, iii) une méthodologie fiable poufesftuer I'analyse statistique locale.

Laprédiction de la toxicité urinaire peut étre améliorée non seulement en identifiant les descripteurs
locaux de ladosequi seraient plugprédictifs que les descripteugiobaux(organe entier), mais aussi en
analysnt de facon fiable dedonnéescomplémentairesdisponibles, y compris dosimétriques, cliniques
et biologiques. La majorité Btudes existantese|[ %o %o pudurv 8es approches traditionnelles de
régression (p. ex. régression logistique ou régression de Ces).procédures, bien qu'elles soient
couramment utilisées en raison de leimterprétablilté (valeurs pet intervalles de confiance), peuvent
ne pas prendre en compte lestémactions entre les variablese qui diminue leur capacité prédictive.



Des étudesécentessuggérent que [ u S GBtratégies plusnodernes peuvent donnedes meilleurs
résultats que les méthodes conventionnelles de modélisation prédictive. Les techniques d'apprentissage
automatique par exemple peuvent potentiellement augmenter la pdétion de la toxicité car elles
s'appuient sur des exemples informatifs antérieurs. Néanmopami la multitude de méthodes
AEl*5 vE e ]Jo V[C % ¢ puv A] v 0 ]J]E *uE < u SZ}  %ooues % E(}C
% E Joo pE- (lhde swidursSytilisation dans ce contexte car leur application n'est pas simple
Une étude comparative entre différentes techniquep %o %o E vS]ee P K S } ueffettyée afin §
de fournir des éléments sules avantages et inconvénients de différenlassifieurglans le cadre dda
prédiction de la toxicité urinaire.

Cette these est structuréeautour de plusieurs publications dans des revues et conférences
internationales, des travaux soumis et des travaux en préparaéi@avoir

X Le chapitre 1 présente le contexte clinique et la modélisatienla prédiction dda toxicité
urinaire apres irradiation prostatigueNous commencons par une description du cancer de la
prostate et des options de traitement disponibles. Nous présenternpins précisément les
différentes techniques de radiothérapie et leurs limitations ainsi que les effets secondizsres
plus fréquents en identifiant en particulier legmptdomes urinaires. Ensuite, nous présentons les
modéks traditionnels 1D DVH et idefidint leurs avantages etimites. Cette partieest suivie
d'une description de deurouvellesméthodologies<u] % E u SHalySer les distributions
de doses a des échelles spatialpkis fines [uv %o b&S&$) sur la construction de
cartographie2Dde ladose(DSM) et [ USE % ESU v A %0}]S vS o ]*SE] pus]}h
une cartographie tridimensionnell®VM). Enfin, les objectifs de la thése sont expliqués.

X Le chapitre 2 présente une méthodologie pour segmenter automatiquement |'urétra-int
prostatique sur l'image de planification CT. Tout d'abdedméthodologiede segmentation
multi-atlas est détailléey comprisla construction de atlaset la segmentation finale de I'urétre.
Ensuite,une évaluation de la méthode est réalisée en comapara des méthodegxistanes
pour estimer la position de l'urétre. La dosd'urétre est également calculéet comparé a la
dose a la prostate.

X Le chapitre 3 décriitne méthodologiepermettant decaractériser spatialement la distribution de
la dose a lasurface de la vessie a l'aide d@SM. Le premier objectif de ce chapitre est
d'améliorer les approches existantes pour I'analyse des DSM et de proposer une méthodologie
qui permettrait I'exploration de toute la surface de la vessie. Le deuxieme objectifidsntifier
les soussurfacediées aux symptdmes de la vessie qui sont potentiellement plus prédictives que
I'ensemble de la vessid.e troisieme objectif est de comparer les résultats avec les études
précédentes basées surles DSM de la vessie et d'estimer le niveau d'accaxec nos
observations.

X Le chapitre proposeune méthodologiebasée sur les cartographies 3D de la dose (DVM) et qui
permet une analyse statistique paoxel Cette méthodologie appliquée a la région pelvie a
permis d'étudier la relationentre la doselocale et la toxicitédans la vessie et l'urétre. Tib
d'abord, nous présentons la méthodologie de recalage rigidéti-organesqui permet la mise
en correspondance anatomique de toute la population danssenl espace commun de



référence. Ensuite les distributions des doses son déformées élastiquement, en suivant la
transformation préalablement calculée, pour ensuite les comparer voxel par pexelettant
l'identification des sostrégionsou des différence statistiquement significatives da dose
existent. Les sougegions sont propagées a l'espameginalde chaque patienet les respectifs

DVH ds sousrégiors sont analysés et comparés aux DVH de la vessie. Enfin, la généralisation et
la capacité préditive de ces modeles ont été éva@sg sur une populationexterne et
indépendante.

X Le chapitre 5 évalue plusieurs algorithmes d'apprentissage automatique pour la prédiction de la
toxicité urinaireen utilisantdes données dosimétrique¢DVH)et cliniques.Dans cette étude
exploratoire, & paformance de ces classifieuasété évaluée sulla vessie en totalité afin de les
comparer aux modéles traditionnels. Les problémes de déséquilibre de la base de données ont
été abordésa I'aide de quatre techniques dar-échantillonnage synthétiqudifférentes.

X Le chapitre présenteune discussion générale sur les principaux résultats et les contributions de
cette thése suivie des perspectives et geepositionssur l'orientation des études futures dans
la prédiction de la toxicité urinaire apres irradiation prostatique.

Les principales contributions de cette thése sont donc :

X le développement d'une méthode de segmentation muallias pour identifier |'urétre
prostatique sur les images CT de planification

X une méthodologie pour cartographier avec précision les distributions de doses 3D a travers
une population d'individus permettant d'effectuer des comparaisopar voxel des
distributions de dose 3D

x l'identification et la validation de souggions spécifiges liées aux symptbmes dans la
perspective de réduire le risque de toxicitd} E + plpnificationspécifiquepatient.

X O[}uA ESpHE u 3z} }Jo}PJ«u A @edapprédictionodd [& takicté urinaire a
l'aide de méthodes d'apprentissage autorimate § [ pPu vS§ S]}v . }vv e



Introduction

Prostate cancer is theecond mostfrequent malignancyamong men andhe fifth leading cause of
cancerdeath worldwide In 2018, this amounted to 1.3 million new cases and 359,000 deaths around the
world from this diseaseln France, prostate cancer is the most frequent type of cancer in mke.
estimated number of cases for 201815,000and theestimated number of deaihis 9,000.

A curative treatment modality for prostatecancer, which has emerged as a clinical standarekternal
beam radiotherapy (EBRThe aim of thisgechniqueis to deliver over several treatment sessiorgshigh
dose of ionizing radiation to tharget volume namely the prostate and the seminal vesiclEise proven
benefit of increasing the dose to the prostate, in terms of local control and overall survis@hfisedby
the presence ohealthy organsat-risk (OAR), sut as the bladder and the rectuniRadiatiorinduced
damage to healthy tissues may result to significant adverse events of urinary, rectal or sexual nature.

Advances in technology and imagjrayer the past decadespgether with the introduction of nodern
treatment techniquessuch as intensitynodulated radiotherapy (IMRT) and imageided radiotherapy
(IGRT)enabled dose escalatiorby geometrically shdpg the dose beam around the targetwhilst
reducing the volume of normal tisea exposed tdhigh radiation dosesWhile gastrointestinal (Gl)
toxicity has beerelativelyreduced by the introduction of highly conformal imageided radiotherapy
techniques, genitourinary (GU) toxicity rates remain relatively stabke.stated by theQuantitative
Analysis of Normal Tissue Effects in the Clinic (QUANTEC) project, a simiaasgosse to that of Gl
toxicity is far from being established for GU toxicity.

Understandingthe dosevolume relationship withurinary toxicity and developing reliable predictive
models is of paramount importancd’redicting toxicity probabilitynay beuseful for informing the
patients about possible treatment complicatioaad helping clinicians to better tailor the treatment to

%0 S ]s\cBdracteristicsvith the objectiveto decrease the risk of side effects. Howeveinary toxicity
modeling is a challenging issue, not only due to the variety of associated irritating or obstructive
symptoms, but also owing to the limitations of dosesdeptors and difficulties identifying the regions
potentially responsible for those symptoms. The bladder, for example, presemgsrtant inter-fraction

shape variations, causing geometric and dose uncertainties that limit the possibility of accurately
modeling the dosevolume response concerning urinary toxicinother potentially critical structure is

the intra-prostatic urethra whichremains however largely unexploredn the literature due to inherent
difficulty to be identified on the planning computed tomography (CT) scaAlthough there is evidence in
prostate cancer brachytherapy that some urinary symptoms are related to urethra damage this has not
yet been shown irEBRT Quantifying the delivered dose to the urethra may therefore improve our
understanding of urinary toxicity or at least some of the related symptombut requires the
identification of this organ in the planning CT images.



ANAEo *3u] e pue 372 AZ}o-volume hi@Edgram} {DVH) in an attempt to explain
radiation-induced toxicities resulting in multiple DVH recommendations withaoy clear consensus.
Predictive models ofoxicity commonlybased onDVH,reduce the 3D dose distribution within the organ

to a unidimensional representation of the degelume relationshipThe spatial information jsherefore,

lost, ignoring the local variability of the 3D dose distribution, which rivayt the prediction capabilities

DVH modelaissume thathe organis homogeneous in terms of radiossitivity and functional statudn

fact, some individual manifestations of urinary dysfunction may be linked to the irradiation of specific
regions of the lower urinary trachamely the urethra and the bladder nedk,which case DVHnalysis

of the entire bladder may not bsufficientto explainurinarytoxicity.

This hypothesis of heterogeneous int@gan radiosensitivityin various anatomical sitebas induced a
methodological evolution from the globalvhole-organbased philosophy towards more sophisticated
predictive models that integrate local spatial descriptors of the dose distributidvith respect to
urinary toxicity, analysis othe local dose distribution at lower spatial scales, may improve our
understanding of urinary symptomatology after Rb.date only a small number of studidsave sought

to investigate the local dosevolumeeffect in the bladderproviding some evidence of quast
heterogeneous intreorgan radiosensitivityvhile the role of urethra remains in obscuritynraveling the
relationship between the local dose to the bladder and the urethra anidary toxicity, may be
translated into recommendations for treatment planningciinical practice.

Going beyond the globalyhole-organbasedmodels towards more local, stdrgan approaches this
thesis aims to improve our understanding of radiatioduced urinary sideffects andamelioratethe
prediction of urinary toxicity folloing prostate cancer radiotherapiore specificallythe objectives of
this thesis are:

1. To assess the contribution of urethra damage to urinary toxicity.

2. Toevaluatethe involvementof specific bladder and urethra stgartsin urinary toxicity.

3. To investigate the potential of further increasing prediction by exploitiaga through new

machine learning methods.

In order to assess the contribution of urethra damage to urinary toxitityas necessary to identify this
structure on the planningCFimages of patients treated with EBRT. In this regard, we dewsediltr

atlas segmentatiompproachto accuratelyidentify and segmenthe otherwiseundetectableurethra, on

CT imagesThe atlas consists @ set of CT images of patientseated by brahytherapy where the
urethra is visible thanks to the use ah urinary probe. For a new patient, geometric features are
extracted from the image to be segmented and compared to the features from the atlas database. The
urethra for this new patient is, #n, defined by combining the urethras of the most similar atlases in a
weighedfusion process

Different approaches can be useddwsaluate the doseéoxicity relationshigs in lower spatial scalewith
the objective of identifying anatomical regions correlated witinary toxicity that are potentially more
predictivethan the dose to the whole bladdeFirst, a doseurface map (DSM) analysis of the dose to



the surface of the bladder was performed explore the local doseesponse relationship for different
urinary symptoms The results were compared with previous DSM studies in order to evaluate the
impact of different cohorts in the identification of radiosensitive subregidiis analysis, lif@d to the
organ surface, was followed by the exploratiortlod entire 3D planning dose distribution in the bladder
and the urethra without making any prior assumptions regarding the location of regiorisk A novel
approach based 08D dsevolume ma (DVM)analysiswasthus proposed allowing theinvestigation

of the local doseeffect relationshipat voxel level.The different preprocessingincluding: i) an accurate
spatial normalization to a single coordinate system, ii) the mapping of thesdod® analyed and iii) a
reliable methodology to perform local statistical analysiere thoroughly validated

Urinary toxicity prediction may be improved not only by identifying local dose desithat are more
predictive than global(whole-organ) dose descriptors but alsby reliably analyzing the plethora of
complex available data, including dosimetric, clinical and biological @a&.vast majority of existing
studies are based upon traditional regression approactesg. logisticor Cox regression)These
procedures,although commonly used due to their interpretability-yBlues and confidence intervals),
they may overlook the interactions among variahlessulting in modest prediction performanc8tudies
suggest that more contaporary strategies show promising results and perform better compared to
conventional predictive modelling method$4achine learning techniques can potentially increase
toxicity prediction as they rely on previous informative examphsverthelessa multtude of methods
are emerging without a clear advantage tifeir use in this context as they application is not
straightforward. A comparative study between different techniquess performed toprovide some
insights on the advantages and disadvantageglifierent classifiers in particular for urinary toxicity
prediction.

Thisthesis is structured based onworks published in international journals and conferencesrks
submitted and worksin preparationfor publication, which havell been ceauthored The thesis is
divided in four parts and contains six chapterganisedas follows

Part | (Chapter 1)

% Chapter 1 presents the clinical context atfie stateof-the-art predictive modeling for
urinary toxicity following prostate radiotherapWe start witha brief description of prostate
cancer and the available treatment optiand/e will present more preciselthe different
techniques forradiotherapy and their limitations as well asthe common sideeffects
emphasizing on the urinargymptoms Then, wepresent the traditional 1D D\‘blased
models and we discuss their limitatioriBhis is followed by a description of two emerging
methodologies for analyzing the dose distributions at lower spatial scales, based on the
construction of 2D dossurface maps (BM) and 3D doseolume maps (DVM). Finally, the
objectives of the thesis are explained.

Part Il (Chapter 2)

% Chapter2 presents a methodology for automatically segmenting the prastatic urethra
on the planning CT image of EBRERted patients. Firstthe entire framework of the multi
atlasbased segmentation method is detailed, from the atlas construction to the final urethra



segmentation. Then, the methdsl accuracy is evaluated with respect to the ground truth
urethra and compared with existing sggP 8 u} o0 (}E +S]Ju S]vP UENSZE [* %o]
dose to the urethra is also computed and compared to the dose delivered to the prostate.

Part 11l (Chapter 3 and Chapter 4)

Y

¥

Chapter 3 describes a methodology for spatially characterizing the dose distmilan the
bladder surface using DSMThe first goal of this chapter is to improve the existent
approaches for analyzing DSMs and propose a methodology that would allow the
exploration of the entire bladder surface. The secayuhlis to identify symptorrrelated
subsurfaces of the bladder that are potentially more predictive than the whole bladder DVH.
The third goal is to compare the results with previous bladder DSM studiesstinthtethe

level ofagreementbetween these studie and our observations

Chapter 4presents amethodology for analyzinPVMsvia voxelwise comparisons, in order

to investigate the local doseffect relationship in the bladder and the urethrkirst we
present a robustmulti-organ non-rigid registrationstrategy for anatomically aligning the
population and propagating the dose distributions to a common space. Ther)\Wsof
patients with and without toxicities were compared vokgtvoxel allowing the
identification of symptorrrelated subregions wherstatistically significant dose d#ffences
exist. The subregions apropagated to the native space of each patient where-gegfion
DVHs where computed and their discriminative power with respect to the DVH afitiole
bladder was evaluatedrinally, thegeneralizability and the predictive capabilities of these
models were assessed through external validation on a large, independent population.

Part IV (Chapter 5)

E7Z

¥

Chapter5 evaluates several machine learning algorithms for prediction of urinary toxicity
using dosimetric and clinical data. The performance of these classifiers was evaluated on the
original unbalanced dataset and also usingrfdifferent syntheticversampling techniques.

Chapter6 includesa general discussion on the main resudisd the contributions of this
thesis followed bythe perspectivesaand suggestionen the direction of future studies in the
prediction of urinary toxicityafter prostate cancer radiotherapy.

The maincontributions of this thesis aréherefore:

X

X

the development ofa multratlas segmentation method for identifying the prostatietira
on the planning Cimages

a methodology for accurately mapping the 3D dose distributiaogss a population of
individuals allowingo perform voxelby-voxelcomparisons of th@Ddose distributions

the identification and validation of specific symptontelated subregionswith the
perspective ofeducing the risk otoxicity though patient-specifictreatment planning.

paving the way for further increasing thgrediction of urinary toxicity using machine
learning methodsaind data augmentation techniques






Part |

Clinical context, state-of-the-art models

and objectives



1 dinical and scientific context and problem definition

Thischapter presentshe clinical and scientific context of this work. We will first discuss some
general points about prostate cancer and #nailable therapeutic options and more specifically
the external beam radiotherapy. We discuss its principld limitations. We continuewith a
description othe possible sideffects emphasizing on the urinary symptoinsthe second part
we describethe stateof-the-art predictive modeling for urinary toxicity following prostate
radiotherapy. We first present the traditionalhole organDVHbased models and we discuss
their limitations. Next, we describe twemerging methodologies for analyzing the dose
distributions atlower spatial scales allowing mvercomesome ofthe limitations of DVHbased
models. These approaches are based on the construction of 2Dsuldsee maps (DSM)
coupled with pixelvise comparisons and 3D degelume maps (DVMs) combined with vexel
wise comparisons. Their methodological challenges &e discussedrinally, the motivation
and objectives of this thesis are explained.



1.1 Prostate cancer

1.1.1 Prostate and prostate cancer

The prostate is a gland formed of both muscular and glandular tissuegiunded by a 3 mm thick

capsule. As part ofthend & % E} H S]A *Ce3 uU % E}e3 & [» u}*S Ju%}ES vs (p
of a fluid, containing several enzymes such as prostate specific antigen (PSA) that, together with sperm

cells from the testicles and fluids from other glands, makes up semesta®e is located in the pelvic

cavity, anterior to the rectum and at the base of the bladder, surrounding the prostatic urethra (the

portion of the urethra that runs within the prostate), as showfFigure1.1] The seminal vesicles, two
irregularlyshaped glands, are connected to the base of the prostate. Various nerves located around the
prostate are impliceed in the erection mechanism.

Figurel.1 lllustration of the anatomy of the male reproductive system
(source: www.bladderclinic.com.au)

Prostate size changes through life, growing mostly during puberty, dtreetise of male hormoneg-or

a heaalthy adult theaverage prostate dimensions are 4 cm in width and 3 cm in heigtitweight 20g
Around 80% of men over the age of 40 will undergo prostate hypertrophy, possibly compressing the
urethra, leading to urinary dysfunctions. This hypertrophymomwnly callel benign prostatic
hyperplasiais part of the natural evolution of prostate, but it can also be a sign of cancer.

Prostate cancer is the second most frequent type of cancer among men and the fifth leading cause of
cancer deathworldwide [1,2].In France, it is the most frequent type of male cancer with estimated



number of cases for 2018 being 65,000 and the estimated number of death #0800t 42% of fifty
yearold men have developed histologicaligéence of cancerous cells in the prostate; 9.5% of these will
develop an aggressive form of cancer, and 2.9% will die from prostate d8hdeledical treatments are
therefore needed to prevent or delay the tumor from spreadmgiside the prostate. For a complete
review on prostate cancer diagnosis, staging and treatments, see guidelines of the European Association
of Urology (EAM4,5].

1.1.1.1 Diagnosis and staging of prostate cancer

Prostate cancer can be diagnosed through digital rectal examination (DRE) of the prostate and a blood
test to measure the levels of PSA. An annual checkup is advised for men aged between 50 and 75 years.
DREs the standard way to define texture, shape, size and tenderness of the prostate gland. It is simple
and complicatiorfree, butsubjective ast dependson the examine[6]. PSAs a glycoprtein produced

in the prostate and is used as marker for prostate cancer. Most healthy men have PSA levels below 4
ng/ml, and it usually goes above 4 when prostate cancer develops. However, DRE and PSA test have
relatively low sensitivity, and they do noifi@rentiate between aggressive and indolent disedsg
Although the limited prognostic value of P®#easurements of fre¢o-total (f/t) PSA ratio has improved

the identification of patients with aggssive diseas3].

When a blood test shows high Pe&elsor when an abnormal prostate or a lump is found through DRE
examination, prostate biopsy might be performed. Definitive diagnosis is only confirmed after
histopathological verification of adenocarcinoma in prostate biopsy specim@he Gleason score is

used to evaluate the prognosis of men with prostate cancengisamples from a prostate biopsy.
Gleason grade tells how aggressive the cancer is, in other words, how likely it is to grow and spread
outside the prostate capsule.

In the early stage, the cancerlecatedwithin the prostate but, with disease progssion, itcan expand

to neighboring organs and tissues as well as more distant organs such as the lymph nodes and the bones.
About 4% of prostate cancer patients already have metastases at the moment of diaghasier
extension is usually expressed asnlgeat certain T stage using the tumor, nodes and metas(asis/)
classification systeraccording to thdJnion for International Cancer Control (U)Q®}. There are four T

stages with various subcategories indicating tumor size and location:

x T1: tumor present, but not detectable with imaging or clinically:

T1la: Tumor found in less than 5% of prostate tissue resected (for othemsas

T1b: Tumor found in more than 5% of prostate tissue resected;

T1c: Tumor found in a needle biopsy performed due to an elevatedew8IA

x T2: tumor can be felt (palpated) on DBREamination, but it still appears to be confined to the

prostate:

+ T2a:dpUu}@E& Je Jv Z o( }E& o0 ¢« 8Z v Z o( }(}v }( SZ % E}*S § Po
+ T2b: Tumor is in more than half of one lobe, but not both;

+ H+ 4+



+ T2c: Tumor is in both sides of the prostate lobes but still inside of the prostatic capsule.
x T3: tumor has spread throbgut the prostatic capsule (if it is only haly through, it is still
classed under T2):
+ T3a: Tumor has spread through the capsule but not to the seminal vesicles;
+ T3b: Tumor has invaded one or both seminal vesicles.
X T4: the tumor has invaded otheearby structures.

Among the most commonly used methodfor risk stratification the most commonly useds the
PE}u%]vP A 0}%o C[1(] Thjs kcoge iGmXed on Gleason score, T stage and [B&Hs
to classifypatients diagnosed with prostate cancer into low, intermediate and high risk categories as
follows:
X Lowrisk: T1} di 8§ P U '0 ¢}v ¢« }E G o0U WA G ii vPluuX
X /Iv§ Bu ] 8 E]J]*IW di ¢S P }E& 'o *}ve}E A O }E ii VPluu G WM (
X ,]JPZ E]eIW di §} dd S P ¢« }&E& '0 *}v e }E& HO6 }E WA E ii VPluuX

Once thestage has been determinedifferent treatment options are considered.

1.1.2 Treatment options for prostate cancer

Different therapeutic options for localized prostate cancer exist that can be used in isolation or in
combination. Depending on the age of the patient, his life expectancy, the aggressivenleesahcer
or the advantages disadvantages of the therapies, the most appropriate treatment is chosen
considering the therapeutic objective. This may include suppressing the tumor or metastases, reducing
the risk of recurrence and slowing the tumor progsies [11]. The main treatment modalities are active
surveillance, surgery, radiotherapy (external or brachytherapy), and medication treatments such as
hormonal therapy. More recent techniques like Higtensity Focused Ultrasound (HIFU) have also been
developed. Hereinafter, the different therapeutic options are described accordingeio frequency of
prescription
x Radical prostatectomy (RB) a surgical treatment for prostate cancer whimnsists 6 a total
removal of the prostate gland and seminal vesicles, and may be accompanied by lymph node
dissection. It is one of the standard treatments for localized prostate cancers with low and
intermediate risk of recurrence. It can also be proposed inaiercases of localized higlsk,
locally advanced cancers with lymph node involvement. Radiation therapy and / or hormonal
therapy may supplement prostatectomy. The most common side effects of total prostatectomy
are urinary incontinence, related to impead functioning of the bladder and sphincter muscles,
and erectile dysfunction. This treatment also implies a definite impossibility to ejaculate.
x Radiotherapyconsists of delivering high doses of radiation to the cancer cells in order to prevent
them from multiplying. Radiation can be administrated in two ways:
+ The source of radiation is located outside of the body (external), delivered in thedbrm
photons K-rays from linear accelerator machineglectrons, and more rarely other particles
such as mtons. It is one of the reference treatments for localized cancers at low and



intermediate risk. Coupled with hormone therapy, it is the recommended treatment

modality for localized highisk cancers and locally advanced cancers. It can also complete a

prostatectomy to reduce the risk of recurrence. Irradiation of healthy tissues adjacent to the

prostate can cause a variety of sid#fects.

The source of radiation is located inside the body (brachytherajgythe implantation of

radioactive seeds within # prostate glandThese radioactive sources emit radiation that

destroys the surrounding malignant cells. Becausedtaalient ofdose drops sharply away
from radioactive sources, brachytherapy is indicated for localized cancers with a low risk of
recurrerce. Sideeffects are common due to prostate inflammation and urethra damage.

x Hormonal therapy, also called androgen deprivation therapy JAD{E by suppressing the levels
of male hormones (androgens) which stimulate prostate cancer cells to grow. The main
androgens are testosterone and dihydrotestosterone. Lowering androgen levels or stopping
them from getting into prostate cancer cells oftetn | ¢ % E}*S § v Ee* «ZE]VI }E
growth. However, hormonal therapy alone is not curative. Combined with radiation therapy, it is
the gold standard for highisk localized prostate cancers. It is also used in case of metastatic
cancers. The mostommon side effects of hormonal therapy are hot flushes, erectile
dysfunction, changes in physical appearance, and osteoporosis.

x Deferred treatment (active surveillance/watchful waiting):some cases, treatment of localized
prostate cancer may be deferred to avoid toxicity due to other treatment. There are two distinct
strategies for conservative management that aim to reduce overtreatment: active surveillance
and watchful waiting. The i@ of active surveillance is to reduce overtreatment in patients with
clinically confined, veHow-risk cancer, withoutenouncingcurative treatment, as happens with
watchful waiting[12]. Active surveillance is only proposed for highly selectedriskvpatients.

The surveillance of cancer evoluti iscarried outthroughfrequent DREblood tessto measure
the PSAevels, biopsies and MRI. Watchful waiting is recommended when cancer progresses
slowly, or for older men with a high incidence of comorlédiind other causes of mortalifil 3].

x Highintensity focused ultrasound of the prostate (HIFU) consists of focused ultrasound twaves
the prostateallowing high sound pressures to be delivered to a focal gointder to kill tumor
cells via heating and cavitatiofil4]. The main treatment device is the Ablatherm®, which
combines an ultrasound transducand an echography probe introduced to the rectum during
the operation. The goal of HIFU is to heat malignant tissues above 65°C so that they are
destroyed by coagulative necrosis, under general or sgnabkthesia The procedure is time
consuming, withabout 10 g prostate tissue treated per hour. This technique is advised for
patients aged over 70 years with lengk cancers, but is mostly used in the case of local
recurrence following radiotherapjl5].

I+

In this thesis, wewill focuson external beam radiotherapfor the treatment of prostate cancer. Ais
modality is deailed in the following section.



1.2 External beam radiation therapy (EBRT)

Over the past few decadesxternal beam radiotherapy (EBRWas advancethy leaps and bounds and is
considered today a standard definitive treatment option focalized prostate cancelmprovements in
imaging and computing have led to a number of technical advances in planningetindry of the
treatment . These advances have permitted more precise and conformal delivery of doses of
radiation to the prostate, therebymproving the therapeutic ratio.

Figurel.2 The evolution of EBRT

More than two thirds of the patients diagnosed with this prostate cancer are treated with EBRT, often
combined with a concomitant treatemt (e.g. surgery or hormonal therapy). During EBRT, ionizing rays
charged with high energy photons are delivered to the tumor aiming to maximize local control whilst
sparing neighboring organs (mainly the rectum and the bladder). An optimal irradiatiea @0
therefore, the cornerstone of a successful treatment in terms of local control of the disease and the
overall survival of the patient.

The radiation dose is expressed in Gréyg),whichindicates the amount of radiation energy absorbed

by 1 kilgram of human tissuel(Jule/Kg) The total prescribed dose is delivered in several sessions in
order to allow healthy tissue to recover and increase tumor damage by reoxygefa@ipri-or example,

if 80 Gy are prescribed to the prostate in a convenient treatment schedule, treatment can be completed
in 40 sessions in a period of eigeeks, with a fractionation scheme of two Gray per fraction (2
Gyl/fraction).

Before the treatment, the radiotherapy team will carefully plan the optimal radiation scheme (dose,
fractionation and angles of the beams). This process, known as treatmentmjastarts by acquiring a
computer tomography (CT) scan of the anatomical region to be treated, namely the pelvic region for
prostate cancer irradiation. The different structures shown on the CT scan are then delineated by an
expert (e.g. prostate, semihaesicles, bladder and rectum). This information is imported to a treatment



planning system (TPS), which is a software used to generate the irradiation scheme. The prescribed dose
is a threedimensional map that relates every point within patient withexdl of dose. The following

step is then to set up the linear accelerator to deliver the planning dose using the selected fractionation
scheme, whereby each treatment fraction lasts only a few minutes. During the treatment the patient is
placed on a tablethat is below the linear particle acceleratffigure1.3). Fiducial markers can be
implanted on the patient's skin or prostate to align him at each treatment session.

1.2.1 Radiation techniques

For intermediate and high risk disease, radical EBRTarglard practice. There are two main types of
irradiation techniques: threelimensional conformal radiotherapy (3CRT) and intensity modulated
radiotherapy (IMRT). IMRT with imagaided radiotherapy (IGRT) is nowadays considered as the gold
standard forexternal radiotherapy.

Figurel.3 Patient positioned on the linear accelerator
(source:www.cancer.net)

THREEDIMENTIONAL CONFORMBADIOTHERABD-CRT)

In the past, radiation treatment matched the si2d $Z Spu} E ]shapéd yegion, meaning that
adjacent healthy tissue was unavoidably included in the radiation field. Advances in imaging technology
have made it possible to locate and treat the tumor more precisely. In case of prostate cancer,
irradiation treatment plan is usually defined by five to nine convergent beams, which conform the target
volume via the modulation of a multileaf collimator (MLC) located at the linear accelerator output
[Figure1.4). This form of irradiation is known as 3D conformal radicapg (3DCRT)3D-CRT uses a
planning CT to focus precisely on the tumor region, while trying to spare the healthy surroundieg tissu
This exact targeting makes it possible to use higher levels of radiation in treatment, which are more
effective in shrinking and killing tumors.



Figurel.4 Schematt of multileaf collimator(sourcef17]); Individually positioned leaflets shape the beam to the target

INTENSITY MODULATEDERNABEAM RADIOTHERAKMRT)

Intensitymodulated radiation therapy (IMRT) has been considered the mwstessful development in
radiation oncology since the introduction @Tto treatment planning[18,19] Over the past two
decades, IMRT has supplanted-@BThanks to itshigh conformity which facilitates dose escalation and
improves local control without significantly increasing the risk of morb[@i®y21] These features make
it particularly suitable for the treatment of diseases that involve tigates of local recurrencand
complications[22]. A comparison of planning treatments using-8RT and IMRTs&ownin[Figurel.5]

Figurel.5 Treatment plan for prostate cancer: 3BDRT (left side) and IMRT (right side)

On the top is illustrated an example of CT image and the design of the irradiation field surrounding targetarmwnehe bottom the
resulting planning 3D dose distributiofts the given irradiation field (source: www.mistir.info).

During the irradiation process with IMRT, the fluence (photon amount per surface unit) is no longer
homogeneous but is modulated angi a MLC, by continuously adapting the beams to the shape of the
target volume[23]. This allows for a more conformational dose distributions to be delivered wittgn



treatment field, which may fit complex structures. This technique is particularly useful to spare
neighboring organs at riskhe dose is derived by an invefgianning software that starts from the end
product (i.e. desired dose) and ends with the ubgi.e. fluence profile)]24]. The desired dose is
represented as a mathematical cost function to be optimized with some constraints. The input
parameters of this functiomclude leaf positions, some weights, and the fluence matrix.

IMAGEGUIDED RADIOTHERABRT)

Different anatomical references, such as skin markers, can be used to allow for reproducible patient
positioning through the treatment sessions with respecthe irradiation field. However, as the patient

might experience anatomical changes, such as weight loss, the effectiveness of these markers is limited
and may lead to setup errof&5].

Portal imaging systems have developed with theddtrction of linear acceleratorf26]. A digitally
reconstructed radiograph (DRRfbased on the planning CT) is generated by simulating irradiation in a
process hat mimics the geometry of the treatment. This image allows for bone structure alignment and

for patient repositioning, which is intended to decrease the amount and frequency of setup .errors
However, repositioning the patient according to the bone struetudoes not completely solve the
problem of geometric uncertaintiedndeed, from one irradiation session to another or even during a
session in some cases, anatomical variations can occur even in a fixed bone reference system. These
variations may corrgmond to displacements / deformations of the target or the organs at risk. In the first
case, the risk is to undemadiate the tumor and thus reduce local control. In the second, organs at risk
can be oveiirradiated, increasing the risk of complicatidg].

Because of these targeting uncertainties during treatment, the need to pigdiseate the clinical target

and / or OARshas led to the appearance of new imaging devices integrated into the accelehator.
prostate cancer radiotherapy, the term IGRT generally implies the use of imaging that allows tumor
localization, as opposed tthe use of imaging that allows visualization of bone structures only. The
localization of the tumor can be direct, via 3D imaging showing the soft tissues, or indirect when using
markers implanted in the prostatf28]. The most common imaging modality used for this purpose is
cone beam computed tomography (CBCT) and is present on all modern accelerators. This is based on an
Xray source of energy kV (more rarely MV) and a 2D detector mounted orareof the linear
accelerator opposite the source. The system rotates around the patient, and the acquisition of a large
number of 2D projections allows the reconstruction of a 3D image that can be compared to ter€T.
recently, there has been a shitbwards the yield of realime motion data using noionizing radiation
modalities such as electromagnetic transponders (EMT) and-diowension (4D) transperineal
ultrasound (TPU$29].

IGRT has played an important role in the evolution of radiotherapy by reducing the uncertainty of the
exact posion of tumor andOAR, and improving the precision of the delivered dose. IGRT has also
enabled the development of adaptive radiotherapy based on the assessment of information obtained
from daily image$25].



EVOLVING TREATMENTHRIQUES

Volumetric modulated arc therapy (VMATis a novetype of IMRTiechnique, which can achieve highly
conformal dose distributions with improved target volume coverage and sparing of normal tissues
compared with conventional radiotherapy techniqu®]. In contrast tostatic field IMRTwith VMAT

the radiotherapy machine rotates around the patieint an arc shape. The machine continuously
reshapes and changes the intensity of the radiation beam as it moves around the body. Giving the
radiotherapy in this way makesritore accurateandshortens the treatment time

Another technique the CyberKnife Raltic Radiosurgery Systeim a form of targeted radiation therapy
known as stereotactic bodsadiotherapy(SBRY The CyberKnife machine has a robotic arm that moves
around the treatment couch tdeliverdoses of radiation from different angle$.continucuslyidentifies

the exact location of the prostate and nekactive corrections for any movement of the prostate
throughout the course of the treatment by tracking fiducial markers intodhgan[31]. The CyberKnife
may work on a moving target the prostate - without harming surrounding areas. As a result, the
procedure may be more comfortablerfthe patient and radiatiordelivered may be more accuraté.
also allows tdreat multiple tuma sitesat the same timemaking ituseful for areas of cancer spread.

Magnetic resonance imaging (MRipchines and linear accelerators have been used sdgigrin the

care of cancer patients for yearA. new era in imagguided technology is rapidly evolving with the
integration of an onboardRIwith a radiotherapy treatment system, with the emergence of magnetic
resonanceguided radiation therapy (MRgRThe integration of these two powerful technologies into

one machine allows radiation oncologists to track and monitor the movement of tumors during radiation
delivery, and potentially track radiation response in fiiade, without any added radiation doge the
patient. We expect significantly decreased target margin and increased target dosage by using online
adaptive MRbased linac in the futurg82].

Although mostof the current practice of clinical radiotherapy utilizes photon beapesticle therapy

and, in particular proton therapy, has recentjained interest for the treatment of prostate cancer.
Given the physical properties of photons, normal tissues surrounding the target volume still receive a
subsantial amount of unwanted dose. The theoretical advantage of proton theirapgducing raéhtion

dose to normal tissués based on its intrinsic radiation propertie&. heavy, charged particle such as a
proton deposits most of its dose atpescribed depth in the body with a rapitbse falloff beyond this

point. This peak of energy delivery commonly referred to as the Bragg pe@kis means that proton
therapy can reduce radiation dose delivered to tissues beyond the target compared to photon radiation.
Although proton and photon particles are deemed to be similarlyagiffe in prostate cacer treatment,

the interest in proton treatment stems from its potential for lower toxicity and therefore further dose
escalation33]. Qurrent evidence has not clearly demonstrated thaighheoretical difference trarates

to improved patient outcomes compared to IMRT. However, as proton technology continues to evolve,
this is an active area of research.



1.2.2 Dose-effect relationships in local control

There is a clear relationship betweeroptate dose and tumor contr¢21,34t43]. Tumor control can be
expressed in terms of two main types of recurrence, namely biootednaind clinical recurrence. As
shown iffTable1.1][44], s large randomized trials have demonstrated tiratreasing he doseto the
prostate to 74-80 Gy with standard fractionation (1t8 0 ' Cmay improve biochemical reancefree
survival and diseasgpecific survivgl1,34136,42,43]

Tablel.1 Randomized controlled trials evaluating the efficacy of radiation dose escalation for prostate cancer
(source:[44])

Number of | Dose comparison

patients (Gy) Outcome

Trial

78% versus 59% freedom from biochemicg

MD Adersor{36] 301 70 versus 78 - .
or clinical failure

PROG 989[42] 393 70.2 versus 79.2 | 32% versus 17% @ar biochemical failure

43% versus 55% d@ar biochemical

MRC RTOR1] 843 64 versus 74 recurrencefree survival

Dutch[43] 664 68 versus 78 54% versus 64% freedom from failure
GETUG 0[34] 306 70 versus 80 39% versus 28% biochemical failure
RTOG 01235] 1532 70.2 versus 79.2 | 35% versus 20%\8ar biochemical failure

According to the International Commission on Radiation Units and Measurements,(t&te arefive

target volumes defined in radiotherapy: gross tumor volume (Gdlwical target volume (CT,\planning

tumor volume (PTV), and treated and irradiated volume. CTV represents the main target volume to be
irradiated in radiotherapy, receiving the preded dose. The CTV contains the primary tumor (called
GTV) and/or suglinical malignant tissue thdtaveto be eradicated in order to control the tumor. 3D
safety margins around CTV define the planning target volume (PTV). This target volume is taCcdinsure
dose coverage in case of int@r intra-fraction geometric variations.

Planned dose distributions are usually evaluated by means ofdasene histograms (DVHyhe DVH,

as show ifFigure1.6] is a graph representing the volume of a structure receiving a dose equal to higher
than a given valuécumulative DVH)It allows volumetric quantification of the dose distribution but it
does not provide apinformation about the spatial distribution of the dose within the organ or interest.

Regardless of the techniques and their degree of sophisticasiole effects related to the healthy tissue
irradiation during the treatment, are always observed, iartirular in a context of dose escalation.
Understanding the toxicity is therefore crucial to improve the reliability of the treatmbnbrder to
achieve local control and spare organs at risk, various recommendations have been proposed by
different cooperative groupg45]. The constraints recommended by the French grou } 1 %o [ Sp

des tumeursurogénitales (GETU&@re summarized jablel.2



Figurel.6 Representation of a Dos¥olumeHistogram (DVH)

Tablel.2 GETUG doseolume constraint recommendations for PTV af@ARSN prostate cancer radiotherapy

Volume Notation Definition

& uaP {r” Minimum dose to PTV must legher than 90% of the prescribed do
8P {w" The volume receiving at least 95% of the prescribed dose must be
=9 higher than 90% of the total volume

Target volume (PTV)

&o6:02r)U The average dose to 1d8r°must be always lower than 8By

Bladder wall (mm) 8, Owr" The volume receiving at least @ymust be lower than 50%

&o6s0yx)U The average dose to 18n® must always be lower than 2By

Rectal wall (7 mm —
wall ( ) 85 Otw" The volume receiving at least @/must be lower than 25%

For each femoral head, the volume receiving at leasGghust be

Femoral heads &o Ow lower than 5%

1.3 Radiation toxicity following prostate cancer radiotherapy

Radiationtriggersits therapeutic effect by damaging the DNA of actively dividing cells, causing division
delay, reproductive failure and interphase arregl6]. These consequences are more frequently
encountered in rapidly dividing cells. However, itymat only affect malignant cells, but also adjacent
normal tissue. Sideffects are usually secondary to fibrosis and progressive endarteritis that take place
in poorly oxygenated submucosal and muscular tissues, which mayddarther tissue scarrinft6].

Prostate cancer has a remarkably high incidetoeenortality ratio, meaning a large part of men
diagnosed with prostate cancer will die of other, unrelated, cauBadiation therapy does, however,
causea wide range of side effectthat can be severe and cause temporary or permanent damage to the
patient. As most patients survive earfyage prostate cancer after treatment, quakty-life (QoL)
outcome has emerged as an important factor to considetr@atment decisionsQoL refers to the



Ju% 3§ }( ] « v SE 3u v }weins add physifaldemotional and social functioning
[47].

Radiation toxicity can manifeg a number of different ways, as summarize impairing the
urinary, bowel and sexual functioninglZ § Eue+ {¢] S« v "3} /Adorisdgredequal and
exchangeable in this thesis. Sid#fects from radiation therapy are classified as acute or late. Acute side
effects occur during treatment or up to six months after its completion, and usually resolve within four
to six weeks. Late sideffects are observed from six months up to severdrg after completion of
treatment and may be permane8].

Tablel.3 Sideeffects of prostate cacer radiotherapy classified according to their frequency

Very Likely Less likely but serious
x Tanning or redness of skin in treatment ar X Injury to the bladder, urethra, bowel, or
X Rash, itching or peeling of skin other tissues in the pelvis or abdomen
X Temporary hair loss in the treatment area X Intestinal or urinary obstruction
x Temporary fatigue, nausea or diarrhea x Erectile dysfunctions
X Abdominal cramps x Rarely, rectal bleeding that requires
x Bladder irritation with a stinging sensation medication or burmg/cutting of tissues

to stop

In prospective clinical trials, physicians record patient symptoms at each foflovisit. Afterwards, the
toxicity events are graded using standard grading scales. These scoring systems include late effects
normal tissues(LENT) / subjective, objective management (SOMA) (LENT/SOMA); Radiation Therapy
Oncology Group and the European Organization for Research and Treatment of Cancer (RTOG/EORTC);
and the common terminology criteria for adverse events (CTCAE). An additiforalnefist be made
AZ v pe]vP E 8E}*% 3]A oC l}oo 3§ § 83l usS8zZ E }JE +« (E}lu %ZC
terminology. For this reason, prospective studies are the basis of almost all clinical guid8liads.
refers to the severity of the sideffect. The systems display Grades 1 to 5 with unique clinical
descriptions of severity for each sigéfect based on this general guideline:
- Grade 1 Mild; asymptomatic or mild symptoms; clinical or diagnostic observations only;
intervention not indicated;
- Grade 2 Moderate; minimal, local or noninvasive intervention indicated; limiting-age
appropriate instrumental activities of daily living (*);
- Grade 3 Severe or medically significant but not immediately-tifieeatening; hospitalization or
prolongation of hospitalization indicated; disabling; limiting ®alfe activities of daily living (**);
- Grade 4 Lifethreatening consequences; urgent im&ntion indicated;
- Grade 5Death related to adverse event.

(*) refersto preparing meals, shopping for groceries/clothes, using éfephone, managing money, etc; (**) refers to bathing,
dressing and undressinggltfeeding using the toilettaking medications, and not bedridden.



Toxicity can also be rated by the patients, and is important because physicians often underestimate the
Ju% 8 }( ]« ¢ v SE& Su v [K9] Bidéeffecdndtheir severity are measured using
standardized gestionnaires, which provide a moobjective assessment of general and disesgecific
domains [50] including weHlbeing, vitality fatigue, pain, general health status, global QoL, and life
satisfaction[51].

As mentioned, EBRT may cause urinary and gasistinal toxicities, as well as, sexual dysfunction.
Sexual function after RT for prostate canceatisimportant topic with serious impact on patient QoL.
Although the specific mechanism by which radiation therapy reduces erections is uncertain, it has been
suggested that radiation therapy does not damage the corporal nerves, but rather it causesavascul
damage[35]. Small bowel or rectal irritation can manifest as abdominal cramping, diarrhea, fecal
incontinence, prodgtis (urgency, tenesmus), or rectal bleeding. Urogenital complications include urinary
frequency/urgency, dysuria, urinary obstruction/retention, hematuria, urinary tract infection, and
incontinence.

Understanding the dostoxicity relationship is a cerdf question for improving treatment reliabilityf
radiotherapy treatment This thesisvork is exclusively devotetb investigating urinary toxicity and is
describedn the followingparagraph

1.3.1 Genitourinary (GU) toxicity

Bladder, urethra, and therinary sphincter are suparts of the lower urinary traclfF{gure1.7) and their

injury can result to manifestation afrinary symptoms. Radiatieimduced injury of the urinary tract is a
complex and debilitating complication and can lead to significant morbidity for the patient. The
symptoms may be mild or severe, shitfiting, or progressive and may develop gradually or suddenly.
The pathophysiology afrinary radiation injury is still not completely understodthe lesions are diverse
pathologically including fibrosis, necrosis, atrophy, and vascular damage. The consequences may include
a contracted and defunctionalized bladder, radiation cystitis wigmaturia due to breakdown of the
mucosa secondary to loss of supporting submucosal blood supply, ureteral and urethral strictures,
sphincteric deficiency, as well as urinary fist(de52,53]

In the literature,the rectum is an extensively studied OAR, and dadame predictors of late Gl toxicity

are established. These are commonly incorporated into radiotherapy protocols in clinical practice.
However, for urinary toxicity, there is a significant paucity ofwdeolge [54]. On top of that, he
incidence of moderate/severe urinary toxicitieshish play a major role in QoL, increased, as a
consequence of more aggressive treatmeid$,55] With the introduction of higkldose IGRT, the
incidence of gastrointestinal toxicity has reduced to approximately 1% compared to the increase about
10% for genitourinary toxicitjp6]. This is speculated to be related to the fact that in almost all cases the
bladder neck and prostatic urethra are inevitably included in the-digge regior{57 t60].



Figurel.7 Anatomy of urinary bladder
(source: http://droualb.faculty.mjc.edu)

Indeed, existing evidence support that regions of the bladder neck, in particular the trigone, are
associated with urinary toxicity. Another critical structure is the urethra, as it passes through the
prostate and it is unavoidably irradiated with the tbtarescribed dose. In the literature of prostate
cancer brachytherapy, there is strong evidence that sameary symptoms are related to urethra
damage[61t63]. However, such an eftt has never been investigated in exterbalam radiotherapy

since this structure is not visible on CT images. Indeed, as it is shifigune1.8] the prostatic urethra

and the surrounding prostatic tissue share similar physical characteristics and the low contrast of the
image does not allow the distinction of the two structurékwever, giantifying the delivered dose to

the urethra is crucial as itay improve our understanding of urinary toxicity.

Figurel.8 CT scan in sagittal (left) and axial (right) view and organ deligneations



Overall, genitourinary toxicity is currently perceived as the most relevanttienmg problem following
prostate radiotherapy and a major factor determining ptstatment QoL [64]. Given its growing
significance, urinary toxicityds been poorly investigatetiinraveling the underlyindosevolume effect
relationship and identifying patients at higher risk of toxicity, appears as a cornerstone in further
definitions of constraints for personalized treatment planning.

In the next setion we will present the different methodologies thallow the exploitation of dosimetric
data andhave been employed in this thesis for developing predictive modalsimdiry toxicity.

1.4 Predictive models of toxicit y: state of the art

Research groups around the world have attempted to study the potential of treatmatithizationand
individualizatiorthrough the use of knowledge of the associations of treatment, clinical and dose factors
with specific sideeffects. It is generally ackmwledged in these studies that radion-induced side
effects are associated with a large number of factors that differ for each individual patient, with a great
difficulty of inferring these complex models directly from current radiobiological knowledge.

1.4.1 DVHbased models. Global Organ Analysis of DoseEffect Relationships

The availability of individual,-@mensional, dosimetric informatiopermitsthe quantitative assessment

of dosevolume relations for specific endpoints by investigating the corm@fatibetween dosevolume

data and toxicitydata. Parameters extracted from DVHs at the treatment planning stage include dose
that a tissue received and volume irradiatells explained before, th®VH is represented as a non
increasing function of the doséat matches any given dose value with the fraction of the organ volume
receiving at least that dos®VHs aressential decisiosupport tools for the evaluation of radiotherapy

treatment plangFigurel.9).

(a) (b) (c)
Figurel.9 lllustrations of DVH (c) calculated for PTV, bladder and rectum from manual otgdineations(a) and planning
dose distribution (b)

Normal tissue complication probability (NTCP) models attempt to condense the-vdhsee
information into a numier that expresses the risk a certain toxicity. Most NTCP models are
phenomenologicaind have the advantage of being characterized by few parameters (typically 3). There
exist many different approaches to model NTCP in the context of radiotherapy oescamith Lymart
KutchertBurman (LKB) modf85,66]being the most commonly employed
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wherei is thebin of the DVHorresponding taelative volume Rthat receivesdose & &g 4iS the value

of dose corresponding to the 50% probability to indum®mal tissue complicationhe parameter! is
inversely proportional tahe slope of the doseesponse curve andhe parametern accounts for the
magnitude of volume effectand takes values between 0 andFbr serial organs, such as the spinal cord
or the rectum, resulting im' 1, means that toxicity is mainly linked to higloses or hot spots. For
parallel organs, such as parotid, lung, liver and kidngsl, means that toxicity is associated to the mean
doseto the organ

Even if the NTCPased models are common practice to evaluate the best plan, the values of the
parameers used by the model are oftequestionable For instance, then value of the NTCP model,
although relatively well identified for the rectalxiity (range: 0.080.24), then value for the bladder is

still far from beingestablished Severastudies suggst bladder as &erial organ57,58,67t72], since
side-effects, mainly urgency and obstruction, were related to the high dose delivarspecific bladder
parts; primarilythe trigone region. On the other hand, someudies found bladder as a mideserialt
parallelorgan because severe urinary toxicity was related to both low and high doses delivered to the
whole bladder [73175]. The QUANTEC (QUAntitative Normal TissuE models in the Clinic) investigation
[76] concludedprudently that both maximum dose and a relatiyelarge irradiated bladder volume
~fi9s u C }EE o3 AJ3Z o & S}A).1SC ~'E H i 038§ ZdK'

Given the inconsistency of available data concerning radiatidnced toxicity, it is crucial to develop
robust models with superior predictive performancBimensionality reduction, feature extraction
strategies together with machinkearning methodologis aiming at exploiting more available
multimodal data have emerged to overcome some of these issues, exhibiting promising prediction
capabilities. Among them, Principal Component Analysis (PCA) was proposed to reduce the
dimensionality of the DVH datand quantify the variability of DVH shag@d7]; functional data analysis
[78] enabledthe representation of the DVH as a curve rather than discrete measurements. Other
machinelearning methods such as artificial neural netwof[k9,80] together with genetic algorithms
and comparisorwith support vector machinef1] or random forest[82] have also been investigated,
reporting competitive predictive resultdn the context of urinary toxicity prediction, a review and
comparison okixdifferent machineearning techniques was presented by Yahya 88|, nevertheless
without any consensus on thigest algorithms, as #h predictive power of the models was modest and
endpointdependent.



1.4.2 Beyond DVH:Local Analysis of DoseEffect Relationships

The DVHreduces the 3D dose distribution within an organ to a unidimensional and discrete
representation of the dos@olume relationshipSeveral limitations arise when only scalar values or DVH
are used within predictive models: i) A DVH is limited to a singjangiii) 3D dose distributions may lead

to the same DVH, iii) the information on the spatial distribution of dose is lost by merely considering the
organ volume thus ignoring the local variations and the potentially heterogeneous-argem
radiosensitivly, iv) correlation may exist between adjacent DVH biare broadly,urinarytoxicity is a
complex multiparametric phenomenon that may involve structures at different scales, frororgan
parcels to large structures or regions whose response radgitionally depend on individual
radiosensitivity. These factors may explain the limited prediction capability oftiagétd model$34].

Although these models are continuously being improved and are bringing new insights into the
understanding of dose volume effects from DVHSs, the data collected through the whole radiotherapy
treatment (clinical history,umor stage, multimodal imaging, organ delineations, 3D dose distribution,
intra-individuals changes, etc.) are very rich and on most occasions not thoroughly exploited. The
planning dosalistribution, for instancecan be considered as 3D function presding a large variability
across the treated populations and is strongly linked to the individuals anatomy which in addition may
change betweesfractions sometimes at the expense of the predictif8b,86]. With the steadily
increasing computational capabilities, exploiting information from more available data within integrative
approaches becomes nowadays feasible.

Going further beyond the concept efhole-organ DVH,recent approaches aim at invegtiting more
localized doseoxicity relationships by analyzing the dose at lower spatial scales. For example, by
analyzingdosimetric parameters of the lowedsl anatomy,it has been shown that dose on some sub
regions correlated better with specific toxieis. This is the case of the works undertaken by Stenmark et
al. [87] dividing the rectum in three different regions, or othauthors by demonstrating anatomical
dependence of specific Gl toxicitif8 t90]. Likewise, forurinary toxicity [58] by separatelyanalyzing
DVHs of the whole bladder, bladder wall, urethra, and bladder trigbtleer models have also sought to
geometrically represent the 3D dose distribution in a single coordinate system via a apatialization

for a joint analysis of dose at the lowest sampling sc@dexel and voxel levels). Different studies appear
in the literature, either by building a parametric mapping via an intermediate spherical /cylindrical
coordinate system such as the DSM in p1], in 3D[57,92] or via 3D anatomical nerigid registration
(DVM)[93,94]

One of themajor advantages of the pikeandvoxelwise analysg is that no prior assumptions are made
regarding the location of regns correlating with toxicity. Althouglthese methodologies are still
emerging, lowspatial scaleanalyses of the dose distributiom different organs,have allowed the
unravelling of the local doseffect relationship across a population at each singkelpi voxel With this

kind of analysis, the implication of multiple structures was identified, such as in the head and neck area
[95], or in the heart in patients treated for lung cang@6].



These methodsan potentiallyincreasethe prediction capabilitiesand improve the patientspecific
treatment planning [94,97] New planning systems are steadily moving frgiobal DVHbased
constraints applied as suggested by international remmendations and available on the commercial
TPS towards the definition ofspatially localized3D patientspecific constraints as part of the TPS
optimization. In the following sections we describe the methodological details for the construction of
DSMsand DVMs and we discuss the challenges that these methods are facing.

1.4.2.1 2D Dosesuface maps (DSM) a 2D to 3D mapping

A DSM is a mapping of the 3D dose to a 2D representation of an organ wall emlsisucted by
virtually unfolding the organ in a slice wisanner. Different algorithms exist for generating DSMs from

the 3D dose distributiorf91,98,99] To build the map, a 2D image is constructed and a parametric
mapping is established between the 3D coordinate system of the organ wall and the 2D image. Thus,
each pixel irthe 2D image corresponds to a portion of the organ wall with the local dose computed, for
instance, by interpolation at that 3D point. By construction, these DSMs reflect the dose of the organ
surface A dedicated module of VODCA (MSS Medical SoftwardiddsiuHagendorn, Switzerland)
allows the generation of DSMs from organ contours and the calculated dose distributons.
representative output of this software is shownRigurel.1QFigurel.10|

Figurel.10 Bladder dosesurface map (DSM) extracted fromQDCA software in 3D (a) and unfolded in a 2D plane (b)

The DSMs have been exploited in several ways to show relationships between toxicity and 2D local dose
distributions.Via extractiorof geometric features from istose curve$100t103]or through direct pixel

wise comparison§s0,104t107], several studiefave identified regions that better discriminate patients

with and without toxicity. More recently,deep learningwas alsoapplied to study dosimetric effects

based on a convolutional neural network modeleixploit rectaldose distribution on DSM407].

1.4.2.2 3D Dosevolume maps (DVM): a 3D to 3D mapping

The 3D DVM stands upon the 3D intieidividual spatial alignment, allowing for the subsequent dose
propagation to a common coordinate system. The spatial alignment may be obtained via a parametric



representation of the anatomy in a spherical or cylindricalrdowate system[57,92] or can be more
precisely computed throughon-rigid registrationmethods[93,108]or tailored to a particular anatomy
[109]. After this interindividual normalization, voxabise statistical tests are performed on the 3D dose
maps resulting inke localization of regions where statistically meaningful differences between or within
groups may existHence, organ subregions are computed as the clusters of voxels within the organ,
where significant dose differences have been fouAd.example of DVNs shown ifiFigure1.11]with

color scales representing the dose distribution ranging from the high dose (red) to low/zero dose (blue)

Voxelwise comparisons in a common frame of reference represent a reliable strategy to reveal local
differences across individuals within a whole volume at low spatial scales. These methods are inspired by
the voxetbased morphometry110]. Applied to toxicity studies, the works undertaken in this field have
allowed the identification of more predictive subgions within the organs in sewarlocations, such as

the rectum for gastrointestinal toxicity in prostate cancg¥3,94] in the heart and lung for
corresponding toxicities in thoracic canc6,111] andin the cricopharyngeus muscle and cervical
esophagus for dysphagia in head and neck caf@®r A 3D voxebased approach has never been
applied to explore dosimetric patterns associated with urinary toxicity.

Figurel.11 A 3D dosevolume map (DVM) of the bladder and the urethra

[Table 1.4|summarizes some representative works in this field where both DSM and DVMs have been
used in several clinical locatiofisl2]. As mentioned before once the doslistribution is normalized to a
single coordinate system, which is central to this methodology, a comparison of extracted features or a
pixel or voxelvise analysis can be performed.

1.4.3 2D DSM and 3D DVM Methodological Challenges

Pixel/ivoxelbased methodshare several methodological aspects as they require the dose to be mapped
to a single coordinate system and thus different steps must be performed for the comparisons to be
anatomically meaningful. These steps, as illustratdBigure1.12] include: (1) the spatial normalization

of a population of individuals in terms of their anatomy to a common coordinate system; (2) the
mapping of dose distributionsiccording to the anatomical transformation obtained; (3) a reliable
methodology to perform statistical analysis of the local deskimeeffect relationship[112].



Tablel.4 Summary of works using 2D Doserface maps (DSM) and 3D Desaglume maps (DVM) for toxicity prediction
H&N (Head and Neck ); NRR (NRigid Registration Gl(Gastraitestinal Toxicity)GU (Genitotinary Toxicity) sudieson GU txicities are
shown highlightedadjusted from{112].

Reference Model| Cancer Organ/ Spatial Normalization / Dose Pixel/voxelwise analysis
location toxicity mapping
(Munbodh et al. 2008] Prostate Gl Conformalmapping Geometric features
fﬁ;ttr:rr;tsl'zzgllzl)’ Prostate Gl Geometric Dose surface m Geometric features
(Buettner et al. 2009) Prostate Gl Geometric Dose Surface m Geometric features/ Neura
networks
(Palorini et al2014) Prostate GU | Geometric Dose Surface m Geometric features
(Wortel et al. 2015) | o | Prostate Gl Geometric Dose Surface m Dose surface features
(Palorini et al. 2016) DSM| prostate GU | Geometric Dose Surface m Pixetwise comparison
(Improta et al.2016) Prostate GU | Geometric Dose Surface m P|xe+w_|se companson/
spatial descriptors
(Calyn et al. 2017) Prostate Gl Geometric Dose Surface m Spatial features
(Yahya et al. 2017) Prostate GU | Geometric Dose Surface m P|xe+w_|se companson/
spatial descriptors
(Xin et al. 2017) Cervix Gl Geometric Dose Surface m Deep learning
(Heengigen etal. Prostate GU Geometric 3D mapping Voxetlwise comparisons
(iad et al. 2012, Rao H&N Trismus NRR Voxelwisecomparisons
al. 2012)
(Coloigner et al. 2015 Prostate Gl NRR ICA for classification
(Chen et al. 2011) PCA for feature extraction
(Fargeas et al. 2013) Prostate Gl NRR and classification
(Fargeas et al. 2015) Prostate Gl NRR Tensor decompositions
(Ospina etl. 2013) Prostate Gl NRR Tensor val_ue Qecor_n_pos_mo
for subregion identification
(Liu et al. 2015) Prostate Gl NRR N.orrr)egatwe mat_rl_x .
3D factorization for Classificatid
(Acosta et al. 2013) | pym| Prostate Gl NRR Voxelwise Comparisons
Voxeklwise comparisons
(Drean et al. 2016) Prostate Gl NRR on different templateg definition of a generic 3D
patient-specific region
Emgw::::gm 2: Z:' ;813 Lung Heart NRR Voxelwise
(Palma et al. 2016) Lung Lung NRR Voxetwise differences
(Monti et al. 2017) H&N dyAsglﬁaegi NRR Voxetlwise comparisons
F:r?gl:ité?jn Voxel based longitudinal
Avanzo et al. 2017 Lung NRR comparison of CT density
lun
ung dose
injury




Figurel.12 Methodological aspects of voxel/pixel based models
(source:[112])

1.4.3.1 Spatial normalization and dose propagation to a common coordinate system

Spatial normalization is the process of obtainingSE& ve(}E&u S]}v A v §Z v §]A v ]
coordinate system and the common coordinate system leading to meaningful correspondences across

the population. This is a key step in pixel/ivoxel wise analysis since dose comparison results rely on
anatomica alignment accuracy. In the case of DSMs, the mapping is generated by the direct relationship
between a 3D coordinate system and the 2D map. After thé2BDrelationships are obtained, the dose

is propagated and interpolated, yielding a 2D image of dosthe unfolded organ.

The geometric correspondences may be extended to 3D by simglydingthe third axis (i.e., R in
cylindrical or spherical coordinates) to build a 3D dose map. This was done in Heemsbergen et al. and
Witte et al.[57,92]where the dose mapping relies on a parametric representation of the anatomy in a
spherical coordinateystem and mapped back again to a single anatomy to perform weigsel analysis.

Spatial normalization may also be performedron-rigid registrationbetween the population data and
individual template. In that case several questions arise, such as tetieal of the most representative
template and the most reliable int@ndividual registration method. This appears as particularly difficult
given the high inteindividual anatomical variability (organ volume, artefacts, presence of gas, air, etc.)
and the low contrast of soft tissues if CT scans are used for registration.



In the setting of population analysis, a mapping error may leadualid results in statistical analysis. In

the presence of a high dose gradient, which is the dasenost OARs snall shifts in registration may
result in large differences in dose on the reference téaga Evaluating the accuracy of interdividual
mapping is particularly complex because of the lack of ground truth. In the literature, different measures
have been poposed to estimate intrandividual anatomical mapping accuracy and transformation
validity [113,114] Dice similarity coefficient and Hausdorff distance are among the mostoory used
evaluation metrics. However, they only reflect overall geometric overlap between transformed
structures and do not show local mapping errors within the struct@igen that a high overlap score
does not necessarily imply good pototpoint maping [115], Drean et & [109] assessed the mapping
accuracy not only from an anatomical view point bugoafrom a dosimetric ondyy introducing a new
metric to estimate the organ overlap reiae to dose distribution (doserganoverlap DOQ. This metric
measures the ratio between dose distributions on the intersection and uniagheotonsidered region.

The DOGQs a value between 0, when structures have no voxels in common, and 1, when the dose to the
structures is identical. In practical terms, the score penalizes anatomical difference by taking into
account the dose that would be mapped onto theferene structure. Dice score, Hausdorff distance
and DOOscorehave also been used to assess spatial normalization in recentlhaset! toxicity studies
[95,111]

1.4.3.2 Pixel/Voxel-wise analysis in a common coordinate system

After 3D doses are spatially normalized, several comparisons can be performed irortiraon
coordinate systemVery often the incorporation of spatial descriptors improves discrimination of multi
variable models including dosimetric and clinical parame{&4%101,105] The descriptors may be
computed after extracting isodose curves fostance[100]. Severaltaidies found that toxicity is related

to the shape of isodoses as well as dose covefh@g]. Comparisons of dose average at the intragroup
level (with and without toxicity) are frequently investigated with adutithl tests seeking for statistically
significant differences. Either parametric or nparametric voxelvise hypothesis tests can be
performed, depending on the data. This is the most frequently found case, i.e., where pixel/voxel two
sided ttests and theresulting pvalues map [f-value < threshold valuevere used for delimiting the
regions better discriminating between grouf©,93,94,116]

Caution must be taken however because of the multiple comparison problem, arising when performing
thousands of simultaneougsts that may be correlated which is the case in vaxige methods. Those
issues have been largely treated in vekaked morphometry studies. Several correction techniques
exist such as Bonferroni, false discovery rft&0,117] thresholdfree cluster enhancement (TFCE
methods [118], or permutation tests[119], which have been implemented in several of the
aforementioned toxicity studie$106,111,120] Permutation tests allow inferences while taking into
account the multiplicity of tests as described121]. The TFCE offers an interesting spatial characteristic
as it takes advantage of neighborhood information to increase the belief in contiguous areas of the
considered signal introducing spaiticoherence to the findings. Permutation testing can also be coupled



to TFCELn this thesis, the multiple comparison problem was addressed by implementing the method
proposedby Chen et a[119], as will be described in Chapter 4.

In the next section we wifiresentthe motivation andobjectives of the thesis.

1.5 Motivation and thesis objectives

As already explained, although the dose is planned and delivered to the target following
recommendations aimed at maximizing control and diminishing toxicity, th@saoding healthy organs
(rectum, bladder ...are oftenimpaired from irradiation and present adverse evenfs. date, urinary
sideeffects are not well understood, in particular how they relate to underlying dademe
characteristics.In a review by Fiino et. al. [45], it was highlighted that 3D doselumeresponse data

for the bladder are still lacking.
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Although some studies found a relationship between urinary toxicity and bladder dose
[57,58,72,73,122,123]others did not find any significant correlatiph24,125] No general consensus

exiss among the studies reporting positive finding$his lack of homogeneity in the reported
relationship between urinary toxicity and bladder dose can be attributed to several fdd@8$ such

as

% The high variabity of bladdervolumelimits the capability to determine the actual dose received
by the bladder during the treatmen€onsequently, the planning dose may not be representative
of the actual dose delivered because of the high interfraction bladder voluarations
[127,128]

¥ Urinary symptoms are multifactorial and depend on patispéecific clinical parametef§7,129t
134], individual biological patternd.29,135t137]and dosimetric parameters.

% Urinary toxicity events may occur late after RT, in contrast to late gastestinal toxicity which
generally reaches a plateau after 3 years, suggesting that a longer fgtioiw required to
properly estimate late urinary toxicify. 33].

¥ Specific sulbegions of the bladder may present different radiobiological behaviors/sensitivities,
which may have different impacts on distinct sieféects[57,58]

Aboveall these it is important to stress thatcurrently,all the studiesf urinary toxicity followingeEBRT
havebeen focused on the dose to thehole bladder orparts of it, while the potential involvement of
urethra damage due to radiation remains largely unexplofiéte main reason fahis is the lack of tools
to identify this structure on the planning CT images.

Going beyond the globalyhole-organbasedmodels towards more local, stdrgan approaches, this
thesis aims to improve our understanding of radiatioduced urinary sideffectsand ameliorate the
prediction of urinary toxicity following prostate cancer radiotherapy. More specifically, the objectives of
this thesis are:



1. To assess the contribution of urethra damage to urinary toxicity.

To evaluate the involvement of specific biked and urethra suiparts in urinary toxicity.

3. To investigate the potential of further increasing prediction by exploiting data through new
machine learning methods.

Anoverview of the thesis structure is illustrateqrigurel.13

N

Figurel.13 Schematic overview of the thesis structure






Part I

Quantifying the dose to the prostatic urethra



2 Segmentation of intra -prostatic urethra from planning CT
images to quantify dose distribution in external

radiotherapy

In this chapter a methodology is proposed for automatically segmenting the-pndsdatic

urethra on the planning CT imagief EBRTreated patients with the objective to assess the
involvement of this structure in urinary toxicity. First, the entire framework of the -atlds-

based segmentation method is detailed, from the atlas construction to the final urethra
segmentation. Then, th u §Z} [ HE C ]+ Aop s A]JS8Z E % 3§ 3} §:
HE SZE Vv Yu% E Al3Z A]*3]vP pyEE}P § u} oe (}E <35]Ju §
the DVH in the urethra is computed @anpopulation dataset irorder to quantify the dose

receved by this structure.

The content of this chapter hagen published in the journal Radiotherapy and Oncology.

Acosta OMylona E Le Dain M, Voisin C, Lizee T, Rigaud B, Lafond C, Gnep K, de CreXisieatRis-based
segmentation of prostatiarethra from planning CT imaging to quantify dose distribution in prostate cancer
radiotherapy Radiother. Oncol. 2017;125:48199.



2.1 Introduction

Although there is evidence in prostate cancer brachytherapy that some urinary symptoms are related to
urethra damage[61t63] this has not yet been shown in exterdaam radiotherapy. Quantifying the
delivered dose to the urethra may therefore improve our understanding of urinary toxicipt least

some of the related symptoms if we can accurately identify the organ from the planning CT. Thus,
segmenting the urethra from the planning CT in order to assess the dose it receives, would pave the way
for further studies on urinary toxicity pdiction considering both the bladder and urethra.

To our knowledge, a formal segmentation of the iama@static urethra from CT images has not been
addressed yet. However, indirect surrogate models for estimating the urethra position have been
previoudy proposed138,139] They are nevertheless based on empirical consideratiotisrespect to

the prostate midplane. Segmenting the urethra from CT scans is fairly challenging. Not only is there
already poor contrast between soft tissues like the prostate, bladder, and rectum, thus rendering
segmentation difficult for planning, buthe intra-prostatic urethra itself is completely invisible. These
issues restrict the use of classic intendigsed segmentation methods. Atthased approaches, widely
discussed in the literaturgl40t146], are common methods for organ segmentation. In ablased
methods, precomputed egmentation in a template space is propagated onto the image to be
segmented via spatial normalization (registration) as depict¢Blignre2.1| Several individuals from a
population can be used to constitute the atlas (naltias). This allows to overcome the iniaedividual
variability and registration issues. Previous works have shown the benefits of combining multiple atlases
in improvingsegmentation accuradyt40,142,143,147149].

In this paper, we propose a weighted MuftilasBased Urethra Segmentation strategy, herein called
MABUS, from planning CTs. Our goal is to provide a method that could be applied to a different set of
patients receiving externddleam radiotherapy in order to assess the dose to the urethra and reldke wi
toxicity effects.

2.2 Material and methods

This study is divided into three main parts: i) a description of MABUS, the-atlattbased urethra
segmentation method which illustrates the whole implemented framework, from the atlas construction
tothefinal u@E SZ&E + Pu vs 8]}vU ]]* 3Z A op 3]}v }( 8Z u 8Z} [- HE C /
ground truth in a leave one out cross validation framework, and comparison with the existing surrogates
proposed by Bucdil38] and Waterman139] and finally iii) the computation of the dose received by

the urethra in a differat series of patients with prostate cancer IMRT which aims to introduce the way in

which the method may be used in toxicity studies.



Figure2.1 Atlas-based segmentatioriramework

2.2.1 Multi -atlas based urethra segmentation (MABUS) method description

In general, as depicted|Figure2.1| atlasbased segmentation relies on the registration of a template

to the queryimage , in order to obtain dgransformation , which maps a set of generated labels

onto . If the mapping is anatomically correct, the yielded segmentation is accurate and
anatomically meaningful. Mulif\tlas based segmentation builds upon this idea by extentie number
of atlases thereby reducing the interindividual variability issues.

Following this multatlas idea, theproposed MABUS was devised ar@h be divided into seven steps as
depicted inlFigure 2.2 In summary, an atlas dataset was first built from manuddijneated CTs
including the uretina, thanks to the presence of aminary probe (Step 1). The query image to be

segmented was then rigidly aligned with the same template as the atlas database (Step 2) and
features were extracted (Step 3). By comparing the features, the atlases were ranked

according to their isnilarity to the query image (Step 4). The labels from the topn=10

ranked atlases were then propagated to the query image using an accurateigidrregistration
method (Step 5) designed to match the prostate anatomies. Findily/,urethra segmentation was
obtained by combining different labels in a weightiedion process (Step 6), followed by centerline
detection (Step 7).The image segmentation methods were developed in C++ usintnsight Toolkit
libraries (ITK)150]and python open source technologies.



ATLAS BUILDING FRORAINING DAT/SIEFL)

For the atlas building, we used an initial series of CT scans (512x512 0.63x0.63mm axial pixels and 3mm
slices) from 55 patients treated for localized prostate cancer with letizfe brachytherapy. All the
patients were fitted with winary catheters, enabling urethra segmentation. The prostate, bladder, and

urethra were delineated for each by the same radiation oncologist, constituting the set of atlases
with the label

Figure2.2 Overall proposed framework of multatlas based urethra segmentation (MABUS) method

TEMPLATE SELECTIOR RIGID REGISTRAT({SREF2)

A first average patient was selected as a commaoordinate system. This patient was the closest to
all others in terms of prostate volume. The whole population was then rigidly registered to this patient
by aligning the prostate centroids followed by a fine alignment of bony anatomy. This enabled

geometical descriptors to be generated and compared in the same common space. The central lines of
the manually delineated catheters wecomputed by extracting the@entroid at each slice.



FEATURE EXTRACT({SREF3)

A simplified geometrical description ttie anatomy (prostate/bladder) was generated to characterize

each individual. Hence, the obtained vector describes the individuals in terms of i)

prostate volume ii) distance between prostate and bladder centroids, iii) the extep$itire bladder in

the anterior posterior direction, and iv) the orientation of the bladder with respect to the prostate
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directions. The descriptors wethen normalized across the population with-acore.

QUERY IMAGE AND ATBERECTIQISTER)
For an image to be segmented, théwo previously described steps (2 and 3) were applied as for the

training database. Thus, rigid iisggation to the common template and characterization yield for

the vector , exhibiting similar features as computed for the atlas dataset. Following z
score normalization, the Euclidean distances between features enabled the individuals

from the atlas to be rankedn terms of similariy to the query image . In a multiatlas strategy, only

the top (=10) ranked atlases were selected as the closest to the guemge , with all remaining

atlases discarded. Since their configuration is similahta of the query image, the urethra is expected
to lie inside the prostate in a similar position. The number of atlase$Q) was selected as a tradeoff
between computational time and optimized results in a leavne-out segmentation process in which
thetop 1,2,..,n atlases were tested.

NON-RIGID REGISTRAT(SREFS)

In this step, the labels from the n most suitable previoustgelected atlases were nenigidly
propagated to the prostate of the query image. To this end, the prostates from the best atlases were
non-rigidly registered to the prostate of the quemnage . We applied adplacianbased registration
method, based on a previous wofk09], but here only cosidering the prostate. In our implementation,
instead of using the central line, we selected the centrdbchf the prostate for computing a scalar field

QTaJkV, by applying Laplace's equation inside the prostate volume, demarcated by an external
boundary (s, sdere the prostate surface, and an internal boundary, here the prostate cent@lds:

. 0°Q_0°Q_0°Q 1)
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where QTaJa, L Q,&df 1 TAJV, D (5,sand QTaJA, L Q,5if 1 TAJV, D % ,lwhere [Q,s8Q,5 DO.
This scalar fieldi provides a structural and normalized descriptor to be exploited in a Dethassd
non-rigid registration frameworkThis step yields a 3D deformation field (DF) as a set of 3D vectors

describing the voxelise deformaion of each of the atlas images to . The binary labels

from the selected atlases were then propagated to the query image space using the

calculated transformations L & ( U6e ; y@rd nearesteighbor interpolation in order to preserve the
binary nature of the propagated labels.



WEIGHTERABEL FUSIGSIEFG)
Once the labels were propagated to the same coordinate system, namely the prostate of the query

image , the raised question was how to fuse all the warped labels to yield the best

segmentation resultDifferent decision rules may be appliesiich as a simple votiagle [151], a
weighted decision based on similar[t}s2] or a Bayesian approach, such as the simultaneous truth and
performance level estimation (STAPLUE}9]. We opted for the weightedabel fusion approach,
resulting in the following probability map:

(2)

with the weightsw derived as a function of the Euclideatistance between geometric features,

, giving

®3)

Thus, the contribution of each nenmgidly propagated label to this map heavily depended on the
similarity between the atlas and the query image.

CENTERLINE AND URBYBRTECTIQSTEFY)

A 50% threshold was applied to the probability map , followed by a centerline computation as a 3D
cubic spline curve of equidistant points. This resulted in a smooth fatlescribing the urethra within
the prostate. Considering the urethra to be a tubdlite structure, the final urethral region was

obtained as a 5mm zone arourig.

2.2.2 Evaluation of the accuracy of the segmentation method

Leaveone-out cross validation was performed to evaluate the accuracy of the proposed method. Thus,
each of the individuals from the atlas database was iteratively selected as query imagd the

resulting segmentations compared with the cathetpositions. For our purposes, the central path
described by the catheter was considered the ground truth.
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(CLD) was devised to assess the differences mtwiee obtained discretized urethra patfjand the
catheter central lineé, jas follows:
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where Prepresents the@opoint of the urethra central lineglist (&4 i ;is the Euclidean distance of
this point to the catheter central line, ankl is the number of point§Figure2.3]illustrates the way in



which the CLDwas computed from His distance mapThis score was computed for the whole
segmentedpath &, as well as for each region produced after splitting the central path ground truth into
three equivalent segments (from the apex to bas&he percentage of the points froriglying inside a
region around the centerline ground truth (PWRithin 3.5 mm and 5mm radius were also quantified.
For comparison with the existing surrogatege implemented the methods proposed by Buft3s8]
(deviated surrogate) and Watermgii39] (centered surrogate) which are based on the geometrical
center of the axibmidplane.

2.2.3 Dosimetric study: assessment of the dose received by the urethra in prostate
cancer IMRT

A second series of 95 patients having received 78Gy IMRT for prostate batween July 2012 and

June 2015 were analyzed. The target volume included the prostate, sparing the pelvic lymph nodes.
Target volumes and organs at risks (bladder, prostate) were delineated on CT slices according to the
French GETUG groupcommendations[153]. IMRT combined with imagguided radiation therapy
(IGRT) were used to deliver a total dose of&#8for conebeam CT or 8Gy for fiducals to the prostate

over eight weeks at 2Gy/fraction. The pelvic lymph nodes were not irradiated. Bladdeivolosae
histograms (DVHs) complied with GETUG recommendations, n&mne k0%

The proposed segmentation method was applied to patients treated with IMRT. Manual delineations of
the prostate and bladder were used to automatically segment the urethra within a 5mm diameter along
the centerline. The dose within the urethra was assedserh the 3D planning dose distribution and
compared to the dose to the prostate. A comparison betwdake prostate and urethra DVHs was
performed using a Wilcoxon non parametric test.

2.3 Results

2.3.1 Atlas construction

The interindividual variability found in tens of feature descriptors was very high.

The featues represented in average 62615 c for the prostate volume, 434 15 mm for the distance

between prostate and bladder centroids, 3%t 19mm for the bladder extension in the hHaontal/y-

axisav RAOXd F ioXA ~"F OMXAi{A (JE $Z VvPo « « E] ]vPpdiestho 3]A oC
and lateral directions of the bladder with respect to the prostate centrifigjure 2.3] displays the

distribution of the interindividual normalized simily across individuals in thescore space.



Figure2.3 Inter-individual distance map

2.3.2 Urethra segmentation accuracy

> A }v }u3 @& -pose v }u% E]e}ve A]3Z t § Eu[Fieredd| Inavefhge E +Z}A
MABUSoutperformed the other two surrogate modeliglobally and by thirdsGlobal CLIvas 3.25+1.2

with MABUS, whil&.11+1.96 with Waterman and 3.91+1.46 with Bupmethod (p<0.001). In addition

by thirds with MABUS the computed Céddres were 3.67 £1.66 mia.52 £1.58 mm and 3.01 +1.76 mm

for the top middle ad bottom thirds respectivelylLikewise for the portion of the central line (PWR)
within the 3.5mm and 5mm radius regions: 0.53+0.29 and 0.83+0.18 respectively for MABUS with a
maximum of 1 in both case®Vith Waterman we obtained 0.32+0.19 and 0.53+0.17 (p<0.@®dwith

Bucci 0.51+0.22 (p=0.5) and 0.74+0.21<(p.01) [Figure 25| depicts those resultsThere were some
individuals for whom the segmentation was not as good as expected. Those outliers appear as dissimilar
to the remaining individuals as showr{Fiigure2.3] Only 3 segmentations out of 54 presented a score
inferior to 0.5 in the 5mm region.



Figure2.4 Centerline distance (CLD) definition and leave one out validation results of the proposed method compared with
previously proposed surrogate models

Figure25W & vS P }( * Pu v3 ) lyisg@thihwa radius (PWR) of 3.5 or 5mm around the ground truth
vs Eody -~v



[Figure2.6]shows six examples of resulting segmentations overlaid on theuaily delineated catheters.

Top row illustrates a comparison of the proposed method with the surrogate mffdglsre 2.6]a)
Waterman, b) Bucci and c)ABUS. Low row shows different results with MABUS on different individuals.
It can be observed the complimentary information brought by the two different scores. For instance, in

case ofFigure2.6|d) the CLD was 3.4mm and the whole centerline was within the first 5mm region

(PWR). For c¢) CLD=2.8mm. Although only half of the points where within the first 3.5mm, the whole
centerline was within the first 5m.

Figure2.6 Examples of urethra segmentations (white) overlaid on the actual urinary catheter (red).
Top row: Comparison of MABUS with two surrogate models. Low row: .different results for indéddtiglrations with the
proposed methodology (MABUS) only



2.3.3 Dosimetric study

Urethra and prostate DVHs were significantly different. Thewage DVH comparison show that the
volume (%) receiving a dose between D74Gy to D79Gy by the urethra was siggifiagiml than inhe
prostate (p <0.01)Figure2.7]highlights the prostate and urethra DVH bins, where statistically significant
differences are represted by the red circles.

Figure2.7 DVH differences between urethra and prostate in casielMRTdelivering 80Gy to the prostate

[Figure 2.8] shows an example of 3D dose distribution within the manually segmented volumes for
planning together with the automatically segmented urethra. Considering the urethra, the prostate and
the PTV, it can be seen thhigh doses appear in the urethrasdgdose curves and DVH values > V70).
During the 3D dose optimization, the constraints to the PTV and to the organs at risk, bladder and
rectum, will introduce a high dose gradient close to the PTV. Although the PTW isowered it will
receive 90% of the dose, whereas the urethra being central to the prostatly likceives the higher
doses.

2.4 Discussion

We proposed a weighted mulsitias based method to segment the irtpaostatic urethra from planning

CT and compareavith two previously surrogate models based on the central axis of the prostate,
Waterman et al[139] (centered surrogate) and Bucci et |I38] (deviated surrogate). The method does
not need any catheter to estimate the position of the urethra as it is based on the combination of similar
cases contained in a large datd séatlases, which are weighted to achieve an accurate segmentation



Figure2.8 Example of urethra segmentation and dose distribution in IMRT planning delivering 80 Gy to the prostate

The obtainedaccuracy of the urethra segmentation considering the CLD (in average 3.25 mm), computed
in a leave one out crosmlidation enabled to assess dose to the urethra in a different IMRT database.
With our method, the measured dose received by the urethra appesdightly higher than the dose
received by the whole prostate. This is likely due to the position of the urethra rather central within the
prostate, relatively far from the rectum where a gradient of dose appéBigute2.8). Such findings
support the use of our urethra segmentation method to potentially improve urinary toxicity prediction
by considering both the dose received by the urethra andpiostate.

To our knowledge there is no evidence in the literature of any method for explicitly segmenting the
urethra in the planning CTs. An atlas based urethra segmentation method in MRI was pr{lia4ed
within a SBRT perspective, but without a formal segmentation propag&iwards the plannig CTThe

first method proposed by Waterman to estimate the dose to the urethra from CT scan appears in
brachytherapy[139]. As mentioned before, in that study, the urethra was estimated as a geometric
surrogate based upon the prostate centerline. They found a good correspondence of the urethral doses



(D10, D2%nd D50) between this model and the urinary catheter. This model was latterly evaluated in
brachytherapy patients with visible cathetef155]. They showed that a surrogate defined at the
geometric center of the prostate may significantly overestimate the dose to the urethra. A aterog
urethra model by considering a slight deviation of 30 degrees anteriorly with respect to the cemdral ax
was proposed by Bucci et §l38]. This deviation provided a bettelose estimate than Watermgi39].

Here, we evaluated these two urethral surrogates with the same dataset. Compared to them our
method performed béer in the same regions (overall CLD=3.25+ 1.2mm with MABUS vs 3.91+1.46 with
the deviated surrogate and 6.11+1.96 mm with the centered surrogate). The difference with the central
axis is less pronounced in the bottom third, suggesting that a good appaiien of the urethra in this
region may be achieved. However in the upper part, although the slight deviation of 30 degrees offers a
good approximation for some individuals, this is not the case for all the patients. Ourathasti
approach enabled to @lise a strategy aimed at finding the n most suitable atlas within the dataset by
defining a similarity metric based on simple prostate and bladder geometric features. The prostate and
bladder segmentations were used as they are generated during the daseipg clinical protocol.

Considering the proposed features, the large interindividual variability was capasezhown in the
similarity map[Eigure2.3}. Thus, vth the exception of some outliers, one can find good candidates in
the atlas selection procedure for each considered individual. The atlas selection step is indeed crucial to
accurately segment the urethra as demonstrated in the leave one out experimétfitis.the proposed
features, it has been shown that a trend arises when correlating similarity metric (distance) and
segmentation outcome. Then, adding multiple atlases improves the accuracy in a voting strategy when
fusing labels from the closest atlfs48]. Other global or local features based on CT intensity or shape
descriptors may haveeen proposed (mutual information, cross correlation, SPHARM, etc.), but with a
limitation concerning accuracy assessment due to the presence of the catheter. The fusion step takes
into account the interindividual similarity by weighting the contributitnthe probability map via an
exponential function, which has been shown to be more performant than simple averddit This
strategy led us to limit to 10, the number of selected atlas, as by gddiore their contribution is
vanished in an exponential function. Highly contributive is the prostaterigid registration basean

the Laplacian scalar fie[d09]. Indeed, the main feature brought by the Laplacian is the computation of

a normalized structural description comparable across individuals, as opposed to classical distance maps.

We used for evaluation the scores based on distacenterlines as proped by[155] as the urethra is
considered as a path within a tiny tufige structure. Other scores based on volume overlap (Dice,
Jaccard) are not suited here for assessing segmentation accuracy. The obtained scores enable the
method to be used within a perspective of assessing dogbdaurethra within an acceptable margin.
However, improvements may be done within a perspective of IMRT planning and dose escalation. The
atlas segmentation method may exhibit some limitations if we consider the hypothesis of that the
urethra keeps a siffdr shape with and without a catheter. One way to demonstrate that hypothesis will

be the MRI where the urethra might be visible. However, in brachytherapy studies the urethra p@sition
only given by the cathetel61 t63]). Further limitations concern the patient variability in IMgated
patients compared to the atlas database as prostate and bladder volumes may be higher because of the
patient selection and the presence of a cattr.



2.5 Conclusion

When applying the proposed method to an independent data set of patients treated with IMRT, a large
difference was found ithe dose to the urethra (high dose rarjgeompared to the prostate. These
findings suggest further studies to besiormed on urinary toxicity by quantifying the dose to the
urethra as reported in brachytherapgyl5-17]. New multimodal models combining also dose to the
bladder with clinical factors, biological parameters and other multimodal data within a radiomics
framework could provide new insights into the urinary toxicity.

In this chapter we developed a methodology for segmenting the prostatic urethra on the planning CT
images of patients treated with EBREg®ienting the urethra on the planning CT imagesegahe way

for future studies for investigating the involvement of this structure on urinaiyeeffects and
potentially improving our understanding of urinary toxicigfter prostate cancer radiotherapy
Furthermore, ly analyzinghe dose at fine scalesnd integrating spatial descriptors of the dose to both
the bladder and the urethramight provide new insights into # urinary toxicity and enable the
development oimorereliable predictive models.

The next part of this thesis explores two methodologies performing population analysis using 3D
images The purpose is to characterize spatial dose patterns atosgan level and anatomical regions
implied in toxicity following prostate cancer radiettapy. Going beyond the whole bladder DVH to
image subunit scales, we attempt to identify local spatial dose descriptordaredop predictive models
of urinary toxicity, using bladder DSMs (Chapter 3) and uretkgical DVMs (Chapter 4).






Part Il

Going beyond bladder dose volume
histograms: novel methods for spatially

analyzing local dose distribution



3 Urinary toxicity prediction using dose -surface maps

This third chapter describes a methodology for spatially characterizing thedgkigbution on

the bladder surface using DSMThe first goal of this chapter was to improve the existent
approaches for analyzing DSMs and propose a methodology that would allow the exploration of
the entire bladder surface. The second goal, was to iyesymptomrelated subsurfaces of the
bladder that are potentially more predictive that the whole bladder DVH. The third goal was to
compare the results with previous bladder DSM studies and assess the reproducibility of the
results.

Part of the work pesented in this Chapter was conducted at the Istituto Tumori di Milano, in
Italy, in collaboration with Tiziana Rancati and Alessandro Chicchetti. This work was presented
at the ESTRO 38 conference in Milano as an oral communication and has beenesufonitt
publication to the journal Radiotherapy and Oncology. For the shake of coherence of the thesis
manuscript, the original paper has been divided in two parts: the one is presented in this chapter
and the other part in the Chapter 6, section 6.1.

Mylona E Cicchetti A, Rancati T, Palorini F, Fiorino C, Supiot S, Magne N, Creange G, Valdagni R, Acosta O, de
Crevoisier R.ocal dose analysis to predict acute and late urinary toxicities after prostate cancer radiotherapy
assessment of cohort and methetfects.Radiother. Oncol. (Submitteéd Radiotherapy and Oncolopy

Mylona E Cicchetti A, Rancati T, Palorini F, Supiot S, Magne N, Creange G, Acosta O, de Créveietig.
urinary toxicity via 2D and 3D dose map analyses in prostate ceadietherapy.Radiother. Oncol. 2019;133:326.
(Presentedat the ESTR@8 asan oral communication)



3.1 Introduction

Dosesurface maps (DSM) of the bladder have recently been applied to urinary toxicity studies only by
two research teams, providing evidence of spatially variable -desponse relationship with respect to
acute [8,9] and late [10] urinary symptoms. Thasadies, however, were limited to the global urinary
toxicity [156], included a small number of patien80], or the discriminative power ohte models was
disregarded106]. More importantly, since spatial dosimetric patterns can be surrogates of underlying
population characteristics, the generalization of these observationsti®stablished. In addition, in all

the studies, absolute DSMs were used which restricted their analysis to only a few centimeters form the
bladder base because of the variable bladder extension across the population.

In the following sections we will present a methodology for analyzing the whole bladder surface using
normalized DSMs. Then we compare the DSMs-piisel between patients with and without toxicities

in order to identify suksurfaces (Ssurf) of the bladdehere significant dose differences exist. To answer
the question whether the impact of dose to specific subregions is associated specific symptoms we
compare ouresultswith those from previous studies.

3.2 Population data set, treatment, and urinary toxic ity

The study included a total of 272 patients with localized prostate cancer treated with intensity
modulated radiation therapy/imagguided radiation therapy (IMRT/IGRT) between May 2008 and July
2018 within two multicentric prospective phase Il triaSTIAGRT) [157] and (PROFIT,
normofractionated arm)158]. The mean age of the patients was 70 years (range8132The target
volume included the prostate and seminal vesicles (SV), avoiding the pelvic lymph nodes. Target volume
and organs at risks (bladder, rectum, aedthbral heads) were delineated on computed tomography (CT)
slices according to the GETUG and PROFIT recommendations. IMRT combined with IGRT was used to
deliver a total dose of 78 Gy (in case of ctwmeam CT [CBCT]) or 80 Gy (in case of fiducials) to the
prostate over 8 weeks and 46 Gy to the SV over 4.6 weeks, at 2 Gy/fraction. Bthmgemolume
histograms DVHs) were compiled either with GETUG recommendations as maximum dose <80 Gy or
with PROFIT recommendations as 50% and 70% of the bladder wallrrgdess than 53 Gy and 71 Gy,
respectively. Patient and treatment charadtgics are described All the patients provided
informed consentThe trials were approved by the French Institutional Review Board and are registered
in ClinicalTrials.gov (NCT00433706 for the-83RT trial, NOD0304759 for the PROFIT trial).

The median followup was 50 months (range:téii u}v§ZeeX u8 ~Gi u}vs8Ze (E}u Zd 5§ E
late (> 3months) urinary toxicity was scored using the CTCAE v.3.0 (210 patients from @RI Tidzal)

or the RTOG (6gatients from the PROFIT trial) radiation morbieioring schema. We considered 20
endpoints: 5 symptoms (incontinence, retention, dysuria, hematuria, frequency), for both gragad

grade> 2, and for acute and late urinary toxicity. The&ar toxcity rates were estimated using Kaplan

Meier (KM) analysidisplays the number of events and rates of acute anaar late urinary

toxicity ~P (E Hi v P& Hie C *Cu%S3}u ¢ o0 po § C <DX wu}vP §Z 1i



(acute grade?2 incontinence and hematuria, late graefedysuria and hematuria) were excluded from
the analysis due to the absence or very low number of events.

Table3.1 Patient and treatment characteristics of the population

Characteristics Values
Age (years, mean +SD) 69 + 6
TURP 7%
Previous abdominal surgery 20%
Diabetes 12%
Anti-coagulant treatment 25%
Antihypertensive treatment 33%
Hypercholesterolemia treatment 19%
Hematuria 0%
Dysuria <1%
Baseline symptoms | Retention 8%
Incontinence <1%
Frequency 14%
ADT 28%
. 80 Gy 32%
Prescribed dose 78 Gy 58%
Prostate volume* (cc, mean £ SD) 52.1+21.3
Bladder volume* (cc, mean £ SD) 227.6 £1455
SD: standard deviation; TURP: transurethral resection of the prostate; ADT: Androgen depriv:
therapy.*: calculated from the planning CT

Table3.2 Rates of gradeHlL and gradeH acute and late urinary toxicity (by symptom)

Acute toxicity (No. of cases arnmtes)
Endpoints
Grade>1 Grade>2

Incontinence 17 (7%) 0

Frequency 202 (80%) 67 (26%)

Retention 106 (42%) 49 (19%)
Dysuria / Pain 113 (45%) 19 (7%)

Hematuria 7 (3%) 0

Late5-year toxicity (No. of caseand rates)
Endpoints Grade>1 Grade>2
No. of cases KaplanMeier (95% CI) No.of cases KaplanMeier (95% CI)

Incontinence 33 15% (1620%) 8 4%(1-7%)

Frequency 125 55% (4862%) 27 11% (715%)

Retention 40 34% (2642%) 23 10% (515%)
Dysuria / Pain 31 13% (818%) 2 1% (62%)

Hematuria 23 10% (614%) 5 2% (04%)




3.3 Materials and m ethods

3.3.1 DSM construction and pixel-wise analysis to identify sub -surfaces

Absolute DSMs were generated from the planning CT delineations and dose distributionsausing
dedicated software (VODCA, MSS Medical Software Solutions GmbH, Hagendorn, SwitZenknd).
workflow is shown ifFigure3.1] For each patient, the bladder surface was cut anteriorly at the points of
intersection with the sagittal plane passing through its center of mass and virtually unfolded in a 2D
plane. The dose distribution was transposed accordingly (step6d) Each dose map was first
normalized in the axial direction (step 2). After aligning all of the maps in tpalgiion to the most
inferior-central point of the bladder base (step 3), they were normalized to the DSM template in the
craniatcaudal direction (step 4). The smallest vertical bladder extension present in the cohort (29 mm
above the bladder base) waslseted as the reference plane (DSM template). As opposed to previous
DSM analyses, this affine transformation allowed the representation of the entire bladder surface of
each patient on the same 2D plane. Pixide comparisons between patients with/ withb toxicity

were performed for each endpoint using the Makivhitney U test. Average dose maps for each group
and the corresponding dose differences andiglue maps were generated. Thevalue maps were
threshold at p®.01 to identify suksurfaces (Ssurf)f the bladder with significant dose differences.

Figure3.1 Workflow of dosesurface map (DSM) construction
Ant=anterior; Post=posterior; R=right; L=left



3.3.2 Prediction capability of dosimetric and clinical parameters

UNIVARIATE ANALYSIS

Univariate analysis was performed independently for each Ssurf and the whole bladder to identify the
most predictive dose bins of the DVH/ DSH. Logistic regression was used for acute toxicity, and the
discriminative performance was assessed with the anedeu the ROC curve (AUC). Cox regression was
used for late toxicity. The-$ear discriminative performance was measured with the area under the
time-dependent ROC curve (tAUC) as describedl®®], which accounts for censoring in survival
analysis. The AUC/tAU&hd 95% confidence intervals (Cl) were computed using 1000 bootstrap
replicates and the dose bins with the highest significant AUC (AUCmax) were selected for further
analysis.

MULTIVARIATE ANALYSIS

Multivariate logistic/Cox models were constructed irdihg clinical parameters and pselected

dosimetric variables (dose bins) from the univariate analysis. Models were constructed using two

methods: i) backward elimination and ii) the least absolute shrinkage and selection operator (LASSO)

method [160,161] which enables thesimultaneous analysis of the correlations between the features

and also prevents overfittin§fl62,163] as described belowThe AUC/ tAUC and 95% Cls from 1000
}}5¢3E % E %o0] e+ AE pe 3} Aopu s 3Z u} o[ ] EJulv 3]A %

Variable selection using LASSO

Penalized regression methods, suchthe Least Absolute Shrinkage SelectiOperator LASSI[160],
allow the generation of parsimonious models that ba@&anaccuracy and model complexity.
Regularization by LASS¢pe penalties usually leads to sparse solutiansg performs both variable and
model selection. LASSO can be applied to many types of regression, intdgitigand Cox regression.

LASS®arameters are estimated by maximizing a-lisglihood criterion in which an kdorm penalizes

large absolute values of the parameter estimat®kany regression coefficientsre shrunk to zero and

only a few others remaiim the model. In this way, coeffent estimates of redundant features can be

forced to be exactly zero, resulting in an optimal sparse model. The degree of shrinkage depends on the
SUv]vP % € u $§ & o u ~,*X dZ Z}] }( S8Z <ZE]JVI P % E u s EU 57
Moreover, the shrinkage introduces bias in the parameter estimates, wigidhces the variance of the

parameter estimates. This phenomenon is known as the-m@isince tradeoff, which could improve

§Z u} o[ %E& ] S]}v % E(}EU v X

To avoid dealing withigh dimensional data in the regression analysis, the set of dosimetric variables
was reduced prior to LASSO by selecting a single dosimetric variable per DVH/DSH (the bin corresponding
to AUCmax). As a result, no more than 16 variables were used as iopuedture selection.
Standardization of all of the variables was also performed prior the LASSO feature selection to guarantee
that the penalty term would treat the variables in a comparable wigye number of selected features



and their coefficients wereSpv =~ A]3Z 3Z % €& u § E o u ~fold ¥asstaliphtionus JvP i
(CV)[162]. This was performed using the cv.gimnettina in the gimnetpackage in RAt eachiteration,
the data set was divided into 5 sigets (folds). Four were used to train the model and the fifth set was
used for validation. The process was repeated 5 times so that eaebeswias used once as a validatio
set. For the logistic regression models, the minimum deviance was selected as the criterion for finding
§Z SuV]VP % E u 3§ E ,U AZ]lo (}E& 5z HAeelidBodP iias udgdie &dss 0} P %o E
validated LASSO method was repeated 100 timesyltiag in 500 models in total to identify different

Ju Jv 81}v }( ( SuE « v} ((]] v8e C] o ]vP u]vlupu Al v A op X t
S v & E E[1L63] to (Baleat the most sparse model (the model with the fewest -aero
parameters) whose deviance is no more than one standard error greater than thewdevid( §Z " 8§
model (the model amonthe 500 with minimum deviance).

3.4 Results

dzE su & PJ}ve A E 1 v3](] }v 87 o] E p&E( ~}voC (}E& PCE
predictive of specific urinary symptoms: acute and late retention and dguria. For acute and late

retention, the two subregions where found on the posterior bladder surface corresponding to the
intermediate dose region with dose differences 7.9+2.9 Gy and 10.9+1.9 Gy, respectively. For late
dysuria a subregion was identifiedn the anteriorlateral and mostly inferior bladder surface
corresponding to intermediatdigh dose region with dose differences 8.3£2.7 Gy.



Figure3.2 Symptomrelated subsurfaces (Ssurf) of statisticglisignificant dose differences between patients with/without
toxicity from DSM analysis

Figure3.2[shows theDSMs of the average dose distribution fatients with (left) and without (middle)
ME]v EC S}A&] 18] * v §Z }EE *%}v JvP }¢ J(( EV U % ~E]PZS-U
Contours show the regions with statistically significant dose differences correspondingitoogn GiXii



(bol « v GiXifi ~0]PZ3+ wispvRariiVhitttey Aesto The mean dose (£SD) to the Ssurf for
each group and the mean dose differences are given below each DSM (for the ragasponding to p

A op GiXiieX

UNIVARIATE ANALYSIS

Table3.3|displays the association between urinary endpoints and the DSHs of the Ssurf and the DVH of
the whole bladder. For the three Ssurf, AUC w&d @or acute retention, 0.68 for late retention and 0.74

for late dysuria. For the whole bladder the AUCs was 0.60 for acute retention, 0.67 for late retention,
0.72 for late dysua and 0.65 for late hematuria.

Table3.3 Univariate analysis of the DVH/DSH for the whole bladder and the-subfaces (Ssurf)

A. Acute toxicity~'E H
. D}+8 % & ] 3]A s, o A ax xa
Symptom Region “E VP } %E ] & % A ou KZ ~6A9 h 6A9 |/
7§ Vel tZ}o o a SO00 ~=dOD I1X1hA iXi10 ~iiXiiiie] 1X01 ~-DXi6
§ v§
Ssurf AT ~Mdiie <0.01 1.01(%1.02) iX00 ~iXdbf
B. Late toxicity~'E He
. D}+d % E ]s3NA, ]v o A xa S§h 3§AaC
Symptom Region “E VP I %E ] & % A ou ,Z ~6A/9 |/ ~5/9 /e
tZ}o o sid ~sd0b- DiXif i Xi17T-+Xi0- iX006 ~iXdd
Z 35 v§]
Ssurf N ~RHOe <0.01 1.02 (1.011.03) iIX006 ~iXon
) tZ}o o S006 -sioe DiXif IXiT ~FKATAq TXOT ~DXKDiT 9
Dysuria
Ssurf S70 (S$80) DiXif iXT161XiXd 0.74 (0.640.83)
) tZ}o o sO ~sdd- iXid iXi06-r{ide iIXofA ~iXdn
Hematuria
Ssurf NS
6VXUI VGBWEDFH 25 2GGV UDWLR +5 +D]DUG UDWLR &, &RQILGHQFH LQWHUYDO
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Clinical parameters significantly associated with acute urinary symptoms were tragsurethral
resection of the prostate(TURP), previous abdominal surgery, -@otigulant treatment, anti

hypertensive treatment, prostate volume, and baseline symptoms, as shqwahile3.4| The impact of

hematuria, dysuria and incontinence baseline symptoms on toxicity has not been assessed due to the
very low occuwrence of these symptoms (<1%). Clinical parameters significantly associated with late
urinary symptoms were ag#éansurethralresection of the prostat¢ TURP) previous abdominal surgery,
diabetes, anticoagulant treatment, anthypertensive treatment, androgedeprivation therapy (ADT),
prostate volume, and baseline symptoms, as sho»f/n in |
Table3.5| The impact of hematuria, dysuria and incontinence baseline symptoms on toxicity has not
been assessed due to the very low occurrence of these symptoms (<1%).




Table3.4 Univariate analysis testing the impact of patient/ treatment characteristics on acute urinary toxicity

Grade> 1 toxicity

Grade> 2 toxicity

Hematuria Dysuria Retention Frequency Incontinence Dysuria Retention Frequency
Parameters OR OR OR
OR (95% OR (95% OR (95% OR (95% OR (95%
p cly p cly p cly p cly p (95% | p cly p (95% | p (95%
Cl) Cl) Cl)
Age 0.39 0.01 0'249(90)'9 0.87 0.44 0.8 0.68 0.31 0.72
6.9 (1.07 0.27 (0.07 0.19
TURP 0.04 | 7 . 0.41 0.04| ™ : <0.01 (0.07- 1 0.47 0.15 0.16
4.8) 0.96)
0.54)
Previousabdominal | oy | 102 ) 4 5 0.96 0.67 0.54 0.47 0.58 0.43
surgery (1.1284)
Diabetes 0.99 0.63 0.5 0.33 0.1 0.99 0.52 0.32
Anti-coagulant treatmeni 0.01 8:2%')6 0.92 0.3 0.8 0.08 0.71 0.17 0.43
Antihypertensive | ;7 0.41 0.56 0.57 1 0.04| #1109 46 0.78
treatment 155)
Hyperchdesterolemia | ) 7 0.76 0.93 0.09 0.47 0.33 05 0.86
treatment
ADT 0.44 0.07 0.75 0.7 0.81 0.39 0.44 0.08
Prostate volume 0.21 0.12 0.75 0.07 0.56 0.01 1'013(%01 0.42 0.27
Bladdervolume 0.97 0.39 0.31 0.06 0.14 0.33 0.59 0.19
. . 3(1.03 3.563 (13- 4.4 (16-
Baselingetention 0.99 0.62 0.04 0.76) 0.19 1 0.99 0.01 9.6) <0.01 12.3)
3.17 32014
Baseline frequency | 0.38 0.19 0.39 0.04 (1.03 1 0.6 0.24 <0.01 '
9.76) 7.3)




Table3.5 Univariate analysis testing the impact of patient/ treatment characteristics on late urinary toxicity

Grade> 1 toxicity Grade> 2 toxicity
Hematuria Dysuria Retention Frequency Incontinence Retention Frequency Incontinence
Parameters HR HR HR (95% HR (95% HR (95% HR (95% HR (95% HR (95%
P (5% 1 p | (5% | p el P cl) P cy | P cy | P cy | P cl)
Cl) Cl)
0.95 0.92
Age 0.22 0.81 0.01 | (0.91- 0.05 11036()1- 0.03 1101:(5 0.02 | (0.86 | 0.28 0.49
0.99) ) ) 0.98)
5.72 17.7
TURP 0.86 0.24 0.44 0.51 <0.01| (2.02 0.66 0.13 <0.01| (2.95
16.22) 76.26)
Previous abdominal 2.17 2.62 (¢
0.12 0.06 <0.01| (1.25 0.4 0.45 0.05 0.3 0.06
surgery 3.77) 6.78)
2.58 3.08
Diabetes 0.74 0.98 0.29 0.86 0.03 | (.12 1 0.01 1.3 0.82
5.97) 7.28)
Anti-coagulant 2:32
0.26 0.72 0.24 0.24 0.02 | (1.16 0.74 0.68 0.92
treatment
4.63)
Antihypertensive 1.58 0.33
treatment 0.91 0.71 0.63 0.04 | (1.02- 0.39 0.05 | (0.12- | 0.74 0.53
2.47) 1.02)
Hypercholesterolemia | , 0.42 0.68 0.69 0.55 0.68 0.2 0.68
treatment
1.91
ADT 0.7 0.11 0.23 <0.01| (1.3 0.91 0.1 0.08 0.69
2.74)
Prostate volume 0.76 0.67 0.61 0.46 0.43 0.16 0.75 0.85
Bladder volume 0.13 0.08 0.06 0.06 0.08 0.34 0.37 0.52
2.59 3.64
Baseline retention 0.4 0.94 <0.01| (154 0.08 0.85 <0.01| (1.66- | 0.95 1
4.35) 7.96)
3.78 7.19
Baseline frequency 0.4 0.64 0.12 <0.01| (2.4 0.84 0.19 <0.01| (2.4 0.53
6.05) 21.62)




MULTIVARIATE ANALYSIS

Table3.6[displaces the results of the multivariate analysis with backward eliminafiahle3.7|shows

the detailed results of the LASSO multivariable regression for the different symptoms. The two methods

resulted in similar models.

Table3.6 Parameters affecting acute and late urinary toxicity in multivariate analysis using backward elimination

A. Acute toxicity (logistic regression)
Grade>1
Endpoints Parameters p-value OR (95% ClI) Model p-value AUC (95% CI)
Ssurf (S42) 0.02* 1.01 (31.02)
Retention TURP 0.06 0.27 (0.071.03) <0.01 0.70 (0.620.78)
Baseline retention <0.01* 4.39 (1.4813.0)
. Age 0.01* 0.94 (0.90.99)
Dysuria ADT 0.07 0.52 (0.25L.07) <0.01 0.63 (0.540.71)
TURP <0.01* 0.07 (0.010.37)
Frequency Hypercholesterolemia treatment 0.01* 0.3 (0.120.78) <0.01 0.77 (0.680.85)
Baseline frequency 0.02* 5.75 (1.423.6)
Grade>2
TURP 0.17 0.23 (0.031.85)
Retention Anticoagulant treatment 0.09 0.36(0.111.17) <0.01 0.64 (0.550.72)
Baseline retention <0.01* 3.69 (1.420.5)
. Antihypertensive treatment 0.04* 3.58 (1.3915.65)
Dysuria Prostate volume 0.02* 1.03 (1.011.05) <0.01 0.72 (0.5%0.88)
TURP 0.2 0.36 (0.081.71)
Frequency Baseline frequency 0.01* 3.17 (1.317.64) <0.01 061 (0.540.68)
B. Late toxicity (Cox regression)
Grade>1
Endpoints Parameters p-value HR (95% CI) Model p-value tAUC (95% ClI)
Ssurf (S52) <0.01* 1.02 (:1.03)
Retention Age 0.02* 095 (0.910.99) <0.01 0.73 (0.680.78)
Previous abdominal surgery 0.07 1.69 (0.962.97)
Baseline retention <0.01* 3.17 (1.665.05)
Age 0.06 1.09 (0.991.19)
Incontinence TURP <0.01* 5.06 (1.7314.76) <0.01 0.81 (0.710.88)
Diabetes <0.01* 5.59 (2.0515.21)
Hematuria - - - - -
Dysuria Ssurf (S70) <0.01* 1.06 (1.031.10) <0.01 0.78 (0.690.85)
ADT 0.1 2.27 (0.8%.76)
Bladder volume 0.08 1.02 (0.991.03)
Frequency Antihypertensive treatment 0.02* 1.76 (1.12.83) <0.01 0.8 (0.750.87)
ADT <0.01* 2.92 (1.724.95)
Baseline frequency <0.01* 4.28 (2.557.17)
Grade>2
Age 0.12 0.95 (0.891.03)
. Previous abdominal surgery 0.11 2.2 (0.86)
Retention Antihypertensive treatment 0.1 0.37 (0.121.21) <0.01 0.75 (0.6%0.84)
Baseline retention <0.01* 4.49(1.6412.26)
Hypercholesterolemia treatment 0.09 0.18 (0.021.38))
Frequency Baseline frequency <0.01* 5.29 (1.815.6) <0.01 0.77 (0.660.86)
Incontinence TURP <0.01 17.7 (2.9576.26) <0.01 0.74 (0.620.87)
TURP: transurethral resection of the prostate; ADT: Androgen deprivation theap@dds ratjo; HRi Hazard ratio; Cl: Cpnfidence interval;
Area under the ROC curve; tAUC: tim&o v v§ & puv €& §zZ ZK LHEA V Z<]1Pv](] | pSalde: Elpbab statistlea
significance of the model as defined by the Likelihood ratio test.




Table3.7 Parameters affecting acute and late urinary toxicity in multivariate analysis using LASSO

A. Acutetoxicity (logistic regression)

Grade>1
Endpoints Parameters beta OR (&°9) AUC (95% CI)
Ssurf (S42) 0.0043 1.01
Retention TURP -0.2190 0.80 0.70 (0.620.78)
Baseline retention 0.7763 2.17
Dysuria Age -0.0318 0.96 0.63 (0.550.72)
ADT -0.1531 0.85
Bladder volume -0.0002 0.99
Frequency TURP . -1.2162 0.30
Hypercholesterolemia treatment -0.4177 0.66
Baseline frequency 0.5518 1.73
Grade>2
TURP -0.2528 0.78
Retention Anticoagulant treatment -0.2320 0.79
Baseline retention 0.774 2.17
. Antihypertensive treatment 0.3210 1.38
Dysuria
Prostate volume 0.0127 1.01
Frequency Baseline frequency 0.5908 1.81
B. Late toxicity (Cox regression)
Grade>1
Endpoints Parameters beta HR (&%) tAUC (95% ClI)
Ssurf (S52) 0.0089 1.01
. Age -0.0285 0.97
Retention Previous abdominal surgery 0.3268 1.39 0.72 (0.60.77)
Baseline Retention 0.8131 2.26
Age 0.0355 1.04
Incontinence TURP 1.2058 3.34 0.81 (0.710.88)
Diabetes 1.2925 3.64
Dysuria Ssurf (S70) 0.0411 1.04 0.73 (0.620.81)
Age 0.0072 1.01
Bladder volume -0.00038 0.99
Frequency Antihypertensive treatment 0.3003 1.35
ADT 0.5538 1.74
Baseline frequency 1.0396 2.82
Grade>2
Age -0.0414 0.96
Previous abdominal surgery 0.3828 1.47
. Diabetes -0.3501 0.70
Retention Antihypertensive treatment -0.4946 0.61 0.77 (0.670.85)
ADT 0.2863 1.33
Baseline retention 1.0885 2.96
Diabetes 0.4673 1.60
Frequency Hypercholesterolemia treatment -0.4663 0.63
Baseline frequency 1.1170 3.06
. TURP 2.0501 707
Incontinence Previous abdominal surgery 0.6994 2.01 0.82 (0.6%0.97)
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3.5 Discussion

An affine transformation of the DSMs was implemented to represent the entire population on a common
reference frame while preserving the spatial information of the dose distribution to the entire surface of

the bladder. Subsequent pixelise comparisons Ewed us to investigate the local doséfect

relationship for acute and-gears late urinary toxicity after prostate cancer RT. Thisdoae analysis of

the dose distribution indicated the presence afspatially variable doseffect relationship on tk

surface of the bladdefThe doses to three Ssurf located in the inferior hemisphere of the bladder were
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dysuria).

For late dysuria, a large surface otthladder seems to be involved including the anteiiderior and

lateral region. For acute retentiomne Ssurf was found on the posterior bladder region, while for late
retention the Ssurf was located on the posterguperior bladder. Although the rdalanship between
bladder dose and obstructive symptoms has not been explored in previous DSM studies, our results are
in line with other urinary toxicity studiefs4,57,58] suggesting that highntermediate dose might be
impacting on the manifestation of obstructive effects.

Concerning the discriminative power of the models in univariate analysis, the doses to the Ssurf were
slightly more predictive than the dose to the whole bladder. For acute retention the Ssurf was
moderately predictive (AUC=0.64) but outperformed the whole bladder model (AUC=0:60, p
value=0.05). For late toxicities, the predictive capabilities of Ssurf and the whole bladder were marginally
different. More specifically, the dose to the Ssurf for lateergion resulted to AUC=0.68 while the dose

to whole bladder resulted to AUC=0.67. Similarly, for late dysuria the Ssurf AUC was 0.74 while the
bladder AUC was 0.72.



3.6 felfrcets ™M T —e e fofe = fe—<hFt.—BF

To date, bladder DSMsoupled with pixelWwise comparisondiave been investigated by two research
teams, providing evidence of spatially variable dosgponse relationship with respect to acl&0,156]
and late[106] urinary symptoms, as shown(in
Concerning acute toxicity analyzed by DSMs, urinary frequency/urgency was significantly

related to the dose at 512 mm posterior to the bladder base, corresponding to trigf®. Concerning
late toxicity, another DSM analysj$06] found incontinence to be retad to the region lateral to
trigone. They alsoeported that the dose to the anterieinferior and posteriotsuperior bladder surface
was associated with worsening of symptoms as measured by IPSS, dysuria, and heniktesea.
studies, however, were limited to the global urinary toxi¢it$6], included a small number of patients
[60], or the discriminative poer of the models was disregard¢tlO6]. More importantly, since spatial
dosimetric patterns can be surrogates of underlying population characteristics, the genaifiyizaf
these obserations is not establishedConfirmation in independent cohorts is essential to answer the
guestion whether the impact of dose to specific subregions is associated specific symptoms.

The reproducibility of the DSM results was assessed through compagsardn the results obtained in
our cohort and the results from the aforementioned cohdrts. [
Table3.8|summarizes the population and treatment characteristics of these three DSM studies used for

\

o...

comparison. The concordance between cohorts was assessed in terms of localization of identified Ssurf.

The localization of the Ssurf was visually defined, firsuincohort and then retrospectively in the other
cohorts, with respect to the cranicaudal, antereposterior, and lateral axes of the bladder. The inter
cohort agreement of the Ssurf overlap was then categorized as good, moderate, or bad.

Overall, fivesymptoms with similar intestudy definitions were considered for comparison (acute
frequency and retention, late dysuria, incontinence, and hematuria). Among these five symptoms, four
Ssurf were identified in other cohorts, and two in our cohort. Onlycioe symptom, late dysuria, was
Ssurf was found in both our study and another styd96], with good spatial agreenmt (inferior-
anterior-lateral).



Table3.8 Overview of existing ladder DSM studies
Acute toxicity
Treatm Global toxicity Frequency Incontinence Retention* Dysuria Hematuria
ent PD Toxicit Subregion Bladde Subregion Bladde Subregion Bladde Subregion Bladde Subregion Bladdg Subregion Bladde
Method | Study | N . |(fraction 1ty 9 r 9 r 9 r 9 r 9 r 9 r
techniq ) scoring Locatio| Locati Locatio| Locatid Locatio| Locatio
ue n AUQ AUC on AUC AUC n AUJ AUC n AUQ AUC n AUQ AUC n AUJ AUC
Palorini 72 70-74 Gy Not
etal. (2.52.65 Inf-lat [0.67| 0.62 | Post|0.71| 0.61 Not studied - - Not studied Not studied
found
2016 Gy)
IMRT/
76 Gy IPSS
psm | MPro@ | 36| 1GRT 4 557 In-
etal. ) 0.70 0.66 Not studied Not studied Not studied Not studied Not studied
2.2-2.7 post
2016
Gy)
Current IMRT/|78-80 GY RTOG/ . Not Not Not Not studied
study 212 \GRT (2Gy) | CTCAE V| Notstudied ¢ nal = | NS | found NS | Post 064 060 | ¢y ng| = | NS (No events)
Late toxicity
Treatm Global toxicity Frequency Incontinence Retention Dysuria Hematuria
ent PD Toxicity | Subregion Bladde Subregion Bladde Subregion Bladde Subregion Bladde Subregion Bladde Subregion Bladde
Method | Study | N . |(fraction ry 9 r g r 9 r 9 r 9 r 9 r
techniq ) scoring Locatio| Locati Locatio| Locatid Locatio| Locatio
ue n AUQ AUC on AUQ AUC n AUQ AUC n AUCQ AUC n AUQd AUC n AUQ AUC
IPSS
(global)
‘ 66-74 Gy Not Not Inf-ant | Not Sup |Not
Yahya e| 754 3DCR1(1.82.2 LENY Inf-ant | give NOt Not studied |Inf-post|give NOt Not studied & |give NOt post &|give Not
al. 2017 SOMA given given given given
Gy) n n lat n Inf-ant| n
DSM (symptomy
)
Current IMRT/|78-80 Gy RTOG/ Not Not sup Inf-ant Not
study 272 IGRT (ZGy)' CTCAE v Not studied found| NS found | NS post 0.68 0.67 |§t 0.74 0.72 found | - 0.65
u_ « (]v C /WAN A e Ylve] E &} *JujJo E S} E § vS§]}v

P
_A
Color shadingepresents the symptoms that are comparable across DSM studies

| «SE



The reproducibility of identified symptom related Ssurf between cohorts is weak in our study, potentially
due to the heterogeneity of the compared populatiortseTlocal doseeffect relationship was confirmed

in our population for late dysuria but remains unclear for other symptauggesting that DSM results

are strongly dependent on cohort characteristics The cohort effect may be related to population and
statistics (cohort size, toxicity rates, endpoint definition) and treatmesiated factors (total dose,
fractionation, and technique). Indedd, |
shows large differences between cohortsStatistical differences between the studied

populations are expectetb be strongly influential. For example, the first pilot study of bladder DSM
analysis for acute urinary toxicif$0] included only 72 patientsAcross the studies, prescribed doses
ranged from 66Gy to 80Gy and both standard fractionation and Hiygucdionation were used. The
treatment techniques were either IMRT or JIRT. Toxicity rates were also different between cohorts,
mostly concerning acute toxicities, namely 2¢60] versus 42% in our study, for acute retention.
Nevertheless, there was one symptom (late dysuria) for wBislrfwas identified and confirmed in two
indeperdent cohorts(anteriorinferior-lateral bladder surface, receiving 8DGy).

3.7 Conclusion

Dosesurface maps can unveil the heterogeneous irdrgan radiosensitivity by identifying symptem
specific subregions of the bladder surface that might be more predictive tharddise tothe whole
bladder. This has already beeproposedby others. However, this study demonstted that spatial
dosimetric patterns can be surrogates of underlying population characteristice, compared to
previous DSM studies, we wemot able to confirm a local doséoxicity relationshipbut for one
symptom.Consequentlythe local dosetoxicity relationship is not necessarily transldtmto a causality
relationship. Thereforegeneralization of these observations is not a foregone conclusgareful
assessment and external validation of such models is indispensable to establish clinically meaningful
dosimetric constraints on the bladder surfade.addition,further investigation is needed to prouhe
improvement on prediction capabilitiegdught by these models copared to the whole bladder DVH.

In this chapter, weaackled the problem of characterizing dose patterns on the bladder surface possibly
correlated with toxicity using DSMsIndeed, DSM remains an attractive method for invesiigg the
doseresponse relationshipt a pixel levellt is, nevertheless, limited by two main factors. First, the two
dimensional nature of DSMs is unavoidably restricted to the surface of the organ, assuming that a dose
response relationship exist ongn the bladder surface which is not necessarily true. Second, DSMs are
limited to a single organ, while in reality, more than one structures can be contributing to urinary
toxicity. This is particularly true for urinary toxicity, as symptom manifestatightrbe associated not

only with the dose to the bladder but also with the dose to the urethra or otherars of these
structures. To overcome these limitations with the premise to improve prediction of urinary toxicity, in
the following chapter wepropose a newmethodology to perform population analysis of tleatire 3D



dose distribution in the bladder and the urethra, usiDyMs,which aims at identifyin@D anatomical
subregions implied in urinary toxicity following prostate cancer radiotherapy.






4 Urinary toxicity prediction using dose -volume maps

In this chapter we present a methodology for analyzing dademe maps via voxelise
comparisonsThe proposed framework allowe investigate the local doseffect relationship in
the bladder and theurethra with the objective to identify stdegions that are potentially more
predictive of urinary toxicity than the whole bladder DVH. Firstdescribean original and
robust multi-organ non-rigid registration strategy for anatomically aligning the pdégtion and
propagating the dose distributions to a common space. Then, thevddsme maps of patients
with and without toxicities were compared voxstvoxel allowing the identification of
symptomrelated subregions where statistically significant ddg&erences exist. The subregions
where propagated to the native space of egmtient where sulregion DVHs ere computed
and their discriminative power with respect to the DVH of the whole bladder was evaluated.
Finally, the generalizability of these dels was assessed through external validation on a large,
independent population.

The content of thischapter has been published to the International Journal of Radiation
Oncology, Biology, Physiggith exception paragra. The sectio@contains preliminary
(unpublishedyesultsof a work realizedn Sir Charles Gairdner Hostitsljestern Australia in
collaboration withMartin Ebert and Angel Kennedy

Mylona E Acosta O, Lizee T, Lafond C, Crehange G, Magné N, Chiavassa S, Supiot S, Ospina dEn@aepiio
Castelli J, de Crevoisier\RaxetBased Analysis for Identification of Urethrovesical Subregions Predicting Urinary
Toxicity After Prostate Cancerdration TherapylInt J Radiat Oncol Biol Ph2619. 104 (2): 3434.



Introduction

Increasing evidence has recently arisen showing that localized anatomical subregions of the bladder are
correlated with acute and late urinary toxicitifs8,105,106] Therefore, there is a clear need to exploit

the rich information of the planning thredimensional (3D) dose distribution, together with the

Jv JA] p o[+ v $}uCU 8§} HE S oC ] vS](C p E P]J}ve }( $Z o ElpE
toxicity prediction and more accurate orgalese constraintefinition. To this end, voxddased methods

for dose distribution anlgsis via dos&olume maps (DVMmay help unravel the complexity of toxicity

and local dosevolume relationships by identifying simultaneous involvement of different radiosensitive
structures[84,93,94] The DVM approach is based on fragid registration to align patient anatomies

and map dose distributions to a single refererjt@9]. A subsequent voxalise statistical analysis is
performed to test for local dose differences between patients with/without toxicity. Hemrgan
subregions are computed as the clusters of voxels within the organ, where significant dose differences
have been found. This methodology has been recently applied to ideagfgnal dose differences the

rectum for gastrointestinal toxicity in prostate candé3,94] in the heart and lung focorresponding
toxicities in thoracic cancei©96,111] and in the cricopharynges muscle and cervical esophagus for
dysphagia in head and neck can§@®]. To our knowledge, a 3D voxmsed approach has never been
appled to explore dosimetric patterns associated with urinary toxicity.

The objective of this study was to identify bladder and urethra-glbmes (Svolpssociated with
urinary toxicity after prostate cancer RT. The proposed framework combines urethrastdion, an
accurate anatomical nerigid registration approach for mapping the population 3D dose distributions to
a single coordinate system, a voxeke analysis with respect to toxicity in the common space, and a
further subregional analysis inth&i JA] p o[* *% X

4.1 Materials and Methods

The population dataset and treatment characteristics of the patients included in this study have been
thoroughly described in the previous chaptémn.brief, t consists o272 patients with localized prostate

carcer treated with IMRT/IGRT at 78/80Gy (2Gy/fr), in a multicenter setting -(SRT and PROFIT)

[157,158] The median follovup was 50 months (range: 6i1 u}v§ZeeX u8§ ~Gi u}vs§zZe (E}u Zd
and late (>3 months) urinary toxicity was scored using the CTCAE v.3.0 or RTOG radiation morbidity
scoring schema. In total, 20 endpoints were considered: 5 sympt@ncontinence, retention, dysuria,

hematuria, and frequency), gradd and gradet2, and acute and late urinary toxicity.

The workflow of the study is divided into 7 steps, as presentdgnre4.1]



Figure4.1 Workflow of the study in 7 steps

4.1.1 Automatic urethra segmentation on planning CT images (step 1)

The urethra was automatically segmented on the CT image of each individual usMgBiéSapproach

described in Chaptez [Figure4.1] step 1)



4.1.2 Template selection, registration of population to the template, and dose
propagation (steps 2, 3, and 4)

An average patient, close to the whole population in terms of prostate volume, bladder volume, and
urethral length, was selected as a common coordinate sySEe@S) for aligning the entire population
step 2). A customized algorithm was devised for -rigitly registering the structural
description of the organs (bladder, urethra, and prostdEégure4.1] step 3)[109)[Figure4.2|depicts the
overall workflow of the nosrigid registration method used for aligning the whole population to a single
template yielding anatomicatorrepondences for dose comparison¥he method exploits organ
delineations (prostate and bladder) as obtained during the treatment planning as well as the urethra

segmentation164](Figure4.2| step 1).

A structural description of the organs is first obtained by combining different scalar maps into a single 3D
image which representthe whole pelvis. For the structural description of the bladder, a map with the
Euclidean distance of each voxel inside the volume to the surface of the bladder was co(

step 2). For the prostate a scalar field was computed by applying the Laplacian equation inside the
prostate volume considering both limit conditions at the urethra (u=0) and the prostate surfaceO@)=10

as describedh (12)[Figure4.2] step 3). The Laplacian field provides a normalized distance map centered
on the urethra, which allows alignment of intpostatic $ructures together. Finally the bladder
Euclidean distance map and prostate Laplacian scalar field are combined to produce a global structural
description of theorgans to be registeredFigure 4.2] step 4). By doing so, the structures are
comparable across individuals and therefore may be aligned in 3D by devising a cost function based on
the sum of squared differences of the scalar fields inside artdideithe organs. The approach was
embedded in a multiesolution framework where the mean square metric of the scalar fields was
adopted as cost function.

Once the structural description of the organs is computed, the-mgid registration workflow was
implemented in three steps using the Elastix framew/d@5]. Firstly, a rigidegistration of prostate was
performed to roughly align the urethra and prostate volunjEig(re4.2] step 5). Nonigid registration

was then applied tahe bladder only[Figure4.2] step 6) to cope with large interindividual deformations.
This step was followed by a neigid registration of the wholeset of structures (bladder, urethra and
prostate), which together steer the registration towards a global alignnjéigu¢e4.2] step 7). This
approachallowed to deal with the high inteindividual variability in terms of bladder volume and shape,
while at the same time, achieving a precise registration of the urethra-rdoh transformations were
optimized with the Adaptive Stochastic Gradi®g#scent The obtained 3D deformation fields from each
step are finally combined to propagate the planning dose distributions from the native space of each
patient to the CCS, using trilinear interpolation. The final transformation computed as a composite of T1,
T2 and T3, is used later to propagate back idhentified Svolfrom the template coordinate system to the
nativespace, as described in sectibr2.4.



Figure4.2 Workflow of registration via structural description of the bladder, prostate and urethra

Geometric and dosimetric scores were used to quantitatively assess the registration accuracy. Thus, the
centerline distance (CLD) was used for the urethra alignris4] and the Dice Similarity Coefficient
(DSC) and the Modified Hausdorff Distance (MHBp] for the prostate and the bladder. In addition,



the doseorgan overlap (DOO) was computed to evaluate the deaging accuracy as [@4]. The DOO

score measures the coincidence of both the organs and dose distribution in the common space by
penalizing the overlap errors within the higher dose gradients. indle 3D registration uncertainty

was estimated by computing the standard deviation of the center of mass coordinates of rigidly
registered bladder contours. Subsequently, dose distributions for each patient were smoothed
accordingly with a Gaussian kefwgth corresponding width, to overcome registration uncertainties.

4.1.3 DVM construction and definition of sub -volumes on the template (step 5)

Once the 3D dose distributions are propagated to the CCS,-wis@lanalysis allowed the identification

of symptan-related Svol by generating for each symptom a DVM representing the dose differences
between patients with and without toxicity. Only accurately registered patient data were included.
Unilateral ManAWhitney U tests were voxeWise performed between the two populations for each
endpoint. The alternative hypothesis was that patients with toxicity received a higher dose. This step
resulted in 3D maps for both dose differences dhdalues (threshold aP = 0.01[Figure4.1] step 5),
thereby characterizing each subregion in terms of average dose difference.

To cope with the multiple comparisons problem, arisiwgen performing multiple statistical tests
(voxetlwise), a nonparametric permutation teft19] was performed, which allowed the description of

the entire DVM with a single adjusteB-value. At each voxel, the average dose difference was
normalized to the standard eViation computed over all random samples generated from 1000
permutations on the urinary toxicity labels (yes vs. no). The normalized maximum dose difference was
selected as test statistic summarizing the discrepancy between the two groups (with/witbrigity)

and therefore avoiding a voxglise test and aconsequent multiple comparisoproblem. After each
permutation, we obtain a distribution of test statistic (Mafhitney U test), from which the adjusted p
value can be computed as the probabilityhafving a test statistic greater than the test statistic in the
observed sample and compared with a significance level of 5%, 10%, 15%, and 20%. The corresponding
percentile of the normalized maximum dose difference value possibly determines a voxel wétjian
statistically significant dose difference.

The resulting subregions were compared with those generated by the -wigelMannWhitney U test
(uncorrected). The overlapping regions (Mann Whitney U test region and permutation test region) were
finally considered in order to define the Svol. The absolute volume (in cc) of each subregion in the CCS
was also calculated.

4.1.4 Inverse mapping of sub-volumes to the native patient space and toxicity
prediction (steps 6 and 7)

All segmented Svol were propagatikdm the CCS back to each individual native space by applying the
inverse of the previously computed 3D deformation fiffig(re4.1] step 6). Subsequdly, DVHs and
mean doses were computed for the Svol and the bladder and compared across the patients with and



without toxicity. Unilateral ManAWVhitney U test was used to compare the mean dose and each DVH bin
between the two groups of patients. The pretion capability of the dose (mean and hinse) in the
identified Svol and the bladder was evaluated for the corresponding toxicity endpoints in the native
space of the patients. Additionally, we tested, by symptom, whether the doses in the Svol idefutifie
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toxicities, the predictive performances of the Svol and the bladder were estimated and compared using
the logistic regression. For late toxicitighe Cox proportional hazard model was used to compute risk
estimates. The prediction capability of the Cox model-gears was evaluated with the area under the
time-dependent ROC curve-ffUC), based on the approach proposed by Chambless and[IZ8ph
whichaccounts for censoring in survival analysis (also defined as cumulative/dynamic AUC). The AUC and
t-AUC and 95% confidence intervals (Cl) were computed using 1000 bootstrap replicates. The impact of
patient and treatment characteristics on each toxicitgdpoint was also assessed in a univariate
analysis.

Multivariate logistic/Cox models were constructed including clinical parameters andepreted
dosimetric variables (dose bins) from the univariate analysis. Models were constructed using two
methods: i) backward elimination and ii) the least absoluténitage and selection operator (LASSO)
method [160,161] as described in Chapter $he AUC and-AUC and 95% Cls from 1000 bootstrap
replicates were used tevaluate the modet[ ]¢ EJu]v 3]A % E(}EuU v X

Statistical analysis and graphics were performed in Python and R.

4.2 Results

4.2.1 Accuracy of spatial normalization

/v $}83 oU i6 % 5] v3e }us }( 16T A E /£ oup (E}lu SZ 5u88n= pe }( ]
0o }E o0 E ~GiXoé6AV v A iie -off point§ ®her¥ echgiricallySchosen after visual
inspection of the registered images, considering both organ overlap and urethra alignment. For the
remaining 254 patients, the computed mean valwesl standard deviations of DSC, MHD, and DOO

scores for the prostate and the bladder and the CLD score for the urethra are repdifedled.1] The

standard deviations of center of mass coordinates after the -rigid registration were 2.4 mm in the

left-right, 5.3 mm in the anterieposterior and 6.2 mm in the craniahudal direction.

Table4.1 Co-registration scores after nosigid registration for the prostate and the bladder

Organs DI MHD (mm) DOO CLD (mm)
Prostate 0.92+0.02 0.18+0.17 0.87+0.03 -
Bladder 0.88+0.07 0.68+0.88 0.87+0.08 -
Urethra - - - 1.82+0.80
DI= Dice scormdex, MHD= Modified Hausdorff Distafi®6], DOO= Dos@®rgan Overlap, CLD: Centerline Distft@4].




4.2.2 ldentification of the symptom -related Subvolumes with significant dose
differences between patients with/without toxicity, in the template

[Figure4.3|shows the Svol where statistically significant dose differences between patients with/without
toxicity appear in the common coordinate system (CO8)the left is shown the dose distution to the
bladder and the urethra for patients with/without toxicity. The dose displayed in each voxel corresponds
to the mean dose of each population. The mean dose (+ standard deviation) received by the whole Svol
in each population is given in thegtire. On the right is shown the mean dose difference to the bladder
v 8Z UE SZE ~+ P]88 0 v }E}v o Al AeeX dZ o | E 88 vPo ]Jv ] 8
trigone. Svol were identified for a total of 3 E skhiptoms: in the prostatiairethra for acute
incontinence, in the bladder trigone for acute retention, late retention and in the posterior part of the
bladder for dysuria, and in the superior part of the bladder for late hematditieese volumes ranged
from 2.4 to 16.9 cfFigure4.4] shows a 3D representation of these Svol.

The dose differences across the patie(mdth and without toxicity) iracute and late retention Svol were

not statistically sig ] (] vS$ (} & #®KEity. Féfthe remaining Svol, namely acute incontinerate

hematuria andlate dysuria, the low number oP E Hi Avse ] v}3 00}A 38} % E(}Eu
analysis.



Figure4.3 Symptomrelated subregions (SR® statistically significant dose differences between patients with/without
toxicity in the common coordinate system (CCS)



Figure4.4 Identified sub-volumes (Svol)n the in the common coordinate system



4.2.3 Dose differences in the subvolumes and in the whole bladder between patients
with/without toxicity in the native patient space

The averaged dose differences between patients with/without toxiditythe whole bladder, the

prostatic urethra and the five Svafter propagation of each Svol from the template to the native space

are reported inTable4.2| These differenceganging from 1.2 to 9.3 Gwere significant for the five Svol

(p<0.01) For the whole bladder, the dose differences were significant for acute retention (4.4 Gy), late

retention (4.4 Gy) and late dysuria (9.3 Gy).

Figure4.5|depicts the DVHSs of the Svol and the whole bladder for the two groups of patiEmsdose

bins with significant differences among the twoputations are identifiedThe red and green curves
represent the average DVHs of the patient with/without toxicity, respectively, in the Svol (continuous
lines) and in the whole bladder (dashed lines). The shadowed region indicates the dose bins where the

dose for the group with toxicity is significantly higher than the group without toxicity (Whaitney U
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Table4.2 Dose differences between patients with/without acute (A) and late (B) urinaoxicity in the whole bladder the

urethra and in thesub-volumes (Svol)
A. Acute urinary toxicity
GradeHL
Endpoints Regions D_o_se of pts with |Dose of pts without toxicity Dose difference (meal o value
toxicity (mean+SD , (mean+SD, Gy) +SE , Gy)
Whole bladdel 39.5+15.8 35.3+14.4 4.2 +6.05 NS
Hematuria Urethra 779+ 0.4 785+ 0.5 -0.6 £0.2 NS
Svol - - - -
Whole bladdel 37.5+15.4 38.1+14.9 -0.6 +2.3 NS
Dysuria Urethra 78.3+0.5 785+ 0.5 -0.3 £0.1 NS
Svol - - - -
Whole bladdel 40.4+ 14.6 36 £15.3 44+23 0.03
Retention Urethra 78.4+0.3 78.4+0.4 -0.05+0.1 NS
Svol 73.5+6.4 70.9+8.9 26+1.2 <0.01
Whole bladdel 35.6 £ 14.8 34.7+12.8 09+21 NS
Frequency Urethra 785+ 0.7 78.5+ 0.7 0 NS
Svol - - - -
Whole bladdel 31.3+6.5 35.7+14.7 44+19 NS
Incontinenc{ Urethra 79.3+1.2 78.5+ 0.9 0.8x0.5 0.06
Svol 799+1.4 78.7+15 1.2+0.3 <0.01
Gradek2
Whole bladdel 355+17.3 38+ 15 -25+49 NS
Dysuria Prostatic 78.5+ 0.5 78.2+0.4 0.3+0.2 NS
Svol - - - -
Whole bladdel 38.8+£15.8 37.6+15 1.2+29 NS
Retention Urethra 78.2+0.3 785+ 0.4 -0.3+£0.1 NS
Svol - - - -
Whole bladde| 36.6 + 14.7 35+14.3 16+£2 NS
Frequency| Urethra 78.6 £ 0.8 78.4+ 0.7 02+0.1 NS
Svol - - - -




B. Late urinary toxicity (at 5 years)

GradeHL
Endpoints Regions Dose of pts with toxicity Dose of pts without toxicity Dose difference o value
(mean+SD, Gy) (mean+SD, Gy) (mean +SE , Gy)
'Whole bladde 38.7+115 39.8+13.4 -1.1+2.8 NS
Hematuria Urethra 77.1+1.1 78.1+0.6 -0.4+0.7 NS
Svol 18.3+11.8 13.7+13.4 469+29 0.04
Whole bladde 50.1 +10.1 40.8+12.9 9.3+2.8 <0.01
Dysuria Urethra 78.0 +0.3 77.9+0.5 0.1+04 NS
Svol 65.4+7 56.8 £ 10.0 85+2 <0.01
Whole bladde 46 £ 13.9 416 +12.5 44+27 0.05
Retention Urethra 78.1+0.4 78.0+ 0.6 0.06 + 0.1 NS
Svol 36.3+16.4 27.1+13.1 93+3 <0.01
'Whole bladde 38.9+13.6 40.4 + 13.7 -1.4+24 NS
Frequency Urethra 78.2+ 0.7 78.2 £ 0.6 0.02+£0.1 NS
Svol - - - -
'Whole bladde 38+12.6 40.4+13.3 -24+26 NS
Incontinence,  Urethra 78.2 +1 78.0 £ 0.5 -0.2+0.5 NS
Svol - - - -
Gradel2
'Whole bladde 422 +£13.3 39.6 + 13.1 26+35 NS
Retention Urethra 779+ 05 78.1+£0.6 -0.3+£0.3 NS
Svol - - - -
'Whole bladde 38.6+12 40.4 + 13.51 -1.8+2.8 NS
Frequency Urethra 78.5+ 0.6 78.0+ 0.6 05+0.2 NS
Svol - - - -
'Whole bladde 36.2+13.4 40.3+13.1 -41+49 NS
Incontinence  Urethra 78.8 0.6 77.9+0.6 0.9+0.2 0.07
Svol - - - -

Svol:subvolume; SD: Standard deviation, SE: Standard error; NS: not significant (p > 0.05)



Figure4.5 DVHsof patients with and without urinary toxicity for the whole bladder and the Svol in the native space

4.2.4 Predictive capabilities of the Svoland whole bladder DVHSs in the native spaces

UNIVARIATE ANALYSIS

The predictive capabilities of the mean dose and the DVHSs for the five Svol and the whole bladder are
shown ifTable4.3] for acute toxicity anfiTable4.3B for late toxicity. The dose bins with the highest

significant AUC/-AUC are reportedThe AUC calculated from the doses in the Svol ranged 0.62 to

iX6i (JE& 8Z (JA *Cu%s3}lue ~PE Hi pns$ Jv }vs]v v v & S vs]ivU
while the doses to the whole bladder were predictive only for late dysuria (highest AUC=0.75) and late
retention (highest AUC=0.7Tfhedos *+ o0]A E v §Z "~A}o A E Vv}3 % E ] 3]A }( PQ



Table4.3 Urinary toxicity prediction capability of the mean dose and the DVH for the whole bladder and the identified
symptomrelated sub-volumes (Svoljn the native space of the patients

A pg 8}E] ]8C ~PE His
Mean Dose DVH
Endpoints | Regions o, | Most predictive 0 0
P 9 p value| OR (95% CI AUC (95% DVH bin (range g p value OR (95%] AUC (95%
cl) ; cl) o))
bins)*
Whole 1.06 (1.01|0.60 (0.51
' bladder NS - - V79(V7TV79) 0.052 1.13) 0.67)
Retention 1.06 (1.01 | 0.62 (0.56 1.02 (1.01|0.62 (0.55
Svol 0.04 1.2) 0.68) V72 (V63V79) 0.01 1.04) 0.68)
Whole
_ bladder | N° - - ] NS ] ]
Incontinenc 2.1 (1.27 | 0.74 (0.66 1.02 (1.01|0.73 (0.67
Svol <0.01 3.43) 0.81) V80 (V8ev83) 0.04 1.04) 0.81)
B. > & $}/&] ]5C ~PE His
Mean Dose DVH
Most predictive
. . - 0, 0, -
Endpoints | Regions|p value| HR (95% C EAUC 95% HyH bin (range| p value HR (95%) LAUC
o) . ch | (95% Cl)
of bins)*
Whole 1.05(1.0% | 0.75 (0.66 1.03 (1.010.720.63
v, | Dladder <0.01 17 09) 0.8a) | VOT(VSVI8) | <001 1"y 65 g8
ysuria
1.1(1.04 | 0.8(0.7% 1.05 (1.02 0.81(0.72
Svol <0.01 1.17) 0.88) V52 (V32V76) | <0.01 1.08) 0.90)
Whole 1.03 (1.0 | 0.66 (0.58 1.02 ( 0.670.59
| bladder | %01 " 1.06) 0.75) | VIS(VaV78) 1 <001 | Ty s | 0.75)
Retention 1.04 (1.02 | 0.71 (0.63 1.02 (1.01 |0.7000.62
Svol | <001~ 0s 0.78) V35 (VA7) | <001 oo 0.77)
Whole 1.04 (1 0.650.55
| bladder | N V7 (vevis) | 004 | any | 075
Hematuria 1.02 (1.01 | 0.64(0.55 1.02 (1.01|0.670.56
Svol | 004 T/ 0 0.73) VI7 (V8V25) | <0.01 Tr o 0.77)

MULTIVARIATE ANALYSIS

|Table4.4'presents the significant dosimetric and/or clinical parameters impacting on géatag4.4(A)

and late Q'able4.4| B) urinary toxicity in multivariate analysis selected using backward elimination. The

correspondingmodels resulted from LASSO multivariate aredysre reported irpTable 4.5( The
dosimetric impact of the dses to the Svol is confirmed.



Table4.4 Parameters impacting on acute and late urinargxdicity in multivariate analysis using backward elimination

A. Acute toxicity (logistic regression)

Grade>1
Endpoints Parameters p-value OR (95% ClI) M\‘/’:ﬁ'ep AUC (95% ClI)
Svol (V72) 0.01* 1.19 (1.04t1.4)
Retention TURP 0.06 0.12 (0.011.05) 0.01 0.70 (0.66€0.80)
Baseline retention 0.09 2.64 (0.868.1)
Svol (V80) 0.03* 1.8 (1.053.05)
Incontinence <0.01 0.74 (0.660.87)
Prescribed dose 0.11 1.6(0.92.84)
TURP 0.08 6.9 (0.859)
Previous abdominal
i 0.07 8.5 (0.8585.3
Hematuria surgery ( ) <0.01 0.86 (0.750.97)
Anti-coagulant 0.04* 9.4 (12t71.2)
treatment
Dysuria Age 0.01 0.94 (0.90.99) 0.01 0.6 (0.520.69)
TURP <0.01* 0.1 (0.020.5)
Frequency <0.01 0.7 (0.620.77)
Baseline frequency 0.01* 6 (1.5t24.8)
Grade>2
Retention Baseline retention 0.01 3.53(1.299.63) 0.01 0.59 (0.50.68)
A”tt'hypte”erls“’e 0.06 3.6 (0.9413.8)
Dysuria reatmen <0.01 0.72 (0.560.88)
Prostate volume 0.02* 1.03 (1.011.05)
Baseline retention <0.01* 4.9 (1.5715.26)
Frequency <0.01 0.7 (0.60.8)
Baseline frequency 0.01* 3.2(1.37.7)

ZK
Likelihood ratio test

MEA V Z «1PVv](]

OR: Odds ratio; HR: Hazard ratio; Cl: Confidence interval; AUC: Area under the ROBUWGrvanedependent area under the
vS % E u allies Glohafratsiiced Sigficance%f the model as defined by the




B. Late toxicity (Cox regression)

Grade>1
Endpoints Parameters p-value HR (95% CI) M\?:hejlep t-AUC (95% ClI)
Svol (V35) <0.01* 1.03 (1.011.05)
Age 0.1 0.96 (0.921.01)
Retention : : <0.01 0.74(0.660.84)
Previous abdominal 0.06 1.65 (0.922.96)
surgery
Baseline retention <0.01* 3.7 (1.97.1)
Age 0.07 1.09 (0.991.19)
TURP <0.01* 4.9 (1.6614.4)
Incontinence i <0.01 0.77 (0.650.88)
Diabetes <0.01* 5.1(1.67-15.5)
Anti-coagulant 0.7 1.2 (0.43.6)
treatment
Svol (V17) 0.03* 1.04 (1.011.07)
Hematuria 0.01 0.67 (0.540.78)
Baseline retention 0.2 2.6 (0.79.9)
Dysuria Svol (V52) <0.01 1.1(1.041.17) <0.01 0.80 (0.710.88)
Age 0.15 1.03 (0.991.07)
A”tt'hypte”erls've 0.06 1.58 (0.972.57)
Frequency reatmen <0.01 0.76 (0.680.84)
ADT <0.01* 2.44 (1.53.98)
Baseline frequency <0.01* 3.79 (2.326.2)
Grade>2
Age 0.2 0.95 (0.891.03)
Prev";‘;’fg‘:‘)m'”""' 0.12 2.2 (0.86)
Retention A grteynsive <0.01 0.74 (0.590.9)
yp 0.14 0.4 (0.121.34)
treatment
Baseline retention <0.01* 4.9 (1.7613.6)
Diabetes 0.09 3 (0.8310.9)
Frequency <0.01 0.74 (0.620.88)
Baseline frequency 0.02* 5.29 (1.815.6)
Incontinence TURP <0.01 17.7 (2.9576.26) <0.01 0.74 (0.620.87)

OR: Odds ratio; HR: Hazard ratio; Cl: Confidence interval; AUC: Area under the ROBUWGrviimedependent area under the
ZK HEA V Z «]PV](] VS % E u ¥alle: Glohaansiiced Sgiificarme%f the model as definby the
Likelihood ratio test




Table4.5 Parameters impacting on acute and late urinary toxicity in multivariate analysis using LASSO
A. Acute toxicity(logistic regression)

Grade>1

Endpoints Parameters beta OR (&°9) AUC (95% CI)
Svol (V72) 0.0098 1.01

Retention TURP -0.4981 0.62 0.71 (0.620.78)
Baseline retention 1.0355 2.81

Incontinence Svol (V80) 0.00891 1.01 0.73 (0.610.85)
Age -0.0318 0.96

Dysuria 0.63 (0.550.72)
ADT -0.1531 0.85
Bladder volume -0.0002 0.99
TURP -1.2162 0.30

Frequency 0.79 (0.70.88)
Hypercholesterolemia treatment -0.4177 0.66
Baseline frequency 0.5518 1.73

Grade>2

TURP -0.2528 0.78

Retention Anticoagulant treatment -0.2320 0.79 0.63(0.540.72)
Baseline retention 0.774 2.17
Antihypertensive treatment 0.3210 1.38

Dysuria 0.72 (0.550.88)
Prostate volume 0.0127 1.01

Frequency Baseline frequency 0.5908 1.81 0.59 (0.520.65)

OR: Odds ratio; Cl: Confidence interval; AUC: Area under the ROC curve;




B. Late toxicity (Cox regression)

Grade>1
Endpoints Parameters beta HR (&°19) tAUC (95% CI)
Svol (V35) 0.0114 1.01
Age -0.0222 0.98
Retention 0.79 (0.720.85)
Previousabdominal surgery 0.3486 1.41
Baseline Retention 0.8857 2.34
Age 0.0355 1.04
Incontinence TURP 1.2058 3.34 0.81 (0.710.88)
Diabetes 1.2925 3.64
Svol (V17) 0.0105 1.02
Hematuria 0.68 (0.570.78)
Anticoagulant treatment 0.0841 1.93
Svol (V52) 0.0171 1.02
Dysuria 0.82 (0.720.90)
Previous abdominal surgery 0.1427 1.15
Age 0.0072 1.01
Bladder volume -0.00038 0.99
Frequency Antihypertensive treatment 0.3003 1.35 0.81 (0.750.86)
ADT 0.5538 1.74
Baseline frequency 1.0396 2.82
Grade>2
Age -0.0414 0.96
Previous abdominal surgery 0.3828 1.47
Diabetes -0.3501 0.70
Retention 0.77 (0.670.85)
Antihypertensive treatment -0.4946 0.61
ADT 0.2863 1.33
Baseline retention 1.0885 2.96
Diabetes 0.4673 1.60
Frequency Hypercholesterolemia treatment -0.4663 0.63 0.81(0.720.90)
Baseline frequency 1.1170 3.06
TURP 2.0501 7.77
Incontinence 0.82 (0.650.97)
Previous abdominal surgery 0.6994 2.01

HR: Hazard ratio; Cl: Confidence interv@{JC: timedependent areainder the ROC curve




4.3 Discussion

A robust norrigid registration strategy, coupled with voxgise comparisons, allowed us to investigate

the local doseeffect relationship for acute and-ears late urinary toxicity after prostate cancer RT. The

doses on five Svallocated in the urethra and the bladdewere identified as good predictors for five

PE&E H i eCu%S}ue ~ pus Jv }vs]v v v & S vs]}vU oS & S vS]}ivU
predictive capabilities of these Svol outperformed the pectisle capabilities of the whole bladder. To

our knowledge, this is the first study to explicitly correlate the dose to specific subregions of the bladder

and the urethra with urinary toxicity, within a voxehsed framework.

This study is the first toxplicitly correlate the 3D dose to the urethra with urinary toxicity following
external beam radiation therapy. Acute and late retention Svol were found in the trigone and posterior
part of the bladder. Indeed, retention can attributed to reduced bladdantcactility (detrusor muscle).
Relationship between the dose to the bladder trigone or high bladibse and obstructive side effects,

has also been reported in the literatufg4,57,58] Dysuria (painfulirination or difficulty urinating)Svol

is also mainly located in the posterior part of the bladder, partially in the trigone. Surprisingly, a Svol for
hematuria was found superiorly, at the bladder dome (a region which receives a relatively low dose, < 20
Gy), while bleeding classically reldt® high dosg54,129,167] andtelangiectasia are mainly observed

in the bladder neck/trigone at the cystoscapicontinence appears related to the dose delivered to the
prostatic urethra. Indeed, incontinence may result from malfunctioning of the urethral sphifid8}. A
dosimetric association with urinary frequency could not be demonstrated irptasent study, although

this symptom was strongly prezted by the baseline frequency

One of the major advantages of the voxéke analysis is that the whole 3D volume can be explored and
compared without any prior knowledge of regions correlating widtkicity. However, our approach relies

on a multtorgan deformable image registration, which appears particularly challenging given the high
interindividual variability. Conventional interindividual CT registration methods are not accurate enough
for reliable anatomical mapping because of the low difsue contrast. To cope with this issue, we
combined a structural description of the pelvic region using the contours obtained within the clinical
protocol. Each step was thoroughly validated, includingattomatic segmentation of the urethra, thus
increasing the reliability of dose mapping. We propagated the Svol found in the template back to each
Jv JA] 1 o[ *%o vU ¢eeuzZ Zd %0 vv]vP u C ul} 1(1 38} *% E %o
of reducing the dose in the Svol, while preserving the dose to the PTV, still requires demonstration. This
goal seems achievable when dealing with Svol distant from the PTV (such as hematuria Svol) but much
more difficult when Svol are located inside or cles¢he PTV (such as incontinence Svol).

Our study presents some limitations. The results must be carefully interpreted, as a correlation between
local dose and toxicity does not necessarily mean causality, especially given the paucity of events for
certain endpoints. Second, we failed to find a spatial deffect relationship for some syngms, in

% &S] po E 7 id&Ecify.@lthougth this may imply the absence of specific Svol for these symptoms,

it can also be due to the limited followp or to thepatient-specific parameters that affect toxicity and



were not taken into account or to the limited folleup. Furthermore, the predictive performance of our

model has been internally validated (via bootstrapping) on the same subjects used to construct the
model. External cohorts are therefore required to validate the results. Finally, statistical analyses were
performed on the planning dose distribution, which can differ from the actual delivered [d@3¢128]

Daily 3D imaging, such as CBCT, could be used to compute cumulated doses, thereby confirming some of

§Z ~A}oe[ ]ubhtoficity[160]

4.4 External validationtoe e—<ef—%f —St 01:°8:7—6

4.4.1 Population dataset, treatment and toxicity

For the external validation of the fiyereviouslyidentified Svol we used patients from the Randomised
Androgen Deprivation and Radiotherapy (RADAR, Tfasman Radiation Oncology Gpo03.04) trial,

which examined the influence of the duration of androgen deprivation therapy with or without
bisphosphonate treatment, adjuvant with radiotherapy. Data were collected from 23 centres in Australia
and New Zealand between 2003 and 200BeRADAR trial is a phase 3 trial with a 2 x 2 factorial design

in patients with nor metastatic adenocarcinoma of the prostate (stage Tdb}@E diT U 'o <}v ¢ }E
and baseline prostate % (] VvS]P v }v VvS@& §]}VIHEsitial ks tegisted With mXmber
NCT00193856 in ClinicalTrials.gov.

Data collection, protocol requirements and QA have besmmmarizedin multiple publications
[134,167,170179]. All participants received ecger-nominated radiotherapy where 813 had EBRT
(without a brachytherapy boost) t66, 70 or 74 Gy of dose, delivered in up to 2 treatment phases.
Delineation of the bladder was not mandatory for RADAR and no specific dose constraints were applied
for the bladder. Centers were free to prescribe different bladder filling protocols; 701 patients were
prescribed to full bladder, 34 empty and 19 with no or missing protfi®i]. Dosesurface histograms
(DSH) of the bladder wall were calculated independently ugiptan review softwareSWAN [174] to

ensure consistency across datasets submitted from different cefit&@]. More complete descriptions

of the study praocol and treatment technique specifications can be found elsewhErg&].

In total, 476 were treated with conventional fractionatiofil.8-2Gy/fraction) and had sufficient
dosimetric, clinical and imaging data available for inclusion in the anadRatiss by sympton} ( P E H
landgrad Hi1 pupus8 Vv o0 §

HARMONISATION OF ERINTS

The urinary function of RADAR patients used as the validation cohort was assessed at baseline and at the
end of radiotherapy using physiciassessed LENSOMA ad the International Prostate Symptom Score
(IPSS) questionnaire. Patients were routinely followed up every three months for 18 months, then six
monthly up to five years and then annually where urinary symptoms were assessed usin§GQENT
Patients wereasked to complete the International Prostate Symptom Score (IPSS) questionnaire at 12,




18, 24, 36 and 6fnonth followrup postrandomization. The median follewp was 72 maoths. Urinary
symptom endpoint definitions were in concordance with the definitiosedito develop the predictive
models for dysuria, hematuria and incontinence (physician asspGS&€@AE v.3.0 or RTOGhe
symptom of retention is not described by the LEBIDMA scoring and, thus, for the validation of the
corresponding models equivalemndpoints were derived from the IPSS. Retention was defined by
aggregating the scoring of the questiathsscribing an obstructive effe¢y1, g3,905,96) and herein called
IPSSO.

Tabled6Z § « }( PE v HPE HT puS8 v o038 pE]v EC S}A] ]SC ~ C *Cu%Stue
Acute toxicity
Endpoints
Grade HL (No. of cases and %) Grade H2 (No. of cases and %)
Incontinence 67 (15% [1219%]) 29 (7% [49%])
Dysuria / Pain 221 (51% [465%)]) 81 (18% [1222%)])
Hematuria 12 (2% [14%)]) 2 (0% [61%])
Retention 155 (40% [3313%)]) 65 (14% [1a.6%])
Late 5year toxicity
Grade HL Grade H2
Endpoints
No. of cases KaplanMeier No. cases KaplanMeier
Incontinence 128 (35%) 32% (2737%) 49 (15%) 12% (916%)
Dysuria / Pain 111 (31%) 28% (2233%) 32 (10 %) 8% (511%)
Hematuria 52 (15%) 13% (916%) 7 (2 %) 2% (03%)
Retention 60 (16%) 13% (1618%) 27 (9 %) 7% (510%)

4.4.2 DVM construction and statistical analysis

The same template patient that was previously selected for Svol identification (from the French cohort)
was used to align the population in a common coordinate system-ridh registration was performed

as described in section 1.2.2 and a deformatioridfizvas generated. From thd76 patients, the
registration accuracy, as evaluated in terms of Dice score, was considered as acceptébfofahem
~GiX606 (}E& SZ % E}*S S v GiXoA (}& §Z2 o E- vV

For each successfully registered individual, the five previously identified Svol werprbaelated from

the template space to the native space of the patient by applying the inverse of the transformation
obtained during the registration procesSubsegently, DVHs and mean doses were computed for the
Svol, the bladder and the urethra and compared across the patients with and without toxicity. Unilateral
Mann-Whitney U test was used to compare the mean dose and each DVH bin between the two groups of
patients. For acute toxicities, the predictive performances of the Svol, the bladder and the urethra were

$Z CAE v

op



estimated and compared using the logistic regression. For late toxicities, the Cox proportional hazard
model was used to compute risk estimates. The proin capability of the Cox model atygars was
evaluated with the area under the tirmgependent ROC curve-#UC)[159]. The AUC andAUC and

95% confidence intervals (Cl) were computed using 1000 bootstrap replicates.

4.4.3 Results

The predictive capabilities dlfie mean dose and the DVHs for the five Svol, the whole bladdethend
urethra are shown f§Table4.7]A for acute toxicity ar[Table4.7B for late toxicity. The dose bins with the
highest significant AUCFAUC are reported. Subregions, confirmed in the RADAR cohort where acute
incontinence, late retentin and late dysurialhe AUC calculated from the doses in the Svol ranged from
0.65 to 0.70 for the symptoms. The dose to the whole bladder was predictive only for acute incontinence
(AUC=0.65). The dose to the urethra was predictive onlgdiote incontinence (AUC=0.72).

Table4.7 Urinary toxicity prediction capability of the mean dose and the DVH for the whole bladder and the identgigul
volumes (Svol)n the native space of the patients

A. ps S}A] 1SC ~PCE Hie
Mean Dose DVH
>meem regen varl)ue OR (95% Cl) AUC I\/Ib(?r:?t(?{::'relcéjle(;’tg;ebIi::l\s/;_| vaFI)ue OR (5% Cl) | AUC
Whole bladder| NS - - - NS - -
Retention Urethra NS - - - NS - -
Svol NS - - - NS - -
Whole bladder| NS - - V70 (V63V73) <0.01/| 1.05 (1.011.09) | 0.65
Incontinence|  Urethra | <0.01| 1.4 (1.1%1.74) | 0.72 V71 (V7V75) 0.01 | 1.03(1.031.05) | 0.71
Svol 0.01 |1.07 (12.011.13)| 0.70 V71 (V7V75) 0.01 | 1.03 (1.011.05) 0.70
B. >3 38}/&] 15C ~PE Hi-
Mean Dose DVH
Symptom | Region | P | prs9s cy r-aucMoStpredetive DVHL |1 LiRces0s cly | t-AUC
value bin (range of bins)
Whole bladder| NS - - - NS - -
Dysuria Urethra NS - - - NS - -
Svol 0.05 | 1.04 (:1.07) | 0.60 V67 (V55V73) <0.01 | 1.02(31.03) | 0.66
Whole bladder| NS - - - NS - -
Retention Urethra NS - - - NS - -
Svol <0.01/1.03 (1.011.06)| 0.65 V38 /13V64) <0.01 |1.02 (1.031.04)| 0.70
Whole bladder| NS - - - NS - -
Hematuria Urethra NS - - - NS - -
Svol NS - - - NS - -




The Svol foacute incontinence, which included the inferior and posterior part of the prostatic urethra
was found to be predictive (AUC=0.70), although the mean dose to the whole prostatic urethra showed
the best performance (AUC=0.72). For late dysuhia dose to he Svolidentified on the posterior
bladder part,was confirmedwvith moderate performance (AUC=0.66). Late retention Suwohted at the
posterior bladderwas confirmed with good predictive performant@UC=0.70). The dose to the whole
bladder was prediive only for one symptom, acute incontinence, with modest performance
(AUC=0.65Acute retention and late hematuria models were not confirmed on the RADAR population.

4.5 Conclusion

A voxelwise analysis allowed the identification of urethvesicalSvo] whose irradiation appears highly
correlated to specific urinary side effects after prostate cancer RT. The dose received by these Svol was
more predictive than the dose to the whole bladddgxternal validation ona large independent
populationconfirms three out of the five subregions as predictive for specific symptamggesting that

the posterior part of the bladder and the prostatic urethra are particularly involvedrimary toxicity

The therapeutic benefit of adding dosimetric constraints to theskeregions needs to be demonstrated.

Using DVMs we were able to identify and validate specificpguts of the bladder as predictive of
specific urinary sideffects. Althoughthe prediction capabilities of current models exploiting available
are improved compared to the whole bladder DViodels they might be limited by cohort
characteristics~+]1 U 3} /] ]3 Cafd atherbnetBodbtogical issues

Along with traditional regressigmore advanced machine learning strategies have been used and tested
in the development of predictive models.pfethora of algorithmarise as promising tools for improving
the prediction capabilitiedut their performance can significantly vadgpendingon the learning task

and the specific data characteristida the next chapter we implement and compare some of the most
popular machine learning techniques aiming to detect those that are better suited for radiotherapy
outcome prediction using common dimnetric and clinical data. Further improvement of their
performance was also attempted nbugh dataaugmentationtechniques. For simplicity, comparisons
were performedfor one symptomonly and using thédVH of thewvhole ladder.






Part IV

Future direct ions for improving urinary toxicity

prediction : A machine learning approach



5 Comparison of machine learning algorithms and
oversampling techniques for urinary toxicity prediction

after prostate cancer radiotherapy

In the present chapter we assess the robustness of several machine learning algorithms for
prediction of urinary toxicity following prostate cancer radiotherapy using dosimetric and clinical
data. For this explanatory studyhé performance of the classifs was evaluated using the
whole bladder DVH, which is consideteday the clinical standardMoreover, b cope with the
problem of low number of events on the unbalanced dataset the implemented machine learning
strategies included four different syntlheimninority class oversampling techniques.

The work presented in this chapter has been accepted for publication at theepemred IEEE
conference: International Conference on Bioinformatics and Bioengineering (IEEE BIBE 2019), in
Athens Oct 280 20D.

Mylona E Lebreton C, Fontaine C, Crehange G, Magné N, Supiot S, de Crevoisier R, ACostpatison of
machine learning algorithms and oversampling techniques for urinary toxicity prediction after prostate cancer
radiotherapy IEEE proceeding&thens Oct 280 2019.



5.1 Introduction

Given the inconsistency of available data concerning radiatidaced toxicity, it is crucial to develop
robust models with superior predictive performance in order to perform tailored treatments. Machine
Learning techniques emerge as appealing in thistexd, nevertheless without any consensus on the
best algorithms to be used. This work proposes a comparison of several mbdninieg strategies
together with different minority class oversampling techniques for prediction of urinary toxicity
following prostate cancer radiotherapy using dosimetric and clinical data. The performance of these
classifiers was evaluated on the original dataset and using four different synthetic oversampling
techniques.

Urinary toxicity modeling has been addressed in salvetudies without a clear consensiis26].
Although many important clinical factors have been identified, the relationship between urinary toxicity
and bladder dose is far from reaching unanimity. Indeed, the vast majority of existing studies are based
upon traditional regression approaches (e.g. logistic or Cox regression) to identify the most important
predictors. Although these approaches are often preferred over Machine Learning (ML) techniques due
to their interpretability, the prediction power of such molddas yet modest. Machine learning techniques

can potentially increase toxicity prediction after RT as they rely on previous informative examples.
Plethora of methods are emerging without a clear advantage of its use in this context as they application
isnot straightforward.

One of the main issues that may arise when dealing withhwseaild data, is the class imbalance problem
[181]. That is,in the simplest case when modeling a binary outcome, the majority of the individuals
belong to a specific class (majority class) and far less number of individuals are assigned to the
counterpart class (minority class). Commonly, the minority class astladsclass of interest to model.
Within the context of urinary toxicity this phenomenon is particularly evident due to the paucity of
events for certain endpoints. Training a classifier on highly imbalanced data can be particularly
misleading since the marity class has minimal effect on overall accuracy. Consequently, even if the
algorithm classifies all the samples in the majority class, this may result in seemingly high performance.

Within the context of urinary toxicity prediction after RT, we attdmp answer three research
guestions:

Is there a superior classifier in terms of discriminative performance?
When using machine learning techniques on an imbalanced dataset, can we increase classifier's
performance by handling the class imbalance?

X Which oversampling technique is more robust for coping with class imbalance issues?



5.2 Materials and Methods

We analyzed 30 dosimetric parameters extracted from wigole bladder's DVH, together with 10
clinical and patientrelated parameters, in a traingitest pipeline using different classification methods
and oversampling techniques.

5.2.1 Population dataset

The population dataset and treatment characteristics of the patients included in this study have been
thoroughly described in the previous chapter. ¢insists of 254 patients with localized prostate cancer
treated with IMRT/IGRT at 78/80Gy (2Gy/fr), in a multicenter setting {&RCTC and PROF[I}7,158]
Twenty urinary toxicity outcomes were available corresponding to different urinary symptoms, toxicity
grades and time ofymptom manifestation. Due to the loss-follow up, which can occur any time
during the followup period, some datasets consist of subsamples with fewer/more patients and with
lower/higher class imbalance. For the purpose of this study, we chose tcagwddie urinary retention

as the corresponding dataset was moderately imbalanced (1:2). The dataseyéars late retention
consisted of 122 patients. 82 of them (66%) remained asymptomatic by that time (majority class) and 40
of them (33%) developedimary toxicity within the Syears period (minority class).

5.2.2 Classifiers

Eight common classifiers were selected and implemented using the R package, caret. The selection
includes classifiers frequently used in medical data analysis:

X Least Absolute Shrinkagand Selection Operator (LAS$0H0] is a regularized form of logistic
regression that effectively performs model selection. The added shrinkage regularization (i.e.
feature selection) makes it is suitable for datasets with many features while maintaining the
interpretability of a standard logistic regression.

X Generalized Linear dtlels with likelihood based boosting (GLMbooElB2] is a machine
learning method for optimizing prediction accuracy anddbtaining statistical model estimates
via gradient descent techniques. A key feature of the method is that it carries out variable
selection during the fitting process without relying on stepwise variable selection.

X NaiveBayesis a probabilistic clasdif E . v C <[ RA&3]Mdh the assumption of
independence between features. It detects the class type based on the maximum probability
obtained for the given tuple to a particular class.

x Decision Trees C5[a84]. A decision tree itefively subdivides the training set by selecting
feature cutoffs. Decision trees can model nonlinear effects and are easily interpretable.

x Random Forests (RF) generate a large number of decision trees based on random subsamples of
the training set while atsrandomly varying the features used in the trees. Random forests allow
modeling nonlinear effects. A random forest model is an ensemble of many decision trees and is,
therefore, more difficult to interpret.



X Support vector machines (SVM) is a fpobabilstic, linear, binary classifier used for classifying
data by learning a hyperplane separating the data. Linear SVMs is defining the separating
hyperplane in the original feature space and thus is more intuitive than the radical kernel SVM.

x Partial Least Smres Discriminant Analysis (FS) [185] is a dimensionality reduction
technique based on PLS regression that is used when the response variable is categorical. Instead
of finding hyperplanes of maximum variance between the response and indepemdaables
PLS finds a linear regression model by projecting the predicted variables and the observed
variables into a new space. PRD& can provide good insight into the causes of discrimination via
weights and loadings.

X Regularized Discriminant Analysis (R[A8p] builds a classification rule using regularized group
covariance matrices that are supposed to be more robust in presence of multicollinear data. It
lacks, however, interpretability and is impraeti¢or highdimensional datasets.

More details about these classifiers can be found in Machine Learning textf@#{s

5.2.3 Oversampling techniques

Random oversampling often results in overfitting while undersampling may weaken the classifiers
performance. Thus, the method of choice for handling the class imbalance problem was the Synthetic
Minority Oversampling Technique (SMOTH7] and some of its' variations. We implemented four
commonly used techniques for synthetically balancing the data by oversampling the minority class:

X SMOTE produces new minority observations based on weighted average of-ribardst
neighbors of the same class. These synthetically generated minority class instances make the
class distributions more balanced.

x Borderline (BD) SMOTEB8] oversamples the minority examples only near the borderline with
the majority class. Compared to regular SMOTE, bordeBMOTE does not createngletic
examples for noise instances, but concentrates its effort near the borderline, which in turn helps
the decision function to create better boundaries between classes.

x SMOTE+ENNS89] copes with the issue of SMOTE where artificial minority class examples are
produced too deeply in the majority class space. Inducing a classifier under such a situation can
o] §} }JA E(]88]vPX /v §Z]ted-Ngare3t Neighpo] Rule (EN]IPO] was used to
remove noisy SMOTE examples while leaving the original data unchanged.

X Adaptive Synthetic oversampling (ADASMN]] uses a weighted distrution for the minority
class objects according to their level of difficulty of learning. In comparison to bord&M@TE,
ADASYN creates different synthetic samples for the minority class depending on its distribution
and not just for the borderline inances. The synthetic samples are created based on the
majority nearest neighbors via theMN method. One drawback of this approach is that it does
not identify noisy instances, and thus becomes susceptible to outliers



5.2.4 Experimental Design

The performane of the classifiers was initially computed on the original dataset (before oversampling),
which served as the reference dataset for the analysis. Given the small number of available examples,
splitting beforehand into training and testing sets was notatpted. Thus, a-fold crossvalidation (CV)

was performed, repeated 20 times, resulting in 100 models. The performance of each classifier was
estimated according to the maximum AUC obtained through tield CV. This is a common strategy to
build and vabate a model internally when the amount of data is not large enough to split in
training/test sets. The results were then used to evaluate the impact of the different oversampling
techniques on classifiers' performance.

When the oversampling was perfoed, a nested CV was implemented whereby the number of both
inner and outer folds was set to 5. The experimental design fon&sted CV is depicted|Figure5.1

Figure5.1 Workflow of the nested crossalidation

Each dataset was split into five random subsamples stratified for outcome classese, Hewoh
subsample was used as a tastt (testout) and the remaining observations as training set (t@in).
The oversampling was then performed on the minority class of the-trairto balance the two classes.



Features were first centered and then-sealed and the same transformation was applied to the
corresponding tesbut. The models were trained on the tragut and applied on the tesbut to
compute the performance metrics resulting in five estimates per performance metric (1 pesugst

In the inner CV, the traiout was split again into five subsamples, where each subsample served once as
a test set (tesin) and the remaining observations as testing set (t#ajn This inner Sold CV was
repeated 20 times and the models with different tog parameters were compared. The best tuning
parameters were selected according to the maximum AUC of an infield 3CV (tesin). For each
repetition different randomization seeds were used to make the process reproducible and ensure that
exactly the sme splits would be performed across the difint oversampling techniques.

To provide meaningful comparisons of the performance of each classifier on the reference dataset
(without oversampling) and the datasets after oversampling, the-itesesults of the CV were used. For
this purpose the area under the ROC curve (AUC) wad ts compare the models. The actual
performance of the classifiers was then evaluated based on their scores on theutes¢ts. The AUC

and the Fmeasure were computed.

The analysis was implemented using various epaurce R packages interfaced witie R package
caret.

5.3 Results

shows the best discriminative performance of each classifier on the original dataset (without
oversampling) and on the oversampled datasets, after repeatédddb CV. Before oversamplinthe
performance of the classifiers ranged from 0.41 (RF) to 0.65RLSAfter oversampling the best
performance was achieved on the SMOTE+ENN dataset with the RDA classifier (AUC=0.89) and the
lowest performance on the SMOTE dataset using the NBaxees @ssifier (AUC=0.57).

Table5.1 The AUC for each classifier after repeateddsd CV

[Figure5.2]shows the results of the pairwise comparisons between the datasets averaged over all the
classifiers (onsided Wilcoxon signerhnk test). The alternative hypothesis was that the oversampling
techniques 1 performed better than the oversampling technigde$he numbers in the plot indicate the
p-values. The color indicates whether the increased AUCs by oversampling technique 1 are statistically



significant, or close to significant-yalue <0.1), than the oversampling technique 2. Consistently higher
was the performance on the SMOTE+ENN dataset. However, all the oversampling techniques showed
improved classification performance compared to the original dataset.

Figure5.2 Pairwise comparisons between claisrs

[Figure5.3]shows the results of the pairwise comparisons between the classifiers averaged over all the
datasets (onesided Wilcoxon signethnk test). The alternative hypothesis was that the Classifiers 1
performed better than the Classifiers 2. The numbers in the plot indicate thalygs. The color
indicates whether the increased AUCs by the classifiers 1 are statistically significant, otoclose
significant (pvalue <0.1), than the classifiers 2. The best performing classifier was the RDA followed by
the PLSDA. The least performing classifier was Ndages. Overall, RDA, HLS, SVM and Decision
Trees outperformed RF, LASSO, GLMboost ane-Bayes.



Figure5.3 Pairwise comparisons between oversampling techniques

Table5.2|shows the actual performance of each classifier and for each dataset on the “seel test

sets (testout). The highest performing classifier across all the datasets was again the Rx¥exdthe
AUC=0.69. Second scored tReSDA with AUC=0.65. Similarere the results for le Fmeasure as

shown in thgTable 3] The highest #easure=0.70was obtain with RDA followed by the PD&
algorithm (Fmeasure=0.66).

Table5.2 The average AUC of the tesut for each classifier and resampling technique



Concerning the different oversamplingchniques, there were no significant differences between
SMOTE, Borderline SMOTE and ADASYN while SMOTE+ENN performed slightly higher. Overall the
highest performance was obtained with RDA on the SMOTE+ENS&t@d&)C=0.71-Reasure=0.72).

Table3 The average Hneasure of the testout for each classifier and resampling technique

5.4 Discussion

The purpose of this study was to compare the discriminative performance of eight binary classifiers in
predicting urinary toxicity after prostate cancer radiotherapy. In order to deal with the class imbalance
problem, the performance of thesgassifiers \as evaluated usinfpur different synthetic oversampling
techniques. Both dosimetric and clinical features were included.

Our results suggest that there is indeed an overall ranking of classifiers, with the two types of
discriminant analysis, RDA and B4 performing the best. We also observed that all the oversampling
techniques significantly increased the performance of the models, with the SMOTE+ENN providing the
best results. Interestingly, there was no strong dependence of the classifier perfoemamcthe
oversampling technique as the RDA scored the highest AUC across all the datasets, including the original
non-resampled one.

Although it is expected that reducing the number of features in the model, might increase performance,
we intentionally @rformed the analysis without applying any previous feature selection procedure,
given that in real world situations, RT data usually include a large number of highly correlated features.
This can possibly explain the reason why certain ML algorithms rpegtb better than others in our
dataset. A common limitation of many ML algorithms is their poor ability to properly handle strongly
dependent variables. Conversely both RDA andA $ave been reported on the literature as robust
techniques under such siations. For instance, Dumancas and B§lB2] compared the predictive
performance of 12 machine learning algorithms on a datag#t the presence of high multiolinearity.

The objective was to use lipid profile data to predieyear mortality. They showed that the highest
scoring classifier among the 12, as measured by the AUC, was HIRAPLS



With respect to synthetically oveampling methods, SMOTHES87] was the first technique which
introduced new samples by using the feature space rather than the data space and is today, a well
established tool for oversampling. Although SMOTE seems to work well withinoensional data, it is

less effective when applied on higlmensional data. This is due to the fact that SMOTE is not able to
manage the bias in the majority class for the classifier where the data is high dimensional. Another
drawback of the SMOTE algbrn is over generalization of the minority class space. Thus, a plethora of
algorithms based on this concept have been proposed in order to overcome the limitations of SMOTE.

Over the past decades, several studies have investigated the potential of SM@TMMOT&ariations

to overcome the class imbalance problem. Batista e{1@9] performed a study on 13 datasets with
different imbalance levels and stved oversampling methods to perform well on datasets with few
positive examples. They proposed two methods, SMOTE+ENN and SMOTE+Tomek, and analyzed their
behavior against other resampling techniques for dealing with class imbal&opez et al.[193]
compared SMOTE, Borderli®MOTE, ADASYN and some other methods using Decision Trees, Support
Vector Machines and k Nearest Neighbors classifiers and evaluated their performance in terms of AUC
on 66 datasetsThey reported SMOTE and SMOTE+ENN as the top methods with Bor8&IDIEE and
ADASYN being also competitive. More efi4] performed a survey of different resampling techniques
including Random Oversampling, SMOTE, BordeEIMOTE etc. and concluded SMOTE+ENN to be the
best approach in terms of Precision for the majodtgss and Recall for the minority class. Our results
also suggest that SMOTE+ENN is the most efficient approach for dealing with the class imbalance
problem. However, we were not able to confirm any significant improvement on the classifiers'
performance vinen using the ADASYN or Borded®M®OTE over the traditional SMOTE technique.
Nevertheless, all the oversampling techniques significantly improved the average classification
performance of the ML algorithms compared to the original dataset (without owaptiag). These
findings demonstrate the importance of handling class imbalance and highlight their efficacy on RT
datasets. We have to stress out that complexity of data, level of imbalance, evaluation criteria and
choice of classifier, all play crucialadn the evaluation process.

Another common approach to perform class imbalance is undersampling which consists irsidmgn

the majority class by randomly removing observations until the dataset is balanced. Despite the
popularity of undersamplinghis technique was intentionally disregarding in the present study because

of the risk of removing relevant observations from the dataset, since the process is performed in an
unsupervised manner. Consequently, the more imbalanced the datasetmibre samples will be
discarded when undersampling. A study from Pozzolo dil@b] showed that the beneficial impact of
undersampling is strongly dependent on the nature of the classification task (degree of unbalancedness
and nonseparability) and on the variance of the classifier and, as a consequence, it is extremely
dependent on the specific test point. Although our study is "optimistic" in terms of class imbalance
(minority-majority ratio was 1:2), it is particularly common in toxicity prediction studies that the minority
class consist of only of a few dozens ofigats, in which case undersampling would result to a balanced
dataset with only a few observations.



One of the most critical points in performance evaluation is the choice of the correct metric. A metric
may correspond to some expected loss over différeperating conditions. In the taxonomy proposed

by Ferri et al[196] three families of metrics were recognized: performance metrics which account for
the quality of classification (such as accuracy), performance metrics which account for a ranking quality
(such as AUC), and performance metrics which evaluate the quatitocés or how well the model does

in terms of probability estimation(such as the Brier score orléeg). The most widespread, but also
controversial, measure to evaluate a classifier's performance is accuracy (or error rate which is defined
as 1 minus ecuracy). As it simply measures the number of correctly predicted samples over the total
number of samples, this metric should be used only if the assumptions of balanced class distribution and
eqgual cost of misclassification errors hold true, which isusatally the case for reavorld applications.

In this study we used the-iReasure and the AUC to evaluate models' performance. finedsure (also

called F1 score) conveys the balance between the precision and the recall and is recommended for
imbalanced datasets. It is assumed, however, that pretiaitd recall are equally important. The use of
AUC is welhccepted for evaluating classifiers performance, especially for medical applications. The ROC
compares the classifiers' performance across the entire range of class distribution and error cogts and
contrast to accuracy, does not require the choice of a single threshold value. Ling1&7akwere the

first to establish thatAUC is statistically consistent, more discriminating and an overall better measure
than accuracy in evaluating and comparing classification learning algorithms. Nevertheless, AUC also
suffers from some limitations. For example, when comparing two classiif ROC curves cross, then it

is possible that one curve has a higher AUC (and so is apparently better) even though the alternative may
show superior performance over almost the entire range of values of the classification threshold for
which the curvewill be used198].

Finally, for the classifiers to be clinically useful, model interpretability is arguably a major requirement.
Although all the implemented classifiers yield a variable irtgpare, which allows the identification of

the most pertinent features in the model, they are not all as easily interpretable. Unfortunately, our
study shows that the most intuitive classifiers (such as LASSO and GLMboost) were among the least
performing.

Future work may include the combination of the best classifier in a majority voting scheme in order to
take advantage of the best of their individual performance. This can be done by weighting the
importance (or credibility) of each classifier based on tiiaéning outcomesSurvival machine learning
techniques should also be investigated as they take into accountcggigoring.

5.5 Conclusion

Oversampling of imbalanced datasets coupled with machine learning models in the present work, offers
a benchmarkdr predicting radiatiorinduced sideeffects following prostate radiotherapy. The results
suggest that properly handling class imbalance can significantly improve classifiers' performance, paving



the way for the development of more accurate predictive misder toxicity prediction after RT. Overall,
RDA performed better than other methods. However, more research is needed to understand the
advantages and limitations of machine learning methods for the prediction of different urinary
symptoms.

The nextand final chapter contains a general discussion of the main reshkscontributions and the
limitations of this thesis. Recommendations are also made for future work in prediction of urinary
toxicity following prostate cancer radiotherapy.






6 General discussion, conclusions and perspectives

The work presented in this thesis aimed at investigating spatial correlations between dose and side
effectsby taking into consideration the spatial dose distributianth the objective to improve urinary
toxicity prediction following prostate cancer radiotherapy. This problem was addressegapulation
analysis frameworkwhere the dose distribution was explored in different spatial scales, from the
traditional whole-organbasedmodels towards suoergan models.

Historical observations hawsuggestedhat there is no clear doseolume relationship for the bladder.

Only recently extensive studies of the impact of dose distributions across the blatidee been
underteken. These studies, including our own works in this thesis, suggest that there is a significant
association betweendose distribution and urinary symptom manifestationwith this outcome
potentially supplanting previous hypotheseshafimogeneous bladder diosensitivity

Beyond bladder dose, the assessment of urethra involvement in urinary toxicity was of major
importance. Because the urethra is not visibrea CT scan, contouring and assigning constraintisiso
structure during planning is not feasille using conventional approache3$o cope with this we
developed a multatlasbased methodology for segmenting the prostatic urethra on Cages, as
detailed in Chapter 2This approach for segmenting the urethra is clinically relevant and paves the way
for assessing urethral toxicity potentially improving the overall urinary toxicity prediction by considering
both the dose received by the bladder and the urethradeed, our workallowed for the first time to
correlate urethra dose with urinary toxicigfter EBRT.

In the context olocaldose analysis, two different methods were implemented anarttughly described

in Chapters 3 and.40n the one handDSMs were generated by unfolding bladder surfaces and
normalizing not only to lateral direction, &ad beendone in previous studies, but also to the cranio
caudal direction allowing to evaluate the dose on the entire bladder surfaneghe other handfor the

DVMs a robustmulti-organ registration strategy was devised in order to accurately aligndigans
(bladder, prostate, and urethra) to a common coordinate system wtdlgying withthe high inter
individual anatomical variationsAs explained, the proposed DVM models strongly depend on the
validity of dose mapping and, hence, on the reliabitifythe alignment of the whole population to a
single coordinate system (template). Taking into consideration this important source of error, we applied
a relatively strict threshold for excluding patients from the analysis depending on the organ alignment
obtained after nomrigid registration (in terms of Dice score). On top of that, we smoothed the
propagated dose distributions based on the registration accuracy.

The generalizability and reproducibility of our observations was established for spetiffutosns,
through intercohort comparisons (DSM models) and external validation (DVM modeis)is a crucial

step for developing reliable predictive models as an apparent correlation between dose and toxicity does
not necessarily mean causality. The itikeation of subregions @y also depend on specific cohort
characteristics such as the total number of patients, the toxicity rates, the treatment modality, the total



delivered dose and the dose per fraction. Indeed, the comparison between a DSM apalgsiscohort

and other DSM studies in Chapt8r suggests that theaesults are strongly dependent on cohort
characteristics as only one subregion was confirmed in our cohort (late dysuria). The external validation
of our DVM models in Chaptdr was succssful for three out of five subregions highlighting the role of
urethra and posterior bladder region in urinary toxicity.

Given the recent shiffrom classical statistical analysis methpttsvards machine learning algorithmic
and data mining techniques, as powerful tools to extract informafiem existing recorded datehis
thesis may also lay the foundations for predicting radiafimiuced sideeffects using machine learning
strategies Our observations suggest thasdiiminant analysis algorithms, such as RDA andRLiRay
be suitable for analyzing highly correlated, structured déka, DVHbins. In the case of class imbalance,
as commonly observed in reaforld data, we recommentb syntheticallycreate newpatient data with
the objective to balance the ratio between patients with and without toxicitighjch we showed to
effectively improve outcome prediction capabilities of machine learning algoritimghe clinical
perspectie, such approaches could be usegncomitantlyto create computeibased decision support
toolsfor treatment optimization

6.1 Comparison of 2D DSM and 3D DVM methods

Two local dos@nalysis methods (DSM and DVM) were used to ideptigictivesymptomrelated sub
regions (Ssurf and SvoBoth 2D DSMs and 3D DVMs analyses allowed the identification @égigms
predictive of distinct acute and late urinary symptor@ven thatbSM and DVM analyses were applied
to the same population dataset direct comparison of the two methodsn terms of subregion
identification and predictive performance meaningful

Using DVMs five Svol in the bladder and urethra were identified, in contrast to the DSM analysis which
allowed the identification obnly three Ssurf in the bladder. This difference may be related to the fact
that DVMs enable the simultaneous exploration of multiple 3D anatomical structures (e.g. the bladder
and the urethra), whereas DSMs are limited to a single organ surface. Forplexafor acute
incontinence, one Svol was found in the prostatic urethra with no evidence ofwddame-effect in the
bladder, strengthening the assumption of urethra involvement to urinary toxi¢it$8,199]
Nevertheless, for two symptoms (acute and late retention), both methods identified a quite similar sub
region inthe bladder (posterior part of the bladder including the bladder trigone) corresponding to
intermediatehigh doses{Figure 6.1] summarizes the number anthe locdization of the identified
subregionswith the two methodsanddepicts he spatial overlapetween Ssurf and Svol.



Figure6.1 Spatial overlap between suisurfaces (Ssurf) and sedmlumes (Svol)



The predictive capabilities of the dose to the identified sllumes were evaluated with respect to the
current clinical standard, which is the dose received by the whole bladder. Indeed, the dose to the whole
bladder was found to be informative to soneatent. Neverthelessthe subregions identified by any of

the two methods, were consistently more predictive than the dose to the whole bladdhs.trend is in

line with previous DSM studies. In our dataset, the AUCs ranged from 0.60 to 0.72 for tlecbletuialer,

from 0.64 to 0.74 for the Ssurf and from 0.62 to 0.81 for the Svol, in univariate analysis.

Each of the two methods presents advantages and disadvantages with respectdat#iteey require,

the information they provide, and the flexibiligf implementation. DVMconstruction requires a muki

organ nonrigid registration with large number of degrees of freedom and uncertainties, although
reduced with a regularized deformation field and a dose smoothing process, they are not eradicated.
DSM r@istration uncertainties are less pronounced since it is based upon an affine parametric
transformation which implies less degrees of freedom. DVM methods have, however, the advantage that
they can be used to explore the entire pelvic region without angrgnformation while DSM methods
assume that a subregion is located exclusively on the bladder surface. Considering the planning dose
distribution only on the bladder surface is subject to high dosimetric uncertainties due to the high inter
fraction bladebr variations. A 3D Svol close to the bladder surface might better represent the actual dose
delivered to the surface, although bladder is a hollow organ, because it implicitly accounts fer inter
fraction bladdersurface motion within this region.

More generally speaking, DSM methods are intrinsically restricted to the surface of the organ, and
hence, exclusively applicable to hallow orgaridowever, most organs are solid, in which case DVM
analyses, taking into considerations the entire 3D dose disiohutvithin the organ, are undeniably
more appropriate.

6.2 Limitations of the work

One limitation to develop and apply statistical methodologies is the data availability and in our studies

we considered relatively small number of patients (n = 254bs0,the limited number of patients who

experience gradé& toxicities hindered our ability to model these clinically relevant endpokitiough,

cliniciaronly reporting can result in undereporting of lower grade morbidity and the downgrading of

symptom seerity [200t203], predictive models developed based on solglgdeHi pE&]v €€C S} A] ]SC u
be suboptimal.

Another limitation of our work is thexploitationof information from the planning steBecause of the
anatomical variations that may occur during the treatment, the dose actually received by the bladder
may be differen{86,127,204,205]although IGRT was used for our populatidny discrepancy between
planning and actual delivered doseay be the origin of uncertainties in toxicity predictidm. fact
bladder base remains relativetyablewith minor or no dayto-day variations. The bladder danon the



other hand, presentsthe highest extensibility raising the question of whether the planning dose
distribution at this region can be considered as the actual delivered dose.

In geneal the prediction capabilities of the proposed models, including clinical and dosimetric variables,
were not remarkable This may be due to the fact that for some patients the relationship between dose
and side effect is not directly established. Indedeare mayexist individual specificities related with the
occurrence ofsideeffects such as individual radigensitivity or other factors determined by genetic
and/or epigenetic mechanisnj$29,206,207]that were not investigated in this thesis.

A potential source of error is the choice of templater aligning the whole population. lour analyses,

we assimed that the selected templates representative of thegiven population.However, the
remarkablyhigh interindividualbladdervolumevariationsraise questions concerning the validity of this
assumption. Since¢he impact of different anatomical references for spatially aligning the population was
not evaluated, the possibility of identifying different subregions on different templates cannot be
excluded.

Concerning the performance of differentathine learning strategiessideby-side comparisonswere
performed using only one endpoint. Concluding the superiority of a strategy based on only one endpoint
may not be optimaldr deriving a solid conclusioninBings have less chance of beiagtuitous if they

are repeated across endpasanddatasets.

6.3 Perspectives

From methodological point of view, the work presented in this thesis paves the waydepth studies,

or new ones, aiming to improve our understanding of urinary symptom manifestation and increase
urinary toxicity prediction following prostate cancediatherapy.From clinical point of viewa potential

benefit of using DVMs is the possibility of performing personalized treatment planning by back
propagating the identified sudE P]}ve (E}u 3Z 3 u%o0 3 3} 3Z % 3] vi[s v §]A
specific @simetric constraints. Sparing subgions in the treatment planning system, as previously done

for the rectum[97], may prevent gecific side effects.

More precisely, mong numerous perspectives we can mention:

1. The possibility to decrease the dose in specific-aplomes by defining 3D patiespecific
constraints as part of the TPS optimization, while preserving the dose in tis¢afe, needs to
be demonstrated. As sucta randomized clinical study on the therapeutic benefit of adding
dosimetric constraints to the sukegiors during treatment planning could be considered.

2. The availability of strong features is key in ttenstruction of robust predictive models. Indeed,
we found that including spatial descriptors of the dose distributions can increase model
performance but thee models stillrequire new features. By including individual biological
parameters is expected @chievebetter predictive capabilities



By combining DSM and DVM analyses, the impact of dosimetric and geometric uncertainties can
be potentially eliminated, thereby allowing the despment of more reliable models. Thus it
might be useful to evaluatéhe complementarity of the two methods.

Future studies should also focus on studying the impact of dosimetric uncertainties produced by
inter-fraction variations of the bladder on the prediction of urinary toxicity in prostate cancer
radiotherapy by conseting the cumulative dose distribution during treatme®ome works in

this direction have been previously performed in order to use machine learning strategies to
predict interfraction organ deformationf208,209]

In the same context, in order to account for bladder motion, DVM studies should be also
extended to areas dside of the bladder and eveto the whole pelvic regionf accurate
alignment of the population is feasible

Apart from prostate cancer radiotherapy, our proposed DVM approach can be extended to other
organs for investigating toxicities following radiotherapy at different anatomical sites. Through
multi-organnon-rigid registration the simultaneous exploration of the dose to multiple organs is
also feasible.

Our 3D DWI approach can still be improved. In particular different registration pipelseds
correction technigueshould be tested in order to maximizegistration accuracy and minimize
potential bias of subregion identification due to misalignments.

Slection of the optimal template to be representatied a given population need to birther
investigated Considering the high interindividual variaty] a study of the influence of the
template selection on the identification of risk regions should also be considered.
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more clinicallyrelevantendpointswith significant impact on the QoL for the patier@iven the

lack of events for thestypesof toxicities in our datasefa potential solution would be to apply
oversampling techniques such as SMOTE in order to allow the exploration of these endpoints.

10. The best performingnachine learning algorithms can also be ensembleing the majority

voting techniquejn order to increase the classification and prediction accuracy. Such elaborate
models will offer new perspectives in predicting and preventing atamh-induced urinary
complications.

11. New Machine Learning strategies, such as Deep Learning can be also considered. These

emerging techniques would be able to train neural networks, fully exploiting the 3D dose
distributions, and potentially increase theqaliction without requiring previous registrations.

The overview of the thesis structure, as well as the contributions and the perspectives are illustrated

In

Figure6.2




Figure6.2 Schematic overview of the thesis structure, contributions and perspectives
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Ameélioration de la prédiction de la toxicité urinaire aprées radiothérapie du cancer de la prostate a partir
de modéles spatiaux multi-échelle de la dose: depuis les organes a risque aux sous-régions

Mots clés : radiothérapie; toxicité urinaire; modéles prédictifs; planification;

Résumé : La radiothérapie externe est un traitement
locorégional du cancer. L'objectif de la radiothérapie
impose un compromis entre la délivrance d’'une dose
maximale dans la tumeur afin d’augmenter le contrdle
local et la curabilité, et d'une dose minimale aux
organes sains afin de limiter la toxicité. Les
symptdmes urinaires peuvent étre liés a lirradiation
de régions spécifiques de la vessie ou de l'uretre.
Dans ce cas, la dose recue par l'ensemble de la
vessie peut ne pas suffire & expliquer la toxicité
urinaire.

Dans le contexte du traitement du cancer de la
prostate par radiothérapie, ce travail de thése vise a
analyser les corrélations spatiales entre la dose et les
effets secondaires, cette problématique étant
abordée dans un cadre d'analyse de population.

Pour évaluer la contribution de l'urétre & la toxicité
urinaire, nous proposons une méthode de
segmentation basée sur plusieurs atlas pour
identifier avec précision cette structure sur les
images CT. Nous utilisons ensuite deux méthodes
pour analyser la distribution de dose spatiale. L'une
basée sur la construction de cartes 2D dose-surface
(DSM) couplée a des comparaisons pixel par pixel
et l'autre basée sur des cartes 3D dose-volume
(DVM) combinées a des comparaisons par voxel.
Les sous-régions identifiées ont été validées dans
des populations externes, ouvrant la perspective
d'une planification de traitement spécifique du
patient. Nous étudions également le potentiel d'une
amélioration complémentaire de la prédiction en
exploitant de méthodes d'apprentissage
automatique.

From global to local spatial models for improving prediction of urinary toxicity following prostate cancer

radiotherapy

Keywords: radiotherapy; urinary toxicity; predictive models; treatment planning; dose calculation;

Abstract: External beam radiotherapy (EBRT) is a
clinical standard for treating prostate cancer. The
objective of EBRT is to deliver a high radiation dose
to the tumor to maximize the probability of local
control while sparing the neighboring organs (mainly
the rectum and the bladder) in order to minimize the
risk of complications. Developing reliable predictive
models of genitourinary (GU) toxicity is of paramount
importance to prevent radiation-induced side-effects,
and improve treatment reliability. Urinary symptoms
may be linked to the irradiation of specific regions of
the bladder or the urethra, in which case the dose
received by the entire bladder may not be sufficient
to explain GU toxicity.

Going beyond the global, whole-organ-based models
towards more local, sub-organ approaches, this
thesis aimed to improve our understanding of
radiation-induced urinary side-effects and ameliorate
the prediction of urinary toxicity following prostate
cancer radiotherapy.

With the objective to assess the contribution of
urethra damage to urinary toxicity, we proposed a
multi-atlas-based segmentation method to accurately
identify this structure on CT images. The second
objective was to identify specific symptom-related
subregions in the bladder and the urethra predictive
of different urinary symptoms. For this purpose, we
proposed two methodologies for analyzing the spatial
dose distribution; one based on the construction of
2D dose-surface maps (DSM) coupled with pixel-
wise comparisons and another based on 3D dose-
volume maps (DVMs) combined with voxel-wise
comparisons. ldentified subregions were validated in
external populations, opening the perspective for

patient specific treatment planning. We also
implemented and compared different machine
learning  strategies and data augmentation

techniques, paving the way to further improve urinary
toxicity prediction.



