D. Hulmes, Building collagen molecules, fibrils, and suprafibrillar structures, J. Struct. Biol, vol.137, pp.2-10, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00313823

K. L. Goh, A. Listrat, and D. Bechet, Hierarchical mechanics of connective tissues: Integrating insights from nano to macroscopic studies, J. Biomed. Nanotechnol, vol.10, pp.2464-2507, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01002237

P. Fratzl and R. Weinkamer, Nature's hierarchical materials, Prog. Mater. Sci, vol.52, pp.1263-1334, 2007.

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure, Nat. Protoc, vol.7, pp.654-669, 2012.

S. Bancelin, C. Aimé, I. Gusachenko, L. Kowalczuk, G. Latour et al., Determination of collagen fibril size via absolute measurements of second-harmonic generation signals, Nat. Commun, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079871

P. Stoller, K. Reiser, P. Celliers, and A. Rubenchik, Polarization-modulated second harmonic generation in collagen, Biophys. J, vol.82, pp.3330-3342, 2002.

F. Tiaho, G. Recher, and D. Rouède, Estimation of helical angle of myosin and collagen by second harmonic generation imaging microscopy, Opt. Express, vol.15, pp.12286-12295, 2007.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson et al., Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue, Biophys. J, vol.103, pp.2093-2105, 2012.

I. Gusachenko, V. Tran, Y. Goulam-houssen, J. Allain, and M. Schanne-klein, Polarization-resolved second-harmonic generation in tendon upon mechanical stretching, Biophys. J, vol.102, pp.2220-2229, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00094221

, OPTICS EXPRESS, vol.27, issue.16, p.22698, 2019.

J. Duboisset, D. Ait-belkacem, M. Roche, H. Rigneault, and S. Brasselet, Generic model of the molecular orientational distribution probed by polarization-resolved second-harmonic generation, Phys. Rev. A, vol.85, p.43829, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00690339

C. P. Brown, M. A. Houle, K. Popov, M. Nicklaus, C. Couture et al., Imaging and modeling collagen architecture from the nano to micro scale, Biomed. Opt. Express, vol.5, pp.233-243, 2014.

A. Golaraei, L. Kontenis, R. Cisek, D. Tokarz, S. J. Done et al., Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double stokes-mueller polarimetric microscopy, Biomed. Opt. Express, vol.7, pp.4054-4068, 2016.

A. Benoit, G. Latour, M. Schanne-klein, and J. Allain, Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure, J. Mech. Behav. Biomed. Mater, vol.60, pp.93-105, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-02025078

M. Rivard, C. Couture, A. K. Miri, M. Laliberté, A. Bertrand-grenier et al., Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy, Biom. Opt. Express, vol.4, pp.2078-86, 2013.

M. Rivard, K. Popov, C. Couture, M. Laliberté, A. Bertrand-grenier et al., Imaging the noncentrosymmetric structural organization of tendon with Interferometric Second Harmonic Generation microscopy, J. Biophotonics, vol.7, pp.638-646, 2014.

C. Couture, S. Bancelin, J. Van-der-kolk, K. Popov, M. Rivard et al., The Impact of Collagen Fibril Polarity on Second Harmonic Generation Microscopy, Biophys. J, vol.109, pp.2501-2511, 2015.

H. Lee, M. J. Huttunen, K. J. Hsu, M. Partanen, G. Y. Zhuo et al., Chiral imaging of collagen by second-harmonic generation circular dichroism, Biomed. Opt. Express, vol.4, pp.909-925, 2013.

G. Y. Zhuo, M. Y. Chen, C. Y. Yeh, C. L. Guo, and F. J. Kao, Fast determination of three-dimensional fibril orientation of type-I collagen via macroscopic chirality, Appl. Phys. Lett, vol.110, p.23702, 2017.

T. P. Petralli-mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study, J. Phys. Chem, vol.97, pp.1383-1388, 1993.

M. Kauranen, S. Verbiest, J. J. Maki, and A. Persoons, Second-harmonic generation from chiral surfaces, J. Chem. Phys, vol.101, pp.8193-8199, 1994.

A. Pena, T. Boulesteix, T. Dartigalongue, and M. Schanne-klein, Chiroptical effects in the second harmonic signal of collagens I and IV, J. Am. Chem. Soc, vol.127, pp.10314-10322, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00829225

X. Chen, C. Raggio, and P. J. Campagnola, Second-harmonic generation circular dichroism studies of osteogenesis imperfecta, Opt. Lett, vol.37, pp.3837-3846, 2012.

K. R. Campbell and P. J. Campagnola, Wavelength-Dependent Second Harmonic Generation Circular Dichroism for Differentiation of Col I and Col Ill Isoforms in Stromal Models of Ovarian Cancer Based on Intrinsic Chirality Differences, J. Phys. Chem. B, vol.121, pp.1749-1757, 2017.

A. Golaraei, M. K. Akens, V. Barzda, K. Mirsanaye, B. C. Wilson et al., Collagen chirality and three-dimensional orientation studied with polarimetric second-harmonic generation microscopy, J. Biophotonics, vol.12, p.201800241, 2018.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson et al., Fibrillogenesis in dense collagen solutions: A physicochemical study, J. Mol. Biol, vol.376, pp.1509-1522, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00277303

I. Bergman and R. Loxley, Two improved and simplified methods for the spectrophotometric determination of hydroxyproline, Anal. Chem, vol.35, pp.1961-1965, 1963.

C. Teulon, I. Gusachenko, G. Latour, and M. Schanne-klein, Theoretical , numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy, Opt. Express, vol.23, pp.10168-10176, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01173949

P. Mahou, G. Malkinson, É. Chaudan, T. Gacoin, E. Beaurepaire et al., Metrology of multiphoton microscopes using second harmonic generation nanoprobes, Small, vol.13, p.1701442, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01760698

L. D. Barron, Molecular Light Scattering and Optical Activity, 2004.

M. Kauranen, J. J. Maki, T. Verbiest, S. Van-elshocht, and A. Persoons, Quantitative determination of electric and magnetic second-order susceptibility tensors of chiral surfaces, Phys. Rev. B, vol.55, pp.1985-1988, 1997.

F. Hache, H. Mesnil, and M. Schanne-klein, Application of classical models of chirality to surface second harmonic generation, J. Chem. Phys, vol.115, pp.6707-6715, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00837033

C. Teulon, A. Tidu, F. Portier, G. Mosser, and M. Schanne-klein, Probing the 3D structure of cornea-like collagen liquid crystals with polarization-resolved SHG microscopy, Opt. Express, vol.24, pp.16084-16098, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421625

J. J. Gart, The Analysis of Ratios and Cross-Product Ratios of Poisson Variates with Application to Incidence Rates, Commun. Stat. -Theory Methods, vol.7, pp.917-937, 1978.

T. F. Griffin, Distribution of the ratio of two poisson random variables, 1992.

G. Ducourthial, J. Affagard, M. Schmeltz, X. Solinas, M. Lopez-poncelas et al., Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging, J. Biophotonics, vol.12, p.201800336, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02103594

, OPTICS EXPRESS, vol.27, issue.16, p.22699, 2019.

, Cependant, contrairement à l'ADE qui avait abouti à une relation très intéressante entre le signal de CD-SHG mesuré et l'angle hors-plan ? des fibrilles, il ne semble pas possible, selon cette nouvelle approche, d'avoir accès à l'organisation 3D des fibrilles par une simple mesure de CD-SHG. En effet, d'après la seule forme autorisée pour la courbe du CD-SHG en fonction de ?, un même signal de CD-SHG peut être mesuré pour deux angles hors-plan différents. De plus, la courbe étant différente d'un pixel à l'autre du fait de la variabilité des tenseurs, il n'est pas possible d'établir de lien quantitatif absolu entre la valeur du signal de CD-SHG et le degré de planéité de la structure dans le volume focal. En particulier, le signe du CD-SHG ne correspond pas au signe de l'angle hors-plan mais à une certaine structuration dans le volume focal, Grâce à ces considérations de phase ainsi qu'aux résultats de nos expériences Up-Down, nous sommes donc en mesure d'affirmer que la prise en compte des contributions dipolaires magnétiques est indispensable pour décrire correctement le signal de dichroïsme circulaire en microscopie SHG 17

, Il a consisté à mettre en place et à appliquer de nouvelles modalités de SHG résolues en polarisation, c'est-à-dire avec des états de polarisation incidents linéaires ou circulaires contrôlés, afin d'obtenir des informations sur la structure hiérarchique du collagène. Il a inclus une phase d'optimisation du microscope, des protocoles expérimentaux et des programmes de traitement de données, une phase d'application de la P-SHG puis une phase d'étude expérimentale et théorique du CD-SHG, Le travail présenté dans ce manuscrit est centré sur l'utilisation de la microscopie SHG pour sonder l'architecture 3D du collagène dans différents tissus ou matériaux

, Les organisations à ces deux échelles ne sont pas sondées indépendamment mais regroupées sous un paramètre de désordre local appelé le paramètre d'anisotropie ?. Le but de la première application de la P-SHG était de pouvoir suivre l'état de conservation de parchemins historiques précieux sans contact ni prélèvement. Par des analyses sur des parchemins contemporains présentant différents stades de dégradation, nous avons démontré que la P-SHG est un outil puissant pour répondre à ce besoin. En effet, une dégradation avancée du collagène dans les parchemins s'accompagne d'une perte du signal SHG ainsi que d'une augmentation du signal de 2-PEF, ce qui se traduit par l'augmentation du rapport des intensités. L'apport spécifique de la P-SHG vient de la détection possible des premiers stades de dégradation grâce au suivi quantitatif de l'évolution du paramètre d'anisotropie ?. Nos résultats sont en accord avec les analyses chimiques classiques pour évaluer la dégradation (DSC), mais contrairement aux techniques classiques qui sont destructives, ils ont été obtenus sans contact et sans prélèvement. Cela nous a donc permis d'étendre nos analyses à des parchemins médiévaux précieux issus du grand fonds des manuscrits de la médiathèque de Chartres. La seconde étude en P-SHG portait sur la caractérisation de la structure du collagène dans la cornée dans des cas sains et pathologiques. Nos travaux sur coupes de cornées humaines saines et présentant un kératocône ont abouti à des résultats prometteurs : nous avons en effet montré une différence importante dans l'entropie de la distribution d'orientations des fibrilles de collagène. Il reste toutefois à valider ce diagnostic de manière significative sur davantage d'échantillons et sur différents types de kératocônes, car nous avons constaté que cette pathologie présente une grande variabilité. De plus, ces travaux préliminaires ont été conduits sur des coupes fixées et non pas sur le tissu intact dans sa forme physiologique. Une thèse en cours (Clothilde Raoux) poursuit ces travaux, tant sur des coupes histologiques que sur des cornées humaines entières, saines ou pathologiques, et vise à reconstituer un atlas complet de la structure de ce tissu en le sondant par P-SHG couplée à des essais mécaniques. Ces deux applications ont illustré la pertinence d, Dans un premier temps, nous avons utilisé la modalité de P-SHG pour répondre à deux problématiques spécifiques dans les domaines des sciences du patrimoine d'une part et de l'ophtalmologie d'autre part. Dans ces deux domaines, il est nécessaire de développer des diagnostics quantitatifs non-invasifs offrant une résolution subcellulaire. La P-SHG a permis l'obtention de paramètres d'ordre multiéchelle, sondant l'organisation du collagène à l'échelle de l'image (entropie ou indice d'orientation) mais également à des échelles dépassant la résolution optique, les échelles fibrillaire et moléculaire

S. Bancelin, Imagerie Quantitative du Collagène par Génération de Seconde Harmonique, 2013.

C. Teulon, Imagerie Quantitative du Collagène par Génération de Second Harmonique résolue en polarisation, 2016.

S. Ricard-blum, The collagen family, CSH Perspect. Biol, vol.3, issue.1, pp.1-19, 2011.

D. J. Prockop and K. I. Kivirikko, Collagens : molecular biology, diseases, and potentials for therapy, Annu. Rev. Biochem, vol.64, pp.403-434, 1995.

K. E. Kadler, C. Baldock, J. Bella, and R. P. Boot-handford, Collagens at a glance, J. Cell Sci, vol.120, issue.12, pp.1955-1963, 2007.

P. , Collagen : structure and mechanics, an introduction, Collagen, pp.1-13, 2008.

K. Beck and B. Brodsky, Supercoiled protein motifs : the collagen triple-helix and the alphahelical coiled coil, J. Struct. Biol, vol.122, issue.1-2, pp.17-29, 1998.

K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, Collagen fibril formation, J. Biochem, vol.316, pp.1-11, 1996.

D. Hulmes, Building collagen molecules, fibrils, and suprafibrillar structures, J. Struct. Biol, vol.137, pp.2-10, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00313823

D. J. Hulmes, T. J. Wess, D. J. Prockop, and P. Fratzl, Radial packing, order, and disorder in collagen fibrils, Biophys. J, vol.68, issue.5, pp.1661-70, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00313836

J. P. Orgel, A. Miller, T. C. Irving, R. F. Fischetti, A. P. Hammersley et al., The in situ supermolecular structure of type I collagen, Structure, vol.9, issue.1, pp.1061-1069, 2001.

D. J. Prockop and A. Fertala, The collagen fibril : The almost crystalline structure, J. Struct. Biol, vol.122, issue.1-2, pp.111-118, 1998.

M. Raspanti, M. Reguzzoni, M. Protasoni, and D. Martini, Evidence of a discrete axial structure in unimodal collagen fibrils, Biomacromolecules, vol.12, issue.12, pp.4344-4347, 2011.

K. M. Meek and C. Knupp, Corneal structure and transparency, Prog. Ret. Eye Res, vol.49, pp.1-16, 2015.

N. Terai, F. Raiskup, M. Haustein, L. E. Pillunat, and E. Spoerl, Identification of biomechanical properties of the cornea : the ocular response analyzer, Curr. Eye Res, vol.37, issue.7, pp.553-562, 2012.

D. M. Maurice, The structure and transparency of the cornea, J. Physiol, vol.136, pp.263-286, 1957.

A. J. Quantock, M. Winkler, G. J. Parfitt, R. D. Young, D. J. Brown et al., From nano to macro : studying the hierarchical structure of the corneal extracellular matrix, Exp. Eye Res, vol.133, pp.81-99, 2015.

T. Ushiki, Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint, Arch. Histol. Cytol, vol.65, issue.2, pp.109-126, 2002.

P. P. Purslow, T. J. Wess, and D. Hukins, Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues, J. Exp. Biol, vol.201, issue.1, pp.135-142, 1998.

C. J. Kennedy and T. J. Wess, The structure of collagen within parchment-a review, Restaurator, vol.24, issue.2, pp.61-80, 2003.

T. J. Wess and J. P. Orgel, Changes in collagen structure : drying, dehydrothermal treatment and relation to long term deterioration, Thermochim. Acta, vol.365, issue.1-2, pp.119-128, 2000.

P. Kronick and P. Buechler, Fiber orientation in calfskin by laser light scattering or x-ray diffraction and quantitative relation to mechanical properties, J. Am. Leather Chem. As, 1986.

P. Kozlov and G. Burdygina, The structure and properties of solid gelatin and the principles of their modification, Polymer, vol.24, issue.6, pp.651-666, 1983.

G. Latour and L. Robinet, La microscopie optique tridimensionnelle, de l'imagerie biomédicale à la caractérisation des objets du patrimoine, Instrumentation portable : quels enjeux pour l'archéométrie ?, Collection Sciences archéologiques, 2019.

P. Masson, Some histological methods. Trichrome stainings and their preliminary technique, J. Tech. Methods, vol.12, pp.75-90, 1929.

F. Sweat, H. Puchtler, and S. Rosenthal, Sirius red F3BA as a stain for connective tissues, Arch. Pathol. Lab. Med, vol.78, pp.69-72, 1964.

R. Larsen, Improved Damage Assessment of Parchment : IDAP : Assessment, Data Collection and Sharing of Knowledge, 2007.

P. F. Davison and E. J. Galbavy, Fluorescent dyes demonstrate the uniform expansion of the growing rabbit cornea, Invest. Ophthalmol. Vis. Sci, vol.26, issue.9, pp.1202-1209, 1985.

K. N. Krahn, C. V. Bouten, S. Van-tuijl, M. A. Van-zandvoort, and M. Merkx, Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture, Anal. Biochem, vol.350, issue.2, pp.177-185, 2006.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson et al., Optical coherence tomography, Science, vol.254, issue.5035, pp.1178-1181, 1991.
URL : https://hal.archives-ouvertes.fr/tel-01957283

W. Drexler and J. G. Fujimoto, Optical coherence tomography : technology and applications, 2008.

A. Dubois, Handbook of Full-Field Optical Coherence Microscopy, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758479

F. O. Schmitt, C. E. Hall, and M. A. Jakus, Electron microscope investigations of the structure of collagen, J. Cell. Comp. Physiol, vol.20, issue.1, pp.11-33, 1942.

B. R. Williams, R. A. Gelman, D. C. Poppke, and K. A. Piez, Collagen fibril formation. optimal in vitro conditions and preliminary kinetic results, J. Biol. Chem, vol.253, issue.18, pp.6578-6585, 1978.

D. A. Parry and A. S. Craig, Quantitative electron-microscope observations of collagen fibrils in rat-tail tendon, Biopolymers, vol.16, issue.5, pp.1015-1031, 1977.

Y. Shen, The principles of nonlinear optics, 2003.

R. W. Boyd, Nonlinear Optics, 2007.

F. Hache, Optique non linéaire, 2017.

J. D. Jackson, Classical electrodynamics, 1998.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of optical harmonics, Phys. Rev. Lett, vol.7, issue.4, pp.118-119, 1961.

M. N. Polyanskiy, Refractive index database

I. Gusachenko, Polarization-resolved Second Harmonic Microscopy in collagenous tissues : theoretical and experimental developments, and application to microstructural imaging during biomechanical assays in tendon, 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00910146

M. Göppert-mayer, Uber Elementarakte mit zwei Quantenspruengen, Annal. Physik, vol.401, issue.3, pp.273-294, 1931.

W. Kaiser and C. Garrett, Two-Photon Excitation in CaF2 :Eu2+, Phys. Rev. Lett, vol.7, issue.6, pp.229-231, 1961.

C. Sheppard and R. Kompfner, Resonant scanning optical microscope, Appl. Opt, vol.17, issue.18, pp.2879-2882, 1978.

W. Denk, J. H. Strickler, and W. W. Webb, Two-photon Laser Scanning Fluorescence Microscopy, Science, vol.248, pp.73-76, 1990.

M. Drobizhev, S. Tillo, N. Makarov, T. Hughes, and A. Rebane, Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins, J. Phys. Chem. B, vol.113, issue.4, pp.855-859, 2009.

N. Olivier, D. Débarre, and E. Beaurepaire, THG microscopy of cells and tissues : contrast mechanisms and applications, Second Harmonic Generation Imaging, pp.51-80, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00945224

C. L. Evans and X. S. Xie, Coherent anti-stokes raman scattering microscopy : chemical imaging for biology and medicine, Annu. Rev. Anal. Chem, vol.1, pp.883-909, 2008.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, Coherent nonlinear optical imaging : beyond fluorescence microscopy, Annu. Rev. Phys. Chem, vol.62, pp.507-530, 2011.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic : multiphoton microscopy in the biosciences, Nat. Biotechnol, vol.21, issue.11, p.1369, 2003.

A. Vogel and V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues, Chem. Rev, vol.103, issue.2, pp.577-644, 2003.

F. S. Labella and G. Paul, Structure of collagen from human tendon as influenced by age and sex, J. Gerontol, vol.20, issue.1, pp.54-59, 1965.

D. Fujimoto, K. Akiba, and N. Nakamura, Isolation and characterization of a fluorescent material in bovine achilles tendon collagen, Biochem. Biophys. Res. Commun, vol.76, issue.4, pp.1124-1129, 1977.

R. Richards-kortum and E. Sevick-muraca, Quantitative optical spectroscopy for tissue diagnosis, Annu. Rev. Phys. Chem, vol.47, issue.1, pp.555-606, 1996.

P. Odetti, A. Borgoglio, and R. Rolandi, Age-related increase of collagen fluorescence in human subcutaneous tissue, Metabolism, vol.41, issue.6, pp.655-658, 1992.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman et al., Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation, Proc. Natl. Acad. Sci. USA, vol.100, issue.12, pp.7075-7080, 2003.

A. Deniset-besseau, P. D. Peixoto, G. Mosser, and M. Schanne-klein, Nonlinear optical imaging of lyotropic cholesteric liquid crystals, Opt. Express, vol.18, issue.2, pp.1113-1121, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00497888

G. Latour, L. Robinet, A. Dazzi, F. Portier, A. Deniset-besseau et al., Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments, Sci. Rep, vol.6, p.26344, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321012

Z. Deyl, K. Macek, and M. Adam, Studies on the chemical nature of elastin fluorescence, BBA-Protein Struct, vol.625, issue.2, pp.248-254, 1980.

S. Roth and I. Freund, Second harmonic generation in collagen, J. Chem. Phys, vol.70, issue.4, p.1637, 1979.

Y. Guo, P. Ho, H. Savage, D. Harris, P. Sacks et al., Second-harmonic tomography of tissues, Opt. Lett, vol.22, issue.17, pp.1323-1325, 1997.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone et al., Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues, Biophys. J, vol.82, issue.1, pp.493-508, 2002.

P. Stoller, K. Reiser, P. Celliers, and A. Rubenchik, Polarization-modulated second harmonic generation in collagen, Biophys. J, vol.82, issue.6, pp.3330-3342, 2002.

A. Zoumi, A. Yeh, and B. J. Tromberg, Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence, Proc. Natl. Acad. Sci. USA, vol.99, issue.17, pp.11014-11019, 2002.

K. Koenig and I. Riemann, High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution, J. Biomed. Opt, vol.8, issue.3, pp.432-440, 2003.

G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi et al., 3-dimensional imaging of collagen using second harmonic generation, J. Struct. Biol, vol.141, issue.1, pp.53-62, 2003.

E. Brown, T. Mckee, E. Ditomaso, A. Pluen, B. Seed et al., Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation, Nat. Med, vol.9, issue.6, pp.796-800, 2003.

S. V. Plotnikov, A. Millard, P. Campagnola, and W. Mohler, Characterization of the myosinbased source for second-harmonic generation from muscle sarcomeres, Biophys. J, vol.90, pp.693-703, 2006.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl et al., Nonlinear Optical Properties of Type I Collagen Fibers Studied by Polarization Dependent Second Harmonic Generation Microscopy, J. Phys. Chem. B, vol.115, issue.44, pp.12759-12769, 2011.

A. Deniset-besseau, J. Duboisset, E. Benichou, F. Hache, P. Brevet et al., Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin, J. Phys. Chem. B, vol.113, issue.40, pp.13437-13445, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00838920

F. Tiaho, G. Recher, and D. Rouède, Estimation of helical angle of myosin and collagen by second harmonic generation imaging microscopy, Opt. Express, vol.15, issue.19, pp.12286-12295, 2007.

A. E. Tuer, M. K. Akens, S. Krouglov, D. Sandkuijl, B. C. Wilson et al., Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue, Biophys. J, vol.103, issue.10, pp.2093-2105, 2012.

J. Duboisset, D. Ait-belkacem, M. Roche, H. Rigneault, and S. Brasselet, Generic model of the molecular orientational distribution probed by polarization-resolved second-harmonic generation, Phys. Rev. A, vol.85, issue.4, p.43829, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00690339

A. M. Pena, T. Boulesteix, T. Dartigalongue, and M. C. Schanne-klein, Chiroptical effects in the second harmonic signal of collagens I and IV, J. Am. Chem. Soc, vol.127, issue.29, pp.10314-10322, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00829225

M. Strupler, M. Hernest, C. Fligny, J. Martin, P. Tharaux et al., Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling, J. Biomed. Opt, vol.13, issue.5, pp.54041-054041, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324221

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure, Nat. Protocols, vol.7, issue.4, pp.654-669, 2012.

S. Bancelin, B. Lynch, C. Bonod-bidaud, G. Ducourthial, S. Psilodimitrakopoulos et al., Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy, Sci. Rep, vol.5, p.17635, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252023

I. Gusachenko, V. Tran, Y. Goulam-houssen, J. Allain, and M. Schanne-klein, Polarization-resolved second-harmonic generation in tendon upon mechanical stretching, Biophys. J, vol.102, pp.2220-2229, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00094221

R. Genthial, E. Beaurepaire, M. Schanne-klein, F. Peyrin, D. Farlay et al., Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy, Sci. Rep, vol.7, issue.1, p.3419, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01540048

G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. Schanne-klein, In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy, Biomed. Opt. Express, vol.3, issue.1, pp.1-15, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00324465

J. R. Lakowicz, Fluorescence anisotropy, Principles of fluorescence spectroscopy, pp.291-319, 1999.

A. Benoit, G. Latour, M. Schanne-klein, and J. Allain, Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure, J. Mech. Behav. Biomed. Mater, vol.60, pp.93-105, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-02025078

A. Golaraei, L. Kontenis, R. Cisek, D. Tokarz, S. J. Done et al., Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double stokes-mueller polarimetric microscopy, Biomed. Opt. Express, vol.7, issue.10, pp.4054-4068, 2016.

X. Chen, C. Raggio, and P. J. Campagnola, Second-harmonic generation circular dichroism studies of osteogenesis imperfecta, Opt. Lett, vol.37, issue.18, pp.3837-3846, 2012.

H. Lee, M. J. Huttunen, K. Hsu, M. Partanen, G. Zhuo et al., Chiral imaging of collagen by second-harmonic generation circular dichroism, Biomed. Opt. Express, vol.4, issue.6, pp.909-925, 2013.

G. Zhuo, M. Chen, C. Yeh, C. Guo, and F. Kao, Fast determination of threedimensional fibril orientation of type-I collagen via macroscopic chirality, Appl. Phys. Lett, vol.110, issue.2, p.23702, 2017.

S. Psilodimitrakopoulos, I. Amat-roldan, P. Loza-alvarez, and D. Artigas, Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy, J. Opt, vol.12, issue.8, p.84007, 2010.

M. Alizadeh, D. Merino, G. Lombardo, M. Lombardo, R. Mencucci et al., Identifying crossing collagen fibers in human corneal tissues using pSHG images, Biomed. Opt. Express, vol.10, pp.3875-3888, 2019.

C. Teulon, A. Tidu, F. Portier, G. Mosser, and M. Schanne-klein, Probing the 3D structure of cornea-like collagen liquid crystals with polarization-resolved SHG microscopy, Opt. Express, vol.24, issue.14, pp.16084-16098, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421625

I. Gusachenko, G. Latour, and M. Schanne-klein, Polarization-resolved second harmonic microscopy in anisotropic thick tissues, Opt. Express, vol.18, issue.18, pp.19339-19352, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00807877

C. Teulon, I. Gusachenko, G. Latour, and M. Schanne-klein, Theoretical , numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarizationresolved SHG microscopy, Opt. Express, vol.23, issue.7, pp.10168-10176, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01173949

Y. Suzaki and A. Tachibana, Measurement of the µm sized radius of gaussian laser beam using the scanning knife-edge, Appl. Opt, vol.14, issue.12, pp.2809-2810, 1975.

P. Mahou, G. Malkinson, É. Chaudan, T. Gacoin, E. Beaurepaire et al., Metrology of Multiphoton Microscopes Using Second Harmonic Generation Nanoprobes, Small, vol.13, issue.42, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01760698

G. R. Fowles, Introduction to modern optics, 1975.

G. Ducourthial, J. S. Affagard, M. Schmeltz, X. Solinas, M. Lopez-poncelas et al., Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging, J. Biophotonics, pp.1-9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02103594

I. Amat-roldan, S. Psilodimitrakopoulos, P. Loza-alvarez, and D. Artigas, Fast image analysis in polarization SHG microscopy, Opt. Express, vol.18, issue.16, pp.17209-17219, 2010.

P. Réfrégier, M. Roche, and S. Brasselet, Precision analysis in polarization-resolved second harmonic generation microscopy, Opt. Lett, vol.36, issue.11, pp.2149-2151, 2011.

V. Wasik, P. Réfrégier, M. Roche, and S. Brasselet, Precision of polarization-resolved second harmonic generation microscopy limited by photon noise for samples with cylindrical symmetry, J. Opt. Soc. Am. A, vol.32, issue.8, pp.1437-1445, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01205995

M. Förderer, T. Georgiev, M. Mosqueira, R. H. Fink, and M. Vogel, Functional second harmonic generation microscopy probes molecular dynamics with high temporal resolution, Biomed. Opt. Express, vol.7, issue.2, pp.525-541, 2016.

X. Y. Dow, E. L. Dewalt, S. Z. Sullivan, P. D. Schmitt, J. R. Ulcickas et al., Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry, Biophys. J, vol.111, issue.7, pp.1361-1374, 2016.

R. Larsen, D. V. Poulsen, F. Juchauld, H. Jerosch, M. Odlyha et al., Damage assessment of parchment : complexity and relations at different structural levels, 14th ICOM-CC Preprints, vol.1, pp.199-208, 2005.

G. D. Gatta, E. Badea, R. Ceccarelli, T. Usacheva, and S. Coluccia, Assessment of damage in old parchments by DSC and SEM, J. Therm. Anal. Calorim, vol.82, issue.3, pp.637-649, 2005.

R. Larsen, D. V. Sommer, and M. Vest, The hydrothermal stability (shrinkage activity) of parchment measured by the micro hot table method (mht), pp.55-62, 2002.

R. Larsen, D. V. Sommer, M. Vest, and A. L. Jensen, Amino acid analysis of new and historical parchments, pp.93-99, 2002.

M. Bicchieri, M. Monti, G. Piantanida, F. Pinzari, and A. Sodo, Non-destructive spectroscopic characterization of parchment documents, Vib. Spectrosc, vol.55, issue.2, pp.267-272, 2011.

A. Mo?ir, M. Strli?, T. Trafela, I. K. Cigi?, J. Kolar et al., On oxidative degradation of parchment and its non-destructive characterisation and dating, Appl. Phys. A, vol.104, issue.1, pp.211-217, 2011.

H. Liang, M. G. Cid, R. G. Cucu, G. Dobre, A. G. Podoleanu et al., Enface optical coherence tomography-a novel application of non-invasive imaging to art conservation, Opt. Express, vol.13, issue.16, pp.6133-6144, 2005.

G. Latour, J. Echard, M. Didier, and M. Schanne-klein, In situ 3d characterization of historical coatings and wood using multimodal nonlinear optical microscopy, Opt. Express, vol.20, issue.22, pp.24623-24635, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00123067

M. Yang, C. Lu, I. Hsu, and C. Yang, The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades, Archaeometry, vol.46, issue.2, pp.171-182, 2004.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, The application of optical coherence tomography to non-destructive examination of museum objects, Stud. Conserv, vol.49, issue.2, pp.107-114, 2004.

I. G. Cormack, P. Loza-alvarez, L. Sarrado, S. Tomás, I. Amat-roldan et al., Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for roman colonization of hispania citerior, J. Archaeol. Sci, vol.34, issue.10, pp.1594-1600, 2007.

G. Filippidis, E. J. Gualda, K. Melessanaki, and C. Fotakis, Nonlinear imaging microscopy techniques as diagnostic tools for art conservation studies, Opt. Lett, vol.33, issue.3, pp.240-242, 2008.

T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren et al., Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork, Proc. Natl. Acad. Sci. USA, vol.111, issue.5, pp.1708-1713, 2014.

P. Samineni, A. Decruz, T. E. Villafana, W. S. Warren, and M. C. Fischer, Pump-probe imaging of historical pigments used in paintings, Opt. Lett, vol.37, issue.8, pp.1310-1312, 2012.

L. Robinet, S. Thao, M. Schanne-klein, and G. Latour, The influence of manufacturing and alterations on skin-based artifacts as characterized by nonlinear optical microscopy, ICOM-CC 18th Triennal Conference Preprints, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01761403

F. Pottier, A. Michelin, and L. Robinet, Recovering illegible writings in fire-damaged medieval manuscripts through data treatment of uv-fluorescence photography, J. Cult. Herit, vol.36, pp.183-190, 2019.

L. Robinet, M. Schmeltz, and G. Latour, Cartographier l'altération des parchemins -Émergence d'une nouvelle technique de microscopie, Actes de la journée d'étude « Les rescapés du feu : l'imagerie scientifique au service des manuscrits de Chartres », 2017.

L. Robinet, F. Pottier, M. Schmeltz, S. Heu-thao, D. Poirel et al., Ces manuscrits que l'on croyait perdus -la renaissance des manuscrits de chartres, Support tracé, vol.18, pp.12-21, 2018.

P. Budrugeac, E. Badea, G. D. Gatta, L. Miu, and A. Com?nescu, A DSC study of deterioration caused by environmental chemical pollutants to parchment, a collagen-based material, Thermochim. Acta, vol.500, issue.1-2, pp.51-62, 2010.

E. Badea, G. D. Gatta, and T. Usacheva, Effects of temperature and relative humidity on fibrillar collagen in parchment : a micro differential scanning calorimetry (micro DSC) study, Polym. Degrad. Stabil, vol.97, issue.3, pp.346-353, 2012.

C. A. Miles, N. C. Avery, V. V. Rodin, and A. J. Bailey, The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres, J. Mol. Biol, vol.346, issue.2, pp.551-556, 2005.

Y. K. Lin and D. C. Liu, Comparison of physical-chemical properties of type i collagen from different species, Food Chem, vol.99, issue.2, pp.244-251, 2006.

B. Thomas, D. Mcintosh, T. Fildes, L. Smith, F. Hargrave et al., Second-harmonic generation imaging of collagen in ancient bone, Bone Rep, vol.7, pp.137-144, 2017.

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, Corneal blindness : a global perspective, Bull. World Health Organ, vol.79, pp.214-221, 2001.

N. Pinnamaneni and J. L. Funderburgh, Concise review : stem cells in the corneal stroma, Stem cells, vol.30, issue.6, pp.1059-1063, 2012.

J. V. Jester, W. M. Petroll, and H. D. Cavanagh, Corneal stromal wound healing in refractive surgery : the role of myofibroblasts, Prog. Retin. Eye Res, vol.18, issue.3, pp.311-356, 1999.

Y. S. Rabinowitz, Keratoconus, Surv. Ophthalmol, vol.42, issue.4, pp.297-319, 1998.

K. M. Meek, S. J. Tuft, Y. Huang, P. S. Gill, S. Hayes et al., Changes in collagen orientation and distribution in keratoconus corneas, Invest. Ophthalmol. Vis. Sci, vol.46, issue.6, pp.1948-1956, 2005.

N. Morishige, A. J. Wahlert, M. C. Kenney, D. J. Brown, K. Kawamoto et al., Second-harmonic imaging microscopy of normal human and keratoconus cornea, Invest. Ophthalmol. Vis. Sci, vol.48, issue.3, pp.1087-1094, 2007.

N. Morishige, H. Azumi, H. Ohta, Y. Morita, N. Yamada et al., Quantitative analysis of collagen lamellae in the normal and keratoconic human cornea by second harmonic generation imaging microscopy, Invest. Ophthalmol. Vis. Sci, vol.55, issue.12, pp.8377-8385, 2014.

R. Mercatelli, F. Ratto, F. Rossi, F. Tatini, L. Menabuoni et al., Three-dimensional mapping of the orientation of collagen corneal lamellae in healthy and keratoconic human corneas using SHG microscopy, J. Biophotonics, vol.10, issue.1, pp.75-83, 2017.

A. Batista, H. G. Breunig, A. König, A. Schindele, T. Hager et al., Highresolution, label-free two-photon imaging of diseased human corneas, J. Biomed. Opt, vol.23, issue.3, p.36002, 2018.

M. Bied, Étude de la structure du stroma cornéen par microscopie par génération de seconde harmonique résolue en polarisation dans le cadre de la recherche sur le kératocône, 2019.

C. Schmucker and F. Schaeffel, A paraxial schematic eye model for the growing c57bl/6 mouse, Vis. Res, vol.44, issue.16, pp.1857-1867, 2004.

E. Zhang, S. Schründer, and F. Hoffmann, Orthotopic corneal transplantation in the mouse-a new surgical technique with minimal endothelial cell loss, Graefes Arch. Clin. Exp. Ophthalmol, vol.234, issue.11, pp.714-719, 1996.

S. Hayes, C. Boote, J. Lewis, J. Sheppard, M. Abahussin et al., Comparative study of fibrillar collagen arrangement in the corneas of primates and other mammals, Anat. Rec, vol.290, issue.12, pp.1542-1550, 2007.

K. M. Meek and D. W. Leonard, Ultrastructure of the corneal stroma : a comparative study, Biophys. J, vol.64, issue.1, pp.273-280, 1993.

M. Winkler, G. Shoa, S. T. Tran, Y. Xie, S. Thomasy et al., A comparative study of vertebrate corneal structure : the evolution of a refractive lens, Invest. Ophthalmol. Vis. Sci, vol.56, issue.4, pp.2764-2772, 2015.

A. Tidu, D. Ghoubay-benallaoua, B. Lunch, B. Haye, C. Illoul et al., Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration Aurélien, Acta Biomateriala, 2015.

S. Mi and C. J. Connon, The formation of a tissue-engineered cornea using plastically compressed collagen scaffolds and limbal stem cells, Corneal Regenerative Medicine, pp.143-155, 2013.

D. Ghoubay-benalloua, Traitement des pathologies cornéennes par thérapie cellulaire et bioingénierie tissulaire, 2017.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier et al., Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal, Sci. Rep, vol.5, p.18303, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01271018

L. Pasteur and P. Vallery-radot, OEuvres de Pasteur : Dissymétrie moléculaire. 1922, vol.1, 1922.

L. Friedman and J. G. Miller, Odor incongruity and chirality, Science, vol.172, issue.3987, pp.1044-1046, 1971.

S. L. Miller, Production of some organic compounds under possible primitive earth conditions, J. Am. Chem. Soc, vol.77, issue.9, pp.2351-2361, 1955.

R. S. Bhatnagar and C. A. Gough, Circular Dichroism of Collagen and Related Polypeptides, pp.183-199, 1996.

N. Sreerama and R. W. Woody, Circular dichroism of peptides and proteins, 2000.

J. Hicks and T. Petralli-mallow, Nonlinear optics of chiral surface systems, Appl. Phys. B, vol.68, issue.3, pp.589-593, 1999.

T. Petralli-mallow, T. Wong, J. Byers, H. Yee, and J. Hicks, Circular dichroism spectroscopy at interfaces : a surface second harmonic generation study, J. Phys. Chem, vol.97, issue.7, pp.1383-1388, 1993.

M. Kauranen, S. Verbiest, J. J. Maki, and A. Persoons, Second-harmonic generation from chiral surfaces, J. Chem. Phys, vol.101, issue.9, pp.8193-8199, 1994.

J. D. Byers, H. I. Yee, T. Petralli-mallow, and J. M. Hicks, 2nd-harmonic generation circulardichroism spectroscopy from chiral monolayers, Phys. Rev. B, vol.49, issue.20, pp.14643-14647, 1994.

J. Byers, H. Yee, and J. Hicks, A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers, J. Chem. Phys, vol.101, issue.7, pp.6233-6241, 1994.

J. J. Maki, M. Kauranen, and A. Persoons, Surface second-harmonic generation from chiral materials, Phys. Rev. B, vol.51, issue.3, p.1425, 1995.

M. Schanne-klein, F. Hache, A. Roy, C. Flytzanis, and C. Payrastre, Off resonance second order optical activity of isotropic layers of chiral molecules : observation of electric and magnetic contributions, J. Chem. Phys, vol.108, pp.9436-9443, 1998.

F. Hache, H. Mesnil, and M. C. Schanne-klein, Application of classical models of chirality to surface second harmonic generation, J. Chem. Phys, vol.115, issue.14, pp.6707-6715, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00837033

T. Verbiest, M. Kauranen, Y. Van-rompaey, and A. Persoons, Optical activity of anisotropic achiral surfaces, Phys. Rev. Lett, vol.77, issue.8, p.1456, 1996.

M. J. Huttunen, M. Virkki, M. Erkintalo, E. Vuorimaa, A. Efimov et al., Absolute probe of surface chirality based on focused circularly polarized light, J. Phys. Chem. Lett, vol.1, issue.12, pp.1826-1829, 2010.

G. Y. Zhuo, H. Lee, K. J. Hsu, M. J. Huttunen, M. Kauranen et al., Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism, J. Microsc, vol.253, issue.3, pp.183-90, 2014.

M. J. Huttunen, M. Partanen, G. Bautista, S. Chu, and M. Kauranen, Nonlinear optical activity effects in complex anisotropic three-dimensional media, Opt. Mater. Express, vol.5, issue.1, p.11, 2015.

K. R. Campbell and P. J. Campagnola, Wavelength-Dependent Second Harmonic Generation Circular Dichroism for Differentiation of Col I and Col Ill Isoforms in Stromal Models of Ovarian Cancer Based on Intrinsic Chirality Differences, J. Phys. Chem. B, vol.121, issue.8, pp.1749-1757, 2017.

M. Schmeltz, C. Teulon, G. Latour, D. Ghoubay, V. Borderie et al., Implementation of artifact-free circular dichroism SHG imaging of collagen, Opt. Express, vol.27, pp.22685-22699, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02272612

P. Su, W. Chen, Y. Chen, and C. Dong, Determination of collagen nanostructure from second-order susceptibility tensor analysis, Biophys. J, vol.100, pp.2053-62, 2011.

X. Y. Dow, E. L. Dewalt, S. Z. Sullivan, P. D. Schmitt, J. R. Ulcickas et al., Imaging the nonlinear susceptibility tensor of collagen by nonlinear optical stokes ellipsometry, Biophys. J, vol.111, issue.7, pp.1361-1374, 2016.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, vol.45, 1999.

S. Bancelin, C. Aimé, I. Gusachenko, L. Kowalczuk, G. Latour et al., Determination of collagen fibril size via absolute measurements of second-harmonic generation signals, Nat. Commun, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079871

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson et al., Fibrillogenesis in dense collagen solutions : a physicochemical study, J. Mol. Biol, vol.376, issue.5, pp.1509-1522, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00277303

I. Bergman and R. Loxley, Two improved and simplified methods for the spectrophotometric determination of hydroxyproline, Anal. Chem, vol.35, issue.12, pp.1961-1965, 1963.

A. Golaraei, Polarimetric Second-Harmonic Generation Microscopy for Histopathology, 2018.

G. Wagnière, Linear and Nonlinear Optical Properties of Molecules, Helvetica Chimica Acta, 1993.

T. P. Petralli-mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, Circular dichroism spectroscopy at interfaces : a surface second harmonic generation study, J. Phys. Chem, vol.97, pp.1383-1388, 1993.

M. Kauranen, T. Verbiest, and A. Persoons, Chiral materials in second-order nonlinear optics, J. Nonlinear Opt. Phys, vol.8, issue.02, pp.171-189, 1999.

M. Schanne-klein, F. Hache, T. Brotin, C. Andraud, and A. Collet, Magnetic chiroptical effects in surface second harmonic reflection, Chem. Phys. Lett, vol.338, pp.159-166, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00837026

M. Schanne-klein, T. Boulesteix, F. Hache, M. Alexandre, G. Lemercier et al., Strong chiroptical effects in surface second harmonic generation obtained for molecules exhibiting excitonic coupling chirality, Chem. Phys. Lett, vol.362, pp.103-108, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00836943

M. Kauranen, J. J. Maki, T. Verbiest, S. Van-elshocht, and A. Persoons, Quantitative determination of electric and magnetic second-order susceptibility tensors of chiral surfaces, Phys. Rev. B, vol.55, pp.1985-1988, 1997.

P. Thevenaz, U. E. Ruttimann, and M. Unser, A pyramid approach to subpixel registration based on intensity, IEEE Trans. Image Process, vol.7, issue.1, pp.27-41, 1998.

M. Pinsard, M. Schmeltz, J. Van-der-kolk, S. A. Patten, H. Ibrahim et al., Elimination of imaging artifacts in second harmonic generation microscopy using interferometry, Biomed. Opt. Express, vol.10, pp.3938-3952, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02362972

P. Rechsteiner, J. Hulliger, and M. Flörsheimer, Phase-sensitive second harmonic microscopy reveals bipolar twinning of markov-type molecular crystals, Chem. Mater, vol.12, issue.11, pp.3296-3300, 2000.

S. Yazdanfar, L. H. Laiho, and P. T. So, Interferometric second harmonic generation microscopy, Opt. Express, vol.12, issue.12, pp.2739-2745, 2004.

M. Rivard, C. Couture, A. K. Miri, M. Laliberté, A. Bertrand-grenier et al., Imaging the bipolarity of myosin filaments with Interferometric Second Harmonic Generation microscopy, Biom. Opt. Express, vol.4, issue.10, pp.2078-86, 2013.

M. Rivard, K. Popov, C. Couture, M. Laliberté, A. Bertrand-grenier et al., Imaging the noncentrosymmetric structural organization of tendon with Interferometric Second Harmonic Generation microscopy, J. Biophotonics, vol.7, issue.8, pp.638-646, 2014.

S. Bancelin, C. A. Couture, K. Légaré, M. Pinsard, M. Rivard et al., Fast interferometric second harmonic generation microscopy, Biomed. Opt. Express, vol.7, issue.2, pp.399-408, 2016.