, Supplementary Figure 1: Gating strategies used to identify neutrophils in cynomolgus macaques. Gating strategy used in conventional flow cytometry to identify neutrophils according to their maturation stage (A) and priming (B)

, References 1. Centers for Disease Control (CDC), MMWR. Morb. Mortal. Wkly. Rep, vol.30, pp.250-252, 1981.

F. Barre-sinoussi, Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science (80-. ), vol.220, pp.868-71, 1983.

V. Simon, D. D. Ho, and Q. Karim, HIV/AIDS epidemiology, pathogenesis, prevention, and treatment, Lancet, vol.368, pp.489-504, 2006.

P. M. Sharp and B. H. Hahn, Origins of HIV and the AIDS pandemic. Cold Spring Harb, Perspect. Med, vol.1, p.6841, 2011.

M. Worobey, Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960, Nature, vol.455, pp.661-665, 2008.

M. Peeters, Risk to Human Health from a Plethora of Simian Immunodeficiency Viruses in Primate Bushmeat, Emerg. Infect. Dis, vol.8, pp.451-457, 2002.

J. Pepin, The origins of AIDS, 2011.

D. Quammen, The chimp and the river : how AIDS emerged from an African forest

. Unaids, Fact sheet -Latest global and regional statistics on the status of the AIDS epidemic

C. Lagathu, Basic science and pathogenesis of ageing with HIV, AIDS, vol.31, pp.105-119, 2017.

P. W. Hunt, S. A. Lee, and M. J. Siedner, Immunologic Biomarkers, Morbidity, and Mortality in Treated HIV Infection, J. Infect. Dis, vol.214, pp.44-50, 2016.

M. J. Ploquin, G. Silvestri, and M. Müller-trutwin, Immune activation in HIV infection: What can the natural hosts of simian immunodeficiency virus teach us?, Current Opinion in HIV and AIDS, vol.11, pp.201-208, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01289403

T. J. Cory, T. W. Schacker, M. Stevenson, and C. V. Fletcher, Overcoming pharmacologic sanctuaries, Curr Opin HIV AIDS, vol.8, pp.190-195, 2013.

N. G. Sandler, Plasma Levels of Soluble CD14 Independently Predict Mortality in HIV Infection, J. Infect. Dis, vol.203, pp.780-790, 2011.

G. Marchetti, Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+ cell count, AIDS, vol.25, pp.1385-1394, 2011.

T. Kelesidis, M. A. Kendall, O. O. Yang, H. N. Hodis, and J. S. Currier, Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection, J. Infect. Dis, vol.206, pp.1558-67, 2012.

A. Boulougoura and I. Sereti, HIV infection and immune activation: the role of coinfections, Curr. Opin. HIV AIDS, vol.11, pp.191-200, 2016.

S. G. Deeks, R. Tracy, and D. C. Douek, Systemic Effects of Inflammation on Health during 114

, Chronic HIV Infection. Immunity, vol.39, pp.633-645, 2013.

L. W. Musselwhite, Markers of endothelial dysfunction, coagulation and tissue fibrosis independently predict venous thromboembolism in HIV, AIDS, vol.25, pp.787-795, 2011.

T. Hensley-mcbain and N. R. Klatt, The Dual Role of Neutrophils in HIV Infection, Curr. HIV/AIDS Rep, vol.15, pp.1-10, 2018.

O. Soehnlein, S. Steffens, A. Hidalgo, and C. Weber, Neutrophils as protagonists and targets in chronic inflammation, Nat. Rev. Immunol, vol.17, pp.248-261, 2017.

L. Campillo-gimenez, Neutrophils in antiretroviral therapy-controlled HIV demonstrate hyperactivation associated with a specific IL-17/IL-22 environment, J. Allergy Clin. Immunol, vol.134, 2014.

D. F. Noubouossie, B. N. Reeves, B. D. Strahl, and N. S. Key, Neutrophils: back in the thrombosis spotlight, Blood, vol.133, pp.2186-2197, 2019.

C. Tecchio, A. Micheletti, and M. A. Cassatella, Neutrophil-derived cytokines: Facts beyond expression, Frontiers in Immunology, 2014.

A. R. Stacey, Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections, J. Virol, vol.83, pp.3719-3752, 2009.

S. Mehandru, Primary HIV-1 Infection Is Associated with Preferential Depletion of CD4 + T Lymphocytes from Effector Sites in the Gastrointestinal Tract, J. Exp. Med, vol.200, pp.761-770, 2004.

M. Guadalupe, Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy, J. Virol, vol.77, pp.11708-11725, 2003.

Z. Q. Zhang, Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.1154-1163, 1998.

Q. Li, Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells, Nature, vol.434, pp.1148-1152, 2005.

J. J. Wykrzykowska, Early regeneration of thymic progenitors in rhesus macaques infected with simian immunodeficiency virus, J. Exp. Med, vol.187, pp.1767-78, 1998.

J. Herbeuval, Differential expression of IFN-and TRAIL/DR5 in lymphoid tissue of progressor versus nonprogressor HIV-1-infected patients, Proc. Natl. Acad. Sci, vol.103, pp.7000-7005, 2006.

D. C. Douek, M. Roederer, and R. A. Koup, Emerging concepts in the immunopathogenesis of AIDS, Annu. Rev. Med, vol.60, pp.471-84, 2009.

M. Guadalupe, Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy, J. Virol, vol.77, pp.11708-11725, 2003.

G. Pantaleo, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature, vol.362, pp.355-358, 1993.

J. D. Estes, Pathobiology Of HIV/SIV-Associated Changes In Secondary Lymphoid Tissues, Immunol. Rev, vol.254, pp.65-77, 2013.

J. K. Wong and S. A. Yukl, Tissue reservoirs of HIV, Curr. Opin. HIV AIDS, vol.11, pp.362-370, 2016.

M. Massanella, R. Fromentin, and N. Chomont, Residual inflammation and viral reservoirs: Alliance against an HIV cure, Curr. Opin. HIV AIDS, vol.11, pp.234-241, 2016.

M. Massanella and D. D. Richman, Measuring the latent reservoir in vivo, J. Clin. Invest, vol.126, pp.464-472, 2016.

M. Mavigner, Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques, J. Virol, vol.92, 2018.

C. M. Durand, HIV-1 DNA Is Detected in Bone Marrow Populations Containing CD4+ T Cells but Is not Found in Purified CD34+ Hematopoietic Progenitor Cells in Most Patients on Antiretroviral Therapy, J. Infect. Dis, vol.205, pp.1014-1018, 2012.

L. A. Mcnamara, CD133+ hematopoietic progenitor cells harbor HIV genomes in a subset of optimally treated people with long-term viral suppression, J. Infect. Dis, vol.207, pp.1807-1823, 2013.

L. Josefsson, Hematopoietic Precursor Cells Isolated From Patients on Long-term Suppressive HIV Therapy Did Not Contain HIV-1 DNA, J. Infect. Dis, vol.206, pp.28-34, 2012.

G. Pantaleo, HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature, vol.362, pp.355-358, 1993.

H. F. Günthard, Residual Human Immunodeficiency Virus (HIV) Type 1 RNA and DNA in Lymph Nodes and HIV RNA in Genital Secretions and in Cerebrospinal Fluid after Suppression of Viremia for 2 Years, J. Infect. Dis, vol.183, pp.1318-1327, 2001.

M. Popovic, Persistence of HIV-1 structural proteins and glycoproteins in lymph nodes of patients under highly active antiretroviral therapy, Proc. Natl. Acad. Sci, vol.102, pp.14807-14812, 2005.

Y. Fukazawa, B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers, Nat. Med, vol.21, pp.132-139, 2015.

R. Banga, PD-1+ and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals, Nat. Med, vol.22, pp.754-761, 2016.

S. A. Yukl, A Comparison of Methods for Measuring Rectal HIV Levels Suggests that HIV DNA Resides in Cells other than CD4+T Cells, Including Myeloid Cells, AIDS, vol.28, p.439, 2014.

S. A. Yukl, The Distribution of HIV DNA and RNA in Cell Subsets Differs in Gut and Blood of HIV-Positive Patients on ART: Implications for Viral Persistence, J. Infect. Dis, vol.208, pp.1212-1220, 2013.

J. G. Madero, Relationship between Load of Virus in Alveolar Macrophages from Human Immunodeficiency Virus Type 1-Infected Persons, Production of Cytokines, and Clinical Status, J. Infect. Dis, vol.169, pp.18-27, 1994.

C. T. Costiniuk, HIV persistence in mucosal CD4+ T-cells within the lungs of adults receiving long-term suppressive antiretroviral therapy, AIDS, vol.32, p.1, 2018.

M. J. Churchill, Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues, J. Neurovirol, vol.12, pp.146-152, 2006.

W. R. Winnall, Simian immunodeficiency virus infection and immune responses in the pig-tailed macaque testis, J. Leukoc. Biol, vol.97, pp.599-609, 2015.

H. Wolff, A comparison of HIV-1 antibody classes, titers, and specificities in paired semen and blood samples from HIV-1 seropositive men, J. Acquir. Immune Defic. Syndr, vol.5, pp.65-74, 1992.

J. D. Estes, Defining total-body AIDS-virus burden with implications for curative strategies, Nat. Med, vol.23, pp.1271-1276, 2017.

S. Siddiqui, Persistent Viral Reservoirs in Lymphoid Tissues in SIV-Infected Rhesus Macaques of Chinese-Origin on Suppressive Antiretroviral Therapy, Viruses, vol.11, 2019.

G. Matusali, Detection of Simian Immunodeficiency Virus in Semen, Urethra, and Male Reproductive Organs during Efficient Highly Active Antiretroviral Therapy, J. Virol, vol.89, pp.5772-5787, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139816

A. Damouche, Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection, PLOS Pathog, vol.11, p.1005153, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01207287

N. Dusserre, In vitro HIV-1 entry and replication in Langerhans cells may clarify the HIV-1 genome detection by PCR in epidermis of seropositive patients, J. Invest. Dermatol, vol.99, pp.99-102, 1992.

J. Martinez-picado and S. G. Deeks, Persistent HIV-1 replication during antiretroviral therapy, Curr. Opin. HIV AIDS, vol.11, pp.417-440, 2016.

S. Palmer, Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy, Proc. Natl. Acad. Sci. 105, pp.3879-3884, 2008.

F. Maldarelli, ART Suppresses Plasma HIV-1 RNA to a Stable Set Point Predicted by Pretherapy Viremia, PLoS Pathog, vol.3, p.46, 2007.

R. Lorenzo-redondo, Persistent HIV-1 replication maintains the tissue reservoir during therapy, Nature, vol.530, pp.51-56, 2016.

T. W. North, Viral Sanctuaries during Highly Active Antiretroviral Therapy in a Nonhuman Primate Model for AIDS, J. Virol, vol.84, pp.2913-2922, 2010.

O. Bourry, Effect of a short-term HAART on SIV load in macaque tissues is dependent on time of initiation and antiviral diffusion, Retrovirology, vol.7, p.78, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00668445

C. Solas, Discrepancies between protease inhibitor concentrations and viral load in reservoirs and sanctuary sites in human immunodeficiency virus

, Antimicrob. Agents Chemother, vol.47, pp.238-281, 2003.

S. Dallas, L. Schlichter, and R. Bendayan, Multidrug Resistance Protein (MRP) 4-and MRP 5-Mediated Efflux of 9-(2-Phosphonylmethoxyethyl)adenine by Microglia, J. Pharmacol. Exp. Ther, vol.309, pp.1221-1229, 2004.

S. Jorajuria, ATP binding cassette multidrug transporters limit the anti-HIV activity of zidovudine and indinavir in infected human macrophages, Antivir. Ther, vol.9, pp.519-547, 2004.

P. M. Odorizzi and E. J. Wherry, An Interferon Paradox. Science (80-. ), vol.340, pp.155-156, 2013.

S. M. Ziegler and M. Altfeld, Human immunodeficiency virus 1 and type I interferonswhere sex makes a difference, Frontiers in Immunology, 2017.

S. Fernandez, CD4+ T-Cell Deficiency in HIV Patients Responding to Antiretroviral Therapy Is Associated With Increased Expression of Interferon-Stimulated Genes in CD4+ T Cells, J. Infect. Dis, vol.204, pp.1927-1935, 2011.

J. E. Teigler, Distinct biomarker signatures in HIV acute infection associate with viral dynamics and reservoir size, JCI Insight, vol.3, 2018.

J. S. Mathad, Sex-Related Differences in Inflammatory and Immune Activation Markers Before and After Combined Antiretroviral Therapy Initiation, JAIDS J. Acquir. Immune Defic. Syndr, vol.73, pp.123-129, 2016.

A. Meier, Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1, Nat. Med, vol.15, pp.955-959, 2009.

W. R. Hein, Organization of mucosal lymphoid tissue, Curr. Top. Microbiol. Immunol, vol.236, pp.1-15, 1999.

D. P. Kotler, H. P. Gaetz, M. Lange, E. B. Klein, and P. R. Holt, Enteropathy associated with the acquired immunodeficiency syndrome, Ann. Intern. Med, vol.101, pp.421-429, 1984.

J. M. Brenchley, Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections, Blood, vol.112, pp.2826-2861, 2008.

J. K. Kolls and A. Lindén, Interleukin-17 Family Members and Inflammation, Immunity, vol.21, pp.467-476, 2004.

F. Annunziato, Phenotypic and functional features of human Th17 cells, J. Exp. Med, vol.204, pp.1849-1861, 2007.

N. R. Klatt and J. Brenchley, Th17 cell dynamics in HIV infection, Curr. Opin. HIV AIDS, vol.5, pp.135-175, 2010.

M. D. George and D. M. Asmuth, Mucosal immunity in HIV infection, Curr. Opin. Infect. Dis, vol.27, pp.275-281, 2014.

I. Vujkovic-cvijin, Dysbiosis of the Gut Microbiota Is Associated with HIV Disease Progression and Tryptophan Catabolism, Sci. Transl. Med, vol.5, pp.193-91, 2013.

M. Somsouk, Gut epithelial barrier and systemic inflammation during chronic HIV infection, AIDS, vol.29, pp.43-51, 2015.

J. D. Estes, Damaged Intestinal Epithelial Integrity Linked to Microbial Translocation in Pathogenic Simian Immunodeficiency Virus Infections, PLoS Pathog, vol.6, p.1001052, 2010.

I. Sereti, Decreases in Colonic and Systemic Inflammation in Chronic HIV Infection after IL-7 Administration, PLoS Pathog, vol.10, p.1003890, 2014.

C. Deleage, Impact of early cART in the gut during acute HIV infection, JCI Insight, vol.1, 2016.

T. Hensley-mcbain, Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection, PLoS Pathog, vol.15, p.1007672, 2019.

D. Muthas, Neutrophils in ulcerative colitis: a review of selected biomarkers and their potential therapeutic implications, Scand. J. Gastroenterol, vol.52, pp.125-135, 2017.

S. Baroncelli, Microbial translocation is associated with residual viral replication in HAART-treated HIV+ subjects with <50copies/ml HIV-1 RNA, J. Clin. Virol, vol.46, pp.367-370, 2009.

G. Ettorre, HIV persistence in the gut mucosa of HIV-infected subjects undergoing antiretroviral therapy correlates with immune activation and increased levels of LPS, Curr. HIV Res, vol.9, pp.148-53, 2011.

F. T. Hufert, Human Kupffer cells infected with HIV-1 in vivo, J. Acquir. Immune Defic. Syndr, vol.6, pp.772-779, 1993.

A. Balagopal, Kupffer cells are depleted with HIV immunodeficiency and partially recovered with antiretroviral immune reconstitution, AIDS, vol.23, pp.2397-404, 2009.

P. Sacchi, Liver fibrosis, microbial translocation and immune activation markers in HIV and HCV infections and in HIV/HCV co-infection, Dig. Liver Dis, vol.47, pp.218-225, 2015.

, A:D) Study Group et al. Factors associated with specific causes of death amongst HIV-positive individuals in the D:A:D Study, Data Collection on Adverse Events of Anti-HIV drugs, vol.24, pp.1537-1585, 2010.

M. Buzón, HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects, Nat. Med, vol.16, pp.460-465, 2010.

T. W. Schacker, Persistent Abnormalities in Lymphoid Tissues of Human Immunodeficiency Virus-Infected Patients Successfully Treated with Highly Active Antiretroviral Therapy, J. Infect. Dis, vol.186, pp.1092-1097, 2002.

T. W. Schacker, Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection, Clin. Vaccine Immunol, vol.13, pp.556-60, 2006.

J. Estes, Collagen deposition limits immune reconstitution in the gut, J. Infect. Dis, vol.198, pp.456-64, 2008.

A. J. Theron, R. Anderson, T. M. Rossouw, and H. C. Steel, The Role of Transforming Growth Factor Beta-1 in the Progression of HIV/AIDS and Development of Non-AIDS-Defining Fibrotic Disorders, Front. Immunol, vol.8, p.1461, 2017.

E. Seki, TLR4 enhances TGF-? signaling and hepatic fibrosis, Nat. Med, vol.13, pp.1324-1332, 2007.

C. C. Chang, HIV and co-infections, Immunol. Rev, vol.254, p.114, 2013.

L. C. Bell and M. Noursadeghi, Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection, Nat. Rev. Microbiol, vol.16, pp.80-90, 2017.

S. Marais, G. Meintjes, M. Lesosky, K. A. Wilkinson, and R. J. Wilkinson, Interleukin-17 mediated differences in the pathogenesis of HIV-1-associated tuberculous and cryptococcal meningitis, AIDS, vol.30, pp.395-404, 2016.

Z. Toossi, Systemic Immune Activation and Microbial Translocation in Dual HIV/Tuberculosis-Infected Subjects, J. Infect. Dis, vol.207, pp.1841-1849, 2013.

Q. Meng, Immune Activation at Sites of HIV/TB Co-Infection Contributes to the Pathogenesis of HIV-1 Disease, PLoS One, vol.11, p.166954, 2016.

Z. A. Sullivan, E. B. Wong, T. Ndung&apos;u, V. O. Kasprowicz, and W. R. Bishai, Latent and Active Tuberculosis Infection Increase Immune Activation in Individuals Co-Infected with, vol.2, p.334, 2015.

C. Geldmacher, Preferential infection and depletion of Mycobacterium tuberculosis -specific CD4 T cells after HIV-1 infection, J. Exp. Med, vol.207, pp.2869-2881, 2010.

J. S. Sutherland, Polyfunctional CD4+ and CD8+ T Cell Responses to Tuberculosis Antigens in HIV-1-Infected Patients before and after Anti-Retroviral Treatment, J. Immunol, vol.184, pp.6537-6544, 2010.

M. B. Smith, M. C. Boyars, S. Veasey, and G. L. Woods, Generalized tuberculosis in the acquired immune deficiency syndrome, Arch. Pathol. Lab. Med, vol.124, pp.1267-74, 2000.

M. P. Berry, An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis, Nature, vol.466, pp.973-977, 2010.

H. Choi, Clinical and Laboratory Differences between Lymphocyte-and Neutrophil-Predominant Pleural Tuberculosis, PLoS One, vol.11, p.165428, 2016.

R. Condos, W. N. Rom, Y. M. Liu, and N. W. Schluger, Local Immune Responses Correlate with Presentation and Outcome in Tuberculosis, Am. J. Respir. Crit. Care Med, vol.157, pp.729-735, 1998.

J. Del-amo, Impact of Antiretroviral Therapy on Tuberculosis Incidence Among HIV-Positive Patients in High-Income Countries, Clin. Infect. Dis, vol.54, pp.1364-1372, 2012.

J. H. Elliott, Immunopathogenesis and Diagnosis of Tuberculosis and Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome during Early Antiretroviral Therapy, J. Infect. Dis, vol.200, pp.1736-1745, 2009.

B. G. Oliver, Mediators of innate and adaptive immune responses differentially affect immune restoration disease associated with Mycobacterium tuberculosis in HIV 120 patients beginning antiretroviral therapy, J. Infect. Dis, vol.202, pp.1728-1765, 2010.

S. Gianella and S. Letendre, Cytomegalovirus and HIV: A Dangerous Pas de Deux, J. Infect. Dis, vol.214, pp.67-74, 2016.

A. W. Sylwester, Broadly targeted human cytomegalovirus-specific CD4 + and CD8

, + T cells dominate the memory compartments of exposed subjects, J. Exp. Med, vol.202, pp.673-685, 2005.

T. Fülöp, A. Larbi, and G. Pawelec, Human T cell aging and the impact of persistent viral infections, Front. Immunol, vol.4, p.271, 2013.

M. L. Freeman, CD8 T-Cell Expansion and Inflammation Linked to CMV Coinfection in ART-treated HIV Infection, Clin. Infect. Dis, vol.62, pp.392-396, 2016.

H. R. Lüttichau, The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and CXCR2 as an agonist, J. Biol. Chem, vol.285, pp.9137-9183, 2010.

J. M. Pocock, Human cytomegalovirus delays neutrophil apoptosis and stimulates the release of a prosurvival secretome, Frontiers in Immunology, vol.8, 2017.

R. Detels, Persistent cytomegalovirus infection of semen increases risk of AIDS, J. Infect. Dis, vol.169, pp.766-774, 1994.

K. L. Springer and A. Weinberg, Cytomegalovirus infection in the era of HAART: fewer reactivations and more immunity, J. Antimicrob. Chemother, vol.54, pp.582-586, 2004.

M. Lichtner, Cytomegalovirus Coinfection Is Associated With an Increased Risk of Severe Non-AIDS-Defining Events in a Large Cohort of HIV-Infected Patients, J. Infect. Dis, vol.211, pp.178-186, 2015.

N. G. Sandler, Host Response to Translocated Microbial Products Predicts Outcomes of Patients With HBV or HCV Infection, Gastroenterology, vol.141, 2011.

M. García-Álvarez, Bacterial DNA Translocation and Liver Disease Severity Among HIV-Infected Patients With Chronic Hepatitis C, JAIDS J. Acquir. Immune Defic. Syndr, vol.61, pp.552-556, 2012.

A. Balagopal, Human Immunodeficiency Virus-Related Microbial Translocation and Progression of Hepatitis C, Gastroenterology, vol.135, pp.226-233, 2008.

A. Balagopal, Kupffer cells are depleted with HIV immunodeficiency and partially recovered with antiretroviral immune reconstitution, AIDS, vol.23, pp.2397-404, 2009.

C. E. Harvey, Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and lobular inflammation, J. Leukoc. Biol, vol.74, pp.360-369, 2003.

G. Sitia, MMPs are required for recruitment of antigen-nonspecific mononuclear cells into the liver by CTLs, J. Clin. Invest, vol.113, pp.1158-67, 2004.

G. Sitia, Depletion of neutrophils blocks the recruitment of antigen-nonspecific cells into the liver without affecting the antiviral activity of hepatitis B virus-specific cytotoxic T lymphocytes, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.13717-13739, 2002.

A. Khanam, Blockade of neutrophil's chemokine receptors CXCR1/2 abrogate liver damage in acute-on-chronic liver failure, Front. Immunol, vol.8, 2017.

R. Xu, H. Huang, Z. Zhang, and F. Wang, The role of neutrophils in the development of liver diseases, Cell. Mol. Immunol, vol.11, pp.224-231, 2014.

L. Martín-carbonero, Clinical and virological outcomes in HIV-infected patients with chronic hepatitis B on long-term nucleos(t)ide analogues, AIDS, vol.25, pp.73-79, 2011.

A. Llewellyn, M. Simmonds, W. L. Irving, G. Brunton, and A. J. Sowden, Antiretroviral therapy and liver disease progression in HIV and hepatitis C co-infected patients: a systematic review and meta-analysis, Hepatol. Med. Policy, vol.1, p.10, 2016.

K. W. Chew and D. Bhattacharya, Virologic and immunologic aspects of HIV-hepatitis C virus coinfection, AIDS, vol.30, pp.2395-2404, 2016.

A. Boulougoura and I. Sereti, HIV infection and immune activation, Curr. Opin. HIV AIDS, vol.11, pp.191-200, 2016.

M. N. Badano, Influence of Hepatitis C virus coinfection on immune reconstitution in HIV subjects, Med. Microbiol. Immunol, 2019.

J. G. Rabkin, M. C. Mcelhiney, and S. J. Ferrando, Mood and substance use disorders in older adults with HIV/AIDS: methodological issues and preliminary evidence, AIDS, vol.18, issue.1, pp.43-51, 2004.

M. Massanella, Methamphetamine Use in HIV-infected Individuals Affects T-cell Function and Viral Outcome during, Suppressive Antiretroviral Therapy. Sci. Rep, vol.5, p.13179, 2015.

J. Bastard, Increased systemic immune activation and inflammatory profile of long-term HIV-infected ART-controlled patients is related to personal factors, but not to markers of HIV infection severity, J. Antimicrob. Chemother, vol.70, pp.1816-1840, 2015.

R. Valiathan, M. J. Miguez, B. Patel, K. L. Arheart, and D. Asthana, Tobacco Smoking Increases Immune Activation and Impairs T-Cell Function in HIV Infected Patients on Antiretrovirals: A Cross-Sectional Pilot Study, PLoS One, vol.9, p.97698, 2014.

A. W. Carrico, Unhealthy Alcohol Use is Associated with Monocyte Activation Prior to Starting Antiretroviral Therapy, Alcohol. Clin. Exp. Res, vol.39, pp.2422-2426, 2015.

J. R. Koethe, H. Grome, C. A. Jenkins, S. A. Kalams, and T. R. Sterling, The metabolic and cardiovascular consequences of obesity in persons with HIV on long-term antiretroviral therapy, AIDS, vol.30, p.1, 2015.

A. Damouche, Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection, PLOS Pathog, vol.11, p.1005153, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01207287

R. Serrão, Non-AIDS-related comorbidities in people living with HIV-1 aged 50 years and older: The AGING POSITIVE study, Int. J. Infect. Dis, vol.79, pp.94-100, 2019.

V. Appay, J. Almeida, D. Sauce, B. Autran, and L. Papagno, Accelerated immune senescence and HIV-1 infection, Exp. Gerontol, vol.42, pp.432-437, 2007.

M. Pinti, Aging of the immune system: Focus on inflammation and vaccination, Eur. J. Immunol, vol.46, pp.2286-2301, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02452484

T. Fali, New Insights into Lymphocyte Differentiation and Aging from Telomere Length and Telomerase Activity Measurements, J. Immunol, vol.202, pp.1962-1969, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02352254

V. Appay and D. Sauce, Assessing immune aging in HIV-infected patients, Virulence, vol.8, pp.529-538, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02452513

V. C. Jiménez, T-Cell Activation Independently Associates With Immune Senescence in HIV-Infected Recipients of Long-term Antiretroviral Treatment, J. Infect. Dis, vol.214, pp.216-225, 2016.

A. R. Tenorio, Soluble Markers of Inflammation and Coagulation but Not T-Cell Activation Predict Non-AIDS-Defining Morbid Events During Suppressive Antiretroviral Treatment, J. Infect. Dis, vol.210, pp.1248-1259, 2014.

C. Tecchio, A. Micheletti, and M. A. Cassatella, Neutrophil-Derived Cytokines: Facts Beyond Expression, Front. Immunol, vol.5, p.508, 2014.

E. S. Ford, Traditional risk factors and D-dimer predict incident cardiovascular disease events in chronic HIV infection, AIDS, vol.24, pp.1509-1517, 2010.

N. T. Funderburg, Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation, Blood, vol.115, pp.161-167, 2010.

Á. H. Borges, Predicting risk of cancer during HIV infection, AIDS, vol.27, pp.1433-1441, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01101192

A. C. Justice, Does an Index Composed of Clinical Data Reflect Effects of Inflammation, Coagulation, and Monocyte Activation on Mortality Among Those Aging With HIV?, Clin. Infect. Dis, vol.54, pp.984-994, 2012.

T. I. Group, Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection, N. Engl. J. Med, vol.373, pp.795-807, 2015.

, Strategies for Management of Antiretroviral Therapy (SMART) Study Group et al. CD4+ Count-Guided Interruption of Antiretroviral Treatment, N. Engl. J. Med, vol.355, pp.2283-2296, 2006.

B. F. Keele, Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz, Nature, vol.460, pp.515-519, 2009.

P. M. Sharp and B. H. Hahn, Origins of HIV and the AIDS Pandemic. Cold Spring Harb, Perspect. Med, vol.1, pp.6841-006841, 2011.

N. R. Klatt, G. Silvestri, and V. Hirsch, Nonpathogenic Simian Immunodeficiency Virus Infections. Cold Spring Harb, Perspect. Med, vol.2, pp.7153-007153, 2012.

N. L. Letvin, Induction of AIDS-like disease in macaque monkeys with T-cell tropic retrovirus STLV-III, Science, vol.230, pp.71-74, 1985.

V. M. Hirsch, R. A. Olmsted, M. Murphey-corb, R. H. Purcell, and P. R. Johnson, An African primate lentivirus (SIVsm) closely related to HIV-2, Nature, vol.339, pp.389-92, 1989.

T. Hatziioannou and D. T. Evans, Animal models for HIV/AIDS research, Nat. Rev. Microbiol, vol.10, pp.852-867, 2012.

M. Worobey, Island biogeography reveals the deep history of SIV, Science, vol.329, p.1487, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00540189

B. Jacquelin, Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response, J. Clin. Invest, vol.119, pp.3544-55, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01968918

G. Silvestri, Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia, Immunity, vol.18, pp.441-52, 2003.

M. Paiardini, Low levels of SIV infection in sooty mangabey central memory CD4+ T cells are associated with limited CCR5 expression, Nat. Med, vol.17, pp.830-836, 2011.

M. Paiardini, Bone marrow-based homeostatic proliferation of mature T cells in nonhuman primates: implications for AIDS pathogenesis, Blood, vol.113, pp.612-633, 2009.

B. Beer, Lack of dichotomy between virus load of peripheral blood and lymph nodes during long-term simian immunodeficiency virus infection of African green monkeys, Virology, vol.219, pp.367-75, 1996.

L. Chakrabarti, Limited Viral Spread and Rapid Immune Response in Lymph Nodes of Macaques Inoculated with Attenuated Simian Immunodeficiency Virus, Virology, vol.213, pp.535-548, 1995.

M. Cumont, Early Divergence in Lymphoid Tissue Apoptosis between Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infections of Nonhuman Primates, J. Virol, vol.82, pp.1175-1184, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01969014

I. Pandrea, Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence, J. Immunol, vol.179, pp.3035-3081, 2007.

D. Favre, Critical Loss of the Balance between Th17 and T Regulatory Cell Populations in Pathogenic SIV Infection, PLoS Pathog, vol.5, p.1000295, 2009.

J. D. Estes, Early resolution of acute immune activation and induction of PD-1 in SIV-infected sooty mangabeys distinguishes nonpathogenic from pathogenic infection in rhesus macaques, J. Immunol, vol.180, pp.6798-807, 2008.

G. Silvestri, Nonpathogenic SIV Infection of Sooty Mangabeys Is Characterized by Limited Bystander Immunopathology Despite Chronic High-Level Viremia, Immunity, vol.18, pp.441-452, 2003.

S. E. Bosinger, Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys, J. Clin. Invest, vol.119, pp.3556-72, 2009.

A. Chahroudi, S. E. Bosinger, T. H. Vanderford, M. Paiardini, and G. Silvestri, Natural SIV Hosts: Showing AIDS the Door, Science, vol.335, pp.1188-1193, 2012.

Z. Wang, B. Metcalf, R. M. Ribeiro, H. Mcclure, and A. Kaur, Th-1-Type Cytotoxic CD8+ T-Lymphocyte Responses to Simian Immunodeficiency Virus (SIV) Are a Consistent Feature of Natural SIV Infection in Sooty Mangabeys, J. Virol, vol.80, pp.2771-2783, 2006.

A. Liovat, B. Jacquelin, M. Ploquin, F. Barre-sinoussi, and M. Muller-trutwin, African Non Human Primates Infected by SIV -Why Dont they Get Sick? Lessons from Studies on the Early Phase of Non-Pathogenic SIV Infection, Curr. HIV Res, vol.7, pp.39-50, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01962242

S. E. Bosinger, B. Jacquelin, A. Benecke, G. Silvestri, and M. Müller-trutwin, Systems biology of natural SIV infections, Curr Opin HIV AIDS, vol.7, pp.71-78, 2012.

N. Huot, Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys, Nat. Med, vol.23, pp.1277-1286, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01984650

J. Pillay, In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days, Blood, vol.116, pp.625-632, 2010.

M. A. Stark, Phagocytosis of Apoptotic Neutrophils Regulates Granulopoiesis via IL-23 and IL-17, Immunity, vol.22, pp.285-294, 2005.

K. Ley, E. Smith, and M. A. Stark, Neutrophil-Regulatory Tn Lymphocytes, Immunol. Res, vol.34, pp.229-242, 2006.

D. J. Cua and C. M. Tato, Innate IL-17-producing cells: The sentinels of the immune system, Nat. Rev. Immunol, vol.10, pp.479-489, 2010.

P. Schwarzenberger, Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis, J. Immunol, vol.164, pp.4783-4792, 2000.

G. J. Lieschke, Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization, Blood, vol.84, pp.1737-1783, 1994.

C. Summers, Neutrophil kinetics in health and disease, Trends Immunol, vol.31, pp.318-342, 2010.

N. Borregaard, Neutrophils, from Marrow to Microbes, Immunity, vol.33, pp.657-670, 2010.

K. Theilgaard-monch, The transcriptional program of terminal granulocytic differentiation, Blood, vol.105, pp.1785-1796, 2005.

W. M. Nauseef and N. Borregaard, Neutrophils at work, Nat. Immunol, vol.15, pp.602-613, 2014.

C. B. Grindem, Schalm's Veterinary Hematology, Vet. Clin. Pathol, vol.40, pp.270-270, 2011.

A. Wilson and A. Trumpp, Bone-marrow haematopoietic-stem-cell niches, Nat. Rev. Immunol, vol.6, pp.93-106, 2006.

J. Lévesque, I. G. Winkler, S. R. Larsen, and J. E. Rasko, Mobilization of Bone Marrow-Derived Progenitors, 2007.

A. D. Friedman, Transcriptional control of granulocyte and monocyte development, Oncogene, vol.26, pp.6816-6828, 2007.

R. Hoffman, Hematology : basic principles and practice

L. G. Ng, R. Ostuni, and A. Hidalgo, Heterogeneity of neutrophils, Nat. Rev. Immunol, 2019.

M. Evrard, Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions, Immunity, vol.48, pp.364-379, 2018.

C. Scheiermann, Y. Kunisaki, and P. S. Frenette, Circadian control of the immune system, Nat. Rev. Immunol, vol.13, pp.190-198, 2013.

J. M. Adrover, A Neutrophil Timer Coordinates Immune Defense and Vascular Protection, Immunity, vol.50, pp.390-402, 2019.

I. J. Elenkov, R. L. Wilder, G. P. Chrousos, and E. S. Vizi, The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system, Pharmacol. Rev, vol.52, pp.595-638, 2000.

S. Méndez-ferrer, D. Lucas, M. Battista, and P. S. Frenette, Haematopoietic stem cell release is regulated by circadian oscillations, Nature, vol.452, pp.442-449, 2008.

C. Scheiermann, Adrenergic nerves govern circadian leukocyte recruitment to tissues, Immunity, vol.37, pp.290-301, 2012.

J. W. Athens, Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects, J. Clin. Invest, vol.40, pp.989-995, 1961.

S. Devi, Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow, J. Exp. Med, vol.210, pp.2321-2336, 2013.

N. Borregaard, Neutrophils, from Marrow to Microbes, Immunity, vol.33, pp.657-670, 2010.

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nat. Rev. Immunol, vol.13, pp.159-175, 2013.

C. J. Thomas and K. Schroder, Pattern recognition receptor function in neutrophils, Trends Immunol, vol.34, pp.317-328, 2013.

S. K. Jorch and P. Kubes, An emerging role for neutrophil extracellular traps in noninfectious disease, Nature Medicine, vol.23, pp.279-287, 2017.

W. E. Paul, Fundamental immunology, 2013.

G. T. Nguyen, E. R. Green, and J. Mecsas, Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance, Front. Cell. Infect. Microbiol, vol.7, 2017.

N. Borregaard and J. B. Cowland, Granules of the human neutrophilic polymorphonuclear leukocyte, Blood, vol.89, pp.3503-3524, 1997.

V. Brinkmann, Neutrophil Extracellular Traps Kill Bacteria. Science, vol.303, pp.1532-1535, 2004.

T. A. Fuchs, Novel cell death program leads to neutrophil extracellular traps, J. Cell Biol, vol.176, pp.231-241, 2007.

B. G. Yipp and P. Kubes, NETosis: How vital is it?, Blood, vol.122, pp.2784-2794, 2013.

N. Thieblemont, H. L. Wright, S. W. Edwards, and V. Witko-sarsat, Human neutrophils in auto-immunity, Semin. Immunol, vol.28, pp.159-173, 2016.

N. Malachowa, S. D. Kobayashi, M. T. Quinn, and F. R. Deleo, NET Confusion. Front. Immunol, vol.7, p.259, 2016.

S. Yousefi, Untangling 'NETosis' from NETs, European Journal of Immunology, vol.49, pp.221-227, 2019.

W. M. Nauseef and P. Kubes, Pondering neutrophil extracellular traps with healthy skepticism, Cell. Microbiol, vol.18, pp.1349-57, 2016.

W. M. Nauseef, Proteases, neutrophils, and periodontitis: the NET effect, J. Clin. Invest, vol.124, pp.4237-4239, 2014.

M. C. Greenlee-wacker, Clearance of apoptotic neutrophils and resolution of inflammation, Immunol. Rev, vol.273, pp.357-370, 2016.

C. D. Buckley, Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration, J. Leukoc. Biol, vol.79, pp.303-311, 2006.

A. Woodfin, The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo, Nat. Immunol, vol.12, pp.761-769, 2011.

V. Kumar, A. K. Abbas, J. C. Aster, and J. A. Perkins, Robbins and Cotran pathologic basis of disease

C. V. Gorlino, Neutrophils Exhibit Differential Requirements for Homing Molecules in Their Lymphatic and Blood Trafficking into Draining Lymph Nodes, J. Immunol, vol.193, pp.1966-1974, 2014.

K. Løvås, E. Knudsen, P. O. Iversen, and H. B. Benestad, Sequestration patterns of transfused rat neutrophilic granulocytes under normal and inflammatory conditions, Eur. J. Haematol, vol.56, pp.221-230, 1996.

B. T. Suratt, Neutrophil maturation and activation determine anatomic site of clearance from circulation, Am. J. Physiol. Cell. Mol. Physiol, vol.281, pp.913-921, 2001.

J. Shi, G. E. Gilbert, Y. Kokubo, and T. Ohashi, Role of the liver in regulating numbers of circulating neutrophils, Blood, vol.98, pp.1226-1256, 2001.

M. L. Thakur, R. E. Coleman, and M. J. Welch, Indium-111-labeled leukocytes for the localization of abscesses: preparation, analysis, tissue distribution, and comparison with gallium-67 citrate in dogs, J. Lab. Clin. Med, vol.89, pp.217-245, 1977.

S. H. Saverymuttu, A. M. Peters, A. Keshavarzian, H. J. Reavy, and J. P. Lavender, The kinetics of 111indium distribution following injection of 111indium labelled autologous granulocytes in man, Br. J. Haematol, vol.61, pp.675-85, 1985.

M. Holub, Neutrophils Sequestered in the Liver Suppress the Proinflammatory Response of Kupffer Cells to Systemic Bacterial Infection, J. Immunol, vol.183, pp.3309-3316, 2009.

A. Anzai, The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes, J. Exp. Med, vol.214, pp.3293-3310, 2017.

J. L. Schultze, E. Mass, and A. Schlitzer, Emerging Principles in Myelopoiesis at Homeostasis and during Infection and Inflammation, Immunity, vol.50, pp.288-301, 2019.

S. K. Jorch and P. Kubes, An emerging role for neutrophil extracellular traps in noninfectious disease, Nat. Med, vol.23, pp.279-287, 2017.

S. C. Buessow, R. D. Paul, and D. M. Lopez, Influence of Mammary Tumor Progression on Phenotype and Function of Spleen and

D. M. Lowe, P. S. Redford, R. J. Wilkinson, A. O&apos;garra, and A. R. Martineau, Neutrophils in tuberculosis: Friend or foe?, Trends Immunol, vol.33, pp.14-25, 2012.

D. L. Scott, F. Wolfe, and T. W. Huizinga, Lancet, vol.376, pp.1094-1108, 2010.

H. L. Wright, R. J. Moots, and S. W. Edwards, The multifactorial role of neutrophils in rheumatoid arthritis, Nat. Publ. Gr, vol.10, pp.593-601, 2014.

F. Pratesi, Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps, Ann. Rheum. Dis, vol.73, pp.1414-1436, 2014.

P. Eggleton, L. Wang, J. Penhallow, N. Crawford, and K. A. Brown, Differences in oxidative response of subpopulations of neutrophils from healthy subjects and patients with rheumatoid arthritis, Ann. Rheum. Dis, vol.54, pp.916-939, 1995.

D. L. Pitrak, P. M. Bak, P. Demarais, R. M. Novak, and B. R. Andersen, Depressed neutrophil superoxide production in human immunodeficiency virus infection, J Infect Dis, vol.167, pp.1406-1410, 1993.

K. Raza, Synovial fluid leukocyte apoptosis is inhibited in patients with very early rheumatoid arthritis, Arthritis Res. Ther, 2006.

P. Weinmann, Delayed neutrophil apoptosis in very early rheumatoid arthritis patients is abrogated by methotrexate therapy, Clin. Exp. Rheumatol, 2007.

H. L. Wright, B. Chikura, R. C. Bucknall, R. J. Moots, and S. W. Edwards, Changes in expression of membrane TNF, NF-{kappa}B activation and neutrophil apoptosis during active and resolved inflammation, Ann. Rheum. Dis, vol.70, pp.537-580, 2011.

V. C. Kyttaris, Y. Juang, and G. C. Tsokos, Immune cells and cytokines in systemic lupus erythematosus: an update, Curr. Opin. Rheumatol, vol.17, pp.518-540, 2005.

L. Bennett, Interferon and Granulopoiesis Signatures in Systemic Lupus Erythematosus Blood, J. Exp. Med, 2003.

E. Villanueva, Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus

. Immunol, , 2011.

G. S. Garcia-romo, Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus, Sci. Transl. Med, 2011.

M. Yates and R. Watts, ANCA-associated vasculitis, Clin. Med. (Northfield. Il), vol.17, pp.60-64, 2017.

V. Witko-sarsat, S. Daniel, L. Noël, and L. Mouthon, Neutrophils and B lymphocytes in ANCA-associated vasculitis, APMIS, vol.117, pp.27-31, 2009.

R. J. Falk, R. S. Terrell, L. A. Charles, and J. C. Jennette, Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro, Proc. Natl. Acad. Sci. U. S. A, vol.87, pp.4115-4124, 1990.

R. J. Pepper, Leukocyte and serum S100A8/S100A9 expression reflects disease activity in ANCA-associated vasculitis and glomerulonephritis, Kidney Int, vol.83, pp.1150-1158, 2013.

K. Kessenbrock, Netting neutrophils in autoimmune small-vessel vasculitis, Nat. Med, vol.15, pp.623-628, 2009.

M. Yoshida, M. Sasaki, K. Sugisaki, Y. Yamaguchi, and M. Yamada, Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis, Clin. Kidney J, vol.6, pp.308-320, 2013.

D. Söderberg, Increased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to antineutrophil cytoplasmic antibodies during remission, Rheumatology (Oxford), vol.54, pp.2085-94, 2015.

A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, Cancer-related inflammation, Nature, vol.454, pp.436-444, 2008.

E. B. Eruslanov, Tumor-associated neutrophils stimulate T cell responses in earlystage human lung cancer, J. Clin. Invest, vol.124, pp.5466-5480, 2014.

M. Shen, Tumor-Associated Neutrophils as a New Prognostic Factor in Cancer: A Systematic Review and Meta-Analysis, PLoS One, vol.9, p.98259, 2014.

I. Mishalian, Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression, Cancer Immunol. Immunother, vol.62, pp.1745-1756, 2013.

S. B. Coffelt, IL-17-producing ?? T cells and neutrophils conspire to promote breast cancer metastasis, Nature, vol.522, pp.345-348, 2015.

Z. G. Fridlender, Polarization of Tumor-Associated Neutrophil Phenotype by TGF?: 'N1' versus 'N2' TAN, Cancer Cell, vol.16, pp.183-194, 2009.

K. L. Singel and B. H. Segal, Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal, Immunol. Rev, vol.273, pp.329-343, 2016.

H. Nozawa, C. Chiu, and D. Hanahan, Infiltrating neutrophils mediate the initial 129

, angiogenic switch in a mouse model of multistage carcinogenesis, Proc. Natl. Acad. Sci, vol.103, pp.12493-12498, 2006.

F. Veglia, M. Perego, and D. Gabrilovich, Myeloid-derived suppressor cells coming of age, Nat. Immunol, vol.19, pp.108-119, 2018.

Z. G. Fridlender, Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils, PLoS One, vol.7, p.31524, 2012.

C. Silvestre-roig, A. Hidalgo, and O. Soehnlein, Neutrophil heterogeneity: Implications for homeostasis and pathogenesis, Blood, vol.127, pp.2173-2181, 2016.

J. Y. Sagiv, Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in, Cancer. Cell Rep, vol.10, pp.562-573, 2015.

P. C. Rodriguez, Arginase I-Producing Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma Are a Subpopulation of Activated Granulocytes, Cancer Res, vol.69, pp.1553-1560, 2009.

, WHO | Global tuberculosis report, 2018.

K. O. Kisich, M. Higgins, G. Diamond, and L. Heifets, Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils, Infect. Immun, vol.70, pp.4591-4600, 2002.

A. Lin, K. Loré, and . Granulocytes, New members of the antigen-presenting cell family, Front. Immunol, vol.8, pp.1-8, 2017.

M. Alemán, Activated Neutrophils Undergo Apoptosis and Acquire a Dendritic Cell-Like Phenotype, Tuberculous Pleural Effusions, vol.192, pp.399-409, 2005.

I. V. Lyadova, Neutrophils in Tuberculosis: Heterogeneity Shapes the Way? Mediators Inflamm. 2017, pp.1-11, 2017.

J. V. Camp and C. B. Jonsson, A role for neutrophils in viral respiratory disease, Front. Immunol, vol.8, 2017.

I. E. Galani and E. Andreakos, Neutrophils in viral infections: Current concepts and caveats, J. Leukoc. Biol, vol.98, pp.1-8, 2015.

C. J. Thomas and K. Schroder, Pattern recognition receptor function in neutrophils, 2013.

N. Tamassia, Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-transfected human neutrophils, J. Immunol, vol.181, pp.6563-73, 2008.

R. Van-bruggen, Toll-like receptor responses in IRAK-4-deficient neutrophils, J. Innate Immun, vol.2, pp.280-287, 2010.

I. Sabroe, Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span, J. Immunol, vol.170, pp.5268-75, 2003.

M. Savard and J. Gosselin, Epstein-Barr virus immunossuppression of innate immunity mediated by phagocytes, Virus Res, vol.119, pp.134-145, 2006.

C. J. Roberge, B. Larochelle, M. Rola-pleszczynski, J. Gosselin, and . Epstein, Barr Virus Induces GM-CSF Synthesis by Monocytes: Effect on EBV-Induced IL-1 and IL-1 Receptor Antagonist Production in Neutrophils, vol.238, pp.344-352, 1997.

J. B. Guerreiro, Spontaneous neutrophil activation in HTLV-1 infected patients, Brazilian J. Infect. Dis, vol.9, pp.510-514, 2006.

K. M. Irvine, I. Ratnasekera, E. E. Powell, and D. A. Hume, Causes and Consequences of Innate Immune Dysfunction in Cirrhosis, Front. Immunol, vol.10, p.293, 2019.

S. Y. Choi, Hematological manifestations of human immunodeficiency virus infection and the effect of highly active anti-retroviral therapy on cytopenia, Korean J. Hematol, vol.46, pp.253-260, 2011.

A. M. Levine, Neutropenia in Human Immunodeficiency Virus Infection, Arch. Intern. Med, vol.166, p.405, 2006.

X. Shi, Neutropenia during HIV infection: Adverse consequences and remedies, Int. Rev. Immunol, vol.33, pp.511-536, 2014.

J. L. Spivak, B. S. Bender, and T. C. Quinn, Hematologic abnormalities in the acquired immune deficiency syndrome, Am. J. Med, vol.77, pp.224-232, 1984.

V. Calenda, P. Graber, J. F. Delamarter, and J. C. Chermann, Involvement of HIV nef protein in abnormal hematopoiesis in AIDS: in vitro study on bone marrow progenitor cells, Eur. J. Haematol, vol.52, pp.103-110, 1994.

S. Prost, Human and simian immunodeficiency viruses deregulate early hematopoiesis through a Nef/PPARgamma/STAT5 signaling pathway in macaques, J. Clin. Invest, vol.118, pp.1765-75, 2008.

C. D. Hillyer, CD34+ and CFU-GM progenitors are significantly decreased in SIVsmm9 infected rhesus macaques with minimal evidence of direct viral infection by polymerase chain reaction, Am. J. Hematol, vol.43, pp.274-282, 1993.

A. Marandin, Loss of primitive hematopoietic progenitors in patients with human immunodeficiency virus infection, Blood, vol.88, pp.4568-78, 1996.

H. Thiebot, Impact of bone marrow hematopoiesis failure on T-cell generation during pathogenic simian immunodeficiency virus infection in macaques, Blood, vol.105, pp.2403-2409, 2005.

A. Isgrò, Altered clonogenic capability and stromal cell function characterize bone marrow of HIV-infected subjects with low CD4+ T cell counts despite viral suppression during HAART, Clin. Infect. Dis, vol.46, pp.1902-1912, 2008.

A. Moses, Human immunodeficiency virus infection of bone marrow endothelium reduces induction of stromal hematopoietic growth factors, Blood, vol.87, pp.919-944, 1996.

M. C. Re, G. Zauli, G. Furlini, S. Ranieri, and M. La-placa, Progressive and selective impairment of IL-3 and IL-4 production by peripheral blood CD4+ T-lymphocytes during the course of HIV-1 infection, Viral Immunol, vol.5, pp.185-94, 1992.

M. Herold, U. Meise, V. Günther, H. Rössler, and R. Zangerle, Serum concentrations of circulating endogenous granulocyte-macrophage colony-stimulating factor in HIV-1-seropositive injecting drug users, Presse Med, vol.23, pp.1854-1862, 1994.

J. A. Savige, L. Chang, S. Horn, and S. M. Crowe, Anti-nuclear, anti-neutrophil cytoplasmic and anti-glomerular basement membrane antibodies in HIV-infected individuals, Autoimmunity, vol.18, pp.205-216, 1994.

D. B. Rubinstein, G. K. Farrington, C. O&apos;donnell, K. R. Hartman, and D. G. Wright, Autoantibodies to leukocyte alphaMbeta2 integrin glycoproteins in HIV infection, Clin. Immunol, vol.90, pp.352-361, 1999.

C. Elbim, Increased neutrophil apoptosis in chronically SIV-infected macaques, Retrovirology, vol.6, p.29, 2009.

L. Zhang, Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor, Science, vol.298, pp.995-1000, 2002.

C. E. Mackewicz, alpha-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors, AIDS, vol.17, pp.23-32, 2003.

S. J. Klebanoff and R. W. Coombs, Viricidal effect of polymorphonuclear leukocytes on human immunodeficiency virus-1. Role of the myeloperoxidase system, J. Clin. Invest, vol.89, pp.2014-2021, 1992.

G. C. Baldwin, N. D. Fuller, R. L. Roberts, D. D. Ho, and D. W. Golde, Granulocyte-and granulocyte-macrophage colony-stimulating factors enhance neutrophil cytotoxicity toward HIV-infected cells, Blood, vol.74, pp.1673-1680, 1989.

A. Smalls-mantey, M. Connors, and Q. J. Sattentau, Comparative Efficiency of HIV-1-Infected T Cell Killing by NK Cells, Monocytes and Neutrophils, PLoS One, vol.8, p.74858, 2013.

M. J. Worley, Neutrophils mediate HIV-specific antibody-dependent phagocytosis and ADCC, J. Immunol. Methods, vol.457, pp.41-52, 2018.

M. E. Ackerman, Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control, PLOS Pathog, vol.12, p.1005315, 2016.

M. Sips, Fc receptor-mediated phagocytosis in tissues as a potent mechanism for preventive and therapeutic HIV vaccine strategies, Mucosal Immunol, vol.9, pp.1584-1595, 2016.

T. Saitoh, Neutrophil Extracellular Traps Mediate a Host Defense Response to Human Immunodeficiency Virus-1, Cell Host Microbe, vol.12, pp.109-116, 2012.

R. Sivanandham, Neutrophil extracellular trap production contributes to pathogenesis in SIV-infected nonhuman primates, J. Clin. Invest, vol.128, pp.5178-5183, 2018.

V. Ramsuran, Duffy-Null-Associated Low Neutrophil Counts Influence HIV-1 Susceptibility in High-Risk South African Black Women, Clin. Infect. Dis, vol.52, p.132, 2011.

P. Levinson, Levels of innate immune factors in genital fluids: association of alpha defensins and LL-37 with genital infections and increased HIV acquisition, AIDS, vol.23, pp.309-326, 2009.

L. Masson, Genital Inflammation and the Risk of HIV Acquisition in Women, Clin. Infect. Dis, vol.61, pp.260-269, 2015.

K. B. Arnold, Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins and an influx of HIV-susceptible target cells, Mucosal Immunol, vol.9, pp.194-205, 2016.

J. L. Prodger, Immune correlates of HIV exposure without infection in foreskins of men from Rakai, Uganda. Mucosal Immunol, vol.7, pp.634-644, 2014.

J. C. Hernandez, D. M. Giraldo, S. Paul, and S. Urcuqui-inchima, Involvement of Neutrophil Hyporesponse and the Role of Toll-Like Receptors in Human Immunodeficiency Virus 1 Protection, PLoS One, vol.10, p.119844, 2015.

C. Elbim, Polymorphonuclear neutrophils from human immunodeficiency virusinfected patients show enhanced activation, diminished fMLP-induced L-selectin shedding, and an impaired oxidative burst after cytokine priming, Blood, vol.84, pp.2759-66, 1994.

E. Roilides, Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reversal after in vitro exposure to granulocyte-macrophage colony-stimulating factor, J. Pediatr, vol.117, pp.531-571, 1990.

C. Michailidis, Impaired phagocytosis among patients infected by the human immunodeficiency virus: Implication for a role of highly active anti-retroviral therapy, Clin. Exp. Immunol, vol.167, pp.499-504, 2012.

R. Schaumann, J. Krosing, and S. P. , Phagocytosis of Escherichia coli and Staphylococcus aureus by neutrophils of human immunodeficiency virus-infected patients. -PubMed -NCBI, Eur J Med Res, 1998.

C. M. Mastroianni, Improvement in neutrophil and monocyte function during highly active antiretroviral treatment of HIV-1-infected patients, AIDS, vol.13, pp.883-90, 1999.

D. L. Pitrak, P. M. Bak, P. Demarais, R. M. Novak, and B. R. Andersen, Depressed neutrophil superoxide production in human immunodeficiency virus infection, J. Infect. Dis, vol.167, pp.1406-1416, 1993.

S. Salmen, D. Montilla, M. London, D. Velázquez, and L. Berrueta, Analysis of p22-phox and p47-phox subcellular localization and distribution in neutrophils from human immunodeficiency virus (HIV) infected patients, Rev. Invest. Clin, vol.64, pp.40-51

T. Cloke, M. Munder, G. Taylor, I. Müller, and P. Kropf, Characterization of a Novel Population of Low-Density Granulocytes

, Infection. PLoS One, vol.7, pp.1-7, 2012.

N. L. Bowers, Immune Suppression by Neutrophils in HIV-1 Infection: Role of PD-L1/PD-1 Pathway, PLoS Pathog, vol.10, p.1003993, 2014.

Z. Zhang, Myeloid-Derived Suppressor Cells Associated With Disease Progression in Primary HIV Infection, JAIDS J. Acquir. Immune Defic. Syndr, vol.76, pp.200-208, 2017.

N. Tumino, Granulocytic Myeloid-Derived Suppressor Cells Increased in Early Phases of Primary HIV Infection Depending on TRAIL Plasma Level, JAIDS J. Acquir. Immune Defic. Syndr, vol.74, pp.575-582, 2017.

Y. Sui, Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques, PLoS Pathog, vol.13, p.1006395, 2017.

E. Hacbarth and A. Kajdacsy-balla, Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever, Arthritis Rheum, vol.29, pp.1334-1376, 1986.

M. F. Denny, A Distinct Subset of Proinflammatory Neutrophils Isolated from Patients with Systemic Lupus Erythematosus Induces Vascular Damage and Synthesizes Type I IFNs, J. Immunol, vol.184, pp.3284-3297, 2010.

H. L. Wright, R. J. Moots, and S. W. Edwards, The multifactorial role of neutrophils in rheumatoid arthritis, Nat. Rev. Rheumatol, vol.10, pp.593-601, 2014.

O. Marini, Mature CD10 + and immature CD10 -neutrophils present in G-CSFtreated donors display opposite effects on T cells, vol.129, pp.1343-1357, 2017.

O. Wéra, The Dual Role of Neutrophils in Inflammatory Bowel Diseases, J. Clin. Med, vol.5, p.118, 2016.

A. Mannioui, Dynamics of viral replication in blood and lymphoid tissues during SIVmac251 infection of macaques, Retrovirology, vol.6, p.106, 2009.

A. Mannioui, Dynamics of viral replication in blood and lymphoid tissues during SIVmac251 infection of macaques, Retrovirology, vol.6, p.106, 2009.

A. Aarnink, Influence of the MHC genotype on the progression of experimental SIV infection in the Mauritian cynomolgus macaque, Immunogenetics, vol.63, pp.267-274, 2011.

E. A. Dietrich, Variable prevalence and functional diversity of the antiretroviral restriction factor TRIMCyp in Macaca fascicularis, J. Virol, vol.85, pp.9956-63, 2011.

M. D. Daniel, Isolation of T-cell tropic HTLV-III-like retrovirus from macaques, Science, vol.228, pp.1201-1205, 1985.

K. G. Mansfield, N. W. Lerch, M. B. Gardner, and A. A. Lackner, Origins of simian immunodeficiency virus infection in macaques at the New England Regional Primate Research Center, J. Med. Primatol, vol.24, pp.116-138, 1995.

N. E. Riddick, A novel CCR5 mutation common in sooty mangabeys reveals SIVsmm infection of CCR5-null natural hosts and efficient alternative coreceptor use in vivo

, PLoS Pathog, vol.6, p.1001064, 2010.

O. Bourry, Effect of a short-term HAART on SIV load in macaque tissues is dependent on time of initiation and antiviral diffusion, Retrovirology, vol.7, p.78, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00668445

K. Benlhassan-chahour, Kinetics of lymphocyte proliferation during primary immune response in macaques infected with pathogenic simian immunodeficiency virus SIVmac251: preliminary report of the effect of early antiviral therapy, J. Virol, vol.77, pp.12479-93, 2003.

S. C. Bendall, G. P. Nolan, M. Roederer, and P. K. Chattopadhyay, A deep profiler's guide to cytometry, Trends Immunol, vol.33, pp.323-332, 2012.

D. R. Bandura, Mass Cytometry: A Novel Technique for Real-Time Single Cell Multi-Target Immunoassay Based on Inductively Coupled Plasma Time of Flight Mass Spectrometry, vol.81, pp.6813-6822, 2009.

O. Ornatsky, Highly multiparametric analysis by mass cytometry, J. Immunol. Methods, vol.361, pp.1-20, 2010.

G. K. Behbehani, Applications of Mass Cytometry in Clinical Medicine, Clin. Lab. Med, vol.37, pp.945-964, 2017.

C. Chester and H. T. Maecker, Algorithmic Tools for Mining High-Dimensional Cytometry Data, J. Immunol, vol.195, pp.773-782, 2015.

P. Qiu, Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE, Nat. Biotechnol, vol.29, pp.886-891, 2011.

G. Gautreau, Systems biology SPADEVizR : an R package for visualization , analysis and integration of SPADE results, vol.33, pp.779-781, 2017.

J. Pillay, A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1, J. Clin. Invest, vol.122, pp.327-336, 2012.

C. Silvestre-roig, Z. G. Fridlender, M. Glogauer, and P. Scapini, Neutrophil Diversity in Health and Disease, Trends Immunol, 2019.

M. Younas, C. Psomas, J. Reynes, and P. Corbeau, Immune activation in the course of HIV-1 infection: Causes, phenotypes and persistence under therapy, HIV Med, pp.1-17, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01262743

N. Thieblemont, H. L. Wright, S. W. Edwards, and V. Witko-sarsat, Human neutrophils in auto-immunity, Semin. Immunol, vol.28, pp.159-173, 2016.

D. M. Lowe, Effect of Antiretroviral Therapy on HIV-mediated Impairment of the Neutrophil Antimycobacterial Response, Ann. Am. Thorac. Soc, vol.12, pp.201507-463, 2015.

S. G. Deeks, Towards an HIV cure: a global scientific strategy, Nat. Rev. Immunol, vol.12, pp.607-614, 2012.

G. Herbein, A. Coaquette, D. Perez-bercoff, and G. Pancino, Macrophage activation and HIV infection: can the Trojan horse turn into a fortress?, Curr. Mol. Med, vol.2, pp.723-761, 2002.

T. H. Burdo, Soluble CD163 Made by Monocyte/Macrophages Is a Novel Marker of HIV Activity in Early and Chronic Infection Prior to and After Anti-retroviral Therapy, J. Infect. Dis, vol.204, pp.154-163, 2011.

M. Almeida, M. Cordero, J. Almeida, and A. Orfao, Different subsets of peripheral blood dendritic cells show distinct phenotypic and functional abnormalities in HIV-1 infection, AIDS, vol.19, pp.261-71, 2005.

H. International and . Study, The major genetic determinants of HIV-1 control affect HLA class I peptide presentation, Science, vol.330, pp.1551-1558, 2010.

I. Karlsson, Dynamics of T-cell responses and memory T cells during primary simian immunodeficiency virus infection in cynomolgus macaques, J. Virol, vol.81, pp.13456-68, 2007.

G. Q. Del-prete, Short Communication: Comparative Evaluation of Coformulated Injectable Combination Antiretroviral Therapy Regimens in Simian Immunodeficiency Virus-Infected Rhesus Macaques, AIDS Res. Hum. Retroviruses, vol.32, pp.163-168, 2016.

J. Lemaitre, A. Cosma, D. Desjardins, O. Lambotte, and R. Le-grand, Mass Cytometry Reveals the Immaturity of Circulating Neutrophils during SIV Infection, J. Innate Immun, pp.1-12, 2019.

I. Miralda, S. M. Uriarte, and K. R. Mcleish, Multiple Phenotypic Changes Define Neutrophil Priming, vol.7, pp.1-13, 2017.

A. Ivetic, A head-to-tail view of L-selectin and its impact on neutrophil behaviour, Cell Tissue Res, vol.371, pp.437-453, 2018.

T. Tak, Regular Article Human CD62L dim neutrophils identi fi ed as a separate subset by proteome pro fi ling and in vivo pulse-chase labeling, vol.129, pp.3476-3486, 2019.

J. Pillay, Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia, J. Leukoc. Biol, vol.88, pp.211-220, 2010.

M. G. Manz and S. Boettcher, Emergency granulopoiesis, Nat. Rev. Immunol, vol.14, pp.302-314, 2014.

B. Cortjens, Neutrophil subset responses in infants with severe viral respiratory infection, Clin. Immunol, vol.176, pp.100-106, 2017.

H. Thiebot, Impact of bone marrow hematopoiesis failure on T-cell generation during pathogenic simian immunodeficiency virus infection in macaques, Blood, vol.105, pp.2403-2409, 2005.

S. Prost, Human and simian immunodeficiency viruses deregulate early hematopoiesis through a Nef/PPAR?/STAT5 signaling pathway in macaques, J. Clin. Invest, vol.118, pp.1765-75, 2008.

C. Michailidis, Impaired phagocytosis among patients infected by the human immunodeficiency virus: implication for a role of highly active anti-retroviral therapy, Clin. Exp. Immunol, vol.167, pp.499-504, 2012.

M. Younas, C. Psomas, J. Reynes, and P. Corbeau, Immune activation in the course of HIV-1 infection: Causes, phenotypes and persistence under therapy, HIV Med, vol.17, pp.89-105, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01262743

G. X. Zhou and Z. J. Liu, Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease, J. Dig. Dis, vol.18, pp.495-503, 2017.

J. F. Deniset, B. G. Surewaard, W. Lee, and P. Kubes, Splenic Ly6Ghigh mature and Ly6Gint immature neutrophils contribute to eradication of S. pneumoniae, J. Exp. Med, vol.214, pp.1333-1350, 2017.

T. Skirecki, M. Mikaszewska-sokolewicz, G. Hoser, and U. Zieli?ska-borkowska, The Early Expression of HLA-DR and CD64 Myeloid Markers Is Specifically Compartmentalized in the Blood and Lungs of Patients with Septic Shock, Mediators Inflamm, vol.2016, pp.1-8, 2016.

M. Witvrouw, Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis, Antivir. Ther, vol.9, pp.57-65, 2004.

J. Elhmouzi-younes, In depth comparative phenotyping of blood innate myeloid leukocytes from healthy humans and macaques using mass cytometry, Cytom. Part A, vol.91, pp.969-982, 2017.

D. Masopust, C. P. Sivula, and S. C. Jameson, Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology, J. Immunol, vol.199, pp.383-388, 2017.

A. P. Bolliger and M. Fontaine, Cytological examination and cellular composition of bone marrow in healthy, adult, cynomolgus monkeys (Macaca fascicularis), Comp. Haematol. Int, vol.8, pp.183-190, 1998.

K. A. Rogers, F. Scinicariello, and R. Attanasio, IgG Fc receptor III homologues in nonhuman primate species: genetic characterization and ligand interactions, J. Immunol, vol.177, pp.3848-56, 2006.

G. Drifte, I. Dunn-siegrist, P. Tissières, and J. Pugin, Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome, Crit. Care Med, vol.41, pp.820-832, 2013.

O. Pos, A. Stevenhagen, P. L. Meenhorst, F. P. Kroon, and R. Van-furth, Impaired phagocytosis of Staphylococcus aureus by granulocytes and monocytes of AIDS patients, Clin. Exp. Immunol, vol.88, pp.23-28, 1992.

A. Saez-cirion, Post-Treatment HIV-1 Controllers with a Long-Term Virological Remission after the Interruption of Early Initiated Antiretroviral Therapy ANRS VISCONTI Study, PLoS Pathog, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01420534

R. Ostuni, G. Natoli, M. A. Cassatella, and N. Tamassia, Epigenetic regulation of neutrophil development and function, Semin. Immunol, vol.28, pp.83-93, 2016.

J. Pellico, In vivo imaging of lung inflammation with neutrophil-specific 68Ga nanoradiotracer, Sci. Rep, vol.7, p.13242, 2017.

J. S. Knight, Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis, Circ. Res, vol.114, pp.947-56, 2014.

C. Lood, Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease, Nat. Med, vol.22, pp.146-53, 2016.

A. G. Rossi, Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis, Nat. Med, vol.12, pp.1056-1064, 2006.

, Forum of International Respiratory Societies The Global Impact of Respiratory Disease, 2012.

K. R. Short, E. J. Kroeze, R. A. Fouchier, and T. Kuiken, Pathogenesis of influenzainduced acute respiratory distress syndrome, Lancet Infect. Dis, vol.14, pp.57-69, 2014.

K. Barton, A. Winckelmann, and S. Palmer, HIV-1 Reservoirs During Suppressive Therapy, Trends in Microbiology, vol.24, pp.345-355, 2016.

J. K. Wong and S. A. Yukl, Tissue reservoirs of HIV, Current Opinion in HIV and AIDS, vol.11, pp.362-370, 2016.

C. Lagathu, Basic science and pathogenesis of ageing with HIV, AIDS, vol.31, pp.105-119, 2017.

A. C. Justice, Can Biomarkers Advance HIV Research and Care in the Antiretroviral Therapy Era?, The Journal of Infectious Diseases, vol.217, pp.521-528, 2018.

R. Serrão, Non-AIDS-related comorbidities in people living with HIV-1 aged 50 years and older: The AGING POSITIVE study, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, vol.79, pp.94-100, 2019.

T. J. Cory, T. W. Schacker, M. Stevenson, and C. Fletcher, Overcoming pharmacologic sanctuaries, Curr Opin HIV AIDS, vol.8, pp.190-195, 2013.

G. Marchetti, Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+ cell count, AIDS, vol.25, pp.1385-1394, 2011.

N. G. Sandler, Plasma Levels of Soluble CD14 Independently Predict Mortality in HIV Infection, The Journal of Infectious Diseases, vol.203, pp.780-790, 2011.

T. Kelesidis, M. A. Kendall, O. O. Yang, H. N. Hodis, and J. S. Currier, Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection, The Journal of infectious diseases, vol.206, pp.1558-67, 2012.

A. Boulougoura and I. Sereti, HIV infection and immune activation: the role of coinfections, Current opinion in HIV and AIDS, vol.11, pp.191-200, 2016.

M. Younas, C. Psomas, J. Reynes, and P. Corbeau, Immune activation in the course of HIV-1 infection: Causes, phenotypes and persistence under therapy, HIV Medicine, vol.17, pp.89-105, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01262743

K. A. So-armah, Do biomarkers of inflammation, monocyte activation, and altered coagulation explain excess mortality between hiv infected and uninfected people, Journal of Acquired Immune Deficiency Syndromes, vol.72, pp.206-213, 2016.

G. Herbein, A. Coaquette, D. Perez-bercoff, and G. Pancino, Macrophage activation and HIV infection: can the Trojan horse turn into a fortress? Current molecular medicine 2, pp.723-761, 2002.

T. Hensley-mcbain and N. R. Klatt, The Dual Role of Neutrophils in HIV Infection, Current HIV/AIDS Reports, vol.15, pp.1-10, 2018.

A. Hidalgo, E. R. Chilvers, C. Summers, and L. Koenderman, The Neutrophil Life Cycle, Trends in immunology, vol.40, pp.584-597, 2019.

C. Silvestre-roig, Z. G. Fridlender, M. Glogauer, and P. Scapini, Neutrophil Diversity in Health and Disease, Trends in Immunology, vol.40, pp.565-583, 2019.

N. Borregaard, Neutrophils, from Marrow to Microbes, Immunity, vol.33, pp.657-670, 2010.

N. Thieblemont, H. L. Wright, S. W. Edwards, and V. Witko-sarsat, Human neutrophils in autoimmunity, Seminars in Immunology, vol.28, pp.159-173, 2016.

O. Marini, Mature CD10+ and immature CD10-neutrophils present in G-CSF-treated donors display opposite effects on T cells, Blood, vol.129, pp.1343-1356, 2017.

T. Hensley-mcbain, Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection, PLoS pathogens, vol.15, p.1007672, 2019.

N. L. Bowers, Immune Suppression by Neutrophils in HIV-1 Infection: Role of PD-L1/PD-1 Pathway, PLoS Pathogens, vol.10, p.1003993, 2014.

T. Hatziioannou and D. T. Evans, Animal models for HIV/AIDS research, Nature Reviews Microbiology, vol.10, pp.852-867, 2012.

A. Mannioui, Dynamics of viral replication in blood and lymphoid tissues during SIVmac251 infection of macaques, Retrovirology, vol.6, p.106, 2009.

O. Bourry, Effect of a short-term HAART on SIV load in macaque tissues is dependent on time of initiation and antiviral diffusion, Retrovirology, vol.7, p.78, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00668445

J. Elhmouzi-younes, In depth comparative phenotyping of blood innate myeloid leukocytes from healthy humans and macaques using mass cytometry, Cytometry Part A, vol.91, pp.969-982, 2017.

J. Lemaitre, A. Cosma, D. Desjardins, O. Lambotte, and R. Le-grand, Mass Cytometry Reveals the Immaturity of Circulating Neutrophils during SIV Infection, Journal of Innate Immunity 1, vol.12, 2019.

M. Evrard, Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions, Immunity, vol.48, pp.364-379, 2018.

J. Pellico, In vivo imaging of lung inflammation with neutrophil-specific 68Ga nanoradiotracer, Scientific Reports, vol.7, p.13242, 2017.

A. Liovat, B. Jacquelin, M. Ploquin, F. Barre-sinoussi, and M. Muller-trutwin, African Non Human Primates Infected by SIV -Why Dont they Get Sick?, Lessons from Studies on the Early Phase of Non-Pathogenic SIV Infection, vol.7, pp.39-50, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01962242

D. M. Lowe, P. S. Redford, R. J. Wilkinson, A. O&apos;garra, and A. R. Martineau, Neutrophils in tuberculosis: Friend or foe?, Trends in Immunology, vol.33, pp.14-25, 2012.

E. H. Aitken, A. Alemu, and S. J. Rogerson, Neutrophils and Malaria, Frontiers in Immunology, vol.9, p.3005, 2018.

J. L. Ho, Neutrophils from human immunodeficiency virus (HIV)-seronegative donors induce HIV replication from HIV-infected patients' mononuclear cells and cell lines: an in vitro model of HIV transmission facilitated by Chlamydia trachomatis, The Journal of experimental medicine, vol.181, pp.1493-505, 1995.