Skip to Main content Skip to Navigation
Theses

Rôle de la phosphatase PRL-3/PTP4A3 dans le processus métastatique du mélanome uvéal

Abstract : Uveal Melanoma (UM) is a rare tumor that affects around 500 French people each year. Despite a successful treatment of the primary tumor, 50% of patients develop metastasis primarily to the liver in the years following diagnosis. Currently, systemic adjuvant therapy has been unsuccessful for effective treatment. As such, identifying genes involved in both prognosis and metastasis is important for a better understanding of this disease and in turn for designing better treatment strategies. Our group previously identified that overexpression of the gene encoding PRL-3/PTP4A3, a protein tyrosine phosphatase, is highly correlated with metastatic tumor progression and predicts poor prognosis in patients with UM. It is also known that PRL3 is implicated in the metastatic process of various cancers. Overexpression of PRL-3, but not the inactive mutant of PRL3 (C104S), in an ocular melanoma cell line significantly increased cell migration in vitro and invasion in vivo, suggesting a direct role of PRL3 in the metastatic process in UM. We also showed that FTI-277, a farnesyltransferase inhibitor that prevents PRL-3 anchorage to the plasma membrane, abolishes PRL-3-induced UM cell migration on collagen I, suggesting that PRL-3 anchorage is important for cell migration. The aim of my thesis was to identify intracellular, and in particular, membrane substrates that could play a role in UM metastasis. My results show that PRL3 overexpression in UM cells prevents both the spreading of cells to the extracellular matrix (ECM), and the formation of large focal adhesions structures (FA) involving integrin β1 (Itg b1).These biological effects are PRL-3-activity and anchorage dependent. We show that PRL-3 interacts with and dephosphorylates Itg b1 on cytoplasmic threonine 788 and 789, residues that are known to be involved in cell adhesion. Our results identify PRL-3 as a new regulator of cell adhesion structures to the ECM via the regulation of Itg b1 and most likely the focal adhesion kinase (FAK). In FA, we observed that PRL-3 specifically regulates the aggregation of Itg b1 but does not affect integrin β3, so we suppose that this regulation could be specific to certain integrins. In UM cells, the PRL-3-induced cell migration could also be explained by membrane accumulation of the metalloprotease MT1-MMP/MMP14 in the presence of PRL3. This transmembrane proteinase is responsible for ECM degradation and can be found in FA. Moreover, we demonstrated that the vesicular trafficking of MT1-MMP is accelerated in the presence of active PRL-3 but not in presence of the inactive mutant of PRL-3 (C104S). During the last year of my thesis, another aspect of my PhD project was to study the biological effect of pentamidine, an antiparasitic which is known to inhibit the phosphatase activity of PRLs in vitro. In vivo, we show that pentamidine treatment induces a decrease of tumor growth in a UM patient-derived xerograph model. Overall, the results of my thesis suggest that PRL-3 plays an important role in UM metastasis.
Complete list of metadatas

Cited literature [382 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02955511
Contributor : Abes Star :  Contact
Submitted on : Friday, October 2, 2020 - 1:05:48 AM
Last modification on : Friday, October 2, 2020 - 3:31:49 AM

File

75251_FOY_2017_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02955511, version 1

Collections

Citation

Malika Foy. Rôle de la phosphatase PRL-3/PTP4A3 dans le processus métastatique du mélanome uvéal. Biologie cellulaire. Université Paris Saclay (COmUE), 2017. Français. ⟨NNT : 2017SACLS243⟩. ⟨tel-02955511⟩

Share

Metrics

Record views

63

Files downloads

10