M. L. Depamphilis and S. D. Bell, Genome Duplication, Garland Science, 2011.

O. Hyrien, A. Rappailles, G. Guilbaud, A. Baker, C. L. Chen et al., J. Mol. Biol, p.4673, 2013.

O. Hyrien, J. Cell Biol, p.147, 0208.

J. M. Dewar and J. C. Walter, Nat. Rev. Mol. Cell Biol, vol.18, p.507, 2017.

S. Munoz and J. Mendez, , vol.126, p.1, 2017.

N. Petryk, M. Kahli, Y. D'aubenton-carafa, Y. Jaszczyszyn, Y. Shen et al., Nat. Commun, vol.7, p.10208, 2016.

J. Herrick, P. Stanislawski, O. Hyrien, and A. Bensimon, J. Mol. Biol, vol.300, p.1133, 2000.

D. A. Jackson and A. Pombo, J. Cell Biol, p.1285, 1998.

P. Pasero, A. Bensimon, E. Schwob, and G. Dev, , vol.16, p.2479, 2002.

P. Norio and C. L. Schildkraut, Science, vol.294, p.2361, 2001.

R. Lebofsky, R. Heilig, M. Sonnleitner, J. Weissenbach, and A. Bensimon, Mol. Biol. Cell, vol.17, p.5337, 2006.

A. Demczuk, M. G. Gauthier, I. Veras, S. Kosiyatrakul, C. L. Schildkraut et al., PLoS Biol, vol.10, p.1001360, 2012.

F. Carli, V. Gaggioli, G. A. Millot, and O. Hyrien, Int. J. Dev. Biol, vol.60, p.297, 2016.

J. Lacroix, S. Pelofy, C. Blatche, M. J. Pillaire, S. Huet et al., Small, vol.12, p.5963, 2016.

E. T. Lam, A. Hastie, C. Lin, D. Ehrlich, S. K. Das et al., Nat. Biotechnol, vol.30, p.771, 2012.

H. Cao, A. R. Hastie, D. Cao, E. T. Lam, Y. Sun et al., , vol.3, p.34, 2014.

A. R. Hastie, L. Dong, A. Smith, J. Finklestein, E. T. Lam et al., PLoS One, issue.8, p.55864, 2013.

O. Hyrien, K. Marheineke, and A. Goldar, BioEssays, vol.25, p.116, 2003.

D. Kong, T. R. Coleman, and M. L. Depamphilis, EMBO J, vol.22, p.3441, 2003.

S. Stanojcic, J. M. Lemaitre, K. Brodolin, E. Danis, and M. Mechali, Mol. Cell. Biol, vol.28, p.5265, 2008.

J. J. Blow and R. A. Laskey, Int. J. Dev. Biol, vol.60, p.201, 2016.

K. Struhl and E. Segal, Nat. Struct. Mol. Biol, 2013.

M. L. Eaton, K. Galani, S. Kang, S. P. Bell, and D. M. Macalpine, Genes Dev, p.748, 2010.

K. J. Harvey and J. Newport, Mol. Cell. Biol, vol.23, p.6769, 2003.

I. Lucas, M. Chevrier-miller, J. M. Sogo, and O. Hyrien, J. Mol. Biol, vol.296, 2000.

A. Maya-mendoza, P. Olivares-chauvet, F. Kohlmeier, and D. A. Jackson, Methods, vol.57, p.140, 2012.

W. Xiang, M. J. Roberti, J. K. Heriche, S. Huet, S. Alexander et al., J. Cell Biol, p.217, 1973.

T. Krude, Cell Cycle, 2006.

K. Marheineke, O. Hyrien, and T. Krude, Nucleic Acids Res, p.6931, 2005.

A. R. Langley, S. Graf, J. C. Smith, and T. Krude, Nucleic Acids Res, p.10230, 2016.

D. M. Prescott and P. L. Kuempel, Proc. Natl. Acad. Sci, p.2842, 1972.

J. A. Huberman and A. Tsai, J. Mol. Biol, vol.75, p.5, 1973.

H. Yardimci, A. B. Loveland, S. Habuchi, A. M. Van-oijen, and J. C. Walter, Mol. Cell, p.834, 2010.

. .. Bulle-de-réplication,

, Comparaison entre les méthodes en population et en molécules unique 21

, Peignage moléculaire (OMAR) vs. technologie des nanocanaux, p.24

. .. Le-cycle-cellulaire,

A. .. De-l'adn-d'e.coli, , p.30

.. .. Le-modèle-du-réplicon,

, Schéma présentant des approches populationnelles pour l'analyse de la

. Répli-seq, une technique d'analyse du programme temporel de la ré

, Directionnalité des fourches de réplication et programme temporel d'activation des origines de réplication

. .. Principe-du-peignage-moléculaire, , p.52

O. Omar and D. .. Mapping-of-replicating, , p.57

, Des images brutes à l'analyse des variants structuraux, p.66

®. .. Pipeline-d'analyse-bionano-genomics, , p.67

.. .. Approche-expérimentale,

.. .. Puce-du-système-irys,

, Organisation des images prises avec le système Irys, p.70

, Fichiers de sortie des deux logiciels propriétaires de Bionano Genomics ® : Autodetect et RefAligner

, Comparaison des détections réalisées par les différentes versions d'Autodetect

, Vérification des détections par Autodetect des molécules d'ADN et de leur code-barres

, Distribution des différences entre XStart et Xend des molécules

, 78 3.11 Distribution des longueurs de l'ensemble des molécules, p.79

. .. , Aberration chromatique et moyen de correction, p.80

. .. Décalage, 81 3.14 Variations de l'intensité moyenne des images médianes par cycle et par canal de couleur et quantification du nombre de molécules par cycle, p.82

, Ratio entre l'intensité moyenne des images médianes du signal YOYO-1 et le nombre de molécules par cycle

, Correction de l'inhomogénéité d'illumination pour les trois canaux de couleur

. .. Matrice-de-transformation-affine, , vol.87

, Post-processing des canaux bleu (YOYO-1) et rouge (signal réplicatif, p.89

. .. , Détection des maxima locaux (YOYO-1 et signal réplicatif), p.90

. .. , Répartition des molécules d'ADN suivant les cycles, p.91

, Paramètres de la matrice de transformation affine pour le signal réplicatif 93

.. .. Recalage-d'image,

. Cartographie and . .. Le-principe, , p.95

, Visualisation d'un profil d'intensité d'un fragment d'ADN répliquée en molécule unique

, Visualisation des profils d'intensité des molécules d'ADN répliquées

, Pipeline bioinformatique pour l'analyse de la réplication de l'ADN via le système Irys

. Contenu and . .. De-?, , p.99

. .. , Estimation de la Fonction d'Étalement du Point (FEP), p.101

. .. , Exemples de profils d'intensité du signal réplicatif, p.102

, Schéma explicatif du processus d'optimisation pour la détection automatique des segments répliqués

, Détermination des segments répliqués sur un signal synthétique observé 105

, Détermination des segments répliqués sur un signal synthétique observé complexe

, Détermination des segments répliqués sur un signal original observé issu d'une molécule faiblement répliquée

. .. Orientations, , vol.112

, Distribution des moyennes des valeurs d'intensité des molécules d'ADN et détermination de la valeur de seuillage par la méthode d'Otsu, p.124

. .. , Profiles d'intensité moyens des 2 sous-populations, p.125

&. Courbe and . Elbow, , p.127

. .. Résultat-du-partitionnement,

. .. Proportions-de-jonctions-récupérées, , p.130

, Profils moyen d'intensité pour les différents types de jonctions, p.131

, Comparaison des observations faites sur la réplication de l'ADN de ? par peignage moléculaire et nanocanaux

, Analyse des données générées sur le génome humain, p.135

, Analyse du doublement de fluorescence du YOYO-1, échantillon Xénope139

, Analyse populationnelle des chromosomes I et II de la levure S. cerevisiae141

. .. , Aberrations observées sur les données de levure, p.142

, Cartographie de la réplication de l'ADN avec le système Saphyr, p.149

. Exemple-d'image and . .. Saphyr, , p.151

. .. Principe-du-séquençage-nanopore, , p.153

, Post-processing des canaux bleu (YOYO-1) et vert (code-barres), p.159

, Exemples de profils d'intensité pour les données de S. cerevisiae, p.160

C. Alkan, S. Sajjadian, and E. E. Eichler, « Limitations of next-generation genome sequence assembly, Nature Methods 8.1, pp.61-65, 2011.

L. Bell and B. Byers, « Separation of branched from linear DNA by twodimensional gel electrophoresis, Analytical Biochemistry, vol.130, pp.527-535, 1983.

S. P. Bell, R. Kobayashi, and B. Stillman, « Yeast Origin Recognition Complex Functions in Transcription Silencing Replication Sequence comparison, Science 262, vol.5141, pp.1844-1849, 2014.

A. Bensimon, « Alignment and Sensitive Detection of DNA by a moving interface, Science 265, vol.19, pp.2096-2098, 1994.

D. Bensimon, « Stretching DNA with a receding meniscus : Experiments and models, Physical Review Letters, vol.74, pp.4754-4757, 1995.

R. Berezney, D. Dubey, and J. Huberman, « Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci, Chromosoma 108, vol.8, pp.471-484, 2000.

E. Besnard, « Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs, Nature Structural and Molecular Biology, vol.19, p.15459993, 2012.

,

J. Blow, A. Julian, and . Dutta, « Preventing re-replication of chromosomal DNA, Nature Reviews Molecular Cell Biology, vol.6, pp.476-486, 2005.

J. Blow, R. A. Julian, and . Laskey, « Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs, Cell 47, vol.4, pp.90622-90629, 1986.

. Blow and . Julian, « Replication origins in Xenopus egg extract are 5-15 kilobases apart and are activated in clusters that fire at different times, Journal of Cell Biology, vol.152, pp.15-25, 2001.

A. B. Blumenthal, J. Henry, D. S. Kriegstein, and . Hogness, « Chromosomes Drosophila melanogaster The Units of DNA Replication, Cold Spring Harb Symp Quant Biol, 1974.

B. J. Brewer and . Walton-l-fangman, « The localization of replication origins on ARS plasmids in S. cerevisiae, Cell 51, vol.3, pp.463-471, 1987.

W. C. Burhans, « Identification of an origin of bidirectional DNA replication in mammalian chromosomes, Cell 62, vol.5, pp.955-965, 1990.

D. R. Burton, « Broad and potent neutralizing antibodies from an african donor reveal a new HIV-1 vaccine target, Science 326, vol.5950, pp.285-289, 2009.

J. Cairns, « The bacterial chromosome and its manner of replication as seen by autoradiography, Journal of Molecular Biology, vol.6, issue.63, pp.80070-80074, 1963.

, « The Chromosome of Escherichia coli, Cold Spring Harbor Symposia on Quantitative Biology, pp.43-46, 1963.

D. «-autoradiography-of-hela-cell and . In, Journal of molecular biology, vol.15, pp.22-2836

H. Callan, « Replication of DNA in the chromosomes of eukaryotes, Proc R Soc Lond B Biol Sci, vol.181, pp.19-41, 1972.

H. Cao, Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology, Rapp. tech, vol.1, 2014.

T. Chakrabortyt, Purification of the E. coli dnaA gene product. ; Purification of the E. coli dnaA gene product, Rapp. tech, vol.12, pp.1545-1549, 1982.

S. Chan, « Structural variation detection and analysis using bionano optical mapping, Methods in Molecular Biology 1833, p.10643745, 2018.

J. Cheng and . Zhi, « Detection of arterial calcification in mammograms by random walks, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5636 LNCS.CC, pp.713-724, 2009.

F. S. Collins, « Finishing the euchromatic sequence of the human genome, Nature 431, vol.7011, pp.931-945, 2004.

J. Craig and W. Bickmore, « Chromosome Bands -flavours to savour, BioEssays, pp.1-6, 1993.

D. M. Czajkowsky, « DNA Combing Reveals Intrinsic Temporal Disorder in the Replication of Yeast Chromosome VI, Journal of Molecular Biology, vol.375, pp.12-19, 2008.

S. K. Das, « Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes, Nucleic Acids Research, 2010.

D. Carli, F. , and V. Gaggioli, « Single-molecule, antibody-free fluorescent visualisation of replication tracts along barcoded DNA molecules, International Journal of Developmental Biology, vol.60, pp.297-304, 2016.

D. Carli, F. , and N. Menezes, « High-Throughput Optical Mapping of Replicating DNA, Small Methods 2.9, p.23669608, 2018.

, , 201800146.

G. I. Dellino, « Genome-wide mapping of human DNA-replication origins : Levels of transcription at ORC1 sites regulate origin selection and replication timing, Genome Research 23, vol.1, pp.1088-9051, 2013.

J. M. Dewar, C. Johannes, and . Walter, « Mechanisms of DNA replication termination, vol.8, pp.507-516, 2017.

J. F. Diffley and J. H. Cocker, « Protein-DNA interactions at a yeast replication origin, Nature, vol.359, pp.710-713, 1992.

J. F. Diffley, « Two steps in the assembly of complexes at yeast replication origins in vivo, Cell 78, vol.2, pp.90299-90301, 1994.

. Dm-gilbert and . Gasser, « Nuclear structure and DNA replication, 2006.

D. Dubey and . Et-rajiva-raman, « Factors influencing replicon organization in tissues having different S-phase durations in the mole rat, Bandicota bengalensis* », Chromosoma (Berl.) P, pp.285-289, 1987.

. 1007%2fbf00294785 and . Pdf,

M. L. Eaton, « Conserved nucleosome positioning defines replication origins, Genes and Development, vol.24, p.8909369, 2010.

L. W. Enquist and A. M. Skalka, « Replication of bacteriophage lambda DNA, Trends in Biochemical Sciences 3.4, pp.96033-96037, 1978.

S. Farkash-amar, « Global organization of replication time zones of the mouse genome, Genome Research 18, vol.10, p.10889051, 2008.

M. Fragkos, « DNA replication in eukaryotic cells requires the accurate synthesis of large amounts of DNA, 2015.

A. F. Frangi, « Multiscale vessel enhancement filtering, October, pp.130-137, 1998.

M. G. Gauthier, J. Et, and . Bechhoefer, « Control of DNA replication by anomalous reaction-diffusion kinetics, Physical Review Letters, 2009.

A. Grigoriev, « Analyzing genomes with cumulative skew diagrams, Nucleic Acids Research, vol.26, pp.2286-2290, 1998.

A. Grunwald, « Bacteriophage strain typing by rapid single molecule analysis, Nucleic Acids Research, vol.43, 2015.

G. Guilbaud, « Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome, PLoS Computational Biology, 2011.

H. Talbot and R. Beare, The birth of Mathematical Morphology.(with G. Matheron) ». In : Mathematical Morphology, pp.1-16, 2002.

R. Hand, « Altered Patterns of Initiation during Inhibition of Protein Synthesis, The Journal of Cell Biology, vol.67, pp.761-773, 1975.

S. Handeli, Mapping replication units in animal cells, Rapp. tech, vol.6, pp.909-920, 1989.

R. S. Hansen, « Sequencing newly replicated DNA reveals widespread plasticity in human replication timing, Proceedings of the National Academy of Sciences 107.1, pp.27-8424, 2010.

J. Hartigan and . Wong, « A K-Means Clustering Algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.28, pp.100-108, 1979.

J. A. Hartigan, Wiley Series in Probability and Mathematical Statistics, pp.354-359, 1975.

A. R. Hastie, « Rapid Genome Mapping in Nanochannel Arrays for Highly Complete and Accurate De Novo Sequence Assembly of the Complex Aegilops tauschii, 2013.

, PLoS ONE, vol.8, issue.2, p.19326203

M. Hennion, « Site-specific and dispersed replication initiation in S . cerevisiae quantified by nanopore sequencing, bioRxiv, pp.1-18, 2019.

J. Herrick, « Replication fork density increases during DNA synthesis in X. laevis egg extracts, Journal of molecular biology, vol.300, pp.22-2836, 2000.

G. Holmquist, « Chromosome bands, their chromatin flavors, and their functional features, American Journal of Human Genetics, vol.51, pp.2-9297, 1992.

J. A. Huberman and A. D. Riggs, Autoradiography of chromosomal DNA fibers from Chinese hamster cells, Rapp. tech, vol.3, pp.599-606, 1966.

J. Huberman and A. Riggs, « On the Mechanism of DNA Replication in Mammalian Chromosomes, J. Mol. Biol, vol.32, pp.327-341, 1968.

O. Hyrien, « Up and down the slope : Replication timing and fork directionality gradients in eukaryotic genomes, « Peaks cloaked in the mist : The landscape of mammalian replication origins, vol.208, p.9783319246963, 2015.

O. Hyrien, K. Marheineke, and A. Goldar, « Paradoxes of eukaryotic DNA replication : MCM proteins and the random completion problem, BioEssays 25, vol.2, pp.116-125, 2003.

O. Hyrien and A. Rappailles, « From Simple Bacterial and Archaeal Replicons to Replication N/U-Domains, Journal of Molecular Biology, vol.425, pp.4673-4689, 2013.

D. A. Jackson and A. Pombo, « Replicon clusters are stable units of chromosome structure : Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells, Journal of Cell Biology, vol.140, pp.1285-1295, 1998.

F. Jacob, S. Brenner, and F. Cuzin, « On the Regulation of DNA Replication in Bacteria, Cold Spring Harbor Symposia on Quantitative Biology, pp.91-7451, 1963.

T. R. Jones, « Methods for high-content, high-throughput image-based cell screening, Proceedings of the First MICCAI Workshop on Microscopic Image Analysis with Applications in Biology, pp.65-72, 2006.

N. Karnani, « Genomic Study of Replication Initiation in Human Chromosomes Reveals the Influence of Transcription Regulation and Chromatin Structure on Origin Selection, Molecular Biology of the Cell, vol.21, pp.393-404, 2010.

A. Kaykov and P. Nurse, « Analysis of fission yeast single DNA molecules on the megabase scale using DNA combing, Methods in Molecular Biology 1721, p.10643745, 2018.

C. Keller, « The origin recognition complex marks a replication origin in the human TOP1 gene promoter, Journal of Biological Chemistry, vol.277, pp.31430-31440, 2002.

K. Klein, Genome-Wide Identification of Early-Firing Human Replication Origins by Optical Replication Mapping, 2017.

D. Kraft, A software package for sequential quadratic programming, 1988.

. Köln, , p.33

Z. N. Kronenberg, « High-resolution comparative analysis of great ape genomes, Science 360.6393, eaar6343. issn, pp.36-8075, 2018.

T. Krude, Initiation of human DNA replication in vitro using nuclei from cells arrested at an initiation-competent state, Rapp. tech, vol.18, pp.13699-13707, 2000.

E. T. Lam, « Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly, Nature Biotechnology, vol.30, pp.771-776, 2012.

A. R. Langley, « Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq), Nucleic Acids Research, vol.44, pp.10230-10247, 2016.

R. Laskey, « Chromosome replication in early development of Xenopus laevis, Journal of Embryology and Experimental Morphology, vol.89, 1985.

S. A. Latt, « Fluorescent probes of chromosome structure and replication, Canadian Journal of Genetics and Cytology, vol.19, pp.8-4093, 1977.

R. Lederberg and . Lederberg, Genetic studies of lysogenicity in Echerichia coli. » In : Genetics 38, 1951.

A. K. Leung and . Yung, « OMBlast : Alignment tool for optical mapping using a seed-and-extend approach, Bioinformatics 33.3, pp.311-319, 2017.

M. Levy-sakin and . Ebenstein, « Beyond sequencing : optical mapping of DNA in the age of nanotechnology and nanoscopy, Current Opinion in Biotechnology, vol.24, pp.958-1669, 2013.

M. Linskens and . Huberman, « Organization of replication of ribosomal DNA in Saccharomyces cerevisiae, » In : Molecular and Cellular Biology, vol.8, pp.270-7306, 1988.

J. Lobiondo, M. Abramowitz, M. Marc, and . Friedman, « Microscope objectives, Current Protocols in Cytometry SUPPL, vol.58, p.19349300, 2011.

J. R. Lobry, « Asymmetric substitution patterns in the two DNA strands of bacteria, Molecular Biology and Evolution, vol.13, pp.737-4038, 1996.

I. Lucas, « Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos, Journal of Molecular Biology, vol.296, pp.769-786, 2000.

A. C. Mak, « Genome-wide structural variation detection by genome mapping on nanochannel arrays, Genetics 202.1, p.19432631, 2016.

D. Mantiero, « Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast, EMBO Journal, vol.30, pp.4805-4814, 2011.

K. Marheineke and A. Goldar, « Use of DNA Combing to Study DNA Replication in Xenopus and Human Cell-Free Systems, Methods in Molecular Biology. issn, p.414131, 2009.

K. Marheineke, O. Hyrien, and T. Krude, « Visualization of bidirectional initiation of chromosomal DNA replication in a human cell free system, Nucleic Acids Research, vol.33, pp.6931-6941, 2005.

M. M. Martin, « Genome-wide depletion of replication initiation events in highly transcribed regions, Genome Research, vol.21, pp.1549-5469, 2011.

M. Masters and P. Broda, « Evidence for the Bidirectional Replication of the Escherichia coli Chromosome, Nature New Biology, vol.232, pp.137-140, 1971.

G. Matheron, Eléments pour une Théorie des Milieux Poreux, Masson et Cie, 1967.

A. Maya-mendoza, « S Phase Progression in Human Cells Is Dictated by the Genetic Continuity of DNA Foci, PLoS Genet, vol.6, p.1000900, 2010.

S. R. Mcguffee, J. Duncan, and . Smith-et-iestyn-whitehouse, « Quantitative, Genome-Wide Analysis of Eukaryotic Replication Initiation and Termination, Molecular Cell, vol.50, pp.123-135, 2013.

S. L. Mcknight, L. Et-oscar, and . Miller, « Electron microscopic analysis of chromatin replication in the cellular blastoderm drosophila melanogaster embryo, Cell 12.3, pp.795-804, 1977.

L. D. Mesner, « Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early-and late-firing origins, Genome Research, vol.23, p.10889051, 2013.

Y. Michaeli, « Optical detection of epigenetic marks : Sensitive quantification and direct imaging of individual hydroxymethylcytosine bases, Chemical Communications, vol.49, pp.8599-8601, 2013.

. Miotto, Z. Benoit, K. Ji, and . Struhl, « Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers, Proceedings of the National Academy of Sciences 113, vol.33, 2016.

R. Mukhopadhyay, « Allele-Specific Genome-wide Profiling in Human Primary Erythroblasts Reveal Replication Program Organization, PLoS Genetics 10, vol.5, p.1004319, 2014.

C. A. Müller, « Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads, Nature Methods, vol.16, p.15487105, 2019.

V. Müller and . Et-fredrik-westerlund, « Optical DNA mapping in nanofluidic devices : principles and applications, » In : Lab on a Chip, vol.4, 2017.

K. A. Nawotka and . Huberman, « Two-dimensional gel electrophoretic method for mapping DNA replicons, » In : Molecular and Cellular Biology, vol.8, pp.1408-1413, 1988.

T. Nawy, « DNA : stretch for the camera, Nature Methods, vol.9, pp.1548-7091, 2012.

C. S. Newlon, F. Et-james, and . Theis, « The structure and function of yeast ARS elements, Current Opinion in Genetics and Development, vol.3, pp.752-758, 1993.

M. T. Noakes, « Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage, Nature Biotechnology, vol.37, p.15461696, 2019.

P. Norio, L. Carl, and . Schildkraut, Visualization of DNA replication on individual Epstein-Barr virus episomes, Rapp. tech, vol.5550, pp.2361-2364, 2001.

N. Otsu, « Threshold Selection Method From Gray-Level Histograms, IEEE Trans Syst Man Cybern SMC-9, vol.1, pp.62-66, 1979.

I. Parra and . Windle, « High resolution visual mapping of stretched DNA by fluorescent hybridization. » In : Nature genetics 5.1, pp.1061-4036, 1993.

A. Payne, « Whale watching with BulkVis : A graphical viewer for Oxford Nanopore bulk fast5 files, p.312256, 2018.

N. Petryk, « Replication landscape of the human genome, Nature Communications, 2016.

F. Picard, « The Spatiotemporal Program of DNA Replication Is Associated with Specific Combinations of Chromatin Marks in Human Cells, PLoS Genetics, vol.10, p.1004282, 2014.

B. D. Pope, « DNA replication timing is maintained genome-wide in primary human myoblasts independent of D4Z4 contraction in FSH muscular dystrophy, PLoS ONE, vol.6, p.19326203, 2011.

D. Prescott and . Kuempel, « Bidirectional replication of the chromosome in Escherichia coli, Proceedings of the National Academy of Sciences of the United States of America 69, vol.10, pp.27-8424, 1972.

J. G. Reifenberger, D. Kevin, H. Dorfman, and . Cao, « Topological events in single molecules of E. coli DNA confined in nanochannels, Cite this : Analyst, vol.140, p.4887, 2015.

N. Rhind, M. David, and . Gilbert, « DNA Replication Timing, Cold Spring Harbor perspectives in biology, 2013.

T. Ryba, « Genome-scale analysis of replication timing : From bench to bioinformatics, Nature Protocols, vol.6, p.17542189, 2011.

A. Salic, J. Timothy, and . Mitchison, A chemical method for fast and sensitive detection of DNA synthesis in vivo, Rapp. tech, vol.7, pp.2415-2420, 2008.

A. Schepers, . Et-peer, and . Papior, Why are we where we are ? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches, 2010.

D. Schwartz, « Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping, Science 262, vol.5130, pp.36-8075, 1993.

J. Serra, « Introduction to Mathematical Morphology, Image Processing and Mathematical Morphology, pp.1-9, 2010.

J. Serra, . Paul, and . Et-jean, Image analysis and mathematical morphology, 1982.

J. Shelton and . Marie, « Tools and pipelines for BioNano data : molecule assembly pipeline and FASTA super scaffolding tool, pp.1471-2164, 2015.

K. Siddiqui, K. F. On, F. X. John, and . Diffley, « Regulating DNA replication in Eukarya, Cold Spring Harbor Perspectives in Biology 5, vol.4, p.19430264, 2013.

S. Singh, « Pipeline for illumination correction of images for high-throughput microscopy, Journal of Microscopy, vol.256, pp.231-236, 2014.

D. J. Smith and . Et-iestyn-whitehouse, « Intrinsic coupling of lagging-strand synthesis to chromatin assembly, Nature 483, vol.7390, p.280836, 2012.

S. Stanojcic, « In Xenopus egg extracts, DNA replication initiates preferentially at or near asymmetric AT sequences. » In : Molecular and cellular biology 28, vol.17, pp.1098-5549, 2008.

D. Stinchcomb, . Struhl, and . Davis, « Isolation and characterisation of a yeast chromosomal replicator, Nature 282, vol.5734, pp.39-43, 1979.

K. Struhl, High-frequency transformation of yeast : Autonomous replication of hybrid DNA molecules, Rapp. tech, vol.3, pp.1035-1039, 1978.

L. Tao, « Major DNA replication initiation sites in the c-myc locus in human cells, Journal of Cellular Biochemistry, vol.78, pp.442-457, 2000.

J. H. Taylor, « The mode of chromosome duplication in Crepis capillaris, Experimental Cell Research, vol.15, issue.58, pp.90036-90039, 1958.

H. Técher, « Replication dynamics : Biases and robustness of DNA fiber analysis, Journal of Molecular Biology, vol.425, pp.4845-4855, 2013.

M. Touchon, « Replication-associated strand asymmetries in mammalian genomes : Toward detection of replication origins, Proceedings of the National Academy of Sciences 102.28, pp.9836-9841, 2005.

J. M. Urban, « The hunt for origins of DNA replication in multicellular eukaryotes, F1000 Prime Reports, 2015.

L. Vassilev, M. Edward, and . Johnson, « Mapping initiation sites of DNA replication in vivo using polymerase chain reaction amplification of nascent strand segments, Nucleic Acids Research, 1989.

Y. Wang, « Automated DNA fiber tracking and measurement, Proceedings -International Symposium on Biomedical Imaging, p.19457928, 2011.

H. F. Willard and S. A. Latt, Analysis of deoxyribonucleic acid replication in human X chromosomes by fluorescence microscopy, Rapp. tech, pp.213-227, 1976.

P. G. Wong, « Cdc45 limits replicon usage from a low density of prercs in mammalian cells, PLoS ONE 6.3, p.17533, 2011.

M. Xiao, « Rapid DNA mapping by fluorescent single molecule detection, Nucleic Acids Research, 2007.

X. Yan, « Development of a Mechanism-Based, DNA Staining Protocol Using SYTOX Orange Nucleic Acid Stain and DNA Fragment Sizing Flow Cytometry, Analytical Biochemistry, vol.286, pp.3-2697, 2000.

/. Abio, , vol.4789, 2000.

H. Yardimci, « Single-molecule analysis of DNA replication in Xenopus egg extracts, Methods 57, vol.2, pp.179-186, 2012.

S. Yasuda and Y. Hirota, « Cloning and mapping of the replication origin of Escherichia coli, Proceedings of the National Academy of Sciences, pp.27-8424, 1977.

Y. B. Yurov, A. Et-natalia, and . Liapunova, « The units of DNA replication in the mammalian chromosomes : Evidence for a large size of replication units, pp.253-267, 1977.

Y. B. Yurov, « Rate of DNA replication fork movement within a single mammalian cell, Journal of Molecular Biology, vol.136, pp.339-342, 1980.

S. Zirkin, « Lighting up individual DNA damage sites by in vitro repair synthesis, Journal of the American Chemical Society, vol.136, p.15205126, 2014.

. Résumé,

, Chez les eucaryotes, la réplication du génome s'effectue en utilisant de multiples origines de réplication. Chez les métazoaires, la cartographie de la réplication demeure difficile. Les cartographies pangénomiques des origines de réplication chez l'Homme réalisées à l'aide de techniques de séquençage, ne s'accordent que modérément, La réplication de l'ADN est un processus vital qui assure la transmission l'information génétique aux cellules filles

. Cependant, Nous recueillons généralement, pour un "run", plus de 34 000 images et plus de 63 000 Mpb d'ADN. Nos nouveaux outils open source, qui ont nécessité l'adaptation du logiciel propriétaire fourni, nous permettent de visualiser simultanément les profils d'intensité de l'ensemble des molécules d'ADN cartographiées, de vérifier la qualité de la cartographie réalisée et, en particulier, de voir où sont situés les segments répliqués au niveau du génome en molécule unique. Nous démontrons la robustesse de notre approche en fournissant, avec une couverture sans précédent (23 311 x), une carte de la réplication de l'ADN bactériophage dupliqué dans des extraits d'oeufs Xenopus et mettons en évidence le potentiel du système Irys pour l'étude de la réplication de l'ADN et autres études de génomiques fonctionnelles, en plus de son utilisation standard. MOTS CLÉS Réplication de l'ADN, Traitement d'images, Cartographie Optique ABSTRACT DNA replication is a vital process ensuring accurate conveyance of the genetic information to the daughter cells. In eukaryotic organisms, genome replication is carried out by using multiple start sites, also known as replication origins. In metazoans, the mapping of replication remains challenging. Genome wide mapping of human replication origins performed using sequencing techniques only modestly agree.These existing genome wide approaches use large cell populations that smooth out variability between chromosomal copies that could explain this inconsistency. Thus, to get a better understanding of DNA replication and to uncover the cell-to-cell variability, the development of single molecule techniques is fundamental. DNA combing, a widespread technique used to map DNA replication at a single molecule level, is refractory to automation, forestalling genome-wide analysis. To overcome these impediments, we repurposed an optical DNA mapping device based on microfluidics, Pour surmonter ces obstacles, nous avons ré-employé un dispositif de cartographie optique basé sur de la microfluidique, le système Bionano Genomics Irys, pour le High Throughput Optical MApping of Replicating DNA (HOMARD)

D. Mbp-of, Our new open source tools, that required the adaptation of the provided proprietary software, empower us to simultaneously visualize the intensity profiles of all mapped DNA molecules, check the optical mapping performed and, in particular, see where the replication tracks are located genome-wide at a single molecule level. We demonstrate the robustness of our approach by providing an ultra-high coverage (23,311 x) replication map of bacteriophage DNA in Xenopus egg extracts and the potential of the Irys system for DNA replication and other functional genomic studies apart from its standard use