P. Ainsi and . Exemple, ces études visaient à développer le concept de résection de l'intestin guidée par le métabolisme

, à valider les résultats en corrélation avec l'imagerie de fluorescence par FLER [3, 32, 71, 76, 179], ou à analyser les différences régionales de perfusion après une manipulation de l

. Bibliographie,

F. S. Collins and H. Varmus, A new initiative on precision medicine, N Engl J Med, vol.372, issue.9, pp.793-798, 2015.

J. Marescaux and M. Diana, Inventing the future of surgery, World J Surg, vol.39, issue.3, pp.615-637, 2015.

J. Hallet, Trans-thoracic minimally invasive liver resection guided by augmented reality, J Am Coll Surg, vol.220, issue.5, pp.55-60, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02492431

J. Marescaux and M. Diana, Looking at the future of surgery with the augmented eye, Annals of Laparoscopic and Endoscopic Surgery, issue.6, p.1, 2016.

M. Diana, Enabling precision digestive surgery with fluorescence imaging, Transl Gastroenterol Hepatol, vol.2, p.97, 2017.

M. Diana, Fluorescence-guided surgery applied to the digestive system: the cybernetic eye to see the invisible, Cir Esp, vol.96, issue.2, pp.65-68, 2018.

J. Marescaux and M. Diana, Next step in minimally invasive surgery: hybrid image-guided surgery, J Pediatr Surg, vol.50, issue.1, pp.30-36, 2015.

R. Weissleder and M. J. Pittet, Imaging in the era of molecular oncology, Nature, vol.452, issue.7187, pp.580-589, 2008.

L. B. Nielsen and P. Wille-jorgensen, National and international guidelines for rectal cancer, Colorectal Dis, vol.16, issue.11, pp.854-65, 2014.

M. Taffel, Adrenal imaging: a comprehensive review, Radiol Clin North Am, vol.50, issue.2, pp.219-262, 2012.

M. K. Walz, Extent of adrenalectomy for adrenal neoplasm: cortical sparing (subtotal) versus total adrenalectomy, Surg Clin North Am, vol.84, issue.3, pp.743-53, 2004.

B. Seeliger, Fluorescence in rectal cancer surgery, Annals of Laparoscopic and Endoscopic Surgery, issue.3, 2018.

M. Diana, Prospective Evaluation of Precision Multimodal Gallbladder Surgery Navigation: Virtual Reality, Near-infrared Fluorescence, and X-ray-based Intraoperative Cholangiography, Ann Surg, vol.266, issue.5, pp.890-897, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02473782

S. H. Kong, Robust augmented reality registration method for localization of solid organs' tumors using CT-derived virtual biomechanical model and fluorescent fiducials, Surg Endosc, vol.31, issue.7, pp.2863-2871, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01314963

P. Pessaux, Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy, Langenbecks Arch Surg, vol.400, issue.3, pp.381-386, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02492418

M. Diana, Improving Echo-Guided Procedures Using an Ultrasound-CT Image Fusion System, Surg Innov, vol.22, issue.3, pp.217-239, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02492413

P. Pessaux, Robotic duodenopancreatectomy assisted with augmented reality and real-time fluorescence guidance, Surg Endosc, vol.28, issue.8, pp.2493-2501, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02493579

E. Marzano, Augmented reality-guided artery-first pancreatico-duodenectomy, J Gastrointest Surg, vol.17, issue.11, pp.1980-1983, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02509596

J. D'agostino, Three-dimensional virtual neck exploration before parathyroidectomy, N Engl J Med, vol.367, issue.11, pp.1072-1075, 2012.

P. Mascagni, New intraoperative imaging technologies: Innovating the surgeon's eye toward surgical precision, J Surg Oncol, vol.118, issue.2, pp.265-282, 2018.

G. Quero, Virtual and Augmented Reality in Oncologic Liver Surgery, Surg Oncol Clin N Am, vol.28, issue.1, pp.31-44, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02390256

S. Nicolau, Augmented reality in laparoscopic surgical oncology, Surg Oncol, vol.20, issue.3, pp.189-201, 2011.

R. Modrzejewski, An in vivo porcine dataset and evaluation methodology to measure soft-body laparoscopic liver registration accuracy with an extended algorithm that handles collisions, Int J Comput Assist Radiol Surg, vol.14, issue.7, pp.1237-1245, 2019.

M. Eckert, J. S. Volmerg, and C. M. Friedrich, Augmented Reality in Medicine: Systematic and Bibliographic Review, JMIR Mhealth Uhealth, vol.7, issue.4, p.10967, 2019.

S. Bernhardt, The status of augmented reality in laparoscopic surgery as of 2016, vol.37, pp.66-90, 2017.

J. Marescaux, Augmented-reality-assisted laparoscopic adrenalectomy, JAMA, vol.292, issue.18, pp.2214-2219, 2004.

J. D'agostino, Three-dimensional metabolic and radiologic gathered evaluation using VR-RENDER fusion: a novel tool to enhance accuracy in the localization of parathyroid adenomas, World J Surg, vol.37, issue.7, pp.1618-1643, 2013.

D. Mutter, L. Soler, and J. Marescaux, Recent advances in liver imaging, Expert Rev Gastroenterol Hepatol, vol.4, issue.5, pp.613-634, 2010.

M. Diana, P. Pessaux, and J. Marescaux, New technologies for single-site robotic surgery in hepato-biliary-pancreatic surgery, J Hepatobiliary Pancreat Sci, vol.21, issue.1, pp.34-42, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02494659

R. Lord, Colonic lesion characterization in inflammatory bowel disease: A systematic review and meta-analysis, World J Gastroenterol, vol.24, issue.10, pp.1167-1180, 2018.

M. Ignat, Intraoperative Probe-Based Confocal Endomicroscopy to Histologically Differentiate Thyroid From Parathyroid Tissue Before Resection, Surg Innov, vol.26, issue.2, pp.141-148, 2019.

M. Diana, Probe-based confocal laser endomicroscopy and fluorescence-based enhanced reality for real-time assessment of intestinal microcirculation in a porcine model of sigmoid ischemia, Surg Endosc, vol.28, issue.11, pp.3224-3257, 2014.

S. Mukewar and D. Carr-locke, Advances in Endoscopic Imaging of the Biliary Tree, vol.29, pp.187-204, 2019.

S. K. Lee, Usefulness of Probe-Based Confocal Laser Endomicroscopy for Esophageal Squamous Cell Neoplasm, Clin Endosc, vol.52, issue.2, pp.91-92, 2019.

V. Becker, Optimal fluorescein dose for intravenous application in miniprobe-based confocal laser scanning microscopy in pigs, J Biophotonics, vol.4, issue.1-2, pp.108-121, 2011.

M. Wallace, Miami classification for probe-based confocal laser endomicroscopy, Endoscopy, vol.43, issue.10, pp.882-91, 2011.

A. Fugazza, Confocal Laser Endomicroscopy in Gastrointestinal and Pancreatobiliary Diseases: A Systematic Review and Meta-Analysis, Biomed Res Int, p.4638683, 2016.

M. W. Shahid, Diagnostic accuracy of probe-based confocal laser endomicroscopy in detecting residual colorectal neoplasia after EMR: a prospective study, Gastrointest Endosc, vol.75, issue.3, pp.525-558, 2012.

P. Su, Efficacy of confocal laser endomicroscopy for discriminating colorectal neoplasms from non-neoplasms: a systematic review and meta-analysis, Colorectal Dis, vol.15, issue.1, pp.1-12, 2013.

D. P. Hurlstone, In vivo real-time confocal laser scanning endomicroscopic colonoscopy for the detection and characterization of colorectal neoplasia, Br J Surg, vol.95, issue.5, pp.636-681, 2008.

H. Neumann, Prospective evaluation of the learning curve of confocal laser endomicroscopy in patients with IBD, Histol Histopathol, vol.26, issue.7, pp.867-72, 2011.

A. M. Buchner, Confocal Laser Endomicroscopy in the Evaluation of Inflammatory Bowel Disease, Inflamm Bowel Dis, vol.25, issue.8, pp.1302-1312, 2019.

J. Auzoux, Usefulness of confocal laser endomicroscopy for predicting postoperative recurrence in patients with Crohn's disease: a pilot study, Gastrointest Endosc, vol.90, issue.1, pp.151-157, 2019.

P. Sharma, Real-time increased detection of neoplastic tissue in Barrett's esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial, Gastrointest Endosc, vol.74, issue.3, pp.465-72, 2011.

M. Di-pietro, Development and Validation of Confocal Endomicroscopy Diagnostic Criteria for Low-Grade Dysplasia in Barrett's Esophagus, Clin Transl Gastroenterol, vol.10, issue.4, p.14, 2019.

F. Caillol, Refined probe-based confocal laser endomicroscopy classification for biliary strictures: the Paris Classification, Dig Dis Sci, vol.58, issue.6, pp.1784-1793, 2013.

V. J. Konda, A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance, Endoscopy, vol.45, issue.12, pp.1006-1019, 2013.

S. G. Krishna, Endoscopic Ultrasound-Guided Confocal Laser Endomicroscopy Increases Accuracy of Differentiation of Pancreatic Cystic Lesions, Clin Gastroenterol Hepatol, 2019.

C. Schmidt, Confocal laser endomicroscopy reliably detects sepsis-related and treatment-associated changes in intestinal mucosal microcirculation, Br J Anaesth, issue.111, pp.996-1003, 2013.

M. Diana, Precision real-time evaluation of bowel perfusion: accuracy of confocal endomicroscopy assessment of stoma in a controlled hemorrhagic shock model, Surg Endosc, vol.31, issue.2, pp.680-691, 2017.

A. R. Wijsmuller, Prospective Trial on Probe-Based Confocal Laser Endomicroscopy for the Identification of the Distal Limit in Rectal Adenocarcinoma, Surg Innov, vol.25, issue.4, pp.313-322, 2018.

A. Pierangelo, Diagnostic accuracy of confocal laser endomicroscopy for the ex vivo characterization of peritoneal nodules during laparoscopic surgery, Surg Endosc, vol.31, issue.4, pp.1974-1981, 2017.

A. Pierangelo, Diagnostic accuracy of confocal laser endomicroscopy for the characterization of liver nodules, Eur J Gastroenterol Hepatol, vol.29, issue.1, pp.42-47, 2017.

Y. Schneider and A. M. Buchner, Computer-aided confocal laser endomicroscopy in inflammatory bowel disease: probing deeper into what it means, Gastrointest Endosc, vol.89, issue.3, pp.637-638, 2019.

B. Andre, Software for automated classification of probe-based confocal laser endomicroscopy videos of colorectal polyps, World J Gastroenterol, vol.18, issue.39, pp.5560-5569, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00813813

L. Queneherve, Quantitative assessment of mucosal architecture using computerbased analysis of confocal laser endomicroscopy in inflammatory bowel diseases, Gastrointest Endosc, vol.89, issue.3, pp.626-636, 2019.

N. Ghatwary, In-vivo Barrett's esophagus digital pathology stage classification through feature enhancement of confocal laser endomicroscopy, J Med Imaging, vol.6, issue.1, p.14502, 2019.

B. Seeliger, Fluorescence-enabled assessment of adrenal gland localization and perfusion in posterior retroperitoneoscopic adrenal surgery in a preclinical model, Surg Endosc, 2019.

L. Van-manen, A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery, J Surg Oncol, vol.118, issue.2, pp.283-300, 2018.

S. Gioux, H. S. Choi, and J. V. Frangioni, Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation, Mol Imaging, vol.9, issue.5, pp.237-55, 2010.

J. Van-den-bos, Near-Infrared Fluorescence Imaging for Real-Time Intraoperative Guidance in Anastomotic Colorectal Surgery: A Systematic Review of Literature, J Laparoendosc Adv Surg Tech A, vol.28, issue.2, pp.157-167, 2018.

S. Sajedi, H. Sabet, and H. S. Choi, Intraoperative biophotonic imaging systems for imageguided interventions, Nanophotonics, vol.8, issue.1, pp.99-116, 2019.

S. B. Mondal, Real-time fluorescence image-guided oncologic surgery, Adv Cancer Res, vol.124, pp.171-211, 2014.

G. L. Baiocchi, M. Diana, and L. Boni, Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: State of the art and future directions, World J Gastroenterol, vol.24, issue.27, pp.2921-2930, 2018.

Q. T. Nguyen and R. Y. Tsien, Fluorescence-guided surgery with live molecular navigation--a new cutting edge, Nat Rev Cancer, vol.13, issue.9, pp.653-62, 2013.

J. T. Alander, A review of indocyanine green fluorescent imaging in surgery, Int J Biomed Imaging, p.940585, 2012.

L. Boni, Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery, Surg Endosc, vol.29, issue.7, pp.2046-55, 2015.

R. A. Cahill, F. Ris, and N. J. Mortensen, Near-infrared laparoscopy for real-time intraoperative arterial and lymphatic perfusion imaging, Colorectal Dis, vol.13, pp.12-19, 2011.

A. V. Dsouza, Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging, J Biomed Opt, vol.21, issue.8, p.80901, 2016.

J. Van-den-bos, Near-infrared fluorescence image-guidance in anastomotic colorectal cancer surgery and its relation to serum markers of anastomotic leakage: a clinical pilot study, Surg Endosc, vol.33, issue.11, pp.3766-3774, 2019.

M. Diana, Enhanced Reality Fluorescence Videography to Assess Bowel Perfusion: The Cybernetic Eye, Ann Surg, vol.265, issue.4, pp.49-52, 2017.

G. Quero, Discrimination between arterial and venous bowel ischemia by computerassisted analysis of the fluorescent signal, Surg Endosc, vol.33, issue.6, pp.1988-1997, 2019.

T. Wada, ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery, Surgical endoscopy, vol.31, issue.10, pp.4184-4193, 2017.

G. M. Son, Quantitative analysis of colon perfusion pattern using indocyanine green (ICG) angiography in laparoscopic colorectal surgery, Surgical Endoscopy, vol.33, issue.5, pp.1640-1649, 2019.

S. Kudszus, Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage, Langenbecks Arch Surg, vol.395, issue.8, pp.1025-1055, 2010.

M. Diana, Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery, Surg Endosc, vol.28, issue.11, pp.3108-3126, 2014.

S. Singhal, The Future of Surgical Oncology: Image-Guided Cancer Surgery, JAMA Surg, vol.151, issue.2, pp.184-189, 2016.

M. Garland, J. J. Yim, and M. Bogyo, A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application, Cell Chem Biol, vol.23, issue.1, pp.122-136, 2016.

G. M. Van-dam, Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results, Nat Med, vol.17, issue.10, pp.1315-1324, 2011.

H. J. Handgraaf, Real-time near-infrared fluorescence guided surgery in gynecologic oncology: a review of the current state of the art, Gynecol Oncol, vol.135, issue.3, pp.606-619, 2014.

T. Mangeolle, Fluorescent Nanoparticles for the Guided Surgery of Ovarian Peritoneal Carcinomatosis, Nanomaterials (Basel), issue.8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01860308

E. L. Rosenthal, Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report, J Nucl Med, vol.57, issue.1, pp.144-50, 2016.

N. J. Harlaar, Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study, Lancet Gastroenterol Hepatol, vol.1, issue.4, pp.283-290, 2016.

C. E. Hoogstins, A Novel Tumor-Specific Agent for Intraoperative Near-Infrared Fluorescence Imaging: A Translational Study in Healthy Volunteers and Patients with Ovarian Cancer, Clin Cancer Res, vol.22, issue.12, pp.2929-2967, 2016.

J. Bruce, Systematic review of the definition and measurement of anastomotic leak after gastrointestinal surgery, Br J Surg, vol.88, issue.9, pp.1157-68, 2001.

R. Watanabe, Hybrid fluorescent magnetic gastrojejunostomy: an experimental feasibility study in the porcine model and human cadaver, Surg Endosc, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02396338

D. H. Kim, Bowel resection techniques, 2019.

M. D. Jafari, Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study, J Am Coll Surg, vol.220, issue.1, p.1, 2015.

J. Watanabe, Indocyanine green fluorescence imaging to reduce the risk of anastomotic leakage in laparoscopic low anterior resection for rectal cancer: a propensity score-matched cohort study, Surg Endosc, 2019.

F. Ris, Multicentre phase II trial of near-infrared imaging in elective colorectal surgery, Br J Surg, vol.105, issue.10, pp.1359-1367, 2018.

J. Hammond, The burden of gastrointestinal anastomotic leaks: an evaluation of clinical and economic outcomes, J Gastrointest Surg, vol.18, issue.6, pp.1176-85, 2014.

E. Cassinotti, How to reduce surgical complications in rectal cancer surgery using fluorescence techniques, Minerva Chir, vol.73, issue.2, pp.210-216, 2018.

M. Diana, Intraoperative fluorescence-based enhanced reality laparoscopic realtime imaging to assess bowel perfusion at the anastomotic site in an experimental model, Br J Surg, vol.102, issue.2, pp.169-76, 2015.

A. Karliczek, Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery, Int J Colorectal Dis, vol.24, issue.5, pp.569-76, 2009.

A. Karliczek, Intraoperative assessment of microperfusion with visible light spectroscopy for prediction of anastomotic leakage in colorectal anastomoses, Colorectal Dis, vol.12, issue.10, pp.1018-1043, 2010.

R. Blanco-colino and E. Espin-basany, Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis, Tech Coloproctol, vol.22, issue.1, pp.15-23, 2018.

A. Pesce and M. Diana, Critical View of Safety During Laparoscopic Cholecystectomy: From the Surgeon's Eye to Fluorescent Vision, Surg Innov, vol.25, issue.3, pp.197-198, 2018.

M. Roy, Fluorescent incisionless cholangiography as a teaching tool for identification of Calot's triangle, Surg Endosc, vol.31, issue.6, pp.2483-2490, 2017.

Y. Y. Liu, Near-infrared cholecysto-cholangiography with indocyanine green may secure cholecystectomy in difficult clinical situations: proof of the concept in a porcine model, Surg Endosc, vol.30, issue.9, pp.4115-4138, 2016.

F. Dip, Routine use of fluorescent incisionless cholangiography as a new imaging modality during laparoscopic cholecystectomy, Surg Endosc, vol.29, issue.6, pp.1621-1627, 2015.

T. Ishizawa, Y. Bandai, and N. Kokudo, Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience, Arch Surg, vol.144, issue.4, pp.381-383, 2009.

T. Ishizawa, Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery, J Am Coll Surg, vol.208, issue.1, pp.1-4, 2009.

Y. Y. Liu, Near-infrared cholecystocholangiography with direct intragallbladder indocyanine green injection: preliminary clinical results, Surg Endosc, vol.32, issue.3, pp.1506-1514, 2018.

C. Conrad, IRCAD recommendation on safe laparoscopic cholecystectomy, J Hepatobiliary Pancreat Sci, vol.24, issue.11, pp.603-615, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02473772

K. Sugimura, Indocyanine Green Fluorescence Imaging of the Tracheal Blood Flow During Esophagectomy, J Surg Res, vol.241, pp.1-7, 2019.

M. L. Korb, Laparoscopic Fluorescent Visualization of the Ureter With Intravenous IRDye800CW, J Minim Invasive Gynecol, vol.22, issue.5, pp.799-806, 2015.

A. G. Franchini-melani, M. Diana, and J. Marescaux, The quest for precision in transanal total mesorectal excision, Tech Coloproctol, vol.20, issue.1, pp.11-19, 2016.

C. Foppa and A. Spinelli, Ureteric identification with indocyanine green fluorescence in laparoscopic redo pouch surgery, Tech Coloproctol, vol.22, issue.8, pp.627-628, 2018.

S. Siddighi, J. J. Yune, and J. Hardesty, Indocyanine green for intraoperative localization of ureter, Am J Obstet Gynecol, vol.211, issue.4, pp.436-437, 2014.

T. G. Barnes, Fluorescence to highlight the urethra: a human cadaveric study, Tech Coloproctol, vol.21, issue.6, pp.439-444, 2017.

E. M. Walsh, Fluorescence Imaging of Nerves During Surgery, Ann Surg, vol.270, issue.1, pp.69-76, 2019.

V. E. Cotero, Improved Intraoperative Visualization of Nerves through a Myelin-Binding Fluorophore and Dual-Mode Laparoscopic Imaging, PLoS One, vol.10, issue.6, p.130276, 2015.

V. E. Cotero, Intraoperative fluorescence imaging of peripheral and central nerves through a myelin-selective contrast agent, Mol Imaging Biol, vol.14, issue.6, pp.708-725, 2012.

M. H. Park, Prototype nerve-specific near-infrared fluorophores, Theranostics, vol.4, issue.8, pp.823-856, 2014.

D. Gray, Compact Fluorescence and White Light Imaging System for Intraoperative Visualization of Nerves, Proc SPIE Int Soc Opt Eng, p.8207, 2012.

S. L. Gibbs-strauss, Nerve-highlighting fluorescent contrast agents for image-guided surgery, Mol Imaging, vol.10, issue.2, pp.91-101, 2011.

C. W. Barth and S. L. Gibbs, Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy. Theranostics, vol.7, pp.573-593, 2017.

N. Mitsumori, Sentinel lymph node navigation surgery for early stage gastric cancer, World J Gastroenterol, vol.20, pp.5685-93, 2014.

M. H. Van-der-pas, Sentinel-lymph-node procedure in colon and rectal cancer: a systematic review and meta-analysis, Lancet Oncol, vol.12, issue.6, pp.540-50, 2011.

A. C. Currie, Intraoperative Sentinel Node Mapping in the Colon: Potential and Pitfalls, Eur Surg Res, vol.60, pp.45-52, 2019.

R. A. Cahill, Near-infrared (NIR) laparoscopy for intraoperative lymphatic roadmapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia, Surg Endosc, vol.26, issue.1, pp.197-204, 2012.

J. Watanabe, Real-Time Indocyanine Green Fluorescence Imaging-Guided Laparoscopic Right Hemicolectomy in Hepatic Flexural Colon Cancer, Dis Colon Rectum, vol.61, issue.11, pp.1333-1334, 2018.

J. Watanabe, Evaluation of lymph flow patterns in splenic flexural colon cancers using laparoscopic real-time indocyanine green fluorescence imaging, Int J Colorectal Dis, vol.32, issue.2, pp.201-207, 2017.

M. J. Landau, D. J. Gould, and K. M. Patel, Advances in fluorescent-image guided surgery, Ann Transl Med, p.392, 1920.

T. Ishizawa and A. Saiura, Fluorescence Imaging for Minimally Invasive Cancer Surgery, Surg Oncol Clin N Am, vol.28, issue.1, pp.45-60, 2019.

H. Narasaki, Intraoperative Real-Time Assessment of Liver Function with Near-Infrared Fluorescence Imaging, Eur Surg Res, vol.58, pp.235-245, 2017.

T. Ishizawa, Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma, Ann Surg Oncol, vol.21, issue.2, pp.440-448, 2014.

L. S. Boogerd, Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance, Surg Endosc, vol.31, issue.2, pp.952-961, 2017.

H. J. Handgraaf, Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: A retrospective multicenter analysis, Eur J Surg Oncol, vol.43, issue.8, pp.1463-1471, 2017.

J. Colvin, N. Zaidi, and E. Berber, The utility of indocyanine green fluorescence imaging during robotic adrenalectomy, J Surg Oncol, vol.114, issue.2, pp.153-159, 2016.

F. D. Dip, Technical description and feasibility of laparoscopic adrenal contouring using fluorescence imaging, Surg Endosc, vol.29, issue.3, pp.569-74, 2015.

B. Kahramangil and E. Berber, The use of near-infrared fluorescence imaging in endocrine surgical procedures, J Surg Oncol, vol.115, issue.7, pp.848-855, 2017.

R. A. Pathak and A. K. , Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: current status and review of literature, Int Urol Nephrol, vol.51, issue.5, pp.765-771, 2019.

E. Arora, Role of indo-cyanine green (ICG) fluorescence in laparoscopic adrenalectomy: a retrospective review of 55 Cases, Surg Endosc, vol.32, issue.11, pp.4649-4657, 2018.

J. C. Delong, Indocyanine green (ICG) fluorescence-guided laparoscopic adrenalectomy, J Surg Oncol, vol.112, issue.6, pp.650-653, 2015.

S. Sound, Intraoperative tumor localization and tissue distinction during robotic adrenalectomy using indocyanine green fluorescence imaging: a feasibility study, Surg Endosc, vol.30, issue.2, pp.657-62, 2016.

M. Lerchenberger, Indocyanine green fluorescence imaging during partial adrenalectomy, Surg Endosc, 2019.

B. Kahramangil, E. Kose, and E. Berber, Characterization of fluorescence patterns exhibited by different adrenal tumors: Determining the indications for indocyanine green use in adrenalectomy, Surgery, vol.164, issue.5, pp.972-977, 2018.

T. B. Manny, A. S. Pompeo, and A. K. , Robotic partial adrenalectomy using indocyanine green dye with near-infrared imaging: the initial clinical experience, Urology, vol.82, issue.3, pp.738-780, 2013.

W. K. Ovalle, P. C. Nahirney, and F. H. Netter, Netter's essential histology, vol.517, 2013.

B. Allolio, Praxis der Viszeralchirurgie, pp.375-496, 2013.

G. Alemanno, Adrenalectomy: indications and options for treatment, Updates Surg, vol.69, issue.2, pp.119-125, 2017.

K. Lorenz, Surgical therapy of adrenal tumors: guidelines from the German Association of Endocrine Surgeons (CAEK), Langenbecks Arch Surg, vol.404, issue.4, pp.385-401, 2019.

A. Arezzo, Transperitoneal versus retroperitoneal laparoscopic adrenalectomy for adrenal tumours in adults, Cochrane Database Syst Rev, vol.12, p.11668, 2018.

O. M. Vrielink, Laparoscopic anterior versus endoscopic posterior approach for adrenalectomy: a shift to a new golden standard? Langenbecks Arch Surg, vol.402, pp.767-773, 2017.

O. M. Vrielink, Multicentre study evaluating the surgical learning curve for posterior retroperitoneoscopic adrenalectomy, Br J Surg, vol.105, issue.5, pp.544-551, 2018.

D. Stefanidis, SAGES guidelines for minimally invasive treatment of adrenal pathology, Surg Endosc, vol.27, issue.11, pp.3960-80, 2013.

A. J. Lowery, Posterior retroperitoneoscopic adrenal surgery for clinical and subclinical Cushing's syndrome in patients with bilateral adrenal disease, Langenbecks Arch Surg, vol.402, issue.5, pp.775-785, 2017.

M. K. Walz and P. F. Alesina, Single access retroperitoneoscopic adrenalectomy (SARA)--one step beyond in endocrine surgery, Langenbecks Arch Surg, vol.394, issue.3, pp.447-50, 2009.

P. F. Alesina, Minimally invasive cortical-sparing surgery for bilateral pheochromocytomas, Langenbecks Arch Surg, vol.397, issue.2, pp.233-241, 2012.

S. Gaujoux and R. , Mihai, and joint working group of ESES and ENSAT, European Society of Endocrine Surgeons (ESES) and European Network for the Study of Adrenal Tumours (ENSAT) recommendations for the surgical management of adrenocortical carcinoma, Br J Surg, vol.104, issue.4, pp.358-376, 2017.

M. K. Walz,

, Langenbecks Arch Chir Suppl Kongressbd, vol.115, pp.113-118, 1998.

L. M. Brunt, SAGES Guidelines for minimally invasive treatment of adrenal pathology, Surg Endosc, vol.27, issue.11, pp.3957-3966, 2013.

N. D. Perrier, Posterior retroperitoneoscopic adrenalectomy: preferred technique for removal of benign tumors and isolated metastases, Ann Surg, vol.248, issue.4, pp.666-74, 2008.

J. M. Rieder, Differences in left and right laparoscopic adrenalectomy, JSLS, vol.14, issue.3, pp.369-73, 2010.

M. K. Walz, Partial versus total adrenalectomy by the posterior retroperitoneoscopic approach: early and long-term results of 325 consecutive procedures in primary adrenal neoplasias, World J Surg, vol.28, issue.12, pp.1323-1332, 2004.

M. K. Walz, Minimally Invasive Surgery (MIS) in Children and Adolescents with Pheochromocytomas and Retroperitoneal Paragangliomas: Experiences in 42 Patients, World J Surg, vol.42, issue.4, pp.1024-1030, 2018.

V. Nagaraja, G. D. Eslick, and S. Edirimanne, Recurrence and functional outcomes of partial adrenalectomy: a systematic review and meta-analysis, Int J Surg, issue.16, pp.7-13, 2015.

D. R. Kaye, Partial adrenalectomy: underused first line therapy for small adrenal tumors, J Urol, vol.184, issue.1, pp.18-25, 2010.

D. Colleselli and G. Janetschek, Current trends in partial adrenalectomy, Curr Opin Urol, vol.25, issue.2, pp.89-94, 2015.

M. Brauckhoff, Limitations of intraoperative adrenal remnant volume measurement in patients undergoing subtotal adrenalectomy, World J Surg, vol.32, issue.5, pp.863-72, 2008.

A. Midzak and V. Papadopoulos, Adrenal Mitochondria and Steroidogenesis: From Individual Proteins to Functional Protein Assemblies. Front Endocrinol (Lausanne), vol.7, p.106, 2016.

P. Motta, Ultrastructure of endocrine cells and tissues, vol.1, 1984.

W. L. Miller, Steroid hormone synthesis in mitochondria, Mol Cell Endocrinol, vol.379, issue.1-2, pp.62-73, 2013.

M. Häggström, Diagram of the pathways of human steroidogenesis. WikiJournal of medicine, vol.1, p.1, 2014.

W. L. Miller and R. J. Auchus, The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders, Endocr Rev, vol.32, issue.1, pp.81-151, 2011.

K. Henze and W. Martin, Evolutionary biology: essence of mitochondria, Nature, vol.426, issue.6963, pp.127-135, 2003.

M. Doghman-bouguerra and E. Lalli, The ER-mitochondria couple: In life and death from steroidogenesis to tumorigenesis, Mol Cell Endocrinol, vol.441, pp.176-184, 2017.

H. M. Mcbride, M. Neuspiel, and S. Wasiak, Mitochondria: more than just a powerhouse, Curr Biol, vol.16, issue.14, pp.551-60, 2006.

U. Brandt, ;. P. Mitochondrien--organellen-der-atp-gewinnung, M. Heinrich, L. Müller, and . Graeve, Löffler/Petrides Biochemie und Pathobiochemie, pp.235-251, 2014.

A. M. Van-der-bliek, M. M. Sedensky, and P. G. Morgan, Cell Biology of the Mitochondrion. Genetics, vol.207, issue.3, pp.843-871, 2017.

R. Prasad, Oxidative stress and adrenocortical insufficiency, J Endocrinol, vol.221, issue.3, pp.63-73, 2014.

M. Makrecka-kuka, G. Krumschnabel, and E. Gnaiger, High-Resolution Respirometry for Simultaneous Measurement of Oxygen and Hydrogen Peroxide Fluxes in Permeabilized Cells, Tissue Homogenate and Isolated Mitochondria, Biomolecules, vol.5, issue.3, pp.1319-1357, 2015.

K. S. Echtay, Superoxide activates mitochondrial uncoupling proteins, Nature, vol.415, issue.6867, pp.96-105, 2002.

G. A. Brooks, The Science and Translation of Lactate Shuttle Theory, Cell Metab, vol.27, issue.4, pp.757-785, 2018.

L. Baldari, Intestinal Ischemia and Infarction, Encyclopedia of Gastroenterology, pp.275-283, 2020.

E. Noll, Local but not systemic capillary lactate is a reperfusion biomarker in experimental acute limb ischaemia, Eur J Vasc Endovasc Surg, vol.43, issue.3, pp.339-379, 2012.

M. Diana, Metabolism-Guided Bowel Resection: Potential Role and Accuracy of Instant Capillary Lactates to Identify the Optimal Resection Site, Surg Innov, vol.22, issue.5, pp.453-61, 2015.

M. Diana, Enhanced-reality video fluorescence: a real-time assessment of intestinal viability, Ann Surg, vol.259, issue.4, pp.700-707, 2014.

M. Diana, Gastric supply manipulation to modulate ghrelin production and enhance vascularization to the cardia: proof of the concept in a porcine model, Surg Innov, vol.22, issue.1, pp.5-14, 2015.

M. Diana, Embolization of arterial gastric supply in obesity (EMBARGO): an endovascular approach in the management of morbid obesity. proof of the concept in the porcine model. Obesity surgery, vol.25, pp.550-558, 2015.

G. W. Ha, J. H. Kim, and M. R. Lee, Oncologic Impact of Anastomotic Leakage Following Colorectal Cancer Surgery: A Systematic Review and Meta-Analysis, Ann Surg Oncol, vol.24, issue.11, pp.3289-3299, 2017.

K. Seike, Laser Doppler assessment of the influence of division at the root of the inferior mesenteric artery on anastomotic blood flow in rectosigmoid cancer surgery, Int J Colorectal Dis, vol.22, issue.6, pp.689-97, 2007.

P. De-nardi, Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial, Surg Endosc, 2019.

I. Karampinis, Indocyanine Green Tissue Angiography Can Reduce Extended Bowel Resections in Acute Mesenteric Ischemia, J Gastrointest Surg, vol.22, issue.12, pp.2117-2124, 2018.

E. Liot, Does near-infrared (NIR) fluorescence angiography modify operative strategy during emergency procedures?, Surg Endosc, vol.32, issue.10, pp.4351-4356, 2018.

W. L. Wang, Venous Congestion in Ischemic Bowel, N Engl J Med, vol.377, issue.8, p.10, 2017.

M. Fujioka, Venous superdrained gastric tube pull-up procedure for hypopharyngeal and cervical esophageal reconstruction reduces postoperative anastomotic leakage and stricture, Dis Esophagus, vol.30, issue.8, pp.1-6, 2017.

D. B. Singh, Intraoperative measurement of colonic oxygenation during bowel resection, Adv Exp Med Biol, vol.645, pp.261-267, 2009.

K. L. Anderson and . Jr, Each procedure matters: threshold for surgeon volume to minimize complications and decrease cost associated with adrenalectomy, Surgery, vol.163, issue.1, pp.157-164, 2018.

F. Palazzo, Adrenal surgery in England: better outcomes in high-volume practices, Clin Endocrinol (Oxf), vol.85, issue.1, pp.17-20, 2016.

M. F. Monn, Changing USA national trends for adrenalectomy: the influence of surgeon and technique, BJU Int, vol.115, issue.2, pp.288-94, 2015.

D. Stefanidis, SAGES guidelines for minimally invasive treatment of adrenal pathology, Surg Endosc, vol.27, issue.11, pp.3960-80, 2013.

S. Gaujoux, European Society of Endocrine Surgeons (ESES) and European Network for the Study of Adrenal Tumours (ENSAT) recommendations for the surgical management of adrenocortical carcinoma, Br J Surg, vol.104, issue.4, pp.358-376, 2017.

A. Hauch, Z. Al-qurayshi, and E. Kandil, Factors associated with higher risk of complications after adrenal surgery, Ann Surg Oncol, vol.22, issue.1, pp.103-113, 2015.

L. M. Brunt, Retroperitoneal endoscopic adrenalectomy: an experimental study, Surg Laparosc Endosc, vol.3, issue.4, pp.300-306, 1993.

D. M. Hoenig, Direct Retroperitoneoscopic Adrenalectomy in the Porcine Model, Journal of laparoendoscopic surgery, vol.5, issue.6, pp.385-388, 1995.

A. Park and M. Gagner, A porcine model for laparoscopic adrenalectomy, Surg Endosc, vol.9, issue.7, pp.807-817, 1995.

A. T. Ludwig, Robot-assisted posterior retroperitoneoscopic adrenalectomy, J Endourol, vol.24, issue.8, pp.1307-1321, 2010.

M. Barczynski, Posterior retroperitoneoscopic adrenalectomy: a comparison between the initial experience in the invention phase and introductory phase of the new surgical technique, World J Surg, vol.31, issue.1, pp.65-71, 2007.

J. A. Miller, Safe introduction of a new surgical technique: remote telementoring for posterior retroperitoneoscopic adrenalectomy, ANZ J Surg, vol.82, issue.11, pp.813-819, 2012.

S. Treter, Telementoring: a multi-institutional experience with the introduction of a novel surgical approach for adrenalectomy, Ann Surg Oncol, vol.20, issue.8, pp.2754-2762, 2013.

G. Ruiz-babot, New directions for the treatment of adrenal insufficiency. Front Endocrinol (Lausanne), p.70, 2015.

J. W. Dobbie and T. Symington, The human adrenal gland with special reference to the vasculature, J Endocrinol, vol.34, issue.4, pp.479-89, 1966.

M. M. Swindle and A. C. Smith, Swine in the laboratory : surgery, anesthesia, imaging, and experimental techniques, 2015.

R. Getty, S. Sisson, and J. D. Grossman, Sisson and Grossman's The Anatomy of the Domestic Animals, 1975.

C. Kilkenny, Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research, PLoS Biol, vol.8, issue.6, p.1000412, 2010.

B. Seeliger, Simultaneous computer-assisted assessment of mucosal and serosal perfusion in a model of segmental colonic ischemia, Br J Surg, vol.106, issue.S4, pp.19-19, 2019.

M. Diana, Impact of valve-less vs. standard insufflation on pneumoperitoneum volume, inflammation, and peritoneal physiology in a laparoscopic sigmoid resection experimental model, Surg Endosc, vol.32, issue.7, pp.3215-3224, 2018.

J. M. Bonaventura, Reliability and accuracy of six hand-held blood lactate analysers, J Sports Sci Med, vol.14, issue.1, pp.203-217, 2015.

F. Pedregosa, Scikit-learn: Machine learning in Python, Journal of machine learning research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

P. A. Devijver and J. Kittler, Pattern recognition: A statistical approach, 1982.

T. E. Oliphant, Python for scientific computing, Computing in Science & Engineering, vol.9, issue.3, pp.10-20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02520043

R. F. Dondelinger, Relevant radiological anatomy of the pig as a training model in interventional radiology, Eur Radiol, vol.8, issue.7, pp.1254-73, 1998.

K. Suzuki, The branching site of the posterior adrenal artery in pigs, Okajimas folia anatomica Japonica, vol.62, issue.1, pp.27-33, 1985.

M. K. Walz, Posterior retroperitoneoscopic adrenalectomy--results of 560 procedures in 520 patients, Surgery, vol.140, issue.6, pp.943-951, 2006.

M. Horta, Extraperitoneal Space: Anatomic and Radiologic Overview, 2014.

E. Noll, Comparative analysis of resuscitation using human serum albumin and crystalloids or 130/0.4 hydroxyethyl starch and crystalloids on skeletal muscle metabolic profile during experimental haemorrhagic shock in swine: A randomised experimental study, Eur J Anaesthesiol, vol.34, issue.2, pp.89-97, 2017.

F. Ris, Multicentre phase II trial of near-infrared imaging in elective colorectal surgery, British Journal of Surgery, vol.105, issue.10, pp.1359-1367, 2018.

G. Armstrong, IntAct: intra-operative fluorescence angiography to prevent anastomotic leak in rectal cancer surgery: a randomized controlled trial, Colorectal Disease, vol.20, issue.8, pp.226-234, 2018.

K. Koyanagi, Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: New predictive evaluation of anastomotic leakage after esophagectomy, Medicine, vol.30, p.95, 2016.

F. Selka, Fluorescence-based enhanced reality for colorectal endoscopic surgery, Biomedical Image Registration. WBIR, vol.8545, 2014.

R. J. Cruz, Regional blood flow distribution and oxygen metabolism during mesenteric ischemia and congestion, Journal of Surgical Research, vol.161, issue.1, pp.54-61, 2010.

F. J. Guzmán-de-la-garza, Different patterns of intestinal response to injury after arterial, venous or arteriovenous occlusion in rats, World Journal of Gastroenterology, vol.15, issue.31, p.3901, 2009.

K. Yano, Time limits for intestinal ischemia and congestion: an experimental study in rats. Annals of plastic surgery, vol.32, pp.310-314, 1994.

M. Kimura, Real-time energy metabolism of intestine during arterial versus venous occlusion in the rat, Journal of gastroenterology, vol.38, issue.9, pp.849-853, 2003.

M. Vincenti, Induction of intestinal ischemia reperfusion injury by portal vein outflow occlusion in rats, Journal of gastroenterology, vol.45, issue.11, pp.1103-1110, 2010.

A. Nasser, Utilizing indocyanine green dye angiography to detect simulated flap venous congestion in a novel experimental rat model, Journal of reconstructive microsurgery, vol.31, issue.08, pp.590-596, 2015.

F. Bodin, Porcine model for free-flap breast reconstruction training, Journal of Plastic, Reconstructive & Aesthetic Surgery, vol.68, issue.10, pp.1402-1409, 2015.

D. M. Milstein, Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy, Medicine, issue.25, p.95, 2016.

M. Diana, Redistribution of gastric blood flow by embolization of gastric arteries before esophagectomy. The Annals of thoracic surgery, vol.91, pp.1546-1551, 2011.

F. Yoshimi, Using the supercharge technique to additionally revascularize the gastric tube after a subtotal esophagectomy for esophageal cancer. The American journal of surgery, vol.191, pp.284-287, 2006.

K. Kono, Transient bloodletting of the short gastric vein in the reconstructed gastric tube improves gastric microcirculation during esophagectomy. World journal of surgery, vol.31, pp.780-784, 2007.

G. Alemanno, Combination of diagnostic laparoscopy and intraoperative indocyanine green fluorescence angiography for the early detection of intestinal ischemia not detectable at CT scan, Int J Surg Case Rep, vol.26, pp.77-80, 2016.

B. Vollmar and M. D. Menger, Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences, Langenbecks Arch Surg, vol.396, issue.1, pp.13-29, 2011.

N. Hogberg, Intestinal ischemia measured by intraluminal microdialysis, Scand J Clin Lab Invest, vol.72, issue.1, pp.59-66, 2012.

L. Urbanavicius, How to assess intestinal viability during surgery: A review of techniques, World J Gastrointest Surg, vol.3, issue.5, pp.59-69, 2011.

L. Boni, Indocyanine green fluorescence angiography during laparoscopic low anterior resection: results of a case-matched study, Surg Endosc, vol.31, issue.4, pp.1836-1840, 2017.

J. Grootjans, Life and death at the mucosal-luminal interface: New perspectives on human intestinal ischemia-reperfusion, World J Gastroenterol, vol.22, issue.9, pp.2760-70, 2016.

D. A. Sherwinter, J. Gallagher, and T. Donkar, Intra-operative transanal near infrared imaging of colorectal anastomotic perfusion: a feasibility study, Colorectal Dis, vol.15, issue.1, pp.91-97, 2013.

J. Grone, D. Koch, and M. E. Kreis, Impact of intraoperative microperfusion assessment with Pinpoint Perfusion Imaging on surgical management of laparoscopic low rectal and anorectal anastomoses, Colorectal Dis, vol.17, pp.22-30, 2015.

A. Furajii, H. , and R. A. Cahill, Laparoscopic and Endoscopic Near-infrared Perfusion Assessment of in situ ileoileal, ileocolic, colocolic, colorectal and ileoanal anastomosis during intestinal operation for benign and malignant disease: A Video Vignette, Colorectal Dis, vol.17, p.37, 2015.

M. Guraieb-trueba, T. Frering, and S. Atallah, Combined endoscopic and laparoscopic real-time intra-operative evaluation of bowel perfusion using fluorescence angiography, Tech Coloproctol, vol.20, issue.12, pp.883-884, 2016.

M. Cakmak, Ultrastructural and hormonal changes in the contralateral adrenal gland in unilateral adrenal gland ischemia: an experimental study in rats, Surg Today, vol.28, issue.9, pp.907-921, 1998.

K. Kovacs, R. Carroll, and E. Tapp, Temporary ischaemia of the rat adrenal gland, J Pathol Bacteriol, vol.91, issue.1, pp.235-275, 1966.

M. Brauckhoff, Critical size of residual adrenal tissue and recovery from impaired early postoperative adrenocortical function after subtotal bilateral adrenalectomy. Surgery, vol.134, pp.1027-1035, 2003.

M. Brauckhoff,

, Chirurg, vol.74, issue.7, pp.646-51, 2003.

T. Nakada, Therapeutic outcome of primary aldosteronism: adrenalectomy versus enucleation of aldosterone-producing adenoma, J Urol, vol.153, issue.6, pp.1775-80, 1995.

. Je, A. Particulièrement-carlos, T. Balland, G. Lionel, H. David et al.,

, Que se serait-il passé sans la Mannschaft de Pierre CHAUMENY

P. Kleiss, . Seyer, and M. Yohan, Merci une fois de plus pour votre disponibilité

, Un très grand merci à l'équipe de l'animalerie pour la prise en charge de mes chers patients animaux, ainsi qu'à toute l'équipe de la plateforme expérimentale de l'IHU ! Votre aide a été énormément bénéfique et ça a été un plaisir de travailler avec vous !

M. Jacques, a inspiré à découvrir la passion de la chirurgie mini-invasive innovante et futuriste, à devenir une chirurgienne viscérale, et à me surpasser en me lançant dans de nouveaux défis de manière continue, avec le soutien exceptionnel de la famille IRCAD depuis maintenant 16 ans. Merci, maître -pour tout ! Parmi tant de personnes qui m'ont inspiré et donné des opportunités dans le cadre du « fellowship programme » de l'IHU Strasbourg, je souhaite remercier en particulier Didier MUTTER, Bernard DALLEMAGNE, et Lee SWANSTRÖM pour l'exposition à l'innovation dans la recherche chirurgicale, ainsi que Silvana PERRETTA et Mariano GIMENEZ

, A big thank you goes to all my fellow colleagues for the constant exchange, the opportunities of assisting each other in the experimental procedures and for the fascinating points of view arising in our community of international backgrounds. Thank you all for being a big family! Ganz herzlich möchte ich mich bei

, Sie haben meinen Wunsch nach internationalem Austausch und wissenschaftlichem Arbeiten tatkräftig unterstützt und stehen mir ungeachtet der räumlichen Entfernung weiterhin zur Seite. Danke vielmals! Nicht zuletzt möchte ich mich bei meinen Eltern bedanken

B. Seeliger, M. Barberio, D. 'urso, A. , A. V. Longo et al., Annals of Laparoscopic and Endoscopic Surgery, 2018.

, New intraoperative imaging technologies: Innovating the surgeon's eye toward surgical precision

P. Mascagni, F. Longo, M. Barberio, B. Seeliger, A. V. Saccomandi et al., Discrimination between arterial and venous bowel ischemia by computer, vol.118, pp.265-282, 2018.

G. Quero, A. Lapergola, M. Barberio, B. Seeliger, I. Gockel et al., , 2019.

, HYPerspectral Enhanced Reality (HYPER): a machine-learning powered, 2018.

M. Barberio, F. Longo, C. Fiorillo, B. Seeliger, P. Mascagni et al., , 2019.

, Hybrid fluorescent magnetic gastrojejunostomy: an experimental feasibility study in the porcine model and human cadaver

R. Watanabe, M. Barberio, S. Kanaji, A. Lapergola, A. H. Ashoka et al., , 2019.

B. Seeliger, M. K. Walz, P. F. Alesina, A. V. Pop, R. Barberio et al., , 2019.

B. Seeliger, V. Agnus, P. Mascagni, M. Barberio, F. Longo et al., Surgical Endoscopy -Quantitative fluorescence angiography vs. hyperspectral imaging to assess bowel ischemia: a comparative study in enhanced reality

M. Barberio, E. Felli, A. V. Seyller, E. Seeliger, B. Chand et al., Surgical Endoscopy -Fluoreszenz-gesteuerte Detektion von Lymphknotenmetastasen bei gastrointestinalen Tumoren (Fluorescence-guided detection of lymph node metastases of gastro

A. Picchetto, B. Seeliger, L. Rocca, S. Barberio, M. et al., , 2019.

B. Seeliger, M. K. Walz, P. F. Alesina, R. Pop, A. Charles et al.,

T. Wakabayashi, M. Barberio, T. Urade, R. Pop, P. Mascagni et al., Liste des présentations orales -Discrimination between arterial and venous bowel ischemia by computer-assisted analysis of the fluorescent signal

G. Quero, A. Lapergola, V. Agnus, P. Saccomandi, L. Guerriero et al., Annual Meeting and 16th World Congress of Endoscopic Surgery, 2018.

B. Seeliger, P. Mascagni, F. Longo, M. Barberio, A. Lapergola et al., Diana M SMIT2018-IBEC2018 Joint Conference (Society for Medical Innovation and Technology -International Biomedical Engineering Conference), 2018.

B. Seeliger, P. Mascagni, F. Longo, M. Barberio, A. Lapergola et al., Diana M 106e Congrès annuel de la Société Suisse de Chirurgie, p.15

B. Seeliger, M. K. Walz, P. F. Alesina, R. Pop, A. Charles et al., Suisse -Fluorescence-enabled assessment of adrenal gland localization and perfusion in posterior retroperitoneoscopic adrenal surgery in a preclinical model, Diana M 106e Congrès annuel de la Société Suisse de Chirurgie, p.15

B. Seeliger, M. K. Walz, P. F. Alesina, A. V. Pop, R. Barberio et al., Espagne -Near-infrared coating of equipment (NICE) to aid intraoperative catheter identification -a preclinical testing of novel fluorescent coatings, Barceló Convention Center Seville

B. Seeliger, A. H. Ashoka, A. V. Barberio, M. Picchetto, A. Andreiuk et al., Diana M 27th International EAES Congress (European Association for Endoscopic Surgery), 12.-15.06, Barceló Convention Center Seville, Espagne -Anticipating the automated intraoperative tissue recognition: intraoperative tissue classification using hyperspectral imaging and machine learning, 2019.

M. Barberio, A. V. Longo, F. Fiorillo, C. Seeliger, B. Saadi et al., Barceló Convention Center Seville, Espagne -Hybrid magnetic gastrojejunostomy using a fluorescent magnetic anastomotic device: a feasibility study on the porcine model and human cadaver

R. Watanabe, M. Barberio, A. Lapergola, A. Klymchenko, L. Guerriero et al., Diana M 27th International EAES Congress