D. Leister, Towards understanding the evolution and functional diversification of DNA-containing plant organelles, 2016.

O. Trentmann and I. Haferkamp, Current progress in tonoplast proteomics reveals insights into the function of the large central vacuole, Frontiers in plant science, vol.4, p.34, 2013.

S. B. Gould, R. F. Waller, and G. I. Mcfadden, Plastid evolution, Annual review of plant biology, vol.59, pp.491-517, 2008.

K. Cline, D. , and C. , Plastid protein import and sorting: different paths to the same compartments, Current opinion in plant biology, vol.11, pp.585-592, 2008.

P. Jarvis and E. Lopez-juez, Biogenesis and homeostasis of chloroplasts and other plastids, Nature reviews. Molecular cell biology, vol.14, pp.787-802, 2013.

H. M. Li and C. C. Chiu, Protein transport into chloroplasts, Annual review of plant biology, vol.61, pp.157-180, 2010.

W. Sakamoto, S. Y. Miyagishima, J. , and P. , Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. The Arabidopsis book, vol.6, p.110, 2008.

M. A. Block, R. Douce, J. Joyard, R. , and N. , Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol, Photosynthesis research, vol.92, pp.225-244, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00168282

N. Rolland, G. Curien, G. Finazzi, M. Kuntz, E. Marechal et al., The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes, Annual review of genetics, vol.46, pp.233-264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744117

M. Bellucci, D. Marchis, F. Pompa, and A. , The endoplasmic reticulum is a hub to sort proteins toward unconventional traffic pathways and endosymbiotic organelles, J. Exp. Bot, vol.69, issue.1, pp.7-20, 2018.

P. Jarvis, Targeting of nucleus-encoded proteins to chloroplasts in plants, New Phytol, vol.179, issue.2, pp.257-285, 2008.

P. Jarvis and E. López-juez, Biogenesis and homeostasis of chloroplasts and other plastids, Nat. Rev. Mol. Cell. Biol, vol.14, issue.12, pp.787-802, 2013.

D. W. Lee, J. Lee, and I. Hwang, Sorting of nuclear-encoded chloroplast membrane proteins, Curr. Opin. Plant. Biol, vol.40, pp.1-7, 2017.

I. Sjuts, J. Soll, and B. Bölter, Import of soluble proteins into chloroplasts and potential regulatory mechanisms, Front. Plant Sci, vol.8, p.168, 2017.

L. Tian and T. W. Okita, mRNA-based protein targeting to the endoplasmic reticulum and chloroplasts in plant cells, Curr. Opin. Plant Biol, vol.22, pp.77-85, 2014.

A. Villarejo, S. Burén, S. Larsson, A. Déjardin, M. Monné et al., Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast, Nat. Cell. Biol, vol.7, issue.12, pp.1224-1231, 2005.

S. Asatsuma, C. Sawada, K. Itoh, M. Okito, A. Kitajima et al., Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts, Plant Cell Physiol, vol.46, issue.6, pp.858-869, 2005.

A. Kitajima, S. Asatsuma, H. Okada, Y. Hamada, K. Kaneko et al., The rice alpha-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids, Plant Cell, vol.21, issue.9, pp.2844-2858, 2009.

T. Shiraya, T. Mori, T. Maruyama, M. Sasaki, T. Takamatsu et al., Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice, Plant Biotechnol. J, vol.13, issue.9, pp.1251-1263, 2015.

Y. Nanjo, H. Oka, N. Ikarashi, K. Kaneko, A. Kitajima et al.,

, pyrophosphatase/phosphodiesterase is transported from the ER-golgi to the chloroplast through the secretory pathway, Plant Cell, vol.18, issue.10, pp.2582-2592, 2006.

K. Kaneko, T. Takamatsu, T. Inomata, K. Oikawa, K. Itoh et al., N-Glycomic and Microscopic subcellular localization analyses of NPP1, 2 and 6 strongly indicate that trans-Golgi compartments participate in the Golgi to plastid traffic of Nucleotide Pyrophosphatase/Phosphodiesterases in rice, Plant Cell Physiol, vol.57, issue.8, pp.1610-1638, 2016.

M. Baslam, K. Oikawa, A. Kitajima-koga, K. Kaneko, and T. Mitsui, Golgi-to-plastid trafficking of proteins through secretory pathway: Insights into vesicle-mediated import toward the plastids, Plant Signal. Behav, vol.11, issue.9, p.1221558, 2016.

E. C. Nowack and A. R. Grossman, Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora, Proc. Natl. Acad. Sci. U. S. A, vol.109, issue.14, pp.5340-5345, 2012.

A. Singer, G. Poschmann, C. Mûhlich, C. Valadez-cano, S. Hänsch et al., Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora, Curr. Biol, vol.27, pp.2763-2773, 2017.

S. Miras, D. Salvi, M. Ferro, D. Grunwald, J. Garin et al., Non canonical transit peptide for import into the chloroplast, J. Biol. Chem, vol.277, pp.47770-47778, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02680302

S. Miras, D. Salvi, L. Piette, D. Seigneurin-berny, D. Grunwald et al., Toc159-and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts, J. Biol. Chem, vol.282, issue.40, pp.29482-29492, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00181123

A. Nada and J. Soll, Inner envelope protein 32 is imported into chloroplasts by a novel pathway, J. Cell. Sci, vol.117, pp.3975-3982, 2004.

W. Chang, J. Soll, and B. Bölter, A new member of the psToc159 family contributes to distinct protein targeting pathways in pea chloroplasts Front, Plant Sci, vol.5, p.239, 2014.

G. Curien, C. Giustini, J. L. Montillet, S. Mas-y-mas, D. Cobessi et al., The chloroplast membrane associated ceQORH putative quinone oxidoreductase reduces long-chain, stress-related oxidized lipids, Phytochemistry, vol.122, pp.45-55, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01256723

S. Mas-y-mas, G. Curien, C. Giustini, N. Rolland, J. L. Ferrer et al., Crystal structure of the chloroplastic oxoene reductase ceQORH from Arabidopsis thaliana, Front. Plant Sci, vol.8, p.329, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494299

M. Ferro, S. Brugière, D. Salvi, D. Seigneurin-berny, M. Court et al., AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins, Mol. Cell. Proteomics, vol.9, issue.6, pp.1063-1084, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00470319

M. Ferro, D. Salvi, S. Brugière, S. Miras, S. Kowalski et al., Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana, Mol. Cell. Proteomics, vol.2, pp.325-345, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02671525

C. Carrie and I. Small, A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts, Biochim. Biophys. Acta, vol.1833, issue.2, pp.253-259, 2013.

A. Marmagne, M. A. Rouet, M. Ferro, N. Rolland, C. Alcon et al., Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome, Mol. Cell. Proteomics, vol.3, issue.7, pp.675-691, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122894

E. Alexandersson, G. Saalbach, C. Larsson, and P. Kjellbom, Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking, Plant Cell Physiol, vol.45, issue.11, pp.1543-1556, 2004.

N. Nikolovski, D. Rubtsov, M. P. Segura, G. P. Miles, T. J. Stevens et al., Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics, Plant Physiol, vol.160, pp.1037-1051, 2012.

W. Heard, J. Sklená?, D. F. Tomé, S. Robatzek, and A. M. Jones, Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection, Mol. Cell. Proteomics, vol.14, issue.7, pp.1796-1813, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01568628

D. G. Robinson, L. Jiang, and K. Schumacher, The Endosomal System of plants: charting new and familiar territories, Plant Physiol, vol.147, pp.1482-1492, 2008.

E. Mccormack, Y. C. Tsai, and J. Braam, Handling calcium signaling: Arabidopsis CaMs and CMLs, Trends Plant Sci, vol.10, issue.8, pp.383-389, 2005.

L. Verde, V. Dominici, P. Astegno, and A. , Towards understanding plant calcium signaling through calmodulin-like proteins: A biochemical and structural perspective, Int. J. Mol. Sci, vol.19, issue.5, p.1331, 2018.

M. Rodríguez-concepción, S. Yalovsky, M. Zik, H. Fromm, and W. Gruissem, The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein, EMBO J, vol.18, issue.7, pp.1996-2007, 1999.

M. Rodríguez-concepción, G. Toledo-ortiz, S. Yalovsky, D. Caldelari, and W. Gruissem, Carboxylmethylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein, Plant J, vol.24, issue.6, pp.775-784, 2000.

E. Dell'aglio, C. Giustini, D. Salvi, S. Brugière, F. Delpierre et al., Complementary biochemical approaches applied to the identification of plastidial calmodulin-binding proteins, Mol. Biosyst, vol.9, issue.6, pp.1234-1248, 2013.

B. P. Downes, S. A. Saracco, S. S. Lee, D. N. Crowell, and R. D. Vierstra, MUBs, a family of Ubiquitin-fold proteins that are plasma membrane-anchored by prenylation, J. Biol. Chem, vol.281, pp.27145-27157, 2006.

N. A. Al-quraan, R. D. Locy, and N. K. Singh, Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress, Plant Physiol. Biochem, vol.48, issue.8, pp.697-702, 2010.

B. Zybailov, H. Rutschow, G. Friso, A. Rudella, O. Emanuelsson et al., Sorting signals, Nterminal modifications and abundance of the chloroplast proteome, PLoS One, vol.3, issue.4, p.1994, 2008.

U. Armbruster, A. Hertle, E. Makarenko, J. Zühlke, M. Pribil et al., Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome?, Mol. Plant, vol.2, issue.6, pp.1325-1335, 2009.

D. Salvi, N. Rolland, J. Joyard, and M. Ferro, Purification and proteomic analysis of chloroplasts and their suborganellar compartments, Methods Mol. Biol, vol.432, pp.19-36, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274773

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

N. H. Chua, Electrophoretic analysis of chloroplast proteins, Methods Enzymol, vol.69, pp.434-436, 1980.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

M. Walter, C. Chaban, K. Schütze, O. Batistic, K. Weckermann et al., Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation, Plant J, vol.40, issue.3, pp.428-438, 2004.

P. Boevink, S. Cruz, C. Hawes, N. Harris, and K. J. Oparka, Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plant cells, Plant J, vol.10, pp.935-941, 1996.

J. K. Rose and S. J. Lee, Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome, Plant Physiol, vol.153, issue.2, pp.433-436, 2010.

D. G. Robinson and P. Pimpl, Clathrin and post-Golgi trafficking: a very complicated issue, Trends Plant Sci, vol.19, issue.3, pp.134-139, 2014.

, At 0 h, 2 h, 5 h et 8 h for MS-grown plants (A) and 15 min, 30 min, 1 h, 2 h, before cooling at 23°C for 1 h and 2 h for soil-grown plants (B), samples were taken and either immediately analyzed using confocal microscopy (see Figure 10), or stored in liquid nitrogen upon use for SDS-PAGE and western-blot detection of CaM. SDS-PAGE: whole cell proteins from Arabidopsis leave were extracted from heattreated leaves, using protocol and buffers described for crude cell extracts (see Methods). Then, 15 µg of proteins from each crude cell extract were run on a SDS-PAGE. Western-blot: proteins were transferred to membranes using CaM transfer specific conditions (see Methods) and the CaM isoforms were detected using the CaM-767 antibody (1/5000 dilution). The secondary antibody (anti rabbit fused to HRP) was used at a 1/10,000 dilution, before detection using ECL. * indicates expected Mw of CaM5 (AT2G27030.3), 20,576 Da. the plastids (see Figure 6). The same is true for Del-Tic32 lacking CaM-binding properties which is mostly detected in the plastids (see Figure 8). When isoprenylation of CaM5 is affected of after treatment with adverse light conditions, ceQORH is released from the PM and possibly reaches the secretory ( as demonstrated for CaM53). However, while ceQORH accumulates in cellular vesicles, it does not localize to plastids (see Supporting Figure 7) thus suggesting that its CaM-binding properties limits further trafficking to plastids. After heat stress, affecting CaM5 stability (see Supporting Figure 8), or when CaM5 is deleted (cam5 mutant), ceQORH is also released from the PM (see Figures 9 and 10, respectively) and, like Mut2-ceQORH or Del-Tic32, may follow the same hypothetical trafficking pathway, back to plastids. The following steps remains totally hypothetical. First, ceQORH or Mut2-ceQORH could use the CCV-dependent pathway back to the TGN. Indeed, Baslam et al. (Plant Signal Behav. 2016) have recently shown that TGN is involved in ER-Golgi-plastid trafficking. There, fragmentation of the TGN are known to separates the premultivesicular body (MVB) from CCV-forming domains, which release some CCVs for transport (recycling) of membrane proteins to the PM and other CCVs for the transport of proteins to other compartments (including the vacuole), Heat stress affects stability of CaM5 in planta. Arabidopsis plants were either pre-grown on MS-medium (A), or on soil (B), in growth rooms at 23°C (12-h light cycle) with a light intensity of 100 µmol.m -2 .S -1 . Plants were transferred to 42°C at the same light intensity, vol.8, pp.11-21, 2008.

A. Reyes-prieto, A. P. Weber, and D. Bhattacharya, The origin and establishment of the plastid in algae and plants, Annu Rev Genet, vol.41, pp.147-68, 2007.

H. S. Yoon, A molecular timeline for the origin of photosynthetic eukaryotes, Mol Biol Evol, vol.21, issue.5, pp.809-827, 2004.

P. Jarvis and E. Lopez-juez, Biogenesis and homeostasis of chloroplasts and other plastids, Nat Rev Mol Cell Biol, vol.14, issue.12, pp.787-802, 2013.

D. W. Lee, J. Lee, and I. Hwang, Sorting of nuclear-encoded chloroplast membrane proteins, Curr Opin Plant Biol, vol.40, pp.1-7, 2017.

M. Ferro, Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana, Mol Cell Proteomics, vol.2, issue.5, pp.325-370, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02671525

S. Miras, Non-canonical transit peptide for import into the chloroplast, J Biol Chem, vol.277, issue.49, pp.47770-47778, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02680302

A. Nada and J. Soll, Inner envelope protein 32 is imported into chloroplasts by a novel pathway, J Cell Sci, issue.117, pp.3975-82, 2004.

S. Miras, Toc159-and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts, J Biol Chem, vol.282, issue.40, pp.29482-92, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00181123

R. Bock and J. N. Timmis, Reconstructing evolution: gene transfer from plastids to the nucleus, Bioessays, vol.30, issue.6, pp.556-66, 2008.

M. A. Block, Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol, Photosynth Res, vol.92, issue.2, pp.225-269, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00168282

A. Vojta, The protein translocon of the plastid envelopes, J Biol Chem, vol.279, pp.21401-21406, 1920.

J. Joyard, Envelope membranes from mature spinach chloroplasts contain a NADPH:protochlorophyllide reductase on the cytosolic side of the outer membrane, J Biol Chem, vol.265, issue.35, pp.21820-21827, 1990.

N. Rolland, The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes, Annu Rev Genet, vol.46, pp.233-64, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744117

P. Chotewutmontri, K. Holbrook, and B. D. Bruce, Plastid Protein Targeting: Preprotein Recognition and Translocation, Int Rev Cell Mol Biol, vol.330, pp.227-294, 2017.

B. D. Bruce, Chloroplast transit peptides: structure, function and evolution, Trends Cell Biol, vol.10, issue.10, pp.440-447, 2000.

B. D. Bruce, The paradox of plastid transit peptides: conservation of function despite divergence in primary structure, Biochim Biophys Acta, pp.2-21, 2001.

A. Douwe-de-boer and P. J. Weisbeek, Chloroplast protein topogenesis: import, sorting and assembly, Biochim Biophys Acta, vol.1071, issue.3, pp.221-53, 1991.

X. P. Zhang and E. Glaser, Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone, Trends Plant Sci, vol.7, issue.1, pp.14-21, 2002.

R. P. Beckmann, L. E. Mizzen, and W. J. Welch, Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly, Science, vol.248, issue.4957, pp.850-854, 1990.

T. May and J. Soll, 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants, Plant Cell, vol.12, issue.1, pp.53-64, 2000.

P. Jarvis and F. Kessler, Mechanisms of Chloroplast Protein Import in Plants, pp.241-270, 2014.

G. A. Karlin-neumann and E. M. Tobin, Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework, Embo j, vol.5, issue.1, pp.9-13, 1986.

L. X. Shi and S. M. Theg, The chloroplast protein import system: from algae to trees, Biochim Biophys Acta, vol.1833, issue.2, pp.314-345, 2013.

M. Bohnert, N. Pfanner, and M. Van-der-laan, A dynamic machinery for import of mitochondrial precursor proteins, FEBS Lett, vol.581, issue.15, pp.2802-2812, 2007.

P. Jarvis, Targeting of nucleus-encoded proteins to chloroplasts in plants, New Phytologist, vol.179, issue.2, pp.257-285, 2008.

W. Neupert and M. Brunner, The protein import motor of mitochondria, Nat Rev Mol Cell Biol, vol.3, issue.8, pp.555-65, 2002.

D. J. Schnell, F. Kessler, and G. Blobel, Isolation of components of the chloroplast protein import machinery, Science, vol.266, issue.5187, pp.1007-1019, 1994.

D. J. Schnell, A consensus nomenclature for the protein-import components of the chloroplast envelope, Trends Cell Biol, vol.7, issue.8, pp.303-307, 1997.

T. Becker, Toc12, a novel subunit of the intermembrane space preprotein translocon of chloroplasts, Mol Biol Cell, vol.15, issue.11, pp.5130-5174, 2004.

M. Gutensohn, Functional analysis of the two Arabidopsis homologues of Toc34, a component of the chloroplast protein import apparatus, Plant J, vol.23, issue.6, pp.771-83, 2000.

P. Jarvis, An Arabidopsis mutant defective in the plastid general protein import apparatus, Science, vol.282, issue.5386, pp.100-103, 1998.

A. Hiltbrunner, Protein translocon at the Arabidopsis outer chloroplast membrane, Biochem Cell Biol, vol.79, issue.5, pp.629-664, 2001.

D. Jackson-constan and K. Keegstra, Arabidopsis genes encoding components of the chloroplastic protein import apparatus, Plant Physiol, vol.125, issue.4, pp.1567-76, 2001.

P. Jarvis and J. Soll, Toc, tic, and chloroplast protein import, Biochim Biophys Acta, vol.1590, issue.1-3, pp.177-89, 2002.

S. Kubis, Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors, Plant Cell, vol.16, issue.8, pp.2059-77, 2004.

D. Constan, An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis, Plant J, vol.38, issue.1, pp.93-106, 2004.

S. Kubis, The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins, Plant Cell, vol.15, issue.8, pp.1859-71, 2003.

E. Demarsy, A. M. Lakshmanan, and F. Kessler, Border control: selectivity of chloroplast protein import and regulation at the TOC-complex, Front Plant Sci, vol.5, p.483, 2014.

Y. Ivanova, Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids, Mol Biol Cell, vol.15, issue.7, pp.3379-92, 2004.

J. Bauer, The major protein import receptor of plastids is essential for chloroplast biogenesis, Nature, vol.403, issue.6766, pp.203-210, 2000.

S. Qbadou, Toc64--a preprotein-receptor at the outer membrane with bipartide function, J Mol Biol, vol.367, issue.5, pp.1330-1376, 2007.

H. Aronsson, Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis thaliana, Plant J, vol.52, issue.1, pp.53-68, 2007.

N. Rosenbaum-hofmann and S. M. Theg, Toc64 is not required for import of proteins into chloroplasts in the moss Physcomitrella patens, Plant J, vol.43, issue.5, pp.675-87, 2005.

M. Zufferey, The novel chloroplast outer membrane kinase KOC1 is a required component of the plastid protein import machinery, J Biol Chem, vol.292, issue.17, pp.6952-6964, 2017.

F. Hormann, Tic32, an essential component in chloroplast biogenesis, J Biol Chem, vol.279, issue.33, pp.34756-62, 2004.

F. Kessler and G. Blobel, Interaction of the protein import and folding machineries of the chloroplast, Proc Natl Acad Sci, vol.93, issue.15, pp.7684-7693, 1996.

F. Kessler and D. Schnell, Chloroplast biogenesis: diversity and regulation of the protein import apparatus, Curr Opin Cell Biol, vol.21, issue.4, pp.494-500, 2009.

H. M. Li and C. C. Chiu, Protein transport into chloroplasts, Annu Rev Plant Biol, vol.61, pp.157-80, 2010.

S. Schwenkert, J. Soll, and B. Bolter, Protein import into chloroplasts--how chaperones feature into the game, Biochim Biophys Acta, vol.1808, issue.3, pp.901-912, 2011.

S. Kikuchi, Uncovering the protein translocon at the chloroplast inner envelope membrane, Science, vol.339, issue.6119, pp.571-575, 2013.

M. Nakai, The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts, Biochim Biophys Acta, vol.1847, issue.9, pp.957-67, 2015.

S. Kikuchi, A 1-megadalton translocation complex containing Tic20 and Tic21 mediates chloroplast protein import at the inner envelope membrane, Plant Cell, vol.21, issue.6, pp.1781-97, 2009.

D. Kohler, Characterization of chloroplast protein import without Tic56, a component of the 1-megadalton translocon at the inner envelope membrane of chloroplasts, Plant Physiol, vol.167, issue.3, pp.972-90, 2015.

S. V. Scott and S. M. Theg, A new chloroplast protein import intermediate reveals distinct translocation machineries in the two envelope membranes: energetics and mechanistic implications, J Cell Biol, vol.132, issue.1-2, pp.63-75, 1996.

U. Flores-perez and P. Jarvis, Molecular chaperone involvement in chloroplast protein import, Biochim Biophys Acta, vol.1833, issue.2, pp.332-372, 2013.

T. Inaba and D. J. Schnell, Protein trafficking to plastids: one theme, many variations, Biochem J, vol.413, issue.1, pp.15-28, 2008.

L. Vojta, J. Soll, and B. Bolter, Protein transport in chloroplasts -targeting to the intermembrane space, Febs j, vol.274, pp.5043-54, 2007.

L. Nussaume, Chloroplast SRP takes another road, Nat Chem Biol, vol.4, issue.9, pp.529-560, 2008.

L. Yi and R. E. Dalbey, Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (review), Mol Membr Biol, vol.22, issue.1-2, pp.101-112, 2005.

D. Michl, Targeting of proteins to the thylakoids by bipartite presequences: CFoII is imported by a novel, third pathway. Embo j, vol.13, pp.1310-1317, 1994.

L. A. Eichacker and R. Henry, Function of a chloroplast SRP in thylakoid protein export, Biochim Biophys Acta, pp.120-154, 2001.

Y. Asakura, S. Kikuchi, and M. Nakai, Non-identical contributions of two membranebound cpSRP components, cpFtsY and Alb3, to thylakoid biogenesis, Plant J, vol.56, issue.6, pp.1007-1024, 2008.

N. A. Braun and S. M. Theg, The chloroplast Tat pathway transports substrates in the dark, J Biol Chem, vol.283, issue.14, pp.8822-8830, 2008.

N. R. Hofmann and S. M. Theg, Protein-and energy-mediated targeting of chloroplast outer envelope membrane proteins, Plant J, vol.44, issue.6, pp.917-944, 2005.

A. Krogh, Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, J Mol Biol, vol.305, issue.3, pp.567-80, 2001.

H. M. Li and L. J. Chen, Protein targeting and integration signal for the chloroplastic outer envelope membrane, Plant Cell, vol.8, issue.11, pp.2117-2143, 1996.

E. Muckel and J. Soll, A protein import receptor of chloroplasts is inserted into the outer envelope membrane by a novel pathway, J Biol Chem, vol.271, issue.39, pp.23846-52, 1996.

H. Li and L. J. Chen, A novel chloroplastic outer membrane-targeting signal that functions at both termini of passenger polypeptides, J Biol Chem, vol.272, issue.16, pp.10968-74, 1997.

K. Inoue and K. Keegstra, A polyglycine stretch is necessary for proper targeting of the protein translocation channel precursor to the outer envelope membrane of chloroplasts, Plant J, vol.34, issue.5, pp.661-670, 2003.

P. J. Tranel, A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway, Embo j, vol.14, issue.11, pp.2436-2482, 1995.

P. Jarvis and C. Robinson, Mechanisms of protein import and routing in chloroplasts, Curr Biol, vol.14, issue.24, pp.1064-77, 2004.

U. Armbruster, Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome? Mol Plant, vol.2, pp.1325-1360, 2009.

P. C. Bandaranayake, A single-electron reducing quinone oxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria, Plant Cell, vol.22, issue.4, pp.1404-1423, 2010.

T. Kleffmann, The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions, Curr Biol, vol.14, issue.5, pp.354-62, 2004.

M. Ferro, Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters, Proc Natl Acad Sci, vol.99, issue.17, pp.11487-92, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02682415

D. Seigneurin-berny, Technical Advance: Differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins, Plant J, vol.19, issue.2, pp.217-228, 1999.

G. Curien, The chloroplast membrane associated ceQORH putative quinone oxidoreductase reduces long-chain, stress-related oxidized lipids, Phytochemistry, vol.122, pp.45-55, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01256723

S. Mas-y-mas, Analytical ultracentrifugation and preliminary X-ray studies of the chloroplast envelope quinone oxidoreductase homologue from Arabidopsis thaliana, Acta Crystallogr F Struct Biol Commun, issue.71, pp.455-463, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01143277

Y. M. Mas, Crystal Structure of the Chloroplastic Oxoene Reductase ceQORH from Arabidopsis thaliana, Front Plant Sci, vol.8, p.329, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494299

W. Chang, J. Soll, and B. Bolter, A new member of the psToc159 family contributes to distinct protein targeting pathways in pea chloroplasts, Front Plant Sci, vol.5, p.239, 2014.

E. Kovacs-bogdan, J. Soll, and B. Bolter, Protein import into chloroplasts: the Tic complex and its regulation, Biochim Biophys Acta, issue.6, pp.740-747, 2010.

F. Chigri, Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32, Proc Natl Acad Sci, vol.103, issue.43, pp.16051-16057, 2006.

E. Heyno, R. N.-alkan, and . Fluhr, A dual role for plant quinone reductases in host-fungus interaction, Physiol Plant, vol.149, issue.3, pp.340-53, 2013.

F. Sparla, G. Tedeschi, and P. Trost, NAD(P)H:(Quinone-Acceptor) Oxidoreductase of Tobacco Leaves Is a Flavin Mononucleotide-Containing Flavoenzyme, Plant Physiol, vol.112, issue.1, pp.249-258, 1996.

A. Marmagne, Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome, Mol Cell Proteomics, vol.3, issue.7, pp.675-91, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122894

P. Jarvis, Organellar proteomics: chloroplasts in the spotlight, Curr Biol, vol.14, issue.8, pp.317-326, 2004.

M. X. Andersson, M. Goksor, and A. S. Sandelius, Membrane contact sites: physical attachment between chloroplasts and endoplasmic reticulum revealed by optical manipulation, Plant Signal Behav, vol.2, issue.3, pp.185-192, 2007.

W. J. Crotty and M. C. Ledbetter, Membrane continuities involving chloroplasts and other organelles in plant cells, Science, vol.182, issue.4114, pp.839-880, 1973.

A. Villarejo, Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast, Nat Cell Biol, vol.7, issue.12, pp.1224-1255, 2005.

O. Emanuelsson, Predicting subcellular localization of proteins based on their Nterminal amino acid sequence, J Mol Biol, vol.300, issue.4, pp.1005-1021, 2000.

S. Asatsuma, Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts, Plant Cell Physiol, vol.46, issue.6, pp.858-69, 2005.

A. Kitajima, The rice alpha-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids, Plant Cell, vol.21, issue.9, pp.2844-58, 2009.

K. Kaneko, Nucleotide pyrophosphatase/phosphodiesterase 1 exerts a negative effect on starch accumulation and growth in rice seedlings under high temperature and CO2 concentration conditions, Plant Cell Physiol, vol.55, issue.2, pp.320-352, 2014.

E. C. Nowack and A. R. Grossman, Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora, Proc Natl Acad Sci, vol.109, issue.14, pp.5340-5345, 2012.

A. Singer, Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora, Curr Biol, vol.27, issue.18, pp.2763-2773, 2017.

M. W. Murcha, Characterization of the preprotein and amino acid transporter gene family in Arabidopsis, Plant Physiol, vol.143, issue.1, pp.199-212, 2007.

J. Rassow, The preprotein translocase of the mitochondrial inner membrane: function and evolution, J Mol Biol, vol.286, issue.1, pp.105-125, 1999.

W. Neupert and J. M. Herrmann, Translocation of proteins into mitochondria, Annu Rev Biochem, vol.76, pp.723-772, 2007.

C. Rossig, Three proteins mediate import of transit sequence-less precursors into the inner envelope of chloroplasts in Arabidopsis thaliana, Proc Natl Acad Sci U S A, vol.110, issue.49, pp.19962-19969, 2013.

J. E. Froehlich, Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis, J Proteome Res, vol.2, issue.4, pp.413-438, 2003.

T. B. Cao and M. H. Saier, The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions, Biochim Biophys Acta, vol.1609, issue.1, pp.115-140, 2003.

K. M. Frain, Protein translocation and thylakoid biogenesis in cyanobacteria, Biochim Biophys Acta, vol.1857, issue.3, pp.266-73, 2016.

Y. Li, The Sec2 translocase of the chloroplast inner envelope contains a unique and dedicated SECE2 component, Plant J, vol.84, issue.4, pp.647-58, 2015.

R. Singhal and D. E. Fernandez, Sorting of SEC translocase SCY components to different membranes in chloroplasts, J Exp Bot, vol.68, issue.18, pp.5029-5043, 2017.

C. A. Skalitzky, Plastids contain a second sec translocase system with essential functions, Plant Physiol, vol.155, issue.1, pp.354-69, 2011.

R. Williams-carrier, Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize, Plant J, vol.63, issue.1, pp.167-77, 2010.

Y. Li and J. R. Martin, Identification of Putative Substrates of SEC2, a Chloroplast Inner Envelope Translocase, vol.173, pp.2121-2137, 2017.

K. Cline, Mechanistic Aspects of Folded Protein Transport by the Twin Arginine Translocase (Tat), J Biol Chem, vol.290, issue.27, pp.16530-16538, 2015.

C. Dabney-smith, H. Mori, and K. Cline, Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport, J Biol Chem, vol.281, issue.9, pp.5476-83, 2006.

C. Aldridge, Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803, Mol Microbiol, vol.70, issue.1, pp.140-50, 2008.

T. Palmer and B. C. Berks, The twin-arginine translocation (Tat) protein export pathway, Nat Rev Microbiol, vol.10, issue.7, pp.483-96, 2012.

A. M. Settles, Sec-independent protein translocation by the maize Hcf106 protein. Science, vol.278, pp.1467-70, 1997.

M. Unseld, The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides, Nat Genet, vol.15, issue.1, pp.57-61, 1997.

C. Carrie, S. Weissenberger, and J. Soll, Plant mitochondria contain the protein translocase subunits TatB and TatC, J Cell Sci, vol.129, issue.20, pp.3935-3947, 2016.

V. Zabrouskov, A new approach for plant proteomics: characterization of chloroplast proteins of Arabidopsis thaliana by top-down mass spectrometry, Mol Cell Proteomics, vol.2, issue.12, pp.1253-60, 2003.

M. Ferro, AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins, Mol Cell Proteomics, vol.9, issue.6, pp.1063-84, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00470319

L. A. Eichacker, Hiding behind hydrophobicity. Transmembrane segments in mass spectrometry, J Biol Chem, vol.279, issue.49, pp.50915-50937, 2004.

G. Friso, In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database, Plant Cell, vol.16, issue.2, pp.478-99, 2004.

M. Tomizioli, Deciphering thylakoid sub-compartments using a mass spectrometrybased approach, Mol Cell Proteomics, vol.13, issue.8, pp.2147-67, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078965

J. B. Peltier, The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts, Mol Cell Proteomics, vol.5, issue.1, pp.114-147, 2006.

A. J. Ytterberg, J. B. Peltier, and K. J. Van-wijk, Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes, Plant Physiol, vol.140, issue.3, pp.984-97, 2006.

A. Brautigam and A. P. Weber, Proteomic analysis of the proplastid envelope membrane provides novel insights into small molecule and protein transport across proplastid membranes, Mol Plant, vol.2, issue.6, pp.1247-61, 2009.

S. Simm, Defining the core proteome of the chloroplast envelope membranes, Front Plant Sci, vol.4, p.11, 2013.

G. K. Agrawal, Plant organelle proteomics: collaborating for optimal cell function, Mass Spectrom Rev, vol.30, issue.5, pp.772-853, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00586636

K. S. Lilley and P. Dupree, Plant organelle proteomics, Curr Opin Plant Biol, vol.10, issue.6, pp.594-603, 2007.

Q. Sun, PPDB, the Plant Proteomics Database at Cornell, Nucleic Acids Res, vol.37, pp.969-74, 2009.

T. Kleffmann, plprot: a comprehensive proteome database for different plastid types, Plant Cell Physiol, vol.47, issue.3, pp.432-438, 2006.

J. L. Heazlewood, SUBA: the Arabidopsis Subcellular Database, Nucleic Acids Res, vol.35, pp.213-221, 2007.

C. M. Hooper, SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome, Bioinformatics, vol.30, issue.23, pp.3356-64, 2014.

S. K. Tanz, SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis, Nucleic Acids Res, issue.41, pp.1185-91, 2013.

H. J. Joshi, MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data, Plant Physiol, vol.155, issue.1, pp.259-70, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00556644

C. Bruley, AT_CHLORO: A Chloroplast Protein Database Dedicated to Sub-Plastidial Localization, Front Plant Sci, vol.3, p.205, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735019

E. Dell'aglio, Complementary biochemical approaches applied to the identification of plastidial calmodulin-binding proteins, Mol Biosyst, issue.9, pp.1234-1282, 2013.

W. Chiu, Engineered GFP as a vital reporter in plants, Current Biology, vol.6, issue.3, pp.325-330, 1996.

Y. Wan, The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism, Plant Cell, vol.24, issue.2, pp.551-65, 2012.

J. Kansup, Arabidopsis G-protein beta subunit AGB1 interacts with NPH3 and is involved in phototropism, Biochem Biophys Res Commun, vol.445, issue.1, pp.54-61, 2014.

Y. C. Chen, H. J. Wang, and G. Y. Jauh, Dual Role of a SAS10/C1D Family Protein in Ribosomal RNA Gene Expression and Processing Is Essential for Reproduction in Arabidopsis thaliana, vol.12, p.1006408, 2016.

P. Enkhbayar, Structural principles of leucine-rich repeat (LRR) proteins. Proteins, vol.54, pp.394-403, 2004.

N. J. Gay, A leucine-rich repeat peptide derived from the Drosophila Toll receptor forms extended filaments with a beta-sheet structure, FEBS Lett, vol.291, issue.1, pp.87-91, 1991.

J. M. Rothberg, slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains, Genes Dev, vol.4, issue.12a, pp.2169-87, 1990.

B. Kobe and A. V. Kajava, The leucine-rich repeat as a protein recognition motif, Curr Opin Struct Biol, vol.11, issue.6, pp.725-757, 2001.

K. Nishimura and K. J. Van-wijk, Organization, function and substrates of the essential Clp protease system in plastids, Biochim Biophys Acta, vol.1847, issue.9, pp.915-945, 2015.

P. D. Olinares, J. Kim, and K. J. Van-wijk, The Clp protease system; a central component of the chloroplast protease network, Biochim Biophys Acta, vol.1807, issue.8, pp.999-1011, 2011.

T. M. Stanne, Identification of new protein substrates for the chloroplast ATPdependent Clp protease supports its constitutive role in Arabidopsis, Biochem J, vol.417, issue.1, pp.257-68, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00479038

J. B. Peltier, Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications, J Biol Chem, vol.279, issue.6, pp.4768-81, 2004.

B. Zheng, Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses, Physiol Plant, vol.114, issue.1, pp.92-101, 2002.

J. K. Mcclung, Prohibitin: potential role in senescence, development, and tumor suppression, Exp Gerontol, vol.30, issue.2, pp.99-124, 1995.

L. M. Weaver, J. E. Froehlich, and R. M. Amasino, Chloroplast-targeted ERD1 protein declines but its mRNA increases during senescence in Arabidopsis, Plant Physiol, vol.119, issue.4, pp.1209-1225, 1999.

Y. Kato and W. Sakamoto, New insights into the types and function of proteases in plastids, Int Rev Cell Mol Biol, vol.280, pp.185-218, 2010.

K. J. Van-wijk, Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes, Annu Rev Plant Biol, vol.66, pp.75-111, 2015.

G. L. Rosano, E. M. Bruch, and E. A. Ceccarelli, Insights into the Clp/HSP100 chaperone system from chloroplasts of Arabidopsis thaliana, J Biol Chem, vol.286, issue.34, pp.29671-80, 2011.

C. V. Colombo, E. A. Ceccarelli, and G. L. Rosano, Characterization of the accessory protein ClpT1 from Arabidopsis thaliana: oligomerization status and interaction with Hsp100 chaperones, BMC Plant Biol, vol.14, p.228, 2014.

F. Myouga, An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response, Plant J, vol.48, issue.2, pp.249-60, 2006.

T. Moore and K. Keegstra, Characterization of a cDNA clone encoding a chloroplasttargeted Clp homologue, Plant Mol Biol, vol.21, issue.3, pp.525-562, 1993.

J. Shanklin, N. D. Dewitt, and J. M. Flanagan, The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease, Plant Cell, vol.7, issue.10, pp.1713-1735, 1995.

J. B. Peltier, Identification of a 350-kDa ClpP protease complex with 10 different Clp isoforms in chloroplasts of Arabidopsis thaliana, J Biol Chem, vol.276, pp.16318-16345, 2001.

T. Shikanai, The chloroplast clpP gene, encoding a proteolytic subunit of ATPdependent protease, is indispensable for chloroplast development in tobacco, Plant Cell Physiol, vol.42, issue.3, pp.264-73, 2001.

S. Koussevitzky, An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development, Plant Mol Biol, vol.63, issue.1, pp.85-96, 2007.

H. Kuroda and P. Maliga, The plastid clpP1 protease gene is essential for plant development, Nature, vol.425, issue.6953, pp.86-95, 2003.

K. Nishimura, ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis, Plant Cell, vol.25, issue.6, pp.2276-301, 2013.

P. D. Olinares, Subunit stoichiometry, evolution, and functional implications of an asymmetric plant plastid ClpP/R protease complex in Arabidopsis, Plant Cell, vol.23, issue.6, pp.2348-61, 2011.

S. Ramundo, Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control, Plant Cell, vol.26, issue.5, pp.2201-2222, 2014.

J. Kim, Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis, Plant Physiol, vol.162, issue.1, pp.157-79, 2013.

J. Kim, Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis, Plant Cell, vol.21, issue.6, pp.1669-92, 2009.

A. Rudella, Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis, Plant Cell, vol.18, issue.7, pp.1704-1725, 2006.

L. L. Sjogren and A. K. Clarke, Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins, Plant Cell, vol.23, issue.1, pp.322-354, 2011.

S. Park and S. R. Rodermel, Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis, Proc Natl Acad Sci U S A, vol.101, issue.34, pp.12765-70, 2004.

L. L. Sjogren, Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content, Plant Physiol, vol.136, issue.4, pp.4114-4140, 2004.

S. Kovacheva, In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import, Plant J, vol.41, issue.3, pp.412-440, 2005.

S. Kovacheva, Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import, Plant J, vol.50, issue.2, pp.364-79, 2007.

M. L. Chou, Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts, J Cell Biol, vol.175, issue.6, pp.893-900, 2006.

E. Nielsen, Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone, vol.16, pp.935-981, 1997.

P. H. Su and H. M. Li, Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts, Plant Cell, vol.22, issue.5, pp.1516-1547, 2010.

L. G. Richardson, R. Singhal, and D. J. Schnell, The integration of chloroplast protein targeting with plant developmental and stress responses, BMC Biol, vol.15, issue.1, p.118, 2017.

L. S. Tran, Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis, Plant J, vol.49, issue.1, pp.46-63, 2007.

M. Akita, E. Nielsen, and K. Keegstra, Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking, J Cell Biol, vol.136, issue.5, pp.983-94, 1997.

C. C. Chu and H. M. Li, The amino-terminal domain of chloroplast Hsp93 is important for its membrane association and functions in vivo, Plant Physiol, vol.158, issue.4, pp.1656-65, 2012.

W. Heard, Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection, Mol Cell Proteomics, vol.14, issue.7, pp.1796-813, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01568628

E. Alexandersson, Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking, Plant Cell Physiol, vol.45, issue.11, pp.1543-56, 2004.

A. Marmagne, Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome, Mol Cell Proteomics, vol.3, issue.7, pp.675-91, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122894

W. Heard, Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection, Mol Cell Proteomics, vol.14, issue.7, pp.1796-813, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01568628

N. Nikolovski, Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics, Plant Physiol, vol.160, issue.2, pp.1037-51, 2012.

I. Bouchnak, S. Brugière, L. Moyet, L. Gall, S. Salvi et al., Unravelling hidden components of the chloroplast envelope proteome: opportunities and limits of better MS sensitivity
URL : https://hal.archives-ouvertes.fr/hal-02151114

L. Moyet, D. Salvi, I. Bouchnak, S. Miras, L. Perrot et al., Calmodulin 5, a sensor relay for environmental control of vesicular trafficking to the chloroplast

I. Bouchnak, L. Moyet, D. Salvi, M. Kuntz, and N. Rolland, Preparation of chloroplast subcompartments from Arabidopsis for the analysis of protein localization by immunoblotting or proteomics and other studies, J

. Chapitres-d'ouvrage,

N. Rolland, I. Bouchnak, L. Moyet, D. Salvi, and M. Kuntz, The main functions of plastids, Methods Mol Biol, vol.1829, pp.73-85, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01853012

D. Salvi, S. Bournais, L. Moyet, I. Bouchnak, M. Kuntz et al., The first step when looking for information about subplastidial localization of proteins, COMMUNICATIONS ORALES, vol.1829, pp.395-406, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02083728

I. Bouchnak, D. Salvi, L. Moyet, M. Kuntz, S. Brugière et al., Chloroplast biogenesis: alternative protein targeting pathways. Séminaire jeunes chercheurs BIG/CEA, 2018.

I. Bouchnak, D. Salvi, L. Moyet, M. Kuntz, S. Brugière et al., Chloroplast biogenesis: towards the role of alternative protein targeting pathways in Arabidopsis, 2017.

I. Bouchnak, D. Salvi, L. Moyet, M. Kuntz, S. Brugière et al., Chloroplast biogenesis: towards the role of alternative protein targeting pathways in Arabidopsis. 9thEuropean, Plant Science Retreat. INSA Toulouse, 2017.

I. Bouchnak, D. Salvi, L. Moyet, M. Kuntz, S. Brugière et al., Chloroplast biogenesis: towards the role of alternative protein targeting pathways in Arabidopsis, 2017.

, Biogenèse du chloroplaste: voies d'import alternatives

. Le-chloroplaste-est-un-composant-majeur-de-la-cellule-végétale, . Cet, and . Ainsi, Jusqu'à récemment, toutes les protéines destinées aux compartiments chloroplastiques internes étaient censées posséder une séquence d'adressage N-terminale clivable et engager la machinerie d'import général TOC/TIC. Cependant, des études récentes reposant sur des approches protéomiques ont révélé l'existence de plusieurs protéines chloroplastiques dépourvues de la séquence additionnelle clivable. La première évidence de telles protéines dites non canoniques a été fournie par notre équipe, étudiant le protéome de l'enveloppe du chloroplaste d'Arabidopsis, qui a conduit à l'identification d'une protéine quinone oxidoréductase homologue nommée « ceQORH ». Bien que dépourvues de peptide de transit clivable, il s'est avéré que ces protéines sont capables de rejoindre les compartiments chloroplastiques internes. D'autre part, il a été également montré que l'import de ces protéines dans le chloroplaste n'est pas médiée par la machinerie de translocation générale TOC/TIC. De plus, il s'est avéré que ces protéines ont la particularité d'être multilocalisées dans les cellules de différents tissus de la feuille. Cependant, les mécanismes moléculaires qui contrôlent la localisation sub-cellulaire de telles protéines chloroplastiques non canoniques demeurent encore inconnus. Pour mieux caractériser fonctionnellement les composantes des systèmes d'import alternatifs de protéines chloroplastiques non canoniques, nous avons adopté une approche directe qui reposait sur des techniques biochimiques combinant le pontage chimique, la purification par affinité et la spectrométrie de masse. Cette stratégie nous a permis d'identifier un partenaire, impliqué dans le contrôle de l'adressage de la protéine ceQORH dans le chloroplaste. Alternativement, nous avons réalisé une bio-analyse du protéome de l'enveloppe du chloroplaste et qui nous a permis de revisiter la composition du protéome de l'enveloppe du chloroplaste. Afin d'expliquer la localisation sub-cellulaire variable de la protéine ceQORH, les membres de l'équipe ont émis l'hypothèse d'une interaction probable de cette protéine avec un partenaire cytosolique, 95% des gènes codant pour les protéines plastidiales ont été transférés vers le génome nucléaire au cours de l'évolution

, Mots-clés: Chloroplaste, Arabidopsis, enveloppe, protéome, alternative, adressage, import, noncanonique, protéines