M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell Biol, vol.4, pp.517-529, 2003.

J. Szymanski, J. Janikiewicz, B. Michalska, P. Patalas-krawczyk, M. Perrone et al., Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure, Int. J. Mol. Sci, vol.18, 2017.

M. Paillard, E. Tubbs, P. A. Thiebaut, L. Gomez, J. Fauconnier et al., Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury, Circulation, vol.128, pp.1555-1565, 2013.

C. Medline,

E. Tubbs, S. Chanon, M. Robert, N. Bendridi, G. Bidaux et al., Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans, Diabetes, vol.67, pp.636-650, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847407

J. Rieusset, Mitochondria-associated membranes (MAMs): an emerging platform connecting energy and immune sensing to metabolic flexibility, Biochem. Biophys. Res. Commun, vol.500, pp.35-44, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847505

S. Hong, J. Lee, H. H. Seo, C. Y. Lee, K. J. Yoo et al., Na ? -Ca 2? exchanger targeting miR-132 prevents apoptosis of cardiomyocytes under hypoxic condition by suppressing Ca 2? overload, Biochem. Biophys. Res. Commun, vol.460, pp.931-937, 2015.

C. Medline,

A. R. Hall, N. Burke, R. K. Dongworth, S. B. Kalkhoran, A. Dyson et al., Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction, Cell Death Dis, vol.7, 2016.

N. Brustovetsky, T. Brustovetsky, K. J. Purl, M. Capano, M. Crompton et al., Increased susceptibility of striatal mitochondria to calcium-induced permeability transition, J Neurosci, vol.23, pp.4858-4867, 2003.

J. Doczi, L. Turiák, S. Vajda, M. Mándi, B. Töröcsik et al., Complex contribution of cyclophilin D to Ca 2? -induced permeability transition in brain mitochondria, with relation to the bioenergetic state, J. Biol. Chem, vol.286, pp.6345-6353, 2011.

L. K. Seidlmayer, V. V. Juettner, S. Kettlewell, E. V. Pavlov, L. A. Blatter et al., Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca 2? , ROS, pH, and inorganic polyphosphate, Cardiovasc. Res, vol.106, pp.237-248, 2015.

J. S. Kim, Y. Jin, and J. J. Lemasters, Reactive oxygen species, but not Ca 2? overloading, trigger pH-and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion, 2006.

, Am. J. Physiol. Heart Circ. Physiol, vol.290

C. García-ruiz, A. Colell, R. París, and J. C. Fernández-checa, Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation, FASEB J, vol.14, pp.847-858, 2000.

C. Medline,

L. K. Seidlmayer, M. R. Gomez-garcia, L. A. Blatter, E. Pavlov, and E. N. Dedkova, Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes, J. Gen. Physiol, vol.139, pp.321-331, 2012.

K. Lê-quôc and D. Lê-quôc, Crucial role of sulfhydryl groups in the mitochondrial inner membrane structure, J. Biol. Chem, vol.260, pp.7422-7428, 1985.

D. R. Hunter and R. A. Haworth, The Ca 2? -induced membrane transition in mitochondria: I. The protective mechanisms, Arch. Biochem. Biophys, vol.195, pp.453-459, 1979.

P. Bernardi, D. Lisa, and F. , The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection, J. Mol. Cell. Cardiol, vol.78, pp.100-106, 2015.

A. Rodríguez-sinovas, J. A. Sánchez, C. Fernandez-sanz, M. Ruiz-meana, and D. Garcia-dorado, Connexin and pannexin as modulators of myocardial injury, Biochim Biophys Acta, vol.1818, 1962.

H. Satoh, K. S. Ginsburg, K. Qing, H. Terada, H. Hayashi et al., KB-R7943 block of Ca 2? influx via Na ? /Ca 2? exchange does not alter twitches or glycoside inotropy but prevents Ca 2? overload in rat ventricular myocytes, Circulation, vol.101, pp.1441-1446, 2000.

A. Del-arco, L. Contreras, B. Pardo, and J. Satrustegui, Calcium regulation of mitochondrial carriers, Biochim. Biophys. Acta, vol.1863, pp.2413-2421, 2016.

M. A. Talukder, J. L. Zweier, and M. Periasamy, Targeting calcium transport in ischaemic heart disease, Cardiovasc. Res, vol.84, pp.345-352, 2009.

C. Medline,

G. C. Bompotis, S. Deftereos, C. Angelidis, E. Choidis, V. Panagopoulou et al., Altered calcium handling in reperfusion injury, Med. Chem, vol.12, pp.114-130, 2016.

M. Panel, B. Ghaleh, and D. Morin, Ca 2? ionophores are not suitable for inducing mPTP opening in murine isolated adult cardiac myocytes, Sci. Rep, vol.7, 2017.

W. H. Barry, Calcium and ischemic injury, Trends Cardiovasc. Med, vol.1, pp.162-166, 1991.

L. Argaud, O. Gateau-roesch, D. Muntean, L. Chalabreysse, J. Loufouat et al., Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury, J. Mol. Cell Cardiol, vol.38, pp.367-374, 2005.

C. P. Baines, R. A. Kaiser, N. H. Purcell, N. S. Blair, H. Osinska et al., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature, vol.434, pp.658-662, 2005.

V. Giorgio, L. Guo, C. Bassot, V. Petronilli, and P. Bernardi, Calcium and regulation of the mitochondrial permeability transition, Cell Calcium, vol.70, pp.56-63, 2018.

A. Gharib, D. De-paulis, B. Li, L. Augeul, E. Couture-lepetit et al., Opposite and tissue-specific effects of coenzyme Q2 on mPTP opening and ROS production between heart and liver mitochondria: role of complex I, J. Mol. Cell Cardiol, vol.52, pp.1091-1095, 2012.

B. Li, C. Chauvin, D. De-paulis, F. De-oliveira, A. Gharib et al., Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D, Biochim. Biophys. Acta, vol.1817, pp.1628-1634, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01929330

E. D. Korn, Cell membranes: structure and synthesis, Annu. Rev. Biochem, vol.38, pp.263-288, 1969.

L. Missiaen, W. Robberecht, and L. Van-den-bosch, Abnormal intracellular ca(2+)homeostasis and disease, Cell Calcium, vol.28, pp.1-21, 2000.

A. Vallejo-illarramendi, I. Toral-ojeda, and G. Aldanondo, López de Munain A. Dysregulation of calcium homeostasis in muscular dystrophies, Expert Rev Mol Med, vol.16, p.16, 2014.

A. R. Burr and J. D. Molkentin, Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy, Cell Death Differ, vol.22, pp.1402-1414, 2015.

M. Canato, P. Capitanio, C. Reggiani, and L. Cancellara, The disorders of the calcium release unit of skeletal muscles: what have we learned from mouse models?, J Muscle Res Cell Motil, vol.36, pp.61-69, 2015.

R. P. Brislin and M. C. Theroux, Core myopathies and malignant hyperthermia susceptibility: a review, Paediatr Anaesth, vol.23, pp.834-875, 2013.

M. J. Betzenhauser and A. R. Marks, Ryanodine receptor channelopathies, Pflüg Arch Eur J Physiol, vol.460, pp.467-80, 2010.

J. T. Lanner, Ryanodine receptor physiology and its role in disease, Adv Exp Med Biol, vol.740, pp.217-251, 2012.

D. Jiang, W. Chen, and J. Xiao, Reduced threshold for luminal Ca2+ activation of RyR1 underlies a causal mechanism of porcine malignant hyperthermia, J Biol Chem, vol.283, pp.20813-20833, 2008.

S. Riazi, N. Kraeva, and P. M. Hopkins, Malignant hyperthermia in the postgenomics era: new perspectives on an old concept, Anesthesiology, vol.128, pp.168-80, 2018.

A. Gali?ska-rakoczy, P. Engel, and C. Xu, Structural basis for the regulation of muscle contraction by troponin and tropomyosin, J Mol Biol, vol.379, pp.929-964, 2008.

B. Nilius and A. Szallasi, Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine, Pharmacol Rev, vol.66, pp.676-814, 2014.

N. Ito, U. T. Ruegg, A. Kudo, Y. Miyagoe-suzuki, and S. Takeda, Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy, Nat Med, vol.19, pp.101-107, 2013.

H. Xin, H. Tanaka, M. Yamaguchi, S. Takemori, A. Nakamura et al., Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle, Biochem Biophys Res Commun, vol.332, pp.756-62, 2005.

S. Lotteau, S. Ducreux, C. Romestaing, C. Legrand, and F. Van-coppenolle, Characterization of functional TRPV1 channels in the sarcoplasmic reticulum of mouse skeletal muscle, PLoS ONE, vol.8, p.58673, 2013.
URL : https://hal.archives-ouvertes.fr/halsde-00804903

C. Kimball, J. Luo, S. Yin, H. Hu, and A. Dhaka, The pore loop domain of TRPV1 is required for its activation by the volatile anesthetics chloroform and isoflurane, Mol Pharmacol, vol.88, pp.131-139, 2015.

P. M. Cornett, J. A. Matta, and G. P. Ahern, General anesthetics sensitize the capsaicin receptor transient receptor potential V1, Mol Pharmacol, vol.74, pp.1261-1269, 2008.

C. Trollet, C. Bloquel, D. Scherman, and P. Bigey, Electrotransfer into skeletal muscle for protein expression, Curr Gene Ther, vol.6, pp.561-78, 2006.

M. Difranco, M. Quinonez, J. Capote, and J. Vergara, DNA transfection of mammalian skeletal muscles using in vivo electroporation. (United States), J Vis Exp, vol.1520, 2009.

R. Lefebvre, C. Legrand, E. Gonzalez-rodriguez, L. Groom, R. T. Dirksen et al., Defects in Ca2+ release associated with local expression of pathological ryanodine receptors in mouse muscle fibres, J Physiol, vol.589, pp.5361-82, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00720094

F. Vanden-abeele, G. Bidaux, and D. Gordienko, Functional implications of calcium permeability of the channel formed by pannexin 1, J Cell Biol, vol.174, pp.535-581, 2006.

D. Gkika, M. Flourakis, L. Lemonnier, and N. Prevarskaya, PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression, Oncogene, vol.29, pp.4611-4617, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00492444

T. Voets, G. Droogmans, U. Wissenbach, A. Janssens, V. Flockerzi et al., The principle of temperature-dependent gating in cold-and heatsensitive TRP channels, Nature, vol.430, pp.748-54, 2004.

. Doxorubicin-(adriamycin,

E. Lilly, . Company, and . Neuilly-sur-seine, About the other chemicals-thapsigargin, puromycin, anisomycin, ionomycin, Hyp9, OAG, U73343, and Wortmannin-were from Sigma-Aldrich. BMS-754807 and PD98059 were purchased from 4.3. Western Blot For IGF-1 stimulation, the cells were harvested overnight before IGF-1 addition into an FBS-free culture medium. For protein extraction, cells were rinsed with ice-cold PBS and lysed for 30 min at 4 ? C in RIPA lysis and extraction buffer (Sigma) supplemented with a protease/phosphatase inhibitor cocktail, France) were obtained from the pharmacy of the Bergonié Institute, pp.5-21078

, After washing, blots were incubated for 1 h with a horseradish peroxidase-linked anti-rabbit antibody (Sigma-Aldrich, St. Quentin Fallavier, France) and processed for a chemiluminescent substrate, Antibodies for detection of P-IGF1R? (Tyr1131) (#3021), pp.2-11386

, ) based on their morphological features (FSC/SSC). Data acquisition and analysis were performed with the BD PlateManager and BD CellQuestPro software, BD Biosciences

, After 10 days, cells were washed with PBS, fixed with 70% ethanol, washed again and then stained with a 1% Crystal Violet solution (Sigma-Aldrich, St. Quentin Fallavier, France). of 5000 cells were seeded into 96-well plates in six replicates. The day after, the culture medium was replaced by a doxorubicin-containing medium (0.2 mL per well), Clonogenic Assay Totals of 100, 500, and 1000 cells were plated onto 6-well plates

M. Tetramethylrhodamine and . Ester, TMRM) A total of 5000 cells were seeded into 96-well plates in at least three replicates. The day after, the culture medium was replaced by drug-containing medium (0.2 mL per well), Mitochondrial Potential Loss Assay, vol.20

?. , 5% CO 2 for 30 min. Then, supernatants were collected, cells were trypsinized and resuspended in their respective supernatants, TMRM-staining was analyzed by flow cytometry (FACS Calibur, BD Biosciences

, Then, the region corresponding to cells that lost their mitochondrial electric potential (TMRM-negative cells) was selected on a SSC/FL2 dot plot diagram. The number of TMRM-negative cells is shown as a percentage of the analyzed cell population. Dose-response curves were interpolated with Prism6, ) software as standard slopes

, Single-cell cytosolic calcium imaging was performed, using Fluo2 LR-AM calcium dye as previously described [66]. Fluorescence intensity changes were normalized to the initial fluorescence value F 0 and expressed as F/F 0 (relative [Ca 2+ ] cyt ). One field was acquired from each coverslip and the data were pooled from six independent coverslips on three different days. Data were processed using OriginPro 7.5 software (Origin Lab, Cytosolic Calcium Imaging For calcium imaging, vol.100

V. Y. Jo and C. D. Fletcher, WHO classification of soft tissue tumours: An update based on the 2013 (4th) edition. Pathology (Phila), vol.46, pp.95-104, 2014.

A. Manji, G. Singer, S. Koff, A. Schwartz, and G. K. , Application of Molecular Biology to Individualize Therapy for Patients with Liposarcoma, Am. Soc. Clin. Oncol. Educ. Book, vol.35, pp.213-218, 2015.

K. M. Dalal, M. W. Kattan, C. R. Antonescu, M. F. Brennan, and S. Singer, Subtype specific prognostic nomogram for patients with primary liposarcoma of the retroperitoneum, extremity, or trunk, Ann. Surg, vol.244, pp.381-391, 2006.

, Cancers, vol.10, pp.439-460, 2018.

W. H. Henricks, Y. C. Chu, J. R. Goldblum, and S. W. Weiss, Dedifferentiated liposarcoma: A clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation, Am. J. Surg. Pathol, vol.21, pp.271-281, 1997.

S. H. Tirumani, H. Tirumani, J. P. Jagannathan, A. B. Shinagare, J. L. Hornick et al., Metastasis in dedifferentiated liposarcoma: Predictors and outcome in 148 patients, Eur. J. Surg. Oncol. EJSO, vol.41, pp.899-904, 2015.

R. L. Jones, C. Fisher, O. Al-muderis, and I. R. Judson, Differential sensitivity of liposarcoma subtypes to chemotherapy, Eur. J. Cancer, vol.41, pp.2853-2860, 2005.

F. Lin, Z. Shen, X. Xu, B. Hu, S. Meerani et al., Evaluation of the Expression and Role of IGF Pathway Biomarkers in Human Sarcomas, Int. J. Immunopathol. Pharmacol, vol.26, pp.169-177, 2013.

J. Liang, B. Li, L. Yuan, and Z. Ye, Prognostic value of IGF-1R expression in bone and soft tissue sarcomas: A meta-analysis, OncoTargets Ther, vol.8, pp.1949-1955, 2015.

A. Conti, V. Espina, A. Chiechi, G. Magagnoli, C. Novello et al., Mapping protein signal pathway interaction in sarcoma bone metastasis: Linkage between rank, metalloproteinases turnover and growth factor signaling pathways, Clin. Exp. Metastasis, vol.31, pp.15-24, 2014.

Y. Tomita, T. Morooka, Y. Hoshida, B. Zhang, Y. Qiu et al., Prognostic Significance of Activated AKT Expression in Soft-Tissue Sarcoma, Clin. Cancer Res, vol.12, pp.3070-3077, 2006.

J. V. Tricoli, L. B. Rall, C. P. Karakousis, L. Herrera, N. J. Petrelli et al., Enhanced Levels of Insulin-like Growth Factor Messenger RNA in Human Colon Carcinomas and Liposarcomas, Cancer Res, vol.46, pp.6169-6173, 1986.

T. Peng, P. Zhang, J. Liu, T. Nguyen, S. Bolshakov et al., An experimental model for the study of well differentiated and dedifferentiated liposarcoma; deregulation of targetable tyrosine kinase receptors, Lab. Investig, vol.91, pp.392-403, 2011.

J. Boucher, S. Softic, A. E. Ouaamari, M. T. Krumpoch, A. Kleinridders et al., Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function, Diabetes, vol.65, pp.2201-2213, 2016.

A. Kasprzak, W. Kwasniewski, A. Adamek, and A. Gozdzicka-jozefiak, Insulin-like growth factor (IGF) axis in cancerogenesis, Mutat. Res, vol.772, pp.78-104, 2017.

M. L. Miller, E. J. Molinelli, J. S. Nair, T. Sheikh, R. Samy et al., Drug synergy screen and network modeling in dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug targets, Sci. Signal, vol.6, 2013.

J. A. Janssen, A. J. Varewijck, and . Igf-ir, Therapy: Past, Present and Future. Front. Endocrinol. (Lausanne), vol.5, 2014.

A. S. Pappo, G. Vassal, J. J. Crowley, V. Bolejack, P. C. Hogendoorn et al., A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: Results of a Sarcoma Alliance for Research Through Collaboration study, Cancer, vol.120, pp.2448-2456, 2014.

M. Kuro-o, Y. Matsumura, H. Aizawa, H. Kawaguchi, T. Suga et al., Mutation of the mouse klotho gene leads to a syndrome resembling ageing, Nature, vol.390, pp.45-51, 1997.

H. Kurosu, M. Yamamoto, J. D. Clark, J. V. Pastor, A. Nandi et al., Suppression of aging in mice by the hormone Klotho, Science, vol.309, pp.1829-1833, 2005.

C. Chen, T. Y. Tung, J. Liang, E. Zeldich, T. B. Tucker-zhou et al., Identification of cleavage sites leading to the shed form of the anti-aging protein klotho, Biochemistry (Mosc), vol.53, pp.5579-5587, 2014.

Y. Matsumura, H. Aizawa, T. Shiraki-iida, R. Nagai, M. Kuro-o et al., Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein, Biochem. Biophys. Res. Commun, vol.242, pp.626-630, 1998.

M. C. Hu, M. Kuro-o, and O. W. Moe, Renal and extrarenal actions of Klotho, Semin. Nephrol, vol.33, pp.118-129, 2013.

J. Fan and Z. Sun, The Antiaging Gene Klotho Regulates Proliferation and Differentiation of Adipose-Derived Stem Cells, Stem Cells, vol.34, pp.1615-1625, 2016.

B. Xie, J. Chen, B. Liu, and J. Zhan, Klotho Acts as a Tumor Suppressor in Cancers, Pathol. Oncol. Res, vol.19, pp.611-617, 2013.

T. Rubinek and I. Wolf, The Role of Alpha-Klotho as a Universal Tumor Suppressor, Vitam. Horm, vol.101, pp.197-214, 2016.

H. Olauson, R. Mencke, J. Hillebrands, and T. E. Larsson, Tissue expression and source of circulating ?Klotho, vol.100, pp.19-35, 2017.

I. Wolf, S. Levanon-cohen, S. Bose, H. Ligumsky, B. Sredni et al., A tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer, Oncogene, vol.27, pp.7094-7105, 2008.

N. Takasu, M. Takasu, I. Komiya, Y. Nagasawa, T. Asawa et al., Insulin-like growth factor I stimulates inositol phosphate accumulation, a rise in cytoplasmic free calcium, and proliferation in cultured porcine thyroid cells, J. Biol. Chem, vol.264, pp.18485-18488, 1989.

J. A. Valdés, S. Flores, E. N. Fuentes, C. Osorio-fuentealba, E. Jaimovich et al., IGF-1 induces IP3 -dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation, J. Cell. Physiol, vol.228, pp.1452-1463, 2013.

G. Dalton, S. An, S. I. Al-juboori, N. Nischan, J. Yoon et al., Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling, Proc. Natl. Acad. Sci, vol.114, pp.752-757, 2017.

J. Kim, J. Xie, K. Hwang, Y. Wu, N. Oliver et al., Ameliorate Proteinuria by Targeting TRPC6 Channels in Podocytes, J. Am. Soc. Nephrol, vol.28, pp.140-151, 2017.

J. Xie, S. Cha, S. An, M. Kuro-o, L. Birnbaumer et al., Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart, Nat. Commun, vol.3, 1238.

P. Cappella, D. Tomasoni, M. Faretta, M. Lupi, F. Montalenti et al., Cell cycle effects of gemcitabine, Int. J. Cancer, vol.93, pp.401-408, 2001.

L. Ireland, A. Santos, M. S. Ahmed, C. Rainer, S. R. Nielsen et al., Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors, Cancer Res, vol.76, pp.6851-6863, 2016.

R. Novosyadlyy, N. Kurshan, D. Lann, A. Vijayakumar, S. Yakar et al., Insulin-like growth factor-I protects cells from ER stress-induced apoptosis via enhancement of the adaptive capacity of endoplasmic reticulum, Cell Death Differ, vol.15, pp.1304-1317, 2008.

W. Chien, L. Ding, Q. Sun, L. A. Torres-fernandez, S. Z. Tan et al., Selective inhibition of unfolded protein response induces apoptosis in pancreatic cancer cells, Oncotarget, vol.5, pp.4881-4894, 2014.

L. Wang, Y. Zhang, W. Wang, Y. Zhu, Y. Chen et al., Gemcitabine treatment induces endoplasmic reticular (ER) stress and subsequently upregulates urokinase plasminogen activator (uPA) to block mitochondrial-dependent apoptosis in Panc-1 cancer stem-like cells (CSCs), PLoS ONE, vol.12, 2017.

M. T. Harper and A. W. Poole, Bcl-xL-inhibitory BH3 mimetic ABT-737 depletes platelet calcium stores, Blood, vol.119, pp.4337-4338, 2012.

L. Wang, L. Wang, R. Song, Y. Shen, Y. Sun et al., Targeting Sarcoplasmic/Endoplasmic Reticulum Ca 2+ -ATPase 2 by Curcumin Induces ER Stress-Associated Apoptosis for Treating Human Liposarcoma, Mol. Cancer Ther, vol.10, pp.461-471, 2011.

L. Wang, W. Li, Y. Yang, Y. Hu, Y. Gu et al., High expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2b blocks cell differentiation in human liposarcoma cells, Life Sci, vol.99, pp.37-43, 2014.

A. A. Sadighi-akha, J. M. Harper, A. B. Salmon, B. A. Schroeder, H. M. Tyra et al., Heightened Induction of Proapoptotic Signals in Response to Endoplasmic Reticulum Stress in Primary Fibroblasts from a Mouse Model of Longevity, J. Biol. Chem, vol.286, pp.30344-30351, 2011.

L. Albarrán, N. Dionisio, E. Lopez, G. M. Salido, P. C. Redondo et al., STIM1 regulates TRPC6 heteromultimerization and subcellular location, Biochem. J, vol.463, pp.373-381, 2014.

T. Hofmann, A. G. Obukhov, M. Schaefer, C. Harteneck, T. Gudermann et al., Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol, Nature, vol.397, pp.259-263, 1999.

S. Bréchard, C. Melchior, S. Plançon, V. Schenten, and E. J. Tschirhart, Store-operated Ca 2+ channels formed by TRPC1, TRPC6 and Orai1 and non-store-operated channels formed by TRPC3 are involved in the regulation of NADPH oxidase in HL-60 granulocytes, Cell Calcium, vol.44, pp.492-506, 2008.

I. Jardín, P. C. Redondo, G. M. Salido, and J. A. Rosado, Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets, Biochim. Biophys. Acta, vol.1783, pp.84-97, 2008.

G. M. Salido, I. Jardín, and J. A. Rosado, The TRPC ion channels: Association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry, Adv. Exp. Med. Biol, vol.704, pp.413-433, 2011.

F. Van-coppenolle, F. Vanden-abeele, C. Slomianny, M. Flourakis, J. Hesketh et al., Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores, J. Cell Sci, vol.117, pp.4135-4142, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00137717

R. A. Fryer, B. Barlett, C. Galustian, and A. G. Dalgleish, Mechanisms underlying gemcitabine resistance in pancreatic cancer and sensitisation by the iMiD TM lenalidomide, Anticancer Res, vol.31, pp.3747-3756, 2011.

X. L. Yang, F. J. Lin, Y. J. Guo, Z. M. Shao, and Z. L. Ou, Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways, OncoTargets Ther, vol.7, pp.1033-1042, 2014.

L. J. Zhang, S. Chen, P. Wu, C. S. Hu, R. F. Thorne et al., Inhibition of MEK blocks GRP78 up-regulation and enhances apoptosis induced by ER stress in gastric cancer cells, Cancer Lett, vol.274, pp.40-46, 2009.

S. Srinivasan, M. Ohsugi, Z. Liu, S. Fatrai, E. Bernal-mizrachi et al., Endoplasmic Reticulum Stress-Induced Apoptosis Is Partly Mediated by Reduced Insulin Signaling Through Phosphatidylinositol 3-Kinase/Akt and Increased Glycogen Synthase Kinase-3? in Mouse Insulinoma Cells, Diabetes, vol.54, pp.968-975, 2005.

R. Dai, R. Chen, and H. Li, Cross-talk between PI3K/Akt and MEK/ERK pathways mediates endoplasmic reticulum stress-induced cell cycle progression and cell death in human hepatocellular carcinoma cells, Int. J. Oncol, vol.34, pp.1749-1757, 2009.

J. Lee, D. Jeong, J. Kim, S. Lee, J. Park et al., The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma, Mol. Cancer, vol.9, 2010.

T. Rubinek, M. Shulman, S. Israeli, S. Bose, A. Avraham et al., Epigenetic silencing of the tumor suppressor klotho in human breast cancer, Breast Cancer Res. Treat, vol.133, pp.649-657, 2012.

C. Dubois, F. Vanden-abeele, and N. Prevarskaya, Targeting apoptosis by the remodelling of calcium-transporting proteins in cancerogenesis, FEBS J, vol.280, pp.5500-5510, 2013.

N. Schäuble, S. Lang, M. Jung, S. Cappel, S. Schorr et al., BiP-mediated closing of the Sec61 channel limits Ca 2+ leakage from the ER, EMBO J, vol.31, pp.3282-3296, 2012.

G. Li, M. Mongillo, K. Chin, H. Harding, D. Ron et al., Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis, J. Cell Biol, vol.186, pp.439-463, 2009.

S. Banerjee, Y. Zhao, P. S. Sarkar, K. P. Rosenblatt, R. G. Tilton et al., Klotho ameliorates chemically induced endoplasmic reticulum (ER) stress signaling, Cell. Physiol. Biochem, vol.31, pp.659-672, 2013.

S. Murakami, Stress resistance in long-lived mouse models, Exp. Gerontol, vol.41, pp.1014-1019, 2006.

K. T. Pfaffenbach, M. Pong, T. E. Morgan, H. Wang, K. Ott et al., GRP78/BiP is a novel downstream target of IGF-1 receptor mediated signaling, J. Cell. Physiol, vol.227, pp.3803-3811, 2012.

L. Bieghs, S. Lub, K. Fostier, K. Maes, E. Van-valckenborgh et al., The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic, Oncotarget, vol.5, pp.11193-11208, 2014.

N. J. Darling and S. J. Cook, The role of MAPK signalling pathways in the response to endoplasmic reticulum stress, Biochim. Biophys. Acta, vol.1843, pp.2150-2163, 2014.

E. Pozo-guisado, V. Casas-rua, P. Tomas-martin, A. M. Lopez-guerrero, A. Alvarez-barrientos et al., Phosphorylation of STIM1 at ERK1/2 target sites regulates interaction with the microtubule plus-end binding protein EB1, J. Cell Sci, vol.126, pp.3170-3180, 2013.

M. Hisaoka, A. Matsuyama, and M. Nakamoto, Aberrant calreticulin expression is involved in the dedifferentiation of dedifferentiated liposarcoma, Am. J. Pathol, vol.180, pp.2076-2083, 2012.

P. Lagarde, C. Brulard, G. Pérot, O. Mauduit, L. Delespaul et al., Stable Instability of Sarcoma Cell Lines Genome Despite Intra-Tumoral Heterogeneity: A Genomic and Transcriptomic Study of Sarcoma Cell Lines, Austin J. Genet. Genomic Res, 1014.

M. Hammadi, V. Delcroix, A. Vacher, T. Ducret, and P. Vacher, CD95-Mediated Calcium Signaling, Methods Mol. Biol, vol.1557, pp.79-93, 2017.

R. M. Gobble, L. Qin, E. R. Brill, C. V. Angeles, S. Ugras et al., Expression profiling of liposarcoma yields a multigene predictor of patient outcome and identifies genes that contribute to liposarcomagenesis, Cancer Res, vol.71, pp.2697-2705, 2011.