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Abstract

This thesis contains two parts. The first part addresses two limit theorems related to
optimal quantization. The first limit theorem is the characterization of the convergence
in the Wasserstein distance of probability measures by the pointwise convergence of
LP-quantization error functions on R% and on a separable Hilbert space. The second
limit theorem is the convergence rate of the optimal quantizer and the clustering
performance for a probability measure sequence (fin)nen+ on R? converging in the
Wasserstein distance, especially when (i, )nen+ are the empirical measures with finite
second moment but possibly unbounded support. The second part of this manuscript
is devoted to the approximation and the simulation of the McKean-Vlasov equation,
including several quantization based schemes and a hybrid particle-quantization scheme.
We first give a proof of the existence and uniqueness of a strong solution of the McKean-
Vlasov equation dX; = b(t, Xy, p)dt + o(t, Xy, pe)dBy under the Lipschitz coefficient
condition by using Feyel’s method (see Bouleau (1988)[Section 7]). Then, we establish
the convergence rate of the “theoretical” Euler scheme X, = Xi A hb(ty, Xy, e, ) +
Vh a(tm,)_(tm, i, ) Zm+1 and as an application, we establish functional convex order
results for scaled McKean-Vlasov equations with an affine drift. In the last chapter, we
prove the convergence rate of the particle method, several quantization based schemes
and the hybrid scheme. Finally, we simulate two examples: the Burger’s equation (Bossy
and Talay (1997)) in one dimensional setting and the Network of FitzHugh-Nagumo
neurons (Baladron et al. (2012)) in dimension 3.

Keywords: Optimal quantization, Wasserstein convergence characterization, K-means
clustering, Simulation of McKean-Vlasov equation, Convex order.






Résumé

Cette theése contient deux parties. Dans la premiere partie, on démontre deux théoremes
limites de la quantification optimale. Le premier théoreme limite est la caractérisation de
la convergence sous la distance de Wasserstein d’une suite de mesures de probabilité par la
convergence simple des fonctions d’erreur de la quantification. Ces résultats sont établis en
R? et également dans un espace de Hilbert séparable. Le second théoréme limite montre la
vitesse de convergence des grilles optimales et la performance de quantification pour une
suite de mesures de probabilité qui convergent sous la distance de Wasserstein, notamment
la mesure empirique. La deuxieme partie de cette these se concentre sur ’approximation
et la simulation de I’équation de McKean-Vlasov. On commence cette partie par prouver,
par la méthode de Feyel (voir Bouleau (1988)[Section 7]), I'existence et 'unicité d’une
solution forte de I’équation de McKean-Vlasov dX; = b(t, Xy, p)dt + o (t, Xy, pu)d By sous
la condition que les fonctions de coefficient b et o sont lipschitziennes. Ensuite, on établit
la vitesse de convergence du schéma d’Euler théorique de ’équation de McKean-Vlasov
)_(tm+1 = X;, +hb(tm, Xy, jir, )+ Vho(tm, X, e, ) Zmy1 €t également les résultats de
Pordre convexe fonctionnel pour les équations de McKean-Vlasov avec b(t, x, ) = ax + f3,
a,B € R. Dans le dernier chapitre, on analyse l'erreur de la méthode de particule,
de plusieurs schémas basés sur la quantification et d’un schéma hybride particule-
quantification. A la fin, on illustre deux exemples de simulations: I’équation de Burgers
(Bossy and Talay (1997)) en dimension 1 et le réseau de neurones de FitzHugh-Nagumo
(Baladron et al. (2012)) en dimension 3.

Mots-clés: Quantification optimale, Caractérisation de la convergence Wasserstein,
Classification non supervisée, Simulation de I’équation de McKean-Vlasov, Ordre convexe.
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Résumé détaillé

La quantification optimale est originellement développée comme une méthode de
transmission et compression des signaux par le Laboratoire bell en 1950s; elle est
maintenant un outil largement utilisé dans le domaine de I’apprentissage non-supervisé
et de la probabilité numérique. De fagon générale, la quantification est une méthode
d’approximation d’une mesure de probabilité x4 en utilisant un K-uplet z = (21, ...,xx) et
son vecteur de poids w = (w1, ..., wg ). L’estimateur de p par la méthode de quantification
s’écrit comme p* = Zszl Wy, * Oz, OU 0, est la masse de Dirac en a. On appelle z =
(z1,...,2x) la grille de quantification (quantizer en anglais). Le poids w = (w1, ..., wk)
est souvent calculé par wy == ,u(C’k(x)), k=1,..,K, ou (Ck(:z))
de Voronoi de R

1<k<k St la partition

Soit Pp(R?) := {u mesure de probabilité sur R? | [za |¢[P p(dé) < +oo} et soit
W, la distance de Wasserstein d’ordre p sur P,(R%). La fonction de distorsion de la
quantification de u € P,(RY) au niveau K et de I'ordre p, notée par Dy (i, -), est définie
par

— d - ; _ p
z=(21,....,2K) € R = D p(p,x) = » 15‘3&'5 xi|P p(dE).

De plus, la fonction d’erreur de quantification est définie par ex (i, ) = Drcp(p, ) /7. Si
x* satisfait «* € argmineg p(p, -) = argmin Dk ,(p, -), on appelle * une grille optimale
de p au niveau K et d’ordre p. L’existence d’une telle grille optimale est établie dans
Graf and Luschgy (2000)[Theorem 4.12] et Graf et al. (2007).

Parmi un large champ de propriétés et d’applications de la méthode de quantification,
cette these se concentre sur deux théorémes limites et ’application de la quantification
optimale & la simulation de 1’équation de McKean-Vlasov.

Partie I : Théorémes limites de la quantification optimale (Chapitres 2 et 3)

Le Chapitre 2 présente la caractérisation de mesure de probabilité par la fonction
d’erreur de quantification. Dans ce chapitre, on établit I'existence d’un niveau minimal



K* tel que pour tout K > K*,

~ pour tout v € Py(RY), ex pln, ) = exp(v) = 5=,
— pour tout i, € Py(R?), n € N* U {oo},

n—-+o0o n—-+o0o
)

e, p(ftn, - ) —— ek, p(ltoo, - ) simplement <= Wy (fin, fios) ——— 0.

La preuve de ces équivalences est basée sur une approche géométrique qui est
équivalente a l'existence d’une cellule de Voronoi bornée dans un diagramme de Voronoi.
Cette existence peut se déduire d’un recouvrement minimal de la sphere d’unité par les
boules d’unité fermées centrées sur cette sphere. Cette approche géométrique est vraie
pour toutes les normes de R%. De plus, pour le cas quadratique, on établit le niveau
minimal pour les caractérisations K* = 2 par les méthodes d’analyse hilbertienne. Ce
résultat de caractérisation peut s’étendre & un espace de Hilbert séparable quelconque.
On définit aussi dans ce chapitre pour tout K > K™ une distance basée sur la fonction
d’erreur de quantification

Qkp = llexp(t ) — exp(v, Mo

et on démontre que cette distance Qg ;, est équivalente a la distance de Wasserstein
Wp. En outre, on montre que (731 (R), Ql,l) est un espace complet et on fournit un
contre-exemple montrant que (732 (R), QK’Q) n’est pas complet pour tout K > 2.

Dans le Chapitre 3, on établit la vitesse de convergence de la quantification optimale
quadratique (p = 2) pour une suite de mesures de probabilité qui converge sous la
distance de Wasssertein. Ce chapitre généralise deux papiers précédents Pollard (1982a)

n—-+0o

et Biau et al. (2008). Soient p,, € Po(R%),n € N*U{oo} telles que Wa(in, floo) ——— 0.
On note (™ la grille optimale quadratique de u, pour tout n € N* et on définit

Gk (poo) = {(a1, ..., xN) | (27, ..., x}y) est une grille optimale quadratique de fioo }

I’ensemble des grilles optimales quadratiques de oo au niveau K. On démontre la
performance de quantification: pour tout n € N*,

DK,Q(NOOa x(n)) - E%%g)K DK,2(,”00, 33') < 46?(,MOOW2(:UW Noo) + 4W22(,“n7 :UOO)a
x
ou ey fo = inf, cpae K,2(foo, y) est Perreur optimale de la quantification optimale. On
démontre également la vitesse de convergence des grilles optimale: & partir d’'un certain

rang,

n 2
(2™, G (ptoo))” < CH Wi, o) + CS2 W3 (i foo)-



Résumé détaillé 3

sous la condition que la matrice hessienne Hp, . de Di 2(phoo, -) €xiste et soit définie
positive. En outre, on donne aussi la formule exacte de la matrice hessienne Hp, .,

dans ce chapitre.

Soient X1, ..., X,, variables aléatoires i.i.d qui suivent la mesure de probabilité u
et soit p¥ = % iz1 0x, la mesure empirique de p. La deuxiéme partie du Chapitre
3 se concentre sur la valeur EDy (™) — inf, ¢ (rayx Dk, u(z), qui est appelée la
performance de la classification non supervisée (la performance de clustering) (voir Biau
et al. (2008)). On établit deux bornes supérieures de la performance de clustering. Si

ne Py (RY) avec ¢ > 2, le premier résultat qu’on obtient est

EDg (™) — inf Dk ,(x)

ze(RI)K
n— V4 4 n—(a-2)/2q sid<4etq#4
< Cagni X n_1/4(10g(1 n n))1/2 +n @2/20 gid=4detq#4 ,
n—Vd 4 pn—(a-2)/2q sid>4detq#d/(d—2)

ou Cy 4 .,k est une constante dépendant de d, g, p et décroit en K d’ordre K —1/d_ Soit
maintenant p € Po(R?). La deuxiéme borne qu’on obtient pour la performance de

clustering est

2K
ED (n),wy _ inf D <7|:2 2 2 :|’
wp(@) = b D plw) < 5 |+ prc () + 20 (r2n + pK (1))
ol 7y, == || maxi<i<n | X4l ||, et px (1) est le rayon maximal des grilles optimales quadra-
tiques i.e. px(p) = max { max;<p<x |2}| | (27,..., %) est une grille optimale de 11}.
Si p = N(m, ), la loi normale multidimensionnelle, on a

2
EDg (™M) = inf Dy ,(z) <C,-

K 2
i P log K (1 f],
nt \/ﬁ[ +logn + i log K (1+ =)

d

avec limsupyg yx =1 et C, =12 [1 Vlog (2 fpa exp (3 |§\4)u(d§))].

Partie II : Equation de McKean-Vlasov: méthode de particule, schémas
basés sur la quantification et schéma hybride, ordre convexe (Chapitres 4, 5,
6et7)

L’équation McKean-Vlasov, qui est premiérement introduite dans McKean (1967),
indique dans cette theése une classe d’équations différentielles stochastiques avec les
fonctions de coefficient dépendant non seulement de I’état de (X;) mais aussi de la loi
de (X;). Plus précisément, 1’équation McKean-Vlasov qu’on discute dans cette these est



définie comme suit,

dXt = b(t, Xt, ut)dt + O'(t, Xt, /Lt)dBt
Xo: (Q,F,P) — (Rd,B(Rd)) variable aléatoire . (0.0.1)
YVt >0, pt est la mesure de probabilité de X;

Dans le Chapitre 5, on donne une preuve de ’existence et 'unicité de la solution
forte de I’équation de McKean-Vlasov (0.0.1) par la méthode de Feyel (e.g. Bouleau
(1988)[Section 7]) sous la condition lipschitzienne suivante
Vt € [0,T],Vz,y € R et Yy, v € Pp(RY),3L t.q.

‘b(t,:(},/j,) - b(tu Y, V)’ v H‘O’(t,.%',,u,) - U(tvyu V)m < L[ ’IIZ - y’ + WP(M7 V)]
(0.0.2)

L’idée de cette preuve est de définir une application @ qui dépend d’une constante
C € R sur un espace produit “ I'espace des processus x l’espace des mesures de
probabilité de processus” comme suit

(Y, Py) —> (I)C(Y, Py)

t t
= ((X0+/O b(s,Ys,l/s)der/o U(S’YS’VS)dBS)te[O,T]’P<1><C})(y,PY)>

=5 (Y,Py)

ol pour un processus stochastique X, on note sa mesure de probabilité Py (voir la
Section 5.1 pour la définition détaillée de Px), puis on montre que cet espace est complet
et que ®¢ est une application contractante sur un sous-ensemble fermé si la constante C
est assez grande. On en déduit 'existence et 'unicité forte de solution de 1’équation de
McKean-Vlasov en utilisant le théoreme du point fixe.

Une fois qu’on obtient I'existence et I'unicité forte de la solution, on montre dans
le Chapitre 5 la vitesse de convergence du schéma d’Euler théorique de I’équation de
McKean-Vlasov (0.0.1), qui est défini par

Xtyir = Xty + 10t Xy i) + Vho (b Xoys ity Zinta
fit,, est la mesure de probabilité de X;, ,m =0, ..., M , (0.0.3)
Xo = Xo

ou M € N* est le nombre de discrétisations en temps et ¢, = % -m, m=0,..,M. Si
b, o satisfont (0.0.2) et

Vt,s € [0,T] t.q. s < t,Ve e R Vu e P(RY), il existe L,y € Ry t.q.
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b(t, @, 1) = bs, 2, )| V o (t, 2, 1) = o (s, 2, w)lll < L(L+ [2] + Wp(h, o)) (t = )7,

(0.0.4)
la vitesse de convergence du schema d’Euler théorique qu’on obtient est
sup Wy (L, fit,,) < || sup |Xtm — Xm\ < Ceh%/w, (0.0.5)
0<m<M 0<m<M »

otl C, est une constante qui dépend de b, o, L, T, L et [ Xoll,,-

Le Chapitre 6 établit le résultat de I’ordre convexe pour 1’équation de McKean-Vlasov
(Xt)te[O,T}a (Yt)te[o,T] définies par

dX, = (aX; + B)dt + o(t, Xy, pis)dBy, Xo € LP(P),
dY; = (aY; + B)dt +0(t, Vi, ) dB,, Yo € LP(P), (0.0.6)

oua, f € Ret pour tout ¢t € [0,T], uy = IP’oXt_l, v = IP’oYt_l. Soient X, Y deux variables
aléatoires a valeur dans un espace de Banach (E, ||-||5). Sion a Ep(X) <Ep(Y) pour
toutes les fonctions convexes ¢ : E — R telle que E ¢(X) et E@(Y") soient bien définies,
on dit que X est dominée par Y pour 'ordre convexe et on note cette relation d’ordre
par X <. Y. On définit respectivement les schémas d’Euler théorique de (Xt>te[O,T]a
(Y2)iejo,r) par (0.0.3), et on les note par Xy,,,Y;,,,m =0,..., M. Dans le Chapitre 6, on
montre que le schéma d’Euler théorique de ’équation de McKean-Vlasov diffuse I'ordre
de convexe i.e. Xtm = v }_/tm,m =0,..., M, sous les conditions que

- XO jcv YO7

— pout tout t € [0,T], z € R, € P(RY), O(t, z, n)0(t, z, pn)* — o(t,x, p)o(t,, u)*

est une matrice définie positive,

— o est convexe en x et croissante en p par rapport a l'ordre convexe.

De plus, on en déduit, en utilisant une induction rétrogradé (backward) et la convergence
du schéma d’Euler théorique (0.0.5), le résultat de I'ordre convexe fonctionnel pour les
processus: pour une fonction convexe quelconque F : C([0,T],R?) — R telle que F(X)
et F(Y') soient bien définies et

Va € C([0,T],R?),3C > 0 t.q. |F(a)| < C(1+ ||alll,,), avec 1 <r < p,

sup

onaEF(X)<EF(Y). En outre, ce résultat peut encore se généraliser aux fonctionnel
du processus et de la loi du processus sous la forme de

G: (a7 (’Vt)te[O,T]) S C([OvT]de) X C([O,T],Pp(Rd)) = G(a, (’Yt)te[O,T]) € Ra



telle que G est convexe en «, non décroissante en (’Yt)te[o,T} par rapport a l’ordre
convexe et admettant une croissance polynomial d’ordre r, 1 < r < p. On obtient a la
fin du Chapitre 6 que EG(X, (11t):ejo,r)) < EG(Y, (¥t)iejo,r)), ot pour tout t € [0, 77,
p=PoX; 1 vy =Poy, .

Le Chapitre 7 propose et analyse la méthode de particule, deux schémas basés
sur la quantification et un schéma hybride particule-quantification pour ’équation de
McKean-Vlasov homogene

dXt = b(Xt, ,ut)dt + O'(Xt, ,LLt)dBt
Xo: (2, F,P) — (Rd,B(Rd)) variable aléatoire . (0.0.7)
Vt >0, py est la mesure de probabilité de X;

On considere principalement le cas homogene dans ce chapitre afin d’alléger les notations
mais tous les résultats peuvent se généraliser au cas non-homogene avec les méthodes
classiques comme pour une équation différentielle stochastique standard. Le schéma
d’Fuler théorique dans le cas homogene est

Xtm+1 = Xtm + h : b(Xtrrﬂﬂtm) + ﬁU(Xtm7 /_j’t'rn)Zm‘f'l

_ _ (0.0.8)
Xo = Xo, ft,, = Py

tm
ot M e N, h=1L et ty, =m-h,me{l,., M}

La premiere méthode qu’on étudie est la méthode de particule, qui s’est inspirée
du principe de la propagation du chaos et qui peut étre considérée comme sa version
discrete. Soient Xé ’N, - X'év NV des i.i.d variables aléatoires qui ont la méme loi que Xy
dans (0.0.7). La méthode de particule est définie par

Vn e {l,...N},
1, N on,N on,N — Sn,N —
X = X A ho(X T N )+ Vho (XY Al )2 (0.0.9)

m
= 55(;;N

ounz),n=1.,Nm=0,., M A N(0,1,). L’idée de cette méthode est d’utiliser

ﬂg’\; comme un estimateur de ji,, pour chaque étape d’Euler. Dans le cas de dimension

1, la vitesse de convergence de ﬂi\fn a iy a déja été démontré dans Bossy and Talay

(1997). Pour la vitesse de convergence dans la dimension supérieure, on obtient dans la

Section 7.1 que pour toutes les dimensions d,

< C’d,]o,L,T pr(laa VN)H ;

sup W, (s, fit,,) ,
p

1<m<M
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ol /i est la mesure de probabilité de X = (Xt)te[o,T}7 qui le processus défini par le
schéma d’Euler continu (voir (5.2.3)) et vV est la mesure empirique de ji. De plus, si
||X0||p+<E < +o00 pour un € > 0, on obtient dans la Section 7.1 en utilisant les résultats
de Fournier and Guillin (2015) que

sup Wp(lji\;vﬂm) <C
1<m<M »
1 _ =
n" 2 4+ n e sip>d/2ete #p
1 1 &
% n_ﬁ[log(l—l—n)]P +n Pt sip=d/2ete#p )
e =) sip € (0,d/2)etp+e # s

ou C est une constante qui dépend de p,e,d,b,0,L,T.

La deuxieme méthode afin de simuler I’équation de McKean-Vlasov qu’on présente
dans le Chapitre 7 est la méthode de quantification optimale quadratique. Soient
z(m = (:cgm), ...,:z:%n)), la grille de quantification de X3, , m = 1,..., M. Le schéma
théorique basé sur la quantification est

Xo = Xo, Xo = Proj,o (Xo)
Xtyoir = Xoo + - 0( X, fitn,) + Vo (Xey, i) Zmsr, m=0,...,M —1
T

avec h = 37 et g, = P)?tm

Xtpir = Projumn (X, 14 )-

On montre dans la Section 7.2 'analyse d’erreur de ce schéma et on propose trois facons
différentes de simuler explicitement iy, .

(1) Dans le cas de Vlasov, i.e. b(z, 1) = [ga Bz, u)pu(du) et oz, p) = [paalz, w)p(du),
on peut utiliser la méthode de quantification récursive, qui a été introduite dans
Pages and Sagna (2015) pour une équation stochastique réguliere. On peut en
déduire une transition markovienne de ()?tm,ﬁtm). Soient p(™) = (pgm), e pg(n)) le

poids qui correspondent & z(™) = (xgm), ,x(Km ), m =0,..., M et par conséquent

e, =K, d_(m) pl(cm). La transition markovienne de (X, ,fit,, ) qu’on obtient dans

la Section 7.3 ést
]P)(X\thrl = x;m-i—l) | X\tm = xgm)’p(m))

K K
= ]P’[(xz(m) +h Z p;(gm)/@(-rz(,m)’ mlgm)) + \/?L Z pgcm)a(xz(m), x;(gm)>Zm+1) c Cj (x(m-q—l))]
k=1 k=1



et étant donné p(™), on peut calculer pour tout j = 1,..., K,

p§m+1) _ P(X\tm_,_l _ m+1 |p )

K
—~ IR —~
=Y P(Xt, =)™ | X, =2l p™) - B(X, = ™).
La preuve de ces transitions markoviennes se trouve dans la Section 7.3. De plus, on
explique également dans cette section comment utiliser 'algorithme de Lloyd afin
d’améliorer 'exactitude de la simulation.

La deuxiéme fagon d’exprimer explicitement fi;,, est d’utiliser la grille optimale de la
distribution normale N(0,1,) et son poids, qui peuvent étre téléchargées dans le site

www.quantize.maths-fi.com/gaussian_database pour les dimension ¢ =1, ..., 10.
Soient z("™) = (xgm), o x&?)) une grille de quantification de X;,, m = 0,..., M. Soit

z = (#1, ..., ) une grille optimale de N'(0,1,) avec J > K et soit w = (w1, ..., wy)
le poids correspondant de z. Le schéma basé sur les deux grilles de quantification x

et z est comme suit

Xo = Xo, Xo = Proj, ) (Xo)
therl = X\tm + h- b(X\tm, ﬁtm) + \/EO'(X\tm,ﬁtm)Z\m_i_l, m = O, ceny M-—-1

ot h=14 et bit,, = Pg,

Xtm+1 = Projx<m+1) (Xtrn+l)7
ou 2 i Z] 1 w;0z;. On appelle cette méthode le schéma double-quantisé et on
montre dans la Section 7.4 'analyse de 'erreur de ce schéma.

Soient z(™) = (xgm), x%n)), m =20,1,..., M une suite de grilles de quantification.
Aprés avoir obtenu la vitesse de convergence de la méthode de particule, on peut
aussi appliquer la méthode de quantification optimale sur (0.0.9) comme suit

Vn e {1,..., N},
N _ TnN SN A~ SN ~
X?mH X+ b(X 7M{()+\/EU(XZ% NS VA

SN
th - (% Zflv: (5~n N) o Proj ! o = Zszl [5%(;”) .anl ]lvk(x(m))(Xfm )]
X(?)”L,N ir._z.jiXO’ g zsz(O I)

On appelle ce schéma le schéma hybride particule-quantification (schéma hybride, a
court terme). L’analyse d’erreur de ce schéma se trouve dans la Section 7.5.

A la fin du Chapitre 7, on montre des simulations par les méthodes présentées

précédemment a travers deux exemples. Le premier exemple est la simulation de

I’équation de Burgers introduite dans Sznitman (1991) et Bossy and Talay (1997).
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L’équation de Burgers admet d’une solution explicite, on peut donc comparer le niveau
de précision des méthodes différents. Le deuxieme exemple, le réseau de neurones de
FitzHugh-Nagumo, est en dimension 3 et introduit premierement dans Baladron et al.
(2012) et également dans Reis et al. (2018).






Chapter 1

Introduction

1.1  General background on optimal quantization

Vector quantization was originally developed as an optimal discretization method for
the signal transmission and compression by the Bell laboratories in the 1950s. Many
seminal and historical contributions on vector quantization and its connections with
information theory were gathered and published later in IEEE Transactions on Infor-
mation Theory (1982). Nowadays, vector quantization becomes an efficient tool widely
used in different fields. For example, in unsupervised learning, vector quantization has a
close connection with the clustering analysis and the pattern recognition; in numerical
probability, vector quantization is used for numerical integration, conditional expectation
computation, simulation of stochastic differential equations and also for option pricing in
financial mathematics. Among a wide range of properties and applications of the quanti-
zation method, this thesis focuses on two limit theorems of the optimal quantization

theory and its application to the simulation of the McKean-Vlasov equation.

1.1.1  Principle of optimal quantization(®

Let X be an R%valued random variable defined on (£, F,P) with probability dis-
tribution g having a p-th finite moment, p > 1. Let |-| denote the norm on R,
The quantization method consists in discretely estimating u (or X) by using a K-
tuple = (z1,...,2x) € (R)X and its weight w = (w1, ...,wg). Here the K-tuple
x = (z1,...,2x) is called by a quantizer (or quantization grid, cluster center, codebook in

the literature). To be more precise, the quantized estimator of p induced by z, denoted

(1) We allow ourselves a slight relaxation of mathematical rigour (only) in this section to quickly present
the basic principles of optimal quantization.
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by i*, is defined by

K
=3 ju(Cela)) - o, (L.11)
k=1

=wy, the weight of each quantizer point xy,

|

where §, denote the Dirac mass at a and (Cy(z)) is the Voronoi partition (see

k=1,...K
for example Figure 1.1) generated by x, which is a mesurable partition of R? satisfying

d e — .
Vk e {1,.., K}, C’k.(x)C{yER |y — x| lg}lgnKLy x]\}

Similarly, the estimator of X by the quantization method is defined by

K
k=1

mo

5D

25

op

s0{--""

/s ~
~.
35 / ~

-104
-100 -15 50 -15 op 25 5D 15 mo

Figure 1.1 An example of the Voronoi diagram on R? equipped with the Euclidean norm
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0.0

I
<
M~
<
=
<
™
~
0

-0.764567571
0.764567571
1.72414741

Figure 1.2 An optimal quantizer of A(0,1) (red point). The vertical axis is the weight divided by the
length of the corresponding Voronoi cell.

Let d(¢, A) = minge 4 |€ — a| define the distance between a point ¢ € R? and a set
A C R% For p > 1, the LP-quantization error of the quantizer x = (21,...,xx) € (RH)E
is defined by the LP-norm of d(X,T%) with T'¥ := {z1, ...,z } C R%, namely,

— /p _ . .
e i) = [BACCTW] = [ [ min (€~ " n(d)] .
A quantizer z* € (RHK satisfying ex ,(u,2*) = inf ¢ (rayx exp(p, ) is called an LP-
optimal quantizer of u at level K. Such a quantizer always exists if p has a finit p-th
moment (see Graf and Luschgy (2000)[Theorem 4.12]).

In the quadratic case (p = 2), the optimal quantizer can be numerically computed
by using the CLVQ algorithm (stochastic gradient algorithm), the Lloyd I algorithm
(randomized or deterministic fixed point algorithm) or some variants. Figure 1.2 shows
a quadratic optimal quantizer at level 5

o* = (—1.72414741, —0.764567571, 0.0, 0.764567571, 1.72414741)

of the normal distribution A/(0,1) on R computed by the Lloyd I algorithm.

Another classical method to discretely approximate a probability measure p is
the Monte-Carlo method. Let Xi,..., Xx be an i.i.d sample defined on (€2, F,P) with
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probability distribution p. The estimator of p by the Monte-Carlo method is

1 N
v = ¥ 2 OXa)- (1.1.3)
n=1

Compared with the Monte-Carlo method, the optimal quantization method has two

intuitional advantages

e The optimal quantizer is deterministic, which means the optimal quantizer does
not depend on w in (2, F,P), so that the estimator 7i* defined in (1.1.1) is
also deterministic. This means one can achieve a prescribed level of accuracy by
enlarging the size of optimal quantizer with the help of an upper bound of the
optimal error (see further the non-asymptotic Zador’s theorem in Theorem 1.1.1).

o If we consider a K-level optimal quantizer * = (x1,...,2x) and an i.i.d sample
X1, ..., Xk with the same size K, we will always get a higher accuracy with respect
to the Wasserstein distance by using the quantization estimator i* defined in
(1.1.1) than using the Monte-Carlo estimator ji*“ defined in (1.1.3).

However, the shortcoming of the optimal quantization method often occurs on the
computing time due to the adding procedure to find the optimal quantizer.

The first advantage is obvious. Here we give a quick explanation to the sec-
ond advantage. Let P(K) denote the set of all discrete probabilities v on R? with
Card(supp(l/)) < K. Let 2* = (2%, ..., 2%) denote an LP-optimal quantizer of u € P,(R?).
It follows from Graf and Luschgy (2000)[Lemma 3.4] that

6K,p(ﬂ7 T*) = Wp(ﬂ7 ﬁz*) = Vei7131(fK) Wp(,uv v).

Thus for any K-size i.i.d sample X1, ..., Xx with probability distribution u, we have
W, i) < Wy, %) aus.,
where 7% is defined in (1.1.1) and % is defined in (1.1.3).
The optimal quantization method is applied in the following fields, besides the signal

transmission and compression as its original purpose.

— In the numerical probability, the optimal quantization is used to compute the
numerical integration, conditional expectation (see e.g. Pages (1998)) and offers a
spatial discretization in the simulation of stochastic differential equation (see e.g.
Gobet et al. (2006)). Let X be an R%valued random variable with probability
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distribution p having a p-th finite moment and let x = (x4, ..., zx) be its quantizer.
A simple example is that for a Lipschitz continuous function F' : (E, &) — (R, B (R))
with Lipschitz constant [F,, one can use

K
EF(X") =Y Flaw)u(Crl@))
k=1

to approximate E F'(X). Note that HX — Xe

of the above simulation can be upper-bounded by

= ek p(p, x), so the (strong) error
p

E|F(X) = F(X)| < [Flus

k—ﬁv

1 < [F]Lip

p—ﬁv

p=> 1

p 7
If F' is differentiable with a Lipschitz continuous gradient VF, then (see Pages
(1998) or Pages (2018)[Proposition 5.2])

2

EF(X) - EF(X)] < 5[Vl

M—ﬁf

5

— In the field of the unsupervised learning, the optimal quantization is also called the
K -means clustering. It is used to solve the problem of automatic classification. In
this context, the quantizer is also called cluster center in the literature. The main
idea is to consider a vector data set {y1, ..., yn} as a empirical measure % Zflvzl Oy,
and to compute/train the optimal quantizer of this data set. The following figure
shows an example of the optimal quantization of a data set.

-2

-1 -2 1 0 1 2 3 a

Figure 1.3 The optimal quantizer of a data set.
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The data set in Figure 1.3 is a mix of three i.i.d sample of size N = 300 of
respective probability distribution/\/([ 8 } , [ 0%5 09 D, N([ : } , [ _3‘5 -0 D,
1 —0.2

and N([ s } ) [ o2 1 }) The red points are an optimal quantizer of size 3
of this data set. The blue points are the three centers of the normal distributions.

1.1.2  Frequently used definitions and basic properties

Now we present several frequently used definitions to mathematically formalize the
optimal quantization and some of its basic properties. Let (2, F,P) denote a probability
space and let X : (Q,F,P) — (E,|:|p) be a random variable valued in a separable
Banach space E with norm |-|;. Let

Pp(E) = { u probability distribution on F s.t. / 1|5 p(d) < —i—oo}

and let W, denote the LP- Wasserstein distance on P,(E), defined by

1

= inf —ylh i
Wyuv)=(_jnt [ Jo =yl w(de,dy))

1

:inf{[E|X—Y|§}", X,Y : (QF,P) — (E,||p) with Po X' = i, PoY ! = }

where in the first line of the above definition, II(x, ) denotes the set of all probability
measures on (B2 £%2) with respective marginals 4 and v and € denotes the o-algebra
generated by || 5. For two random variables X,Y : (Q, F,P) — (E, || ) with respective
probability distributions p and v, we write W,,(X,Y) = W, (i, v).

Let p denote the probability distribution of X and assume that p € Pp(E). The
quantizer (also called codebook in signal compression or cluster center in unsupervised
learning theory) is originally denoted by a finite point set I' = {z1,...,xx} C E. The
LP-mean quantization error of I', which describes the accuracy of representing the
probability measure p by I, is defined by

S =

eyl ) = [dX D), = [ [ minlé = aff u(ae)]

where d(§, A) = mingec 4 | — a|; defines the distance between a point £ € E and a set
A C E. A quantizer I'>(5) satisfying

1 1
ep(p, )y = Figg [IE d(X, I‘)p] "= mf / mm |€ — a\E,u(df)] : (1.1.4)
card(T) <K card(F)<K

is called an LP-optimal quantizer (or optimal quantizer in short) at level K. Such an opti-



1.1 General background on optimal quantization 17

mal LP-quantizer always exists when X € LP(P) (see Graf and Luschgy (2000)[Theorem
4.12] and Graf et al. (2007)).

Now we define the LP-mean quantization error function and the LP-distortion func-
tion.

Definition 1.1.1 (Quantization error function and distortion function). Let pe Pp(E),
p € [1,400). The LP-mean quantization error function of u at level K, denoted by

exp(l, ), is defined by:

esz(u’.) : EK — R"F 1
— — ; P P
r=(z1,...,0x) — exp(p,z)= [ o i & — x| p(dE) | .

(1.1.5)
Moreover, the LP-distortion function of p at level K is defined by Dy p(t, ) = 6”}(@(#, ).

When p = 2, E is a Hilbert space and |-| is induced by an inner product, we call
ex 2(H, -) the quadratic quantization error function and Dg (4, -) the quadratic distortion

function. In this case, we remove sometimes the subscript 2.

Let card(T") denote the cardinality of the point set I' C E. The generic variable of
the function ex ,(u,-) and Dk p(p, ) is a priori a K-tuple in EX. However, for a finite
quantizer I' C E, if the level K > card(T"), then for any K-tuple z' = (2},... 2}%) € EX
such that I' = {z1,..., 2%}, we have e,(u,T) = ex (1, 7"). For example,

ep(p {w1, 22}) = eap(p, (21, 22)) = e3p (1, (w1, 21, 32)), ete.

Note that ex ,(u, -) and Dk (u, ) are symmetric functions on EX and that, owing to

the above definition,

inf e I')= inf e x). 1.1.6
C B card(N) <K p(#7 ) seEK K,p(:u7 ) ( )
Therefore, with a slight abuse of notation, we will use for convenience either a K-tuple
r = (11,...,05) € EX or a point set I' = {21, ...,2x} C E to represent a quantizer
and we will denote by x* € argmineg ;,(u,-) the LP-optimal quantizer of p at level K.
Furthermore, we denote

1
* . . . o 2 2
i) = y:(yh--l?yfx)eEK [ Rd 1SiK &=yl ulde)] (L.L.7)

the LP-optimal quantization error of u at level K.

There exist other terminologies in the literature which play a similar role as the
quantizer. For example, in Graf and Luschgy (2000)[Section 3|, the authors define the
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quantizer by an application fx : F — FE such that card(supp( fK)) < K, where supp
denotes the support of a function and card denotes the cardinality of a set. Another
example is in Pollard (1982b). The author uses a probability distribution pux on E,
where the subscript K means card(supp(,uK)) < K, to represent the quantizer. The
equivalence of these two representations and our definition has been proved in Pollard
(1982b)[Theorem 3] and Graf and Luschgy (2000)[Lemma 3.1, 3.4 and 4.4].

Quantization theory has a close connection with Voronoi partitions. Let z =
(z1,...,7x) € EX be a quantizer at level K, where z; # x; if i # j. The Voronoi cell (or
Voronoi region) generated by xj, is defined by

V) = {§ € B: € —mulp = min |~ ], ) (1.18)

and (Vz,, (%)) <. g 18 called the Voronoi diagram of . On a Hilbert or a Euclidean space,

the Voronoi cells are intersections of half-spaces defined by the median hyperplanes, i.e.
Vi, (2) = Njr Ej,

where Ey; is the half-space defined by the median hyperplane of z; and x; that contains
Tk.

A mesurable partition (C’,U,C (x)) is called a Voronoi partition of E induced by

1<k<K
x if
Vke{l,..,K}, Cy(x)C Vg (). (1.1.9)

When there is no ambiguity, we write Cy(x) and Vi (z) instead of Cy, (z) and V;, (x).
We also define the open Voronoi cell generated by xj by

Vo) = {6 Eile—mnly < _min -], ). (1.1.10)
One quantizer x = (x1, ..., ¥ ) may generate different Voronoi partitions, this depends
on the choice between V7 (z) and V7 (x) with which we put together V;, (z) NV, ().
Figure 1.2 in Graf and Luschgy (2000) emphasizes that when the norm is not Euclidean

then intV;,(z) and V7 (x) may be different. However, on a Hilbert or a Euclidean space,

there is always equality.

Based on a Voronoi partition (Cy,(x)), ., One can rewrite the LP-distortion
function D (1, -) (also the quantization error function) by

K
Dy (1, ) = — xx|P p(d6), 1.1.11
) = 3 [ el e (11.11)

but the value of Dk (1, x) is independent of the choice of Voronoi partition. For the
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properties of Voronoi cell, we refer to Graf and Luschgy (2000)[Chapter I] among many
other references.

In fact, both the definition of Voronoi region and the quantization error function
strongly depend on the chosen norm on E. For example, Figure 1.1 in Graf and Luschgy
(2000) shows two different Voronoi diagrams of the same finite point set in R? with
respect to l;-norm and lp-norm. When E = R¢ and the underlying norm is strictly
convex or [p,-norm with 1 < p < 400, we have \g (8ka (:U)) = 0, where \; denotes the
Lebesgue measure on R and A denotes the boundary of A (see Graf and Luschgy
(2000)[Theorem 1.5]). In particular, if 4 € P2(R?) and z* is a quadratic optimal quantizer
of p at level K with respect to the Euclidean norm, even if u is not absolutely continuous
with respect to Aq, we have p(9V;, (z*)) = 0 for all k € {1, ..., K'} (see Graf and Luschgy
(2000)[Theorem 4.2]).

Furthermore, based on a Voronoi partition (ka (m))1 <p< ) generated by a quantizer
z = (z1,...,xx) satisfying x; # x;,7 # j, we can define a projection function Proj, :
E— {171,...,1’](} by

K
£ € E s Proj, (&) =) wple,, (2)(6)- (1.1.12)
k=1
Thus, for a random variable X with probability distribution u, we define
X" := Proj,(X). (1.1.13)

Then H)A(x — X” = ex p(it, ). When there is no ambiguity, we denote by X instead of
P
X?. The variable X?* and its probability distribution

K
A= 0g, pt(Cay (7)) (1.1.14)
k=1

are often considered as quantization based estimators of X and u. Moreover, it follows
from Graf and Luschgy (2000)[Lemma 3.4](") that

Wyt ) = || X7 = X]| = excplp. ). (1.1.15)

(1) The statement of Graf and Luschgy (2000)[Lemma 3.4] is established for the optimal quantizer.
However, the third inequality of its proof is also valid for an arbitrary quantizer from where we
derive (1.1.15).
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1.1.3 A brief review of the literature and motivations

Most work in the field of the optimal quantization addresses the following three

questions around which we organize this section:

— Question 1: Why does the optimal quantization provide a good discrete representa-
tion of the probability distribution?

— Question 2: How to find the (quadratic) optimal quantizer?

— Question 3: How to apply the optimal quantization in numerical probability or in
unsupervised learning?

Moreover, for a first mathematically rigorous monograph of various aspects of vector
quantization theory, we refer to Graf and Luschgy (2000) (and the references therein).
See also Pages (2015) for numerical applications. For more engineering applications to
signal compression, see e.g. Gersho and Gray (2012) among an extensive literature.

1.1.3.1 Why does the optimal quantization provide a good representation
of the probability distribution?

We start with some basic properties of the optimal quantizer and the optimal
quantization error to answer Question 1. First, the existence of optimal quantizer is
proved in Pages (1998) and Graf and Luschgy (2000)[Theorem 4.12] for E = R? and in
Graf et al. (2007) for any Banach space. Generally, there does not exist a unique optimal
quantizer for a probability distribution . If 2* = (z1,...,xx) is an optimal quantizer
of pu, it is obvious that any permutation of x1,...,zx such as 2/ = (v, ..., 1) is also
an optimal quantizer of u. However, if E = R and we set an order for x = (z1, ..., xx)
by letting z1 < z9 < ... < xk, the uniqueness of optimal quantizer is proved in Kieffer
(1983) if p is absolutly continuous with respect to the Lebesgue measure A and has a

log-concave density function.

Moreover, the optimal quantizer and the optimal quantization error provide the
following properties for a fixed quantization level K € N*. We present later their
asymptotic properties when the quantization level K — +o0.

Theorem 1.1.1. [Properties of the optimal quantization error/

(i) (Strictly decreasing of K — ej¢ (1))
For every p € Py(RY) with card(supp(p)) > K, one has ek p() < €x_q (1), for
K > 2.
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(73) (Upper bound of the optimal quantization error: Non-asymptotic Zador’s theorem)
Letn > 0. For every u € PpM,(Rd) and for every quantization level K, there exists a
constant Cqpy € (0,+00) which depends only on d,p and n such that

¢k p(1) < Capyy - oprn(WE Y, (1.1.16)

where for r € (0,400), 0, (1) = mingega | fpa [€ — a|” p(d)] v,

Theorem 1.1.2. [Properties of optimal quantizers]

(1) (Boundedness and cardinality of optimal quantizers)
Let p € Pp(R?). Assume that card(supp(p)) > K. Let

Ok () = {{x”{,,xﬁ(} | (a1, ..., 2%) € argmineK,p(,u,-)}

contains the points which compose an LP-optimal quantizer of p at level K. Then Gx (1)

s a nonempty compact set so that

P p(p) = max { max lxk], (2], ...,x%) is an optimal quantizer of ,u} (1.1.17)
is finite for a fizved level K. Moreover, if I’ C R® is an LP-optimal quantizer of i,
then card(I'*) = K. In particular, if T* = {z1,...,xx}, then ' = (21,...,2x) €
argmin eg ,(p, -) and vice versa.

(73) (Stationary of quadratic optimal quantizers)
Let X : (Q,F,P) = (R%B(R?)) be a random variable with probability distribution
p € Po(R?Y) with card(supp(p)) > K. If the norm on R is the Euclidean norm, then
any quadratic optimal quantizer x* = (z7,...,x}% ) of level K is stationary in the sense
that

E[X|X"]=X", (1.1.18)
where X** is defined in (1.1.13) and the equality of (1.1.18) is valid for every Voronoi
partition generated by x*.

We refer to Graf and Luschgy (2000)[Theorem 4.12] for the proof of Theorem 1.1.1-(7)
and Theorem 1.1.2-(7), to Luschgy and Pages (2008) and Pages (2018)[Theorem 5.2] for
the proof of Theorem 1.1.1-(i¢) and to Pages (2008) and Pages (2018)[Proposition 5.1]
for the proof of Theorem 1.1.2-(i7).

The quantization error function eg ,(u,-) and the distortion function Dy p(u,-)
are two efficient tools to study the optimal quantization as the optimal quantizer
*

¥ = (x],...,x%) € argmineg ,(u,-) = argmin Dg p(p,-). In fact, the quantization
error function is entirely characterized by the targeted probability distribution g in



22 Introduction

the following sense. Let E denote a separable Banach space equipped with a norm
|-|. Let X,Y : (2, F,P) — (E,||) be two random variables with respective probability
distributions y,v € P,(E). For every K-tuple z = (z1,...,2x) € EX, we have

‘p’

min | X — x|

|€K,p(u7$) - eK,p(V7$>| = ‘ min |Y — ZCZ|

-

i=1,..K i=1,..K

< || min |X —z;|— min |V — ‘ (by the Minkowski inequality)
i=1,..., i=1,..K »

< H,max | X — 2] — |V — ] |H <|x-Y],. (1.1.19)
i=1,...,.K p b

As this inequality holds for every couple (X,Y’) with marginal distributions p and v, it
follows that for every level K > 1,

lerp(p, ) — exps)llgyp = Sup. lexp(t, z) — exp(v,z)| < Wy(p,v).  (1.1.20)
S

Hence, if (f1n)n>1 is a sequence in Pp,(E) converging for the W,-distance to o € Pp(E),
then

n—-+4o0o

lerp(tin, <) = e p(hoos )lgup < Walttns proc) —— 0. (1.1.21)

sup —

Moreover, for any p € P,(E), the function ex p,(u,-) defined in (1.1.5) is 1-Lipschitz
continuous for every K > 1 since for any « = (z1,...,2x),y = (y1,...,yx) € EX,

3=

escpo) = en o)l = | [ [ min t6 = )] = [ [ i le =51 la)]

» 1
< [/E ‘ 1gi§nK & — x| — 1;21;1}( 1€ — vj] ‘ u(d{)] " (by the Minkowski inequality)

<[/ max o — P ia)] =

g 1<i<K P |z — yil - (1.1.22)

1<

Now we show the asymptotic properties of the optimal quantization on R? when the
quantization level K — +oc.

Theorem 1.1.3. Let X : (Q, F,P) — (RY, B(R?)) be a random variable with probability
distribution p. Let i = pg + ps = h - Ag + ps denote the Lebesgue decomposition of p
with respect to the Lebesque measure g, where pq is the absolutely continuous part with

density function h and ps is the singular part of .

*, (K)

(i) Let u € Pp(RY), For every K € N*, let i® and X =" denote the quantization
estimator of p and X defined in (1.1.14) and (1.1.13) with respect to an optimal
quantizer x* ) = (acl*’(K), . (K)) at level K. Then

g (K)

=5, =7

) = ek pp) =0 as K — +o0. (1.1.23)
P
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(i4) (Zador’s Theorem) Let 1 € Ppyy(R?) for some > 0. Then there exists a constant
Cp.a depending on p and d such that

, 1/d = B 4 1.1
KE)IEOOK/ erp(it) —Cp7d[/Rdhd+Pd)\d]P a,

(iii) (Empirical measure theorem) If h # 0 and h € LY@+ ()\,), then

1 ®Y) _ hédD)(g)
K : B K 1.1.24
K 1<;K 02y : fhd/(d+p)d)\d)\d(d5)’ as K — +00, ( )

#(K) _ (J;{,(K)

where for every K € N*, x = ’(K))

ey X denotes an optimal quantizer
of p at level K and denotes the weak convergence of probability measures on a

Polish space S.

We refer to Graf and Luschgy (2000)[Lemma 6.1, Theorem 6.2 and Theorem 7.5] for
the proof of Theorem 1.1.3.

The answer to Question 1 is composed by not only the above three convergences in
Theorem 1.1.3 when K — 400, but also by a close connection among the probability
distribution, the quantization error function and the optimal quantizer (eventually the
weight of optimal quantizer) when K is finite. First, the optimal quantizer is entirely char-
acterized by the quantization error function since z* = (27, ..., 2% ) € argmineg ,(u, -).
Moreover, Inequalities (1.1.20) and (1.1.21) show that for every K > 1 and p€ [1,4+00),
the quantization error function eg (i, ) is characterized by the probability distribu-
tion pu. Hence, the characterization relations between a probability measure p, its
LP-quantization error function and its optimal quantizers can be synthesized by the
following scheme:

[Probability measure ,u]

See (1.1.20) and (1.1.21) /; see (1.1.23) and (1.1.24)
Quantization error Optimal quantizers
function ex (1, -) (K
argmin

see Theorem 1.1.2

Our motivation of Chapter 2 is to investigate more deeply the relations between these
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three elements. In Chapter 2, we consider the “reverse” questions of (1.1.20) and (1.1.21):
When and how is a probability measure € Pp(Rd) characterized by its LP-quantization
error functions e (1, )¢ And if so, does the convergence in an appropriate sense of
the LP-quantization error functions characterizes the convergence of their probability
distributions for the W,-distance?

1.1.3.2 How to find the (quadratic) optimal quantizer?

(A) If the target probability distribution p is known...

As far as we know, there does not exist a general method to find the LP-optimal
quantizers of u € P,(R?) for every p > 1. However, if p = 2 and if the underlying
norm on R? is the Euclidean norm, there exist several numerical methods to find the
quadratic optimal quantizer which correspond to the properties of the optimal quantizer
in Theorem 1.1.2-(7) and (i7).

(A.1) Zero search algorithm and CLVQ algorithm. Let X be an R%valued random
variable with probability distribution p satisfying g € Po(R?). Assume that pu is
absolutely continuous with respect to the Lebesgue measure, i.e. p = f- Ay with f its
density function. For a fixed quantization level K, its quadratic distortion function
Di (s, ) is differentiable at all point x = (x1,...,xx) s.t. x; # xj,1 # j,

DA (a) =2 [ @ fOMD) = 28 [Lxepn(m—X)], fork=1L...K.
(1.1.25)

As the quadratic optimal quantizer z* = (27, ...,2%) € argmin Dk 2(u, -), one can
use a zero search algorithm of the gradient VD 2(u, -), namely,

gl = gl — 71+1VDK72(u,x[l}), with zl e (Hull(supp(u)))K, (1.1.26)

where £ has pairwise distinct components and (Hull(supp(,u)))K denotes the closed
convex hull of the support of u. Furthermore, we obtain in Chapter 3 a detailed
formula for the Hessian matrix Hp, ,(,, .) by applying Fort and Pages (1995)[Lemma
11]. Consequently, when d = 1, one can replace ;11 by the inverse of the Hessian matrix
Hpy ,(u, ), which leads to the classical Newton-Raphson procedure as follows,

2 = 2l — Hp, o, @) VDR o, al). (1.1.27)

Furthermore, one can improve (1.1.27) by using the Levenberg-Marquardt algorithm
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with an appropriate choice of A\; as follows

2l = ol — [H'DK,Q(#, : )(xm) + Ml _IVDK,Q(NJCU])' (1.1.28)

Taking advantage of the representation of VD o(u, -) as an expectation (see (1.1.25)),
the above gradient descent has a stochastic counterpart called the CLVQ algorithm
(Competitive Learning Vector Quantization), which works also in higher dimension
(@>2)

x[lJrl] = xm —Yi+1 [H{XHlEVk(z)}(xg] - Xl+1)} 1<k<K>’ with x[O} € (Hull(supp(,u)))K,
(1.1.29)
where z has pairwise distinct components and (X;);>; are independent copies of X.
We refer to Pages (2015)[Section 3.2] for more details of the CLVQ algorithm.

(A.2) Lloyd I algorithm. Lloyd I algorithm, firstly introduced in Lloyd (1982), is a fixed
point search procedure which comes from the stationary property described in Theorem
1.1.2-(ii). Let 20 = (:):[10}, ...,x[[g]) € supp(p)®, having pairwise distinct components, the

Lloyd I algorithm computes the following iteration

L fck(x[lJ)fﬂ(dﬁ) k=1

k W, ,...,K, (1130)

:E[ll+1]’ . x[fl{“]) — 21, In dimension

until some stopping criterions, for example, [+ = (
1, if p is absolutely continuous with respect to the Lebesgue measure and its density
function p is log-concave and log p is not piecewise affine, the Lloyd I algorithm has
an exponential convergence rate (see Kieffer (1982)). The convergence of the Lloyd I

algorithm in higher dimension is proved in Pages and Yu (2016).

The integral over a Voronoi cell in (1.1.30) can be computed by using cubature
formulas for numerical integration on convex set. For example, in low dimension (d < 3),
we refer to the libraries available at the website www.qhull.org. In higher dimension,
the computing time of such integral becomes intractable and we are led to switch to
the Randomized Lloyd I algorithm, which relies on a Monte-Carlo method and can be
written as follows,

— Let N > K. Simulate Xi,..., Xy “ p.

— Set zl0 = (l‘[lo], ...,x[lg]).
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— Compute zl+1 = (a?[IHH, ...,a:[ll;r”) by

[+ 27]:7:1 Xnﬂ{xneck(x[l])}
Ty ==

k=1, K. (1.1.31)
Zi\le ]l{XnECk(z[l])}

— Repeat the above iteration until some stopping criterion occurs.

(B) If the target probability distribution p is unknown but there exists a known probability
distribution sequence [, converging to pu in the Wasserstein distance...

This is a common situation in applications that u, is the empirical measure or p
is the stationary measure of a diffusion process dX; = b(t, X¢)dt + o(t, X¢)dB;. This
leads us to consider the consistency and the convergence rate of optimal quantizers for a
W)-converging sequence of probability distributions.

Let pin, € Pp(R?), n € NU {oo}. For every n € N, let 2" denote the optimal
quantizer of u, at level K and order p. There are two ways to consider the consistency
and the convergence rate of the optimal quantization. The first way is to directly study
the convergence of optimal quantizers:

— Will (z(),,en converge to an optimal quantizer of fi?
This question is solved in Pollard (1982b)[Theorem 9] for p = 2 and we will prove
it for every p > 1 in Chapter 3.

— Let Gx (o) = { (21, ..., 2x) € (RN | (w1, ..., x) is an optimal quantizer of jis }.
Can we obtain the convergence rate of d (2™, G (ko)) ?
This question is solved in Chapter 3.

The second way is to study the convergence of the quantization errors, that is, we
consider (™ as a quantizer of po and study the convergence of the quantization
error e p(foo, ™) (or equivalently D p(ftoo, :):(”))) to the optimal quantization error
e*K,p(/"LOO) of fioo (or infc(gayx Dk p(tico, ) )-

— Does Dx (100, ™) converge to inf ¢ (mayx Dk p(fioo; ©)?
— Can we obtain an estimation (e.g. an upper bound) of the convergence rate of

D p(ftoo; ™) = o Dcploo, )|

When py,,n € N, are the empirical measures and ji, has a bounded support, a result is
established in Biau et al. (2008). For a more general setting, e.g. for any W,-converged
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probability distribution sequence or for the empirical measure with non-bounded support,
the convergence rate results are established in Chapter 3.

1.1.3.3 How to apply the optimal quantization in numerical probability or

in unsupervised learning?

In the unsupervised learning area, vector quantization has a close connection with
the automatic classification (clustering analysis) through the K-means algorithm. The
term K-means originates from the paper MacQueen (1967), which aims at finding an
optimal partition S = {51, ..., Sk} of a given set of observations (&1, ...,&x) € (RY)Y in
order to minimize

1N

N kinlainK d(&,,my)?,  with my the mean (or the centroid) of points in Sy,

n=1

where d is a distance function or other functions to represent the similarity. If d is
the [,-distance, we recognise the common thread between the K-means algorithm and
the optimal quantization method if we consider a probability measure p defined by
w= % Zﬁle d¢,. However, in the clustering analysis, d can also be other functions such
as an inner product or the Jaccard distance according to the features we want to extract
from the observations. For more details on the K-means algorithm, we refer to Duda
et al. (2001) and Linder (2002) among many other references.

In the numerical probability, vector quantization is an efficient tool to compute regular
and conditional expectations (see Pages (1998), Bally and Pages (2003) and Pages and
Printems (2003)). Thus, the quantization based numerical scheme has been developed for
the simulation of the solution of the stochastic differential equation (see Pages and Sagna
(2015)) and for the Backward Stochastic Differential Equation or nonlinear filtering
(see Pages and Sagna (2018)). Moreover, the functional quantization technique can be
used for the variance reduction in the simulation of diffusion process (see Lejay and
Reutenauer (2012)) or solving stochastic inversion problems (see El Amri et al. (2019)).
In financial mathematics, the quantization based scheme can be used in the option
pricing, see Bally et al. (2005), Callegaro et al. (2017), Callegaro et al. (2015) and
Bormetti et al. (2018).

In the second part of this thesis, we are interested in the application of the optimal
quantization method to the simulation of the McKean-Vlasov equation. The terminology
McKean-Viasov equation originates from the paper McKean (1967) in which H.P. McKean
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studies a partial differential equation on R? having the following form

8p 1 8 d
ot 2 dig< O0x;0x; <d Ox; (1.1.32)

limp =

10 pP=q
and whose solution p is the density of a stochastic process X. By now, the terminology
McKean-Viasov equation refers to the whole family of stochastic differential equations in
which the coefficient functions depend not only on the position of process X; but also

on its probability distribution, namely,

dXt = b(t, Xt, /Lt)dt + O'(t, Xt, /,Lt)dBt
Xo: (2, F,P) = (R%, B(R?)) random variable . (1.1.33)
Vvt > 0, pt denotes the probability distribution of X,

One important property of the McKean-Vlasov equation which attracts many studies
in the literature is the propagation of chaos. Let X&’N, ...,XéV’N be i.i.d copies of Xy
and the N-particle system of the McKean-Vlasov equation is defined by

Yn e {1,...,.N},
n,N _ nN N n,N N n
dXp = b(XT, py )dt 4+ o (X7, py )dBY, (1.1.34)
for any ¢ € [0,T], pl¥ = + SN O yn.N,
t

Generally speaking, the propagation of chaos means that under some appropriate condi-
tions, the empirical measure % Zévzl § xn.n composed by the N particles (X 5V, ..., XV:N)
converges to the distribution p of the solution X of the McKean-Vlasov equation (1.1.33)
as the number of particles N — 400 and in this case, the N particles X1V, ... XNV
tend to become independent. We refer to Gértner (1988) for a detailed proof of the
propagation of chaos among many other references.

There are many studies of the existence and uniqueness of solution of (1.1.33) under
various conditions on b, o among which we refer to Sznitman (1991) for a systematic
presentation of the McKean-Vlasov equation and propagation of chaos in dimension 1, to
Funaki (1984) and Jourdain (2000) for the weak uniqueness, the associated martingale
problem and connection to the Boltzmann equation, to Jourdain et al. (2008) for the
uniqueness of solution of the McKean-Vlasov equation driven by a Lévy processes and
to Lacker (2018) for a recent idea of proof under the Lipschitz condition of coefficient
function b and o. A rigorous proof of the existence and uniqueness of a strong solution
also interests us as it is a theoretical basis to devise and analyse the numerical scheme.
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Let M € N* and t,, = % -m, m =0,..., M. The “theoretical” Euler scheme of the
McKean-Vlasov equation is defined by

Ktpir = Xty + 10t Xty fit) + Vho (b Xty Fity) Zinia
fit,, is the probability distribution of X; ,m =0,..., M . (1.1.35)
Xo = Xo

We first prove in Chapter 5 the convergence rate of (1.1.35) to the unique solution of
(1.1.33) under appropriate conditions. However, unlike for regular stochastic differentials
equation dX; = b(t, X;)dt + o(t, Xy)d By, the Euler scheme (1.1.35) does not indicate how
to simulate fi;,,. That is why we call the scheme (1.1.35) the “theoretical” Euler scheme
and this problem leads us to consider the possibility of using a quantization estimated
distribution zif ~instead of fi,, .

Even though the theoretical Euler scheme cannot be directly simulated, the conver-
gence result of the theoretical Euler scheme offers us a way to compare the functional
convex order of two McKean-Vlasov processes. The comparison of the functional convex
order between two stochastic processes was introduced in Pages (2016) for the one
dimensional martingale diffusions, i.e. solutions of

dXy = O'(t,Xt)dBt, Xog=z €R,
dY; = 0(t, Y,)dB,, Yo=z€R. (1.1.36)

In Pages (2016), the author obtains
EF(X)<EF(Y) (1.1.37)

for any convex function F': R — R with r-polynomial growth under conditions that o is
convex in z and o < 6 by applying the convergence result of Euler scheme of (1.1.36).
Moreover, such convex order result can be applied in the Optimal Stopping Theory and
in the comparison of American option prices (see e.g. Pages (2016) and Alfonsi et al.
(2019)). We are interested in how to extend this functional convex order result to the
McKean-Vlasov equation. In Chapter 6, we obtain the similar inequality as (1.1.37) for
two processes X = (X¢)eo,r) and Y = (Yy),e(0,7 defined by the scaled McKean-Vlasov
equations

dX; = (aX; + B)dt + o(t, X¢, ut)dBy,  Xo € LP(RY),
dY, = (@Y, + B)dt +0(t, Yy, 1) dBy, Yy € LP(RY),
a,BER and Vt € [0,T), s =Po X; 1, vy =Poy, !

under appropriate conditions. Moreover, since the distribution of the solution process is
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an important element for the analysis of the McKean-Vlasov equation, we will generalize
the functional convex result to the functional of both process path and distribution of
process, i.e.

EG(X, (1t)ieo,r) < EG(Y, (1e)efo,)-

Now we go back to the numerical aspect of the McKean-Vlasov equation. The reason
why we cannot directly simulate fi;,, in (1.1.35) is that we need a spatial discretization
in ordre to approximate fi;,,. In Bossy and Talay (1997), the authors show the particle
method inspired by the principle of propagation of chaos and prove the convergence
of this method in dimension 1. The principle of this method is to use an “empirical”
mesure on the N-particle instead of fi,, in the theoretical Euler scheme. We extend their
result to dimension d > 2 in Chapter 7. Moreover, we develop several quantization based
schemes and a hybrid particle-quantization scheme, analyse the error of each method
and give the corresponding simulation examples in Chapter 7.

1.2 Contributions to the literature

This thesis is divided into two parts: Part I contains Chapter 2 and Chapter 3,
which investigate two limit theorems for the optimal quantization. The first one is
the characterization of the convergence in LP-Wasserstein distance of a probability
distribution sequence by its quantization error function sequence and the second limit
theorem is the consistency and the convergence rate of optimal quantizers and the
optimal error. Part II contains Chapter 4, 5, 6 and 7, in which are devised and analyzed
several discretization schemes for the McKean-Vlasov equation. It includes the proof of
existence and uniqueness of a strong solution, the functional convex order problem, the

convergence rate of the particle method and various quantization based schemes.

1.2.1 Part I: Some limit theorems for the optimal quantization

Chapter 2 corresponds to the paper Liu and Pages (2019) to appear in Bernoulli
journal. This chapter studies the characterization of probability measure by the quanti-
zation error function. We establish the existence of a minimal level K* € N* such that
for any K > K*,

— for any u,v € Pp(RY),

ex,p(p, ") = ex p(v,") <= p=v,
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— for any g, € Pp(RY), n € N* U {oo},

ex, p(fin, -)Me[gp(um, - ) pointwise <= W, (in, ftoo) noreo, ),

The proof relies on a geometrical approach which is equivalent to the existence of a
bounded open Voronoi cell in a Voronoi diagram and the above existence can be in turn
derived from a minimal covering of the unit sphere by unit closed balls centered on
the sphere. This geometrical approach is valid for any norm on R?. Moreover, in the
quadratic Euclidean case, we establish by standard Hilbert analysis arguments that the
minimal characterization level K* = 2. This characterization result can be extended to
any infinite dimensional separable Hilbert space.

Moreover, we define for K > K* a quantization based distance

Qkp = llexp(t: ) — exp(v, Mg

and we prove that this distance is topologically equivalent to the Wasserstein distance
W, on P,(R%). Furthermore, we prove that Qj 1 is a complete distance on P;(R) and
give a counterexample to show that the distances Qg 2, K > 2 are not complete on
P2(R) at the end of this chapter.

In Chapter 3, we establish the convergence rate of the quadratic optimal quantization
for a probability sequence converging in the Wasserstein distance, which generalizes two
former papers Pollard (1982a) and Biau et al. (2008). Let p,, € Po(R%),n € N*U{oc} be
such that Wh(jin, fies) — 0 as n — +o0. For every n € N*, let (™) denote a quadratic
optimal quantizer of u, and let

Gk (poo) = {(27, ... xN) | (2], ..., z}) is an optimal quantizer of jioo }

denote the set of quadratic optimal quantizers of us at level K. In Chapter 3, we denote
the distortion function defined in Definition 1.1.1 of u, by Dk ,,, n € NU {oc}, since
we fix p = 2. One first result of Chapter 3 is the non-asymptotic upper bound of the
quantization performance: for every n € N*|

Dicyuoe (@™) = inf Dy (2) < defe . Waltin, thoo) + AW5 (i, foo),
ze(RYK
where e}, is the quadratic optimal error of i at level K (defined in (1.1.7) with
p = 2). Furthermore, under several appropriate conditions on the differentiability of the
distortion function Dy, and the positive definiteness of the Hessian matrix Hp .. of
Dg .., We obtain the convergence rate of optimal quantizers: for n large enough, there
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exist two positive constant C,(i,l and C;(il depending on p such that

2
(2™, G (Hoo))” < CWatn, o) + C2 W3 (s froo)-

The second part of Chapter 3 is devoted to the convergence rate of optimal quantiza-
tion error of the empirical measure, which is also called the clustering performance in
the field of unsupervised learning. We generalize the upper bound in Biau et al. (2008)
for the probability distribution with a bounded support to any probability distribution
with appropriate finite moments, hence including the normal distribution.

Let X1, ..., X5, ... be i.i.d random variables with probability distribution p and let
we = % Y ieq Ox, be the empirical measure of ;1. Let (M denote the optimal quantizer
of 2. We establish two results about the clustering performance EDKVM(.%(")’“) —
inf e rayx Pk, u(z). If p € P,(R?) for some q > 2, the first result (see below), which is
an application of Fournier and Guillin (2015), is sharp in K but suffers from the curse
of dimensionality:

EDg (™) — inf Dg .(z)

z€(RIK
n—1/4 4 n—(a-2)/2q ifd<4andq#4
< Cagpu,k X n_1/4(log(1 + n))1/2 +n @ 2/2 ifd=4andq+#4 ,
n-1/d 4 p—(a-2)/2q ifd>4andq#d/(d—2)

(1.2.1)

where Cy 4,k is a constant depending on d, ¢, 1 and roughly decreasing as K —1/d,

Meanwhile, we establish another upper bound for the clustering performance

ED MY — inf D z),
op(a™) —inf | Dic(x)
which is sharper in n, free from the curse of dimensionality but increasing faster than
linearly in K. This second result generalizes the mean performance result for the
empirical measure of a distribution p with bounded support established in Biau et al.
(2008) to any distributions g having simply a finite second moment. We obtain

. 2K
E Dy, (™) — peth Dk, u(x) < 7 P + P (1) + 271 (r2n + PK(M))} ,

where r, = || maxi<i<n | X;] H2 and pg(p) is the maximum radius of L?(p)-optimal
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quantizers, defined by
= ma; a o, (x7,...,x%) is an optimal quantizer of }
pr (1) =m X{ 12}ch1<|$’“| (z7, ..., T} ) is an optimal quantizer of p

Especially, we provide a precise upper bound for u = N(m, X), the multidimensionnal
normal distribution by applying results in Pages and Sagna (2012) as follows,

EDk (™M) = inf Dy .(z) <C,-

2
ze(RHE \F[l—&—logn—i—’y]{logK(l—F d)]

where limsupy yx =1 and C,, = 12 - [1 Vlog (2 fpa exp(% \§|4),u(d§))}.

1.2.2  Part II: Particle method, quantization based and hybrid schemes
of the McKean-Vlasov equation, application to the convex or-
dering

Chapter 4 introduces Chapter 5, Chapter 6 and Chapter 7. In Chapter 5, we give a
proof(!) based on Feyel’s approach (see e.g. Bouleau (1988)[Section 7]) for the existence
and uniqueness of a strong solution of the McKean-Vlasov equation (1.1.33) under the

following Lipschitz assumption on b and o

vt € [0,T],V2,y € RY and Vu, v € P,(R?), 3L s.t.

bt 2, 1) = blt,y, )| V ot 2 1) — oty )| < L[ | =yl + Wy(n.)].
(1.2.2)

The strategy is to define an application ®¢ depending on some constant C' € R* on the
product space “path space x the space of path distribution” as follows

(Y, Py) —> @C(Y, Py)

¢ t
= ((X0+/O b(s,Y;,us)ds+/0 G(S’YS’Vs)st)te[o,T}’P@S)(Y,Py)>

where for a stochastic process X, Px denotes its probability distribution (see further
Section 5.1 for the detailed definition of Py ), then to prove that an appropriate restriction
of ®¢ on a closed subset is a contraction mapping by controlling the value of C. Thus,
the existence and uniqueness of a strong solution of the McKean-Vlasov equation is a
direct result by applying the fixed-point theorem for contractions on a complete space.

(1) This proof is obvious not the first proof of the existence and uniqueness of a strong solution of
the McKean-Vlasov equation under Lipschitz coefficient conditions, but we find the application of
Feyel’s approach in the McKean-Vlasov framework is mathematically elegant.
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Throughout the proof, we also fix the definitions of “path space” and “the space of
distribution of process” and respectively define the distances on both spaces. The proof
of the existence and uniqueness of a strong solution and the definition of “path space”
and “the space of distribution of process” are also the theoretical bases for the further
quantization based schemes.

Once we obtained the existence and uniqueness of a strong solution, we show in
Chapter 5 the convergence rate of the theoretical Euler scheme (1.1.35) of the McKean-
Vlasov equation (1.1.33). If b, o satisfy (1.2.2) and

Vt,s € [0,T] with s < t,Va € R? Vu € P(RY), there exist L,y € Ry s.t.
b(t, 2, 1) — bls, 2, I V lor(t, 2, ) — (5, )| < E(1+ [2] + Wy (s, G0)) (¢ — )7,

(1.2.3)
the convergence rate of the theoretical Euler scheme is the following
SUp Wity ) < || sup [ Xy, = Xy, [|| < Ceh2™, (1.2.4)
0<m<M 0<m<M »

where C. is a constant depending on b, o, L, T, L and 1 Xoll,,-

Chapter 6 establishes the convex order results for the scaled) McKean-Vlasov
equation. Let (Xi)eo,77, (Y2)iejo,r) be two processes respectively defined by

dX; = (OéXt + 5)dt + U(t, Xi, ,ut)dBt, X € LP(P),
dY; = (aY;+ B)dt + 0(t, Yi, 1) dBr, Yo € LP(P), (1.2.5)

where a, f € R and for any ¢ € [0,T], us =Po Xt_l, vy =Po Y;_l. For any two random
variables X, Y valued in a Banach space (E, ||-|| ), if for any convex function ¢ : E — R
such that

Ep(X) <Ep(Y) as soon as these two expectations make sense,

then we call X is dominated by Y for the conver order and denote by X <., Y. In
Chapter 6, we prove that the Euler scheme (1.1.35) of the McKean-Vlasov equation
propagates the convex order of random variables. Let X;, ,Y; ,m =0, ..., M respectively
denote the theoretical Euler scheme (1.1.35) of (Xi);c(o,1), (Y2)ie[o,r) With step LI
X0y 2o Yy and the coefficient functions o, 6 are ordered for a matrix order in the sense

(1) By scaled, we mean that the drift b is an affine function.
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that

Vt € [0,T], Yz € R, Yu e P(RY),
O(t,z, )0t z,u)* —o(t,z,u)o(t,z,u)* is a positive semi-definite matrix,

and o is convex in x and non-decreasing in u with respect to the convex order, then
for any m =0,..., M, Xtm < f’tm. Moreover, using a backward induction and taking
advantage of the convergence result of Euler scheme (1.2.4), we obtain a functional
convex order result for the processes, i.e. for any convex function F : C([0,T],R%) — R
having an r-polynomial growth, 1 < r < p, in the sense that

Va € C([0,T],RY),3C > 0 s.t. |F(a)| < C1+|all,.),

sup

we have
EF(X)<EF(Y). (1.2.6)

Finally, we generalize the above functional convex result (1.2.6) to functionals of the

form
G:(a, (’Yt)te[o,T]) € C([()?T]de) X C([OvT]va(Rd)) = G(a, (’Yt)te[o,T]) €R,

where G is convex in a, non-decreasing in (v;):c[o,r] With respect to the convex order
and has an r-polynomial growth, 1 < r < p and obtain a new convex order result for X,
Y, (1t)eejo,r) and (v¢)¢epo,r) defined in (1.2.5) as follows,

EG(X, (ut)epo,r) <EGY, (W)eo,r)-

Chapter 7 analyzes the particle method and several quantization based schemes for
the McKean-Vlasov equation

dXt = b(Xt, ,U,t)dt + O'(Xt, [,Lt)dBt
Xo: (2, F,P) — (]Rd,B(]Rd)) random variable (1.2.7)
Vvt > 0, p: denotes the probability distribution of X

and the organization of Chapter 7 is detailed further on in Figure 4.1. We mainly
consider the homogeneous equation to alleviate the notation but the extension of our
results to the general case is standard and can be performed like in the regular SDE
framework. The theoretical Euler scheme in the homogeneous case is

Xipor = Xoy + b 0(Xe,,, fin,) + Vho(Xe,,, ity,) Zmta

) . (1.2.8)
XU = X07 Mty = thm’
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where M € N*, h = %, and t,, =m-h, m e {1,..., M}.

The first method we studied is the particle method, which is inspired by the principle of

. . o . . S1,N > N,N
propagation of chaos and can be considered as its discretion version. Let X", ..., X"

be i.i.d copies of Xy in (1.2.7). The particle method is defined by

Vn e {1,...N},
o1, N o, N on,N - Sn,N —
Xt = X 4 hb(X( )+ Vho (X ENVZE (1.2.9)

=N . N

Mi\nfq = % Zn:l 5XZI*N
where Z) . n=1,.,.Nm=0,... M i N(0,1,). The particle method is to use ﬂgn as
an estimator of zi;,, for each Euler step. In the case of dimension 1, the convergence
rate of ﬂtNm to [im as N — 400 has been established in Bossy and Talay (1997). For the
convergence rate in higher dimension (d > 2), we obtain in Section 7.1 that

sup. Wh(fip\ , fit,,)
1<m<M

p

where i denotes the probability distribution of X = (X;)e[o7] defined further in (5.2.3)

and vV denotes the empirical measure of ji. Moreover, if || Xo||,,. < +oo for some £ > 0,

p+e
we also obtain in Section 7.1 by using results in Fournier and Guillin (2015) that

sup Wp(ﬁi\fnvﬁm) <C
1<m<M »
n" + D ifp>d/2ande #p
1 €
% n_ﬁ[log(1+n)]5 +n reta)  ifp=d/2ande #p )
e =) it pe(0,d/2)andp + ¢ # Gl

where C is a constant depending on p,e,d,b,0, L, T.

The second studied method is the quadratic optimal quantization method. The idea
of devising quantization based scheme for the simulation of the McKean-Vlasov equation
first appears in Gobet et al. (2005)[Section 4] in a slightly different framework. Let
z(m) = (mgm), . x%n)), m = 1,..., M be the quantizer of X;  in the m-th Euler step.
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The theoretical quantization based scheme is to compute

Xo = Xo, Xo = Proj, o (Xo)
Xtm+l = Xt'm + h : b(Xtmhl/'Ztm) + \/EU(Xtm7ﬁtm)Zm+17 m = 07 ey M - 1

where h = % and [i, = Pg

X\tmﬂ = Proj,m+n (Xt,4.)-
(1.2.10)
We propose in Chapter 7 the error analysis of the above quantization procedure and three
different ways of practically implementing the quantization based method to explicitly
express i, .

(1) In the Vlasov case, we can use the recursive quantization method, which is firstly
introduced in Pages and Sagna (2015) for regular stochastic differential equations.
By the recursive quantization method, we derive a Markovian transition of (E(\tm y Bt )
based on the quantized scheme (1.2.10). Let p(™ = (pgm), ...,pg(n)) denote the corre-
sponding weight of the quantizer 2(™) = (:cgm), e m%n)) Thus fig,, = Zszl 5z§€m)p,(€m).

The Markovian transition of (E(\tm, t,.) by the recursive quantization method that
we propose in Section 7.3 is

P(X\tm+1 = xgmﬂ) | X\tm = xl(m)’p(m))

K K
=P [(-Tz(m) +h Z pzm)ﬁ(xgm), xl(gm)) + \/E Z pgcm)a(wl(m)’ -T;(gm))Zm-&-l) c Cj (:B(m+1))]
k=1 k=1

and given p{™) we can compute for every j =1,..., K by

K
=Y P(Xi,., ="V | Xy, = 2™ pM) P(X,, = 2™,
We provide the proof of the above equalities in Section 7.3 and will explain in the

same section how to apply the Lloyd I algorithm to improve the simulation accuracy.

(2) The second way to explicitly express fi,, is to use the optimal quantizer of the
normal distribution N (0,1;) and its weight, which can be downloaded from the
website

www.quantize.maths — fi.com/gaussian __database

for dimension ¢ = 1, ...,10. Let 2™ = (xgm), vy w(;(n)) denote the quantizer of X,

in the m-th Euler step. Let z = (z1, ..., z7) be an optimal quantizer of N'(0,1;) with
J > K and let w = (wy, ..., wy) be the corresponding weight of z. The scheme based
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on such optimal quantizers of N (0, Iq)(l) can be written by

Xo = X0, Xo = Proj,o(Xo)

Xipoy = Xt +h-b(Xy, Te,) + Vho(Xe, Tt ) a1, m=0,..,M —1
where h = + and [, = PA

Xtm+1 = PrOJx(m“'l) (Xtm+1)v

where Z,, I E _1 w;0,,. We call this method the doubly quantized scheme and
we establish in Section 7.4 the error analysis of this method.

(3) Let z(™ = (:cgm), ...,m%n)), m = 0,1,..., M, be a sequence of quantizers. As we
prove the convergence rate of particle method, one can also implement the optimal
quantization method on (1.2.9) as follows:

Vn e {1,..., N},
N N SN ~ SN ~
xel *Xn +h-b(Xy) 7Mf()+vh0(th auffn)ZmH

~ vn,N
Xg)%N ’Lf_l\fi Xo, 77-}1 Z'LdN(O I)
\

We call the above scheme the hybrid particle-quantization scheme (hybrid scheme
for short). The error analysis of this scheme will be shown in Section 7.5.

At the end of Chapter 7, we give two examples simulated by the above numerical
methods. The first one is the simulation of the Burgers equation introduced in Sznitman
(1991) and Bossy and Talay (1997). The Burgers equation provide an explicit solution so
we can compare the accuracy of different methods. The second example is 3-dimensional
which was firstly introduced in Baladron et al. (2012) and also simulated in Reis et al.
(2018).

(1) By a slight abus of notation, we use here the same notation as in (1.2.10).
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Chapter 2

Characterization of probability
distribution convergence in
Wasserstein distance by
LP-quantization error function

This chapter corresponds to the paper Liu and Pages (2019) to appear in Bernoulli
journal, which is a joint work with Gilles Pages.

Abstract: We establish conditions to characterize probability measures by their
LP-quantization error functions in both R? and Hilbert settings. This characterization
is two-fold: static (identity of two distributions) and dynamic (convergence for the
LP-Wasserstein distance). We first propose a criterion on the quantization level N, valid
for any norm on R? and any order p based on a geometrical approach involving the
Voronoi diagram. Then, we prove that in the L2-case on a (separable) Hilbert space, the
condition on the level NV can be reduced to N = 2, which is optimal. More quantization
based characterization cases in dimension 1 and a discussion of the completeness of a
distance defined by the quantization error function can be found at the end of this paper.

Keyword: Probability distribution characterization, Vector quantization, Voronoi

diagram, Wasserstein convergence
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2.1 Introduction

Let (2,.A,P) denote a probability space and let X be a random variable defined
on (2, A,P) and valued in (E,| - |g), where E is R? or a separable Hilbert space H
and | - |g denotes respectively the norm on R? or the norm on H induced by the inner
product (- |-)g. Let pu denote the probability distribution of X, denoted by Px = u or
Law(X) = u and assume that p has a finite p-th moment, p € [1, +00). The quantizer
(also called codebook in signal compression or cluster center in machine learning theory)
is a finite set of points in F, denoted by I' = {x1,...,anx} C E. Let us define the
distance between a point £ and a set A in E by d(§, A) = mingea |€ — a|g. The LP-mean
quantization error of I', defined by

ol ) = X, = [ [ i~y ()] "

is used to describe the accuracy level of representing the probability measure p by I
Let N > 1. A quantizer I"~(") satisfying

1 1
ep(u, D7) = inf [E d(X, r)ﬂ T= nf [ [ minl¢ —al} (dg)} "(2.1.1)
card(F)éN card(l")éN

is called an LP-optimal quantizer (or optimal quantizer in short) at level N. We refer
to Graf and Luschgy (2000)[Theorem 4.12] for the existence of such an optimal quantizer
on R? and to Luschgy and Pages (2002)[Proposition 2.1] or Cuesta and Matran (1988)
on (separable) Hilbert spaces. There is usually no closed form for optimal quantizers,
however, in the quadratic case (p = 2), it can be computed by the stochastic optimization
methods such as the CLVQ algorithm or the randomized Lloyd algorithm (see Pages
(2015)[Section 3], Kieffer (1982) and Pages and Yu (2016)).

#,(N) «

Optimal quantizers I' carries” the information of the initial measure. For

example, let 1€ Py (R?) for some & > 0, where
Pp(E) := {p probability distribution on E s.t. / 115 1(d€) < 400}
Let ;1 = h - Ag be an absolutely continuous distribution (A\; denotes Lebesgue measure).

If for every level N > 1, T(N) is an optimal quantizer of y at level N, then

BT ()
xel;(N)é - mkd(dé)’ as N — 400, (2.1.2)

where, for a Polish space S, (:SL denotes the weak convergence of probability measures
on S. We refer to Graf and Luschgy (2000)[Theorem 7.5] for a proof of this result. This
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weak convergence (2.1.2) emphasizes that, an absolutely continuous probability measure
p is entirely characterized by the sequence of LP-optimal quantizers I'*(N) at levels N,
N >1.

We consider now the LP-mean quantization error function as follows.

Definition 2.1.1 (Quantization error function). Let p € P,(RY), p € [1,4+00). The
LP-mean quantization error function of p at level N, denoted by en p(p,-), is defined

by:

enp(p,-) : (RHN — Ry 1
— — ; P g
v = (@nan) o enplua) = | [ min [6 - aif? p(dg)]”.

(2.1.3)

The definition of exn (i, ) obviously depends on the associated norm on R? and the
variable of ey (1, -) is a priori an N-tuple in (RHN . However, for a finite quantizer
[ € R if the level N > card(T"), then for any N-tuple z© = (z],...,2%,) € (R such
that I' = {z],...,z}y}, we have e,(1,T') = enp(p, z"). For example, e, (u, {z1,32}) =
627p(u7 (:cl,:z:Q)) = eg,p(u, (xl,xl,xg)), etc. Note that ey, is a symmetric function on
(RN and that, owing to the above definition,

inf ep(p, ') = inf e ,T). 2.14

I'CRY card(T) <N pnT) ze(R)N Nop(i, ) (2.14)

Therefore, throughout this paper, with a slight abuse of notation, we will also denote
the LP-quantization error at level N for a quantizer I' of size at most N by ey p(p,I").

The equality (2.1.4) directly shows that the optimal quantizers are characterized by
the LP-mean quantization error functions. Next, we show that the quantization error
function e, (p, -) is entirely characterized by the probability distribution p.

Notice that for any p€ P,(R?), the function ey ,(u, -) defined in (2.1.3) is 1-Lipschitz

continuous for every N > 1 since for any = = (z1,...,2x),y = (y1,...,yn) € (RHY,

1 1
_ _ : P P : Y P
lenp (1, ) — enp(p, y)| H o 0, 1€ — i) u(dé)} [ o 1 1€ = ] u(dé“)]

1
» 1
< [ /IR ) lglgnNK x4 lg}lgnN\f yj|‘ u(df)] (by the Minkowski inequality)
1
< — il (dg)] " = —uil. 1.
< [ oo 1285 i = il p(d€) |7 = max [i = il (2.1.5)

We recall now the definition of the LP-Wasserstein distance.
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Definition 2.1.2 (LP-Wasserstein distance). Let (S,d) be a Polish space and S =
Bor(S,d) be its Borel o-field. For p € [1,400), let Pp(S) denote the set of probability
measures on (S,S) with a finite p'"-moment. The LP-Wasserstein distance W,(u, )
between pu, v € Pp(S), denoted by Wy(u,v), is defined by

1

— . f p ;
Wyw) = (_jnt [ d(w.y)n(dr.dy))

- inf{[E (X, Y)p} XY (U AP) = (S,8) withPy = 1, Py = v }
(2.1.6)

where in the first line of (2.1.6), II(u,v) denotes the set of all probability measures on
(52, 892) with respective marginals i and v.

If we consider ey (i, z) as a function of u€ P,(R?), then ey, is also 1-Lipschitz in
. In fact, let X, Y be two random variables with probability distributions Px = p and

a

Py = v. For every N-tuple z = (21,...,2x) € (RY)Y, we have

min | X — x| min |V — x|

IeN,P(/'L7$) - eN,P(Vv‘T)| = ‘ ‘p -

i=1,...,N i=1,...,N
< || min |X —z;| — min |Y — x| ‘ (by the Minkowski inequality)
i=1,..,N i=1,...,N P
< X—ai| =Y —al ||| <IX-Y],. 2.1,
< | max, | X —al =1y —ail 1] <X -V, 2.17)

As this inequality holds for every couple (X,Y") of random variables with marginal
distributions p and v, it follows that for every level N > 1,

lenp(p, ) —enp(s )l = sup lenp(p, ) —enp(, )] < Wp(p,v).  (2.1.8)
z€(RHN

Hence, if (15 )n>1 is a sequence in P,(RY) converging for the W),-distance to o € Pp(RY),
then

n—-+o0o

lenp(tn, <) = enphoos lgup < Walttn: poc) ——— 0. (2.1.9)

Definition 2.1.1, and the inequalities (2.1.5), (2.1.7), (2.1.8), (2.1.9) can be directly
extended to any separable Hilbert space H. Inequalities (2.1.8) and (2.1.9) show that for
every N > 1, and pe€ [1,+00), the quantization error function ey p(u, ) is characterized
by the probability distribution p. Hence, the characterization relations between a
probability measure p, its LP-quantization error function and its optimal quantizers can
be synthesized by the following scheme:
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[Probability measure u]

7 If 1€ Ppre(RY), p < Ag
See (2.1.8) and (2.1.9) /,// (absolutely continuous) and
7 if we know the optimal quantizer
for every level N, see (2.1.2).
Quantization error Optimal quantizer
function ey, (i, ) ()
argmin
see (2.1.4)

The characterization of a probability measure p by its LP-optimal quantizers suggests
to consider the “reverse” questions of (2.1.8) and (2.1.9): When is a probability measure
p € Pp(RY) characterized by its LP-quantization error function ey (i, )¢ And if so,
does the convergence in an appropriate sense of the LP-quantization error functions
characterizes the convergence of their probability distributions for the W,,-distance?

These questions can be formalized as follows (the first one in a slightly extended

sense):

e Question 1 - Static characterization:
If for pu,ve Pp(RY), enp(p, ) = enp(v,-) + C for some real constant C, then
do we have p =v (and C = 0)?

e Question 2 - Characterization of V,-convergence:

If for pin,n > 1, pio€ Pp(RY), enp(pin,-) converges pointwise to ey p (oo, ),

then do we have W, (jn, fioo) Ui

For any N1, Ny € N* with N7 < Ny, it is clear that

+
eNzﬁD(“v )= 6N2,p(V7 ')(reSp-eNmp(,um ) L, eNQ,p(Nom ))

implies
+
elep(N’ ) = 6N17P(V’ ) (resp.eth(;Ln, ) SRS 6N1,p(:uooa ))

Hence, beyond these two above questions, we need to determine an as low as possible

level N for which both answers are positive. For this purpose, we define

Ngp|.| == min{N € N* such that answers to Questions 1 and 2 for ey, are positive}.

(2.1.10)

-
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The paper is organized as follows. We first recall in Section 2.1.1 some properties of
the Wasserstein distance WV,. Then in Section 2.2, we begin to analyze the problem of
probability distribution characterization in a general finite dimensional framework by
considering any dimension d, any order p and any norm on R%. We show that a positive
answer to Question 1 and 2 follows from the existence of a bounded open Voronoi cell
in a Voronoi diagram of size N, which in turn can be derived from a minimal covering
of the unit sphere by unit closed balls centered on the sphere. As a consequence, we
define for N > Ny, || a quantization based distance

Qva = Heva(/"L? ') - eNyp(V7 ')Hsup

which we will prove to be topologically equivalent to the Wasserstein distance W,. The
results in this section are established for p > 1, but several results can be extended to
the case 0 < p < 1 by the usual adaptations of the proofs.

In Section 2.3, we consider the quadratic case (i.e. the order p=2) and extend the
characterization result to probability distributions on a separable Hilbert space H with
the norm |-|; induced by the inner product (- | -)g. In this section, we will prove
by a purely analytical method that Np 5| = 2 (1) and the topological equivalence
of Wasserstein distance Wy and the distance Q3 (1, v) = [lea,2(p, ) — e22(v,-) n

Pa(H).

lsup ©

Section 2.4 is devoted to the one-dimensional setting. Quantization based characteri-
zation not yet covered by the discussion in Section 2.2 and Section 2.3 are established.
Furthermore, we prove that Q;; is a complete distance on P;(R) and give a coun-
terexample to show that the distances Qn 2, N > 2 are not complete on P2(R) in
Section 2.4.2.

2.1.1 Preliminaries on the Wasserstein distance

Let (S,d) be a general Polish metric space. The relation between weak convergence
and convergence for the Wasserstein distance W, (see Definition 2.1.2) is recalled in
Theorem 2.1.1. We recall below some useful facts about the LP-Wasserstein distance
that will be called upon further on. The first one is that, for every p € [1,+00), W),
is a distance on P,(S) (W5 if p € (0,1)), see e.g. Villani (2003)[Theorem 7.3] for the
proof and Berti et al. (2015) for a recent reference. Next, the metric space (Pp(S), W)
is separable and complete, see e.g. Bolley (2008) for the proof. More generally, we refer
to Villani (2009)[Chapter 6] for an in depth presentation of Wasserstein distance and

(1) Since the dimension of the Hilbert space that we discuss in this section can be finite or infinite, we
write directly H instead of d in the subscript of Ny, ..
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its properties.

Theorem 2.1.1. (see Villani (2003)[Theorem 7.12]) Let pu, € Py(S) for every n €
N*U{oco}. Let p € [1,400). Then,

(s
(@) Wy (i, ftoo) — 0 if and only if (@) fn = oo :

(B) 3o € S, [ d(x0,8)P n(dE) — [gd(wo,&)P oo (dE)
(b) If

dzpe S, lim sup/ d(x0,&)Pun(dé) =0, (2.1.11)
d(z0,§)P2R

R—+o00pn>1

then (pin)n>1 is relatively compact for the Wasserstein distance W.

2.2  General quantization based characterizations on R¢

This section is devoted to establishing a general criterion that positively answers to
Questions 1 and 2 in any dimension d, for any order p and any norm on R?. The idea is
to design an approximate identity (¢.).»0(") based on the quantization error function
enp(it, ). Our construction of (¢c)-~0 relies on a purely geometrical idea: it is based on
a specified Voronoi diagram containing a bounded open Voronoi cell that we introduce in
Section 2.2.1. The static characterization is established in Theorem 2.2.1. Furthermore,
Theorem 2.2.2 shows that a pointwise convergence of the quantization error functions is
enough to imply the W,-convergence of a Pp(Rd)—valued sequence.

2.2.1 A review of Voronoi diagram, existence of a bounded cell

Let ' = {x1,...,zn} be a quantizer of size N. The Voronoi cell generated by z; € T
is defined by
a. | — ; .
Vo, (T) = {€€ R ’5_%’_1g’1§%\]|§_%‘}’ (2.2.1)
and (in (F))1<i<N is called the Voronoi diagram of I, which is a finite covering of R?

(see Graf and Luschgy (2000)). A Borel measure partition (Cy, (F))1<i<N is called a

Voronoi partition of R? induced by T if for every i€ {1,...,N}, Cy,(T) C V,,(T'). We
also define the open Voronoi cell generated by x; € I' by

o _ d . o ; _ .
Vo) ={ceR": |¢ xz\<1sg}€#i1§ ;| }. (2.2.2)

(1) By approximate identity we mean ¢. € L' (Rd,B(Rd),)\d), € > 0, such that fRd pedrg = 1,
SUp,. g fRd |pe| dAg < 400 and lime_ f{‘§|>n} we(E)Aa(€) = 0 for every n > 0.
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If the norm |-| on R is strictly convex, we have V, (I') = Vo(I) and Ve (T') = Vo, (T),
where A and 4 denote the interior and the closure of A. Examples of strictly convex
norms are the isotropic ¢,.-norms for 1 < r < 400 defined by

)(al,...,ad)

'
= (|a"]"+---+ ‘ad‘ )
T
However, this is not true for any norm on R?, typically not for the £'-norm (see Graf
and Luschgy (2000)[Figure 1.2]) or the ¢*°—norm.

We recall that A C R? is star-shaped with respect to a € A if for every be A and
any A € [0,1], a+ A(b—a)€ A.

Proposition 2.2.1. (see Graf and Luschgy (2000)[Proposition 1.2]) LetT' = {z1,...,xn}
be a quantizer of size N > 1. For everyic {1,..., N}, V(') and V2 (T') are star-shaped
relative to x;.

Now we discuss a sufficient condition to obtain a Voronoi diagram containing a
bounded open Voronoi cell. The first result in this direction is a rewriting Proposition
1.10 in Graf and Luschgy (2000) for Euclidean norms (stated here in view of our
applications).

Proposition 2.2.2 (|- | Euclidean norm). Let (by,...,bs11) be an affine basis of R?

—
and let by € Conv({b1,...,bg+1}) # @. Set I' = {0,by — by, ...,bgr1 — bo}. Then, the
open Voronoi cell V(') generated by 0 is bounded.

Let us provide now a geometrical criterion for a general norm | - | on R%, let BH(JU, T)
denote the closed ball centered at z with radius r and let S| |(z,7) denote its sphere.

Proposition 2.2.3. Let a1, ...,a;€ S)/(0,1) such that S),(0,1) C Uk, B ((ai, 1) (such
a covering exists since S),(0,1) is compact). If we choose I' = {0,a1,...,ax}, then the
Voronoi open set V(') C BH(O, 1) and X\g(Vg(T)) > 0.

Proof. As 5,(0,1) C Uk, B (ai, 1), for every £€ S)(0,1), there exists j€ {1,...,k}
such that | —a;j| <1=|{|. T ={0,a1,...,ax}, then

v§e S4(0,1), Jje{l,...,k} such that (€ V,, (T). (2.2.3)

Assume that there exists €€ V(') \ BH(O, 1). Since V(I') is star-shaped relatively
to 0 and % € (0,1), we have é—‘ € 5)(0,1) N VP('). This contradicts (2.2.3) since
Ve@) NV, () # 9, j=1,..., k. Consequently, Vi’(I') C BH(O, 1). Finally, V(T is an

open set containing 0, therefore, )\d(VOO(I‘)) > 0. O
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The idea of the above proposition is to cover the unit sphere centered at the origin
by a finite number of unit balls centered on the unit sphere. This leads us to introduce

the following definition.

Definition 2.2.1. We define the minimal sphere covering number ¢(d, | - |) as follows,

k
e(d,| - ]) = min{k : Hax, ... ax} C S)4(0,1) such that S).(0,1) C U B (ai, 1)}
i=1

< +00.

The index c(d, | - |) is finite since the unit sphere is a compact set in R?. Among all the
possible norms, we will focus on the isotropic ¢,-norms on R?. We show some examples
of the minimal covering number ¢(d, | - |) in the following proposition (whose proof is

postponed to Appendix).

Proposition 2.2.4. (i) ¢(1,|-|) =2, where | - | denotes the absolute value.
(13) c(2,| 1) =2 and ¢(2,] - |,) =3 for every 1 < r < +o0.

(ii7) c(d,| - |oo) = 2 for every dimension d.

(iv) Letr > 1 such that 2" > d, then c(d,| - |,) < 2d.

2.2.2 A general condition for the probability measure characteriza-
tion

Let I = {x1,...,zn} be a quantizer in which there exists at least an x;, € I' such
that the open Voronofi cell V;fio (T) is bounded and non-empty. Based on such a quantizer,
one can construct an approximate identity as follows. Let ¢ : R? — R, be the function
defined by

p(&) = aeF\l?iio} € — af” —min|¢ —al”.

The function ¢ is clearly nonnegative, continuous and {¢ > 0} = Ve, (') so that

supp(p) = Ve, (T) is compact. Hence, [pdAg € (0,400) since @(xi,) = d(x, T\

{i,}) > 0 and we can normalize ¢ by setting ¢1(§) = <p}x;($j)

define ¢ (§) = Eidgol (g), then (¢:)e>o is clearly an approximate identity (see Grafakos
(2014)[Section 1.2.4]).

. For every € > 0, we

The following theorem gives conditions on the LP-quantization error function to

characterize a probability measure.
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Theorem 2.2.1 (Static characterization). Let p € [1,400), let | - | be a norm on R?
and let N > c(d,|-|)+1, or N > d+ 2 if | - | is Fuclidean. Then, the answer to
Question 1 is positive i.e. if there exists a constant C such that 6?\/,[,(% )= e%7p(u, )+C,
w,vE€ Pp(RY), then u = v. The constant C is a posteriori 0.

Proof. Following Proposition 2.2.2 and 2.2.3, we choose a quantizer I' = {0,a1,...,an—_1}
such that V(') is bounded and Ag(V{(T')) > 0. We define ¢ : RY — Ry, by

P(§) = min [¢—af’ —min|¢ —al’ = ( min |6 —a’—I¢P),

and (¢:)e>0 by ¢e(§) = & ad90<e)7 where C, = [ pd)y. For any z € R4,

1 p(%5)
il pfmin
g acl

T —&

—a

") ue)

- Cq,ed /Rd (aGF\?D}

1
= — in |z —ca— &P uld —/ min |z — ea — &P p(d€)|.
G5 | o 22| €7 u(d) — [ minl £l” u(de)
If we define two N-tuples & and %y as & = (v — a1, — €a1,x — €ag, ..., T — EAN_1)
and g = (z,z —eay,xr —€ag,...,r —ean—_1), then

[ min o= ca - € u(d) = ek, (. 7) and [ min la - < — € p(d) = ek 1. 30).

Hence, ¢ + pu(x) = g tam (e, (1, T) — €, (1, 70)).
The assumption 6{/7\/4,(#: )= e?\/,p(’/a -) + C implies that

e?V,p(M? ‘%) - ejjj\ﬂp(lh 5:0) = 6€V7P(V7 57) - ezjyv,p(l/v 5;0)7

so that, for every € R? and every € > 0, @, * u(z) = ¢, * v(z).
One can finally conclude that g = v by letting ¢ — 0 since (. )e>0 is an approximate

identity (see Rudin (1991)[Theorem 6.32]). Hence C' = 0. O

The following theorem shows that the pointwise convergence of the LP-mean quan-
tization error function is a necessary and sufficient condition for W,-convergence of
probability distributions in P,(R%).
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Theorem 2.2.2 (W,-convergence characterization). Let p € [1,400) and let | - | be any
norm on R, Let p, € Pp(R?) for n€ N*U{oo}. The following properties are equivalent:

n—-+0o0o

() Wp(pn, proo) ——— 0,
(1) VN > 1, enp(pin,-) notoo, enp(too, -) uniformly on R?,

(t4i) AN >c(d,|-|)+1 or N > d+2 if || is Euclidean such that, en p(fin, ) oo,
enp(Hoo, *) pointwise on RY.

Proof of Theorem 2.2.2. (i) = (ii) is obvious from (2.1.9).
(79) = (i7i) is obvious.

(79i) = (i) First of all, it follows from the convergence ey ,(ftn, -) UimasaN enp(toos )

that

Replns0) 2 B, (11, 0) fies [ Jel” () 2425 [ 1€ i (d€) < oo,
. . (2.2.4)
where 0 = (0, ...,0). In particular, the sequence (fRd €7 un(df))n>1 is bounded. Hence,
the sequence of probability measures (uy,)n>1 is tight. -

Let fic be a weak limiting probability distribution of (uy,),>1 i.e. there exists a

RY)
subsequence a(n) of n such that i) (:g [loo &S M — +00.

Let x = (21,...,2x) be any N-tuple in (R%)". We define a continuous function
fo R4 SR by
fe(§) = min € — " —[¢]7.

1<i<N

Hence, owing to the elementary inequality vP—uP < pvP~!(v—u) forany 0 < u < v < +o0,
we derive

0] < _maxc p(€]+ i) il < Cop(1+ [, (2:2.5)

where C ), is a constant depending on x and p.

_p_
Owing to (2.2.4) and (2.2.5), the sequence ( [ f£™" duy), -, is bounded, hence f,
is uniformly integrable with respect to (u,)n>1 since 1% > 1, so that f, is uniformly
integrable with respect to any subsequence (io(n))n>1- It follows that

/Rd fa:(f)/ia(n)(df) - /Rd fx(f)ﬁoo(dg)7
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as n — 400, where

L oo (@) = [ (_min _Jg = ail” = € g (@)

ie{l,...,.N}
= 61])\[71)(”&(71)7:1:) - 6%’p(ua(n), 0),

and /Rd fz(g)ﬁoo(df) = ei;)v’p(ﬁoo,l‘) — eljov,p(/jom 0)'

On the other hand, €}y (ta(n), %) — €}, (Ha(n), 0) converges to ef (oo, ¥) — €}y, (too, 0)
owing to the pointwise convergence in (iii) at 0 = (0,...,0) and z = (z1,...,zN).

Therefore,
eg\f,p(/joo7 l’) - 61;\[,17(/]00, 0) = e?V,p(MOCH .CC) - @%}7\/’71}(/,000, 0)?
which implies that for every z € (R,
e?\f’p(ﬁoo, 33) - e?\]’p(ﬂoo, ZL‘) = C’

where C' = eﬁ,’p(ﬁo@, 0) — e]])\f,p(l'LOO7 0) is a real constant. It follows from Theorem 2.2.1
that ficc = floo, which implies that po is the only limiting distribution of (uy,),>1 for

R4
the weak convergence and consequently p, (:l 1. We have already proved that
+
167 () =4 [ el ()
R Rd

from (2.2.4), which finally shows that Wy (pn, fteo) 1212, ) owing to Theorem 2.1.1. [

A careful reading of the proof shows that the following “& la Paul Lévy” characteri-

zation result holds for limiting functions of LP-quantization error functions.

Corollary 2.2.1. Let p € [1 + 00). Let (un)n>1 be a Pyp(R?)-valued sequence. If

enp(tn, ) noreo, f pointwise for some N such that static characterization holds true

Rd
(Question 1), then there exists oo € Pp(RY) such that u, & Moo @S M — +00 and

17 = ey hoes ) +lim [ 161 adg) = [ 1617 o).

Now we will take advantage of what precedes to introduce a quantization based distance
on P,(R?). Let Cy((RY)™,R) denote the space of bounded R-valued continuous functions
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defined on (R%)"N equipped with the sup norm ||-|| Let p € [1,+00). If pe Py(RY),

sup”’
eN,p(H, ) - eN,P(507 ) € Cb((Rd)Na R)

(note that enp(do, (21,...,2n)) = rlninN |z;]) since inequality (2.1.8) implies that
i=1,...,

1/p
lencalt1,) = €6y < Woltn, 80) = [ [ [67 ()] " < +oc.
Then, we define a function Qp, on P,(RY) by

('uv V) — QN,]?(U’ V) = H (eN,p(:uv ) - eN,p(doa )) - (eN,p(Va ) - eN,p((SOv )) Hsup
Jlenlns ) — enp( My - (2.2.6)

For any p,v € Py(R?), inequality (2.1.8) implies Qn (1, ) < Wy(u,v) < 400 so that
Onp(p,v) € [0, +00). Combining Theorems 2.2.1 and 2.2.2 implies the following result.

Corollary 2.2.2. Let p € [1,+00).
(a) Ngp,| <c(d,|-|)+1 for any norm and Ny, | < d+2 if | - | is Euclidean.

(b) If N > c(d,|-|)+1 or N > d+2 if || is Euclidean, then Qn , defined by (2.2.6) is a
distance on Pp(Rd) and Qnp is topologically equivalent to the Wasserstein distance W,,.

Comments on optimality. If we consider only the quadratic case p = 2 and a norm | - |
induced by an inner product, the result in Corollary 2.2.2-(a) is in fact not optimal. In
the next section, we will prove that in such a setting, Ny || = 2 and this result can also
be extended to any separable (possibly infinite-dimensional) Hilbert space.

2.3 Quadratic quantization based characterization on a
separable Hilbert space

Let H denote a separable Hilbert space with the inner product (- | -)g. Let |- |g
denote the norm on H induced by (- | -)g. When there is no ambiguity, we drop the
index m and write (- | -) and |- |. The separable Hilbert space is a very common setup
for applications, for example in functional data analysis: one can set H = LQ([O, T], dt)
and X = (X¢)e[o,r) a bi-measurable process such that fOT EX? dt < +oo. For more
information about functional data analysis with an L2-setup, we refer to Hsing and
Eubank (2015) among others.

We first prove in the quadratic case (p = 2), that both static (see further Propo-
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sition 2.3.1) and Whs-convergence (see further Theorem 2.3.1) characterizations can
be obtained at level N = 2 by an analytical method. Then we will show that

Npgo = NH,Z,HH = 2 and for any p,v € Py(H), QQQ(M? v) = ||€2,2(:U“7 )= 6272(V7 ')Hsup
is a well-defined distance on P2 (H) which is topologically equivalent to Wj.

Proofs of quadratic quantization based characterizations rely on the following lemma.

Lemma 2.3.1. (a) Let p,ve Py(H). If for every ue H,|u| =1,

o(¢m (Eluw) =vo (e (€luw) ™,
then p = v.
(b) Let pin € Pa(H) for every ne N* U {oc}. If [y €2 pn(d€) 2= [y €] oo (d)
and for every ue H, |u| =1,

wo (6 (€w) M E o (€ (W)

then Wa(fin, pioo) — 0.

Proof. As (H,|-|) is separable, let (hy)r>1 be a countable orthonormal basis of (H, |- ).

(a) Let X,Y be random variables with respective distributions ¢ and v and let A€ H.

We define for every m > 1, X(™) = S (X |hy)hg, Y™ = ST (Y| hg)hy and
Am) = 5™ (N hy)hg. For m > 1, let u( m) — |:\\Em;‘ (convention |%| = 0), then we have
+oo m
A[XU) =3 O ) (X ) =Z M) (X [ i) = [ (X [u®™).
k=1 k=1

Similarly, (A| V(™) = ‘)\(m)|(Y | u(m)). Let i be such that i = —1. It follows that

B0 = g IO - [ N0 6 )| 6)) 7 ()

= / ei‘)‘(mléy o (f — (u(m) | f))_l(df) _ Eei()\\Y(m)).
H

Since we can arbitrarily choose A, we have for every m > 1, Law(X (™) = Law(Y (™).
Let F': H — R be a bounded continuous function. Then, for every m > 1,

EF(X™) =EF(y™)
which implies E F(X) = E F(Y) by letting m — +o00. Hence, p = v.

(b) For every n > 1, let X,, be random variables with distribution yu, and let X be a
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random variable with distribution pe.. We define for every n > 1 and for every m > 1,

XM = 3" (X |hi)hi and X0 =" (Xoo|hi)hi.
=1 =1

Following the lines of item (a), we get for every m > 1, XT(Lm) g X&”) as n — +0o0,

since the convergence of characteristic function implies weak convergence.

Now, let F': H — R be a Lipschitz continuous function with Lipschitz coeflicient

F(x)-F
[FlLip = SUpg yepn | (|327y\(y)|

. For every (temporarily) fixed m > 1,

lim |E F(X,) — EF(Xo0)|
<lim [EF(X,) - EF(X[™)] +1im [E F(X{™) - EF(XEY)| + [EF(XEY) - EF(Xo0)]
<lim[EF(X,) -EF(X{)|+0+ [EF(X{) - EF(Xx)| (since X{™ U ey,

Then, for every n > 1,

|EF(X,) - EF(X{™)| <E|F(X,) - F(X{™)| < [FlripE| X, — X™|

n

< [Fluip|| X0 — X5,

Similarly, we also have |E F(Xgon)) —EF(Xeo)| < [Fluip|| Xoo — Xé’.?)||2.

It follows from Fatou’s Lemma for the weak convergence and the convergence
assumption made on E|X,|? that

limsup || X, — X5 = limsup E|X,, — X[ = timsup [E|x,|* — B[ x|
= E| Xoo|” — lim inf E| X{™|* < E|Xoo|” — E|X{™)?
= - X

Hence, for every m > 1,

lim [E F(X,,) — E F(Xoo)| < limsup [Flup || X = X5 ||, + [Fluip| [ Xoo — X&7,
< 2[Fluip || Xoo — XI|,-

Then,

HXOo —XéZ‘)HQ —+0asm — +oo

by the Lebesgue dominated convergence theorem since \XOO — X&n )| < |Xoo| € L*(P) so

that E F(X,) - E F(X«) as n — +oo. Thus, X, NGO X~ and we can conclude that

Wy (i, ttes) — 0 by applying Theorem 2.1.1. O
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Proposition 2.3.1 (Static characterization). Let u, ve Po(H). If

6% 2(:“’7 ) = e%,Z(Vv ) +C

)

for some real constant C, then p=v and C = 0.

Proof. Let a,be H, then €35 (u, (a,b)) = [ € — al> A€ = b)? p(de).

As €35 (p, (a,)) = e545(v, (a,b)) 4 C for every (a,b) € H?, in particular, if a = b,
[i 1€ — al® w(d€) = [; 1€ — a|® v(d€) + C. Hence, using that (z —y)y = 2 — z Ay, we
have

Vabe H, [ (I¢=af =16 =) ude) = [ (I —al* =l =b7) v(de). (23.)

Note that [€ — af* — | — b = 2(b—a ‘ £ — ‘%H’) Hence, if we take a = Au and b = Nu

with A, '€ R, X > X for some common u€ H with |u| = 1, we obtain

, A+ N
(g =a =g =0P), =200 =) (€l - 257

As a consequence of (2.3.1), we derive that

xRN > [ (€10 -25) we = [ (€1 - 25F) vtao)

2
In turn, this implies, by letting ' — A,

Vue H,|u| = 1, YA€ R, /H (61w - )\>+u(d§) _ /H (61w - A)+u(d§).
(2.3.2)

The function A — ((§ | u) — A) . is right differentiable with 1(¢,)> as a right deriva-
tive and p-integrable. Hence, by the Lebesgue differentiation theorem, we can right
differentiate the equality (2.3.2) which yields for every u€ H,|u| = 1 and for every A€ R,

u((€1w) > 0) = v((€] u) > A).

Hence, for every ue H,|u| =1, po (£ = (£ | u))_lzy o (& (€] u))_1 since they have
the same survival function. We conclude by Lemma 2.3.1 (a) that p =v and C =0. O

The following theorem shows the equivalence of Wh-convergence of (i, )n>1 in P2(H)

and the pointwise convergence of quadratic quantization error function (eg’g(un, ~))n>1.
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Theorem 2.3.1 (Ws-convergence characterization). Let p, € Po(H) for every n €
N* U {oc}. The following properties are equivalent:

(Z) WQ(UWNOO) m) 0,

(41) e22(pn, ") T, €2,2(ftoo, -) uniformly,

(1ii) e2.2(pn, ) notoo, €2,2(fhoo, ) pPointwise.

Before proving Theorem 2.3.1, we recall the convergence of left and right derivatives
of a converging sequence of convex functions. Let 0_ f (respectively d; f) denote the left
derivative (resp. right derivative) of a convex function f.

Lemma 2.3.2. (See e.g. Lackovi¢ (1982)[Theorems 2.5]) Let f, : R — R,ne€ N*, be
a sequence of convexr functions converging pointwise to a function f : R — R. Let
G:={zeR|0_f(x) # 0L f(x)}. Then for every point z€ R\ G,

lign O+ fu(x) = lirrln O_fn(x) = f'(2).

Proof of Theorem 2.53.1. (i) = (i) is obvious from (2.1.9).
(#9) = (i19) is obvious.
(iii) = (i) For every (a,b) € H?,

B (1t (,0)) = [ 16— al® Al = b () 242

3 (11 (0,0)) = [ 1€ = al® A€ = ().

In particular, Vae H, [; € — al® pn (de) 2225 Drboo, Sy 1€ — al® oo (d€). Hence, using that
(r—y)y =z —x Ay, we get

Ya,be H, /H<|5—a|2—|5—b|2)+un<df>m/}{(!&—aﬁ—|§—b\2)+uoo<d§>.

Following the lines of the proof of Proposition 2.3.1, we get

VAER, vueH,yu\:L/H((gm)— ) i (dE) M/ (€| u) — ,,Loo(dg).

For p€ Po(H) and ue S)(0, 1), we define the real-valued convex function ¢,, by ¢, :
A= [((€Tu) - )\)Jr,u(dé). It follows from (2.3.3) that (¢, )n>0 converges pointwise to
®use- Moreover, ¢, , ¢, are right-differentiable and their right derivatives are given by
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Ot bp,(N) = pn (€ | w) > A) and 4¢u. (N) = poo (€ | w) > A) respectively. Note that
the functions 1 — d4¢,,,, and 1 — 0, ¢, are the cumulative distribution functions of the
probability distributions i, o (£ — (€| w)) " and fioo © (& > (€| u))f1 and that the set
of discontinuity points of 1—084¢,. and d1¢,., 18 G = {\ : p({£: (£ | u) = A}) > 0}

We know from Lemma 2.3.2 that for every A€ R\ G, 04+¢,,(\) Lima o O+ Ppoe (N)
and that 0_¢,,. is continuous on R\ G. Hence

Vue Hul =1, o (s (€]w) ™ 225 fin o (€ (€| w) " (2.3.4)

Moreover, €22 (i, (0,0)) converges to e22 (oo, (0,0)), which also reads [y €% pn (dE) —
[i7 1617 1100 (d€). Consequently, it follows from Lemma 2.3.1-(b) that Wa(jin, fiee) — 0 as
n — 4o00. O

Remark 2.3.1. Proposition 2.3.1 and Theorem 2.3.1 directly imply that Np 5|, < 2. In
fact, for every a€ H,

tatpna) = [ 16 = alfputde) = [ 16l nide) —2( [ entdg)|a)  +laff.

Thus, if p, v € Po(H) are such that

[ 1eButs) = [ 16k and [ eutde) = [ et (235)

then we have e 2(p, -) = e12(v, -). But condition (2.3.5) is clearly not sufficient to have
u = v. Consequently, Nya), =2

Like what we did in Section 2.2.2, we define a function Qgﬁ on (772 (H ))2 by

(11, v) = Qala (i v) = lleza(p, ) = e22(v, )l -

Then inequality (2.1.8) implies that Qé{z(,u, v) € [0,400). Moreover, Proposition 2.3.1
and Theorem 2.3.1 lead to the following corollary.

Corollary 2.3.1. The distances QJQL{Q and W are topologically equivalent on Pa(H).
We conclude this section by an “a la Paul Lévy” characterization of a limit of
quantization error functions.

Theorem 2.3.2 (A la Paul Lévy characterization). Let (H,| - |g) be a separable Hilbert
space. Let (pn)n>1 be a Po(H)-valued sequence and let f : H* — Ry be such that

2,2(tn, ) noroo, f pointwise.
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Then there exists fioo € P2(H) such that iy () loo (where (Hy) stands for the weak

topology on H ) and

72 = easlpioe,)? lim [ 16 na(dg) — [ 1€ oo ).

Proof. The sequence €22 (fin, (O,O))2 = [y [€Pn(d€), n > 1, is bounded, hence the
sequence (fin)n>1 is tight for the weak topology (H,,) on H, which generates the same

Borel o-field as the strong one. Consequently there exists a subnet f,,,) gw) loo € Po(H)
since the mapping ¢ — |¢|? is weakly lower semi-continuous and non-negative (see Topsoe
(1974)[Lemma 2.3 and Theorem 3.1] and Kelley (1975)[Chapter 2] for the definition of
subnet). Now note that, for a fixed x = (z1,22) € H?, the mapping

¢~ min (|¢ — 21[%, ¢ — 22]?) — [¢[% = min (ja1]? = 2(21]€), 222 - 2(22]€))

is weakly continuous and (fn,)n>1-uniformly integrable since it is sublinear. Hence

€32 (Hp(n)» ) —>/Hmin (l21? = 2(21[€), 22]? — 2(22€)) oo (d€) + f2((0,0)) as n — +oo

= 3al1ioes2) + 12((0.0) = [ 162 ().

For two such limiting distributions pe and ul, it follows from what precedes that

€3 9(Hoos ) = €3 511, ) + Coo for some real constant Coo. Hence jioo = i, by Proposi-

tion 2.3.1, which in turn implies that w, (H:w>) Hhoo- O

2.4  Further quantization based characterizations on R

Let | - | denote the absolute value on R. Results from Section 2.2 (Theorem 2.2.1
and 2.2.2, Proposition 2.2.4-(i)) imply that Ny, := Ny, < 3 for any p > 1. Moreover,
Proposition 2.3.1 and Theorem 2.3.1 imply that N2 = 2. Other quantization based
characterizations are developed in Section 2.4.1. Then we discuss the completeness of the
distance Q1,1 (defined in (2.2.6)) on P1(R) and of Q22 on Pa(R) with opposite answers
in Section 2.4.2.

2.4.1 Quantization based characterization on R

Proposition 2.4.1 (p =1). (a) Let p,ve Pi(R). Ifer1(p, ) =er1(v,-) + C for some
real constant C, then y=v and C' = 0.
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(b) If un€ P1(R), ne N*U {oc}, the following properties are equivalent:

(i) Wi (ftn, fioe) =225 0,

() e1,1(pns ") R e1,1 (oo, ) uniformly,

(13i) e11(pn, ) notoo, e1,1 (oo, -) pointwise.

(c) The distance Qi1 and Wy are topologically equivalent on Py (R) and Ny ; = 1.

Proof. (a) The function ey (u, ) reads « +— [ |{ — x| p(d€), hence it is convex and its
right derivative is given by o — —1 + 2u(] — 0o, 2]). So if e11(p,-) = e1,1(v,-) + C, we
have p(] — oo, 2]) = v(] — 00, 2]) for all z€ R, which implies 1 = v (and C = 0).

(b) It is obvious that (i) = (¢i) and (i7) = (i73). Now we prove (iii) = (7).

For every n > 1, e11(ftn, ) can also be written as a — [ | — a| pn(d§), which
is convex with right derivative at a given by —1 + 2u, (] — oo,a]). Consequently, if
e1,1(ftn, -) converges pointwise to e 1(ftoo, -) o0 R, then py, (] — 00, a]) converges pointwise
t0 foo (] — 00,4a]) for all a € R such that po({a}) = 0 by Lemma 2.3.2. This implies

R
Lhn (:L foo- The convergence of the first moment follows from ej j(pn,0) oo
e1,1(ftoo, 0). Hence, we conclude that Wi (fin, fioo) nore by Theorem 2.1.1.
(¢) The claim (c) is a direct result from (a) and (b). O

Proposition 2.4.2 (Even integer p > 2). Let p be an even integer, p > 2.

(a) Let p,v € Pp(R) such that e ,(u,-) = eb ,(v,-) + C for some real constant C. Then
w=v.

(b) If pn € Pp(R), ne N* U {oo}, the following properties are equivalent:

(8) W(tin, proo) == 0,

(i4) e2,p(fin, ) ——2% €2,p(Hoo, +) uniformly,

n—-+4o0o

(i) €2p(ptn, ) "5 3,510, ) pointwise.

(¢) The distances Qa, and W, are topologically equivalent on Pp(R) and Ny p = 2.

The proof of Proposition 2.4.2 is based on the following lemma.

Lemma 2.4.1. Let p be an even number, p > 2. Let pe P,(R) be absolutely continuous
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with density f i.e. p(d€) = f(&)d€. If f is continuous, then for any a,b€ R with a < b,

3 1 62617 82€p 826p
&y (i (a,0) = o ( 55 (11 (@,0)) + =2 (11, (a,0)) = 2522 (p1, (a b))).

(2.4.1)

atb
Proof of Lemma 2.4.1. Assume that a < b, then ef (u, (a,0)) = [_3, |€ —al’ f(£)dE +
XX 1€ = blP f(€)d€. Hence, the function eb ,(#, (a,b)) is continuously differentiable in
2

a, since, for any even number p > 2, we have Eﬂ{%ff(g) =pla—&EP7LF(E) and

Sl = O] S r O [l 1P v 1P e 2
a’€(a—1,a

since [p €7 f(£)dE < +oo. Likewise, €5 (u, (a,b)) is continuously differentiable in b

with partial derivatives

oeh (u, (a,b)) afe oeh (s (a,b)) +o0
P\ AT _ _ \p—1 2,p\I \™ _

Rl b [ T (e (@dg and 2R —p [

2

(b=&)P~Hf(€)dE.

Moreover, we have W = (p—1(a—&P2f(£) and

sup [ (p— 1)(a’ = )P2f(9)]

a’€(a—1,a+1)
< (=122 f(O)[la+ 172 Ve — 172 4 P72 | € L'(d€)

since [ [€[P f(€)dE < +o00. By a similar reasoning, one derives that €5 (u, (a,b)) is
continuously twice differentiable with second order partial derivatives

0%eh ath )
5o (@) = [ [~ 0= 1)(a— 72 - 50— ().
0%eh o )
o (i (o:1) = {/+ (0= Dlb - O 2O — 55 (0 - a1,
0%eh 92¢P .
e o 0) = 522 1 0.0) = 0= 1 (52,

Hence, for every (a,b) € R? such that a < b,

2 D 82612)4)

0%eb d%e
22 (1, 0.0)) + 022 (i 0.8)) — 2522 (1, (0.1) = plp — 1By (1. (0.1)

Oa

Proof of Proposition 2.4.2. (a) Step 1: u and v are absolutely continuous with contin-
uous density functions. Note that egp(,u, ) = e’ip(u, -) + C implies either u = v by
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Proposition 2.3.1 if p = 2, or, if p > 2 612);732(M, )= 6127;32(V, -) (after differentiation) by
Lemma 2.4.1. We can conclude by induction.

Step 2 (General case). Let XY be two random variables with the respective distributions

u and v, such that
V(a,b)e R?, b (X, (a,b)) =¢5 (Y, (a,b)) +C. (2.4.2)

Let Z be a random variable with probability distribution Pz = A/ (0, 1), independent of
X and Y. For every € > 0,

ehp(X+eZ, (a,b)) = / min ¢ + ez — 2| pu(d€)Pz(dz) = / eh (X, (a,b)—e2)Pz(dz).

z€{a,b}
(2.4.3)
We derive from (2.4.2) and (2.4.3) that
V(a,b)e R? e (X +eZ (a,b)) =€5 (Y +¢eZ (a,b)) +C. (2.4.4)

Moreover, the random variables X +¢Z and Y + ¢Z have distributions A(0, e?) * p and
N(0,€2) * v respectively, both with continuous densities. It follows from Step I that
Law(X +¢Z) = Law(Y +¢Z) for every € > 0 so that Law(X )=Law(Y") by letting ¢ — 0.

(b) It is obvious that (7) = (i7) and (i7) = (ii7). Now we prove (iii) = (7). It follows from

Lemma 2.4.1 that ez, (jn, -) notoo, €2.p (oo, -) implies ea o (tin, -) notoo, e2.p—2(lhoo, *)

and, by induction, yields ez a(fin,-) notoo, €2,2(fhoo, *), so that Theorem 2.3.1 and
Theorem 2.1.1 imply that w, converges weakly to po.. The convergence of the p-th
moment follows from ez (i, 0) Db, e2,p(fhoo, 0). Hence Wy (1, fioo) D20 0 by

Theorem 2.1.1.

(¢) The claim (a) and (b) directly imply that if p is an even integer, p > 2, the distances
Qs and W, are topologically equivalent on Pp(R) and N;, < 2. Now we prove that
Ni, = 2. Note that for every z € R,

) = [ Je = ol nldg) = [ (€ = 26w+ %) Ep(a),

which is polynomial in z and whose coefficients are the k-th moments of u, k € {1, ..., p}.
Thus, as soon as two different distributions p and v have the same first p moments,
et (1) = ef ,(v,-). This implies Ny, > 1. O
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2.4.2 About completeness of (Pl(R), Ql,l) and ( 5(R), QN2>

We know from Bolley (2008) that for p > 1, (Pp(R), W,) is a complete space and we
have proved that Q;; (respectively Q22) is topologically equivalent to Wy (resp. W)
on Pi(R) (resp. P2(R)). Now we discuss whether Q1 and Qs 2 are complete distances.

Proposition 2.4.3. The metric space (Pl(R), Ql,l) is complete.

Proof. The inequality (2.1.8) directly implies that a Cauchy sequence in (P1(R), W)
is also a Cauchy sequence in (P1 (R), QLI)- Now let (n)n>1 be a Cauchy sequence in
(P1 (R), Ql,l)- It follows from the definition of Q1 that (61’1(Mm -) — e1,1(do, -))n>1 is a
Cauchy sequence in (Cy(R,R), [ sup ).

As (Cb(R, R), H-Hsup) is complete, there exists a function g€ Cp(R,R) such that
n—-+00

| (er,1(ptns ) — e1,1(00, ) — g||sup —30. (2.4.5)

Note that for any a € R, e11(dp,a) = |a|]. The sequence ej 1(fn,0) — e1.1(d,0) =
e1,1(pn, 0) is also a Cauchy sequence in R. Therefore, (€11 (fin, 0))n>1 (Jw 1€ pn df))n>1
is bounded, which implies that (g, )n>1 is tight. It follows from Prohorov’s theorem that
there exists a subsequence (i,(,))n>1 Weakly converging to jis. Moreover, by Fatou’s
lemma in distribution, fie € P1(R) since [g [€] fioo(d€) < liminf, fi €] ) (d€) < +oo.

Now, we prove that g = e 1(f,-) — e1,1(do, -). First, let us define a function f,(§) =
|€ — a|—[£|. For every a€ R, f, is bounded and continuous. Hence, the weak convergence

of (,Uap(n))n21 implies that /[Rfa(g)u¢ n)(dg m / fa ,uoo d&)

Besides,

/Rfa(g):uﬂp(n) (df) = /]R [|5 - a| - ‘£| ]:U’go(n) (df) = elJ(:“’cp(n)a a’) - 6171(/1'«,0(11)7 0)7

which converges to (g(a)+e1,1(do, a)) — (9(0) +e1,1(d0,0)) as n — +oo by (2.4.5). Hence,
for every a€ R,

(9(a) + e1,1(d0, a)) — (9(0) + e1,1(do, 0) /fa &) lioo(d€) = €1,1 (i, @) — €1,1(fiso, 0),
T

ie. e11(floo, @) — €1,1(d0, @) — g(a) = e11(fioo, 0) — g(0). Setting C' = e11(fino,0) — g(0),
we derive that for every a € R,

e1,1(Hoo, @) — €1,1(d0,a) — g(a) = C. (2.4.6)
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Now we prove that C' = 0. Generally, for any v € P;(R), one has

lim

Jim ([ =2 ] atier [ (oma).

ali}rfoo (elyl(u, a) —e1.1(do, a)) = aEI-Poo (61’1(% a) —|a| ) = QEI-POO (6171(11, a) - a)
Jim ([l —alv(dg) —a) = tim_( /{ o ata + [ (o) —a)

As v € Pi(R) ie. Jgl{v(d) < +oo, we derive that limg oo fe,(—§)v(d€) =
fR(_§>V(d£) and hma—H-oo f{fza} §V(d£) = 0. This 1mphes

0 < lim

a——+00

av(dé) < li
{e>a} ( 5 _aﬁl\gloo

d¢) = 0.
{Qa}@( £)

After a similar calculation with lim,_,_ (6171(% a) —e1,1(do, a)), we get

Jim[er1(a) = ena(60,)] = [ (~€)w(ag)
and aErElOO le11(v,a) —e1,1(d0,a)] = /R&/(df).

(2.4.7)
Combining (2.4.6) and (2.4.7) with v = [i, shows that
Jim_g(a) = ~C = [ gin(d) and lim_g(a) = =C + [ €fine(d).

On the other hand, for every n > 1, (2.4.7) applied to v = pu,(,) implies

agrziloo 61,1(:ugp(n)7 a) - 6171(507 a) = :F/Ré.ﬂcp(n) (dé.)
Up to a new extraction of fi, ), still denoted by p(,), we may assume that
\/]Rfl'l’@(n)(dg) —-CeR

as n — 400 since (e1,1(fin, O))n21 = (Jr [&] pn(dE)), -, is bounded.

Now the uniform convergence (2.4.5) implies that

lim

i [e1400.0) = e14600.0) = 9(0)] =0

so that C = C + Jr €hioo(d§) = —C + [g &lioo(dE), which in turn implies C' = 0, i.e.
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g = €1.1(floo,-) — €1,1(d0, ). Then it follows from (2.4.5) that

[ (e1,1 (k. +) = €1,1(0, ) = (€1 (oo, ) — €1,1(d0,)) ||

= [le1,1(pn, ) — €1,1(Hoos ‘)Hsup 2 0
Hence, Wi (pin, fico) — 0 by applying Proposition 2.4.1. The completeness of (P (R), W)
implies that /oo is the unique limit of (g, )n>1, which in turn implies that (P;(R), Q1.1)
is complete. ]

Theorem 2.4.1. For any N > 2, the metric space (PQ(]R), QNyg) is not complete.

We will build a sequence on P2(R) which is Cauchy for Qx 2 but not for Wh. First,
we have the following result.

Lemma 2.4.2. Let (pn)n>1 be a P2 (RY)-valued sequence which converges weakly to fio
and, for ne€ N*U{oo}, let X,, denote a p,-distributed random variable . Assume that
lim, E|X,|? exists and is finite. Then

e2.2(fin; (a,a)) — \/6%72 (ftoo» (a,a)) + Co Ui Ny} (2.4.8)

sup
acRd

where Cop = lim E | X,,|> — E|Xs|? € [0, +00).
n

Proof of Lemma 2.4.2. An elementary computation shows that
(i (@,0) = [ 16~ al i) = [ 167 nn(@) ~2( [ uatd®)]a) + laf’.
R4 R4 R4

d
As (fa |€[* pn(d€)) _is bounded and B o, We have fra Epn(d€) —

n>1

Jra Eptoo(d€). Tt follows that

Balin (@,0) = [ 16 un(d$) = 2( [ €un(de)|a) + laf

B /R €1 poo(d€) + Co —2( /]R Eptocld€) | @) + lal* = € (pocs (a,)) + Co.

Therefore, for every compact set K in R?, we have

Uimasing (2.4.9)

Sup |e2.2(jtn, (4, 0)) — V€ (ttoo: (a,)) + Co
ac

owing to Arzeld-Ascoli theorem, since all functions ey, are 1-Lipschitz continuous
(see (2.1.5)). On the other hand, we have

le2.2(1tns (a,0)) = \/e3 5 (1oc, (a,)) + Co
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[ Balan (0.0)) — (B2 (110 (0. ) + Co)|
o2 (i (0,0)) /6B (e (0. ) + Ci
_JECXP — 2001 Xa) + Jof) — E(1 X — 2(a] Xo0) + [af*) — G|
8 [ — all, + [ Xes —all
2|(a ] EXoo ~ EXy)| + [E|Xal* — E|Xoof* — Co|

<
[ X5 = ally + [[Xoo — ally
2la| |EX oo — EXn| + (E X2 — E[Xoo|? - C’o‘
< (2.4.10)
[1Xnlly = lal | + [ [ Xoolly — lal |
Let A = 2sup,enyfoo) E | X%, then
sup [ez(1in, (a.) — /ey (o (. )) + Ci
la|>A
3 2]a| [EXco — EXp| + |E|X0)* — E|Xoo|* — Co
< sup
la]>A lal = [ Xnlly + [a] = [ Xooll
3 2]a| [EXco — EXp| + |E|X0)* — E|Xoo|* — Co
< sup
la|>A 2la| - A
’E\X 2 E|Xx)? - Co
< sup 2|EXo — EXp| + - Nt ) (2.4.11)
ja]>A A
Hence, (2.4.9) and (2.4.11) imply that
Su% €22 (,un, (a,a)) — \/6%72 (uoo, (a, a)) + Cy noEeo ), O
acR
Let Z : Q — R be N (0, 1)-distributed. We define for every n€ N,
n 'VL2
X, =e2?7T, (2.4.12)

For n > 1, let u, denote the probability distribution of X,. It is obvious that X,
n2
converges a.s. to Xoo = 0, so that jio = d9. Moreover, for every p > 0, E X? = es (P=2),

n2
Hence, EX,, = e 5 — 0 = EX, as n — 400 so that Wi (un, ttec) — 0 whereas
E X2 =1 for every n€ N.

Hence EX?2 does not converge to E X2, = 0, which entails that s, does not converge
to oo for the Wasserstein distance Ws and thus p, is not a Ws-Cauchy sequence. We
first prove (un)n>1 is a Cauchy sequence in (P2(R), Qa2,2). The proof relies on the
following three lemmas.
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e 2
z

52
Lemma 2.4.3. Let Z : Q — R be N(0,1)-distributed. Then, Vz >0, P(Z > z) <

2

2 2 z
_ (too 1 %o +oo gz 1 —Z e T
Proof. P(Z > z) = [ Vo dr < [, v dr = . ]

Lemma 2.4.4. Define (X,) as in (2.4.12), then supg>q KE(X, — K)y — 0 asn —
+00.

Proof. We have

IS

0 —+00
KE@ﬁam+:K/‘P@%—KM2uW :K/ P(X, > u+ K)du
0 0
+oo +oo n n2
- K/ P(X, > v)dv = K/ P(e377F > v)du

K K

+o0o n 2 oo n 2 u )
:K/ IP’(Z > —+ —lnv)dv:K/ IP’(Z > ——l——u)e du (setting u = Inw).
K 2 n In K 2 n

By Lemma 2.4.3,

(o) _L_n2“2_u - 0o
K]E(Xn—K)+§K/ ¢ dw o Rels Gur_du
n

e n2%
mK 54 2u V2r T 24+ 2K Jmk V2
n2
Ke s 00 _w?2n dw . 2
= — / e 2 ——— (by setting w = —u)
§+EIHK ian 227 n

s 2 nKe_é e~z K)?
=5 - P(Z > fan) < 5 5 (by Lemma 2.4.3)

n 2 Ke—n%(ln K)? n 2 ean(l—n% In K)
22w 1+ 5ImK)lnK  2y27 1+ 5mK)nK

Since the function u — u(1 — n%u) attains its maximum at v = "72 with maximum value
%2, we will discuss the value of K E(X,, — K) in the following two cases:

2

n TLQ
(1) K > ef1, (1) 0 < K <ef1 |

with the same fixed p € (0, 1) in both (i) and (i7).
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n2
Case (i): If K > e’ 7, then In K > p%z. It follows that

_22 mK(-2InK) _n? n?
ne 8 e n ne e
KE(X, - K); < <
" 221 (14 HInK)InK ~ 227 (1+ 5 x p2)p22

2
- 0.

n(1+ p)pV2r

n2
Case (ii): If 0 < K < e’ 7, then

n—-+00

Therefore, supg~o KE(X, — K); —— 0. O

By Lemma 2.4.2,

—
sup notoo,

D €22 (,Um (ava)) - \/6%2 (Moov (a, a)) +Co
ac

Consequently, it is reasonable to guess that

”'Hsup

€N72(Mm') 6?\7,2(”00") +1

n—-+00

so that (fn)nen is a Cauchy sequence in (P2(R%), Qn2). Let gy : RV — R, be defined
by

(ala'-- ,ClN) = gN((ab' "aaN)) = \/e%\LQ(MOOa (a’la"')aN)) +1= A/ 1I§I%ignN|ai|2 + L

Proposition 2.4.4. For every N > 2,

sup |€N,2(,Una (al, - ,aN)) — gN((al, .. ,aN))l m 0.
(a1,...,an)ERN

Therefore, (fn)nen s a Cauchy sequence in (P2(R), Qn2) by the definition of Qn 2.

Proof. We proceed by induction.

> N = 2. Since the functions gz and ez 2(jn, -) are symmetric, it is only necessary to
show that

n—-+o0o

sSup |€2,2(Mn, (avb)) _92(a7b)| —0.
(a,b)ER?, |a|<b|
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Note that when |a| < |b], ga(a,b) = \/|a|* + 1 = g2(a,a). We discuss now the value of
le2,2 (tins (a, b)) — g2(a, b)| in the following four cases,

(1) 0<a<hb,

(ii,a) a<0<bwith |a < 3B
(ii,8) a<0<bwith §[b] < |a| < |b],

@azozn |
(791) b < 0 < a, with |a| < |b],
(iv) b<a<0.

Cases (iii) and (iv): b <0 and 2f? < 0. The random variables X,, are positive so

that |z — a| < | — b|. Hence €22 (pn, (a,b)) = e22(kin, (a,a)). With a slight abuse of
notation, we will write in what follows (a,b) € (iii) for

(a,b)€ {(a,b)€ R* | b <0 < a,and|a| < |b|}.
We will adopt the same notation for other cases too. Then for the case (iii) and (iv), it
is obvious by applying Lemma 2.4.2 that

S |22 (1n; (0,0)) —g2(a, )| = sup |e2.2(ttn, (a, @) —ga(a, a)| =25 0.
(a,b)€(4id)U(iv) (a,b)€(iid)U(iv)

Case (i): 0 <a <b. We have

sup |e2.2(pn, (a,b)) — ga(a, b)]
(a,b)€(d)

< sup |ez2(tin; (a, b)) — e22(pin; (a,a))| + |e22(pn, (a,a)) — g2(a, a)|
sup

T (ab)E()
(a,b) (i) \// € = al® Al = bl pun(de) - \// € — al® un df)‘

+ \62 Q(Mm(a a)) — 92(a, CL)|

< sup \// |£—a| —(le=al Alg—bf )}un (d€) + |e2,2 (pn, (a,a)) — g2(a, a)|

(a,b)e(7)

since‘\/a—f‘gx/ﬁ—aforﬁ>a>0)

AN

< [ (I al? =16 = 0) ) + e (0,0) = (o)
< sup \// 2(b—-a 5— b+a) n(d€) + |e22 (pns (a, ) — ga(a, a)|
(a,b)€(7)
S sup 2\// -3 ,U/n(df) + |62,2(,U'n, (G’?a)) - 92(a7a)|
(a,b)€(7)
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< 2 [sup KE(X, — K)4 -l—sup{ez 2(kn, (a,0)) — g2(a, a)| LimassNY(}
K>0

Case (ii,): a <0 < b, with |a| < 1 |b|. We have

sup |€2,2 (Mm (a, b)) — 92(a, b)i
(a,b)€E(ii,)

< sup  |ez2(pn, (a,b)) — e22(pn, (a,a))| + |e2,2 (tins (a, @) — g2(a, a)|

(a,b)€(i4,q)

< sup \//26— )(€_b+a) fin (d€) +|€22(Mm(a a))—gg(a a)|

(a,b)€E(ii,a)

S Sup \// 3-b f—* tin(d€) + |e2,2 (pin, (@, a)) — g2(a,a)|
< Z\f \/supKEX K)++bup}622(;zn,(a a)) — g2(a,a)| UimassNy(}
K>0 a€R

Case (ii,3): a <0 < b, with 1 |b| < |a| < |b|. One has

sup |e22(pin, (a,0)) — ga(a,d)|

(a,b)€(ii,B)
< sup |€2 Q(Um a, b ) (Mn, a,a )| + |622(Nn7(a a)) _92(a a)\
(a,b)€(ii,5)
|e%2(pn, a, ) % (Nm a))‘
é + > ’ - )
(avbig(lziﬁ) €2 2(Mn, a, b) 2.2 (#m a,a)) 2.2 (i, (a,a)) — g2(a, a)|
= —i— " —
= whetis) HX =l sup [ez2 (pn, (0,0)) — 92(a, )|
< 2(b—a)E (X, — &%), (i (0.) ).
< su + - _
(a,b)e(lz)'i,ﬂ) X, — all, igg €2,2\Hn, \Q, @ g2(a,a

2\1/2 2
As | X, —ally = (EX2 =20 EX,, +|a>)"/? > /1 + |af?, we have

=1 >0

sup |e2.2(pn; (a,0)) — ga(a,b)|

(ab)€(ii,B)
2(b + |a))E[Xn — HTQ]
< sup + sup |e2.2 (i, (a, @) — g2(a, a)|
(ab)e(ii,f) V1+]af ack
4EX,
< sup

< i y B
(a,b)€(44,8) \/Hij 22% {622(” (a, a)) 92(a, a)|
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n—-+oo

< 8EX,, + su%R? |€272(Mn, (a, a)) — gg(a,a)| —/T=0.
ac

> From N to N+1. Assume now that

sup }CN’Q(,U/R, (a1, ... ,aN)) —gn(ag,. .. ,aN)’ — 0 as n — +oo.
(al,...,aN)eRN

Then, for the level N + 1, we assume without loss of generality that |a;| < |ag] < -+ <
lan+1] since gn41 and ey 2(fin, -) are symmetric. Under this assumption,

gnii(at, ... ang1) = g2(ar, a1) = \/]ai]* + 1. (2.4.14)

We discuss now the value of

sup |6N+172(/1’TL7 (ala cee 7CLN+1)) - gN+1(a1’ cee ,CLN+1)|
(al,...,aN+1)€RN+1

in the following cases:

(1) 3ie{2,..., N + 1} such that a; <0,
(11) 0<a; <az <---<anti,

(iii) a1 <0< az <+ <anq,

{ (iti,a) a1 <0< ag < - < any1, with |ar] < L a1

<
(i12,8) a1 <0 < ag <

- < any, with |ar] > 5 langa|

Case (i): Jie {2,...,N + 1} such that a; < 0. For every n > 1, X, is a.s. positive.

Hence, |X,, —ai| < |X,, — a;| a.s. since we assume that |a1]| < |ag] < -+ < |an41].
Therefore,
6N+1,2(,U”n) (a17 LI 7a’N+1)) - eN,Q(H’nu (CLl, ceeyQi—1, a’i+17 L ,CLN+1)).

It follows from (2.4.14) that
sup |6N+1,2 (Mn, (a,... ,aN+1)) —gn+1(ar, ..., CLN+1)|
(a1,...,aN+1)€]RN+1

= sup len2(pin, (a1, @i—1, Qi1 an41))
(@155 1,854 1,-,aN 1) ERN

—gn(at, ..., ai—1,aiy1, - ant1)|,

which converges to 0 as n — +o0o owing to the assumption on the level N.
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Case (ii): 0 <aj; <az <---<anti1.

sup ‘€N+1,2 (H’nv ((11, cee ,CLN+1)) - gN+1(a17 e ,CLN+1)|
0<ai<as<--<ani1

S sup }6N+1,2(//Jn7(alv"',aNJrl)) _6N72(,U’n7(ala"‘aa]\/))’
0<ai;<az<--<ani1

+ sup }€N72(Mn,(a1,...,a1\r)) —gN(al,...,aN)|. (2.4.15)
0<a1<ag<-<an+1

The second term on the right hand side of (2.4.15) converges to 0 as n — 400 owing to
the assumption on the level V.

For the first term on the right hand side of (2.4.15), we have

sup |6N+1,2(,un7 (a’lu o ,CLN+1)) - eN,2 (,U’n7 (a17 ceey CLN))|
0<ai<as<--<ani1

_ sup \/ min |€ — a;|? pn (d€)

0<a1<az<--<an41 R 1<i<N

_ \// min |§—a| } A |§—CLN+1|2,Un(d§)
R

1<i<N

< sup ¢ min [¢ — aif? = [ min €~ ai* | Al an il pn(dg)

0<a1<az<-<ani1 R 1<i<N 1<i<N

= sw \//R min € — il — € — ansaf?) , ()

0<a1<az<--<anii 1<z<N

< sup \// (1€ - arl” = € — an+1]? )+Mn(d§)

0<ai<ag<--<an+1

= sup \// 2(an+1 —al)@ o +;N+1)+Mn(d€)

0<a1<az<-<ani1

< sw oy [2avia(e- ) e

0<a1<az<-<an41

< 2. [sup KE(X, — K); 2=,
K>0

Case (iii,a): a1 <0 <ag <---<anp1 with |a;] < %|aN+1].

sup lens1.2(pns (a1, ans1)) — gns1(at, ... an+1)|
(a1,e.,an+1)€(it3,0)
< sup len+1,2(pns (a1, - an+1)) — ena(pn, (a1, - - an))|
(a1,...,an+1)€(itd,0)
- sup len2(pns (a1, ... an)) —gn(as, ... an)|. (2.4.16)

(a1,..;an41)€(iii,a)
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Like in Case (i), the second term on the right hand side of (2.4.16) converges to 0 as
n — +oo. For the first term of the right hand side of (2.4.16), we have

sup lens1.2(pns (a1, any1)) = enz(pns (a1, - an))]|
(a1,...,an+1)€E(i5,0)

sup \// 2(ant1 —a1) (& - “ +;N+1)+Mn(d§)

(017 waN+1) € (4,0)
a
< sup \// 3-an+1(€ ]\Zl)Jr n(d€)
(a1,...,an+1)€(iti,00)

<2v3- [sup KE(X, — K); — 0.
K>0

Case (iii,3): ag <0<az <---<ant1 with |aj| > %|aN+1|.

Since we assume |a1| < |ag| < -+ < |an41]|, then for any i€ {2,..., N + 1}, we have
3 lail < la| < ag|. It follows that

sup |€N+1,2(#n, (a1, ... 7GN+1)) —gn+1(at,. .. 7aN+1)|
(al,...,aN+1)€(iii,B)
< sup leny12(tn, (a1, -, an+1)) — e2.2(pn, (a1, a1))]
(a1,.-;an41)€(444,5)
+ sup |e2,2(ptn, (a1,a1)) — gn (a1, a1)]. (2.4.17)
a1€R

The second part of (2.4.17), sup |6272(Mn, (al,al)) — gN(al,a1)| converges to 0 as
a1€ER
n — 400 owing to Lemma 2.4.2. Then for the first part of (2.4.17), we have

sup |€N+1,2 (Mn, (a1,... 7aN+1)) — €22 (Hm (a1, al))‘
(a1,..,an+1)€(,5)
_ sup e%,z (Mna (a1, al)) - 6?\41,2 (,un, (ar,..., CLN+1))
(ar,man 11)€(ii,3) EN+1,2 (B, (a1, .- - ang1)) + €22 (pn, (a1, a1))
< sup Ji 1€ = arf* = miniicivi |€ = @il pn(d)
(@1, an 1) € (i, B) 1 X0 — a1l
< sup Jo (1€ = ar]” — minp<icy 1€ — aif” ) i (dE)
" (a1,ean41)€E(ii,B) [ Xn — a1l

1 N+1

el X [ (e alP —le=al) m(a)

IN

sup
(a1,...an41)€(ii,6)
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Since a1 < 0, [| X, — a1, = (EX2 — 21 EX,, + |as|? )1/2 > /1 + |a1|*. Therefore,

Jo (1€ = a1 = € = ail* ), pa(d) _ Jr2(ai —an) (- =5 pa(dE)
[ Xn — anl [ Xn — anl
10EX, _ 40EX,

< S I
\/1—1-‘@1’2 i

forie {2,...,N + 1}. Consequently,

=8EX,.

sup ’€N+1,2 (,un, (ai,... ,aNH)) — e (pn, (a1, al))| <8NEX, = SNe /8 0.
(a1,....an+1)€(54,8)

This completes the proof. O

Proof of Theorem 2.4.1. Let u, be the probability distribution of X, defined in (2.4.12).
If for some N > 2, (732 (R), Q N72) were complete, then there exists a probability mea-
sure £t in P2(R) such that Qn2(pn, ) —> 0. Then, Wa(un, 1) — 0 by applying
Proposition 2.4.2, which creates a contradiction. O

Remark 2.4.1. The extension of this result to a Hilbert or simply multidimensional

setting, although likely, is not straightforward.

2.5 Appendix: some examples of ¢(d, |- |,)

Proof of Proposition 2.2.4. (i) is obvious.
(77) ¢(2,] - |1) = 2 is obvious (see Figure 2.1). Now we prove that ¢(2,] - |,) = 3 for every
r € (1,+00).

We choose a; = (0,1), ag = ((1— 2_T)%, —%)andag=(—(1— 2_7")%, —1). We will
ﬁrst ShOW that SHT(O, ].) C U1§i§3 BHT(CLZ‘, 1)

Let (x,y) be any point on S| (0, 1), then |x’T + }y|r =1.
. If% <y <1, then (1 —y)" <y" so that
((@y) —ai], =]z + (1 -y =1-¢y + (1 -y <1,

that is, (z,y) € By, (a1,1).
. If—lgygéandxzo,then

r

1 1
@) —aal =lo = (1= 27)  fy+ g = A= )7 Q=2 kg
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<[l -2 + o+ 5"

the last inequality is due to the fact that the function u — u”r s %—Hélder. As
r > 1, the function y — ||y|" — 27"+ |y + %|r is convex over [—1, 1]. Consequently,
it attains its maximum either at —1 or at % Hence, |(x, y) — a2|: is upper bounded

by 1 since

if y=—1,|jy|" —27"|+|y+3| =1-27"+27" =1,

if =1 “y\’”—Q—T +yy+%\’”212—’“—2—r F1T =1

This implies that (z,y)€ BHr(ag, 1).

e If -1 <y < % and z < 0, then (z,y) € B|.‘7,(a3, 1) by the symmetry of the unit
sphere.

Next, we will show ¢(2, |- |) > 2 for every 1 < r < 400. Let a; and ag denote the two
centers of balls on the sphere S||(0,1). Since the £"-ball is centrally symmetric with
respect to (0,0), we fix a; = (z,y) such that z € [(%)vl, 1], y € [0, (%)%] and " +y" = 1.

We first prove that if » > 1, z € [(%)%,1], y € (0,(%)%] s.t. 2" +y" = 1, then
(x+y)" >1. Let g=r — 1, then ¢ > 0 and

(+y)" =@+y)'"T=(@+y)(z+y)!=z(@+y) +ylz+y)
>axxlityyl=a"+9y =1

e (Case 1. We choose as such that as is centrally symmetric to a; with respect to
the center (0,0), i.e. ag = (—z,—y).
We prove z1 = (y, —x) ¢ Ui:l,ZBHr(ai, 1) and z9 = (—y,z) ¢ Ui:l,QBHr(awL', 1). In
fact, if y = 0, then ’al — Zl"r = ’ag — Zl‘r =2>1. If y > 0, then

|a1 —z1|: = |a2 —21|: = |a1 —22|: = |CL2—Z2|: =(@+y) +(@-y)

>(x+y)" > 1

e (Case 2. The point ag is not centrally symmetric to a;.

Let Hy, = {n= (n1,m2) € R? s.t. -m2 = y-m}, which is the straight line (with
respect to the Euclidean distance) across the origin and a;. Then between z; and
z9, there exists at least one point which is not in the same side of H,, as a2, and

this point can not be covered by Ui:l,QB\.|,.(ai, 1).

Figure 2.2 illustrates that ¢(2, |- |,) = 3 when r = 3.
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Figure 2.1 a1 = (-%,3), a2 = (3, -3),
then S, (0,1) € U,_, , By, (i, 1)

=1,2
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Figure 2.2 ¢(2,]-|3) =3

(iii) Let a; = (=1,0,...,0) and az = (1,0,...,0). We will show that S|,_(0,1) C

Uiz

1,2 Bl-\oo(az‘a 1).
Let z = (z!,...,2%)¢ S| (0,1). There exists i such that maxi<;<q|z'| < |z] = 1.
e Ifig =1, and ' = —1, then |£L’ — a1|Oo = |ZC1 + 1| V max;—(a . 4 |x’| <1, that is,

Te BHoc(al? 1).

e Ifig =1, and 2! = 1, then |x — a2|oo = |x1 — 1| V max;—(a 4} |x’| < 1, that is,

T e BHOO(O/Q, 1).

o Ifig>2, and 2! <0, then |ac — a1|Oo = |x1 + 1| V1<1, that is, z € BHoo(al, 1).
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e Ifiyp > 2, and z' > 0, then |ac — agioo = ’xl — 1| v1<1, thatis, z € B\-Ioo(“% 1).

Consequently, we conclude that Sy (0,1) C Uj—1 5 By (ai,1) and c(d, | - |) > 1 is

obvious.

(iv) Let a; = (0,...,1,...,0) - the i** coordinate of a; is equal to 1 and the others equal
to 0. We will show that S| (0,1) C U, (BHr(ai, 1)U By, (—ai, 1))

For any z = («',...,2%) € 5|, (0,1), then there exists io € {1,...,d} such that

|:ci0| > % Otherwise 1 = Z |mz|r < d x 27" <1, which yields a contradiction.
1<i<d

o If 20 > 1 then |z — ai0|r = (1—gz%)" + Ditio \:ﬂr =(1—a%)" +1— (2%). As
g < L we have (1 — 2%)" — (20)" < 0, so that |z — a;,|" < 1, which implies that
S B|.|r(al-0, 1).

o If zio < —%, one can similarly prove that x € B‘.|T(—aio, 1).

Consequently, we can conclude that S| (0,1) C UL, (BHT(ai, )UB,,(—a;, 1)) O






Chapter 3

Convergence Rate of the Optimal
Quantizers and Application to
the Clustering Performance of
the Empirical Measure

This chapter corresponds to the arXiv preprint Liu and Pages (2018), which is a joint
work with Gilles Pages.

Abstract: We study the convergence rate of optimal quantization for a probability
measure sequence (i, )nen+ on R? which converges in the Wasserstein distance in two
aspects: the first one is the convergence rate of optimal quantizer = e (Rd)K of u, at
level K; the other one is the convergence rate of the distortion function valued at (™,
called the “performance” of z(™). Moreover, we will study the mean performance of the
optimal quantizer of the empirical measure of a distribution p with finite second moment
but possibly unbounded support. As an application, we show that the mean performance
of the quantization of the empirical measure of the multidimensional normal distribution

logn

N(m,Y) and of distributions with hyper-exponential tails behave like O( G ). This

extends the results from Biau et al. (2008) obtained for compactly supported distribution.
We also derive a bound which is sharper in the quantization level K but suboptimal in

n by applying results from Fournier and Guillin (2015).

Keyword: Clustering performance, Convergence rate of quantizers, Distortion

function, Empirical measure, Optimal quantization.
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3.1 Introduction

Let |-| denote the Euclidean norm on R? induced by the canonical inner product
(-]} and the distance between a point ¢ and a set A in R? is defined by d(¢, A) =

minge4 [§ — al.

For p € [1,+00), let Pp(IR{d) denote the set of all probability measures on R? with
a finite p*-moment. Let X be an R%valued random variable defined on a probability
space (2, A, P) with probability distribution p € P2(R%). The (quadratic) quantization
procedure of p (or of X) at level K € N* consists in finding a discrete approximate
quantizer x = (x1,...,Xx) € (Rd)K such that its quantization error

. 211/2
ek, u(z) = [E 1I<IZ;1<DK\X —a;]” ] /

achieves the optimal quantization error ey, , (or written e} y) for the distribution u at
level K, defined as follows,
2 % 2 %
Ko S (R = min X i (R | a1 212516 v pd) |
(3.1.1)
If eg, (x) = €k, o we call z an optimal quantizer (or called an optimal cluster center) of

X (or of p) at level KM, The function z € (Rd)K — ex u(x) is called the quantization
error function. We denote by G (p) the set of all optimal quantizers at level K of p.

The distortion function is also often used to describe the quantization error of a

quantizer z € (R defined as follows,

Definition 3.1.1 (Distortion function). Let K € N* be the quantization level. Let X be
an Re-valued random variable with probability distribution p € Po(R%). The (quadratic)
distortion function D, of i at level K is defined on (RH)K — R by,

— _ . 2 . 2
a:—(azl,...,a:K)HDK,M(x)—Elg}ClgnK|X x| = R“ISIZQSHKE x;|” p(d€). (3.1.2)

(1) In many references, the quantizer at level K is defined by a set of points T' C R? with its cardinality
card(I')< K and the quadratic quantization error function is defined by ex . (I') == [Ed(X,T)?] V2,
However, for every ' = {1, ...,/ } with ¥’ < K, one can always find a K-tuple 2" € (RY)¥ (by
repeating some elements in I') such that ex ,(I') = ex,.(2"). For example, if I' = {x1,...,2x_2}
with card(I") = K — 2 > 1 (the z; are pointwise distinct), one may set ' = (z1, 21,21, T2, .., TE—2)
or (z1, 2,71, T2, T3..., LKk —2) among many other possibilities.

In Graf and Luschgy (2000)[Theorem 4.12], the authors have proved that if the cardinality of
the support of p card(supp(u)) > K, an optimal quantizer I'* at quantization level K satisfies
card (supp(I'*)) = K. Hence, infrcgd carary<x €x,u(T) = inf ¢ mayx €x,u(x). Therefore, in this
paper, with a slight abuse of notation, we will mostly use = € (Rd)K but also use (in Section 3.1.1)
I' ¢ R* with card(T") < K to represent a quantizer at level K.
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It is clear that for any quantizer z € (RY)X Dk ,(z) = e%(’u(:):). Hence, if
card(supp(p)) > K, Gr(p) = argming e ga)x D ;. Sometimes we withdraw the sub-
script K of Dk, if the quantization level K is fixed in the context.

Let u,v € Pp(RY). Let II(u, v) denote the set of all probability measures on (R x
RY, Bor(R%)®2) with marginals y and v. For p > 1, the LP-Wasserstein distance W, on
P,(RY) is defined by

RS A

_ s p
Wy, v) = (Wegﬁy) /Rded d(z,y) ﬂ(dw,dy)>

1

— inf { [IE X — Y\p} "X,V 1 (Q,A,P) = (RY, Bor(RY)) with Py = p, Py = v }
(3.1.3)

Pp(Rd) equipped with Wasserstein distance WV, is a separable and complete space (see
Bolley (2008)). If u, v € P,(R%), then for any g < p, W, (1, v) < Wy (1, v).

The target measure pu for the optimal quantization is sometimes unknown. In this
case, in order to obtain the optimal quantizer of u, we will implement the optimal
quantization to a known distribution sequence pu,,n € N* which converges (in the
Wasserstein distance) to p and search the limiting point of optimal quantizers of .
For n € N*, let (™ denote the optimal quantizer of u,. The consistency of z(™,
ie. d(:c("),GK(u)) 12429, 0, has been proved by D. Pollard in Pollard (1982b)|see
Theorem 9]. Therefore, a further question is, at which rate the optimal quantizer =™ of

ln converges to an optimal quantizer x of pu?

In the literature, there are two perspectives to study the convergence rate of optimal
quantizers:

(i) The convergence rate of d(z", G (1));

(ii) The convergence rate of the distortion function of x valued at z(™):

D pu(z™) — zei(ﬁg)K D ().

The latter quantity is also called the “quantization performance” (performance in short)
at (™ since this value describes how close between the optimal quantization error of u
and the quantization error of 2("), considered as a quantizer for u (even z(™ is obviously
not “optimal” for u).

A typical example of what is described above is the quantization of the empirical mea-
sure. Let X1,..., X, ... be i.i.d R%valued observations of X with a unknown probability
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distribution y, then the empirical measure 2 is defined by:
1 n
My = i Z 0 (w)» (3.1.4)
i=1

where &, denotes the Dirac mass at a. The convergence of empirical measure W, (1%, p1) >
0 and EWs(p, p) 12F%0 0 have been proved in many reference, for example Pollard
(1982b)[see Theorem 7] and Fournier and Guillin (2015)[see Theorem 1] so that we
have the consistency for the optimal quantizers z(™* of 1. Moreover, most references
about the convergence rate result for the optimal quantizers are concerning the empirical
measure as far as we know: A first example is Pollard (1982a). In this paper, the author
has proved that if 2 denotes the unique limiting point of (™% the convergence rate
(convergence in law) of ‘:v(”)7w - x‘ is O(n~'/2) under appropriate conditions. For the
second perspective, it is proved in a recent work Biau et al. (2008) that if u has a support
contained in Bp, where Bp denotes the ball in R? centered at 0 with radius R, then

: e
E D, (™) — inf,e(payx Dk, u(x) < B

In this paper, we will generalize these two precedent works.

In Section 3.2, we first establish a non-asymptotic upper bound for the convergence
rate of the performance Dy, . (z(™) — inf, ¢ (rayx DK,y (%) for any probability distri-
bution sequence i, converging in L?-Wasserstein distance to jioo. We obtain for every
n € N¥,

Dk, pos (x(n)) — inf DK, oo (r) < 46;(,;;00)/\}2([%7 fhoo) + 4W22(Mnaﬂw)' (3.1.5)
Moreover, if Dy, is twice differentiable on
Fy = {x = (z1,...,TK) € (Rd)K | x; # xj, if i # j} (3.1.6)

and if the Hessian matrix Hp, , of Dk, is positive definite in the neighboorhood
of every optimal quantizer () € Gk (1) having the eigenvalues lower bounded by a
A* > 0, then for n large enough,

n 2 8 % 8
A, G (hoc))” < 55 €he o - Wallims io0) 57 - Wit poc).

Several discussions around the Hessian matrix Hp, , of the distortion function
Dk, are established in Section 3.3. If u € P2(R?) with card(supp(p)) > K and
if p is absolutely continuous with respect to Lebesgue measure having a continuous
density function f, we prove in Section 3.3.1 that its distortion function D, is twice
differentiable in every x € Fg and give the exact formula of Hessian matrix. Moreover,
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we also discuss several sufficient and necessary conditions for the positive definiteness of

Hessian matrix in dimension d > 2 and in dimension 1.

Section 3.4 is devoted to the convergence rate of optimal quantization of the empirical
measure. Let p® be the empirical measure of p defined in (3.1.4) and let (M denote
the optimal quantizer of ;. In this section, we focus on the mean performance of
2™ that is, EDg, ,(x™«) — inf ¢ (rayx Dk, u(2), which is also called the clustering
performance in the field of unsupervised learning. If u € Pq(Rd) for some g > 2, the
first result of Section 3.4 is Proposition 3.4.1, shown in the following formula, which is a
direct application of the non-asymptotic upper bound (3.1.5) combined with the upper
bound of the convergence rate (convergence in Wasserstein distance) of the empirical

measure from Fournier and Guillin (2015).

EDg ,(z™“) — inf Dy ,(x)

z€(RIK
n~1/4 4 n=(a=2)/2 ifd<4andq#4
< Cagpr X {4 (log(1 + n))1/2 +n@2/20 ifd=4andq+#4
n=1/d 4 p=(a=2)/2 if d>4andq#d/(d—2)

where Cy 4, i is a constant depending on d, ¢, u and the quantization level K. Under
certain conditions, this constant Cy, , i is roughly decreasing as K —1/d (see further
Remark 3.4.1). This result is sharp in K but it suffers from the curse of dimensionality.
Meanwhile, we establish another upper bound for the mean performance in Theorem
3.4.2, which is sharper in n, free from the curse of dimensionality but increasing faster
than linearly in K. The main aim of this theorem is to generalize the mean performance
result for the empirical measure of a distribution p with bounded support established
in Biau et al. (2008) to any distributions x having simply a finite second moment. We
obtain

. 2K
EDK,M(Z‘(TL)’W) — xE%ES)K Dr,u(x) < ﬁ [T%n + pK(,u)2 + 2r1 (T‘Qn + pK(u))}, (3.1.7)

where r, = || maxi<i<n | X;| H2 and pg(p) is the maximum radius of L?(p)-optimal
quantizers, defined by

pk (1) = max { max |z3|, (27,...,2%) is an optimal quantizer of ,u}. (3.1.8)

Especially, we will give a precise upper bound for g = N(m, X), the multidimensionnal

normal distribution

. 2K 2
E Dy (™) — xeiﬁg)ff Di, u(x) < C - NG [1 +logn + vk log K (1 + 3)}’ (3.1.9)
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where limsupy vyx =1 and C, =12 [1 Vlog (2 fpa exp(§ |§]4)u(df))]. If = N(0,1y),
C,=12(1+ ) -log?2.

We will start our discussion with a brief review on the properties of optimal quantizer

and the distortion function.

3.1.1 Properties of the Optimal quantizer and the Distortion Func-
tion

Let X be an R%valued random variable with probability distribution p such that
1 € P2(R?) and card (supp(u)) > K. Let G (1) denote the set of all optimal quantizers
at level K of p and let e},# denote the optimal quantization error of p defined in
(3.1.1). The properties below recall some classical background on optimal quantization

of probability measure.

Proposition 3.1.1. Let K € N*. Let u € P2(R?) and card(supp(u)) > K.

(i) (Decreasing of K — ej. ) If K >2, €} |, <€}y .

(ii) (Existence and boundedness of optimal quantizers) The set
Gy () ={T" ={a1,..., 2k} | 2 = (z1,...,2x) € argmin Dk, }

is nonempty and compact so that px () defined in (3.1.8) is finite for any fixed
K. Moreover, if I* C R? is an optimal quantizer of u, then card(T'*) = K. In
particular, if T* = {x1,...,xx}, then ¥ = (21,...,7x) € argmin Df , = G (p)

and vice versa.

(iii) If p has a compact support and if the norm |-| on RY is Euclidean, drived by an
inner product (-|-), then all the optimal quantizers T* = {x1,...,xx} are contained
in the closure of convex hull of supp(u), denoted by H,, = conv (supp(,u)).

For the proof of Proposition 3.1.1-(i) and (ii), we refer to Graf and Luschgy (2000)[see
Theorem 4.12] and for the proof of (iii) to Appendix A.

Theorem 3.1.1. (Non-asymptotic Zador’s theorem) Let n > 0. If u € Poy,y, then for
every quantization level K, there exists a constant Cq, € (0, +00) which depends only
on d and n such that

€fcp < Cay + oy () K14, (3.1.10)

where for r € (0,400), op(p) = mingega [ Jra [€ — al” p(d€)] yr
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For the proof of non-asymptotic Zador’s theorem, we refer to Luschgy and Pages
(2008) and Pages (2018)[see Theorem 5.2]. Now we introduce some properties of px (1)
defined in (3.1.8). When g has an unbounded support, we know from Pages and Sagna
(2012) that limg pg (1) = +00. The same paper also gives an asymptotic upper bound of
px when p has a polynomial tail or hyper-exponential tail. We first give the definitions

of different tails of probability measure,

Definition 3.1.2. Let pu € Po(R?) be absolutely continuous with respect to Lebesgue
measure A\g on R and let f denote its density function.

(i) A distribution p has a k-th radial-controlled tail if there exists A > 0 and a
continuous and decreasing function g : Ry — Ry such that

VEERLIE = A, FO<g(el) and [ oFgla)de <+oc.

(i) A distribution u has a c-th polynomial tail if there exists 7 > 0,5 € R,c > d and

A >0 such that V€ € RY, €] > A= f(€) = = (log [€])”.

(iii) A distribution p has a (9, k)-hyper-exponential tail if there exists T > 0,K,9 >
0,¢> —d and A > 0 such that V€ € RY, [€] > A = f(£) = 7|€| e 7",

The purpose of the definition of radial-controlled tail is to control the convergence
rate of the density function f(z) to 0 when = converges in every direction to infinity.
Remark that the c-th polynomial tail with ¢ > k + 1 and the hyper-exponential tail are
sufficient conditions to k-th radial-controlled tail. A typical example of hyper-exponential
tail is the multidimensional normal distribution N (m, X).

Theorem 3.1.2. (Pagés and Sagna (2012)[see Theorem 1.2]) Assume that = f - Mg

(i) Polynomial tail. For p > 2, if u has a c-th polynomial tail with ¢ > d + p, then

. log pi p+d
1 = . 111
I’ logK  d(c—p—d) 3 )
(i) Hyper-exponential tail. If u has a (9, k)-hyper-exponential tail, then
. pK —1/:‘6 ( 2 ) 1/“
1 — <20 1+ - . 3.1.12
1m}§,up (o K)l/’f < + p ( )

Furthermore, if d =1, limg (bgp% = (%)UH'
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Quantization theory has a close connection with Voronoi partitions. Let x =
(71,...,7x) be a quantizer at level K and let |-| be any norm on R?. The Voronoi cell
(or Voronoi region) generated by x; is defined by

— d. | = ; )
Ve, (x) = {fE]R € — a4 —1g1§nK]§—x]|}, (3.1.13)
and (V}El (m))l << 1s called the Voronoi diagram of I', which is a locally finite covering

of R%. A Borel partition (Cy,(z))
if

I<i<K is called a Voronoi partition of R% induced by z

Vie{l,...,K}, Cu(x)C Vg (x). (3.1.14)

We also define the open Voronoi cell generated by x; by

o _ d . o : .
Vi(x)={{eR: ¢ xz\<1§]x£g}#i\§ ;| }- (3.1.15)

As || denotes the Euclidean norm on R?, we know from Graf and Luschgy (2000)[see
Proposition 1.3] that intV,,(z) = V;(z), where intA denotes the interior of a set A.
Moreover, if we denote by Ag the Lebesgue measure on R¢, we have \g (8Vwi (m)) =0,
where A denotes the boundary of A (see Graf and Luschgy (2000)[Theorem 1.5]). If
p € Po(RY) and z* is an optimal quantizer of y, even if u is not absolutely continuous
with the respect of Aq, we have p(0V,(2*)) = 0 for all i € {1,..., K} (see Graf and
Luschgy (2000)[Theorem 4.2]).

For any K-tuple 2 = (21, ...,xx) € (RY)X such that x; # xj, © # j, one can rewrite
the distortion function D, with the definition of Voronoi partition Cy,(x) as follows,

K

Dra) =3 [ 1=l nde) (3.1.16)

=1 i

If 2% = (7, ..., 2%) € argmin Dk ,,, we know from Proposition 3.1.1 that z} # z7, i # j
and we have 1(9V,,(2*)) = 0. In this case, D, , is differentiable at z* (see Pages
(2018)[Chapter 5]) and its gradient is given by

(7 — é)u(dé)] : (3.1.17)

i=1,.. K

VDk. (z*) = 2[/

For u,v € P»(R?), if we denote by D, the distortion function of 4 and D, the
distortion function of v. Then, for every K € N*,

HD}({ZM D2 = sw D) - D2 (@) < Wa(uw), (3.1.18)

SUP e (RA)K
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by a simple application of the triangle inequality for the L?—norm (see Graf and Luschgy
(2000) Formula (4.4) and Lemma 3.4). Hence, if (un)n>1 is a sequence in Po(R9)
converging for the Wh-distance to pioe € Pa(R?), then for every K € N*

< W (s fioe) 22525 0. (3.1.19)

1/2 1/2
HDKvﬂn DKvNoo sup

n—-+o0o

Let ppn,n € N*, oo € P2(R) such that Wa(pn, ptoc) ——— 0. For a fixed quanti-
zation level K € N* the consistency of optimal quantizers is firstly established by D.
Pollard by using

ur € P(K) = {V € Py(R?) such that card (supp(r)) < K}

to represent a quantization “quantizer” at level K and ug is called “optimal” for a
probability mesure p if Wa(pure, 1) = e ,(11). We will annonce differently the consistency
theorem by letting z(™ = (xgn), v x%)) € (RY)X to represent the optimal quantizer of
tn (of course we still call the theorem “Pollard’s Theorem”) and we will give the proof

of Pollard’s Theorem with respect of this representation to Annex B.

Theorem 3.1.3 (Pollard’s Theorem). Let K € N* be the quantization level. Let
L foo € Pa(RY) such that Wa(fin, pios) — 0. Assume card(supp(,un)) > K, forn e
N*U{+o0}. Forn>1, let z() = (ajgn), ...,azgg)) be a K-optimal quantizer for u,, then
the quantizer sequence (x("))nzl is bounded in R and any limiting point of (w("))nzl,
denoted by z(°) | is an optimal quantizer of jiss.

3.2 General case

Let pin,n € N*, jioe € Po(R?) such that Wa(pin, fieo) — 0 as n — 0. Fix a quantization
level K € N* through this section. For every n € N*, let (" = (zﬁ“),...,x(,?)) €
argmin, ¢ geyx D, 5, Which is, after Proposition 3.1.1 - (ii), an optimal quantizer of u,
at level K. In this section, we first establish a non-asymptotic upper bound of the
convergence rate for the quantization performance Dy .. (z(™) — inf e (rayx Dk po. ().

Then we discuss the convergence rate of d(z(™, G (1)).

Theorem 3.2.1 (Non-asymptotic convergence rate for the quantization performance).
Let K € N* be the fived quantization level. For every n € N* U {oo}, let p, € Po(R?)
with card(supp(pn)) > K such that Wa(fin, piss) — 0 as n — +oo. For every n € N¥,

let ™) be an optimal quantizer of pi,. Then

(Z) €K oo (x(n)) - e;{,poo < QWQ(MTL:,UOO)
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(i) DK oo (x(n)) - wE%EE)K Dk o (z) < 46},%@ Wa(ftn, phoo) + 4W22 (Hns poo),

where ekum is the optimal quantization error of pe at level K.

Proof of Theorem 3.2.1. Let () be an optimal quantizer of jis. Remark that we don’t

need to ‘x(”) - a:(oo)’ N2H ). Then

(n)) - e;(,,uzoo = eKvﬂoo ($(n)) - eKan (x(n)) + eKnUfn ($(n)) - 6[(uufoo (x(OO))

S 2 ||6Ku#oo - eKvuanup S 2W2(lun7luoo)7 (321)

eKﬂu/OO (x
where the first inequality is due to the fact that for any u, v € P2(RY) with respective
K-level optimal quantizers z* and z, if e ,(2#) > ek ,(2"), we have
leru(a") — erw(z”)] = ex (@) — exp(2”) < ex u(@”) — exw(2”) < e o = €K punllsup -

If e (z#) < e, (x¥), we have the same inequality by the same reasoning(!).

Moreover,

,DKylloo (x(n)) - lnf DKy,Ufoo (l‘) = DK,MOO (x(n)) - DK,Moo (x(m))

ze(RIK
< D2 (@) + D2 (2] (e pune (2 — exc o, ()

<2[D}2_(@™) - D2 (@) +2Di2 (@] Walpn, use)  (by (3.2.1))
< AWa(tins fioo) + €l ] - Walbins o) (by (3.2.1))
< 46;(,uoow2(ﬂm foc) + 4W22(,Una fhoc)-

O]

Before we establish the convergence rate of the optimal quantizer sequence (™, n € N,
we first discuss the differentiability of Dk ,. Let B(x,r) denote the ball centered at
x with radius r. Remark that if x € Fg, where Fi is defined in (3.1.6), then every
y € B(x, % ming <; j<K,i4j |€i — I]|) lies still in Fx (see Section 3.5.3 for the proof).

Lemma 3.2.1. Let i € Po(R?) with card(supp(u)) > K. If the probability distribution
W is absolutely continuous with respect to Lebesque measure and has a continuous density
function f, written by p(d§) = f(§)Aa(dE), then its distortion function Dy, is twice
differentiable in every x € Fi .

(1) This part of preuve also appears in Linder (2002)[Corollary 4.1].
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The proof of Lemma 3.2.1 is postponed in Section 3.3.1 in which we also give the
exact formula of the Hessian matrix. In the following theorem we show the convergence
rate of the optimal quantizer sequence (™, n € N*.

Theorem 3.2.2 (Convergence rate of optimal quantizers). Let K € N* be the fized
quantization level. For every n € N* U {oo}, let pun, € Po(R?) with card(supp(pn)) > K
such that Wa(jin, o) — 0 as n — +o0o. For every n € N*, let =™ be an optimal
quantizer of py, and let G (poo) denote the set of all optimal quantizers of pioo. If

(a) the probability distribution ps is absolutely continuous with respect to Lebesgue
measure Aq and has a continuous density function f, written by peo(d§) = f(§)Ag(dE),

(b) for every () € Gk (o), the Hessian matriz of Dk yioy» denoted by Hp, , , is
positive definite in the neighbourhood of (> having eigenvalues lower bounded by
some \* > 0,

then, for n large enough,

d(z™, Gk (p1s0))” < %ekum “Wa(pin, Hoo) + % W3 (ftns ).

Remark 3.2.1. (1) Owing to Lemma 3.2.1 and Proposition 3.1.1-(ii), the Condition (a)
in the above theorem implies that the distortion function D, is twice differentiable
in every (™) € Gg (4oo) and its neighbourhood so that the use of the Hessian matrix
Hp_ in Condition (b) is permitted. However, the conditions (b) is not obvious to satisfy.
In Section 3.3, we give an exact formula of the Hessian matrix Hp, , . Thus, one may
obtain the positive definiteness of Hessian matrix Hp, , (condition (b)) by an explicite
computation or by numerical methods. Moreover, in Section 3.3, we also establish a
sufficient condition for the continuity of every term in the Hessian matrix in dimension
d and several sufficient conditions for the positive definiteness of the Hessian matrix
Hp, ,  in the neighbourhood of z(%) ¢ Gk (pioo) in dimension 1.

(2) If the distribution g is d-th radial-controlled, a necessary condition of Condition (b)
is card (G (ko)) < +00 (we will prove this statement later in Lemma 3.3.3). Thus, if
card(GK(uoo)) = 400, it is better to use the non-asymtotic upper bound of the perfor-
mance (Theorem 3.2.1) as a tool to study the convergence rate of optimal quantization.
A typical example is o = N(0, 1), the standard multidimensional normal distribution:
it is d-th radial-controlled and any rotation of an optimal quantizer x is still an optimal
quantizer so that card(Gg (poo)) = +00.

Proof of Theorem 3.2.2. Since the quantization level K is fixed throughout the proof,
we will drop the subscripts K and p of the distortion function Dk, and we will denote

by D,, (respectively, Do) the distortion function of p, (resp. of o).
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After Pollard’s theorem in Section 3.1.1, (2(™),cn- is bounded and any limiting point
of (" is in G (too). We may assume that, up to a subsequence of 2" | still denoted
by (™, we have (™) — (%) € G (10o). Hence d(x(”), Gk () < ‘aj(") - a:(oo)’.

By Lemma 3.2.1 and Proposition 3.1.1-(ii), Condition (a) implies that the distortion
function D is twice-differentiable at z(°®). Hence, the Taylor expansion of Dy, at x(°°)
reads:

Dac(a") = Dao o)) + (VD)) | o) 2 + 2 Hp_ ()@l — o)),

where Hp_ denotes the Hessian matrix of Do, ¢ lies in the geometric segment
(x(”), m(oo)), and for a matrix A and a vector u, Au®? stands for u” Aw.

As 2(®) € Gk (poo) = argmin Dy, and card (supp(pas)) > K, one has VDo () =
0 by applying Fermat’s theorem on stationary point. Hence

1

Doo(x(")) _ Doo(l’(oo)) 5

Hp_ (¢™) (&™) — z())®2, (3.2.2)
It follows that

Hp,, (") (@™ = 2(*)®? = 2(Deg (") — Do (a>)
< 8% Wallins fioo) + 8W3 (fin, fioo)- (3.2.3)

By condition (b), Hp_ () is assumed to be positive definite in the neighbourhood
of all (> e @ K (14oo) having eigenvalues lower bounded by some A*. Since ¢ () Jies in
the geometric segment (™, £(>)) and (") — 2(°°) then there exists an ng(z(>)) such
that for all n > ng, Hp__ (¢ (")) is a positive definite matrix. It follows that for n > ny,

2

< 867(,%0)/\}2 (K, poo) + 8W22 (K, poo)-

Thus, one can directly conclude by multiplying /\% at each side of the above inequality. [

Based on conditions in Theorem 3.2.2, if moreover, we know the exact limit of the
optimal quantizer sequence z(™ we have the following result whose proof is similar to
the proof of Theorem 3.2.2.

Corollary 3.2.1. Let fin, tioo € P2(R?) and Wa(pin, tios) — 0 as n — 4o00. Assume
that card(supp(un)) > K for every n € N* U {co}. Let (™) € argmin Dk, u,, such that
lim, (™ — z(°) If the Hessian matriz of Dk, o s a positive definite matriz in the
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neighbourhood of z(° | then for n large enough
2
‘x(n) - $(OO)’ < C,Sil Wa(pin, foo) + C,L(il ) WQQ(Mna Hoo)s

where Cﬁa and C(a are constants only depending on pisc.

3.3  Hessian matrix Hp, , of the distortion function Dy ,

Let 1 € Po(R?) with card(supp(p)) > K and let 2* be an optimal quantizer of y at
level K. In Section 3.3.1, we prove Lemma 3.2.1 by giving the exact formula for the
Hessian matrix Hp, , of the distortion function Dk, , when u is absolutely continuous
with the respect of Lebesgue measure \q on R?, having a continuous density function
f- Moreover, we also give a sufficient condition for the continuity of every term of the
Hessian matrix Hp, , and a necessary condition for the positive definitiveness of the
Hessian matrix Hp, ,(2*). Next, in Section 3.3.2, we give several sufficient conditions
for the positive definiteness of the Hessian matrix Hp, , in the neighbourhood of z* in

dimension 1.

3.3.1 Hessian matrix HDK,M on R?

If 11 is absolutely continuous with the respect of Lebesgue measure \g on R? with
the density functionf, Dk, , is differentiable (see Pages (1998)) and at all point =
(z1,...,2K) € Fx with

8DK,M

St (x) :2/%(x)(xi—§)f(§))\d(d§), fori=1,.., K. (3.3.1)

Now we use Lemma 11 in Fort and Pages (1995) to compute the Hessian matrix Hp, ,
of Dk, .

Lemma 3.3.1 (Lemma 11 in Fort and Pages (1995)). Let ¢ be a countinous R-valued
function defined on [0,1]%. For every x € Dy = {v € (o, 1]d)K |y #yj ifi # 5}, let
Pi(z) = Jy,(z) p(w)dw. Then ®; is continuously differentiable on Dk and

Vit 5o :/ ST+ x (=L )WY (dw) (3.3.2

o] oz, (v) Vi)V (@) SO(M){2 ; — ( 5 w) }ANY (dw) ( )
e 09;

and 5 @) == > oo (@) (3.3.3)

I<G<Kj#i "
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Mx.—{ueRdHu—i

)

) = 0} (3.3.4)

and N (dw) the Lebesque measure on M.

One can simplify the result of Lemma 3.3.1 as follows,

. 09 1z —x; 1 Ti+ j ii
Vids gr@=[ eyt (B2 — ) (dw)
j Vi(z)nVj(x)

2‘£Bj—l‘i| |$j—l‘i| 2
= w —w I AY (dw
1 g
= o(w)——(x; — w)AY (dw). 3.3.5
/ vy P~ N ) (3.3.5)

Now we prove Lemma 3.2.1 and give the exact formula of the Hessian matrix Hp,,
in the proof.

Proof of Lemma 3.2.1. Set ¢'(&) = (x; — €)f(€) and ®;(x) = Jvi) 9 (€)dE = ﬂ for
i=1,.., K. It follows from Lemma 3.3.1 that for j =1,..., K and j # ¢

9*Dk,
8mj8xi

00ilr) _, (21— €)@ (&)

Ox; Vi(@)NVj (2) |zj — 2]

FEN (d€), (3.3.6)

(x) =2

and fori=1,..., K,

9D, 0%, (x) )
() = = 2{p(Vi(x))la— / 2i=8)®(wi=§) ———= () AT (d¢
G (0) = 5o =2 (Vi) D o OO o SON )
1<i<K
(3.3.7)
where in (3.3.6) and (3.3.7), u ® v := [u'v7]1<; j<q4 for any two vectors u = (ul,...,u?)
and v = (v!,...,v?%) in RY O

Next, we show in the following lemma a sufficient condition to the continuity of the
Hessian matrix HDK,M in Fx so that under this condition, if the Hessian matrix HDK,,, is
positive definite in x*, it is also positive definite in the neighbourhood of z*. The proof
of Lemma 3.3.2 is in Appendix C.

Lemma 3.3.2. Let p € Po(R?) be absolutely continuous with the respect to Lebesgue
measure \g on R with a continuous density function f. If u has a d-th radial-controlled
tail, then every element of the Hessian matriz Hp,. , of the distortion function Dk, is

a continuous function.
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Under the condition of Lemma 3.3.2, we prove now that Condition (b) in Theorem
3.2.2 implies card (G (poo)) < +00.

Lemma 3.3.3. Let y € Po(R?) be absolutely continuous with the respect to Lebesgue
measure Ag on R% with a continuous density function f. If s has a d-th radial-controlled
tail and card(GK(uoo)) = 400, then there exists a point v € G (poo) such that the
Hessian matriz Hp, , = of Dk ., valued at x has an eigenvalue 0.

Remark 3.3.1. If s satisfies the condtions in Lemma 3.3.3 and if card(GK(,uoo)) < 400,
a sufficient condition of Condition (b) in Theorem 3.2.2 is that Hp, ,  is positive definite

in every x € Gg(fioo). In this case, one can take A* = MING ey (1oo) — ¢ for

Afp, | (2)
a € > 0, where A4 denotes the smallest eigenvalue of a matrix A.

Proof of Lemma 3.53.3. We denote by Hp,, instead of Hp, , to simplify the notation.
Proposition 3.1.1 implies that G (1) is a compact set. If card (G (poo)) = 400, there
exists z, 2% € G (jtoo), k € N* such that 2(¥) — 2z when k — +o00. Set uy, = ﬁ,

k > 1, then we have |ug| =1 for all k& € N*. Hence, there exists a subsequence (k) of k
such that wu,) converges to some u with |u] = 1.

The Taylor expansion of Dk, at x reads:
1
Dit e (07H) = Dt poc (#) + (VD () | 270 = ) + S Hp, (PP (270 — )2,

where ¢?(*) lies in the geometric segment (z#*), 2). Since z,2®) k € N* € G (o),
then VD, (z) = 0 and for any k € N*, Dg,_ (2#*¥)) = Dk, (). Hence, for any
ke N*, Hp_ (¢#R)(x#®) — )®2 = 0. Consequently, for any k € N*,

(k) _ ®2
Hp,_ (c7®) ( };(k) - ;) —0

Thus we have Hp__ (x)u®? = 0 by letting k — 400, which implies that Hp__(x) has an
eigenvalue 0. 0

3.3.2 A criterion for positive definiteness of Hp_(z*) in 1-dimension

Let X denote a real random variable with distribution p satisfying p € P2(R). Assume
that p is absolutely continuous with the respect of the Lebesgue measure with a continuous
density function f, written by wu(d§) = f(£)d¢. In the one-dimensional case, it is
necessary to point out a sufficient condition for the uniqueness of optimal quantizer. A
probability distribution p is called strongly unimodal if its density function f satisfies
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that I = {f > 0} is an open (possibly unbounded) interval and log f is concave on I.
Moreover, we also have the uniqueness of optimal quantizer for such distributions.

Lemma 3.3.4. For K € N*, if u is strongly unimodal with card (supp(u)) > K, then
there are only one stationary (then optimal) quantizer of level K.

We refer to Kieffer (1983), Trushkin (1982) and Graf and Luschgy (2000)[see Theorem
5.1] for the proof of Lemma 3.3.4 and for more details.

Let F} = {m = (21,..,7x) ERFE | —0o < 21 < 29 < ... < wg < +oo}. Given
an K-tuple = (21, ...,xx) € Fj-, the Voronoi region V;(z) can be explicitly written:
Vi(z) = (—o0, Bd22] Vig(x) = [ZE=1F2E 4oo) and Vi(z) = [Z=LF0 282el] for § =
2,...,K—1. For all z € Fj}, Dk, is differentiable at « and from (3.3.1), and

VD, u(z) = [ /V ($)2(xi—€)f(£)d£ — (3.3.8)

Therefore, one can solve the optimal quantizer z* € F I'(" from VD, ,(x*) =0,

e
; W, fori=1,.., K. (3.3.9)

For any z € F' ;, the Hessian matrix Hp, , of Dk, , at x is a tridiagonal symmetry
matrix and can be calculated as follows,

A1 —Bi1s —DBigs
H’DK,;L (r) = —Bi_1i Ai—Bi1i—Biiy1 —Biit

—Brx_1xk Ax —Bg_1k
(3.3.10)

where A; = 2u(C;(2)) for 1 <i < K and B;; = 3(2; — xl)f(me]) for 1 <i<j<K.
Let F,, be the cumulative distribution function of y, then

A =2u(Ch(x)) = 2F#<x1 h 362)}
Ai = 2u(Cy(x)) = Q[Fu(mi%—i_%) - Fu(%)} for i =2, K —1,
Ag = 2u(Ck () = 2[1 . FH(WH

Then the continuity of each term in the matrix Hp, , (z) can be directly obtained by
the continuity of F), and f.
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0*Dg. O Drp
(91:1833]

sufficient conditions to obtain the pOblthG definiteness of Hp, ,(z*).

For 1 < i < K, we define L;( Z . The following proposition gives

Proposition 3.3.1. Any of the following two conditions implies the positive definiteness
of HDK,H(x*)J

(i) w is the uniform distribution,

(it) f is differentiable and log f is strictly concave.
In particular, (i) also implies that L;i(z*) > 0,i=1,..., K.

Remark that, under the conditions of Proposition 3.3.1, u is strongly unimodal so
that, if % = (aF,...,2%) € FE N argmin D ,,, then I'* = {z1,...,xx} is the unique
optimal quantizer for p at level K (viewed as a set). Proposition 3.3.1 is proved in
Appendix D. The conditions in Proposition 3.3.1 directly imply the convergence rate
results.

Theorem 3.3.1. Let pin, oo € Po(R) such that Way(fin, ioc) — 0. Let 2™ be the
optimal quantizer of u, which converges to () Suppose Loo ©s absolutely continuous
with the respect of Lebesgue measure, written o (d§) = f(£)dE. Any one of the following
conditions implies the existence of a constant C,,_ only depending on l such that

) - x(oo)f < Che - Walftns i)

(i) poo is the uniform distribution,

(ii) f is differentiable and log f is strictly concave.

Proof. Let D, denote the distortion function of i and let Hp_ denote the Hessian
matrix of Dk .-

(i) Let fr(x) be the k-th leading principal minor of Hp_ (z) defined in (3.5.11), then
fe(x),k =1,..., K, are continuous functions in x since every element in this matrix is
continuous. Proposition 3. 3 1 implies f;(2(°)) > 0, thus there exists r > 0 such that for
every z € B(z(®),r), fr(2(°)) > 0 so that Hp__(z) is positive definite. What remains
can be directly proved by Corollary 3.2.1.

K 9D
T 7Koo is continuous on z and Proposition 3.3.1 implies that
0x;0
;0

Li(x()) > 0. Hence, there exists 7 > 0 such that Vo € B(z(®),r), L;(z) > 0. From
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(3.5.11), one can remark that the i-th diagonal elements in Hp__(x) is always larger than
L;i(z) for any z € RX | then after Gershgorin Circle theorem, we have Hp_ (z) is positive
definite for every z € B(z(°),r). What remains can be directly proved by Corollary
3.2.1. O

3.4 Empirical measure case

Let 1 € Paye(RY) for some e > 0 and card(supp(p)) > K. Let X be a random variable
with distribution p and let (X,,)n>1 be a sequence of independent identically distributed
R?-valued random variables with probability distribution . The empirical measure is
defined for every n € N* by
1 n
pe = - 25Xi(w)’ we N, (3.4.1)
=
where J, is the Dirac measure on a. Let K € N* be the quantization level . For n > 1,
let (™% be an optimal quantizer of 2. The superscript w is to emphasize that both
e and (M are random and we will drop w when there is no ambiguity. We will cite
two results of the convergence of Wh(u¥, 1) among so many researches in this topic:
the a.s. convergence in Pollard (1982b)[see Theorem 7] studied by D. Pollard, and the
LP-convergence rate of W),(u7, i) studied in Fournier and Guillin (2015).

Theorem 3.4.1. (Fournier and Guillin (2015)[see Theorem 1]) Let p > 0 and let
we Pq(Rd) for some q > p. Let u¥ denote the empirical measure of p defined in (3.4.1).
There exists a constant C' only depending on p,d,q such that, for allmn > 1,

n~12 4 n—(a-p)/a if p>d/2andq # 2p
E(WE(is. 1)) < CME/ () x § n= ' log(1 +n) + 0090 it p = d/2and g £ 2 v
n—P/d 4 p—(a—=p)/a if pe (0,d/2)and q # d/(d — p)

(3.4.2)
where My (1) = fea |€17 1(dE).

As the empirical measure 7 is usually used as an estimator of j, a natural estimator
of the optimal quantizer of x is (™, the optimal quantizer for . Let Dk ,, denote
the distortion function of p and let Dk, denote the distortion fuction of p;) for any
n € N*. Recall by Definition 3.1.1 that for ¢ = (cy, ..., cx) € (RHK,

_ : 2 2 o 2
DK’“(C)_E@;}}SHK‘X k| E[|X| +1£51§£K( 2(X|ex) + |exl )},

n

1 . s 1w 2 & )
and DK’“"(@_Eizllﬁ?K’Xz_c’“‘ —;;!Xz\ + min —;;%!%HICM :
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The a.s. convergence of optimal quantizers for the empirical measure has been proved
in Pollard (1981). We have the following convergence rate result for the clustering
performance by applying directly Theorem 3.2.1 and (3.4.2).

Proposition 3.4.1. Let u € P,(R%) for some q > 2 with card(supp(p)) > K and let p&
be the empirical measure of p defined in (3.4.1). Fiz a quantization level K € N*. Let
2% be an optimal quantizer at level K of we. Then for any n > K,

EDg ,(x™*) — inf Dk .(z)

e (RI)K
n—1/4 4 n—(a-2)/2q ifd<4andq #4

< Cagpr x  n Y (log(1 4+ n))'? +n=@=2/20 if d = 4and  # 4 :
n~l/d 4 p=(a=2)/2q ifd>4andq#d/(d—2)

(3.4.3)

where Cg 4.,k 5 a constant depending on d, q, u and the quantization level K.

The reason why we only consider n > K is that for a fixed n € N*, the empirical
measure (i, defined in (3.4.1) is supported by n points, which implies that if n < K,
the optimal quantizer of yu, at level K, viewed as a set, is in fact supp(uy,). This makes
the above bound of no interest. Following the remark after Theorem 1 in Fournier and
Guillin (2015), one can remark that if the probability distribution p has sufficiently
many moments (namely if ¢ > 4 when d <4 and ¢ > 2d/(d — 2) when d > 4), then the
term n~(4=2)/2¢ is small and can be removed.

Proof of Proposition 3.4.1. For every w € Q) and for every n > K, Theorem 3.2.1 implies
that

Dy (x™*) — b Dr(@) < deic, Walias, 1) + V3 i ).

Thus,

E D (") — xe}ﬁgy{ Dic () < 4efe EW(4iss, 1) + 4B W3 (57, ).

It follows from (3.4.2) that

n~—Y2 4 p—(a-2)/q ifd<4andq+#4
EW3 (7, 18) < Cagp x =2 log(1+n) +n~@2/7 if d = 4and g # 4 ’
n=2/d 1 p—(a-2)/q ifd>4andq#d/(d—2)

(3.4.4)
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where Cyq, = C - qu/q(u) and C is the constant in 3.4.2. Moreover, as EWs (&, 1) <
(EW3 (s, u))l/2 and va + b < \/a + Vb for any a,b € R, the inequality (3.4.2) also

implies

n— Y4 4 pn—(a-2)/2q ifd<4andq#4
EW, (s, 1) < Cyfl2, % § n= V4 (log(1+n)) /> +n==2/20 i d = dand g # 4

Consequently,

EDpep(™*) = inf Drcu() < 4, EWaliaz, p) + 4EWE (53, ).

1/2
< 8(C422 etV Cagu)x

n—U4 4 n=(a-2)/2¢ ifd<4andq#4
n_1/4(log(1 +n))1/2 +n~(@=2/20 if g = 4and q # 4
n-Vd 4 n—(a-2)/2q ifd>4andq#d/(d—2)
(3.4.5)
One can conclude by letting Cg 4, x = 8(0;/(12#61(“ V Cagu) 0

Remark 3.4.1. When d > 4, if &= 2> d ie. g> d 2, the inequality (3.4.4) can be upper

bounded as follows,

log(l+n) ifd=4andq+#4
ifd>4andq#d/(d—2)

n-

- .J;\»—i

EW3 (4, 1) < 2Caqum ™" x

n

log(14+n) ifd=4andq#4
ifd>4andq+#d/(d—2)

n-
< 2Cd,q7uK_1/d X

n

- »M»—-

since we consider only n > K and if ¢ > 2d , the term n~(4=2)/2¢ is smaller than the

first term. Consequently, (3.4.5) can be bounded by

EDg (@) = inf Diu(e) < defe EWa(usy, p) + 4EWS (i), ).

ze(R4)K
< §( ;/une*K“ V 2Cqq, MK_I/d)x
(log( 2 +lo if d =4 and 4
n- 1[ g(1 g(l+n)] i nd g # ‘ (3.4.6)
2n~d ifd>4andq#d/(d—2)

By the non-asymptotic Zador theorem (3.1.10), one has

Cicpn < Cag(w)ag (K
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with o4(p) = mingcpa [[ga |§ — al? u(dﬁ)]l/q. Thus, the inequality (3.4.6) can be upper-
bounded as follows,

EDic,(x0)) — inf | Dicule) < ek EWalus ) + AEWE (s, ).

<SKU(CY2 Cag()og (1) V 2Cag,) %

nfi[log 1+n)) 3 —{—log(l—i—n)] ifd=4andq#4
o~ ifd>dandq#d/(d—2)

from which one can remark that the right side of this inequality is strictly decreasing
with respect to K.

Theorem 3.4.2. Let K € N* be the quantization level. Let i € Po(R?) with card(supp(p)) >
K and let & be the empirical measure of p defined in (3.4.1), generated by i.i.d obser-
vation X1, ..., X,. We denote by x(™¥ ¢ (RHK an optimal quantizer of % at level K.
Then,

(a) General upper bound of the performance.

2K
EDg (W)~ inf Dp ,(z) <

re(R)K N [r§n+pz<(u)2+2n (r2n+pK(u))}, (3.4.7)

where ry, = H maxi<i<n | Xil H2 and pr () is the mazimum radius of optimal quan-
tizers of p, defined in (3.1.8).

(b) Asymptotic upper bound for measure with polynomial tail. For p > 2, if u has a
c-th polynomial tail with ¢ > d + p, then

K _2(ptd) _
EDK,#(;U(”),UJ) _ megég)}( DK “( ) T H » n?/p + 6Kd<cfp,d) ’YK:| ’

where Cy,;, s a constant depending p,p and limg v = 1.

(¢) Asymptotic upper bound for measure with hyper-exponential tail. Recall that p has
a hyper-exponential tail if u = f - A\g and there exists 7 > 0,k,9 > 0,¢ > —d and
A >0 such that V€ e R €] > A= (&) =7|¢|e ", If k > 2, we can obtain a

more precise upper bound of the performance

n),w : K 2/k 2/Kk 2/K
E[DKM(@"( ) )_%%ﬁg)}{ Dk, u(z )] < Cy e f[l—l—(logn) / +7vk (log K) / (l—i—d) ]
where Cy ., is a constant depending 9, k, p and limsupg v = 1.

In particular, if p = N(m,X), the multidimensional normal distribution, we have

E[Dk, .(z"*) — inf Dk ,(z)] <C

2
(R K “ f[1+1°g”+7KlogK( d)}’
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where limsupg yx = 1 and C,, = 24 - (1 V log 2E6|X|2/4) where X is a random
variable with distribution . Moreover, when p = N(0,1;), C, = 24(1 + %) - log 2.

The proof of Theorem 3.4.2 relies on the Rademacher process theory. A Rademacher
sequence (Ui)ie{l,...,n} is a sequence of i.i.d random variables with a symmetric {41}-
valued Bernoulli distribution, independent to (X1, ..., X},) and we define the Rademacher
process Ry (f), f € F by Ry(f) = 237, 0:f(X;). Remark that the Rademacher
process R, (f) depends on the sample { X1, ..., X, } of probability measure .
Theorem 3.4.3 (Symmetrization inequalites). For any class F of P-integrable functions,
we have

E || ptn — ,u||]_- <2E ||Rn||]-'a

where for a probability distribution v, ||v||z = supser [V(f)| = supser|[pa fdv| and
IRl 7 = sup e r [Ru(f)]-

For the proof of the above theorem, we refer to Koltchinskii (2011)[see Theorem 2.1].
Another more detailed reference is Van der Vaart and Wellner (1996)[see Lemma 2.3.1].
We will also introduce the Contraction principle in the following theorem and we refer
to Boucheron et al. (2013)[see Theorem 11.6] for the proof.

Theorem 3.4.4 (Contraction principle). Let x1,...,x, be vectors whose real-valued
components are indexed by T, that is, ©; = (x;s)se7. Foreachi=1,...,nleto; : R - R
be a Lipschitz function such that ¢;(0) = 0. Let o1, ...,0, be independent Rademacher

w‘ be the Lipschitz constant.
Y

random variables and let c;, = maxi<;<yn SUPz yeR

zAY
Then

n n
E[supZaigoi(wi,s)] <ecy - E[supZaix¢7s}. (3.4.8)
seT i=1 seT i=1

Remark that if we consider random variables (Y1, ..., Yy s)se7 independent of
(01,...,0n) and for all s € T and @ € {1,...,n}, Y; s is valued in R, then (3.4.8) im-
plies that

n n
E[sup Zgi@i(Yi,s)} = E{E[supz Ui‘Pi(Y;,s) ‘ (YI,Sa ooy Yn,s)seT} }
seT i=1 SGTi:I

n n
<cg -E{E[supzam,s | (Y1, ~--,Yn,s)seT]} <ecL -E[Supzail’i,s]- (3.4.9)
SeTl'Zl 867—7;:1

The proof of Theorem 3.4.2 is principally inspired by the proof of Theorem 2.1 in Biau
et al. (2008).

Proof of Theorem 3.4.2. (a) In order to simplify the notation, we will denote by D
(respectively Dy) instead of Dk, (resp. Dk, ,,) as the distortion function of u (resp.
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pin). For any ¢ = (c1,...,cx) € (RH)E recall the distortion function D(c) of p can be
written as

o _ o 2
D(e) =E[ min [X —a*] =E[|X]*+ min (~2(X|e)+ ).

We define D(c) = minj<g<x ( — 2(X|ex) + |c|*). Similarly, for the distortion function
D,, of the empirical measure p,,

1 n n 2 n
- X; — EN(X;
0= 20 i Xl = ST+ i (— 0SS + e,

we define Dy, (c) == minj<p<g (— 2 201 (Xy|ew) + el ). We will drop w in (M o

n

alleviate the notation throughout the proof. Let x € Gg (). It follows that

E[D(z™) - D(z)] = E[D(z™) - D(z ] E[D(z™) - D ( )] + E[Dn(2™) — D(2)]
gEfﬁ: — Dy (a™)] + E[Dy(z) — D()]. (3.4.10)
Define for n,z € RY, f,(z) = —2(n|z) + ‘77|

Part (i): Upper bound of E[D(z™)—D,,(™)]. Let R,,(w) == maxj<j<n | Xi(w)|. Remark
that for every w € Q, R, (w) is invariant with the respect to all permutation of the
components of (X1, ..., X,,). Let Br denote the ball centred at 0 with radius R. Then
owing to Proposition 3.1.1-(iii), (™ ¢ Bgn. Hence,

E[D(x™)-D,(z™)] <E sup (D(c)—Da(c))

ceBgn

ceBK 1<k<K

—E[ sup (E min fo,(X) == min_fo(X.)]
=1 - -

—_
3

— !/ . .
=K {czgl?( ]E ;1?]161<Ilf(fck X ) - Elzzllérll'ﬂlganCk(Xl)‘Xl’ 7XTL]:|’

(3.4.11)

where X7, ..., X/ are i.i.d random variable with the distribution p, independent of
(X1, ..., Xpn). Let Ry = maxj<i<p | X;| V |X]|, then (3.4.11) becomes

1 ‘ ) 1>
<EL:;§ Bl 2 i S (XD = 53 i e (X010, X |
2n - -
<E {E[ su (lzn: min_f, (X’)—lzn: min fe, (X;))|X X]]
R\ Zeaigk T\t Ty L Gl Tee i) 1A s A
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n

1
:E[c:;lg%n;(l%%f%( i) = i fe, (X0))]. (3.4.12)

The distribution of (X1, ..., Xy, X{, ..., X])) and that of Ry, are invariant with the respect
to all permutation of the components in (X, ..., X, X], ..., X},). Hence,

ED(e™)-Dau@™)] —E[ sup 3 ov( min_fo (X))~ min_fo(X))]

CGBK n i1 1<k<K 1<k<K

sup Zaz min_fe, ( ’)] sup Zaz min fe, (X )]

CeBK ; 1<k<K ceBRK —~ 1sks<K
:2E su o; min . 3.4.13
CGBE n Z Y 1<k<K fer (X )] ( )

In the second line of (3.4.13), we can change the sign before the second term since —o;

has the same distribution of O'Z, and we will continue to use this property throughout

the proof. Let Sg = E[ sup ZUz min fck( )}

ceBf M 1sk<K
» For K =1,
1 & 1 & 9
S1=E| sup — ) o0; min =E| sup — ) o —2(c|X;) +|c
[ceBRanizzl Zl<k<KfC( Z)] [CGBRQ nzzl Z( <’ Z> ‘ ‘ )]
1 n
<2E[ sup — ) oi(c|Xy)] + s Zaz|c|
CEBRQn n’L'Zl RQ =1
< E[ sup C\ZUZ Z}#— E[Z(h |R2n|:|
CeBRQn =1
2
S—E[ sup Zcr, c|}+ EZCM -E|Ryy|?
n CEBRgn

(by Cauchy-Schwarz inequality and independence of o; and X;)

n n 2
>_oiXi > _oi
i=1 =1

2
2
SE\/E||X1H2 || Ranlly +

N Ranlly + — || Renll

2

1 [ R2nll
vn vn
The first inequality of the last line of (3.4.14) is due to E |-, 0: X;|* = EY" | 02X? =

nEX? since the (o1, ...,04) is independent of (X7, ..., X,,) and Eo; = 0. For n € N*,
define 7, := ||maxi<i<y |Yi|||5, where Y1, ..., Y,, are i.i.d random variable with probability

[Ronll3 < @I1X1lly + [ Really).  (34.14)

distribution p. Hence, ro, = ||Rap||,, since (Y7, ..., Y2,) has the same distribution than
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(X1, .0y X, X7, ..., X},). Therefore,

.
S1 < 22(2|X1 ]|y + o).

f
» For K =2,

So :E[ sup
C:(Cl,CQ)GBIz%Qn n.4
1 1
=3E| sup — 37 0u(fo () + Fa (X0) = | (X) = fen (X))
CEBIQQ,L n i=1
at+b la— b\)
2 2

or (fcl (Xl) A fcz (XZ))]

(asaNb=

<H{EL s 53 X0+ X)) +EL sup 13l (%)~ £ X0 ]}

CEBJQan [t 0632
1 1 &
§§{251+E[ sup *Zaz(fa( i) = fer (X ))]} (by (349))
CEB%Q'ILni 1
1
<-<28 —|—E ifc il z < 25;.
<3 {250l s 3 o] 4Bl 1SSt} <25

(3.4.15)

» Next, we will show by recurrence that S < K.S; for every K € N*. Assume that
Sk < K8, for K +1,

S X;
e CES;JIE)Jrl n ZU 1<;§21;I§+1 for(X3)]
1 n

ZE[ sup *Zgi( min fck( )AfCK+1(Xi))]

ceBE+! n =1 1<k<K
n

I}

min fck( )+ch+1(Xi)) -

1<k<K

1gllc1<nz< Jer (Xi) = feger (X3)

IN
DN | =
=
—
wn
=
T

| =
M-
Q

; { sup 1201( min_fe, (Xi) + fere o, (Xi))

ceBK+1 n =1 1<k<K

+ sup Zaz
(SK+51+SK+51) <Sg+ 5 < ( —I—l)Sl. (3.4.16)

IN
[
&=

1£1’]l€1<nK ka( ) fCK+1 (Xl)

BK+1 n

[\D\»—t
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2kfﬂbn

E[D(z™) - D,(z™)] < 25k < 2K S < 7

(21Xl + r2n).- (3.4.17)

Part (ii): Upper bound of E[D,(x) — D(z)]. As x = (x1,...,xx) is an optimal quantizer
of pu, we have maxj<p<i |z5x] < pr(p) owing to the definition of pr(p) in (3.1.8).
Consequently,

E[Dn(z) —D(z)] <E sup [Dn(c) —D(c)]

ceBK
1374(D)

By the same reasoning of Part (I), we have

E[D () — D()] < ff;mm (21Xl + pic(1))-

Hence

E[D(™) - D(x)] < if;mn@ 1 X1l + r20) + Qj;pm) (21 X1l + pc ()

< 25 [+ i) + 201 + )| (3.4.19)

(b) If u has a c-th polynomial tail with ¢ > d + p, then pu € P,(R?). Let X, X1, ..., X,
be i.i.d random variable with probability distribution p. Then,

Tn = HR’U”g = E[max (’X1’ PERES) ‘Xn|)2:| = E[max(‘Xl‘p y ey ’Xn’p)2/p]
S - 2/p 2/p
SE([Z|XZ.|p]2/p> < []E(Z|Xi|p)} = [n]E\)qp} — 2P ||X|2,  (3.4.19)
i=1 i=1

where the last line is due to the fact that X, ..., X,, have the same distribution as X.

Moreover, we have

+d
pr(p) = KTop @ with  lim g =1 (3.4.20)

K—+o00

owing to (3.1.11). It follows from (3.4.18) that

E[D(2™) - D(z)] < %/[; [?w%n + ((2m2) V px(n)) - PK(N)}

since 19, > mg after the definitions of 7y, and my. In addition, (3.4.20) implies that
pr () = +o00 as K — 400 and, for large enough K, px(u) > 2my. Therefore,
2K

(n)y _ Ba on)2P I x )2 Clc=r I
E[D(z™) D(x)]ﬁ\/ﬁ(?) (20)2/7 || X||? + 3K Tra )
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_K (CM, n2/? 4 GK#%VK),

Vn
where C}, , = 6 - 22/p HXH; and limg v = 1.

(c) p is assumed to have a hyper-exponential tail, that is, p = f - Ay and f(§) =
71€|°e " with ¢ > —d for |¢| large enough. The real constant & is assumed to be
greater than or equal to 2. Let X be a random variable with probability distribution .
Therefore, for every A € (0,9), EMXI™ < 400, and

Tn = HRnH; = E[max(‘Xl‘ LR |Xn|)2] = E[maX(|X1|R RS |Xn|ﬁ)2/m]

1 K K 2/k 1 2/r K K
:IE({Xlog(max(e’“Xl‘ o, e Xl ))} ) < <X> {logEmax(e’“Xl' e Xalh

<(3) {lose[ S0y = (5) thmmen
i=1

1 2//{ " "
:(X> (logEeMX‘ +logn)2/, (3.4.21)

2/k

where the last line of (3.4.21) is due to the fact that X7, ..., X, have the same distribution
than X. Under the same assumption as before,

2\ 1/m
prc(i) = vic (log KV 20717 (1 4 g)l/ with limsupyg < 1 (3.4.22)
K—+o0

by applying (3.1.12). Moreover, it follows from (3.4.18) that

E[D(a™) ~ D(x)] < - [313, + (2ma) V pxc () - pxc ()]

NLD

since 19, > mg after the definitions of ry, and my. In addition, (3.4.22) implies that
pr () = 400 as K — 400 and, for large enough K, px (1) > 2msy. Therefore,

2K

NG
2

+ 497 g (log K)Q/”(l + g)

E[D(™) — D)) <27 {3 (1Vlog2BAN") (1) (1ogm)?/* + 1]}

2/x, (3.4.23)

The inequality (3.4.23) is true for all A € (0,79). We may take A\ = g. It follows that

E[D(z™) — D(x)] [1 + (log n)** + i (log K )*/* (1 + 3)2/”} . (3.4.24)

K
< Cﬁ,m,u : ﬁ
where Cy ., = [(3(%)2/"i -(1Vlog2E eﬁ|X‘~/2)} V 89~2/% and limsupy vi = 1.

Multi-dimensional normal distribution is a special case of hyper-exponential tail
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distribution, i.e. if p = N(m, %), we have k = 2,9 = % and ¢ = 0. By the same reasoning
as before,

E[D(z™) - D(2)] < 1+ logn + vk log K (1 + 2)}

oK

where C), = 24 - (1 V log 2E e|X‘2/4) When u = N(0, Id) C, = 24(1+ £) - log 2, since
E el XI?/4 = 9d/2 by the moment-generating function of y? distribution. O

3.5 Appendix

3.5.1 Appendix A: Proof of Proposition 3.1.1 - (iii)

Proof. Assume that there exists a * = (27,...,2}%) € Gk (n) in which there exists

ke {1,...,K} such that z} ¢ H,.

Case (I): p(Vy (F*)ﬂsupp( )) = 0. After (3.1.16), the distortion function can be written
as

Dic (e Z/C € — il u(dg) = Z/ € — ail? u(ae)

(Since z* is optimal and || is Euclidean, M(BV%,( *)) = 0 and intV,, (I') = V("))

Z/ 6~ a7 p(d€) = D (7). (35.1)

i=1,i#k

where T = (2], ..., %} _1, T} 1, Tf)- TNherefore7 [ = {27, ., 2p_1, 2}, ..., T} is also
a K-level optimal quantizer with card(I') < K, contradictory to Proposition 3.1.1 - (i).

Case (1I): u(onz (T'*) Nsupp(p)) > 0. Since z} # H,, there exists a hyperplane H
strictly separating xj, and H,. Let 2}, be the orthogonal projection of =7 on H. For any
2 € Hy, let b denote the point in the segment joining z and zj which lies on H, then
(b— &j|xy — &) = 0. Hence,

2 — b2 = |87 — b2 + | — 351 > 3 — b
Therefore, |z — 23| < |z —b| + |b— 2| < |z —b] + |2} — b] = |2z — x|

Let B(x,r) denote the ball on RY centered at = with radius r. Since u(VxOZ ()N
supp(p)) > 0, there exists o € V;;(F*) N supp(p) such that 3r > 0, u(B(a,r)) > 0
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(when r =0, B(a,r) = {r}). Moreover,
¥ € Bla,r), 16 -4l < |6 - ol <min| - 1] (3.5.2)

Let & = (a7,...,25_1, 2}, Tjyqs - Tk), (3.5.2) implies Dk, (Z) < Dk, p(2*). This is
contradictory with the fact that z* is an optimal quantizer. Hence, 2* € H,,. O

3.5.2 Appendix B: Proof of Pollard’s Theorem

Proof of Pollard’s Theorem. Since the quantization level K is fixed, in this proof, we
will withdraw K in the subscript of the distortion function Dk , and denote by D,
(respectively, Do) as the distortion function of pu, (resp. poo)-

We know z(™ € argmin D, owing to Proposition 3.1.1, that is, for all y €
(1, yx) € BRYE, we have Do(z(™) < Dy(y). For every fixed y = (y1,...,yx),
we have D, (y) — Doo(y) after (3.1.19), then

hmnsup Dy (™) < ye%ﬁg)f{ Doo(y) (3.5.3)

We assume that there exists an index set Z C {1,...,K} and Z¢ # () such that
(xz('n))ieI,n21 is bounded and (:cz(»n))igcle is not bounded. Then there exists a subse-

quence ¥ (n) of n such that

2 L7 et

R0

— 400 1€1°€

After (3.1.19), we have Dy ) (N2 > D (2@ ))1/2 W (ft(nys f1oo)- Hence,
limninf Dy (n) (:U(w(")))l/2 > limninf Doo (:U(w(")))lﬂ,
so that
]i%jnf Dy(n) (x(w(n)))lﬂ > hmninf poo(x(w(n)))lﬂ

2 ] o))

i

Z[ liminf min ‘x(w(n))—ﬁruoo(df)]lﬁ

1/2

=[ [ min]al™ — ¢ poc(a)] (3.5.4)
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Thus, (3.5.3) and (3.5.4) imply that

min 1)~ € () < _inf Docly). (3.5.5)

This implies that Z = {1, ..., K'} after Proposition 3.1.1 (otherwise, (3.5.5) implies that
eT* (11oo) < €% (puoo) with |Z| < K, which is contradictory to Proposition 3.1.1-(i)).
Therefore, (z(™) is bounded and any limiting point (> € argminge gayx Doo(x). 0

3.5.3 Appendix C: Proof of Lemma 3.3.2

Recall that Fx == {z = (21, ...,2x) € (RO | 2; # z;,i # j}. We first prove that if
x € Fi and y is close enough to z, then y € F.

Lemma 3.5.1. Ifz € Fg, then any point y such thaty € B(x, 3 min <; j<i,i5 [Ti — ;)
lies still in F.

Proof of Lemma 3.5.1. If there exist ¢,j € {1,..., K'},i # j such that y; = y;, then

min = |z; — xj],

2
|z; — 25 < | — vl + |yj — 5] < 3R

which is contradictory. Hence, y € F. O

Now we prove Lemma 3.3.2.

Proof of Lemma 3.3.2. We will only prove the continuity of 2 ax ax £ and 8282 ?“ in a point
x € Fg. For the continuity of for any others i,j € {1, ..., K} the proof is similar.
Let 1
a(z,§) = (21 = &) ® (v2 = &) - T——— f()-
w2 — 1]
Then o
Dr .y / 12
alxz, E)A2(dE).
021 0g " T (2, §)A;"(dE)
Let (eq,...,eq) denote the canonical basis of RY. Set u® = % As x1 # x9, if we

write the coordinate of u® by u® = Zle u;e;, then there exists at least one ig € {1, ...,d}
st. u;, # 0. Then (u”,e;,1 < i < d,i # ig) forms a new basis of R?. Applying
the Gram-Schmidt orthonormalization procedure, we derive the existence of a new
orthonormal basis (uf,...,u%) of R? such that u¥ = u®. Moreover, the Gram-Schmidt

orthonormalization procedure also implies that u},1 < i < d is continuous in z. With
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respect to the new basis (uf, ..., u}), the hyperplan M7, defined in (3.3.4) can be written
by

where span(.S) denotes the subspace of R? spanned by a set S. Moreover, remark that

Vi(e) N Va(@) = {€ € My | min oy — €] 2 for — € = e — €]}

Then for every fixed £ ¢ 9(Vi(z) NVa(x)), the function z — Ly, (;)A1a () (€) is continuous
in z € Fx and
AL2 (a(vl(a;) N vg(a;))) ~0 (3.5.6)

since Vi (x) N Va(z) is a polyhedral convex set in M.
Now by a change of variable { = #1122 4 4 rud,

9*Dk T
a$18x2 (33) — QAd—l ]]~V12($) ((7‘2, ...,Td))a(l’, 2 + ;Tiui>d’l"2,“d’[”d’

where

d
_ . T+ 22
Via(e) = {(ra,ora) € RS | min [y — S0 -3

d
1 — T2 x
Z‘ 2 _;”“i

3

Let

d
o d—1 . T1 + T2 ,
WVis(a) = {(r2oor) € RO | min [ =5 -3t

3

Then (3.5.6) implies that Aga—1 (6V12 (x)) = 0 where Agi-1 denotes the Lebesgue measure
of the subspace span(uf,i =2,..., d).

d
Ty — X2 z
=75 it
=2

Let us now consider a sequence z(™ = (a;gn) s eees x%)) € (RYH)X converging to a point

x = (x1,..,2x) € Fgx. By lemma 3.5.1, for n large enough, we have z(™) € Fg. For
a fixed (rg,...,7q) € R the continuity of z +— a(x, % + Z‘LQ riuf) in Fg can
be obtained by the continuity of (x,¢&) — «a(x, ) and the continuity of Gram-Schmidt

orthonormalization procedure.

Moreover, it is obvious that for any a = (ay,...,aq),b = (by,...,bg) € R we have
bl < 1<ij<d. :
la;bj| <lal|b],1 <i,j <d. Thus the absolute value of every term in the matrix

T+ X2 d
- 2T
a(z, 5 + ;:2 riui)
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_(%_ §l2n )®(%_ ?27”1 )f<m1+$2+zd:riux>

= - 3.5.7
can be upper-bounded by
|M - Z?:Q Tiuf”% - Zg:QTi“f‘f<$1 + T2 n d r‘u‘w>
‘3}2 —1’1’ 2 =2 v
(1222 + | g )
— _|_ S o TsUS ) d
2 =27i
< i 1 f(:L’l + X9 I rzuf)
‘1'2 — $1| 2 i
T+ X2 d
1+ Z F(EF2 ) (3.5.8)
i=2

where C, > 0 is a constant depending x.

The distribution p is assumed to have a d-the radial-controlled tail. Recall that
this means there exist a constant A > 0 and a continuous and decreasing function
g : Ry — R, such that

VeeRLE > A F(€) < g(€]) and / () dz < +o0. (3.5.9)

Now let K = %supn ’x&n) + wgn)’ V A and let r = Z;-izg riui. As g is a decreasing

function, it follows that

(n) (n) d
1+Z (7951 ;”32 —i—iz;riuf)
< Co(1+r]?)  sup FE1r<ary + Ca(1 + ’7"|2)9<‘()+xg) + zdzriuf )ﬂ{\r|>2K}-
¢€B(0,3K) - 2 = =
<Co(L+rP)  sup  F(E)Lgr<ary + Call +[r1D)g(Ir] — K) Ly >2m)- (3.5.10)
€€B(0,3K)

By a change of variable to polar coordinate system, one obtains by letting v = |r|
/Rdﬂ Co ‘TIQ g( ‘T| - K) ]l{|7~|22](}d7“2...d7”d
o
= CM/R 7’901 = K) L2077 < Coa /K (v + K)?g(7)dy
+

< 2C,q [ (K499 < +oc,
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where the last inequality is owing to (3.5.9). Thus one obtains

/}Rd_l |:Cx(1+|T|2) sup f(g)ﬂ{\r|§2K}+Cx(1+|T|2)g(|T‘_K)ﬂ{|r\22K}}dr2~-'d'rd < +o00,

£€B(0,3K)
hich implies 9Dk (7)) — P Drc by applying Lebesgue’s dominated
which implies 75 (z\"™) — 05 O (x) as n — 400 by applying Lebesgue’s dominate

8°D . . .
convergence theorem. Thus gzg is continuous in x € F.

It remains to prove the continuity of z — u(Vi(x)) = Jga Ly, () (§) f(§)Aa(dE) to

62;1 22 defined in (3.3.7). Remark that
1

obtain the continuity of

Vile) = {g € B! | | i < min |~y }.

and by Graf and Luschgy (2000)[Proposition 1.3],

8V1(:z):{§€]Rd| € — 21| = min \5—xj|}.

1<G<K

Then for any § ¢ dVi(x), the function x — 1y, () (§) is continuous. As the norm ||
is the Euclidean norm, then A\g(9V;(x)) = 0 (see Graf and Luschgy (2000)[Proposi-
tion 1.3 and Theorem 1.5]). For any = € Fi and a sequence (™ converging to z,
we have 1y, ) (§)f(§) < f(§) € L'(A\g). Thus the continuity of x — u(Vi(z)) =
Jra Lvi(2)(€) f(§)Aa(dE) is a direct application of Lebesgue’s dominated convergence
theorem. O

3.5.4 Appendix D: Proof of Proposition 3.3.1

Proof. (i) We will only prove for the uniform distribution U([0, 1]). The proof is similar
for other uniform distributions.

In Graf and Luschgy (2000)[see Example 4.17 and 5.5], the authors show that

" = 2;;(1 : 4 —1,.., K} is the unique optimal quantizers of U([0,1]). Let z* =
(%, s %, s 212([;1), then one can compute explicitly Hp(x*):
- L -
Ik IR 0
Hp(z*) = e : (3.5.11)
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The matrix Hp(z*) is tridiagonal. If we denote by fi(z*) its k-th leading principal
minor and we define fo(z*) = 1, then

1

~ e fia(a®) fork=2. K -1, (3.5.12)

i) = g fin (@)

and fi(z*) = % and fi(z*) = |Hp(z*)| = %fK,l(x*) — ﬁf;(,g(az*) (see El-Mikkawy
(2003)). One can solve from the three-term recurrence relation that

_2%k+1

2K +1 1

In fact, (3.5.13) is true for k = 1. Suppose (3.5.13) holds for £ < K — 2, then owing to

(3.5.12)
w1 2k+1 I 2k-1)+1 2(k+1)+1
fer1(2™) = K 9kKk — AK2  9k—1gk—1 —  oktlpk+l

Then it is obvious that fx(z*) > 0 for k = 1,..., K. Thus, Hp(x*) is positive definite.

(ii) We define for i = 2,..., K, 7 = w’*‘l%, then the Voronoi region V;(z*) =

(x5, zj ] fori=2,..., K — 1, Vi(2*) = (=00, 73] and Vi (2*) = [T, +00).

For2<i<K -1,
Li(z") = A; —2B; 1, — 2B i1
= 2u(Via")) ~ (& — 2 ) (L) — (aty — a)
= 2u(Via")) — 2at ~ FIE) ~ 2(Far — D) )
2

- m{“("i@*))? — [ n(Vi(a"))

=T p(Vi@))f (@) = [@7 . n (Vi) — xZ‘u(W@")ﬂf@Lﬁ}

B 2 (o 2 _ G T
- e (e [ seasE)

* *
T + T

5 )

p(Vi(z®) Vi(a®)
G [ 0©d- [ e(©ddr@ ) (oving to (339)
Vi(z*) Vi(x*)
2 N2 _ (g o - e
= Gy ) - 1@ /V oy € TN+ FEL) /V (- T

=:D;(x*)
(3.5.15)

For u = (uy,...,ux41) € Fit 4, we define a function ¢;(u) in order to study the
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positivity of D;(z*), for any i € {1, ..., K},

Ui+1 Ui+1

(€= u) O + () [ (€~ i) F€)de,

eit) = [ [ p(eae]? - ) | "
i ' (3.5.16)

Us

Lemma 3.5.2. If f is positive and differentiable and if log f is strictly concave, then
for all u = (u1, ..., ug4+1) € FIJ(FH’ we have the following results for ¢;(u) defined in
(3.5.16),

(a) for everyi=1,..,K, ¢;j(u) > 0;

(b) 925 (u) < 0;

(¢) 222K (u) > 0.

aUK+1

Proof of lemma 3.5.2. For a fixed i € {1, ..., K}, the partial derivatives of ¢; are

5o = 2 [ 7€) ) 1) [ 6w FOE + Flw) i) s — )

i

0v; Uit1 , Uit1
Fe(y =20 [ O] ) + Flan) [ (€ men) )6
= f(ua) f(wi1) (Wit — wi)
giz (u) =0, foralll #iandl #1i+ 1. (3.5.17)
I

The second derivatives of ¢; are

Poi v e Nt (s NI ) s
m = m(u) = *f(Uerl)f(Uz) + (Uz+1 - Uz)(f(ul)f (uerl) - f (uz)f(uerl))
32%‘ 82%

Do, u) = Budu, (u) =0 foralll #diandl#i+ 1. (3.5.18)

!/
If log f is strictly concave, then (log f) = 'f; is strictly decreasing. For u € F;(”_H,

we have u;41 > u;, then
fluir)  f'ug) i) f(ui) — fluign) f(ug)

f(uit1) a f(u;) - Fu) f (i) < 0.

2
Thus f/(uwiy1)f(ui) — f(uis1)f (u;) < 0 and from which one can get &(u) < 0.
Oui10u;

_ Opi  _Bpi R : s
In fact, ¢;, Torr Dus and urr.ou; AT€ functions of only (u;, uit1).
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(a) For 1 <i < K, @;(ujt1,ui+1) = 0. After the Mean value theorem, there exists a
v € (uj, ui11) such that

1 i
m(%(%uiﬂ) — @i(tiy1, uip1)) = 87%(7’1”“)' (3.5.19)

Moreover, there exists a ¢ € (7, u;+1) such that

P— (Fo O i) = 5o (1) = Su g (1O
82%‘

i
8’11,2‘

oy
As v < (, 5 (7,¢) < 0. Thus 872?(’}’,@62‘4_1) < 0, since (7,7) = 0. Then
1

i1 10u;

. Oy .
©i(ui, uir1) > 0 by applying a—?(% ui+1) < 0in (3.5.19).
(2
(b) After the Mean value theorem, there exists a 7’ € (u1,u2) such that

82S01 (U /) . 1
8u16u2 LY = U9 — Ul 8u1

0? 0 0
As 8u1g;2 (u1,v") < 0 and a—ii(ul,ul) = 0, one can get Tii(ul, u2) < 0.
(c) In the same way, there exists a ' € (ux,ux+1) such that
ok 1 Opx Opx
yUK+1) = UK, UK - UK+1,UK+1))-
Oug Our 1 (¢ urcr) UK — UK 41 3UK+1( +1) 3UK+1( o urc))
oK Ik K
As ————({, < 0and , =0, t , >
OS auKauKH(C UK 1) an Btireir (UK 41, UK+1) one can ge 8UK+1(UK UK;l)

Proof of Proposition 3.3.1, continuation. We set 25M = (=M, T5, ..., Tjc, M) with a M
large enough such that 2 € F;f |, then for 2 <i < K —1, Li(a*) = mgpz@*M)
Thus L;(z*) >0, i = 2,..., K — 1 owing to Lemma 3.5.2 (i).

Fori=1,
Ll(x*) = A1 (l‘*) — 23172(1‘*)

2 .\ 2 . .
-y e @ [ @)
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If we denote Dq(z*) := ,u(Vl(a:’"))2 = [(@3) vy (o) (@5 — §) f(£)dE, then

Di(a’) = lim oi@ )+ 00 [ (6= (~M))F(€)d

M—+o0 M (%)
where VM (z*) = [ M, 73]

For all M such that —M < x5, f(—M) /VM( ; (5 — (—M))f({)dg > 0, then

lim (=) | vy (€7 (CAD) (e 20

M—+o00
0
After Lemma 3.5.2 (ii), ﬂ(u) < 0 for u € Fjf_ 4, so that for a fixed M; such that
811,1
M e |, we have e (@M < lim o (3%M). We also have ¢ (7M1) > 0 by

T M—+oco
applying Lemma 3.5.2 (1). It follows that

Di(z*) = lim ¢ (@"")+ lim f(-M)
M ——~+oc0 M—+o0 VIM (z*)

2@ 4 Jim M) [ (6 (D) (e

—+00

> 0.
Then L;i(z*) =

The proof of Lg (z*) is similar by applying Lemma 3.5.2 (iii). Thus Hp(z*) is positive
definite owing to Gershgorin circle theorem. O






Part II:

McKean-Vlasov Equation:
Particle Method, Quantization
Based and Hybrid Scheme,
Application to the Convex
Ordering






Chapter 4

Introduction of Part 11

Let (Q,F, (Ft)t>0,P) be a filtered probability space and let (E, ||-|| ;) be a separable
Banach space. For any random variable X : (2, F,P) — (E,|||g), we denote by
Px = Po X! its probability distribution on (E, ||| z) and denote by |X1|,, its LP—norm

1
defined by [|X||, = [EIX%] "

Let (Bt)t>0 be an (F;)—standard Brownian motion defined on the probability space
(Q, F, (Ft)t>0,P) and valued in R?. Let My ,(R) denote the set of matrices with d rows
and ¢ columns, equipped with an operator norm || A[| := sup),<; |Az|,, where |-, denotes
the norm on R (we drop the subscript d when there is no ambiguity). We consider an
R?-valued McKean-Viasov Equation defined by

dXt = b(t, Xt, /Lt)dt + O'(t, Xt, Nt)dBt
Vvt > 0, s denotes the probability distribution of X,

(4.0.1)

where X is an R%valued random variable defined on (Q, F, (F;)i>0, P) and independent
to Brownian motion (Bt)i>0, b, o are Borel functions defined on [0, 7] x R? x P,(R9)
having values in R% and Mg 4(R) respectively.

For p € [1,+0a), let P,(R?) denote the set of probability distributions on R¢ with
p-th finite moment. For any p, v € P,(R?), the Wasserstein distance W, on P,(R?) is
defined by

3 =

_ : p
Wy(p,v) = (ﬂehn(i,y) /Rded d(z,y) ﬂ(dw,dy)>

1

— inf { {E X — Y|P] TUX,Y 1 (Q, A P) — (RY, Bor(RY) with Px = u, Py = v }
(4.0.2)



120 Introduction of Part II

where in the first ligne of (4.0.2), II(u, ) denotes the set of all probability measures
on (R? x R Bor(R?%)®?) with marginals y and v. For two R%valued random variables
X and Y with respective probability distributions p and v in Pp(Rd), with an obvious
abuse of notation, we will also denote by W,(X,Y") to represent the LP-Wasserstein
distance between p and v.

We suppose throughout Part II:

Assumption (I): There ezists p € [2,+00) such that || Xol|, < +00. Moreover, b,o are
continuous in t, Lipschitz continuous in x and in u with Lipschitz constant L uniformly
with respect to t € [0,T], i.e.

Vt € [0,T],Vz,y € R and Vu, v € P,(RY),
|b(t, z, 1) = b(t,y, V)|V lo(t, 2, 1) — o(t,y, V)| < L]z — y| + Wyl v)].

In the so-called Vlasov case, that is, there exist 3 : [0,T] x R? x R? — R? and
a:[0,7T] x R x RY — My ,(R) such that

b(t,x, u) = /Rd B(t,z,u)u(du) and o(t,x,un) = /Rd a(t,z,u)u(du), (4.0.3)

a sufficient condition to fulfill Assumption (I) is to assume § and a continuous in ¢,

Lipschitz continuous in = and w uniformly with respect to t € [0, 7], i.e.

Vit € [O,T],le,xg,ul,m S Rd,
|B(t, z1,u1) — B(t, x2,u2)| V |a(t,x1,u1) — a(t, z2,u2)| < L( |x1 — xa| + |u1 — ug| )

Chapter 5 is devoted to the proof of existence and uniqueness of a strong solution
of the McKean-Vlasov equation and the convergence of theoretical Euler scheme. Our
proof of existence and uniqueness of a strong solution of the McKean-Vlasov equation
(4.0.1) under Assumption (I) is based on Feyel’s method (see Bouleau (1988)[Section
7]). The idea is to define an application ®¢ depending on some constant C' € R, on a
product space, namely, “path space x path distribution space” as follows

(Y, Py) = ®c(Y, Py)

t t
= ((X0+/0 b(s,Ys,us)dsﬁL/0 0'(8,Ys7Vs)st)te[OyT],P(D(C})(pr)) (4.0.4)

=o0) (v, Py)

then to show that the product space is complete and that ®¢ is a contraction mapping
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by controlling the value of C'. Thus the existence and uniqueness of a strong solution
of the McKean-Vlasov equation is a direct result by applying the fixed-point theorem.
During the proof, we also give a rigorous definition of such “path space” and “path
distribution space” which will be also used in the sections devoted to numerical schemes.

Once obtained the existence and uniqueness of a strong solution, we show in Section
5.2 the convergence rate of Euler scheme of the McKean-Vlasov equation (4.0.1). Let
M € N* and let h = % For m =0, ..., M, define t,, =t =m-h=m- % The Euler
scheme of the McKean-Vlasov equation (4.0.1) is defined as follows,

XM = XM b b, XML )+ Vo (b, XM ) Zi 1 (4.05)

XO — XO ’ o
where ﬁf\:[n denotes the probability distribution of Xt]‘i and Z,,,m =0,...,M are i.i.d
random variables having an R%standard normal distribution N (0,1;). When there is
no ambiguity, we will omit the superscript M and use X'tm and i, instead of X{Z and
ﬂi\fn in the following discussion.

We call (4.0.5) the “theoretical” Euler scheme since it does not directly indicate
how to simulate fi;,, and we will propose several spatial discretizations later in Chapter
7 to simulate fiy,,. In Section 5.2, we establish the following convergence rate of the
theoretical Euler scheme

sup | Xy, — Xtm‘ < C’eh%/w, (4.0.6)

0<m<M

0<m<M

p

with C, a constant depending on b, o, L, T, L and | Xoll,,, under Assumption (I) and the
following condition

Vt,s €[0,T), s <t, Vo e RY, Vu e P(RY), there exist L,y € Ry s.t.

b(t, 2, 1) = b(s, 2, )| V llo(t, 2, 1) — (s, )| < E(L+ [e] + Wyl 80)) (¢ — ).
(4.0.7)

In Chapter 6, we establish the functional convex order result for the scaled McKean-
Vlasov equation. For any two random variables X, Y valued in a Banach space (E, ||-|| 5),
if for any convex function ¢ : E — R such that

Ep(X) <Ep(Y) as soon as these two expectations make sense,

then we call X is dominated by Y for the convex order and denote by X <., Y. Let
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(Xt)efo,r)> (Ye)ieo,r) be two processes defined by

dX; = (aX; + B)dt + o(t, Xy, u1)dB;, Xo € LP(RY),
dY; = (aY; + B)dt + 0(t, Ys, ) dB,, Yy € LP(RY), (4.0.8)

where o, 5 € R and for any t € [0,T], ut = Px,, v+ = Py,. We first prove that the
theoretical Euler scheme (4.0.5) of the McKean-Vlasov equation propagates the convex
order of random variables. Let Xtm, ﬁm, m =0, ..., M respectively denote the theoretical
Euler scheme of (X¢)e(o,77, (Y2)ie[o,7] defined by (4.0.5). If Xo =, Yo and the coefficient
functions o, 6 are ordered by a matrix order in the sense that

Vt € [0,T], Yz € R, Vu e P(RY),
O(t,x, )0t z,pu)* —o(t,z,u)o(t,z,u)* is a positive semi-definite matrix,

and o is convex in x and non-decreasing in p with respect to the convex order, then for any
m=20,..,M, Xtm < e ﬁm. Moreover, owing to the convergence result of the theoretical
Euler scheme (4.0.6), we derive a functional convex order result for the processes
X = (Xi)iepor) and Y = (Yy)seqo 17, i-e. for any convex function F : C([0,T],RY) — R
having an r-polynomial growth with respect to the sup-norm, 1 < r < p, in the sense
that

Va € C([O,T],Rd),EIC >0 st |F(a)| <C1+al,.)

sup

we have

EF(X) <EF(Y). (4.0.9)

This result generalizes the functional convex order results in Pages (2016) established for
the one dimensional martingale diffusion, which is the solution of stochastic differential
equation dX; = o(t, Xy)dB;. Furthermore, we generalize the above functional convex
result (4.0.9) to a function

G : (@, (e € C([0,TLR?) x C([0,T), Pp(RY)) = Glev, ()iefo17) € R

convex in ¢, non-decreasing for the convex order in (’Yt)te[o,T] and having a r-polynomial
growth, 1 <r < p and obtain a new convex order result for X and Y and its probability
distributions defined in (4.0.8) as follows,

EG(X, (1t)icio,m) < EGY, () ieco,m)-
Chapter 7 is devoted to the study of (several) simulable discretization schemes for the

McKean-Vlasov equation. In order to simplify the notation, the discussion of Chapter 7
is based on the homogeneous McKean-Vlasov equation which means that the coefficient
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functions b and ¢ do not depend on %, i.e.

dXi = b(X¢, pr)dt + o ( Xy, pe)d By
(A): Xo: (2, F,P) — (R%, B(R?)) random variable indenpendent to (Bt)tefo,1]
vVt > 0, pt denotes the probability distribution of X,

In the homogeneous setting, b and o automatically satisfy the condition in (4.0.7).
Let XS’N, e XéV’N be i.i.d random variables with the same distribution as Xy in (A)
and let (B})i>0,n = 1,...,N be ii.d Fi-standard Brownian motions independent to
(Xé ’N, e Xév ’N). The N-particle system associated to the McKean-Vlasov equation (A)
is defined by

Vn e {1,...,N},
. n,N n,N N nN N n
(B) : dXi" = 0(Xy, py )dt + o (X, py )dBY,
for any ¢ € [0,T], p¥ = + SN O yn.N,
t

where §, denotes the Dirac mass at x. The convergence of pi¥ to y; and the asymptotic
mutual independence of the components X' Nasn — 4oois usually called by propagation
of chaos in the literature (see for example Gértner (1988) and Lacker (2018), also
Chassagneux et al. (2019) for a detailed analysis of the weak error).

We rewrite the theoretical Euler scheme in the homogeneous case,

Xthrl = Xtm + h : b(Xtmﬁ ﬂtm) + \/EO—(Xtmhatm)Zm‘i‘l

(C): _ 7
Xo = Xo, pt,, = Px,

and we propose several spatial discretizations in Chapter 7.

A first method of the spatial discretization is the particle method inspired by the
N-particle system (B), which is the Euler scheme of the N-particle system (B). Let
X&’N, ...,XéV’N be i.i.d copies of Xp in (A). We take the same M and h as in (C) and
the particle method is defined by

Vn € {1,....,N},
Y 7N Y 7N Y 7N 7 Y 7N 7
(D) QX0 =X+ ho(X iy )+ Vho (X0 A )2

=N . N

Mgn = % Zn:l 5)_(:”71\7
where Z) n=1,...Nom=0,.... M i N(0,1,). In the particle method, we use ,[L;ZX1
as an estimator of piy, for each time step. In one dimensional setting, the convergence
rate of /Zﬁl to fim as N — 400 has been established in Bossy and Talay (1997). For the
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convergence rate in high dimension (d > 2), we obtain in Section 7.1 that

< Caprr HWp(/_h VN)H ,

sup. Wy(fip\ | fit,,) ,
p

1<m<M

where ji denotes the probability distribution of X = (Xt)te[O,T] defined further in (5.2.3)

and vV denotes the empirical measure of ji. Moreover, if || Xg||,,. < +oo for some £ > 0,

p+e
then we also derive in Section 7.1 from recent results on empirical measures (see Fournier

and Guillin (2015)) that
<C
p
n"% N ) ifp>d/2ande #p

sup Wy (fif,, fim)
1<m<M

1 £
% {n"2% [log(1+n)]? +n 77 if p=d/2ande #p ;
n=d + ) ifpe (0,d/2)and p+ ¢ # ﬁ

where C is a constant depending on p,e,d,b,0, L, T.

Another method to approximate fig,, ,m = 0, ..., M in the theoretical Euler scheme
(C) is the quadratic optimal quantization method, which is also known as K-means

method. Now we recall some definitions and properties of this method.

Let Y : (Q,F,P) = (R%|:|) be a random variable with probability distribution
v € P2(R?), where || is the Euclidean norm on R%. The quadratic quantization error
function at level K of Y (or of v), denoted by ex, (or ek y), is defined by

v = yr) € B o ecu(v) = [ [ min € - ur(@)] . (4.0.10)

Moreover, the L?-distortion function of v (or of Y) at level K, denoted by Dk, is
defined by Dk, = e%(W.

In the framework of the optimal quantization, the variable y € (]Rd)K of the quanti-
zation error function e, is called a quantizer. A K-tuple y* = (v}, ..., y}) € (RHK is
called an optimal quantizer of Y (or of v) at level K if

y* € argmineg , ( or equivalently, y* € argminDg ). (4.0.11)

For the proof of the existence of an optimal quantizer, we refer to Graf and Luschgy
(2000)[Theorem 4.12] among other references.

Quantization theory has a close connection with the Voronoi partition. Let y =
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(y1, ..., YK ) be a quantizer at level K. The Voronoi cell (or Voronoi region) generated by
yr is defined by

Vi(y) = Vi) = {€ € R : J¢ —yel = min |¢ — 5]}, (4.0.12)

and (Vk(y))1<k<K is called the Voronoi diagram of y which is a finite covering of R?. A

Borel partition (C’k (y)) is called a Voronoi partition of R% generated by y if

1<k<K

VEke {1, ...,K}, Ck(y) C Vk(y) (4.0.13)

The boundary of a Voronoi cell Vj(y), denoted by 9 Vj(y), is contained in U, Hy, ;,
where Hy, ; is the median hyperplane of y; and y;

Hpj={¢eR : |¢—y| =€ —y;] }.

For a fixed quantizer y = (y1, ..., yx) € (R?)X and a Voronoi partition (Cy ) 1 cner

generated by y, we can define a projection function Proj, by

K
¢ € R Proj, (&) = > ykle, ) (). (4.0.14)
k=1

Then for an R%valued variable Y with probability distribution v € Py(R%), we define
its projection on y by
YY = Proj, (V). (4.0.15)

When there is no ambiguity, we write Y instead of YY. If y* = (v, ..., Y} ) is an optimal
quantizer of v and if 7* denotes the probability distribution of Proj, . (Y), we have

el = [y 7

| = Wa(v, ") (4.0.16)

and v(0Vj(y*)) = 0 for every k =1,..., K (see Graf and Luschgy (2000)[Lemma 3.4 and
Theorem 4.2] for the proof of (4.0.16)).

The optimal quantizer has the following properties,

Proposition 4.0.1. (a) (Stationary of optimal quantization) Let X be a random vari-
able with probability distribution v € Pa(R?) and assume that card(supp(v)) > K.
Any quadratic optimal quantizer v = (x7,...,x%) € (RHE of X is stationary in the
following sense,

*

E(X | X*)=X"",

where X" is defined in (4.0.15).
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(b) (Non-asymptotic Zador’s theorem) For every v € Poi(R?) with € > 0 and for every
quantization level K, there exists a constant Cy. € (0,+00) which depends on d and
€ such that

exu(y") < Cype - O'2+€(V)K1/d, (4.0.17)

where y* is an optimal quantizer of v and for r € (0,+00),

or(v) == min [/]Rd |€ —al" V(df)]l/r.

acRd

(¢) (Consistency of the optimal quantization) If vy, € Payy(R?),n € N*U{oco}, for some
n > 0 such that Wap(Vn, Veo) 22000 and card(supp(l/n)) > K, ne N U{co},
then any limiting point of K -level quadratic optimal quantizer y™ of v, is an optimal

quantizer of Vs, and

Drv. (y™) — inf Dk, <

Kwso (") . Kwso(Y) <
5(1,6
K-1/d

Cy..
WZ(Vn, Voo) [ K_ic/lj + 2W2(Vna Voo) +

We refer to Pages (2018)[Proposition 5.1] for the proof of Proposition 4.0.1-(a), to
Luschgy and Pages (2008) and Pages (2018)[Theorem 5.2] for the proof of (b) and refer
to Liu and Pages (2018) for the proof of (c).

W (Vn, Vso)] -

Quadratic optimal quantizer can be computed by several numerical methods, for
example the CLVQ algorithm and the Lloyd I algorithm presented in the introduction
of this thesis (Section 1.1.3.2). In Chapter 7, we will use Lloyd I algorithm to find the
optimal quantizer, but we could also use the CLV(Q algorithm as well.

The idea of applying the optimal quantization method to the simulation of the
McKean-Vlasov equation was firstly introduced in Gobet et al. (2005)[Section 4] in a
slightly different framework. Let 2(™) = (xgm), e x%n)), m =1,..., M be the quantizer of
X, . in the m-th Euler step. The quantization based Euler scheme of the McKean-Vlasov
equation (A) is defined by

Xo = Xo, Xo = Proj, (Xo)

Xthrl = Xtm + h - b(Xtm7 ﬁtm) + \/EO—<Xtm7ﬁtm)Zm+17 m= 07 7M -1
where h = % and [y, = P

Xtm+1 = Projx(m+1)(Xtm+1)7

Such quantization based Euler schemes have been introduced in Pages and Sagna (2015)

for standard Brownian diffusions. They also appear in a somewhat hidden way in Pages
et al. (2004) and Gobet et al. (2005). Same as the theoretical Euler scheme, (E) does
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not indicate how to explicitly express fi,,, so we call (E) the theoretical quantization
procedure. We propose the following solutions to explicitly express i, .

(1) In the Vlasov case (4.0.3), we can use the recursive quantization method, which
is firstly introduced in Pages and Sagna (2015) and Gobet et al. (2006) for the
stochastic differential equation dX; = b(t, X¢)dt + o(t, X¢)dB;. By the recursive
quantization method, we obtain the Markovian transitions of (X\tm, L, ) based on the
quantized scheme (E). Let p(™ = (pgm), ey p%n)) denote the corresponding weight
of quantizer z(™ = (l‘gm), ...,.I‘(Km)). Thus pt,, = Zszl (5x1(€7n)p,(€m). The Markovian

transition of ()A(tm,ﬁtm) that we propose in Section 7.3 can be written as (with an
obvious slight abuse of notation)

P(Xtp = 2 [ X, = 2™, p0™)

K K
=P[ (@™ + 03 B, 2™ + VIS o™, 2 Z) € Cilatm )]
k=1 =1

so that given p(™), we can compute p(mﬂ)

J for every j =1,..., K by

D =B = | )

= o™, p™) - P(X,,, = ™).

A proof of the above equalities is provided in Section 7.3, where we also explain in
the same section how to combine this scheme with the Lloyd I algorithm to optimize
the quantizer (™ at each time step, as proposed in Pages and Sagna (2015).

(2) The second solution to simulate fi;,, is to use the optimal quantizer of the normal
distribution N (0,1,) and its weight, which can be downloaded from the website

www.quantize.maths — fi.com/gaussian __database

for dimensions ¢ = 1, ..., 10. Let z(™ = (acgm), - x%n)) denote the quantizer of Xtm

in m-th Euler step. Let z = (21, ..., z7) be the optimal quantizer of N (0,1,;) with
J > K and let w = (wy,...,ws) be the corresponding weight vector of the quantizer
z. This simulation method by using the optimal quantizer of N (0, Iq)(l), that is,

(1) By a slight abus of notation, we use here the same notation as in (E).
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replacing Z,+1 by Z\fn 11, reads

Xo = Xo, Xo = Proj, o (Xo)
therl = X\tm + h . b(X\tm;ﬁtm) + \/EU(X\tm,ﬁtm)Z\fnJrl, m = 0, ,M -1
where h = L and fi,, = Py

Xim
Xtm+1 = Projgg<m+1) (Xtm+l)7

where Zzn iid Z}-Izl d-,wj and (Eﬁz)mle are independent to Xy. This new
scheme, denoted by (H), will be called the doubly quantized scheme. We will show
in Section 7.4 the error analysis of this scheme.

(3) Once we obtain the convergence of Wy (i | jir,,) in Section 7.1, it follows from

Proposition 4.0.1-(¢) that we may use the optimal quantizer of ﬂi\fr . as a quasi-optimal

quantizer of fi;, . Let z(™) = (l'gm), ...,x%n)), m =20,1,..., M, be the quantizer for

the empirical measure ﬂi\fn in (D). We implement the optimal quantization method

for the particle system (D) as follows:

Vn e {1,...N},

wn,N wn,N TN ~ SN ~

X = X0+ he b0 gy, ) + Vho (X0 g, ) 23 44

~ — n,N
Hf; = (% 7];]:1 5)?;»N) °© PYOJz(}n) = Zszl [595;;") 'Zﬁf:l ﬂvk(x<m))(XZLm )}

XoN Xy, zn AN, 1),

We call (F') the hybrid particle-quantization scheme.

Chapter 7 is displayed as Figure 4.1 in which we also briefly mention the convergence
rate of the different methods.

At the end of Chapter 7, we give two examples of simulation where we test the
above numerical methods. The first one is the simulation of a one-dimensional Burgers
equation introduced in Sznitman (1991) and Bossy and Talay (1997). The solution of
this Burgers equation admits a closed form so that we can compare the accuracy of
different methods. The second example is 3-dimensional which was firstly introduced
and simulated in Baladron et al. (2012) and also simulated in Reis et al. (2018).
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Figure 4.1 Structure of this paper
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Main algorithms
4.0.0.1 A review of the Lloyd I algorithm

Lloyd I algorithm, described as follows, is an efficient way to numerically find a
quadratic optimal quantizer for a probability distribution v € Py(R?).

Algorithm 0: Lloyd I algorithm
Set K € N*

Input : ¢yl = (y£0}7 ...,yg) such that y,[go] Csupp(v), k=1,... K
repeat
) Jowgm Ev(dE)
gl JGW) > VK, 4.0.18
F v(Cr(yM)) ( )
until {yglﬂ], - y[[l(ﬂ]} = {yy], ,yy(]} or other stopping criterion occurs

Output:y[l] = (yy], ...,yy(])

4.0.0.2 Algorithm based on the particle method (D)

Assume that b(x, u) and o(x, u) are calculable for a countable sum of weighted dirac

measures (1 = Y% | Piby;-

Algorithm 1: Particle method
Set N, M € N*
begin Euler step 0

t Simulate N random variables Xé’N, --.,XéV’N i.i.d X,

repeat
Compute for every n € {1,..., N},

XN = XN oY G+ o (XN BN WRZE, (4.0.19)

=N . 1 N
where ,U/tm =N Zn:]_ (SXZL,N.
m

untilm+1> M
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4.0.0.3 Algorithm based on the recursive quantization method (G)

The algorithm based on the recursive quantization method is:

Algorithm 2: Recursive quantization method-Part 1

Function Euler(x,p):

Input :z = (21,...2x) € (RHE, p=(p1,...,pr) € [0,1]¥
Output:y = (y1,...,yx) € (RHK

Simulate Z ~ N (0,1,)

K K
Compute y; = i+ h Y Bz, xp)pr + VR Y alzi, ae)pr - Z,i =1, K.
L k=1 k=1
Function f(£:m,Y): /* density function of N(m,%?) */
Input :m = (my,...,mg) € RL ¥ € Myy
Output : function f

1 1 Ty—1

=———exp(—=(—m)' X -m
1) = ol 5 (€~ m) S - m)
Function Transition(x,p, A):
Input :2 = (21,...,7x5) € (ROK p=(p1,....,px) €[0,1]%, A € B(RY)
Output:e = (e, ...,ex) € RHE p = (p1,...,px) € [0,1]%
Compute m = (m1, ...,mg) € (R)E and & = (£1,...,8k) € (Mgq)X by

k=1

ol

—

Compute e = (eq, ...,ex) by €; = / EF (& - mi, Xi)Aq(dE)]pii=1,.., K.

Compute p = (p1,...,px) by pi = Z [/Af(g s mi, Bi)Aa(d€) | pii=1,.., K.
i=1

K K
m; —xz+h25 Tiy T )Phy i —h[za (i, k) pk} [Za (ziy k) pk} =1,..

K.




132 Introduction of Part II

Algorithm 2: Recursive quantization method-Part 2
Set K, M € N*

begin Euler step 0
Choose () = (wgo), ...,:Ug))) C supp (o).

begin Lloyd iteration

Define 710 = (ygo], ceey yg) by letting y,[ﬁo] +— :L'](CO), k=1,.. K.
repeat

1 Joparwy Epo(de)
Compute y; ' = o (Ck(TW))

until Y = YU or some stopping criterion occurs

k=1,.. K.

Set z(0) = (x§0)7 ...,x,io)) — (ygl], ...,yy(]),
| Compute p,(co) = ,uo(Ck(a:(O))),k =1,...,K.

Euler step m — Euler step m + 1:

repeat

Input 2™ = (z{™, ., 2{{V) € ®RHE, pim) = (™, pi”) € [0, 1%
(m+1) — (xgmﬂ), ...,x,im+1)) by :U;mH) = Euler(z(™), p(m)[K].

begin Lloyd iteration

Compute x

Define 710 = (ygo], ceey ygg]) by letting y,[co] — :U,(cmﬂ), k=1,...K.
repeat
Compute yl[fH_l} o Transition(x(7'L>7p<m>7Ck(y[l]))[e} =1,.., K.

 Transition (:t(m) ™) ,Cy, (y[l])) [p] ’
until YUY = 1 or some stopping criterion occurs
(b)

+1 +1 l l
Set (™D = (2™ V 2™y e ol Ly,

Compute p,(gmﬂ) = Transition(x(m),p(m), Ck(x(m+1))) p,k=1,...,K.

Output : 2 = =

PIEEESY

untilm+1> M

(a) 2% can be obtained by sampling K random variables with the probability distribution po or the
self-quantization method.

(b) In the Lloyd iteration, we need to compute the integral of the density function f(£) and & - f(§)
over a Voronoi cell. In dimension 1, there exists a close formula to compute them (see further
(7.3.8)). In low dimension, we recommend the package Qhull (hitp://www.qhull.org) or package
pysdot (https://github.com/sd-ot/pysdot). In high dimension, we recommend to use other algorithms
proposed in this chapter.
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4.0.0.4 Algorithm based on the doubly quantized scheme (H)

Assume that b(x,p) and o(x, ) are calculable for a countable sum of weighted
dirac measures pu = Zf\il pidy,. Assume that we have already the optimal quantizer
z = (z1,...,z5) of N(0,1;) and its corresponding weight w = (wy, ..., wy) with J large
enough.

Algorithm 3: Doubly quantized scheme

Function f(x,u, z):
Input :2eRY = Zszl Oz, Wy, 2z € RY.
Output:z + h-b(z, ) + Vho(z, 1)z
Set K, M € N*
begin Euler step 0
Choose z(0) = (x§0)7 ...,x,io)) C supp(po)-
begin Lloyd iteration
Define 710 = (ygo], ...,y[lg]) by letting y,[go] — :ES)), k=1,.. K.
repeat
d
Compute y 1 = Jaure) 5“3( 5)7
1o (Cr(T1))

until Y = 1l or some stopping criterion occurs

k=1,.. K.

Set 2(0) = (xgo), ...,x,io)) +— (ygl], ...,yy(]),
| Compute pg)) = o (C’k(x(o))),k: =1,..,K.

Euler step m — Euler step m + 1:

repeat

Input :z(™ = (xgm), ...,xy(n)) € (RHE, p(m) = (pgm), ...,py(n)) € [0, 1]%.
Thus py,, = Zle 53@,(;”) p,(ﬂm).

Compute fi; = f(x,(cm),ﬁtm,zj), k=1, K, j=1,....J

begin Lloyd iteration

Define 710 = (ygo], e y[[g]) by letting y,EO] — mfﬂmﬂ), k=1,...K.
repeat
(m), = o
Compute y[lH] = 2o p’“( u))Jka]l{fijCi(y[l])}7 i=1,.. K.
' Dok Pi Wiy couwlty

until Y = 1l or some stopping criterion occurs

Set x((m+11)) = (:cher(l),)...,xl(Cerl)) — (ygl], s y[[l{])7
m—+ m

Set p;. =2 ki P wjﬂ{fkjeCk(y[”)}’k =1,..., K.
Output : (™) = ($gm+1)7 ...,xfﬂmﬂ)), plm+1) — (p(1m+1), ...,p(I;nH)).

untilm+1> M
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4.0.0.5 Algorithm based on the hybrid particle-quantization scheme (F)

Assume that b(z, 1) and o(x, p) are calculable for a countable sum of weighted dirac
measures j, = Zz 1 Didy,. The algorithm based on the hybrid scheme (F) is:

Algorithm 4: Hybrid particle-quantization scheme
Set K, M,N € N* with K < N.

begin Euler step 0

Simulate X0, .., XMV % x.

Choose (0 = (mgo), ...,mg))) C supp(Px,).

begin Lloyd iteration

Define 710 = (ygo], ceey ygg]) by letting y,E] — m,(co), k=1,... K.

repeat

+1] ZnN:1Xg’N]lck(y[l])(Xg’N)
N, ]lck(y[l])(Xg’N)

until YUY = YU or some stopping criterion occurs

Compute y;, k=1, K.

Set z(0) = (:cﬁo), . (0)) (ygl]w ,y%\;
| Compute p,(i ) = =LsN, Loy (Xo ™), k=1,.., K.

FEuler step m — Euler step m + 1:

repeat

Input :z(™ = (:cgm), ...,x%n)) € (RHK, plm) = (pgm), ,p%n)) c0,1)%
Simulate N-particle X;l’fl, e Xﬁﬁ by

Compute the initial quantizer z(m*1 = (xgmﬂ) x,(vmﬂ)) by

g eeey

begin Lloyd iteration

Define 710 = (ygo], ,y[lg]) by letting y,[go] — x,({mﬂ), k=1,.. K.
repeat

N n,N n,N
Compute 1) — 2= X1 1o, () (Xms1) b1 K
= ~ ~ Jk=1,.., K.
n=1 Loy (i) (Xomi1)
until YUY = 1 or some stopping criterion occurs

Set z(m+h) = (1“”“) ") e i),
Compute p(m+ NZ —1 Ly iy ( m+1) k=1,..,K.

untilm+1> M

aeey

K K
n,N n, n, m n, m .
Xm+l _XmN+h'b(XmN7k§_16I)(cm) p;(C )) +\/E‘U(XmN7k§_15Il(cm) p,(c ))Zm+1, n=1,..,

K K
$§ ) = Z’; ) + h ’ b($§ )7;@71 512"]) p/(C )) + \/E U(]}; )’kilamgn) pgg ))Z’m-‘rhj = 17"'7K'

N.
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Frequently used notation

(Qv’rv (}—t)t207 ]P)

(&, [l )
Px

1[I,

|
(Bt)i=0
Md,q(R)
(IRl

Oz

P(E)
Pp(E)

supp(f)

Vi ()
(Cr())1<k<i
eK.w

Dk

Proj,
c([0,T],R%)

I llsup

LZ([O,T],Rd) (Qa ]:a P)

-llp.cr
Hp,C,T
Pp (C<[07 T] ’ Rd))

filtered probability space

Banach space with norm ||-||

the probability distribution of the random variable X,

ie. Py =Po X!

LP-norm of the random variable

norm on R?, Euclidean norm in Section 7.2-7.5

Fi-standard Brownian motion, valued in RY

set of matrices with size d x ¢

norm on My ,(R), defined by [|A[| == SUp|;| <1 |Az|

Dirac measure on x

set of probability distributions on F

set of probability distributions on E with p-th finite moment
Wasserstein distance on P, (R%)

Lipschitz constant in Assumption (I)

q X q identity matrix

RY-standard normal distribution

cardinality

support of a probability distribution u

Voronoi cell generated by = € (RY)X | defined in (4.0.12)
Voronoi partition generated by = € (R?)X | defined in (4.0.13)
quadratic quantization error function, defined in (4.0.10)
quadratic distortion function, Dy , = eﬁ(’y

projection function on x, defined in (4.0.14)

the space of R%valued continuous applications defined on [0, T
sup norm on C([0, T],R?), defined by |atllsup = SuPtefo,ry ol
LP-space of random variables defined on (Q, F, P)

and valued in C([0,7],R%)

(Q,F,P), defined in (5.1.1)
[O,T],Rd)(g’]:’ P)
probability distribution g on C([0, 7], R?) s.t.

Jeqoryray 1€ ]5up 1(dE) < +o00

Wasserstein distance on P, (C([0, 7], RY))

set of all probability distribution with marginals p and v

norm on LZ([O,T},Rd)

space of Fi-adapted process in Lg(

(tt)tefo,1) 8-t t = py is continuous,

and u; € P(R?) for every t € [0, T]

distance on C([0,T7], Pp(R%)), defined in (5.1.5)

marginal projection on C([0,T],R?) — R%: a + m(a) = oy
truncated Wasserstein distance defined in (5.1.6)
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dyxp

A =

PN

cv

distance on H, o1 X C([O, T],Pp(Rd)) defined in (5.1.7)
application defined on P, (C([O, 7], Rd)) — C([O, T], Pp(Rd))
by pu— 1(p) = (o m; Niepor) = (te)eefo,r)

independence of two random variables

convex order between two random variables or two probability
distributions, see Definition 6.0.1

partial matrix order in Mgy, defined in (6.0.3)



Chapter 5

Existence and Uniqueness of a
Strong Solution of the
McKean-Vlasov Equation,
Convergence of the Theoretical

Euler Scheme

In this chapter, we first discuss the existence and uniqueness of a strong solution of

the McKean-Vlasov equation

dXt = b(t, Xt, /Lt)dt + O'(t, Xt, Mt)dBta
Xo: (Q,F,P) = (R?, B(R?)) random variable, Xo L (By)se(o.1]: (5.0.1)
Vt > 0, us denotes the probability distribution of X,

under Assumption (I). Furthermore, in Section 5.2, we establish the LP-convergence rate

of its theoretical Euler scheme:

Xtm+1 = Xt'm + h : b(tm’ Xtm’ /jtm) + \/ﬁO’(tm, Xtmvﬂtm)zm+1>
} »
fit, = Pg, +Zm =5 N(0,1), (5.0.2)

Xo = Xo,
where M € N is the chosen number of Euler steps, h = % and t,, = m-h=m- %,
m=20,...,M.
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5.1 Existence, uniqueness and properties of a strong solu-
tion of the McKean-Vlasov equation under Lipschitz

condition

Let (C ([0, T], Rd), 1|1l Sup) denote the space of R%valued continuous applications de-

fined on [0, T, equipped with the uniform norm [zl = sup;epo 7y |2¢|- Let Ly, (Q,F,P)

sup ° c([0,7],R%)

denote the space of C([0, T], R%)-valued random variable Y = (Y2)iejo,r) having an LP-
norm [|Y]],, = [E Y[ ]1/p = [Esupeqo 1] |Yt|p]1/p < +o0. For a fixed constant C' > 0,

sup

we define another norm |||, -1 on LZ([O,T],Rd)(Q’ F,P) by
1Y, cr= sup et sup |Yi| - (5.1.1)
t€[0,T] 0<s<t
It is obvious that |-, o7 and [|-[|, are equivalent since
VY € L gy (@ F ), TV, < Wlor < IV, (5:12)

We define

Hpor = {Y e L}, (Q, F, (F)epr) P) st. Y is F; — adapted. } (5.1.3)

([0,7],R)

Lemma 5.1.1. The space Hy o equipped with ||'HpCT is a complete space.

Proof. The space (Lg([o,T},Rd)(Q F,P), || p) is a complete space. Moreover, it follows

from (5.1.2) that [|-||, and []-[|, o1 are equivalent. Thus for any Cauchy sequence

X" eH,or C LD Q,F,P),

([O,T]Rd)(

there exists X () ¢ L} Q, F,P) such that

([07T]7Rd)(

Hx(n) _ X(OO)H Dot ),

p
which directly implies
HX(n) _ X(OO)H < ‘X(n) _ X(OO)H U SN
p,CT — p
and HX(OO)H or < HX(OO)H < liminf,, XM < 400 owing to Fatou’s Lemma.
p7 b p p

The fact that HX (n) _ x(c0) H D2Ee0 L implies also that there exists a subsequence
P
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X2 guch that

—0 a.s..
sup

HXw(n) (w) — X (w)

Thus there exists ¢ C Q, Qp € F with P(Qy) = 1 such that for every w € Qy,

HX“"(") (w) - X W) —o

sup

and for every w € Q\Qp, we can arbitrarily change the definition of X(°)(w). For
example, for every w € Q\Qp, set X () (w) = 0. Thus, for any t € [0, 7],

lim Xf(n) (W), weQ

XN w) = .
0, w e Q\QO

This implies that X () is (F;)—adapted. Consequently, X () ¢ Hp,cr and the space
(Hp,C,T, ||'||p,C7T) is a Banach space. O

For any random variable Y € LZC)([O,T],Rd)(Q"F ,IP), its probability distribution Py

naturally lies in

P, (C([0,T],R?))

= {u probability distribution on C([0, 7], RY) s.t. /

all? da) < —i—oo} )
o N0l ()

We also define an LP- Wasserstein distance W, on P,(C([0,T],R%)) by
i, € Py(C([0, T], RY)),

1
N G R GR Y

sup

W, (u,v) = inf /
plav) [wellil%u,u) c([0,7],R4)xC([0,T],R4)

where II(u, v) denote the set of probability measures on C([0, T], R?) x C([0, T],RY) with
respective marginals 1 and v. The space P, (C([0, 7], Rd)) equipped with W, is complete

and separable since (C([0,T],R%), ||| Sup) is a Polish space (see Bolley (2008)).

Let us consider now

C([0, T, Pp(RY))
= {(Nt)te[o,T} s.t. t — uy is a continuous application from [0, 7] to (Pp(Rd), Wp)}

equipped with the distance

de ((1)reor) (Ve)eepor)) = ts[%%] W (pit, vt)- (5.1.5)
€0,
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As (Pp(R%),W,) is a complete space (see Bolley (2008)), C([0,T], Pp(R%)) equipped
with the uniform distance d¢ is also a complete space.

For any t € [0,T], we define m; : C([0,T],RY) — R by a + m4() = .

Lemma 5.1.2. The application ¢ : P,(C([0,T],R?)) — C([0,T], Po(R?)) defined by

pru(p) = (o Wfl)te[o,T] = (Nt)te[o,T]

s well-defined.

Proof. For any p € P,(C([0,T],R%)), there exists X : (Q, F,R) — C([0, T],R?) such that
Px = pand E || X5, < 400 so that sup,ejo 71 E[X¢[” < +o00. Hence, for any t € [0, T7,

sup

we have p; € Pp(RY).
For a fixed ¢ € [0,77], choose (tn)nen+ € [0, 7)Y such that ¢, — t. Then, for any

we N, Xy (w) = Xi(w) since for any w € Q, X (w) has a continuous path. Moreover,

sup [| Xe,, (|, V{1 Xell,, < < 400,
n

sup | X|
0<s<T

Hence, || X3, — Xif|, — 0 owing to the dominated convergence theorem, which implies
that Wy (pu,,, ) — 0 as n — +o00, that is, ¢ — g is a continuous application. Hence,

(i) = (t)efo,r) € ([0, 7], Pp(RY)).
U
If we have a probability distribution p € P,(C([0,T],R?)), with a slight abuse of
notation, we denote directly (su)seo,r] = (1) € C([0,T7, Pp(R?)). The relation between
dc and W), has been introduced by D. Lacker in Lacker (2018). He defines an application

W1 on P, (C([0,T],RY)) x P,(C([0, T],R?)), called “truncated Wasserstein distance”,
by

1
Wy (1, v) = [ inf / sup |zs — ysP w(dx, dy)|” (5.1.6)
mell(p,v) JC([0,T],R%)xC([0,T],R?%) s€[0,t]

and indicates the relation between sup,c(oq Wy (s, vs) and Wy (p, v) as follows.

Lemma 5.1.3. For any pu,v € Pp(C([0,T],R%)), we have

vVt € [0,T], sup Wy(ps,vs) < Wy, v),
s€[0,t]
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where ps = p o m; L. In particular, for any p,v € P, (C([O,T],Rd)),

de(v(p); 1(v)) < Wp(p,v)

and the application v is continuous.

Proof. We consider the canonical space = C([0,7T],R%) x C([0, T], R?) equipped with
the o-algebra F generated by the distance

d((wl’oﬂ), (0‘1’ a2)) = le o alusup v Hw2 o QQHSHP

and P € TI(u, v) where II(u, v) is the set of probability measures with marginals p and
v. For any w = (w!',w?) € Q, we define the canonical projections X : Q — C([0, 7], R?)
and Y : Q — C([0,T], R?) by

Vw = (whw?), Vte[0,T], Xi(w)=uw, and Yi(w)=w?

The couple (X,Y) makes up the canonical process on Q. Since P € II(u,v), then X has
probability distribution p and Y has probability distribution v. Moreover, we have

sup Wh(us,vs) < sup E[X, = Y|P <E sup | X, —Yy|".
s€[0,t] s€0,t] s€[0,t]

Then we can choose by the usual arguments P € II(u, v) such that

E sup | X5 — Y|P = (Wp,t(/ls,l/s))p
s€[0,t]

to conclude the proof. O

We define a distance dyxp on Hy o x C([0,T], Pp(R?)) as follows:

v (Xa (Ht)tE[O,T])v (Y7 (Vt)tG[O,T}) € HP,C,T X C([Oa T}vpp(Rd))v
deP((X7 (1t)eepo,r)), (Y, (Vt)te[o,T})) = | X =Y, cr+ sup e W, (u, ).
t€[0,T7]
(5.1.7)

We define also a distance d,,c;7 on C([0,T], Pp(RY)) as follows:

v(ﬂt)te[O,T]v (Vt)te[O,T} € C([07 TLPp(Rd)),

dp,cr ((1e)teo,r)s (Ve )tepor]) = sup e~ Wy (g, ).
te[0,7)



142 Existence and Uniqueness of a Strong Solution, Convergence of the Euler Scheme

Lemma 5.1.4. Both (C([O,T],Pp(Rd)),dp,C,T) and (HpvqT X C([O,T],Pp(Rd)),d’HX'p)
are complete metric spaces.

Proof. The distance d, c7 and d¢ are equivalent since for any (u) := (Mt)te[O,T]v (1) =
(Ve)ieo,r) € C([0,T7, Pp(R?)), we have

dpcr (), () < de (), () < e“Pdpor (), ().

Thus (C([O, T], Pp(Rd)),dp,qT) is complete. Moreover, it follows from Lemma 5.1.1 that
(Hp,c.r x C([0, T, Pp(RY)), dyxp) is also a complete metric space as the product of two
complete metric spaces. O

Before proving that the McKean-Vlasov equation (5.0.1) has a unique strong solution
under Assumption (I), we firstly recall two important technical tools used throughout the
proof: the generalized Minkowski Inequality and the Burkolder-Davis-Gundy Inequality.
We refer the proof of these two inequalities to Pages (2018)[Section 7.8] among other

references.

Lemma 5.1.5 (The Generalized Minkowski Inequality). For any (bi-measurable) process
X = (Xt)t>0, for every p € [1,00) and for every T € [0, +o0],

I/ xa

Lemma 5.1.6 (Burkélder-Davis-Gundy Inequality (continuous time)). For every p €
(0, +00), there exists two real constants chG > 0 and C’fDG > 0 such that, for every
continuous local martingale (Xt)te[o,T] null at 0,

2 ||, < | s ]| <00 |0

In particular, if (B;) is an (F;)-standard Brownian motion and (Hy):>o is an (F)-

T
< [ 1%, de.
P 0

sup | Xyl
te[0,7

progressively measurable process having values in My ,(R) such that f(;f | Hy||* dt < +o0
P — a.s., then the d-dimensional local martingale fo H,dB, satisfies

t T
/ H.dB, / 1|12 dt
0 0 »

Now we start to prove the existence and uniqueness of a strong solution of the

sup (5.1.8)

te[0,T)

S
p

McKean-Vlasov equation (5.0.1). Firstly, under Assumption (I), the coefficient functions

b and o have the following properties.

Lemma 5.1.7. Under Assumption (I), we have
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(a) The functions b and o have a linear growth in the sense that there exists a constant

Chvo,r,7 depending on b,o, L and T such that
vt e [O,T],V.T € Rd,Vu S Pp(Rd)a |b(t7xvu)‘\/”|0(tvxv M)’H < Cb,U,L,T(1+|x’+Wp(:U’7 60))7

where &g denotes the Dirac mass at {0}.

(b) For any (X, (ue)eeo,r)), (Vs Wiieor)) € Hpor x C([0,T), Pp(RY)) and for any
t e 0,7],

s t
<o [0 X = b Vi) | < 2 [ = Yol D8 ) s
se|0,
P
and
sup / [0 (uy X, pru) — 0w, Yy, )| dBy
s€[0,¢] 1/0

t 1
< Cap{ | TIXu=Yull2+ Wl )]}

where Cqp 1, is a constant only depending on d,p, L.

Proof. (a) For any x € R? and for any p € P,(R?), Assumption (I) implies that

vt € [0,T], [b(t, , )| = [b(¢, 0,00)] < [b(t,z, 1) — b(t, 0,00)| < L( || + Wy (p, 0o)).-
Hence,

[b(t, =, )] < [b(£,0,00)] + L[] + Wy (1, do)) < (b(£,0,00)[ V L) (1 + |2] + Wp(p, o))

Similarly, we have ||o(¢,z, p)|| < ([lo(t,0,00)|| V L)(1 + |x| + Wy(1, do)), so we can take
Cbo,L,7 = suPycpo, 1) [b(t, 0,00)| V supyepony lo (¢, 0,d0)[[| V L to complete the proof.

(b) For any (Xa (Mt)tE[O7T])7 (Yv (Vt)tE[O,T]) € Hp,C,T X C([Oa T]a 'Pp(Rd)), for any t € [07 T]a
we have

t
sup / [b(, X,y p) — bw, Yy, )| du
s€[0,t] 1/0
s t
< || sup / ‘b(u, Xunuu) - b(u, Yu, Vu)ldu = H/ ‘b(uaXm,uu) - b(u, Yu, Vu)}du
s€[0,t] /O » 0 P

t
< / 16w, Xu, pi) — bu, Yo, v)||,, du (by Lemma 5.1.5)
0

t t
= /0 HL[ [ Xy = Yu| + Wp(pu, VU)] Hp du < L/O [ [ X — Yunp + [ Wo (ba, Vu)Hp]duv
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and
S
sup / [J(u,Xu,,uu) —o(u, Yy, uu)]dBu
s€[0,¢] 1/0
t
< CfI?G \// llo(w, X, pr) — 0 (u, Yo, )| *du||  (by Lemma 5.1.6)
0 P
1
2
<0 | [l Xass) = oo Yol
3
(since H\FU” = EU% Chel g ||UH§ when U > 0)
< DG / (116, X ) = 1, Yo ) P]], ] :
2
(by Minkowski’s inequality, since p € [2, +00))
1
s 1%
ﬂ)@ / H“|‘7 wy X, fhy) — U(u,Yu,Vu)”H‘pdu] 2
. P 112 2
(since |[02, = [E10F)?] = 1U1)
2
BDG ! 2 2
<Cy /0 |L[1 Xy — Yal +Wp(uu,uu)]||pdu]
(by Assumption (I))
t 1
2
< CEPOL[ [ (1 = Yol + 1Walps ), ]
t 1
< VECEROL] [ (1 = Yl + 1Watas ) 2]
Then we can conclude the proof by letting Cy 1, = V2 C’pr GL. O

The idea of our proof follows from Feyel’s approach, originally developped for the
existence and uniqueness of a strong solution for SDE dX; = b(X;)dt + o(X:)dB; (see
Bouleau (1988)[Section 7]). We define an application ®¢: Hy, o7 x C([0,T], Pp(R?)) —
Hpor x C([0,T], Pp(R)) D) by

V(Y, (Vt)te[O,T}) € HpCT X C([O T} P (Rd))

Po(Y, (Vt)tG[O,T]) X0+/ b(s, Ys, vs d8+/ s, Y5, Vs)dBs )tE[OT]’ o ‘I’(D(Y(Vt)teOT]))).

0 (V.0 )eegorr)
The application ®¢ has the following property.

Proposition 5.1.1. (i) The function ®¢ is well-defined.

(1) The C' in the subscripe of ®¢ is the same constant C' as in (Hp,c,1, |||l c.7), the same below.
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(1) Under Assumption (I), ®¢ is Lipschitz continuous in the sense that: for any
(X,u(Px)) and (Y,u(Py)) in Hycr x C([0,T], Pp(R?)),

Kl
C\f

where K1, Ko are real constants which do not depend on the constant C.

dHXp(q)c(X,L(Px)) e (Y, L(Py))) (=L )dHXp<(X,L(PX)),(Y,L(Px))>,

Proof. (i) It follows from Lemma 5.1.2 that for every X € M, o7, t(Px) € C([0,T], Pp(R?)).

Let v = Py. Next, we prove @g)(Y, (v)) € Hp,c,r. For any ¢ € [0,7],

S S
sup ‘@C YL ‘H sup |X0+/ b(u,Yu,Vu)du—i—/ O'(U,Yu,Vu)dBu|
s€[0,t] s€[0,t] 0 »
t s
< X0+/ |b(u, Yy, 1) |du + sup ‘/ o(u, Yy, )
0 s€[0,t]
P
t
SHXO\p—FH/ |b(u, Yy, 1) |duf| + || sup ’/ (u, Yy, 1)
0 D s€[0,t] P
(5.1.9)

Owing to Assumption (I), we have || Xo||,, < +oc. For the second part of (5.1.9), it
follows from Lemma 5.1.7-(a) that

t t
< [ I Yl du < [ o (Lt IVl + [Wy(2s 60, )

t
/ b(u, Yy, vy)du
0 p

t t
< 2WChnr [ (14 1Yol Jdu < 20 [ (14T V], 07 )du < +oc.

Moreover,

s
sup ‘ / O'(U, Y, Vu)
s€lo,t] ' /O

p

t
<cpre \// llo(u, Y, )| *dul|  (by Lemma 5.1.6)

0 p

' 1
3 b2yl 1
< OB | ot Yl tsine [ VX[, = x4 = i
1
CEI?G / HH|J u, Y, vu) | H du} 2 (by Minkowski’s inequality, since p € [2, +00))

2

. 2\p

< cppe / [l (a, Yo, ) du] (since ||| X7, = (EIXI**%)" = 1X1)
2
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t 1
< 051?0{/0 ch,o,L,T[l + Y| + Wy (v, 60)] H; du}2 (by Lemma 5.1.7-(a))
1

t 1
<CBPS Copir{ [ [+ 1¥all, + Wylon,60))

: 1
2 .
< CdBiz?G : Cb,U,L,T{ /0 [1 +2 ||Yqu] du}2 (since Wy (v, dp) < HYqu)
1

¢ 1
<CpPe. cb,c,,L,T{2T+/ 4|, du}2 < 400 (since (a+ b)* < 2(a® +0°) ),
0
where the last inequality of the above formula is due to

t t
[ AWl du< [ 46T Y, du < AT T Y], 0 < 400,
0 0 b b b b

Hence for every ¢ € [0, 7], Hsupse[o’t} ‘@g) (v, L(V))S‘ H < 400, which directly implies
p

H@g)(Y, L(V))H = sup e ¢ < 4o00.

(1)
por S sup ‘CI)C (Y,L(Z/))S)

s€[0,t]

p
Thus @5 (Y, 0(v)) € Hp.o7-

(#4) We will first prove that for any X,Y € H, o7, dpor(0(Px), (Py)) < | X — Y, cr
In fact

dp707T(L(Px),L(Py)) = sup e_Cth(PX o 7Tt_1,Py ) 7rt_1) < sup e ¢ |1 X — Yt||p
te[0,7) t€[0,1]

—Ct sup | X — Y|

<X =Y, cr-
s€[0,t]

p

Next, we will prove that @g) is Lipschitz continuous. For any X,Y € H, o1, set

= Px and v = Py. Then

Hfbg) (X, e(p)) — @g) (Y,L(l/))H

p,C, T
= / (b(u,Xu,uu) —b(u, Yy, l/u))du + / (U(u,Xu,uu) —o(u, Yy, Vu))dBu
0 0 p,CT
< || [0 X ) = b Yaom))dull || [ (o X ) = ol Vi) B,
0 p,C,T 0 p,C,T
= sup e “|| sup / [b(u,Xu,uu) —b(u, Yy, l/u)]du
te[0,T] s€[0,¢] 1/0
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Ct

/S [U(u, Xu, p) — 0(u, Yy, Vu)]dBu
0

+ sup e
te[0,7)

sup
s€[0,¢]

Owing to Lemma 5.1.7, we have

sup e ¢t

t€[0,T]

sup
s€0,t]

/DS [b(u, Xus ) — b(u, Yy, Vu)}du

t
< L sup e_Ct/ (HXU — Yqu + Wy (pus Vu))du
te[0,7] 0

t
<L S[up]eCt/O (2| Xy — Yqu)du (since Wy (o, V) < || Xy — Yqu)
tel0,T

t
< 2L sup e_Ct/ eCu(e—Cu | X0 — Yu”p)du
te[0,T] 0

t
< 2L sup e*Ct/O Crdu- | X — Y, 0p (since e~ X, = Yy, < [IX = Y], 0p)

t€[0,7]
Ct
e”t—1

=2L sup e “'——— | X Y]

te[0,7) C Pt

2L
< el X =Y, cr
and
S

sup C_Ct sup / [U(U7Xu“uu) - 0’(u7Yu7I/u)}dBu
te[0,T] s€[0,t] [/0

1

t
< sup e Cdm,L{ /0 [ Xy — Yu||12) + Wg(uu, v )du) } * (by Lemma 5.1.7)

t 1
< s[up]e—Ct odp,L{ /0 2(|X, — Yul? du}2 (since W (juu, va) < [ Xu — Yal|)
te[0,T

IA

t 2 1
V2Capa sup O { [ (e 1% Yol ) )
€0,

t 1
T telo,T] 0
(since e || Xy, = Yo, < | X =Y, cp)
€2Ct -1

1
—C 2
<V2CapLlIX =Y, cr- sup e t[ 20 }

te[0,T)
< Ganr

Ve

X =Y, o
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1 1
—Ct|e2Ct-1|2 1—e—2Ct |2
2C

since supy¢o 7] € } < Sup;efo,7] [T = \/% Consequently,

|26 (X.0w) - 2 (v .

< H/ﬂ b(u, X, fra)du — /0 b(u, Yo, o) du

p,C,T

+ H/ o(u, Xu, py)du — / o(u,Yy,v)dBy,
0 0

2L Cypr
< - Py _
> (C + \/5 ) ||X Y”p,C,T'

p,C,T

Therefore,

dricp (D0 (X, 1(n)), @c (Y, u(v)) )
= o (x,um) - 28 (v, )| g Hnca(P,

2.C. oD (xu(m) LoD v, o)

2 ( 2L Cd7p7

§2H(I)g)(X,L(;L)) — oW (v, u(v)) Gt e )IIX Y, cr-

Hp,CT

<25+ TE) s (X0, (V20)).

Hence we can conclude the proof by letting K1 = 4L and K3 = 2Cy,, 1. O

Proposition 5.1.1 directly implies the existence and uniqueness of a strong solution
of the McKean-Vlasov equation (5.0.1) as shown below.

Theorem 5.1.1. Under Assumption (1), the McKean-Viasov equation defined in (5.0.1)

has a unique strong solution.

Proof. Proposition 5.1.1 implies that ®¢ is a Lipschitz continuous function. Thus, F =
Do (Hp,cr x C([0,T], Pp(RY))) is a closed set in Hy, cr x C([0,T], Pp(R?)). Moreover,
For a large enough constant C', we have (K L4 \f) < 1, then ®¢ is a contraction mapping.
Therefore, ®¢ has a unique fixed point (H, «(Pp)) € Fo C HporxC([0,T], Pp(R?)) and
this process H is the unique strong solution of the McKean-Vlasov equation (5.0.1). O

5.2 Convergence rate of the theoretical Euler scheme

We add the following assumption in this section.

Assumption (II): For every s,t € [0,T] with s < t, there exist positive constants L,~
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such that

Ve e R,V e P(RY),
’b(t7xaﬂ) - b(svxaluﬂ v |||a(t,:n,u) - U(vaa,u)m < E(l + ‘l‘| + Wp(lua(s(]))(t - 8)7‘

Let (X¢)sejo,r) be the unique solution of (5.0.1) and let y; = Px,,t € [0,7] be its
marginal distribution at time ¢ € [0, T]. Moreover, let (X;,, )m=0,. v be the Euler scheme
defined by (5.0.2) and let fi;,, = Py
the following proposition.

m = 0,..., M. The main result of this section is

tm

Proposition 5.2.1 (Convergence rate of the theoretical Euler Scheme). Under Assump-
tion (I) and (II), one has

sup ‘Xtm - Xﬁ‘j‘ < Chi™, (5.2.1)

Sup Wp(/ji\fn’ /‘I’t'm) S 0<m<M
SM>

0<m<M

P
where C is a constant depending on L, L,p,d, HXOHp,T,’y.

Remark 5.2.1. If the McKean-Vlasov equation (5.0.1) is homogeneous, i.e. the coefficient
functions b and ¢ do not depend on ¢, Assumption (II) is directly satisfied with ~ as

large as we want. In this case, the convergence rate of theoretical Euler scheme is

< Chz. (5.2.2)
p

Sup Wp(/_ﬁi\i ) Htm) S

sup )Xtm — )_(%’
0<m<M

0<m<M

In order to prove Proposition 5.2.1, we introduce the continuous time Euler scheme

(Xt)te[o,T} which reads as follows: set Xo = Xg and for every t € [t,,, tmy1), define
Xt = Xtm + b(tm, Xtm,,t_l,tm)(t — tm> + O'(tm, Xtmyljtm)(Bt — Btm)- (523)

The above definition implies that X := (Xt)te[O,T] is a C([0,T],RY)-valued stochastic
process. Let ji denote the probability distribution of X and for every t € [0, T}, let i
denote the marginal distribution of X;. Then (Xt)te[O,T] is the solution of

dX, = b(t, Xy, i)dt + o (t, Xy, fi)dBy,

Xy (t, X, i) (t, X¢, 1) dBy (5.2.4
Xo = Xo,

where for every t € [tm, tm+t1), L= tm.

Now we recall a variant version of Gronwall’s Lemma and we refer to Pages

(2018)[Lemma 7.3] for a proof (among many others).

Lemma 5.2.1 (“A la Gronwall' Lemma). Let f : [0,T] — R, be a Borel, locally bounded,
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non-negative and non-decreasing function and let ¢ : [0,T] — R4 be a non-negative
non-decreasing function satisfying

1
t t 3
veel0,1], f0 <A [ S+ B ( [ £es) o),
0 0
where A, B are two positive real constants. Then, for any t € [0,T],

f(t) < 26(2A+32)t1/1(t).

The proof of Proposition 5.2.1 relies on the following lemma.
Lemma 5.2.2. Under Assumption (I), let X be the unique strong solution of (5.0.1)
and let (Xt)te[o,T] be the process defined in (5.2.3). Then

(a) There exists a constant Cp 44, depending on p,d,b, o such that for every t € [0,T1,

VM > 1, v

p

sup | X|

sup ))_(IJLV[
u€[0,t] ]

u€e0,t

< Cpapoe Pt (1+ ]| Xoll,)-
p

(b) There exists a constant k depending on L,b,o,|Xol|,p,d, T such that for any s,t €
[0,T],s < t,

VM > 1, HXtM _ XM

(p VX~ Xll, < kVE—s.

Proof. (a) If X is the unique strong solution of (5.0.1), then its probability distribution
1 is the unique weak solution. We define two new coefficient functions depending on

(1) = (p1t)eejo,1) by
b(t,x) == b(t,z, ) and &(t,z) = o(t,x, j1z).

Now we discuss the continuity in ¢ of b and . In fact,

|B(t7x) - [;(Sax” < |b(tax7ut) - b(S,.Z',,U,S)‘
< |b(t’1:a/"‘t) - b(s»ﬂf,ﬂt” + |b(83$a/~6t) - b(S,IE,,U,S)|
< ‘b(tv €, Mt) - b(s7xv:ut)| + WP(Mhﬂs)a (5'2'5)

and we have a similar inequality for 6. Moreover, we know from Assumption (I) that b and
o are continuous in ¢ and from Lemma 5.1.2 that t(11) = (put)seqo.r] € C([0, T], Pp(R?)).
Hence, b and & are continuous in t. Moreover, it is obvious that b and & are still Lipschitz
in x. Consequently, X is also the unique strong solution of the following stochastic
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differential equation
dX; = b(t, X;)dt + 5(t, X;)dBy

with X same as in (5.0.1).

Hence, the inequality

sup |Xu| < Cfp,d,b,aeCp’d’b’Ut(1 + ||X0||p)

u€(0,t]

p

can be obtained by the usual method for the regular stochastic differential equation for
which we refer to Pages (2018)[Proposition 7.2 and (7.12)] among many other references.

Next, we prove the inequality for Hsupue[ojt] \Xé\/[ | H .
D
We go back the discrete Euler scheme

XM

tm+1

= XM+ bbb, XM 1) + Vo (b, X2 000) Zig
We write X, instead of )_(% in the following. By Minkovski’s inequality, we have

1Kol = 1Kol B o€, K ) = V|l s K )1 Zon] |

As Z,, 11 is independent of the o—algebra generated by X'to, ..., X3,., one can imply the

linear growth result in Lemma 5.1.7 and obtain
Kb |, = 1Kl + Co . (h+ cph'2) (1 + || X [, + Wo(do, X2,,)),

where Cy 1,7 and ¢, are two real constants. As W, (do, X; ) < HXtm Hp, there exists a
constant C' such that
[ Xt |, < C 1 X,

which in turn implies by induction that

max | X, |, < 4oo

since H)_(OHP = || Xoll, < +oo.

For every t € [tm, tm+1], it follows from the definition (5.2.3) that
[ X, < 1%l G = ) o, K, + [l s Ko ) 1B = Bl -

We write X; instead of X in the following when there is no ambiguity.
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As B, — By, is independent to o(Fs, s < t,,), it follows that

[Xell,, < ([ Xe |, + Coorr (1 [ K[|, + Wp (00, X)) (B4 ep(t = tm)")
<1 ||Xo, |, + Co.

where C] and (5 are two constants. Finally, for every M > 1,

sup H)_(tMH < +o0. (5.2.6)

te[0,T p
Consequently,
sup ’
u€(0,t]

u —

<HX0H —l—H/ ’b |ds + || sup /U(S, sy fs)dBs

p u€(0,t] »
(Minkowski’s Inequality)

S 2
< 1Xoll, + o, Koo )], ds + CEP \// llo(s, X )| ds
P

(by Lemma 5.1.5 and 5.1.6)

t _
< \|X0Hp+/0 Chon,r |1+ | Xs| + Wy (fis, d0)||, ds

t _
\//0 11+ [ Xa| + Wy (s, 60) |2ds

t _
guxoup+/0 Chopr(1+2|| Xe| )ds + EEE

+ CBDG

AL (by Lemma 5.1.7 — (a))

\// A1+ | X + W2 us,éo)d

t _
<1 Xl +/0 Chor(1+2]| | )ds

t t
\/4@—1—/ ’X§|2d8+/ W2 ﬂs,éo)ds]
0 0

BDG
+ CipL

\/+\// X, ds+\//W (fis, S0)d

t = !
§\|X0Hp+/0 Coonr(1+2||X| )ds + CIF

t _
< 1X%oll, + / G (142 K], s

/\x\ds

< |IXoll, + /0 Chopr(l+2 H&Hp)ds

BDG
dpL

\// W2 (i, 60)ds]
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+ (/Ot W2(jis: 50)d3)%]
< 1 Xoll, +/ ObgLT(1+2||Xsy| \ds
e e[| 0+ i 0]

(by Lemma 5.1.5 since g >1). (5.2.7)

o [Vie | [ 1% a

It follows from H’X§|2Hp = [E {)_@’2% ]% = HXQH; and
3

1

[/Otwﬁ(usﬁo)ds 2 / [ W (s do) | ds% / X5 H ds%

that

P
u€el(0,t]

t — '
<ol + [ Chmar 2Kl s+ CEDE (Vi [ [ IRl ).
p
(5.2.8)

Hence, for any t € [0,7T], (5.2.8) implies that, for every M > 1,

< 400

sup ’_u
u€(0,t]

owing to (5.2.6).

H

In order to establish the uniformity in M, we come back to (5.2.8). As HX ||

, it follows that
P

sup | XM||| < IXoll, + Coo,rr(t + CEDE VD).
w€(0,t] P
2
t , t 1
+C’b707L7T{/ sup | Xu| ds—l—CfoLG [/ sup | Xu||| ds]?
0 [luelo,s] » 0 ||uglo,s] »
Hence,

u€(0,t]

_ BDG'?
sup | X ]H < 26Cor T (| X, + Coo i (t + CEDEVD)),
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by appling Lemma 5.2.1. Thus one can take
12
Cpapo = (2000 + Cipt )V 200 1r(T + CipEVT) V2
to conclude the proof.

t ¢
t— As| — » dus y Auy Hu u
(b) It follows from |X; — X| = | [ b(u, Xu, pu)du + [ o(u, Xy, pt)dB

that,

t t
= Xl < [ ot ] | [ ot sy,
s P s p
¢ BDG ! 2 %
< [ bt X )l du+ CEPE | [ o, X, )P
S S £
2

(by Lemma 5.1.5 and Lemma 5.1.6)

t
< [ Chonr [L+ 1Xull, + Wil 80, | da

CfDG (by Lemma 5.1.7 — (a))

t 2
[ o1+ 1Xull, + W, 60, |

P
2

2

t t
g/ C’b@Lg{l+2||Xu||p]du—|—4C£If)G-C’b,ng,T / [1+\|Xu||§+w§(up,5o)}du
S S

P

t
< [ Chowr[1+201%,, ] du
S

+ 4C£pDG . Cb,o,L,T [(t —5)+ ’

t
/ | Xu|? du

t
- H/ W2 (s 80) du
P S
2

1
}2
Y
2
t
< [ Cronr[t+201%,, | du
S

t
—|—4C£IJDG'C57O7L7T[V75—S+ [/
s

1
2

o]+ [ f o5t g

sup | Xy

t
< / Cho,L,T {1 +2
s u€(0,T]

| du

t t
+4CPP o {VE =5 + \// | X2 du + \// W, o) 2 du

< ChoLT [1 +2|| sup |X,] ](t —3)
u€[0,T)] »
2
4 4CCJZSPDG . Cbp,L,T{\/t —s+2Vt—s| sup |X,| }
7 u€(0,7) »
2
< {ob,g,L,T [1 42| sup | X }\/T +4CHPC . Cyppr1 42| sup |X| ]}m.
u€f0,7] » u€el0,7) »
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Owing to the result in (a), H

< Cpapoeratot(1+ [ Xoll,,), then one
P

can conclude by setting

5= CLbo | Xolpa =Cho 11| L+ 2Cpap0e e (1 4 | Xol|,) VT
+4CT)Y - Coo (1 +2C] 4 o€ Pt (14 || Xol|,)? .

O]

Proof of Proposition 5.2.1. We write X; and fi; instead of XM and i to simplify the
notation in this proof. For every s € [0, 7], set

£s = Xs— X, :/ (b(u,Xu,uu)—b(g du+/ (uy, Xu, p)—0 (u, )_(u,ﬂu))dBu,
0 wy Hu
and let
f(t) = || sup |€s‘ = || sup |Xs - Xs}
s€[0,t] » s€[0,t] »

It follows from Lemma 5.2.2-(a) that X = (X;)ieo7] € L’C)([0 7 Rd)(Q,f, P). Con-
sequently, i € P,(C([0,T),R)) and «(u) = (put)eepo,r) € C([0,T], Po(R?)) by applying
Lemma 5.1.2. Hence,

f(t)=|| sup |X5—Xs|
s€[0,¢] »
t s _
/ }b(s,Xs,,us) —b(s, X ’ )|ds + sup / (O’(U,Xu, ) — o (u, Xy, ﬂg))dBu
0 s€[0,t]

P
\// WO' s, Xsy fts) — o (s, _§>ﬂ§)m2d‘s

/ llor(s. X, ) — (s, Ko )| ds||

t —
< /0 [6(s, Xas 1s) = bls, X, )|, ds + CLDE

t —
= /0 [b(s, Xa, 1s) = bls, X, i) |, ds + CHDE

t _ —
< [ 1 Xoe) = bls, Ko il s+ CEPE] [l Xoo o) = s, Koo i) |

t ~ 1
:/0 ||b(37Xsa,Us)_b(§a §,ﬂ§)||pd8—|— BDG / HH|U S Xsa,us - (§7 saﬂé)”“‘zds}z
t _
S/O 16(s, X, s) — (8, X, s, ds+/ (s, X5, 1) = b(s, X5, jas) |, ds

CBDG[/ (s, X, ps) — o, X, pas) || + ||| (s, X, p25) — (s, X, ﬂé)}””ids]g’
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where the last term of (5.2.9) can be upper-bounded by

BDG / |||H0 &) XSHU’S _a(§7X87:u’8)H| + H|U(§7X87:u’8) - ( S /_1' |||H d3:|

N|=

N

- CBDG[ [ Tt Xoom) = oo, Xl + e, Xoo) — (s, K )]
V20 / (s, Xos125) — (s Xo o)l 2s]

CBDG / o (5. X ) — 05, X ) || 2] 2. (5.2.10)

It follows that

NI

/Otnb(s,xs,us) b(s. Xy, ps)ll, ds + V2CFPC /OtHIHrf(stsaus)0<57Xs»ﬂs>HlHid5}
< [ = 0 L0+ 15+ Wit 80) ] 5
+vacppel [ 10 = 57 E (141X, ]+ W (s, 60) |2ds] - (by Assumption (ID)
< WITL( 1+2H s Xl ||,) + V2RV LOZ, [T 2+4HS§EPT] |X5\Hi)]%
< WTL(1 (+2] sup. |X ) +fh7LCBDG[\/ﬁ+2\fT||S§B%]|Xs|Hp] (5.2.11)
and
s X = b Ko s+ VRCER [l Xoo) = oo K )

1
/||L X, = Xy |+ Wplsn is)) |, ds + V2CEP] /0 L (X = X |+ Wy(pts, ) |2 ds|

1

— 2 5

g/o 2L | X, — X, ds + V2CEPC /04L2 X, — X[} ds]?

t _
< [onf)x - x, + 11X - K], ] as
<rys=s<wVh

t 1
V20 BDG /4L2[HXS*X§Hp+HXﬁfXéHp]QdS]Q(by applying Lemma 5.2.2-(b))
0 —
<k/s5—5<kVh
t
s/ 2L[H\/E+||X - K|, ]as
BDG /4L2 [sVh + || X5 — - X|,] ds}

1

< 2LtkVh + 4CF DGL\MWHL/ f(s)ds + 207 PCAL / f(s)?ds]?. (5.2.12)

Let &(T, || Xoll,,) = Cp.apoeCrivot(l+ [ Xoll,,), which is the right hand side of results in
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Lemma 5.2.2-(a). A combination of (5.2.9), (5.2.10), (5.2.11) and (5.2.12) leads to

f(t)=1|| sup |X5 —XS|
s€[0,t] »
<PTL+ 2] sup |Xl||) +V2RTLCEY Y [V2T + 2VT| sup | X, || ]
s€[0,T7 5€[0,T

+ 2LteVh + V207 P92V 2L/ tkv/h + 2L /t f(s)ds + V207 %4L] /t f(s)2ds]2.
0 0
< hEM(T) + 2L /t f(s)ds + \/icff%L[/t f(s)2ds}5,
0 0

where

1

W(T) =T7""2[TL(1+ 2&(T, | Xoll,)) + V2LCFPY (V2T + 2VTR(T, | Xol,))]
+ T2 20Tk + 4CFPC LVTk].

2
Then it follows from lemma 5.2.1 that f(¢) < 9 (4L+16CT ) LT @Z)(T)h'y/\%. Then we
B 2
can conclude the proof by letting C' = 9e(ALH16CTT LT (T). O

The proof of Proposition 5.2.1 directly derives the following result.

Corollary 5.2.1. Let X = (Xt)te[O,T] denote the process defined by the continuous time
Euler scheme (5.2.3) with step h = L and let X = (Xt)iejo,r) denote the unique solution
of the McKean-Viasov equation (5.0.1). Then under Assumption (I) and (II), one has

W, (X, X) < | sup |X;— Xi||| < Ch2™, (5.2.13)

te[0,T]

p

where C is the same as in Proposition 5.2.1.






Chapter 6

Functional Convex Order for the
McKean-Vlasov Equation

The aim of this section is to establish functional convex order results for d-dimensional
scaled McKean-Vlasov equation, which extends results in Pages (2016) obtained for
one dimensional martingale diffusion, solution of stochastic differential equations of the
form dX; = o(t, X;)dB;. The convex order result is also an direct application of the
convergence of the theoretical Euler scheme proved in Chapter 5, even this scheme is
not directly computable.

Let P(R?) denote the set of all probability distributions on R%. Let o, § be two
functions defined on [0, 7] x R? x P(R?) and valued in Mgy,. We define two McKean-
Vlasov processes (Xt)te[o,T] and (Kg)te[oﬂ by

dX; = (OéXt + B)dt + O'(t, Xz, ,ut)dBt, Xp € LP(P), (601)
dY; = (oY, + B)dt + 0(t, Yi, v;) dB,, Yo € LP(P), (6.0.2)

where p > 1 o, f € R and for any ¢ € [0, T], u and vy respectively denote the probability
distribution of X; and Y;. The main goal of this section is to prove if o and 6 are ordered
for some matrix order, then the process (X¢)cjo,r] and (Y;)iepo, 7] defined in (6.0.1),
(6.0.2) are accordingly ordered for the functional convex order. To be more precise, let
us first recall the definition of convex order for two R%valued random variables U and
V and generalize this definition to two probability distributions u,r on (Rd, B(Rd)).

Definition 6.0.1. (i) Let U,V : (0, F,P) — (R%, B(RY)) be two random variables. We
call U is dominated by V for the convex order - denoted by U <., V - if for any convex
function ¢ : R* - R,

Ee(U) <Ee(V),
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as soon as these two expectations make sense in R := R U {£o0}.

(ii) Let p,v € P(RY). We call the distribution u is dominated by v for the convex order
- denoted by 1 < ¢y v - if for every convex function ¢ : R* — R,

|, e@ntde) < [ eewie),
R

Rd

as soon as these two integrals make sense in R.

If we denote by Py =P o X! the probability distribution of a random variable X,
it is obvious that if X <., Y, then Px <., Py and vice versa.

We define a partial order between matrices in Mgy, as follows:

VA, B € Mgy, we write A < B, if BB* — AA™ is a positive semi-definite matrix.
(6.0.3)
Moreover, we assume that X, Yp, o and 6 in (6.0.1) and (6.0.2) satisfy the following

conditions:

Assumption (III): (i) For every fired t € Ry, u € P(R?), o(t,-, ) is convex in = in
the sense that

Va,y e REVA€[0,1], ot Az + (1 =Ny, pu) < Ao(t,z, 1) + (1= Na(t,y,p). (6.0.4)

(ii) For every fizedt € Ry, x € RY, o(t,x,-) is non-decreasing in u with respect to the
convex order, that is,

Vv e PRY p=<erv, = otz p) <otz ). (6.0.5)
(iii) For every (t,z,n) € Ry x R? x P(RY),
o(t,x,u) < 0(t,z, pm). (6.0.6)

(i’U) X() jcv Yo.

The main theorem of this section is the following

Theorem 6.0.1. Let X = (Xy)ico1), ¥ = (Yi)iejo,r) respectively denote the solution
of McKean-Vlasov equations (6.0.1) and (6.0.2). Assume that the equations (6.0.1)
and (6.0.2) satisfy Assumption (I), (II) and (III). Then for any convez function F :
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C([0,T],R%) — R with (r, [/l sup)-polynomial growth, 1 <r < p in the sense that
Va € C([0,T),R?), there exists C >0, s.t. |F(a)]<C(1+ el ) (6.0.7)
one has
EF(X) <EF(Y). (6.0.8)

Let M € N* and let h = % For m =0, ..., M, we write t! :== h-m = % -mW). The
Euler schemes of (X);cjo,m) and (Y7).e[o,7) are

X%Jrl:)z%—kh(OéXt]:[L—l—ﬁ)—{—\/ﬁU(t%,X%,ﬂi]\i)Zm+1, XOZX(),

_ _ - - ) (6.0.9)
VM = YM 4 b (@YM+8)+Vh - 0 VM, oMY 2, Yo=Y,

where Z,,,m = 1,..., M, i N(0,1,) and ﬁi‘:fn , D% respectively denote the probability
distribution of X% and 57;%, m=0,.., M.

We first show the functional convex order for the Euler scheme X and YV} in
Section 6.1 by proving

EF(XY, . XMy <EFEM, . v (6.0.10)

for any convex function F : (Rd)MJrl — R with r-polynomial growth, 1 <r < p. Next,
based on the convergence of the theoretical Euler scheme established in Section 5.2, we
derive the functional convex order result (6.0.8) from (6.0.10) by letting M — +o0.

6.1 Convex order for the Euler scheme

In order to simplify the notations, we rewrite the Euler scheme defined by (6.0.9) by
letting X,, = Xt]\;[v Y, = }_/tf‘n/[, [ = ﬂ% and p,, = D% as follows,

Um(Xma ﬂm)Zm+1a XO = X, (611)
Hm(i/my Um )Zm-‘,-l: Yb = }/07 (612)

where & = ah + 1, 8 = Bh, and for every m =0, ..., M,
O-m(x7u) = \/E O'(tm,l',,u), em(l’aﬂ) = \/E G(tm,.T,,LL)

Then it follows from Assumption (III) that Xo, Yo, o, O0m,m = 0,..., M, satisfy the
following conditions.

(1) When there is no ambiguity, we write t,, instead of t}.
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Assumption (IIT’): (i) Convez in x :
v,y € R4, VA €[0,1], om(Az+ (1 =Ny, 1) = Aom (2, 1) + (1= N)om(y, ). (6.1.3)

(ii) Non-decreasing in p with respect to the convex order:

Vi, v € PRY, pp <o v, om(z, 1) X om(x,v). (6.1.4)

(731) Order of oy, and O, :
V(z, 1) € RE x P(RY), Om(x, 1) = O (z, ). (6.1.5)

(iv) Xo < e Yo.

The main result of this section is the following proposition.

Proposition 6.1.1. Under Assumption (II), for any convex function F : (RH)M+1 R
with r-polynomial growth, 1 < r < p, in the sense that
Ve = (z0,...,xp) € RHYMFTL IC >0, such that |F(x)| < C(1+ sup |z|"),
0<i<M
(6.1.6)

we have
EF(Xo, ..., Xy) <EF(Yy,...,Y).

The proof of Proposition 6.1.1 relies on the following two lemmas.

Lemma 6.1.1 (see Jourdain and Pages (2019) and Fadili (2019)). Let Z ~ N(0,1,). If
ut, ug € Myyq with ur X ug, then u1Z = o u2Z.

Proof. We define M; := u1Z and My = My + \/ugud — uiuj - Z, where v/ A denotes the
square root of a positive semi-definite matrix A and Z~N (0,1y), 7 is independent to Z.
Hence the probability distribution of Ms is N'(0, ugu3), which is the same distribution
as us 2.

For any convex function ¢ such that E ¢(M;) and E ¢(My) make sense, we have
E [ (M1 + /ugud —uguj - Z)]
—E | E[p(M + Vuzus — uruf - Z) | Z] |
>E [gp( (M1 + \/ugui — uruf - Z | Z]) }
E[@(Ml +E[\/U2u2 uuy - Z])} E o(My). (6.1.7)

E [¢(M2)] =
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Hence, u1Z <., uoZ owing to the equivalence of convex order of the random variable
and its probability distribution (see Definition 6.0.1). O

Let ¢ : R? — R be a Borel convex function. We define an operator @ : C(R%, R) —
C(R? x My, R) associated to a random variable Z ~ N(0,1,) by

(2,u) € RY X Mgy, — (Qp)(z,u) = Ep(az + 8+ uZ) (6.1.8)

The following lemma is a generalisation to dimension d of Pages (2016)[Lemma 2.1].

Lemma 6.1.2 (Revisited Jensen’s Lemma). Let ¢ : R? — R be a convexr function.
Then,

(1) The function Qp defined by (6.1.8) is convex.

(ii) For any fized x € RY, the function Qp(z,-) reaches its minimum at 04y, where

04xq 15 the zero-matriz of size d X q.

(#i7) The function Qp(x,-) is non-decreasing in u with respect to the partial order of
d x q matriz (6.0.3).

Proof. (i) For every (z1,u1), (z2,u2) € RY x Mgy, and A € [0,1],

Qe (M(@1,u1) + (1 — X) (w2, uz))
—E |p(a(hz + (1= Na2) + B+ (un + (1= Nu) 2 )|
=F [¢(A(dm1 +B) + (1= N (azs+ B) + M Z + (1 — )\)UQZ):|

= AE [p(ax; + B+ w1 Z)] + (1= NE [¢(azs + B+ uzZ)]
(by the convexity of ¢ and linearity of the expectation)
= AQy(z1,u1) + (1 — N)Qp(x2,u2).

Hence, Q¢ is a convex function.

(i3) If we fix an = € R%, then for any u € Mgy,

Qo(z,u) =E [p(ax + B +uZ)] > ¢(E[az + 5 +uZ])
= p(@z + B+ 04x1) = Qp(x, 04xq)- (6.1.9)

(#31) For a fixed z € R?, it is obvious that ¢(ax + 3 + -) is also a convex function. Thus,
Lemma 6.1.1 directly implies that if u; < us, then E cp(dx+5+u1Z) <E go(d:v—FB—i-uQZ),
which is equivalent to Q(x,u1) < Qp(z,ug). O
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Before proving Proposition 6.1.1, we first show in the next section by a forward
induction that the Euler scheme defined in (6.1.1) and (6.1.2) propagates the marginal
convex order step by step, i.e. Xpm <ep Y, m =0, ..., M.

6.1.1 Marginal convex order

Let Z,,m = 1,....M be ii.d random variable with distributions N (0,I,) in the
definition of Euler scheme (6.1.1) and (6.1.2). For every m = 1,..., M, we define an
operator @, : C(R%,R) — C(Rd X Mgxgq, R) associated with Z,, by

(2,u) € R x Mgy = (Qm @) (x,u) = E[p(az + B+ uZp)]. (6.1.10)

For every m =0, ..., M, let F,,, denote the o-algebra generated by Xy, Z1, ..., Z,.

Proposition 6.1.2. Let (Xy,)m=o0,.. M, (Ym)mzo,wM be random wvariables defined by
(6.1.1) and (6.1.2). If for everym =0, ..., M, oy, and 0y, satisfy Assumption (III’), then

The proof of Proposition 6.1.2 relies on the following lemma.

Lemma 6.1.3. If ¢ : R — R is a conver function, then for a fived i € P(RY), the
function x — E[go(o_zx + B+ om(z, ,u)Zm)] is also conver, m =0,..., M.

Proof of Lemma, 6.1.3. Let z,y € R? and A € [0,1]. For every m =0, ..., M, we have

E P(@(M + (1= Ny) + B+ om(e+ (1 - )\)y,,u,)Zm>]
<E [gp()\(&x + B) +(1-=2X) (o_zy + B_) + Aom(z, 1) Zm + (1 — XNom(y, M)Zm)]
(by Assumption (6.1.3) and Lemma 6.1.2)

<AE[p(az + B+ om(, 1) Zn)] + (1= N E [p(ay + B + om(y, 1) Zm)]
(by the convexity of ¢).

Proof of Proposition 6.1.2. Assumption (III") directly implies Xo <, Yo.

Assume that X, <., Y;,, then for any convex function ¢ such that E o(X,,+1) and

E ¢(Yin+1) make sense,

E [QO(XM-H)] =K [(,O(O_éXm + B + O'm(Xma ﬂm)Zm+1)]
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=~ E [E [¢(6%m + B+ 0m(Xm, fim) Zms1) | Fu] |
= / [ (dz)E [p(az + B + Om (@, fin) Zm41)]
< [ @) [p(a + 5+ 0 (. 7n) Zins)]
(by Lemma 6.1.2 and Assumption (6.1.4), since fiy, <cy Um )
< /Rd Um (d2)E [p(az + B+ om (2, i) Zmi1)]
(by Lemma 6.1.3, since jim, =<y Um)
< /Rd U (d2)E [p(az 4+ B + O (T, V) Zng1)]
(by Lemma 6.1.2 and Assumption (6.1.5))

=K [<P(Ym+1)]-

Thus one concludes by a forward induction. O

6.1.2 Global functional convex order

The main goal of this section is to prove Proposition 6.1.1. For any mq, mo € N*
with m; < ma, we denote by Tm,my = (Tmys Timy+1s s Tmy) € (Rd)m2_m1+1. Similarly,
we denote by fimy:me = (Hmyy - fhmy) € (P(Rd))mz_mlﬂ. We recursively define a
function sequence ®,, : (R4)™+1 x (P(Rd))M_m+1 —R,m=0,..., M as follows.

Set
(bM(xO:Ma,uM) = F(JJ[),...,$M), (6111)

where the function F' is the same as in Proposition 6.1.1. For m =0, ..., M — 1, set
D (T0ms meha) = (Qm+1®m+1($0:ma i) Mm+1:M)) (xma Om (wma Mm))
=K |:(I)m+1 (-rO:ma QT + B + Um(xma ,Um)Zm+17 ,Um-i—le)} . (6-1-12)
The functions ®,,,m =0, ..., M have the following properties.

Lemma 6.1.4. For every m=20,...,M,

(1) for a fixed pm:.ar € (P(Rd))Mme, the function ®p,( -, fim:ar) 18 CONVET IN Ty,

(ii) for a fived Tomm € (RH™FL the function ®,(To.m, - ) is non-decreasing in
m: M with respect to the convex order in the sense that for any tm:ar, Vm:m €
(P(Rd))M_m+1 such that p; < Vi, i =m, ..., M,

q)m(l'o:ma,um:M) < <I)WL(:L'O:maVm:M)- (6113)
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Proof. (i) The function ®,; is convex in xg.p; owing to the hypotheses on F. Now
assume that ®,, 11 is convex in Zg.,11. For any zo.m,¥o.m € (RY)™H and A € [0, 1], it
follows that
D, ()\xO:m + (1 - >\)y0:m7 Nm:M)
=E®, ()\$O:m + (1 - )\)yO:mv d()\xm + (1 - A)ym) =+ B
+ Gm()\xm + (1 - )\)yma Mm)Zm+1> ,um—l—l:M)
<E®. ()\a;();m + (1= N)Youm M@z + B) + (1= A) - (aym + B)
+ [)‘Um(fvmnum) + (L = A)om(ym, Nm>]Zm+la Mm+1:M>
(by the Assumption (6.1.3) and Lemma 6.1.2
since @p11(T0:m, + m+1:01) 1S & convex function)
< AE (I)m+1 («TO:Tm Ty, + B + O'(xmu Mm)Zm—‘rlu Mm+1:M)

+ (1= NEQpmi (ZJO:m, aYm + B + 0 (Ym, i) Zm+1, Nm—i—l:M)

(since Ppt1(T0:m, *s m+1:0) 1S @ convex function)

= )\(bm(QSO:m’ ,Ufm:M) + (1 - )\)(I)m(yO:mv HmM)
Thus one concludes by a backward induction.

(ii) Firstly, it is obvious that for any uas, var € P(R?) such that pps < e var, we have
s (zo:m, ) = Fonr) = @ar(wons, v ).

Assume that @, 11 (2041, ) increases with respect to the convex order of fi,,+1.07. For

any flm:M, Vm:M € (P(Rd))M_mH such that p; < ¢, V5,7 = m, ..., M, we have

@y (T0:ms ) = E [(I)m—l—l (0> @i + B+ oo (T i) Zm 41, Mm+1:M)}

<E [@mﬂ (20sms @ + B+ 0m (T in) Zim41, Nm+1:M)}

(by Assumption (6.1.4) and Lemma 6.1.2 since ®p,41(0:m, *5 hm+1:1) 1S & convex function)
<E [@mH (ac():m, azm + B+ O (Tmy, Vm) Zm+1, Vm+1;M):| (by the assumption on @, 1)

=, (xO:mu Vm:M) .

We can conclude by a backward induction. ]

As F has an r-polynomial growth, then the integrability of

F(Xo, ,XM) and F(on, ,YM)
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is guaranteed by Lemma 5.2.2 since ||X0||T = ||170Hr < +oo as Xo, Yy € LP(P), p > 7.
We define for every m =0, ..., M,

Xp =K [F(Xo,.... Xp1) | Fin].
Recall that fi,,, = Py ,m =0,..., M.

Lemma 6.1.5. For every m =0, ..., M, ®,,(Xoumn, fim:ir) = X,

Proof. 1t is obvious that
@y (Xoom, fing) = F(Xo, oo, Xnr) = X
Assume that @, 1(Xo.mi1s fims1:0) = 1. Then

X = E [Xs1 | Fin] = E [@ma1 (Xowms1, imt1:00) | Fim]
=B [®mi1(Xowm, X + B+ 0m(Xom, fim) Zm1, ant1:01) | Frm)
= (Qm41Pm1(Xoum, - ant1:01)) (Xims O (X fim) )
= @ (Xo:m, flm:d)-

We conclude by a backward induction. O

M—-—m+1

Similarly, we define ¥y, : (R%)™+1 x (P(R?)) — R, m=0,...,M by

Uar(zo.as, ar) = F(zo.m)
‘ljm(xO:ma Mm:M) = (Qerl q]m+l($0:m7 oy ,UJerI:M)) (:CH’H Hm (xma Mm))

=E |:\Ilm+1 (fEO:ma ATy + B + em(mma Nm)Zm-i-la /~Lm+1:M)i| . (6‘1-14)
Recall that vy, == Py, . It follows from the same reasoning as in Lemma 6.1.5 that

Ui (Yo, ooy Yiny Uy s vag) = E [F(Yo, .., Yin) | Fim] -

Proof of Proposition 6.1.1. We first prove, this time by a backward induction that for
everym=0,....M, &, < U,,.

It follows from the definition of ®; and Wy, that 3 = Wy Assume Py < Ui
Then for any zo.,, € (RY)™! and py.nr € (P(Rd))M_m+1, we have

q)m(f(]:ma Mm:M)
E [(I)m—H ($0:ma QL + B +om (l'm, ,Um)Zm—i-la ,Um-l—l:M)]
<E [(I)m—H ($0:m7 QT + B + O (T, tm) Zm+1, Hm+1:M)]
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(by Assumption (6.1.5) and Lemma 6.1.2,
since Lemma 6.1.4 shows that ®,,11 is convex in xg.n+1)

<E [\Ilerl (x():ma ALy, + B + Hm(xmy ,um)Zerl» ,um—i-l:M)] = \I]($O:m7 /JJmM)

Thus, the backward induction is completed and

¥Ym =0,..., M, B,y < U, (6.1.15)
Consequently,
E[F(XOaaXM)] ]E@O(XO,,LLOM)
= E ®¢(Yy, jio:ar) (by Lemma 6.1.4-(i) since Xo < Yp)
< E®o(Yy, Vo.ar) (by Lemma 6.1.4-(4¢) and Proposition 6.1.2)
< IE\I’O(_O,V ) (by (6.1.15))
E [F(Yo, ... Yar)], (6.1.16)
owing to the martingale property. O

6.2 Functional convex order for the McKean-Vlasov pro-
cess

This section is devoted to prove Theorem 6.0.1. Recall that tn]‘{ =m:- %, m=20,..,M.
We define two interpolators as follows.

Definition 6.2.1. (i) For every integer M > 1, we define the piecewise affine inter-
polator ins : xo.ar € (RHMFL s iy (w0.0r) € C([0, T), R?) by

Ym=0,.,M—1,Vte [t} ],

iarw0an) (1) = (8 — D+ (0 — )]

(ii) For every M > 1, we define the functional interpolator Ips : C([O,T],Rd) —
([0, T],RY) by

Vo € C([0,T],RY), Inp(er) = ing ((ty"), ..o althy)).

It is obvious that

d\M+1 .
Vzo. € (ROMHH iar (20:0) || gup < oToax, || (6.2.1)
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since the norm |-| is convex. Consequently,
Va € C([OvT]de)’ HIM(C“)”sup = HaHsup : (6'2‘2)

Moreover, for any a € C([0,T],R%), we have

sup —

Tas(0) ~ allyp < (0, 17). (623)

where w denotes the uniform continuity modulus of «. The proof of Theorem 6.0.1 relies
on the following lemma.

Lemma 6.2.1 (Lemma 2.2 in Pages (2016)). Let X™, M > 1 be a sequence of continuous
processes weakly converging towards X as M — +oo for the H-Hsup—norm. Then the

sequence of interpolating processes XM = I (XM) M > 1 is weakly converging toward

X for the ||*||.,,-norm topology.

sup

Proof of Theorem 6.0.1. Let M € N* h = M,tj\m/[ =m-h=m- Aq/j, Let (XtM)m 0., M

and (Y,M),,—o,.. m denote the Euler scheme defined in (6.0.9). Let XM := (X )eelo,1]5
YyM .= (yM Jeefo,r] (defined as follows) be the continuous Euler scheme of (X¢)c(o,77,

(Yo)eejo,m)»

Vm=0,...,M—1, Vt€ [tm,tms1),
XM = XM 4+ (@XM 4 B)(t — t) + o (Y, XM,ut )(Bi—Bi),  (624)
VM = VM (VM 4 Bt — t) + 0 VM M) (B, — B,,). (6.2.5)

By Lemma 5.2.2, there exists a constant C such that

sup | X; sup | X|| < C(1+[1Xo],) = (1 + [[Xoll,) < +oo,

te[0,7T7] t€[0,T] r

sup |V, sup [Yil|| < C(L+Yll,) = 1+ [Yol,) < +o0  (6.2.6)
t€[0,T) te[0,T) r

as 1 <r < pand Xg,Yy € LP(P). Hence, F(X) and F(Y) are in L!(P) since F has a
r-polynomial growth.

We define a function Fys : (R)M+1 5 R by
zom € (RYMH s Far(zor) = F(ins(o:01))- (6.2.7)

The function F)j; is obviously convex since i, is a linear application. Moreover, F; has
also an r-polynomial growth by (6.2.1).
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Furthermore, we have In;(X™) =iy (XM, ..., XM

Euler scheme and interpolators 437 and I, so that

)) by the definition of continuous

Fy (X2, XY = P (i (X, X)) ) = F (L (X)),
It follows from Proposition 6.1.1 that
EF(Iny(XM)) =EF(in(XY', ... X37)) = EFn (XY, X3)

<EFy(YY, ..V ) =EF(in@, ...V ) =EF(InY™M). (6.2.8)

The function F is |||
growth (see Lemma 2.1.1 in Lucchetti (2006)). Moreover the process XM weakly

sup —continuous since it is convex with [|-[|g,, —polynomial
converges to X as M — +oo by Corollary 5.2.1. Then Ip;(XM) weakly converges to X
by applying Lemma 6.2.1. Hence the inequality (6.2.8) implies that

EF(X) <EF(Y),

by letting M — +o00 and by applying the Lebesgue dominated convergence theorem
owing to (6.2.6) since F' has a r-polynomial growth. O

Remark 6.2.1. The functional convex order result, in a general setting, can be used to
establish a robust option price bound (see e.g. Alfonsi et al. (2019)). However, in the
McKean-Vlasov setting, the functional convex order result Theorem 6.0.1, is established
by using the theoretical Euler scheme (C') which is not directly computable so that there
are still some work to do to produce simulatable approximations which are consistent
for the convex order. In the next chapter, we propose the computable particle method
for (6.0.1) and (6.0.2), which reads,

Vn e {1,...,N},
Xi ’L X”N + WXy + B) + Vho (X[ i) ) 25, with iy, = 5 S35 Sgny,
VN = YN (YN + 8) + VROYEY oY) 28y, with oY = L N Oyn,
where t,, = tM = m - %, M e N*| X'g’N are i.i.d copies of Xy and 170"’N are i.i.d copies
of Yp.

Unfortunately, this scheme based on the particle method does not propagate nor
preserve the convex order like in Proposition 6.1.2 since we cannot obtain for a convex

function ¢ that,
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under the condition that XZ:;IN < }Q:;N, n = 1,...,N, even if the random variables
XZLT;LN, n=1,..,N and YtZZNv n=1,...,N were both i.i.d. (see the same paper Alfonsi
et al. (2019)).

6.3 Extension of the functional convex order result

In this section, we will extend the result of Theorem 6.0.1 to functionals of both the

path of process and its marginal distributions. If we consider a function
G: (aa (’Yt)tE[O,T]) € C([())T]aRd) X C([OvTLPp(Rd)) — G(Oé, (%ﬁ)tE[O,T]) €R
satisfying the following conditions:

(1) G is convex in «,

77) G has an r-polynomial growth, 1 < r < p, in the sense that
poly g b,

(o, (7)eeo,r)) € C([0,T1,RY) x C([0,T], Pp(RY)), there exists C' € Ry s.t.
G, (Y)eepor) < C1+ llallg,, + SEéIC)Z“] W, (7, 60)], (6.3.1)
te|0,

(ii1) G is continuous in (v¢)ye[o,7) With respect to the distance d¢ defined in (5.1.5) and
non-decreasing in (7t );e[o,77 with respect to the convex order in the sense that

V(ye)tepo.r): (Fe)iepor) € C([0,T], Pp(R?)) such that Vt € [0,T], v¢ < cv 5t
Va e C([()? T]v Rd)a G(Oé, (’Yt)te[&T]) < G(a7 (:yt)tE[O,T])v (632)

the result in Theorem 6.0.1 can be extended as follows.

Theorem 6.3.1. Let X = (Xi)ieo1), Y = (Yo)iejo,1) respectively denote the solution
of the McKean-Vlasov equation (6.0.1) and (6.0.2). For every t € [0,T], let p, vt
respectively denote the probability distribution of X; and Yy. If the equations (6.0.1) and
(6.0.2) satisfy conditions in Assumption (I), (II) and (III), then for any function G

satisfying the above conditions (i), (ii) and (iii), one has

EG(X, (tt)iefo,r)) < EG(Y, (Vt)iefo,r))- (6.3.3)

The proof of Theorem 6.3.1 is very similar to the proof of Theorem 6.0.1. Firstly,
in order to prove the functional convex order result for the Euler schemes (6.1.1) and
(6.1.2)

EG(X0, s Xons 10, -y firg) < EG(Yo, oo, Yo, U0, ooy s (6.3.4)
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with
= M+1

G (zors Yo:m) € (RHMHL x (P, (RY)) — G(zor, Yo:m) € R

convex in xg.ps, non-decreasing in ~g.ps with respect to the convex order and having
an 7r-polynomial growth, we just need to replace the definition of ®,, in (6.1.11) and
(6.1.12) by @/ : (R})™+1 x (Pp(Rd))M+1,m =0,..., M, which are defined by

V(@0m, Yoar) € (RE™H 5 (P, (RY))MH,
@y (wo.01,Y0-01) = G(T0:01,Y0:01)
and

®;n = (Qm—&-l@;nJrl («TO:ma T ’YO:M)) (xma O'm(xma /Ym)) .
Now we discuss the key step from the functional convex order of Euler scheme (6.3.4)
to the functional convex order of process and its marginal probability distribution (6.3.3).

Let A € [0,1]. For any two random variables X, X5 with respective probability
distributions v1,72 € Pp(Rd), we define a linear combination of 1,72, denoted by
A1+ (1= A)ye, by

VA€ BRY), (M + (1= A)y2)(A) = A (A) + (1 = A)ya(A). (6.3.5)

It is obvious from the above definition (6.3.5) that Ay + (1 — A)y2 € P,(R?) and
A1 + (1 = A)7y is in fact the distribution of

Lipen X1 + Liysay Xo,

where U is a random variable with probability distribution ([0, 1]) and independent
to (X1, X2). Moreover, for a fixed (y1,72) € (Pp(Rd))Q, the application A € [0, 1] —
M1+ (1= A)ya € Pp(RY) is continuous with respect to W.

From (6.3.5) we can extend the definition of interpolator iys (respectively Ins) to the
probability distribution space (73:0(]1%‘1))]\/[Jrl (resp. C([0,T],Pp(RY))) as follows

Vm=0,..,M—1,Vte[tM M),
M
Vo.M € (Pp(Rd)) A

inr (o) (1) = 2 (341 — ym + (¢ = 3],
V(’Yt)te[o,T] S C([O7 T]? Pp(Rd)) )
IM((%)te[O,T}) =iy (%3% ---,%%)- (6.3.6)

Let ™ and M respectively denote the probability distribution of X = (XM )te(o,1]
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and YM = (YM),c(0 77, which is defined by (6.2.4) and (6.2.5). For every ¢ € [0,T7, let
il = IM((ﬂy)te[O,T])t-

We know from Lemma 5.1.3 and Corollary 5.2.1 that for any p > 2

sup Wy (e, id?) < Wy (u, i™M) — 0 as M — 4o0. (6.3.7)
t€[0,T]

Now we prove that sup;cjo 7 W, (i, i) — 0 as M — +o0. For every t € [tM ¢M 1],
let

M ._ Y M XM
R T N T T

where (Uy, ..., Upy) is independent to the Brownian Motion (Bt)te[o 7] in (6.0.1), (6.0.2)
and (Z, ..., Zy) in (6.0.9). Thus, for every ¢t € [tM ¢} 10 XM has the probability
distribution ji}!. It follows that
Vm € {0, ..., M}, Vt € [tM 1M ],

wiat, i) < B & - xM|

v M v M v M
=B & _H{U <M(t%+1 t)}Xtm_]l{U >M( %H t)}Xtm“

p
+1

<GB |XM - x| +E X} - XM

and it follows from Lemma 5.2.2-(b) that

VSte[m?t%—i-l] s <t,

<(kVit—s)P < /@p(z

M)g — 0, as M — +oc.

]E“t

Thus we have sup;¢g 11 Wg(g% M) — 0 as M — +oo. Hence,

sup WP (e, iM) < sup Wp(ut ,lt) + sup Wp(,ui\/[,ﬂi”) —0as M — +co.
t€[0,T] t€[0,T) t€[0,T)

Consequently,

EG(IM@M)’(ﬂt)te[o 7) =EG( M<XM>,IM(<ué”>te[07T]))
=BG (ins (X oy Xy )y inr (Bl s ity,)) = E G (X3 oo, X0 101 s i)
SEGM(E_QO ,...,}/tM,Vt]\g,.. VtM) EG(@M(YtO ,...,}QM),ZM(V%,...,V%))
:EG(IM(?M>(D£V[)156[O,T])>7 (6.3.8)
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where for any (zg.a7,70:7) € (R)MHL x (Pp(Rd))M+1,
Gar(wo:nr, vo:n) = Ginr(xo:ar), ine (Yo:nr))-

Thus one can obtain (6.3.3) by the assumption (iii) on G and by applying the Lebesgue
dominated convergence theorem.



Chapter 7

Particle Method, Quantization

Based and Hybrid Scheme,
Examples of Simulation

In this chapter, we consider the homogeneous McKean-Vlasov equation

dXt = b(Xt, Mt)dt + O'(Xt, ,UJt)dBt

(7.0.1)
Vit € [O,T], e = PXt

and establish the error analysis of the particle method (Section 7.1) and several different
quantization based schemes (Section 7.2-7.5) under Assumption (I). At the end of this
chapter, we compare the performances of these schemes on two examples in dimension 1
and 3. In Section 7.2-7.5, we assume that the conditions in Assumption (I) is satisfied
with p = 2 and || denotes the Euclidean norm on R? induced by the inner product (- | -).

7.1 Convergence rate of the particle method (D — C)

Recall that the particle method is the following time discretized system,

Vn e {1,...N},
o, N on,N on,N — Sn,N —
(D) : Xph = X+ ho(X 0 i )+ Vho (X i ) 20,

=N . 1 N
By = N 2on=1 55(3,N
m

where t,, = tM :=m - L M e N*, XSL,N iid
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In this section, we study the convergence of Wp(ﬂi\[ﬂ , ft,,) as N — +oo, where [i,,
is the probability distribution of X;,  defined in the theoretical Euler scheme (C) and
/Z{X _ is defined in the above Euler scheme of the N-particle system (D). The main result

of this section is the following proposition.

Proposition 7.1.1. Assume that Assumption (I) is in force. Then,

(a) Let [ be the probability distribution of X = (Xt)te[O,T] defined in (5.2.3) and let v
denote the empirical measure of [i generated by i.i.d copies of process X = (Xt)te[O,T}'
Then

sup. Wyl )| < Caprr [Wo(v™)|

1<m<M
p
(b) If moreover, || Xoll,,. < +oo for some € > 0, then
N~% + N 5G9 ifp>d/2ande #p
1 1 e
A ~ N72[log(l+ N)|? + N ?eta)  ifp=d/2ande #p
sSup WP(M}{YﬂaMm) S C X 1 [ & ] . )
1<m<M » N~d + N 7%+ if p e (0,d/2)

andp + € # ﬁ
where C is a constant depending on p,e,d,b,o, L, T.

We define the continuous time Euler scheme of (D), as what we did in Section 5.2
for the theoretical Euler scheme. For any n € {1,..., N} and for any t € [t;, tm+1), set

XN = XN (X0 ) (= tw) + o (X0 G ) (BY - BE) (T

where B" := (B}')ie[o,r], = 1, ..., IV are independent standard Brownian motions defined
on (2, F,P). For any t € [t tm+1), define t = ¢,,. Then, for every n € {1,..., N}, XT’N
is the solution of

dx,"N = bo(X,"N, gN)dt + o(X,"N, 5 )dBY, (7.1.2)
where i\ = + SN 6th,N.

Now we construct an i.i.d sample of size N of the process X = (Xt)te[o,T] defined
in (5.2.3). It follows from Lemma 5.2.2-(a) that X € Lg([O,T],Rd)(Q’]:’ P), hence its
probability distribution i € P,(C([0,T],R%)) and ¢(i1) = (fit)eejo,r) € C([0, T], Pp(R?))
(see Lemma 5.1.2). Based on the same Brownian motions B”,n =1,...,N in (7.1.1), we
define N It6 processes Y™, n =1,..., N, by

dY;r = b(Y)", ig)dt + o (Y}, fi)d By
vgr =X
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Then Y™, n =1, ..., N, are i.i.d copies of X and

1N
= ¥ 2 v (7.1.3)
n=1
is the empirical measure of ji. When there is no ambiguity, we will write vV instead of

Ve,

The random measure vV is valued in P, (C([0, T],R%)). In fact, for every w € €,

Y™ (w) lies in C([0, T], R?) so that Y™ (w)|gup < +oc. Hence, for every w € €,

N
1
/C([O )RY) ||£||Sup N Z |Yn sup < +00.

Notice that

N’w — N
I/t =V (e] 7Tt = — Z 5yn

and it follows from Lemma 5.1.2 that ((vV%) = (ng,w)te[()’T] € C([0, 7], Po(R%)).

Let us recall the following theorem from Fournier and Guillin (2015), which yields a
non-asymptotic upper bound of the convergence rate in the Wasserstein distance of the

empirical measures.

Theorem 7.1.1. (Fournier and Guillin (2015)[see Theorem 1]) Let p > 0 and let
p € Py(RY) for some ¢ > p. Let U (w),...,U™(w),... be i.i.d random variables with
distribution p. Let py denote the empirical measure of v defined by

1 n
EPIRA%

Then, there exists a real constant C' only depending on p,d,q such that, for alln > 1,

n=1/2 y p—la=p)/a ifp>d/2and q # 2p
E(WE (s, 1)) < CMP/U(p1) x { n=/2log(1 4 m) + ==/ it p=d/2and g # 2 ,
nP/d 4 p=(a=p)/a if pe (0,d/2)and g #d/(d—p)

where My(u) = fya 61" u(de).

In particular, Theorem 7.1.1 implies that if p > 2,

n~1/2p 4 p=(a—p)/ap if p>d/2and q # 2p
Wiz, ), < CMG/*(n) x { n=Y/20 (log(1 4+ )77 4+ n-@P)/av it p = d/2.and g # 2p
n~t/d 4 p=(a=p)/ap if pe (0,d/2)and q # d/(d —

(7.1.4)
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Proof of Proposition 7.1.1. (a) For any n € {1,..., N}, we have

B ¢ _ t _
’Yt” - XN ‘ = /0 [b(Yy", fiw) — b(X N, )] du + /0 (oY i) — o(X N, i) ]dBy
Hence,
P
s€[0,t] »
= || sup / [b(Yunv ,au) - b(X177N7 :uu du + / - U(Xn Na Moy )] dBy
s€[0,¢] 1/0 - - - »
< | sup | [ O ) — b2 )] | 4 sup / oV ) = oK )] B,
s€[0,t] [/0 - - - s€[0,t] n
< sup | [ v ) - BN i) du
selo.q 1/o s w e )
+ || sup / [o(Yy, i) — o( X N [ )] B, (by the Minkowski inequality)
se(0.4 /0 * “
<L/ X”NH +HW uu,uu)‘p}du

+Cd7p,L[/0t[(
<L/

where

vy = X0+ Wl )

t
du+ Cyp. 1, [/0

C]du}é (by Lemma 5.1.7-(b))

2 1
du] T 1),
p

sup
velo, u]

sup
v€E[0,u]

XTLN)

Y;}n o Xvn,N)

w0y =1 [ Wyt )

‘pdu+Cd,p,L[/0t pr([@,ﬁg) Edu}é, (7.1.5)

owing to va + b < y/a + Vb for any a > 0,b > 0. Then by Lemma 5.2.1, we have

sup |V

S 26(2L+Cg’p7l’)tw(t).
s€[0,t]

v, N
X ‘

p

Moreover, the empirical measure % Z,]yzl (5( XN yny is a coupling of the random
measures iV and vV. Thus

EW NNy =E inf / sup |zs — ys|P w(dx, d
( ) |:7T€H(ﬁN,VN) C([0,T],R4)xC([0,T],R9) se[(]pt] | Y ‘ ﬂ—( y)}

<E

S S 5 n, n d d
[/C([O,T],Rd)xc([O,TLRd) 861[101:,)75] - nzjl Xy )( o y)}
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1 & 1
:E[—Z sup [ X2V -y ]—fz
—1 s€[0,t] N =1

sup ‘X”N Y
s€[0,t]

< [2 6(2L+Cd’p7L)t¢(t)] < [2 6(2L+Cd7p,L)T¢(t)]p.

p

By Lemma 5.1.3, we have sup,¢(o g W§ (uN, vy < W (i N vN), so that

< Cap,L1Y(t), (7.1.6)
p

sup Wy (i, ')
s€[0,t]

(2L+C§’M) T.

with Cyp 7 = 2e It follows that,

sup Wp(ﬂiv,ﬂs) < sup [W (:us » Vs )+ W, ( Vs 7#5)}

s€[0,t] P s€[0,t] »
sup Wy(fig v )|+ || sup Wy (vl fis)
s€[0,t] » s€[0,t] »

sup Wy(v2', jis)||  (by applying (7.1.6))

s€[0,t]

< Capr1¥(t) +

p

t
+ Cd,va,T : L/o HWp(ﬁya ﬂQN)
p

+ Cap,r,7 Cap,.L [/Ot HWp(ﬂw ﬂjﬂv)

(by the defintion of ¥ (t) in (7.1.5))

s W02 7 K

s€[0,¢]

2 1
2"
p

sup W,(v, is)|| + Caprr - L/ sup Wy (jiw, 12| du
s€[0,¢] » vE[0,u] »
t 2 1
— — 2
+ Cap,rr CapL [/ sup Wy (jlu, fiy) ) du} :
0 ||vel0,u] »
Then, by Lemma 5.2.1, we obtain
Sup Wp(ﬂév,/js) < 2e(2A+EIT sup Wp(ﬂSvVéV) ) (7.1.7)
s€[0,t] » s€(0,t] »

where A = Cd,p,L,TL and B = Cd,p,L,T . Cd,p,L- Finally,

< 24T sup Wy (jig, YY)

sup Wp(ﬂﬁn ) ﬁm) [0 T]
se|0,

1<m<M

p p

< 2e(2A+B)T HWp(ﬂ, VN)H — 0 as N — 400
P
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by applying Lemma 5.1.3.

(b) If [ X0, < 400 for some € > 0, then Lemma 5.2.2 implies
HXHp—I—a = sup |X“| S Cp7d7b7aecp’d’b7g (1 + HX(JHerE) < +o0.
u€(0,T pte

Thus fi € Ppye(C([0,T],R?)), which implies that fis € Ppie(R?) for any s € [0,7] by
Lemma 5.1.2.

For any s € [0, 7], vV is the empirical measure of jis. It follows from Theorem 7.1.1
that for any s € [0,T7,

_ 1 _
HWP(V?[MLLS) P S CMp-{—[;+€(MS)
N-12p 4 N~ e ifp>d/2ande #p
x § N~H2P(log(1 + N))l/p + N7 ifp=d/2ande #p
N-Yd ¢ N~ ifpe(0,d/2) andp—l—a;éﬁ
(7.1.8)
Moreover, Lemma 5.2.2 implies that
pte
sup Mpye(fis) = sup E[|Xs|p+€] <|| sup |Xj
s€[0,T s€[0,T] s€[0,T pte
C T pt+e
< [Cp,d,b,oe panaT(1 4 HXOHP%)} < oo (7.1.9)
Thus it follows from (7.1.7) that
sup - Wy(figy,  fim)
1<m<M
P
N~ + N ifp>d/2ande #p
~ 1 [
<Cx{ N %[log(l+N)|? + N 77 ifp=d/2ande £ p ,
N~i + N~ 50 if p € (0,d/2) and p+ e # L
where C is a constant depending on p,e,d, b, 0, L,T and || Xol| O

pte’
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7.2  L*-error analysis of the theoretical quantization (E—C)

From now on, let |-| denote the Euclidean norm on R induced by the inner product
(- | -). Recall that the theoretical quantization procedure reads

Xo = Xo, Xo = Proj,w (Xo)

Xtm-H = Xt + hb(Xtm, ﬁtm) + \/EO-(Xtmyljtm)Zm+la m = 0, ceey M — 1,
where h = &+ and [, = Ps
Xty = PFOJ$<m+1>(Xtm+1)a m=0,..,M—1,

where for m =0, ..., M, (™ = = (; (m) - m%rz) is the K,,-quantizer of j(vtm.

Form=1,..,M,let Z,, =€, e (a;(m)) denote the quadratic quantization error of

)?tm induced by z(™. The next proposition establishes the L2-error of the quantization
method at every time t,,,, m=1,..., M.

Proposition 7.2.1. Assume that Assumption (I) is satisfied with p = 2.

(a) For anym e {1,..., M},

H)‘(tm—)?th i 1+ 2Lh(1+ Lh+ Lg)]™ 'eKth(xU)). (7.2.1)

(b) If for every m =0,1,..., M, z(m = (xgm), ...,:U?(n)) is an optimal quantizer of X;,
and if moreover, || Xo||y, . < +00 for some € > 0, then

H)‘Qm - )?thQ — O(K~%). (7.2.2)

Remark 7.2.1. From Proposition 7.2.1 we know that in order to obtain a simulation with
the minimum error by the quantization method, we need to reduce at each step m the
quantization error Z,,. Thus we can apply the Lloyd algorithm (4.0.18) at each step m,
as mentioned in Algorithm 2 and Algorithm 4.

Proof of Proposition 7.2.1. (a) Let by, = b(Xy,,, fit,,), 0m = 0(Xt,,, i, ), b = b()?tm,ﬁtm)
and G, = 0(Xy,,, fit,, ). The definition of X;  in (E) and X, in (C) directly imply that

m—+1 - Xtm+1

%

= (X, = Xo) + o = B+ [on = F] Ve Zina |
Hence,

E ‘Xtmﬂ ~ X,

m—+1
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= E |(Xu — Ki) + b o~ B+ HE |[0 — 5] Zia
+2VRE (X1, = Xi,) + kb = ] | [F = Fm] Zins1 )
=E [Xi, — KXo | +12E b~ B +20E (X1, — X | Brn — B
+BE | (70— F) Zinia|* + 2VRE( (X1, = Xi,) + hfbm = Bn] | [5m = Gon] Zinsn )-
(7.2.3)
For any m € {1,..., M}, define F,, the o-algebra generated by Xo, Z1, ..., Zp,. Then,
E( (X, = X0,.) + h[bm = O] | [0 — Fn] Zins1 )
= |[(X1, = X0,.) + 5 (b — )] (50 = F) Zins1
(Xt = Xi) + b = )] (G = ) Zonsa | Fon |}
(

o= %) 1= B)] (0~ 0) B [Zaa] } =0

Moreover, Assumption (I) implies that

o2 . _ —~ 2 ) N ) _ —~ 2
E )bm - bm( <L [E ’Xtm - Xtm‘ +EW? (ﬁm,um)} < 4I°E (Xtm - Xtm’
so that

E (X, — Xi,, | b — bm) < HX’tm - X\thQ HBm —ZmHQ <2LE|X,, - X, ’

and

_ ~ 2 — ~ — ~ 2
E|(@m — Fm)Zm+1]* < E[llom = FmllP’ 22 11) < EE[l15m — Gl 2211 Fn]
_ —~ |2
= E[lom — Gnll’E[221]| < AL%E |X0, - X0, |-
Consequently,

_ ~ 2 _ —~
E ‘Xt — Xppa| < [1+4LRA+ Lh + Lg)] - E ‘Xtm ~ X,

2
m—+41 m—+1 ‘

so that

HXtm+1 - Xtm+1

3 .
L </ 1+4Lh(1+ Lh + Lg) thm Xth2

< [1+2Lh(1+ Lh + Lg)] H)‘Qm ~ X, H2
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and

HXtm+1 - Xtm+1

9 < HXtm+1 - Xtm+1

9 + HXtm+1 - Xtm+1

2
< [1+2Lh(1+ Lh+ Lq)] HXtm - X\tm

+ = 1.
‘2 mt

This directly implies

m .
H)_Qm - )EWHZ <> [1+2Lh(1 + Lh + Lg)] " 7E;.
j=1

(b) It follows from Proposition 5.2.1 that, if || Xo||,, . < +oo, then for every m € {1,..., M},
fit,, € Paie(RY). Thus, if for every m = 1,..., M, ("™ is the optimal quantizer of X, ,
the convergence rate (7.2.2) is a direct consequence of Zador’s theorem (see Proposition
4.0.1-(b)). O

7.3 Recursive quantization for the Vlasov equation (G—E)

7.3.1 Recursive quantization for a fixed quantizer sequence

Form =1,..., M, let (™) = (l‘gm), e :L‘%n)) € (RHX be the quantizer of Xy, defined
in (C) and let (Cr(z™)), .,
any m € {1,..., M} and k € {1,..., K}, let p,(cm) =P(X,, € Cp(z(™)) = ]P’(X\tm = w,(ﬁm))
and p™ = (pgm), ...,p%n)). Hence the probability distribution of Proj,m) (thm) is

K
ﬁm = Z pl(gm) 5:0(7”) .
k=1 F

denote the Voronoi partition generated by z(™. For

In the Vlasov case, that is, there exist 8 : R x R — R? and a : R% x R% — Mg 4(R)
such that

) = [ Bup(dn) and o) = [ ateup(du),
the theoretical quantization formulas (E) can be written as
Xiir = Xim + (X, Tim)h + 0(Xpns Tim)Vh i1

K K
= Xtm -+ h Z ﬁ(Xtm, x;m))p,im) -+ \/EZerl Z G(Xtm,l'ém))pl(fm)
k=1 k=1
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Thus, given X\tm and p(™), we have

K
Xtm+1 NN(Xtm+h Zp](gm)B(Xtmvx( Zpk a Xtm7 Zp ‘thm7 (m))] )
k=1 k=1

since Zpy41 ~ N(0,1,). Thus, ()?tm,p(m))gngM makes up a Markov chain with transi-
tion probability
™ —p(X,

: = g (m+1) | X Z(m)’p(m))
=P(X,

€ Cj( (D) | Xy, = 2™, p™)

m—+1

m—+1

K
:P[(mgm) +h Zp;m)ﬁ(xgm),xim)) + \/EZp,(Cm)a(ml(-m), :n;m))ZmH) € Cj (z(m+1)y

gi (I(m) 7p(m) 7Zm+1)

(7.3.1)
and
B(Xr, = " | p) = P(X, 0 € O ) | p)
S PRy = 2™ | R = 2™ ) PR, = a™)
’i[:(l
= §P<5i(x(m),p(m), Zimt1) € Cj(x(m+1))> p™. (7.3.2)

(m+1)

The formula (7.3.2) is in fact the value of p; given p(™),

7.3.2 Application of Lloyd’s algorithm to the recursive quantization

In order to implement Lloyd’s algorithm, we need to compute

E[Xt wloe <m+1>)(Xtm+1) | )]

) [E[Xtm+1 (m(m+l))( m+1) | Xtm (m)’p(m)] ‘p(m)}
K

_ZE :)ZtmﬂLl:H‘C (:L‘(erl))(:)ZtmﬂLl) ‘ X\tm = x’fm)’p(m)] ’ P(Xtm = xz(m))
=1

K
Z [Xtin L om0y (Kyn) | X = 2™ p™] - p{™) (7.3.3)
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where

E[gtm-ﬂ ]]‘Cj(x(m+1))(‘3\(/tm+1) | X\tm = x(m)’p(m)] = E[Y]le(x(m+1))(Y)] (7.3.4)

7

with

K K K
Yo N (a0 3 o™ ), R[S (™ 2] T3 oM el 2] ).
k=1 k=1

k=1
(7.3.5)
Then, given p(™), we can use (7.3.3) and (7.3.2) to compute the Lloyd iteration (4.0.18)
in order to obtain the optimal quantizer of X, _ .

Remark 7.3.1. The recursive quantization method has a high computing speed in
dimension 1 since the the Voronoi cells in dimension 1 are in fact intervals of R. For
example, let = (21, ...,7x) € RX be a quantizer with z; < ;41,4 = 1,..., K, one can

choose a Voronoi partition as follows:

T+ X2
Cl(fﬁ) = ( — 00, 2 )a
Cy(z) = [l'k—12+ l’k’ Tk +2$k:+1)’ k=2 . K—1,
-1+
Cx(z) = [wﬁo@‘

Let z(m) = (argm), ...,ary(n)) be the quantizer of the m-th Euler step. The transition
probability TI'Z-(]m) in (7.3.1) reads

where F), ,2 denotes the cumulative distribution function of NV(m,¢?) with
K K
m = ngm) +h Zp,gm)ﬁ(xgm), x,gm)) and o= \/E[ Zp,&m)a(xgm),x,gm))]. (7.3.6)
k=1 k=1

Moreover, the Lloyd iteration (7.3.4) depends on

@ +al™) 2

T e e (©)de (7.3.7)

(x; 0+ )/2
where f,, ,2(§) is the density function of N'(m, ¢?) with the same m and o as in (7.3.6).
In fact, to avoid computing the integral, (7.3.7) can be alternatively calculated by the

following method,

1 _(g=m)?
53 e 207 dE,

Va,b € R, /abﬁ * fmo2(§)(€)dE = /ab
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b
2 } +m [Fm,02 (b) — Fm,02 (a)] :
(7.3.8)

However, in high dimension, there does not exist such an alternative formula as
(7.3.8) to accelerate the calculation. We refer to the website www.qghull.com for the

cubature formulas of the numerical integration over a convex set in low dimensions.

7.4  L’-error analysis of doubly quantized scheme (H)

Let (™ = (mgm), ey m%n)) denote the quantizer of X, at m-th Euler step. Recall
that the doubly quantized scheme can be written as follows") (a more detailed version
is in Algorithm 3),

Xo = Xo, Xo = Proj,w(Xo)
Xipir = Xop, + 00Xy, Tir,) + Vo (Xe, s Fity) Zmsr, m=0,..., M —1
where h = % and [i, = Ps

Xtm+1 = Projx(m+1) (Xtm+1)7

where 2z = (21,...,27) is an L?-optimal quantizer of N(0,1,) with J > K@ w =
(wi,...,wy) the corresponding weight of z, Zn wd Z}]:l d.,wj, and (21,...,2]\4) is

independent to Xj.

The reason why we can explicitly represent fi,, if we use Zn instead of Z,, is the
following. If we have two independent random variables X and Y with respective discrete
distributions X ~ SN 16, pZ, Y ~ M 5, p¥ M, N € N*, we can always explicitly
write the distribution of f(X) 4 ¢(X)Y with f, g Borel function by enumerating all
possible occurrences of this random variable, namely

F)+9(X)Y ~ D G tglen)ym * Ph P

1<n<N
1<m<M

The following proposition establish an error bound for the doubly quantization
method.

Proposition 7.4.1. Let )A(tm, fii, define as in (H) and let X;,, and iz, define as in

(1) By a slight abus of notation, we use here the same notation as in (E).
(2) It is a natural recommendation for practitioners but not a mathematical requirement.
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(C). Assume that Assumption (1) is satisfied with p = 2, then

Wa (i, , ft,,) < HXtm — X\th i [1 +hL(2+2hL + q)] - |:Ej +vVh-C- €Ky, 7 jv

where 6%(2 , denotes the quantization error of Z on its optimal quantizer z and =, =

Hfm — )A(mH2 denotes the L?-quantization error of j\fm on (™M),

Proof. In order to s1mphfy the notation, we write X, (respectively, j(vm, X\m) instead of
X;,, (respectively, Xtm, Xtm) It follows that

E ‘Xm+1 — j\(/m—f—l’Q
= E|(Xm = Xin) + b [b(Xoms fim) = b(Xoms fim)]

+ \/>[ (X fim) Zmt1 — U(X\maﬁm)z\m—&-l]

=E ‘(Xm = Xon) + h[b(X s i) = b(Xn, fim)] )2

(a)

:

[h|0' ms Bm) Zm41 — U(X\ma ﬁm)2m+1 |2]
(b)
+ 2\/EE <(Xm - X\m) + h[b(er ﬂm) - b(jf\m, l/zm)] ) U(Xma ﬂm)Zm+1 - U()/(\m, ﬂm)2m+1>

(c)

(7.4.1)

Remark that at each step m, we take the optimal quantizer of AV (0,1;) so that by
Proposition 4.0.1-(a), we have for every m =0, ..., M,

E [Zmi1 | Zins1] = Zms1. (7.4.2)
Hence, E [2m+1] =E [Zm+1] = 0,4. Consequently, Term (c) of (7.4.1) equals to 0.
For Term (a) of (7.4.1), we have
(a) =E | (Xun - )+h[b< K fn) = (X fim)]

2Ky~ Ko | DKo i) — DK )]
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and

<Xm - Am ’ b()_(ma,am) - b(‘;{\m’ﬁm)> S ‘Xm - Am‘ ’b(me,am) - b(x\maﬁm)‘
S L ‘Xm - Am‘ [‘Xm - X\m‘ + WQ(ﬂM7ﬁm)]a
_ —~ 2
so that owing to the fact that W2 (jim, tim) < E ‘Xm — Xm‘

(@) <E || X - )?mf + 40212 | X, )?mf +4BL | X — Am(z]

_ —~ |2
< (1+40L2 + ARL)E X — K|

Next, for Part (b) of (7.4.1), we have
- T o~ 5 2
(b) =E |:h|U(Xm>,Um)Zm+1 - U(meﬂm)Zm+1| }

= 0B [ [0 (Ko i) (Zons 1 = Zons1) + [ (Ko, i) = 0 (Kons o)) Zonsa| |

— ~

2 _ —~ ~ 2
= h[E ‘U(Xm7ﬂm)(zm+1 - Zm+l)’ +E ’[U(Xmaﬂm) - U(Xm’ﬁm)]Zerl‘ }7

where the last equality is due to the orthogonality between Z,,+1 — 2m+1 and 2m+1 by
(7.4.2). It follows that

_ ~ 2 _ ~ 2
E ‘O'(Xmaﬂm)(zm+l - Zm+1)’ <E |H0'(Xmaﬂm)m2 -E ‘Zerl - Zm+1‘
< Coor (14 | Xmll,) - ek, 2

< C’b,cr,L <1 + H 1<SUI<)M }Xm| H;) : e%{g,Z
Smxs

2
< Coo,1, T, Xolly * €K2, 2

where e%(% , denote the quantization error of Z on its optimal quantizer z and the last
inequality is due to Lemma 5.2.2, and

— o~

~ 2 _ —~ 2 ~ 2
E ‘ [U(Xma,am) —0(Xm, ﬁm)]Zm+1‘ <E H)U(va,am) - U(Xmaﬂm)m E ’Zerl’

9

_ —~ 12
< 9LqE (Xm ~X,,

where the last inequality is due to (7.4.2)

~ 2 ~ 2
E ’Zm_;'_l) :E[’E[Zm+1\Zm+1]‘ :| SE[’Zm+1’2:| =q.
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Consequently,
_ ~ 2 _ —~ 2 -
E’XmH—XmH‘ §[1+2hL(2+2hL+q)]E‘Xm— m( +h-C-eX, 4,

where C' = Cb,a,L,T,||X0||2' Thus

[Zmsa - )?m+1H2 < \/1+42hL(2+2hL +q) HX’” - AmHQ +Vh-Ceryz

< [1 + hL(2+2hL+q)] H)_(m — NmHQ +Vh-C- €Ky, 7

Finally, let =, = H)?m — AmH2 denote the L?-quantization error of )?m on :U(m), then
— m _ ]
(e mH Z |1+ hL( 2+2hL+q)} [_J+\f ek

and one concludes by using the fact that Wa (fim, fim) < HX'm — AmH2 . O

Remark 7.4.1. Comparing with the result of Proposition 7.4.1 and Proposition 7.2.1, the
doubly quantized scheme adds at each step a quantization error of A'(0,1,) in the sum.
Here we give a brief comparison between the recursive quantization method and the
doubly quantized scheme.

Doubly quantized scheme Recursive quantization method
Application scope | McKean-Vlasov equation Vlasov equation
Computing time | better in dimension 1, better in dimension 1,

acceptable in higher dimension | slow for higher dimension

Accuracy higher L?-error lower L2-error

Table 7.1 A brief comparison between the recursive quantization method and the doubly
quantized scheme

7.5  L’-error analysis of the hybrid particle-quantization
scheme (G—D)

For m =0, ..., M, let 2™ = (acgm), - acg(n)) be the quantizer of ﬂi\fn defined in (D)

and let (C’k (x(m))) be a Voronoi partition generated by (™). Let Proj,m) denote

1<k<K
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the projection function on (™.

We recall the definition of the hybrid particle-quantization scheme:

;

Vn e {1,...N},

XN = XN e b(XEN G b+ o (XN G VRZ

ity = (% Zoma 5””N) © Proj (1n> =Yk [0 ™ DI ﬂv,c(x<m>)()N(Z,;N)]
XgN A xo, 2, “dN(O 1), (X5 )1<n<n L (Z0)1<n<ni<m<n-

Then we use fif* as an estimator of fif' in (D). The following proposition provides an
upper bound of EW, (ﬁ,{fn,ﬂgn)

Proposition 7.5.1. Assume that the conditions in Assumption (I) is true with p = 2.
Then for any m € {1, ..., M}, we have

m—1

EWs(f i) < Co Y C{\EE2_|_ +EE,. (7.5.1)
7=0

where 2, = Ws (ﬁtm, % Zi]\il (Sj‘('n,N) and Cy,Cs are constants depending on h, L and q.
tTYL
Remark 7.5.1. For every m = 1, ..., M, it follows from (1.1.15) that

EZ,, = EWs(if ! Z(SXnN

(78~ ) (™).

1 N
K5 in 535:,N
m

Thus one can implement Lloyd’s algorithm at each Euler step in order to minimize the
error bound on the right-hand side of (7.5.1), as what mentioned in Algorithm 4.

Proof of Proposition 7.5.1. For any m € {1,..., M}, the measure % SN 6 (XN g

is a random coupling of % Zf:f:l dgn.n and /foX1 =% Z —10% N Thus, for any m €
tm

a,.., M},

1 & B
E[WS(N;%%N,M&)} SE[/RWd o=y = ZaXnNXnLN)(dx dy)

n 1

1 N ouN onn|?
—E|+ > |XmY -z ). 5.2
EOI AR e (152
On the other hand,

tm+1 tm+1

PUMED S GRS (AR TN B ARTAR] 1]

+ oK B = o (XN B ) |[VRZ . (7.5.3)
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Let b9 = b(X7N, k), bEer o b(XPN i), 0% = oK1 ) and oBer
J(Xme, u{v ). Let Fy, be the o—algebra generated by Xo, Z,n=1,...Nym=1,..., M.
Then pEMer pQ gEuler 5Q are F,,-measurable and Z7, m1.n € {1,..., N} are independent

»Ymo

of F,. Hence, it follows from (7.5.3) that

tm+1 tm+1
—E[|(KY - X2 + (68— o) n| | B[ (08 — 0B VAZg| ]

+ 2E[<(XZ‘,;N = XN+ (b3 — OB A | (o3 - agu‘er)ﬁlz,z@]. (7.5.4)

‘XnN _XnN 2

=0 since Z"

mt1> "=1,...,N are independent of Fi.

Moreover, Assumption (I) implies,

m

Eul
’b% _ bmuer

Q Euler
\ ‘0 — o,

A N ER GRS
Hence, we have

2 ~ _ 2
E| |6 — b | < 202X - XN+ EWRGE A1),

and
E[‘(U%—aguler)\/ﬁZ,’,ﬁﬂ)?} < hE{EHHJ Euler

_ h]E{er% _ gBuler

2l 1 Fal )
]

m m

H +1‘ } thEHHgQ _ yBuler

<or?hg[E| X7 - xpN [+ mWSGE )]

Hence, (7.5.4) becomes

~ — 2
E[ ‘ t'r:LJ#\»fl - t'n;ivl ]
= E[[(EnY - X0 + (63 — oen)al } +E[| (0% — o) iz |

~ _ 2
= B[(|X0Y — xpC )+ (b8 - o] 07 + | (0 — o) Az |

+2RE[(XN — XN | 6@ — pluleny)]
~ _ —~ _ 2
<E[(XN = X)) + 2020 + ha) B | XN = XN+ EWGE L)

]

~ _ 2
+RE| XN = XpN | [ — e

<E[XPN - x1Ny? +2L2(h2+hq)[

N N _
X - X ‘"i'EWQ(M{;,,UiYn)}

+ hE[ ‘)N({;N - XN

] +2rn[E ‘X;;N ~xpN el )|,
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~ _ 2
[1+ 222k + h) + b+ 2L2R]E[ | XY — XN |
+ (2L2(h* + hq) + 2L2h)EWS (figs , i1y, )
Let Cy := 1+ 2L2(h? + hq) + h + 2L*h, Cy == 2L*(h?® 4 hq) + 2L2h. Let

1
Wi, Nzé )

[1D>
3
| |

It follows that,

]

n,N n,N
X — Xtm+1

1 N
~ Bl
=1

1 N
v 2Bl

— X2 4 CEWRGE i )]

NPT 90 EER, (by (7.5.2))

N
1 N =
<\ J(C1+205) =S E ’X”’ _x»
<4 [(C1+ 2)N;[m t
N
1 ~
< \/C1 + 20, NZE[‘X”’N ”N‘ +1/2C2\/EZ2.. (7.5.5)
i=1
Let C == /C] + 2C5 and Cy = /2C5 . The inequality (7.5.5) implies
1Y ~aN onN|2 _omzl A
NZE[‘X&L _XZ:L ’ ] < C2 C{ EEan—l—j'
i= §=0
Hence, it follows from (7.5.2) that
EWs( S S b, i) < (JEWR(L S e, i) < ([ LS B[R0 g0
2(NZ XN Hit, ) = Q(NZ X”mNaﬂt)— NZ [ - th
i=1 i=1 i=1
f; 2 (j{ E 53%1—71——]
§=0
Consequently,
L ¢ _N 1 & N
Z%&N’ fit,,) +EW2(N Z(SX"N’ fi,,)
1=

EWa(fit,,  fir,,) < EWa(+
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+
=
[1]>
3

7.6 Simulation examples

In this section, we illustrate our theoretical results by two simulations. The first one
is the Burgers equation introduced and already considered for numerical tests in Bossy
and Talay (1997). This is a one-dimensional example with an explicit solution and we use
this example to compare the accuracy and computational time of the different simulation
methods under consideration. The second example is the Network of FitzHugh-Nagumo
neurons already numerically investigated in Baladron et al. (2012) (also in Reis et al.
(2018)), which is a 3-dimensional example. All examples are written in Python 3.7.

7.6.1 Simulation of the Burgers equation, comparison of the three
algorithms

In Bossy and Talay (1997), the authors analyse the solution and investigate the
particle method of the Burgers equation

dXt fR ,ut(dy)dt + O'dBt
Vt e [ojT],Mt = PXt , (7.6.1)
Xo: (2, F,P) = (R,B(R))

where H is the Heaviside function (H(z) =1,if 2 >0, H(z) =0,if 2 < 0) and o is a
real constant. If we denote by V (¢, z) the cumulative distribution function of y, then
V (t, z) satisfies

v 20°V. oV

1
ot = 29 7 ox . 7.6.2
V(0,z) = Vo(x) (o

Moreover, if the initial cumulative distribution function Vj satisfies [ Vo(y)dy = O(x),
then the function V has a closed form given by (see Hopf (1950))

Jr VO(ZJ)GXP( - %[(I_y) yVo(z)dz})dy
e exp(( = 2 [ + I3 Vo(=)dz] ) dy

Vit,z) = , (t,z) €0, T] xR. (7.6.3)
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Hence, if we consider Xy = 0, then the cumulative distribution function at time T =1 is

o exp (= & [CFE + 4] )y

FTzl(l‘) = .
Jrexp( = &[5 + y1,20] )dy

(7.6.4)

10

0B

[1

o4

o2

op

32 E] [) 1 3 3

Figure 7.1 True cumulative distribution function

As there exists an explicit formula of the cumulative distribution function at time
T =1, we can compute the accuracy of the different numerical methods proposed in the
former sections by computing

||Fsimu - Erue“sup ) (765)

where Fgn, represents the simulated cumulative distribution function by different
numerical methods and Fi,ye is the true cumulative distribution function (7.6.4). We
know that for two probability distributions u,v € P,(RY) with respective cumulative
distribution function F' and G, the Wasserstein distance W, (i, v) can be computed by

1
WE(u,v) :/0 |F~ (u) — Gil(u)ip du, p>1. (7.6.6)

However, it is computationally extremely costly to directly compute the inverse function
of the cumulative distribution function (7.6.4) and if we compute (7.6.6) by using
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Monte-Carlo simulation, it will induce its own statistical error which may disturb our
comparisons. Thus, instead of considering (7.6.6), we preferred to compute (7.6.5) by

HFsimu(x) - Ftrue(x)Hsup = sup ‘Fsimu(m) - Ftrue(x)‘ s
zeUnifset
where Unifset is a uniformly spaced point set in [—2.5,3.5]. One may consider that
this measure of the errors is more stringent than the Wasserstein distance, at least if

Unifset contains a great number of points.

In the following simulation, we choose 02 = 0.2 and M = 50 so that we have the
T

same time step h = §; = 0.02 for each method.

We first give a preliminary illustration of the simulated cumulative distribution
function by Algorithm 1,2 and 4. The Burgers equation (7.6.1) is a one-dimensional
Vlasov equation so that Algorithm 2 based on the recursive quantization method
outperforms Algorithm 3 (see Remark 7.4.1). Hence, we omit the simulation by the
doubly quantized scheme (Algorithm 3) in this example.

In a second phase, we will precisely present the decreasing rate of the error (7.6.5) of
the particle method (Algorithm 1) and of the recursive quantization method without
Lloyd quantizer optimization (Algorithm 2) respectively according to N and K. At the
end of this section, we will give some comments of the numerical performance of different

methods mainly through two aspects: the accuracy and the computing time.
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= True cdf
LD { — Simulated cdf by Algorithm 1

oB

0B

04

o2

op

E 0 1 2

Figure 7.2 Simulated cumulative distribution function by the particle method (Algorithm

1)

— True cdf
1D { — Simulated cdf by Algorithm 2

0B

0B

o4

o2

op

-15 -10 .5 or o5 10 L5 2o 25

Figure 7.3 Simulated cumulative distribution function by the recursive quantization
method without Lloyd iteration (Algorithm 2)
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= True cdf
LD | — Simulated cdf by Algorithm 2 with 5 Lioyd iterations

oB

08

04

o2

on

E [ 1 2

Figure 7.4 Simulated cumulative distribution function by the recursive quantization
method with 5 Lloyd iterations at each Euler step (Algorithm 2)

— True cdf
LD 1 — Simulated cdf by Algorithm 3

0B

0B

04

o2

oD

-15 -10 -5 or o5 10 15 20 25

Figure 7.5 Simulated cumulative distribution function by the hybrid particle-quantization
scheme without Lloyd iteration (Algorithm 4)
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Lo

oB

0B

04

o2

op

— True cdf
—— Simulated cdf by Algorithm 3 with 10 Lioyd iterations each Euler step

E [ 1

2

Figure 7.6 Simulated cumulative distribution function by the hybrid particle-quantization
scheme with 5 Lloyd iterations at each Euler step (Algorithm 4)

A detailed comparison of the different methods is displayed in the following table.

Remind that the particle method (Algorithm 1) and the hybrid particle-quantization

scheme (Algorithm 4) are random algorithms so that their accuracy are computed by

taking an average error computed over 50 independent identical simulations.
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Now we present the convergence rate of the error of the particle method (Algorithm 1)
with respect to the particle size N = 28,29 210 211 212 913 fo1 3 fixed M = 50. As the

particle method (Algorithm 1) is a random algorithm, the simulation results are also ran-

dom, including the error ||Fsimuy — Firuell sup" Consequently, we will rerun independently
and identically 500 times for each value of V.

N 28 29 210 211 212 213
Error || Fim — Firuellyap | 0-04691 | 0.03409 | 0.02438 | 0.01785 | 0.01407 | 0.01131
Standard deviation 0.01207 | 0.00939 | 0.00687 | 0.00469 | 0.00408 | 0.00294

Table 7.3 Error of the particle method (Algorithm 1) with respect to the particle size N

In the following figure we show the curve of the error with respect to N and the
log-error with respect to log,(N).

-®- mean emor - 2*std
. =& mean error
L7 ! -®- mean eror + 2*std
|
)
1
1
1
|
]
1
1
0.6 - H
\
1
1
|‘
\
)

\
0.5 1

004 4

003 4

0.02 1

001 4

pemey 2010

2411

Figure 7.7 Error of the particle method (Algorithm 1) with respect to the particle size N
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—-@- log { mean error - 2%std)
[ =&~ log ( mean error }
S —@- log ( mean error + 2*std)

Figure 7.8 Log-error of the particle method (Algorithm 1) with respect to logy (V).
The slope is approximately equal to -0.28451.
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0.004
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—&- Standard deviation of 500 times independent and identical simulations

=
-
-
S

=
S

with respect to NV

Figure 7.9 The standard deviation of the error of the particle method (Algorithm 1)

Now we present the convergence rate of the error of the recursive quantization method
(Algorithm 2) with respect to the quantizer size K for a fixed M = 50. We will take

K =25,26 27 28 29 210 Remind that here we use a fixed quantizer sequence which is
optimization.

a uniformly spaced point set in [-2.5, 3.5] without Lloyd I algorithm for the quantizer

K 25 26 27 28 29 210
Error || Fsimu — FtrueHsup 0.07347 | 0.04176 | 0.02360 | 0.01471 | 0.01043 | 0.00829
quantizer size K

Table 7.4 Error of the recursive quantization method (Algorithm 2) with respect to the

In the following figure we show the curve of the error with respect to K and the log
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error with respect to logy(K).
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Figure 7.10 Error of the recursive quantization method (Algorithm 2) with respect to
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Figure 7.11 Log-error of the recursive quantization method (Algorithm 2) with respect
to logy(K). The slope is approximately equal to -0.43626.

Now we provide some comments on the performance of the numerical methods.

e Comparison of the computing time.

The particle method (Algorithm 1) and the recursive quantization method (Algo-
rithm 2) without Lloyd iteration are the two fastest methods. In fact, these two
methods are essentially computing a Markov chain in RY and RX respectively.
The application of the Lloyd procedure in Algorithm 2 is a little faster than in
Algorithm 4 since we used the formulas showed in (7.3.8). However, in a higher
dimension, the Lloyd procedure in Algorithm 4 will be faster than in Algorithm 2.

+ Comparison of the accuracy computed by || Fsimu(2) — Firue(®)||sup-

— Algorithm 1 and Algorithm 4 are “random” algorithms whose simulation
results, including the error || Foimu(2) — Firue(2)]|gyp,, depend on w in (2, F,P).
In Figure 7.7 and Figure 7.9, we display the standard deviation of errors of
Algorithm 1 comparing with the errors themselves. Comparing with these

two algorithms, Algorithm 2 is more robust and deterministic.
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— Comparing with the particle size N in Table 7.3 and the quantizer size K

in Table 7.4, one can remark that to achieve the same accuracy, we need
fewer points in the quantizer than in the particle. So if we need a discrete
representation of the cumulative distribution function F' (or equivalently,
a discrete representation of the probability distribution p) to compute a
further functional of u, such as an integral with respect to u, the recursive
quantization based scheme provides a smaller data set (K-size quantizer and
K-size weight vector) than the particle method.

The error of Algorithm 2, especially when we implement without the Lloyd I
quantizer optimization, much depends on the choice of quantizer. Generally,
a practical way to choose the initial quantizer of a probability distribution
1 is to use self-quantization technique for which we refer to Delattre et al.
(2006), Graf and Luschgy (2000)[Section 7.1 and Section 14], Pages and
Printems (2003) and Pages et al. (2004). Another efficient trick to improve
this optimization phase is to rely on a so-called “splitting method” which uses
the trained quantizer of Euler step [ as a initial quantizer of Euler step [ + 1.

In this one dimensional case, we did not remark the obvious advantage of the

hybrid particle quantization scheme (Algorithm 4) comparing with other methods.

However, in the next section, we will show that the hybrid method provides a fair

balance between the accuracy and the obtained data size.

7.6.2

Simulation of the network of FitzHugh-Nagumo neurons in di-
mension 3

We consider the network of FitzHugh-Nagumo neurons introduced in Baladron et al.

(2012):

dX; = b(Xt, ,ut)dt + O'(Xt, /.Lt)dBt (767)

with b: R3 x P(R3) — R3 and o : R? x P(R?) — M35 defined by

21— (21)3/3 — 29+ I — [gs J (21 — Vyew) 23 u(d2)

b(z, ) = c(x1 +a— bxy) 7
a/r Tmax(lfo) _ adl’g
1+exp (f)\(:(,‘lfVT))
Oext 0 - f]RS UJ(ZL'l - V;“ev)ZS N(d'z)

o(x,p) = 0 0 0 ;
0 0'32($) 0
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with

A
= (n =17

Tinax(1 — x3)
= 1. r r —
032 :cde(O,l)\/a 1+ oxp ( Ao — Vr)) +aqgr3l exp (

The probability distribution of Xy is

Vo oy, 0 0
X 0~ N wo 5 0 Owo 0
Yo 0 0 oy

with the following parameter values

VWoo=0 oy=04 a=07 b=08 =008 =05 Oext = 0.5
wo =05 04 =04 V=1 a =1 ag=1  Thnez=1 A=02
Yo =103 o0y =005 J=1 c;=02 Vp=2 TI=01 A=0.5.

In this section, we compare the performance of the particle method (introduced in
Section 7.1) and the hybrid method (introduced in Section 7.5) in two aspects. First,
we intuitively compare these two methods by simulating the density function of (x1,x2)
for T'= 1.5, as in the original paper Baladron et al. (2012)[Page 31, Figure 4, the third
one in the right]. In this step, we choose the Euler step number M = 5000 to reduce
(as much as possible) the error of the discretization in time. In Figures 7.12, 7.13, 7.15
and 7.16, we display the images of the density function simulated by these two methods.
Next, as the particle method and the hybrid method are both random methods, we take

A = [ e it ) = B |
as a test function for the simulated distribution ™% at time 7', rerun 200 times for each
method and compare the mean and the standard deviation of ¢(u5™). As this network
example is a 3-dimensional example, the doubly quantization method (introduced in
Section 7.4) and the recursive quantization method (introduced in Section 7.3) are costly
in the computing time (for a laptop) at present, due to the quantizer size of the normal
distribution to obtain Z,, in (H) and the integral of (7.3.5) over a Voronoi cell.

The images of the density function simulated respectively by the particle method
and the hybrid method are as follows.
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Particle method (Algorithm 1):
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Figure 7.12 The first and second coordinates of 5000 particles at time T' = 1.5
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Figure 7.13 The simulated density function smoothened by the Gaussian kernel method
(bandwith = 0.241)
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The hybrid particle-quantization scheme (Algorithm 4):

25 4

2D

15 4

1D+

05 -

oD

T T T T T
—2 -1 o 1 2

Figure 7.14 The quantizer of (x¢, z1), simulated with particle number N = 5000, quantizer
size K = 300 and 10 Lloyd iterations at each Euler step
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Figure 7.15 The Voronoi cells of the above quantizer. The color of each Voronoi cell
represents the weight of this cell (the darker the heavier).
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Figure 7.16 The density function simulated by Algorithm 4. The vertical axis is the
weight divided by the area of the corresponding Voronoi cell.
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Figure 7.17 The smoothen density function of Figure 7.16 by the Gaussian kernal method
(bandwidth = 0.22).

The obtained density functions have a similar form by these two methods but the
data size obtained by the particle method is

5000 (the number of particle)x 3 (dimension),
while the data size obtained by the hybrid method is
300 (the quantizer size)x 4 (dimension + weight for each quantizer).

For a more precise comparing, we fix now the time discretization number M = 150,
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consider the following test function for the simulated distribution p$§™* at T = 1.5

simuy . simu simu |2
plm) = [l i (de) = B[ x5

and rerun 200 times for each method. We obtain the following results.

Particle method Hybrid method
N=300 N=3000 N = 5000 and K = 300
Obtained data size for pSmu 300x3 30003 300x4
Average computing time
0.00184s 0.01097s 0.43060s
for each Euler step
Mean 1.43673 1.41452 1.42159
Test function
p(p™) Standard 0.01907 0.00574 0.00534
deviation

Table 7.5  Comparison of the simulation result ¢(pSmv)

Intuitively, the hybrid method can be considered as adding a “feature extraction”
step on the particle method. Comparing the third and fourth columns of the above table,
one can remark that this added step needs more computing time but highly reduces
the size of the output data size for the further computing of the test function ¢(uS™")
without enlarging the standard deviation. However, the second column of the above table
shows that if we implement the particle method with a similar data size, the computing

results of (™) provides a much larger standard deviation.
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