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Abstract

This thesis contains two parts. The first part addresses two limit theorems related to
optimal quantization. The first limit theorem is the characterization of the convergence
in the Wasserstein distance of probability measures by the pointwise convergence of
Lp-quantization error functions on Rd and on a separable Hilbert space. The second
limit theorem is the convergence rate of the optimal quantizer and the clustering
performance for a probability measure sequence (µn)n∈N∗ on Rd converging in the
Wasserstein distance, especially when (µn)n∈N∗ are the empirical measures with finite
second moment but possibly unbounded support. The second part of this manuscript
is devoted to the approximation and the simulation of the McKean-Vlasov equation,
including several quantization based schemes and a hybrid particle-quantization scheme.
We first give a proof of the existence and uniqueness of a strong solution of the McKean-
Vlasov equation dXt = b(t,Xt, µt)dt + σ(t,Xt, µt)dBt under the Lipschitz coefficient
condition by using Feyel’s method (see Bouleau (1988)[Section 7]). Then, we establish
the convergence rate of the “theoretical” Euler scheme X̄tm+1 = X̄tm +hb(tm, X̄tm , µ̄tm)+√
hσ(tm, X̄tm , µ̄tm)Zm+1 and as an application, we establish functional convex order

results for scaled McKean-Vlasov equations with an affine drift. In the last chapter, we
prove the convergence rate of the particle method, several quantization based schemes
and the hybrid scheme. Finally, we simulate two examples: the Burger’s equation (Bossy
and Talay (1997)) in one dimensional setting and the Network of FitzHugh-Nagumo
neurons (Baladron et al. (2012)) in dimension 3.

Keywords: Optimal quantization, Wasserstein convergence characterization, K-means
clustering, Simulation of McKean-Vlasov equation, Convex order.





Résumé

Cette thèse contient deux parties. Dans la première partie, on démontre deux théorèmes
limites de la quantification optimale. Le premier théorème limite est la caractérisation de
la convergence sous la distance de Wasserstein d’une suite de mesures de probabilité par la
convergence simple des fonctions d’erreur de la quantification. Ces résultats sont établis en
Rd et également dans un espace de Hilbert séparable. Le second théorème limite montre la
vitesse de convergence des grilles optimales et la performance de quantification pour une
suite de mesures de probabilité qui convergent sous la distance de Wasserstein, notamment
la mesure empirique. La deuxième partie de cette thèse se concentre sur l’approximation
et la simulation de l’équation de McKean-Vlasov. On commence cette partie par prouver,
par la méthode de Feyel (voir Bouleau (1988)[Section 7]), l’existence et l’unicité d’une
solution forte de l’équation de McKean-Vlasov dXt = b(t,Xt, µt)dt+σ(t,Xt, µt)dBt sous
la condition que les fonctions de coefficient b et σ sont lipschitziennes. Ensuite, on établit
la vitesse de convergence du schéma d’Euler théorique de l’équation de McKean-Vlasov
X̄tm+1 = X̄tm +hb(tm, X̄tm , µ̄tm)+

√
hσ(tm, X̄tm , µ̄tm)Zm+1 et également les résultats de

l’ordre convexe fonctionnel pour les équations de McKean-Vlasov avec b(t, x, µ) = αx+β,
α, β ∈ R. Dans le dernier chapitre, on analyse l’erreur de la méthode de particule,
de plusieurs schémas basés sur la quantification et d’un schéma hybride particule-
quantification. À la fin, on illustre deux exemples de simulations: l’équation de Burgers
(Bossy and Talay (1997)) en dimension 1 et le réseau de neurones de FitzHugh-Nagumo
(Baladron et al. (2012)) en dimension 3.

Mots-clés: Quantification optimale, Caractérisation de la convergence Wasserstein,
Classification non supervisée, Simulation de l’équation de McKean-Vlasov, Ordre convexe.
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Résumé détaillé

La quantification optimale est originellement développée comme une méthode de
transmission et compression des signaux par le Laboratoire bell en 1950s; elle est
maintenant un outil largement utilisé dans le domaine de l’apprentissage non-supervisé
et de la probabilité numérique. De façon générale, la quantification est une méthode
d’approximation d’une mesure de probabilité µ en utilisant un K-uplet x = (x1, ..., xK) et
son vecteur de poids w = (w1, ..., wK). L’estimateur de µ par la méthode de quantification
s’écrit comme µ̂x := ∑K

k=1wk · δxk
, où δa est la masse de Dirac en a. On appelle x =

(x1, ..., xK) la grille de quantification (quantizer en anglais). Le poids w = (w1, ..., wK)
est souvent calculé par wk := µ

(
Ck(x)

)
, k = 1, ...,K, où

(
Ck(x)

)
1≤k≤K est la partition

de Voronoï de Rd.

Soit Pp(Rd) :=
{
µ mesure de probabilité sur Rd |

∫
Rd |ξ|p µ(dξ) < +∞

}
et soit

Wp la distance de Wasserstein d’ordre p sur Pp(Rd). La fonction de distorsion de la
quantification de µ ∈ Pp(Rd) au niveau K et de l’ordre p, notée par DK,p(µ, ·), est définie
par

x = (x1, ..., xK) ∈ Rd 7→ DK,p(µ, x) :=
∫
Rd

min
1≤k≤K

|ξ − xk|p µ(dξ).

De plus, la fonction d’erreur de quantification est définie par eK,p(µ, ·) = DK,p(µ, ·)1/p. Si
x∗ satisfait x∗ ∈ argmin eK,p(µ, ·) = argminDK,p(µ, ·), on appelle x∗ une grille optimale
de µ au niveau K et d’ordre p. L’existence d’une telle grille optimale est établie dans
Graf and Luschgy (2000)[Theorem 4.12] et Graf et al. (2007).

Parmi un large champ de propriétés et d’applications de la méthode de quantification,
cette thèse se concentre sur deux théorèmes limites et l’application de la quantification
optimale à la simulation de l’équation de McKean-Vlasov.

Partie I : Théorèmes limites de la quantification optimale (Chapitres 2 et 3)

Le Chapitre 2 présente la caractérisation de mesure de probabilité par la fonction
d’erreur de quantification. Dans ce chapitre, on établit l’existence d’un niveau minimal
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K∗ tel que pour tout K ≥ K∗,

– pour tout µ, ν ∈ Pp(Rd), eK, p(µ, ·) = eK, p(ν, ·) ⇐⇒ µ = ν,

– pour tout µn ∈ Pp(Rd), n ∈ N∗ ∪ {∞},

eK, p(µn, · ) n→+∞−−−−−→ eK, p(µ∞, · ) simplement ⇐⇒ Wp(µn, µ∞) n→+∞−−−−−→ 0.

La preuve de ces équivalences est basée sur une approche géométrique qui est
équivalente à l’existence d’une cellule de Voronoï bornée dans un diagramme de Voronoï.
Cette existence peut se déduire d’un recouvrement minimal de la sphère d’unité par les
boules d’unité fermées centrées sur cette sphère. Cette approche géométrique est vraie
pour toutes les normes de Rd. De plus, pour le cas quadratique, on établit le niveau
minimal pour les caractérisations K∗ = 2 par les méthodes d’analyse hilbertienne. Ce
résultat de caractérisation peut s’étendre à un espace de Hilbert séparable quelconque.
On définit aussi dans ce chapitre pour tout K ≥ K∗ une distance basée sur la fonction
d’erreur de quantification

QK,p := ∥eK,p(µ, ·)− eK,p(ν, ·)∥sup

et on démontre que cette distance QK,p est équivalente à la distance de Wasserstein
Wp. En outre, on montre que

(
P1(R),Q1,1

)
est un espace complet et on fournit un

contre-exemple montrant que
(
P2(R),QK,2

)
n’est pas complet pour tout K ≥ 2.

Dans le Chapitre 3, on établit la vitesse de convergence de la quantification optimale
quadratique (p = 2) pour une suite de mesures de probabilité qui converge sous la
distance de Wasssertein. Ce chapitre généralise deux papiers précédents Pollard (1982a)
et Biau et al. (2008). Soient µn ∈ P2(Rd), n ∈ N∗∪{∞} telles queW2(µn, µ∞) n→+∞−−−−−→ 0.
On note x(n) la grille optimale quadratique de µn pour tout n ∈ N∗ et on définit

GK(µ∞) :=
{

(x∗
1, ..., x

∗
N ) | (x∗

1, ..., x
∗
N ) est une grille optimale quadratique de µ∞

}
l’ensemble des grilles optimales quadratiques de µ∞ au niveau K. On démontre la
performance de quantification: pour tout n ∈ N∗,

DK,2(µ∞, x
(n))− inf

x∈(Rd)K
DK,2(µ∞, x) ≤ 4e∗

K,µ∞W2(µn, µ∞) + 4W2
2 (µn, µ∞),

où e∗
K,µ∞

:= infy∈Rd eK,2(µ∞, y) est l’erreur optimale de la quantification optimale. On
démontre également la vitesse de convergence des grilles optimale: à partir d’un certain
rang,

d
(
x(n), GK(µ∞)

)2 ≤ C(1)
µ∞W2(µn, µ∞) + C(2)

µ∞W
2
2 (µn, µ∞).
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sous la condition que la matrice hessienne HDK,µ∞ de DK,2(µ∞, ·) existe et soit définie
positive. En outre, on donne aussi la formule exacte de la matrice hessienne HDK,µ∞

dans ce chapitre.

Soient X1, ..., Xn variables aléatoires i.i.d qui suivent la mesure de probabilité µ
et soit µωn := 1

n

∑n
i=1 δXi la mesure empirique de µ. La deuxième partie du Chapitre

3 se concentre sur la valeur EDK,µ(x(n),ω) − infx∈(Rd)K DK,µ(x), qui est appelée la
performance de la classification non supervisée (la performance de clustering) (voir Biau
et al. (2008)). On établit deux bornes supérieures de la performance de clustering. Si
µ ∈ Pq(Rd) avec q > 2, le premier résultat qu’on obtient est

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x)

≤ Cd,q,µ,K ×


n−1/4 + n−(q−2)/2q si d < 4 et q ̸= 4
n−1/4( log(1 + n)

)1/2 + n−(q−2)/2q si d = 4 et q ̸= 4
n−1/d + n−(q−2)/2q si d > 4 et q ̸= d/(d− 2)

,

où Cd,q,µ,K est une constante dépendant de d, q, µ et décroît en K d’ordre K−1/d. Soit
maintenant µ ∈ P2(Rd). La deuxième borne qu’on obtient pour la performance de
clustering est

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 2K√
n

[
r2

2n + ρK(µ)2 + 2r1
(
r2n + ρK(µ)

)]
,

où rn :=
∥∥max1≤i≤n |Xi|

∥∥
2 et ρK(µ) est le rayon maximal des grilles optimales quadra-

tiques i.e. ρK(µ) := max
{

max1≤k≤K |x∗
k|

∣∣ (x∗
1, ..., x

∗
K) est une grille optimale de µ

}
.

Si µ = N (m,Σ), la loi normale multidimensionnelle, on a

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ Cµ ·
2K√
n

[
1 + logn+ γK logK

(
1 + 2

d

)]
,

avec lim supK γK = 1 et Cµ = 12 ·
[
1 ∨ log

(
2

∫
Rd exp(1

4 |ξ|
4)µ(dξ)

)]
.

Partie II : Équation de McKean-Vlasov: méthode de particule, schémas
basés sur la quantification et schéma hybride, ordre convexe (Chapitres 4, 5,
6 et 7)

L’équation McKean-Vlasov, qui est premièrement introduite dans McKean (1967),
indique dans cette thèse une classe d’équations différentielles stochastiques avec les
fonctions de coefficient dépendant non seulement de l’état de (Xt) mais aussi de la loi
de (Xt). Plus précisément, l’équation McKean-Vlasov qu’on discute dans cette thèse est



4

définie comme suit,
dXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dBt
X0 : (Ω,F ,P)→

(
Rd,B(Rd)

)
variable aléatoire

∀t ≥ 0, µt est la mesure de probabilité de Xt

. (0.0.1)

Dans le Chapitre 5, on donne une preuve de l’existence et l’unicité de la solution
forte de l’équation de McKean-Vlasov (0.0.1) par la méthode de Feyel (e.g. Bouleau
(1988)[Section 7]) sous la condition lipschitzienne suivante

∀t ∈ [0, T ],∀x, y ∈ Rd et ∀µ, ν ∈ Pp(Rd),∃L t.q.
|b(t, x, µ)− b(t, y, ν)| ∨ |||σ(t, x, µ)− σ(t, y, ν)||| ≤ L

[
|x− y|+Wp(µ, ν)

]
.

(0.0.2)

L’idée de cette preuve est de définir une application ΦC qui dépend d’une constante
C ∈ R∗

+ sur un espace produit “ l’espace des processus × l’espace des mesures de
probabilité de processus” comme suit

(Y, PY ) 7→ΦC(Y, PY )

:=
((
X0 +

∫ t

0
b(s, Ys, νs)ds+

∫ t

0
σ(s, Ys, νs)dBs

)
t∈[0,T ]︸ ︷︷ ︸

=:Φ(1)
C (Y,PY )

, PΦ(1)
C (Y,PY )

)

où pour un processus stochastique X, on note sa mesure de probabilité PX (voir la
Section 5.1 pour la définition détaillée de PX), puis on montre que cet espace est complet
et que ΦC est une application contractante sur un sous-ensemble fermé si la constante C
est assez grande. On en déduit l’existence et l’unicité forte de solution de l’équation de
McKean-Vlasov en utilisant le théorème du point fixe.

Une fois qu’on obtient l’existence et l’unicité forte de la solution, on montre dans
le Chapitre 5 la vitesse de convergence du schéma d’Euler théorique de l’équation de
McKean-Vlasov (0.0.1), qui est défini par

X̄tm+1 = X̄tm + h · b(tm, X̄tm , µ̄tm) +
√
hσ(tm, X̄tm , µ̄tm)Zm+1

µ̄tm est la mesure de probabilité de X̄tm ,m = 0, ...,M
X̄0 = X0

, (0.0.3)

où M ∈ N∗ est le nombre de discrétisations en temps et tm := T
M ·m, m = 0, ...,M . Si

b, σ satisfont (0.0.2) et

∀t, s ∈ [0, T ] t.q. s < t,∀x ∈ Rd,∀µ ∈ P(Rd), il existe L̃, γ ∈ R+ t.q.
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|b(t, x, µ)− b(s, x, µ)| ∨ |||σ(t, x, µ)− σ(s, x, µ)||| ≤ L̃
(
1 + |x|+Wp(µ, δ0)

)
(t− s)γ ,

(0.0.4)

la vitesse de convergence du schema d’Euler théorique qu’on obtient est

sup
0≤m≤M

Wp(µ̄tm , µtm) ≤
∥∥∥∥∥ sup

0≤m≤M

∣∣Xtm − X̄tm

∣∣∥∥∥∥∥
p

≤ Ceh
1
2 ∧γ , (0.0.5)

où Ce est une constante qui dépend de b, σ, L, T, L̃ et ∥X0∥p.

Le Chapitre 6 établit le résultat de l’ordre convexe pour l’équation de McKean-Vlasov
(Xt)t∈[0,T ], (Yt)t∈[0,T ] définies par

dXt = (αXt + β)dt+ σ(t,Xt, µt)dBt, X0 ∈ Lp(P),
dYt = (αYt + β) dt+ θ(t, Yt, νt) dBt, Y0 ∈ Lp(P), (0.0.6)

où α, β ∈ R et pour tout t ∈ [0, T ], µt = P◦X−1
t , νt = P◦Y −1

t . Soient X, Y deux variables
aléatoires à valeur dans un espace de Banach (E, ∥·∥E). Si on a Eφ(X) ≤ Eφ(Y ) pour
toutes les fonctions convexes φ : E → R telle que Eφ(X) et Eφ(Y ) soient bien définies,
on dit que X est dominée par Y pour l’ordre convexe et on note cette relation d’ordre
par X ⪯ cv Y . On définit respectivement les schémas d’Euler théorique de (Xt)t∈[0,T ],
(Yt)t∈[0,T ] par (0.0.3), et on les note par X̄tm , Ȳtm ,m = 0, ...,M . Dans le Chapitre 6, on
montre que le schéma d’Euler théorique de l’équation de McKean-Vlasov diffuse l’ordre
de convexe i.e. X̄tm ⪯ cv Ȳtm ,m = 0, ...,M, sous les conditions que

– X0 ⪯ cv Y0,

– pout tout t ∈ [0, T ], x ∈ Rd, µ ∈ P(Rd), θ(t, x, µ)θ(t, x, µ)∗ − σ(t, x, µ)σ(t, x, µ)∗

est une matrice définie positive,

– σ est convexe en x et croissante en µ par rapport à l’ordre convexe.

De plus, on en déduit, en utilisant une induction rétrogradé (backward) et la convergence
du schéma d’Euler théorique (0.0.5), le résultat de l’ordre convexe fonctionnel pour les
processus: pour une fonction convexe quelconque F : C([0, T ],Rd)→ R telle que F (X)
et F (Y ) soient bien définies et

∀α ∈ C([0, T ],Rd), ∃C ≥ 0 t.q. |F (α)| ≤ C(1 + ∥α∥rsup), avec 1 ≤ r ≤ p,

on a EF (X) ≤ EF (Y ). En outre, ce résultat peut encore se généraliser aux fonctionnel
du processus et de la loi du processus sous la forme de

G : (α, (γt)t∈[0,T ]) ∈ C([0, T ],Rd)× C([0, T ],Pp(Rd)) 7→ G(α, (γt)t∈[0,T ]) ∈ R,
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telle que G est convexe en α, non décroissante en (γt)t∈[0,T ] par rapport à l’ordre
convexe et admettant une croissance polynomial d’ordre r, 1 ≤ r ≤ p. On obtient à la
fin du Chapitre 6 que EG(X, (µt)t∈[0,T ]) ≤ EG(Y, (νt)t∈[0,T ]), où pour tout t ∈ [0, T ],
µt = P ◦X−1

t , νt = P ◦ Y −1
t .

Le Chapitre 7 propose et analyse la méthode de particule, deux schémas basés
sur la quantification et un schéma hybride particule-quantification pour l’équation de
McKean-Vlasov homogène

dXt = b(Xt, µt)dt+ σ(Xt, µt)dBt
X0 : (Ω,F ,P)→

(
Rd,B(Rd)

)
variable aléatoire

∀t ≥ 0, µt est la mesure de probabilité de Xt

. (0.0.7)

On considère principalement le cas homogène dans ce chapitre afin d’alléger les notations
mais tous les résultats peuvent se généraliser au cas non-homogène avec les méthodes
classiques comme pour une équation différentielle stochastique standard. Le schéma
d’Euler théorique dans le cas homogène estX̄tm+1 = X̄tm + h · b(X̄tm , µ̄tm) +

√
hσ(X̄tm , µ̄tm)Zm+1

X̄0 = X0, µ̄tm = PX̄tm
,

(0.0.8)

où M ∈ N∗, h = T
M , et tm = m · h, m ∈ {1, ...,M}.

La première méthode qu’on étudie est la méthode de particule, qui s’est inspirée
du principe de la propagation du chaos et qui peut être considérée comme sa version
discrète. Soient X̄1,N

0 , ..., X̄N,N
0 des i.i.d variables aléatoires qui ont la même loi que X0

dans (0.0.7). La méthode de particule est définie par
∀n ∈ {1, ..., N},
X̄n,N
tm+1 = X̄n,N

tm + hb(X̄n,N
tm , µ̄Ntm) +

√
hσ(X̄n,N

tm , µ̄Ntm)Znm+1

µ̄Ntm := 1
N

∑N
n=1 δX̄n,N

tm

, (0.0.9)

où Znm, n = 1, ..., N,m = 0, ...,M i.i.d∼ N (0, Iq). L’idée de cette méthode est d’utiliser
µ̄Ntm comme un estimateur de µ̄tm pour chaque étape d’Euler. Dans le cas de dimension
1, la vitesse de convergence de µ̄Ntm à µ̄m a déjà été démontré dans Bossy and Talay
(1997). Pour la vitesse de convergence dans la dimension supérieure, on obtient dans la
Section 7.1 que pour toutes les dimensions d,∥∥∥∥∥ sup

1≤m≤M
Wp(µ̄Ntm , µ̄tm)

∥∥∥∥∥
p

≤ Cd,p,L,T
∥∥∥Wp(µ̄, νN )

∥∥∥
p
,
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où µ̄ est la mesure de probabilité de X̄ = (X̄t)t∈[0,T ], qui le processus défini par le
schéma d’Euler continu (voir (5.2.3)) et νN est la mesure empirique de µ̄. De plus, si
∥X0∥p+ε < +∞ pour un ε > 0, on obtient dans la Section 7.1 en utilisant les résultats
de Fournier and Guillin (2015) que∥∥∥∥∥ sup

1≤m≤M
Wp(µ̄Ntm , µ̄m)

∥∥∥∥∥
p

≤ ‹C
×


n

− 1
2p + n

− ε
p(p+ε) si p > d/2 et ε ̸= p

n
− 1

2p
[

log(1 + n)
] 1

p + n
− ε

p(p+ε) si p = d/2 et ε ̸= p

n− 1
d + n

− ε
p(p+ε) si p ∈ (0, d/2) et p+ ε ̸= d

(d−p)

,

où ‹C est une constante qui dépend de p, ε, d, b, σ, L, T .

La deuxième méthode afin de simuler l’équation de McKean-Vlasov qu’on présente
dans le Chapitre 7 est la méthode de quantification optimale quadratique. Soient
x(m) = (x(m)

1 , ..., x
(m)
K ), la grille de quantification de X̄tm , m = 1, ...,M . Le schéma

théorique basé sur la quantification est

‹X0 = X0, “X0 = Projx(0)(‹X0)‹Xtm+1 = “Xtm + h · b(“Xtm , µ̂tm) +
√
hσ(“Xtm , µ̂tm)Zm+1, m = 0, ...,M − 1

avec h = T
M et µ̂tm = P“Xtm“Xtm+1 = Projx(m+1)(‹Xtm+1).

On montre dans la Section 7.2 l’analyse d’erreur de ce schéma et on propose trois façons
différentes de simuler explicitement µ̂tm .

(1) Dans le cas de Vlasov, i.e. b(x, µ) =
∫
Rd β(x, u)µ(du) et σ(x, µ) =

∫
Rd a(x, u)µ(du),

on peut utiliser la méthode de quantification récursive, qui a été introduite dans
Pagès and Sagna (2015) pour une équation stochastique régulière. On peut en
déduire une transition markovienne de (“Xtm , µ̂tm). Soient p(m) = (p(m)

1 , ..., p
(m)
K ) le

poids qui correspondent à x(m) = (x(m)
1 , ..., x

(m)
K ), m = 0, ...,M et par conséquent

µ̂tm = ∑K
k=1 δx(m)

k

p
(m)
k . La transition markovienne de (“Xtm , µ̂tm) qu’on obtient dans

la Section 7.3 est

P
(“Xtm+1 = x

(m+1)
j | “Xtm = x

(m)
i , p(m))

= P
[(
x

(m)
i + h

K∑
k=1

p
(m)
k β(x(m)

i , x
(m)
k ) +

√
h

K∑
k=1

p
(m)
k a(x(m)

i , x
(m)
k )Zm+1

)
∈ Cj(x(m+1))

]
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et étant donné p(m), on peut calculer pour tout j = 1, ...,K,

p
(m+1)
j = P

(“Xtm+1 = x
(m+1)
j

∣∣ p(m))
=

K∑
i=1

P
(“Xtm+1 = x

(m+1)
j | “Xtm = x

(m)
i , p(m)) · P(“Xtm = x

(m)
i ).

La preuve de ces transitions markoviennes se trouve dans la Section 7.3. De plus, on
explique également dans cette section comment utiliser l’algorithme de Lloyd afin
d’améliorer l’exactitude de la simulation.

(2) La deuxième façon d’exprimer explicitement µ̂tm est d’utiliser la grille optimale de la
distribution normale N (0, Iq) et son poids, qui peuvent être téléchargées dans le site
www.quantize.maths-fi.com/gaussian_database pour les dimension q = 1, ..., 10.
Soient x(m) = (x(m)

1 , ..., x
(m)
K ) une grille de quantification de X̄tm , m = 0, ...,M . Soit

z = (z1, ..., zJ) une grille optimale de N (0, Iq) avec J > K et soit w = (w1, ..., wJ)
le poids correspondant de z. Le schéma basé sur les deux grilles de quantification x
et z est comme suit

‹X0 = X0, “X0 = Projx(0)(‹X0)‹Xtm+1 = “Xtm + h · b(“Xtm , µ̂tm) +
√
hσ(“Xtm , µ̂tm)Ẑm+1, m = 0, ...,M − 1

où h = T
M et µ̂tm = P“Xtm“Xtm+1 = Projx(m+1)(‹Xtm+1),

,

où Ẑm
i.i.d∼

∑J
j=1wjδzj . On appelle cette méthode le schéma double-quantisé et on

montre dans la Section 7.4 l’analyse de l’erreur de ce schéma.

(3) Soient x(m) = (x(m)
1 , ..., x

(m)
K ), m = 0, 1, ...,M une suite de grilles de quantification.

Après avoir obtenu la vitesse de convergence de la méthode de particule, on peut
aussi appliquer la méthode de quantification optimale sur (0.0.9) comme suit

∀n ∈ {1, ..., N},‹Xn,N
tm+1 = ‹Xn,N

tm + h · b(‹Xn,N
tm , µ̂Ktm) +

√
hσ(‹Xn,N

tm , µ̂Ktm)Znm+1

µ̂Ktm =
( 1
N

∑N
n=1 δ‹Xn,N

tm

)
◦ Proj−1

x(m) = ∑K
k=1

[
δ
x

(m)
k

·
∑N
n=1 1Vk(x(m))(‹Xn,N

tm )
]

X̄n,N
0

i.i.d∼ X0, Znm
i.i.d∼ N (0, Iq)

.

On appelle ce schéma le schéma hybride particule-quantification (schéma hybride, à
court terme). L’analyse d’erreur de ce schéma se trouve dans la Section 7.5.

À la fin du Chapitre 7, on montre des simulations par les méthodes présentées
précédemment à travers deux exemples. Le premier exemple est la simulation de
l’équation de Burgers introduite dans Sznitman (1991) et Bossy and Talay (1997).
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L’équation de Burgers admet d’une solution explicite, on peut donc comparer le niveau
de précision des méthodes différents. Le deuxième exemple, le réseau de neurones de
FitzHugh-Nagumo, est en dimension 3 et introduit premièrement dans Baladron et al.
(2012) et également dans Reis et al. (2018).





Chapter 1

Introduction

1.1 General background on optimal quantization

Vector quantization was originally developed as an optimal discretization method for
the signal transmission and compression by the Bell laboratories in the 1950s. Many
seminal and historical contributions on vector quantization and its connections with
information theory were gathered and published later in IEEE Transactions on Infor-
mation Theory (1982). Nowadays, vector quantization becomes an efficient tool widely
used in different fields. For example, in unsupervised learning, vector quantization has a
close connection with the clustering analysis and the pattern recognition; in numerical
probability, vector quantization is used for numerical integration, conditional expectation
computation, simulation of stochastic differential equations and also for option pricing in
financial mathematics. Among a wide range of properties and applications of the quanti-
zation method, this thesis focuses on two limit theorems of the optimal quantization
theory and its application to the simulation of the McKean-Vlasov equation.

1.1.1 Principle of optimal quantization(1)

Let X be an Rd-valued random variable defined on (Ω,F ,P) with probability dis-
tribution µ having a p-th finite moment, p ≥ 1. Let |·| denote the norm on Rd.
The quantization method consists in discretely estimating µ (or X) by using a K-
tuple x = (x1, ..., xK) ∈ (Rd)K and its weight w = (w1, ..., wK). Here the K-tuple
x = (x1, ..., xK) is called by a quantizer (or quantization grid, cluster center, codebook in
the literature). To be more precise, the quantized estimator of µ induced by x, denoted

(1) We allow ourselves a slight relaxation of mathematical rigour (only) in this section to quickly present
the basic principles of optimal quantization.
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by µ̂x, is defined by

µ̂x :=
K∑
k=1

µ
(
Ck(x)

)︸ ︷︷ ︸
=:wk, the weight of each quantizer point xk

· δxk
, (1.1.1)

where δa denote the Dirac mass at a and
(
Ck(x)

)
k=1,...,K is the Voronoï partition (see

for example Figure 1.1) generated by x, which is a mesurable partition of Rd satisfying

∀k ∈ {1, ...,K}, Ck(x) ⊂
{
y ∈ Rd

∣∣ |y − xk| = min
1≤j≤K

|y − xj |
}
.

Similarly, the estimator of X by the quantization method is defined by“Xx := Projx(X) :=
K∑
k=1

xk1Ck(x)(X). (1.1.2)

Figure 1.1 An example of the Voronoï diagram on R2 equipped with the Euclidean norm
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Figure 1.2 An optimal quantizer of N (0, 1) (red point). The vertical axis is the weight divided by the
length of the corresponding Voronoï cell.

Let d(ξ, A) := mina∈A |ξ − a| define the distance between a point ξ ∈ Rd and a set
A ⊂ Rd. For p ≥ 1, the Lp-quantization error of the quantizer x = (x1, ..., xK) ∈ (Rd)K

is defined by the Lp-norm of d(X,Γx) with Γx := {x1, ..., xK} ⊂ Rd, namely,

eK,p(µ, x) :=
[
E d(X,Γx)p

]1/p =
[ ∫

Rd
min

1≤k≤K
|ξ − xk|p µ(dξ)

] 1
p .

A quantizer x∗ ∈ (Rd)K satisfying eK,p(µ, x∗) = infx∈(Rd)K eK,p(µ, x) is called an Lp-
optimal quantizer of µ at level K. Such a quantizer always exists if µ has a finit p-th
moment (see Graf and Luschgy (2000)[Theorem 4.12]).

In the quadratic case (p = 2), the optimal quantizer can be numerically computed
by using the CLVQ algorithm (stochastic gradient algorithm), the Lloyd I algorithm
(randomized or deterministic fixed point algorithm) or some variants. Figure 1.2 shows
a quadratic optimal quantizer at level 5

x∗ = (−1.72414741, −0.764567571, 0.0, 0.764567571, 1.72414741)

of the normal distribution N (0, 1) on R computed by the Lloyd I algorithm.

Another classical method to discretely approximate a probability measure µ is
the Monte-Carlo method. Let X1, ..., XN be an i.i.d sample defined on (Ω,F ,P) with
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probability distribution µ. The estimator of µ by the Monte-Carlo method is

µ̄N,ω := 1
N

N∑
n=1

δXn(ω). (1.1.3)

Compared with the Monte-Carlo method, the optimal quantization method has two
intuitional advantages

• The optimal quantizer is deterministic, which means the optimal quantizer does
not depend on ω in (Ω,F ,P), so that the estimator µ̂x∗ defined in (1.1.1) is
also deterministic. This means one can achieve a prescribed level of accuracy by
enlarging the size of optimal quantizer with the help of an upper bound of the
optimal error (see further the non-asymptotic Zador’s theorem in Theorem 1.1.1).

• If we consider a K-level optimal quantizer x∗ = (x1, ..., xK) and an i.i.d sample
X1, ..., XK with the same size K, we will always get a higher accuracy with respect
to the Wasserstein distance by using the quantization estimator µ̂x∗ defined in
(1.1.1) than using the Monte-Carlo estimator µ̄K,ω defined in (1.1.3).

However, the shortcoming of the optimal quantization method often occurs on the
computing time due to the adding procedure to find the optimal quantizer.

The first advantage is obvious. Here we give a quick explanation to the sec-
ond advantage. Let P(K) denote the set of all discrete probabilities ν on Rd with
Card

(
supp(ν)

)
≤ K. Let x∗ = (x∗

1, ..., x
∗
K) denote an Lp-optimal quantizer of µ ∈ Pp(Rd).

It follows from Graf and Luschgy (2000)[Lemma 3.4] that

eK,p(µ, x∗) =Wp(µ, µ̂x
∗) = inf

ν∈P(K)
Wp(µ, ν).

Thus for any K-size i.i.d sample X1, ..., XK with probability distribution µ, we have

Wp(µ, µ̂x
∗) ≤ Wp(µ, µ̄K,ω) a.s.,

where µ̂x∗ is defined in (1.1.1) and µ̄K,ω is defined in (1.1.3).

The optimal quantization method is applied in the following fields, besides the signal
transmission and compression as its original purpose.

– In the numerical probability, the optimal quantization is used to compute the
numerical integration, conditional expectation (see e.g. Pagès (1998)) and offers a
spatial discretization in the simulation of stochastic differential equation (see e.g.
Gobet et al. (2006)). Let X be an Rd-valued random variable with probability
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distribution µ having a p-th finite moment and let x = (x1, ..., xK) be its quantizer.
A simple example is that for a Lipschitz continuous function F : (E, E)→

(
R,B(R)

)
with Lipschitz constant [F ]Lip, one can use

EF (“Xx) =
K∑
k=1

F (xk)µ
(
Ck(x)

)
to approximate EF (X). Note that

∥∥∥X − “Xx
∥∥∥
p

= eK,p(µ, x), so the (strong) error
of the above simulation can be upper-bounded by

E
∣∣∣F (“Xx)− F (X)

∣∣∣ ≤ [F ]Lip

∥∥∥X − “Xx
∥∥∥

1
≤ [F ]Lip

∥∥∥X − “Xx
∥∥∥
p
, p ≥ 1.

If F is differentiable with a Lipschitz continuous gradient ∇F , then (see Pagès
(1998) or Pagès (2018)[Proposition 5.2])∣∣∣EF (X)− EF (X̂x)

∣∣∣ ≤ 1
2[∇F ]Lip

∥∥∥X − “Xx
∥∥∥2

2
.

– In the field of the unsupervised learning, the optimal quantization is also called the
K-means clustering. It is used to solve the problem of automatic classification. In
this context, the quantizer is also called cluster center in the literature. The main
idea is to consider a vector data set {y1, ..., yN} as a empirical measure 1

N

∑N
n=1 δyn

and to compute/train the optimal quantizer of this data set. The following figure
shows an example of the optimal quantization of a data set.

Figure 1.3 The optimal quantizer of a data set.
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The data set in Figure 1.3 is a mix of three i.i.d sample of size N = 300 of
respective probability distribution N

Äî
0
0

ó
,
î

1 0.5
0.5 1

óä
, N

Äî
2
2

ó
,
î

1 −0.5
−0.5 1

óä
,

and N (
î

1.5
−1.5

ó
,
î

1 −0.2
−0.2 1

ó
). The red points are an optimal quantizer of size 3

of this data set. The blue points are the three centers of the normal distributions.

1.1.2 Frequently used definitions and basic properties

Now we present several frequently used definitions to mathematically formalize the
optimal quantization and some of its basic properties. Let (Ω,F ,P) denote a probability
space and let X : (Ω,F ,P) → (E, |·|E) be a random variable valued in a separable
Banach space E with norm |·|E . Let

Pp(E) :=
{
µ probability distribution on E s.t.

∫
E
|ξ|pE µ(dξ) < +∞

}
and let Wp denote the Lp-Wasserstein distance on Pp(E), defined by

Wp(µ, ν) :=
(

inf
π∈Π(µ,ν)

∫
E×E

|x− y|pE π(dx, dy)
) 1

p

= inf
{[

E |X − Y | pE
] 1

p
, X, Y : (Ω,F ,P)→ (E, |·|E) with P ◦X−1 = µ,P ◦ Y −1 = ν

}
,

where in the first line of the above definition, Π(µ, ν) denotes the set of all probability
measures on (E2, E⊗2) with respective marginals µ and ν and E denotes the σ-algebra
generated by |·|E . For two random variables X,Y : (Ω,F ,P)→ (E, |·|E) with respective
probability distributions µ and ν, we write Wp(X,Y ) :=Wp(µ, ν).

Let µ denote the probability distribution of X and assume that µ ∈ Pp(E). The
quantizer (also called codebook in signal compression or cluster center in unsupervised
learning theory) is originally denoted by a finite point set Γ = {x1, ..., xK} ⊂ E. The
Lp-mean quantization error of Γ, which describes the accuracy of representing the
probability measure µ by Γ, is defined by

ep(µ,Γ) := ∥d(X,Γ)∥p =
[ ∫

E
min
a∈Γ
|ξ − a|pE µ(dξ)

] 1
p
,

where d(ξ, A) = mina∈A |ξ − a|E defines the distance between a point ξ ∈ E and a set
A ⊂ E. A quantizer Γ∗,(K) satisfying

ep(µ,Γ∗,(K)) = inf
Γ⊂E,

card(Γ)≤K

[
E d(X,Γ)p

] 1
p = inf

Γ⊂E,
card(Γ)≤K

[ ∫
E

min
a∈Γ
|ξ − a|pE µ(dξ)

] 1
p (1.1.4)

is called an Lp-optimal quantizer (or optimal quantizer in short) at level K. Such an opti-
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mal Lp-quantizer always exists when X ∈ Lp(P) (see Graf and Luschgy (2000)[Theorem
4.12] and Graf et al. (2007)).

Now we define the Lp-mean quantization error function and the Lp-distortion func-
tion.

Definition 1.1.1 (Quantization error function and distortion function). Let µ∈ Pp(E),
p ∈ [1,+∞). The Lp-mean quantization error function of µ at level K, denoted by
eK,p(µ, ·), is defined by:

eK,p(µ, ·) : EK −→ R+

x = (x1, . . . , xK) 7−→ eK,p(µ, x) =
[ ∫

Rd
min

1≤i≤K
|ξ − xi|pE µ(dξ)

] 1
p
.

(1.1.5)
Moreover, the Lp-distortion function of µ at level K is defined by DK,p(µ, ·) := epK,p(µ, ·).

When p = 2, E is a Hilbert space and |·|E is induced by an inner product, we call
eK,2(µ, ·) the quadratic quantization error function and DK,2(µ, ·) the quadratic distortion
function. In this case, we remove sometimes the subscript 2.

Let card(Γ) denote the cardinality of the point set Γ ⊂ E. The generic variable of
the function eK,p(µ, ·) and DK,p(µ, ·) is a priori a K-tuple in EK . However, for a finite
quantizer Γ ⊂ E, if the level K ≥ card(Γ), then for any K-tuple xΓ = (xΓ

1 , . . . , x
Γ
K) ∈ EK

such that Γ = {xΓ
1 , . . . , x

Γ
K}, we have ep(µ,Γ) = eK,p(µ, xΓ). For example,

ep
(
µ, {x1, x2}

)
= e2,p

(
µ, (x1, x2)

)
= e3,p

(
µ, (x1, x1, x2)

)
, etc.

Note that eK,p(µ, ·) and DK,p(µ, ·) are symmetric functions on EK and that, owing to
the above definition,

inf
Γ⊂E,card(Γ)≤K

ep(µ,Γ) = inf
x∈EK

eK,p(µ, x). (1.1.6)

Therefore, with a slight abuse of notation, we will use for convenience either a K-tuple
x = (x1, . . . , xK) ∈ EK or a point set Γ = {x1, ..., xK} ⊂ E to represent a quantizer
and we will denote by x∗ ∈ argmineK,p(µ, ·) the Lp-optimal quantizer of µ at level K.
Furthermore, we denote

e∗
K, p(µ) := inf

y=(y1,...,yK)∈EK

[ ∫
Rd

min
1≤i≤K

|ξ − yi|2 µ(dξ)
] 1

2
. (1.1.7)

the Lp-optimal quantization error of µ at level K.

There exist other terminologies in the literature which play a similar role as the
quantizer. For example, in Graf and Luschgy (2000)[Section 3], the authors define the
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quantizer by an application fK : E → E such that card
(
supp(fK)

)
≤ K, where supp

denotes the support of a function and card denotes the cardinality of a set. Another
example is in Pollard (1982b). The author uses a probability distribution µK on E,
where the subscript K means card

(
supp(µK)

)
≤ K, to represent the quantizer. The

equivalence of these two representations and our definition has been proved in Pollard
(1982b)[Theorem 3] and Graf and Luschgy (2000)[Lemma 3.1, 3.4 and 4.4].

Quantization theory has a close connection with Voronoï partitions. Let x =
(x1, ..., xK) ∈ EK be a quantizer at level K, where xi ̸= xj if i ̸= j. The Voronoï cell (or
Voronoï region) generated by xk is defined by

Vxk
(x) =

{
ξ ∈ E : |ξ − xk|E = min

1≤j≤K
|ξ − xj |E

}
(1.1.8)

and
(
Vxk

(x)
)

1≤k≤K is called the Voronoï diagram of x. On a Hilbert or a Euclidean space,
the Voronoï cells are intersections of half-spaces defined by the median hyperplanes, i.e.

Vxk
(x) = ∩j ̸=kEkj ,

where Ekj is the half-space defined by the median hyperplane of xk and xj that contains
xk.

A mesurable partition
(
Cxk

(x)
)

1≤k≤K is called a Voronoï partition of E induced by
x if

∀k ∈ {1, ...,K}, Cxk
(x) ⊂ Vxk

(x). (1.1.9)

When there is no ambiguity, we write Ck(x) and Vk(x) instead of Cxk
(x) and Vxk

(x).
We also define the open Voronoï cell generated by xk by

V o
xk

(x) =
{
ξ ∈ E : |ξ − xk|E < min

1≤j≤K,j ̸=k
|ξ − xj |E

}
. (1.1.10)

One quantizer x = (x1, ..., xK) may generate different Voronoï partitions, this depends
on the choice between V o

xi
(x) and V o

xj
(x) with which we put together Vxi(x) ∩ Vxj (x).

Figure 1.2 in Graf and Luschgy (2000) emphasizes that when the norm is not Euclidean
then intVxi(x) and V o

xi
(x) may be different. However, on a Hilbert or a Euclidean space,

there is always equality.

Based on a Voronoi partition
(
Cxk

(x)
)

1≤k≤K , one can rewrite the Lp-distortion
function DK,p(µ, ·) (also the quantization error function) by

DK,p(µ, x) =
K∑
k=1

∫
Cxk

(x)
|ξ − xk|p µ(dξ), (1.1.11)

but the value of DK,p(µ, x) is independent of the choice of Voronoi partition. For the
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properties of Voronoï cell, we refer to Graf and Luschgy (2000)[Chapter I] among many
other references.

In fact, both the definition of Voronoï region and the quantization error function
strongly depend on the chosen norm on E. For example, Figure 1.1 in Graf and Luschgy
(2000) shows two different Voronoï diagrams of the same finite point set in R2 with
respect to l1-norm and l2-norm. When E = Rd and the underlying norm is strictly
convex or lp-norm with 1 ≤ p ≤ +∞, we have λd

(
∂Vxk

(x)
)

= 0, where λd denotes the
Lebesgue measure on Rd and ∂A denotes the boundary of A (see Graf and Luschgy
(2000)[Theorem 1.5]). In particular, if µ ∈ P2(Rd) and x∗ is a quadratic optimal quantizer
of µ at level K with respect to the Euclidean norm, even if µ is not absolutely continuous
with respect to λd, we have µ

(
∂Vxk

(x∗)
)

= 0 for all k ∈ {1, ...,K} (see Graf and Luschgy
(2000)[Theorem 4.2]).

Furthermore, based on a Voronoi partition
(
Cxk

(x)
)

1≤k≤K generated by a quantizer
x = (x1, ..., xK) satisfying xi ̸= xj , i ̸= j, we can define a projection function Projx :
E → {x1, ..., xK} by

ξ ∈ E 7→ Projx(ξ) :=
K∑
k=1

xk1Cxk
(x)(ξ). (1.1.12)

Thus, for a random variable X with probability distribution µ, we define“Xx := Projx(X). (1.1.13)

Then
∥∥∥“Xx −X

∥∥∥
p

= eK,p(µ, x). When there is no ambiguity, we denote by “X instead of“Xx. The variable “Xx and its probability distribution

µ̂x =
K∑
k=1

δxk
µ
(
Cxk

(x)
)

(1.1.14)

are often considered as quantization based estimators of X and µ. Moreover, it follows
from Graf and Luschgy (2000)[Lemma 3.4](1) that

Wp(µ̂x, µ) =
∥∥∥“Xx −X

∥∥∥
p

= eK,p(µ, x). (1.1.15)

(1) The statement of Graf and Luschgy (2000)[Lemma 3.4] is established for the optimal quantizer.
However, the third inequality of its proof is also valid for an arbitrary quantizer from where we
derive (1.1.15).
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1.1.3 A brief review of the literature and motivations

Most work in the field of the optimal quantization addresses the following three
questions around which we organize this section:

– Question 1: Why does the optimal quantization provide a good discrete representa-
tion of the probability distribution?

– Question 2: How to find the (quadratic) optimal quantizer?

– Question 3: How to apply the optimal quantization in numerical probability or in
unsupervised learning?

Moreover, for a first mathematically rigorous monograph of various aspects of vector
quantization theory, we refer to Graf and Luschgy (2000) (and the references therein).
See also Pagès (2015) for numerical applications. For more engineering applications to
signal compression, see e.g. Gersho and Gray (2012) among an extensive literature.

1.1.3.1 Why does the optimal quantization provide a good representation
of the probability distribution?

We start with some basic properties of the optimal quantizer and the optimal
quantization error to answer Question 1. First, the existence of optimal quantizer is
proved in Pagès (1998) and Graf and Luschgy (2000)[Theorem 4.12] for E = Rd and in
Graf et al. (2007) for any Banach space. Generally, there does not exist a unique optimal
quantizer for a probability distribution µ. If x∗ = (x1, ..., xK) is an optimal quantizer
of µ, it is obvious that any permutation of x1, ..., xK such as x′ = (xK , ..., x1) is also
an optimal quantizer of µ. However, if E = R and we set an order for x = (x1, ..., xK)
by letting x1 ≤ x2 ≤ ... ≤ xK , the uniqueness of optimal quantizer is proved in Kieffer
(1983) if µ is absolutly continuous with respect to the Lebesgue measure λ and has a
log-concave density function.

Moreover, the optimal quantizer and the optimal quantization error provide the
following properties for a fixed quantization level K ∈ N∗. We present later their
asymptotic properties when the quantization level K → +∞.

Theorem 1.1.1. [Properties of the optimal quantization error]

(i) (Strictly decreasing of K 7→ e∗
K,p(µ))

For every µ ∈ Pp(Rd) with card
(
supp(µ)

)
≥ K, one has e∗

K, p(µ) < e∗
K−1, p(µ), for

K ≥ 2.
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(ii) (Upper bound of the optimal quantization error: Non-asymptotic Zador’s theorem)
Let η > 0. For every µ ∈ Pp+η(Rd) and for every quantization level K, there exists a
constant Cd,p,η ∈ (0,+∞) which depends only on d, p and η such that

e∗
K,p(µ) ≤ Cd,p,η · σp+η(µ)K−1/d, (1.1.16)

where for r ∈ (0,+∞), σr(µ) = mina∈Rd

[ ∫
Rd |ξ − a|r µ(dξ)

]1/r.

Theorem 1.1.2. [Properties of optimal quantizers]

(i) (Boundedness and cardinality of optimal quantizers)
Let µ ∈ Pp(Rd). Assume that card

(
supp(µ)

)
≥ K. Let

GK(µ) :=
{
{x∗

1, ..., x
∗
K}

∣∣ (x∗
1, ..., x

∗
K) ∈ argmineK,p(µ, ·)

}
contains the points which compose an Lp-optimal quantizer of µ at level K. Then GK(µ)
is a nonempty compact set so that

ρK,p(µ) := max
{

max
1≤k≤K

|x∗
k| , (x∗

1, ..., x
∗
K) is an optimal quantizer of µ

}
(1.1.17)

is finite for a fixed level K. Moreover, if Γ∗ ⊂ Rd is an Lp-optimal quantizer of µ,
then card(Γ∗) = K. In particular, if Γ∗ = {x1, ..., xK}, then xΓ∗ := (x1, ..., xK) ∈
argmin eK,p(µ, ·) and vice versa.

(ii) (Stationary of quadratic optimal quantizers)
Let X : (Ω,F ,P) →

(
Rd,B(Rd)

)
be a random variable with probability distribution

µ ∈ P2(Rd) with card(supp(µ)) ≥ K. If the norm on Rd is the Euclidean norm, then
any quadratic optimal quantizer x∗ = (x∗

1, ..., x
∗
K) of level K is stationary in the sense

that
E
î
X | “Xx∗ó = “Xx∗

, (1.1.18)

where “Xx∗ is defined in (1.1.13) and the equality of (1.1.18) is valid for every Voronoï
partition generated by x∗.

We refer to Graf and Luschgy (2000)[Theorem 4.12] for the proof of Theorem 1.1.1-(i)
and Theorem 1.1.2-(i), to Luschgy and Pagès (2008) and Pagès (2018)[Theorem 5.2] for
the proof of Theorem 1.1.1-(ii) and to Pagès (2008) and Pagès (2018)[Proposition 5.1]
for the proof of Theorem 1.1.2-(ii).

The quantization error function eK,p(µ, ·) and the distortion function DK,p(µ, ·)
are two efficient tools to study the optimal quantization as the optimal quantizer
x∗ = (x∗

1, ..., x
∗
K) ∈ argmin eK,p(µ, ·) = argminDK,p(µ, ·). In fact, the quantization

error function is entirely characterized by the targeted probability distribution µ in
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the following sense. Let E denote a separable Banach space equipped with a norm
|·|. Let X,Y : (Ω,F ,P)→ (E, |·|) be two random variables with respective probability
distributions µ, ν ∈ Pp(E). For every K-tuple x = (x1, ..., xK) ∈ EK , we have

∣∣eK,p(µ, x)− eK,p(ν, x)
∣∣ =

∣∣∣∣ ∥∥∥ min
i=1,...,K

|X − xi|
∥∥∥
p
−
∥∥∥ min
i=1,...,K

|Y − xi|
∥∥∥
p

∣∣∣∣
≤

∥∥∥ min
i=1,...,K

|X − xi| − min
i=1,...,K

|Y − xi|
∥∥∥
p
(by the Minkowski inequality)

≤
∥∥∥ max
i=1,...,K

| |X − xi| − |Y − xi| |
∥∥∥
p
≤ ∥X − Y ∥p . (1.1.19)

As this inequality holds for every couple (X,Y ) with marginal distributions µ and ν, it
follows that for every level K ≥ 1,

∥eK,p(µ, ·)− eK,p(ν, ·)∥sup := sup
x∈EK

|eK,p(µ, x)− eK,p(ν, x)| ≤ Wp(µ, ν). (1.1.20)

Hence, if (µn)n≥1 is a sequence in Pp(E) converging for the Wp-distance to µ∞∈ Pp(E),
then

∥eK,p(µn, ·)− eK,p(µ∞, ·)∥sup ≤ Wp(µn, µ∞) n→+∞−−−−−→ 0. (1.1.21)

Moreover, for any µ ∈ Pp(E), the function eK,p(µ, ·) defined in (1.1.5) is 1-Lipschitz
continuous for every K ≥ 1 since for any x = (x1, . . . , xK), y = (y1, . . . , yK) ∈ EK ,

|eK,p(µ, x)− eK,p(µ, y)| =
∣∣∣∣[ ∫

E

min
1≤i≤K

|ξ − xi|p µ(dξ)
] 1

p −
[ ∫

E

min
1≤j≤K

|ξ − yj |p µ(dξ)
] 1

p

∣∣∣∣
≤

[ ∫
E

∣∣∣ min
1≤i≤K

|ξ − xi| − min
1≤j≤K

|ξ − yj |
∣∣∣pµ(dξ)

] 1
p (by the Minkowski inequality)

≤
[ ∫

E

max
1≤i≤K

|xi − yi|p µ(dξ)
] 1

p = max
1≤i≤K

|xi − yi| . (1.1.22)

Now we show the asymptotic properties of the optimal quantization on Rd when the
quantization level K → +∞ .

Theorem 1.1.3. Let X : (Ω,F ,P)→
(
Rd,B(Rd)

)
be a random variable with probability

distribution µ. Let µ = µa + µs = h · λd + µs denote the Lebesgue decomposition of µ
with respect to the Lebesgue measure λd, where µa is the absolutely continuous part with
density function h and µs is the singular part of µ.

(i) Let µ ∈ Pp(Rd), For every K ∈ N∗, let µ̂x ∗, (K) and “X x ∗, (K) denote the quantization
estimator of µ and X defined in (1.1.14) and (1.1.13) with respect to an optimal
quantizer x ∗, (K) = (x ∗, (K)

1 , ..., x
∗, (K)
K ) at level K. Then∥∥∥X − “X x ∗, (K)

∥∥∥
p

=Wp(µ, µ̂x
∗, (K)) = e∗

K,p(µ)→ 0 as K → +∞. (1.1.23)
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(ii) (Zador’s Theorem) Let µ ∈ Pp+η(Rd) for some η > 0. Then there exists a constant
Cp,d depending on p and d such that

lim
K→+∞

K1/d e∗
K,p(µ) = Cp,d

[ ∫
Rd
h

d
d+pdλd

] 1
p

+ 1
d .

(iii) (Empirical measure theorem) If h ̸= 0 and h ∈ Ld/(d+r)(λd), then

1
K

∑
1≤k≤K

δ
x

∗,(K)
k

(Rd)===⇒ µ̃ = hd/(d+p)(ξ)∫
hd/(d+p)dλd

λd(dξ), as K → +∞, (1.1.24)

where for every K ∈ N∗, x∗,(K) = (x∗,(K)
1 , ..., x

∗,(K)
K ) denotes an optimal quantizer

of µ at level K and (S)=⇒ denotes the weak convergence of probability measures on a
Polish space S.

We refer to Graf and Luschgy (2000)[Lemma 6.1, Theorem 6.2 and Theorem 7.5] for
the proof of Theorem 1.1.3.

The answer to Question 1 is composed by not only the above three convergences in
Theorem 1.1.3 when K → +∞, but also by a close connection among the probability
distribution, the quantization error function and the optimal quantizer (eventually the
weight of optimal quantizer) when K is finite. First, the optimal quantizer is entirely char-
acterized by the quantization error function since x∗ = (x∗

1, ..., x
∗
K) ∈ argmineK,p(µ, ·).

Moreover, Inequalities (1.1.20) and (1.1.21) show that for every K ≥ 1 and p∈ [1,+∞),
the quantization error function eK,p(µ, ·) is characterized by the probability distribu-
tion µ. Hence, the characterization relations between a probability measure µ, its
Lp-quantization error function and its optimal quantizers can be synthesized by the
following scheme:

Probability measure µ

Quantization error
function eK,p(µ, ·)

Optimal quantizers
Γ∗,(K)

See (1.1.20) and (1.1.21)
?

argmin
see Theorem 1.1.2

see (1.1.23) and (1.1.24)

Our motivation of Chapter 2 is to investigate more deeply the relations between these
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three elements. In Chapter 2, we consider the “reverse” questions of (1.1.20) and (1.1.21):
When and how is a probability measure µ∈ Pp(Rd) characterized by its Lp-quantization
error functions eK,p(µ, ·)? And if so, does the convergence in an appropriate sense of
the Lp-quantization error functions characterizes the convergence of their probability
distributions for the Wp-distance?

1.1.3.2 How to find the (quadratic) optimal quantizer?

(A) If the target probability distribution µ is known...

As far as we know, there does not exist a general method to find the Lp-optimal
quantizers of µ ∈ Pp(Rd) for every p ≥ 1. However, if p = 2 and if the underlying
norm on Rd is the Euclidean norm, there exist several numerical methods to find the
quadratic optimal quantizer which correspond to the properties of the optimal quantizer
in Theorem 1.1.2-(i) and (ii).

(A.1) Zero search algorithm and CLVQ algorithm. Let X be an Rd-valued random
variable with probability distribution µ satisfying µ ∈ P2(Rd). Assume that µ is
absolutely continuous with respect to the Lebesgue measure, i.e. µ = f · λd with f its
density function. For a fixed quantization level K, its quadratic distortion function
DK,2(µ, ·) is differentiable at all point x = (x1, ..., xK) s.t. xi ̸= xj , i ̸= j,

∂DK, 2(µ, ·)
∂xk

(x) = 2
∫
Vk(x)

(xk−ξ)f(ξ)λd(dξ) = 2E
[
1{X∈Vk(x)}(xk−X)

]
, for k = 1, ...,K.

(1.1.25)

As the quadratic optimal quantizer x∗ = (x∗
1, ..., x

∗
K) ∈ argminDK,2(µ, ·), one can

use a zero search algorithm of the gradient ∇DK, 2(µ, ·), namely,

x[l+1] = x[l] − γ l+1∇DK, 2(µ, x[l]), with x[0] ∈
(
Hull(supp(µ))

)K
, (1.1.26)

where x[0] has pairwise distinct components and
(
Hull(supp(µ))

)K denotes the closed
convex hull of the support of µ. Furthermore, we obtain in Chapter 3 a detailed
formula for the Hessian matrix HDK, 2(µ, · ) by applying Fort and Pagès (1995)[Lemma
11]. Consequently, when d = 1, one can replace γ l+1 by the inverse of the Hessian matrix
HDK, 2(µ, · ), which leads to the classical Newton-Raphson procedure as follows,

x[l+1] = x[l] −HDK, 2(µ, · )(x[l])−1∇DK, 2(µ, x[l]). (1.1.27)

Furthermore, one can improve (1.1.27) by using the Levenberg-Marquardt algorithm
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with an appropriate choice of λl as follows

x[l+1] = x[l] −
[
HDK, 2(µ, · )(x[l]) + λlId

]−1∇DK, 2(µ, x[l]). (1.1.28)

Taking advantage of the representation of∇DK, 2(µ, ·) as an expectation (see (1.1.25)),
the above gradient descent has a stochastic counterpart called the CLVQ algorithm
(Competitive Learning Vector Quantization), which works also in higher dimension
(d ≥ 2)

x[l+1] = x[l] − γ l+1
[
1{Xl+1∈Vk(x)}(x[l]

k −Xl+1)
]

1≤k≤K , with x[0] ∈
(
Hull(supp(µ))

)K
,

(1.1.29)
where x[0] has pairwise distinct components and (Xl)l≥1 are independent copies of X.
We refer to Pagès (2015)[Section 3.2] for more details of the CLVQ algorithm.

(A.2) Lloyd I algorithm. Lloyd I algorithm, firstly introduced in Lloyd (1982), is a fixed
point search procedure which comes from the stationary property described in Theorem
1.1.2-(ii). Let x[0] = (x[0]

1 , ..., x
[0]
K ) ∈ supp(µ)K , having pairwise distinct components, the

Lloyd I algorithm computes the following iteration

x
[l+1]
k =

∫
Ck(x[l]) ξµ(dξ)
µ
(
Ck(x[l])

) , k = 1, ...,K, (1.1.30)

until some stopping criterions, for example, x[l+1] = (x[l+1]
1 , ..., x

[l+1]
K ) = x[l]. In dimension

1, if µ is absolutely continuous with respect to the Lebesgue measure and its density
function ρ is log-concave and log ρ is not piecewise affine, the Lloyd I algorithm has
an exponential convergence rate (see Kieffer (1982)). The convergence of the Lloyd I
algorithm in higher dimension is proved in Pagès and Yu (2016).

The integral over a Voronoï cell in (1.1.30) can be computed by using cubature
formulas for numerical integration on convex set. For example, in low dimension (d ≤ 3),
we refer to the libraries available at the website www.qhull.org. In higher dimension,
the computing time of such integral becomes intractable and we are led to switch to
the Randomized Lloyd I algorithm, which relies on a Monte-Carlo method and can be
written as follows,

– Let N > K. Simulate X1, ..., XN
i.i.d∼ µ.

– Set x[0] = (x[0]
1 , ..., x

[0]
K ).
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– Compute x[l+1] =
(
x

[l+1]
1 , ..., x

[l+1]
K

)
by

x
[l+1]
k =

∑N
n=1Xn1{Xn∈Ck(x[l])}∑N
n=1 1{Xn∈Ck(x[l])}

, k = 1, ...,K. (1.1.31)

– Repeat the above iteration until some stopping criterion occurs.

(B) If the target probability distribution µ is unknown but there exists a known probability
distribution sequence µn converging to µ in the Wasserstein distance...

This is a common situation in applications that µn is the empirical measure or µ
is the stationary measure of a diffusion process dXt = b(t,Xt)dt + σ(t,Xt)dBt. This
leads us to consider the consistency and the convergence rate of optimal quantizers for a
Wp-converging sequence of probability distributions.

Let µn ∈ Pp(Rd), n ∈ N ∪ {∞}. For every n ∈ N, let x(n) denote the optimal
quantizer of µn at level K and order p. There are two ways to consider the consistency
and the convergence rate of the optimal quantization. The first way is to directly study
the convergence of optimal quantizers:

– Will (x(n))n∈N converge to an optimal quantizer of µ∞?
This question is solved in Pollard (1982b)[Theorem 9] for p = 2 and we will prove
it for every p ≥ 1 in Chapter 3.

– LetGK(µ∞) :=
{

(x1, ..., xK) ∈ (Rd)K | (x1, ..., xK) is an optimal quantizer of µ∞
}

.
Can we obtain the convergence rate of d

(
x(n), GK(µ∞)

)
?

This question is solved in Chapter 3.

The second way is to study the convergence of the quantization errors, that is, we
consider x(n) as a quantizer of µ∞ and study the convergence of the quantization
error eK,p(µ∞, x

(n))
(
or equivalently DK,p(µ∞, x

(n))
)

to the optimal quantization error
e∗
K,p(µ∞) of µ∞ (or infx∈(Rd)K DK,p(µ∞, x) ).

– Does DK,p(µ∞, x
(n)) converge to infx∈(Rd)K DK,p(µ∞, x)?

– Can we obtain an estimation (e.g. an upper bound) of the convergence rate of∣∣∣DK,p(µ∞, x
(n))− inf

x∈(Rd)K
DK,p(µ∞, x)

∣∣∣?
When µn, n ∈ N, are the empirical measures and µ∞ has a bounded support, a result is
established in Biau et al. (2008). For a more general setting, e.g. for any Wp-converged
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probability distribution sequence or for the empirical measure with non-bounded support,
the convergence rate results are established in Chapter 3.

1.1.3.3 How to apply the optimal quantization in numerical probability or
in unsupervised learning?

In the unsupervised learning area, vector quantization has a close connection with
the automatic classification (clustering analysis) through the K-means algorithm. The
term K-means originates from the paper MacQueen (1967), which aims at finding an
optimal partition S = {S1, ..., SK} of a given set of observations (ξ1, ..., ξN ) ∈ (Rd)N in
order to minimize

1
N

N∑
n=1

min
k=1,...,K

d(ξn,mk)2, with mk the mean (or the centroid) of points in Sk,

where d is a distance function or other functions to represent the similarity. If d is
the lp-distance, we recognise the common thread between the K-means algorithm and
the optimal quantization method if we consider a probability measure µ defined by
µ = 1

N

∑N
n=1 δξn . However, in the clustering analysis, d can also be other functions such

as an inner product or the Jaccard distance according to the features we want to extract
from the observations. For more details on the K-means algorithm, we refer to Duda
et al. (2001) and Linder (2002) among many other references.

In the numerical probability, vector quantization is an efficient tool to compute regular
and conditional expectations (see Pagès (1998), Bally and Pagès (2003) and Pagès and
Printems (2003)). Thus, the quantization based numerical scheme has been developed for
the simulation of the solution of the stochastic differential equation (see Pagès and Sagna
(2015)) and for the Backward Stochastic Differential Equation or nonlinear filtering
(see Pagès and Sagna (2018)). Moreover, the functional quantization technique can be
used for the variance reduction in the simulation of diffusion process (see Lejay and
Reutenauer (2012)) or solving stochastic inversion problems (see El Amri et al. (2019)).
In financial mathematics, the quantization based scheme can be used in the option
pricing, see Bally et al. (2005), Callegaro et al. (2017), Callegaro et al. (2015) and
Bormetti et al. (2018).

In the second part of this thesis, we are interested in the application of the optimal
quantization method to the simulation of the McKean-Vlasov equation. The terminology
McKean-Vlasov equation originates from the paper McKean (1967) in which H.P. McKean
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studies a partial differential equation on Rd having the following form
∂p

∂t
= 1

2
∑

1≤i,j≤d

∂2

∂xi∂xj
eijp−

∑
i≤d

∂

∂xi
fip, t > 0, x ∈ Rd

lim
t↓0

p = q

(1.1.32)

and whose solution p is the density of a stochastic process X. By now, the terminology
McKean-Vlasov equation refers to the whole family of stochastic differential equations in
which the coefficient functions depend not only on the position of process Xt but also
on its probability distribution, namely,

dXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dBt
X0 : (Ω,F ,P)→

(
Rd,B(Rd)

)
random variable

∀t ≥ 0, µt denotes the probability distribution of Xt

. (1.1.33)

One important property of the McKean-Vlasov equation which attracts many studies
in the literature is the propagation of chaos. Let X1,N

0 , ..., XN,N
0 be i.i.d copies of X0

and the N -particle system of the McKean-Vlasov equation is defined by
∀n ∈ {1, ..., N},
dXn,N

t = b(Xn,N
t , µNt )dt+ σ(Xn,N

t , µNt )dBn
t ,

for any t ∈ [0, T ], µNt := 1
N

∑N
n=1 δXn,N

t
,

(1.1.34)

Generally speaking, the propagation of chaos means that under some appropriate condi-
tions, the empirical measure 1

N

∑N
n=1 δXn,N composed by the N particles (X1,N , ..., XN,N )

converges to the distribution µ of the solution X of the McKean-Vlasov equation (1.1.33)
as the number of particles N → +∞ and in this case, the N particles X1,N , . . . , XN,N

tend to become independent. We refer to Gärtner (1988) for a detailed proof of the
propagation of chaos among many other references.

There are many studies of the existence and uniqueness of solution of (1.1.33) under
various conditions on b, σ among which we refer to Sznitman (1991) for a systematic
presentation of the McKean-Vlasov equation and propagation of chaos in dimension 1, to
Funaki (1984) and Jourdain (2000) for the weak uniqueness, the associated martingale
problem and connection to the Boltzmann equation, to Jourdain et al. (2008) for the
uniqueness of solution of the McKean-Vlasov equation driven by a Lévy processes and
to Lacker (2018) for a recent idea of proof under the Lipschitz condition of coefficient
function b and σ. A rigorous proof of the existence and uniqueness of a strong solution
also interests us as it is a theoretical basis to devise and analyse the numerical scheme.
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Let M ∈ N∗ and tm := T
M ·m, m = 0, ...,M . The “theoretical” Euler scheme of the

McKean-Vlasov equation is defined by
X̄tm+1 = X̄tm + h · b(tm, X̄tm , µ̄tm) +

√
hσ(tm, X̄tm , µ̄tm)Zm+1

µ̄tm is the probability distribution of X̄tm ,m = 0, ...,M
X̄0 = X0

. (1.1.35)

We first prove in Chapter 5 the convergence rate of (1.1.35) to the unique solution of
(1.1.33) under appropriate conditions. However, unlike for regular stochastic differentials
equation dXt = b(t,Xt)dt+σ(t,Xt)dBt, the Euler scheme (1.1.35) does not indicate how
to simulate µ̄tm . That is why we call the scheme (1.1.35) the “theoretical” Euler scheme
and this problem leads us to consider the possibility of using a quantization estimated
distribution µ̂xtm instead of µ̄tm .

Even though the theoretical Euler scheme cannot be directly simulated, the conver-
gence result of the theoretical Euler scheme offers us a way to compare the functional
convex order of two McKean-Vlasov processes. The comparison of the functional convex
order between two stochastic processes was introduced in Pagès (2016) for the one
dimensional martingale diffusions, i.e. solutions of

dXt = σ(t,Xt)dBt, X0 = x ∈ R,

d Yt = θ(t, Yt)dBt, Y0 = x ∈ R. (1.1.36)

In Pagès (2016), the author obtains

EF (X) ≤ EF (Y ) (1.1.37)

for any convex function F : R→ R with r-polynomial growth under conditions that σ is
convex in x and σ ≤ θ by applying the convergence result of Euler scheme of (1.1.36).
Moreover, such convex order result can be applied in the Optimal Stopping Theory and
in the comparison of American option prices (see e.g. Pagès (2016) and Alfonsi et al.
(2019)). We are interested in how to extend this functional convex order result to the
McKean-Vlasov equation. In Chapter 6, we obtain the similar inequality as (1.1.37) for
two processes X := (Xt)t∈[0,T ] and Y := (Yt)t∈[0,T ] defined by the scaled McKean-Vlasov
equations

dXt = (αXt + β)dt+ σ(t,Xt, µt)dBt, X0 ∈ Lp(Rd),
dYt = (αYt + β) dt+ θ(t, Yt, νt) dBt, Y0 ∈ Lp(Rd),
α, β ∈ R and ∀t ∈ [0, T ], µt = P ◦X−1

t , νt = P ◦ Y −1
t

under appropriate conditions. Moreover, since the distribution of the solution process is
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an important element for the analysis of the McKean-Vlasov equation, we will generalize
the functional convex result to the functional of both process path and distribution of
process, i.e.

EG(X, (µt)t∈[0,T ]) ≤ EG(Y, (µt)t∈[0,T ]).

Now we go back to the numerical aspect of the McKean-Vlasov equation. The reason
why we cannot directly simulate µ̄tm in (1.1.35) is that we need a spatial discretization
in ordre to approximate µ̄tm . In Bossy and Talay (1997), the authors show the particle
method inspired by the principle of propagation of chaos and prove the convergence
of this method in dimension 1. The principle of this method is to use an “empirical”
mesure on the N -particle instead of µ̄tm in the theoretical Euler scheme. We extend their
result to dimension d ≥ 2 in Chapter 7. Moreover, we develop several quantization based
schemes and a hybrid particle-quantization scheme, analyse the error of each method
and give the corresponding simulation examples in Chapter 7.

1.2 Contributions to the literature

This thesis is divided into two parts: Part I contains Chapter 2 and Chapter 3,
which investigate two limit theorems for the optimal quantization. The first one is
the characterization of the convergence in Lp-Wasserstein distance of a probability
distribution sequence by its quantization error function sequence and the second limit
theorem is the consistency and the convergence rate of optimal quantizers and the
optimal error. Part II contains Chapter 4, 5, 6 and 7, in which are devised and analyzed
several discretization schemes for the McKean-Vlasov equation. It includes the proof of
existence and uniqueness of a strong solution, the functional convex order problem, the
convergence rate of the particle method and various quantization based schemes.

1.2.1 Part I: Some limit theorems for the optimal quantization

Chapter 2 corresponds to the paper Liu and Pagès (2019) to appear in Bernoulli
journal. This chapter studies the characterization of probability measure by the quanti-
zation error function. We establish the existence of a minimal level K∗ ∈ N∗ such that
for any K ≥ K∗,

– for any µ, ν ∈ Pp(Rd),

eK, p(µ, ·) = eK, p(ν, ·) ⇐⇒ µ = ν,
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– for any µn ∈ Pp(Rd), n ∈ N∗ ∪ {∞},

eK, p(µn, · ) n→+∞−−−−−→ eK, p(µ∞, · ) pointwise ⇐⇒ Wp(µn, µ∞) n→+∞−−−−−→ 0.

The proof relies on a geometrical approach which is equivalent to the existence of a
bounded open Voronoï cell in a Voronoï diagram and the above existence can be in turn
derived from a minimal covering of the unit sphere by unit closed balls centered on
the sphere. This geometrical approach is valid for any norm on Rd. Moreover, in the
quadratic Euclidean case, we establish by standard Hilbert analysis arguments that the
minimal characterization level K∗ = 2. This characterization result can be extended to
any infinite dimensional separable Hilbert space.

Moreover, we define for K ≥ K∗ a quantization based distance

QK,p := ∥eK,p(µ, ·)− eK,p(ν, ·)∥sup

and we prove that this distance is topologically equivalent to the Wasserstein distance
Wp on Pp(Rd). Furthermore, we prove that Q1,1 is a complete distance on P1(R) and
give a counterexample to show that the distances QK,2, K ≥ 2 are not complete on
P2(R) at the end of this chapter.

In Chapter 3, we establish the convergence rate of the quadratic optimal quantization
for a probability sequence converging in the Wasserstein distance, which generalizes two
former papers Pollard (1982a) and Biau et al. (2008). Let µn ∈ P2(Rd), n ∈ N∗∪{∞} be
such that W2(µn, µ∞)→ 0 as n→ +∞. For every n ∈ N∗, let x(n) denote a quadratic
optimal quantizer of µn and let

GK(µ∞) :=
{

(x∗
1, ..., x

∗
N ) | (x∗

1, ..., x
∗
N ) is an optimal quantizer of µ∞

}
denote the set of quadratic optimal quantizers of µ∞ at level K. In Chapter 3, we denote
the distortion function defined in Definition 1.1.1 of µn by DK,µn , n ∈ N ∪ {∞}, since
we fix p = 2. One first result of Chapter 3 is the non-asymptotic upper bound of the
quantization performance: for every n ∈ N∗,

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) ≤ 4e∗
K,µ∞W2(µn, µ∞) + 4W2

2 (µn, µ∞),

where e∗
K,µ∞ is the quadratic optimal error of µ∞ at level K (defined in (1.1.7) with

p = 2). Furthermore, under several appropriate conditions on the differentiability of the
distortion function DK,µ∞ and the positive definiteness of the Hessian matrix HDK,µ∞ of
DK,µ∞ , we obtain the convergence rate of optimal quantizers: for n large enough, there
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exist two positive constant C(1)
µ∞ and C

(2)
µ∞ depending on µ∞ such that

d
(
x(n), GK(µ∞)

)2 ≤ C(1)
µ∞W2(µn, µ∞) + C(2)

µ∞W
2
2 (µn, µ∞).

The second part of Chapter 3 is devoted to the convergence rate of optimal quantiza-
tion error of the empirical measure, which is also called the clustering performance in
the field of unsupervised learning. We generalize the upper bound in Biau et al. (2008)
for the probability distribution with a bounded support to any probability distribution
with appropriate finite moments, hence including the normal distribution.

Let X1, ..., Xn, ... be i.i.d random variables with probability distribution µ and let
µωn := 1

n

∑n
i=1 δXi be the empirical measure of µ. Let x(n),ω denote the optimal quantizer

of µωn. We establish two results about the clustering performance EDK,µ(x(n),ω) −
infx∈(Rd)K DK,µ(x). If µ ∈ Pq(Rd) for some q > 2, the first result (see below), which is
an application of Fournier and Guillin (2015), is sharp in K but suffers from the curse
of dimensionality:

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x)

≤ Cd,q,µ,K ×


n−1/4 + n−(q−2)/2q if d < 4 and q ̸= 4
n−1/4( log(1 + n)

)1/2 + n−(q−2)/2q if d = 4 and q ̸= 4
n−1/d + n−(q−2)/2q if d > 4 and q ̸= d/(d− 2)

,

(1.2.1)

where Cd,q,µ,K is a constant depending on d, q, µ and roughly decreasing as K−1/d.

Meanwhile, we establish another upper bound for the clustering performance

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x),

which is sharper in n, free from the curse of dimensionality but increasing faster than
linearly in K. This second result generalizes the mean performance result for the
empirical measure of a distribution µ with bounded support established in Biau et al.
(2008) to any distributions µ having simply a finite second moment. We obtain

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 2K√
n

[
r2

2n + ρK(µ)2 + 2r1
(
r2n + ρK(µ)

)]
,

where rn :=
∥∥max1≤i≤n |Xi|

∥∥
2 and ρK(µ) is the maximum radius of L2(µ)-optimal
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quantizers, defined by

ρK(µ) := max
{

max
1≤k≤K

|x∗
k| , (x∗

1, ..., x
∗
K) is an optimal quantizer of µ

}
.

Especially, we provide a precise upper bound for µ = N (m,Σ), the multidimensionnal
normal distribution by applying results in Pagès and Sagna (2012) as follows,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ Cµ ·
2K√
n

[
1 + logn+ γK logK

(
1 + 2

d

)]
,

where lim supK γK = 1 and Cµ = 12 ·
[
1 ∨ log

(
2

∫
Rd exp(1

4 |ξ|
4)µ(dξ)

)]
.

1.2.2 Part II: Particle method, quantization based and hybrid schemes
of the McKean-Vlasov equation, application to the convex or-
dering

Chapter 4 introduces Chapter 5, Chapter 6 and Chapter 7. In Chapter 5, we give a
proof(1) based on Feyel’s approach (see e.g. Bouleau (1988)[Section 7]) for the existence
and uniqueness of a strong solution of the McKean-Vlasov equation (1.1.33) under the
following Lipschitz assumption on b and σ

∀t ∈ [0, T ], ∀x, y ∈ Rd and ∀µ, ν ∈ Pp(Rd), ∃L s.t.
|b(t, x, µ)− b(t, y, ν)| ∨ |||σ(t, x, µ)− σ(t, y, ν)||| ≤ L

[
|x− y|+Wp(µ, ν)

]
.

(1.2.2)

The strategy is to define an application ΦC depending on some constant C ∈ R∗
+ on the

product space “path space × the space of path distribution” as follows

(Y, PY ) 7→ΦC(Y, PY )

:=
((
X0 +

∫ t

0
b(s, Ys, νs)ds+

∫ t

0
σ(s, Ys, νs)dBs

)
t∈[0,T ]︸ ︷︷ ︸

=:Φ(1)
C (Y,PY )

, PΦ(1)
C (Y,PY )

)

where for a stochastic process X, PX denotes its probability distribution (see further
Section 5.1 for the detailed definition of PX), then to prove that an appropriate restriction
of ΦC on a closed subset is a contraction mapping by controlling the value of C. Thus,
the existence and uniqueness of a strong solution of the McKean-Vlasov equation is a
direct result by applying the fixed-point theorem for contractions on a complete space.

(1) This proof is obvious not the first proof of the existence and uniqueness of a strong solution of
the McKean-Vlasov equation under Lipschitz coefficient conditions, but we find the application of
Feyel’s approach in the McKean-Vlasov framework is mathematically elegant.
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Throughout the proof, we also fix the definitions of “path space” and “the space of
distribution of process” and respectively define the distances on both spaces. The proof
of the existence and uniqueness of a strong solution and the definition of “path space”
and “the space of distribution of process” are also the theoretical bases for the further
quantization based schemes.

Once we obtained the existence and uniqueness of a strong solution, we show in
Chapter 5 the convergence rate of the theoretical Euler scheme (1.1.35) of the McKean-
Vlasov equation (1.1.33). If b, σ satisfy (1.2.2) and

∀t, s ∈ [0, T ] with s < t,∀x ∈ Rd,∀µ ∈ P(Rd), there exist L̃, γ ∈ R+ s.t.
|b(t, x, µ)− b(s, x, µ)| ∨ |||σ(t, x, µ)− σ(s, x, µ)||| ≤ L̃

(
1 + |x|+Wp(µ, δ0)

)
(t− s)γ ,

(1.2.3)

the convergence rate of the theoretical Euler scheme is the following

sup
0≤m≤M

Wp(µ̄tm , µtm) ≤
∥∥∥∥∥ sup

0≤m≤M

∣∣Xtm − X̄tm

∣∣∥∥∥∥∥
p

≤ Ceh
1
2 ∧γ , (1.2.4)

where Ce is a constant depending on b, σ, L, T, L̃ and ∥X0∥p.

Chapter 6 establishes the convex order results for the scaled(1) McKean-Vlasov
equation. Let (Xt)t∈[0,T ], (Yt)t∈[0,T ] be two processes respectively defined by

dXt = (αXt + β)dt+ σ(t,Xt, µt)dBt, X0 ∈ Lp(P),
dYt = (αYt + β) dt+ θ(t, Yt, νt) dBt, Y0 ∈ Lp(P), (1.2.5)

where α, β ∈ R and for any t ∈ [0, T ], µt = P ◦X−1
t , νt = P ◦ Y −1

t . For any two random
variables X, Y valued in a Banach space (E, ∥·∥E), if for any convex function φ : E → R
such that

Eφ(X) ≤ Eφ(Y ) as soon as these two expectations make sense,

then we call X is dominated by Y for the convex order and denote by X ⪯ cv Y . In
Chapter 6, we prove that the Euler scheme (1.1.35) of the McKean-Vlasov equation
propagates the convex order of random variables. Let X̄tm , Ȳtm ,m = 0, ...,M respectively
denote the theoretical Euler scheme (1.1.35) of (Xt)t∈[0,T ], (Yt)t∈[0,T ] with step T

M . If
X0 ⪯ cv Y0 and the coefficient functions σ, θ are ordered for a matrix order in the sense

(1) By scaled, we mean that the drift b is an affine function.
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that

∀t ∈ [0, T ], ∀x ∈ Rd, ∀µ ∈ P(Rd),
θ(t, x, µ)θ(t, x, µ)∗ − σ(t, x, µ)σ(t, x, µ)∗ is a positive semi-definite matrix,

and σ is convex in x and non-decreasing in µ with respect to the convex order, then
for any m = 0, ...,M , X̄tm ⪯ cv Ȳtm . Moreover, using a backward induction and taking
advantage of the convergence result of Euler scheme (1.2.4), we obtain a functional
convex order result for the processes, i.e. for any convex function F : C([0, T ],Rd)→ R
having an r-polynomial growth, 1 ≤ r ≤ p, in the sense that

∀α ∈ C([0, T ],Rd),∃C ≥ 0 s.t. |F (α)| ≤ C(1 + ∥α∥rsup),

we have
EF (X) ≤ EF (Y ). (1.2.6)

Finally, we generalize the above functional convex result (1.2.6) to functionals of the
form

G : (α, (γt)t∈[0,T ]) ∈ C([0, T ],Rd)× C([0, T ],Pp(Rd)) 7→ G(α, (γt)t∈[0,T ]) ∈ R,

where G is convex in α, non-decreasing in (γt)t∈[0,T ] with respect to the convex order
and has an r-polynomial growth, 1 ≤ r ≤ p and obtain a new convex order result for X,
Y , (µt)t∈[0,T ] and (νt)t∈[0,T ] defined in (1.2.5) as follows,

EG(X, (µt)t∈[0,T ]) ≤ EG(Y, (νt)t∈[0,T ]).

Chapter 7 analyzes the particle method and several quantization based schemes for
the McKean-Vlasov equation

dXt = b(Xt, µt)dt+ σ(Xt, µt)dBt
X0 : (Ω,F ,P)→

(
Rd,B(Rd)

)
random variable

∀t ≥ 0, µt denotes the probability distribution of Xt

(1.2.7)

and the organization of Chapter 7 is detailed further on in Figure 4.1. We mainly
consider the homogeneous equation to alleviate the notation but the extension of our
results to the general case is standard and can be performed like in the regular SDE
framework. The theoretical Euler scheme in the homogeneous case isX̄tm+1 = X̄tm + h · b(X̄tm , µ̄tm) +

√
hσ(X̄tm , µ̄tm)Zm+1

X̄0 = X0, µ̄tm = PX̄tm
,

(1.2.8)
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where M ∈ N∗, h = T
M , and tm = m · h, m ∈ {1, ...,M}.

The first method we studied is the particle method, which is inspired by the principle of
propagation of chaos and can be considered as its discretion version. Let X̄1,N

0 , ..., X̄N,N
0

be i.i.d copies of X0 in (1.2.7). The particle method is defined by
∀n ∈ {1, ..., N},
X̄n,N
tm+1 = X̄n,N

tm + hb(X̄n,N
tm , µ̄Ntm) +

√
hσ(X̄n,N

tm , µ̄Ntm)Znm+1

µ̄Ntm := 1
N

∑N
n=1 δX̄n,N

tm

, (1.2.9)

where Znm, n = 1, ..., N,m = 0, ...,M i.i.d∼ N (0, Iq). The particle method is to use µ̄Ntm as
an estimator of µ̄tm for each Euler step. In the case of dimension 1, the convergence
rate of µ̄Ntm to µ̄m as N → +∞ has been established in Bossy and Talay (1997). For the
convergence rate in higher dimension (d ≥ 2), we obtain in Section 7.1 that∥∥∥∥∥ sup

1≤m≤M
Wp(µ̄Ntm , µ̄tm)

∥∥∥∥∥
p

≤ Cd,p,L,T
∥∥∥Wp(µ̄, νN )

∥∥∥
p
,

where µ̄ denotes the probability distribution of X̄ = (X̄t)t∈[0,T ] defined further in (5.2.3)
and νN denotes the empirical measure of µ̄. Moreover, if ∥X0∥p+ε < +∞ for some ε > 0,
we also obtain in Section 7.1 by using results in Fournier and Guillin (2015) that∥∥∥∥∥ sup

1≤m≤M
Wp(µ̄Ntm , µ̄m)

∥∥∥∥∥
p

≤ ‹C
×


n

− 1
2p + n

− ε
p(p+ε) if p > d/2 and ε ̸= p

n
− 1

2p
[

log(1 + n)
] 1

p + n
− ε

p(p+ε) if p = d/2 and ε ̸= p

n− 1
d + n

− ε
p(p+ε) if p ∈ (0, d/2) and p+ ε ̸= d

(d−p)

,

where ‹C is a constant depending on p, ε, d, b, σ, L, T .

The second studied method is the quadratic optimal quantization method. The idea
of devising quantization based scheme for the simulation of the McKean-Vlasov equation
first appears in Gobet et al. (2005)[Section 4] in a slightly different framework. Let
x(m) = (x(m)

1 , ..., x
(m)
K ), m = 1, ...,M be the quantizer of X̄tm in the m-th Euler step.
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The theoretical quantization based scheme is to compute

‹X0 = X0, “X0 = Projx(0)(‹X0)‹Xtm+1 = “Xtm + h · b(“Xtm , µ̂tm) +
√
hσ(“Xtm , µ̂tm)Zm+1, m = 0, ...,M − 1

where h = T
M and µ̂tm = P“Xtm“Xtm+1 = Projx(m+1)(‹Xtm+1).

(1.2.10)
We propose in Chapter 7 the error analysis of the above quantization procedure and three
different ways of practically implementing the quantization based method to explicitly
express µ̂tm .

(1) In the Vlasov case, we can use the recursive quantization method, which is firstly
introduced in Pagès and Sagna (2015) for regular stochastic differential equations.
By the recursive quantization method, we derive a Markovian transition of (“Xtm , µ̂tm)
based on the quantized scheme (1.2.10). Let p(m) = (p(m)

1 , ..., p
(m)
K ) denote the corre-

sponding weight of the quantizer x(m) = (x(m)
1 , ..., x

(m)
K ). Thus µ̂tm = ∑K

k=1 δx(m)
k

p
(m)
k .

The Markovian transition of (“Xtm , µ̂tm) by the recursive quantization method that
we propose in Section 7.3 is

P
(“Xtm+1 = x

(m+1)
j | “Xtm = x

(m)
i , p(m))

= P
[(
x

(m)
i + h

K∑
k=1

p
(m)
k β(x(m)

i , x
(m)
k ) +

√
h

K∑
k=1

p
(m)
k a(x(m)

i , x
(m)
k )Zm+1

)
∈ Cj(x(m+1))

]
and given p(m), we can compute for every j = 1, ...,K by

p
(m+1)
j = P

(“Xtm+1 = x
(m+1)
j

∣∣ p(m))
=

K∑
i=1

P
(“Xtm+1 = x

(m+1)
j | “Xtm = x

(m)
i , p(m)) · P(“Xtm = x

(m)
i ).

We provide the proof of the above equalities in Section 7.3 and will explain in the
same section how to apply the Lloyd I algorithm to improve the simulation accuracy.

(2) The second way to explicitly express µ̂tm is to use the optimal quantizer of the
normal distribution N (0, Iq) and its weight, which can be downloaded from the
website

www.quantize.maths− fi.com/gaussian _ database

for dimension q = 1, ..., 10. Let x(m) = (x(m)
1 , ..., x

(m)
K ) denote the quantizer of X̄tm

in the m-th Euler step. Let z = (z1, ..., zJ) be an optimal quantizer of N (0, Iq) with
J > K and let w = (w1, ..., wJ) be the corresponding weight of z. The scheme based
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on such optimal quantizers of N (0, Iq)(1) can be written by

‹X0 = X0, “X0 = Projx(0)(‹X0)‹Xtm+1 = “Xtm + h · b(“Xtm , µ̂tm) +
√
hσ(“Xtm , µ̂tm)Ẑm+1, m = 0, ...,M − 1

where h = T
M and µ̂tm = P“Xtm“Xtm+1 = Projx(m+1)(‹Xtm+1),

,

where Ẑm i.i.d∼
∑J
j=1wjδzj . We call this method the doubly quantized scheme and

we establish in Section 7.4 the error analysis of this method.

(3) Let x(m) = (x(m)
1 , ..., x

(m)
K ), m = 0, 1, ...,M , be a sequence of quantizers. As we

prove the convergence rate of particle method, one can also implement the optimal
quantization method on (1.2.9) as follows:

∀n ∈ {1, ..., N},‹Xn,N
tm+1 = ‹Xn,N

tm + h · b(‹Xn,N
tm , µ̂Ktm) +

√
hσ(‹Xn,N

tm , µ̂Ktm)Znm+1

µ̂Ktm =
( 1
N

∑N
n=1 δ‹Xn,N

tm

)
◦ Proj−1

x(m) = ∑K
k=1

[
δ
x

(m)
k

·
∑N
n=1 1Vk(x(m))(‹Xn,N

tm )
]

X̄n,N
0

i.i.d∼ X0, Znm
i.i.d∼ N (0, Iq)

.

We call the above scheme the hybrid particle-quantization scheme (hybrid scheme
for short). The error analysis of this scheme will be shown in Section 7.5.

At the end of Chapter 7, we give two examples simulated by the above numerical
methods. The first one is the simulation of the Burgers equation introduced in Sznitman
(1991) and Bossy and Talay (1997). The Burgers equation provide an explicit solution so
we can compare the accuracy of different methods. The second example is 3-dimensional
which was firstly introduced in Baladron et al. (2012) and also simulated in Reis et al.
(2018).

(1) By a slight abus of notation, we use here the same notation as in (1.2.10).
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Chapter 2

Characterization of probability
distribution convergence in
Wasserstein distance by
Lp-quantization error function

This chapter corresponds to the paper Liu and Pagès (2019) to appear in Bernoulli
journal, which is a joint work with Gilles Pagès.

Abstract: We establish conditions to characterize probability measures by their
Lp-quantization error functions in both Rd and Hilbert settings. This characterization
is two-fold: static (identity of two distributions) and dynamic (convergence for the
Lp-Wasserstein distance). We first propose a criterion on the quantization level N , valid
for any norm on Rd and any order p based on a geometrical approach involving the
Voronoï diagram. Then, we prove that in the L2-case on a (separable) Hilbert space, the
condition on the level N can be reduced to N = 2, which is optimal. More quantization
based characterization cases in dimension 1 and a discussion of the completeness of a
distance defined by the quantization error function can be found at the end of this paper.

Keyword: Probability distribution characterization, Vector quantization, Voronoï
diagram, Wasserstein convergence
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2.1 Introduction

Let (Ω,A,P) denote a probability space and let X be a random variable defined
on (Ω,A,P) and valued in (E, | · |E), where E is Rd or a separable Hilbert space H
and | · |E denotes respectively the norm on Rd or the norm on H induced by the inner
product (· | ·)H . Let µ denote the probability distribution of X, denoted by PX = µ or
Law(X) = µ and assume that µ has a finite p-th moment, p ∈ [1,+∞). The quantizer
(also called codebook in signal compression or cluster center in machine learning theory)
is a finite set of points in E, denoted by Γ = {x1, ..., xN} ⊂ E. Let us define the
distance between a point ξ and a set A in E by d(ξ, A) = mina∈A |ξ − a|E . The Lp-mean
quantization error of Γ, defined by

ep(µ,Γ) := ∥d(X,Γ)∥p =
[ ∫

E
min
a∈Γ
|ξ − a|pE µ(dξ)

] 1
p
,

is used to describe the accuracy level of representing the probability measure µ by Γ.
Let N ≥ 1. A quantizer Γ∗,(N) satisfying

ep(µ,Γ∗,(N)) = inf
Γ⊂E,

card(Γ)≤N

[
E d(X,Γ)p

] 1
p = inf

Γ⊂E,
card(Γ)≤N

[ ∫
E

min
a∈Γ
|ξ − a|pE µ(dξ)

] 1
p (2.1.1)

is called an Lp-optimal quantizer (or optimal quantizer in short) at level N . We refer
to Graf and Luschgy (2000)[Theorem 4.12] for the existence of such an optimal quantizer
on Rd and to Luschgy and Pagès (2002)[Proposition 2.1] or Cuesta and Matrán (1988)
on (separable) Hilbert spaces. There is usually no closed form for optimal quantizers,
however, in the quadratic case (p = 2), it can be computed by the stochastic optimization
methods such as the CLVQ algorithm or the randomized Lloyd algorithm (see Pagès
(2015)[Section 3], Kieffer (1982) and Pagès and Yu (2016)).

Optimal quantizers Γ∗,(N) “carries” the information of the initial measure. For
example, let µ∈ Pp+ε(Rd) for some ε > 0, where

Pp(E) := {µ probability distribution on E s.t.
∫
E
|ξ|pE µ(dξ) < +∞}.

Let µ = h · λd be an absolutely continuous distribution (λd denotes Lebesgue measure).
If for every level N ≥ 1, Γ∗,(N) is an optimal quantizer of µ at level N , then

1
N

∑
x∈Γ∗,(N)

δx
(Rd)===⇒ µ̃ = hd/(d+p)(ξ)∫

hd/(d+p)dλd
λd(dξ), as N → +∞, (2.1.2)

where, for a Polish space S, (S)=⇒ denotes the weak convergence of probability measures
on S. We refer to Graf and Luschgy (2000)[Theorem 7.5] for a proof of this result. This
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weak convergence (2.1.2) emphasizes that, an absolutely continuous probability measure
µ is entirely characterized by the sequence of Lp-optimal quantizers Γ∗,(N) at levels N ,
N ≥ 1.

We consider now the Lp-mean quantization error function as follows.

Definition 2.1.1 (Quantization error function). Let µ ∈ Pp(Rd), p ∈ [1,+∞). The
Lp-mean quantization error function of µ at level N , denoted by eN,p(µ, ·), is defined
by:

eN,p(µ, ·) : (Rd)N −→ R+

x = (x1, . . . , xN ) 7−→ eN,p(µ, x) =
[ ∫

Rd
min

1≤i≤N
|ξ − xi|p µ(dξ)

] 1
p
.

(2.1.3)

The definition of eN,p(µ, ·) obviously depends on the associated norm on Rd and the
variable of eN,p(µ, ·) is a priori an N -tuple in (Rd)N . However, for a finite quantizer
Γ ⊂ Rd, if the level N ≥ card(Γ), then for any N -tuple xΓ = (xΓ

1 , . . . , x
Γ
N ) ∈ (Rd)N such

that Γ = {xΓ
1 , . . . , x

Γ
N}, we have ep(µ,Γ) = eN,p(µ, xΓ). For example, ep

(
µ, {x1, x2}

)
=

e2,p
(
µ, (x1, x2)

)
= e3,p

(
µ, (x1, x1, x2)

)
, etc. Note that eN,p is a symmetric function on

(Rd)N and that, owing to the above definition,

inf
Γ⊂Rd,card(Γ)≤N

ep(µ,Γ) = inf
x∈(Rd)N

eN,p(µ, x). (2.1.4)

Therefore, throughout this paper, with a slight abuse of notation, we will also denote
the Lp-quantization error at level N for a quantizer Γ of size at most N by eN,p(µ,Γ).

The equality (2.1.4) directly shows that the optimal quantizers are characterized by
the Lp-mean quantization error functions. Next, we show that the quantization error
function eN,p(µ, ·) is entirely characterized by the probability distribution µ.

Notice that for any µ∈ Pp(Rd), the function eN,p(µ, ·) defined in (2.1.3) is 1-Lipschitz
continuous for every N ≥ 1 since for any x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ (Rd)N ,

|eN,p(µ, x)− eN,p(µ, y)| =
∣∣∣∣[ ∫

Rd
min

1≤i≤N
|ξ − xi|p µ(dξ)

] 1
p −

[ ∫
Rd

min
1≤j≤N

|ξ − yj |p µ(dξ)
] 1

p

∣∣∣∣
≤

[ ∫
Rd

∣∣∣ min
1≤i≤N

|ξ − xi| − min
1≤j≤N

|ξ − yj |
∣∣∣pµ(dξ)

] 1
p (by the Minkowski inequality)

≤
[ ∫

Rd
max

1≤i≤N
|xi − yi|p µ(dξ)

] 1
p = max

1≤i≤N
|xi − yi| . (2.1.5)

We recall now the definition of the Lp-Wasserstein distance.
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Definition 2.1.2 (Lp-Wasserstein distance). Let (S, d) be a Polish space and S =
Bor(S, d) be its Borel σ-field. For p ∈ [1,+∞), let Pp(S) denote the set of probability
measures on (S,S) with a finite pth-moment. The Lp-Wasserstein distance Wp(µ, ν)
between µ, ν∈ Pp(S), denoted by Wp(µ, ν), is defined by

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
S×S

d(x, y)pπ(dx, dy)
) 1

p

= inf
{[

E d(X,Y )p
] 1

p
, X, Y : (Ω,A,P)→ (S,S) with PX = µ,PY = ν

}
,

(2.1.6)

where in the first line of (2.1.6), Π(µ, ν) denotes the set of all probability measures on
(S2,S⊗2) with respective marginals µ and ν.

If we consider eN,p(µ, x) as a function of µ∈ Pp(Rd), then eN,p is also 1-Lipschitz in
µ. In fact, let X,Y be two random variables with probability distributions PX = µ and
PY = ν. For every N -tuple x = (x1, . . . , xN ) ∈ (Rd)N , we have

∣∣eN,p(µ, x)− eN,p(ν, x)
∣∣ =

∣∣∣∣ ∥∥∥ min
i=1,...,N

|X − xi|
∥∥∥
p
−
∥∥∥ min
i=1,...,N

|Y − xi|
∥∥∥
p

∣∣∣∣
≤

∥∥∥ min
i=1,...,N

|X − xi| − min
i=1,...,N

|Y − xi|
∥∥∥
p
(by the Minkowski inequality)

≤
∥∥∥ max
i=1,...,N

| |X − xi| − |Y − xi| |
∥∥∥
p
≤ ∥X − Y ∥p . (2.1.7)

As this inequality holds for every couple (X,Y ) of random variables with marginal
distributions µ and ν, it follows that for every level N ≥ 1,

∥eN,p(µ, ·)− eN,p(ν, ·)∥sup := sup
x∈(Rd)N

|eN,p(µ, x)− eN,p(ν, x)| ≤ Wp(µ, ν). (2.1.8)

Hence, if (µn)n≥1 is a sequence in Pp(Rd) converging for theWp-distance to µ∞∈ Pp(Rd),
then

∥eN,p(µn, ·)− eN,p(µ∞, ·)∥sup ≤ Wp(µn, µ∞) n→+∞−−−−−→ 0. (2.1.9)

Definition 2.1.1, and the inequalities (2.1.5), (2.1.7), (2.1.8), (2.1.9) can be directly
extended to any separable Hilbert space H. Inequalities (2.1.8) and (2.1.9) show that for
every N ≥ 1, and p∈ [1,+∞), the quantization error function eN,p(µ, ·) is characterized
by the probability distribution µ. Hence, the characterization relations between a
probability measure µ, its Lp-quantization error function and its optimal quantizers can
be synthesized by the following scheme:
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Probability measure µ

Quantization error
function eN,p(µ, ·)

Optimal quantizer
Γ∗,(N)

See (2.1.8) and (2.1.9)
?

argmin
see (2.1.4)

If µ∈ Pp+ε(Rd), µ≪ λd

(absolutely continuous) and
if we know the optimal quantizer

for every level N , see (2.1.2).

The characterization of a probability measure µ by its Lp-optimal quantizers suggests
to consider the “reverse” questions of (2.1.8) and (2.1.9): When is a probability measure
µ ∈ Pp(Rd) characterized by its Lp-quantization error function eN,p(µ, ·)? And if so,
does the convergence in an appropriate sense of the Lp-quantization error functions
characterizes the convergence of their probability distributions for the Wp-distance?

These questions can be formalized as follows (the first one in a slightly extended
sense):

• Question 1 - Static characterization:
If for µ, ν∈ Pp(Rd), eN,p(µ, ·) = eN,p(ν, ·) + C for some real constant C, then
do we have µ = ν (and C = 0)?

• Question 2 - Characterization of Wp-convergence:
If for µn, n ≥ 1, µ∞∈ Pp(Rd), eN,p(µn, ·) converges pointwise to eN,p(µ∞, ·),
then do we have Wp(µn, µ∞) n→+∞−−−−−→ 0?

For any N1, N2∈ N∗ with N1 ≤ N2, it is clear that

eN2,p(µ, ·) = eN2,p(ν, ·)
(
resp.eN2,p(µn, ·)

n→+∞−−−−−→ eN2,p(µ∞, ·)
)

implies
eN1,p(µ, ·) = eN1,p(ν, ·)

(
resp.eN1,p(µn, ·)

n→+∞−−−−−→ eN1,p(µ∞, ·)
)
.

Hence, beyond these two above questions, we need to determine an as low as possible
level N for which both answers are positive. For this purpose, we define

Nd,p,|·| := min{N ∈N∗ such that answers to Questions 1 and 2 for eN,p are positive}.
(2.1.10)
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The paper is organized as follows. We first recall in Section 2.1.1 some properties of
the Wasserstein distance Wp. Then in Section 2.2, we begin to analyze the problem of
probability distribution characterization in a general finite dimensional framework by
considering any dimension d, any order p and any norm on Rd. We show that a positive
answer to Question 1 and 2 follows from the existence of a bounded open Voronoï cell
in a Voronoï diagram of size N , which in turn can be derived from a minimal covering
of the unit sphere by unit closed balls centered on the sphere. As a consequence, we
define for N ≥ Nd,p,|·| a quantization based distance

QN,p := ∥eN,p(µ, ·)− eN,p(ν, ·)∥sup

which we will prove to be topologically equivalent to the Wasserstein distance Wp. The
results in this section are established for p ≥ 1, but several results can be extended to
the case 0 < p < 1 by the usual adaptations of the proofs.

In Section 2.3, we consider the quadratic case (i.e. the order p=2) and extend the
characterization result to probability distributions on a separable Hilbert space H with
the norm |·|H induced by the inner product (· | ·)H . In this section, we will prove
by a purely analytical method that NH,2,|·|H = 2 (1) and the topological equivalence
of Wasserstein distance W2 and the distance QH2,2(µ, ν) := ∥e2,2(µ, ·)− e2,2(ν, ·)∥sup on
P2(H).

Section 2.4 is devoted to the one-dimensional setting. Quantization based characteri-
zation not yet covered by the discussion in Section 2.2 and Section 2.3 are established.
Furthermore, we prove that Q1,1 is a complete distance on P1(R) and give a coun-
terexample to show that the distances QN,2, N ≥ 2 are not complete on P2(R) in
Section 2.4.2.

2.1.1 Preliminaries on the Wasserstein distance

Let (S, d) be a general Polish metric space. The relation between weak convergence
and convergence for the Wasserstein distance Wp (see Definition 2.1.2) is recalled in
Theorem 2.1.1. We recall below some useful facts about the Lp-Wasserstein distance
that will be called upon further on. The first one is that, for every p ∈ [1,+∞), Wp

is a distance on Pp(S)
(
Wp
p if p ∈ (0, 1)

)
, see e.g. Villani (2003)[Theorem 7.3] for the

proof and Berti et al. (2015) for a recent reference. Next, the metric space
(
Pp(S),Wp

)
is separable and complete, see e.g. Bolley (2008) for the proof. More generally, we refer
to Villani (2009)[Chapter 6] for an in depth presentation of Wasserstein distance and

(1) Since the dimension of the Hilbert space that we discuss in this section can be finite or infinite, we
write directly H instead of d in the subscript of Nd,p,|·|.
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its properties.

Theorem 2.1.1. (see Villani (2003)[Theorem 7.12]) Let µn ∈ Pp(S) for every n ∈
N∗ ∪ {∞}. Let p ∈ [1,+∞). Then,

(a)Wp(µn, µ∞)→ 0 if and only if

(α) µn
(S)=⇒ µ∞

(β) ∃x0∈ S,
∫
S d(x0, ξ)pµn(dξ)→

∫
S d(x0, ξ)pµ∞(dξ)

.

(b) If
∃x0∈ S, lim

R→+∞
sup
n≥1

∫
d(x0,ξ)p≥R

d(x0, ξ)pµn(dξ) = 0, (2.1.11)

then (µn)n≥1 is relatively compact for the Wasserstein distance Wp.

2.2 General quantization based characterizations on Rd

This section is devoted to establishing a general criterion that positively answers to
Questions 1 and 2 in any dimension d, for any order p and any norm on Rd. The idea is
to design an approximate identity (φε)ε>0

(1) based on the quantization error function
eN,p(µ, ·). Our construction of (φε)ε>0 relies on a purely geometrical idea: it is based on
a specified Voronoï diagram containing a bounded open Voronoï cell that we introduce in
Section 2.2.1. The static characterization is established in Theorem 2.2.1. Furthermore,
Theorem 2.2.2 shows that a pointwise convergence of the quantization error functions is
enough to imply the Wp-convergence of a Pp(Rd)-valued sequence.

2.2.1 A review of Voronoï diagram, existence of a bounded cell

Let Γ = {x1, . . . , xN} be a quantizer of size N . The Voronoï cell generated by xi∈ Γ
is defined by

Vxi(Γ) =
{
ξ∈ Rd : |ξ − xi| = min

1≤j≤N
|ξ − xj |

}
, (2.2.1)

and
(
Vxi(Γ)

)
1≤i≤N is called the Voronoï diagram of Γ, which is a finite covering of Rd

(see Graf and Luschgy (2000)). A Borel measure partition
(
Cxi(Γ)

)
1≤i≤N is called a

Voronoï partition of Rd induced by Γ if for every i∈ {1, . . . , N}, Cxi(Γ) ⊂ Vxi(Γ). We
also define the open Voronoï cell generated by xi∈ Γ by

V o
xi

(Γ) =
{
ξ∈ Rd : |ξ − xi| < min

1≤j≤N,j ̸=i
|ξ − xj |

}
. (2.2.2)

(1) By approximate identity we mean φε ∈ L1(Rd, B(Rd), λd

)
, ε > 0, such that

∫
Rd φεdλd = 1,

supε>0
∫
Rd |φε| dλd < +∞ and limε→0

∫
{|ξ|>η} φε(ξ)λd(ξ) = 0 for every η > 0.
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If the norm |·| on Rd is strictly convex, we have V̊xi(Γ) = V o
xi

(Γ) and V o
xi

(Γ) = Vxi(Γ),
where Å and A denote the interior and the closure of A. Examples of strictly convex
norms are the isotropic ℓr-norms for 1 < r < +∞ defined by∣∣∣(a1, . . . , ad)

∣∣∣
r

=
( ∣∣a1∣∣r + · · ·+

∣∣∣ad∣∣∣r )1/r
.

However, this is not true for any norm on Rd, typically not for the ℓ1-norm (see Graf
and Luschgy (2000)[Figure 1.2]) or the ℓ∞−norm.

We recall that A ⊂ Rd is star-shaped with respect to a∈ A if for every b∈ A and
any λ ∈ [0, 1], a+ λ(b− a)∈ A.

Proposition 2.2.1. (see Graf and Luschgy (2000)[Proposition 1.2]) Let Γ = {x1, . . . , xN}
be a quantizer of size N ≥ 1. For every i∈ {1, . . . , N}, Vxi(Γ) and V o

xi
(Γ) are star-shaped

relative to xi.

Now we discuss a sufficient condition to obtain a Voronoï diagram containing a
bounded open Voronoï cell. The first result in this direction is a rewriting Proposition
1.10 in Graf and Luschgy (2000) for Euclidean norms (stated here in view of our
applications).

Proposition 2.2.2 (| · | Euclidean norm). Let (b1, . . . , bd+1) be an affine basis of Rd

and let b0 ∈
˚̌ �Conv({b1, . . . , bd+1}) ̸= ∅. Set Γ = {0, b1 − b0, . . . , bd+1 − b0}. Then, the

open Voronoï cell V o
0 (Γ) generated by 0 is bounded.

Let us provide now a geometrical criterion for a general norm | · | on Rd, let B̄|·|(x, r)
denote the closed ball centered at x with radius r and let S|·|(x, r) denote its sphere.

Proposition 2.2.3. Let a1, . . . , ak∈ S|·|(0, 1) such that S|·|(0, 1) ⊂ ⋃k
i=1 B̄|·|(ai, 1) (such

a covering exists since S|·|(0, 1) is compact). If we choose Γ = {0, a1, . . . , ak}, then the
Voronoï open set V o

0 (Γ) ⊂ B̄|·|(0, 1) and λd
(
V o

0 (Γ)
)
> 0.

Proof. As S|·|(0, 1) ⊂ ⋃k
i=1 B̄|·|(ai, 1), for every ξ∈ S|·|(0, 1), there exists j ∈ {1, . . . , k}

such that |ξ − aj | ≤ 1 = |ξ|. If Γ = {0, a1, . . . , ak}, then

∀ξ∈ S|·|(0, 1), ∃ j∈ {1, . . . , k} such that ξ∈ Vaj (Γ). (2.2.3)

Assume that there exists ξ∈ V o
0 (Γ) \ B̄|·|(0, 1). Since V o

0 (Γ) is star-shaped relatively
to 0 and 1

|ξ| ∈ (0, 1), we have ξ
|ξ| ∈ S|·|(0, 1) ∩ V o

0 (Γ). This contradicts (2.2.3) since
V o

0 (Γ) ∩ Vaj (Γ) ̸= ∅, j = 1, . . . , k. Consequently, V o
0 (Γ) ⊂ B̄|·|(0, 1). Finally, V o

0 (Γ) is an
open set containing 0, therefore, λd

(
V o

0 (Γ)
)
> 0.
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The idea of the above proposition is to cover the unit sphere centered at the origin
by a finite number of unit balls centered on the unit sphere. This leads us to introduce
the following definition.

Definition 2.2.1. We define the minimal sphere covering number c(d, | · |) as follows,

c(d, | · |) := min
{
k : ∃{a1, . . . , ak} ⊂ S|·|(0, 1) such that S|·|(0, 1) ⊂

k⋃
i=1

B̄|·|(ai, 1)
}

< +∞.

The index c(d, | · |) is finite since the unit sphere is a compact set in Rd. Among all the
possible norms, we will focus on the isotropic ℓr-norms on Rd. We show some examples
of the minimal covering number c(d, | · |r) in the following proposition (whose proof is
postponed to Appendix).

Proposition 2.2.4. (i) c(1, | · |) = 2, where | · | denotes the absolute value.

(ii) c(2, | · |1) = 2 and c(2, | · |r) = 3 for every 1 < r < +∞.

(iii) c(d, | · |∞) = 2 for every dimension d.

(iv) Let r ≥ 1 such that 2r ≥ d, then c(d, | · |r) ≤ 2d.

2.2.2 A general condition for the probability measure characteriza-
tion

Let Γ = {x1, . . . , xN} be a quantizer in which there exists at least an xi0 ∈ Γ such
that the open Voronoï cell V o

xi0
(Γ) is bounded and non-empty. Based on such a quantizer,

one can construct an approximate identity as follows. Let φ : Rd → R+ be the function
defined by

φ(ξ) = min
a∈Γ\{xi0 }

|ξ − a|p −min
a∈Γ
|ξ − a|p .

The function φ is clearly nonnegative, continuous and {φ > 0} = V o
xi0

(Γ) so that
supp(φ) = V o

xi0
(Γ) is compact. Hence,

∫
φdλd ∈ (0,+∞) since φ(xi0) = d

(
xi0 ,Γ \

{xi0}
)
> 0 and we can normalize φ by setting φ1(ξ) := φ(xi0 +ξ)∫

φdλd
. For every ε > 0, we

define φε(ξ) := 1
εdφ1

(
ξ
ε

)
, then (φε)ε>0 is clearly an approximate identity (see Grafakos

(2014)[Section 1.2.4]).

The following theorem gives conditions on the Lp-quantization error function to
characterize a probability measure.
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Theorem 2.2.1 (Static characterization). Let p ∈ [1,+∞), let | · | be a norm on Rd

and let N ≥ c(d, | · |) + 1, or N ≥ d + 2 if | · | is Euclidean. Then, the answer to
Question 1 is positive i.e. if there exists a constant C such that epN,p(µ, ·) = epN,p(ν, ·)+C,
µ, ν∈ Pp(Rd), then µ = ν. The constant C is a posteriori 0.

Proof. Following Proposition 2.2.2 and 2.2.3, we choose a quantizer Γ = {0, a1, . . . , aN−1}
such that V o

0 (Γ) is bounded and λd
(
V o

0 (Γ)
)
> 0. We define φ : Rd → R+, by

φ(ξ) = min
a∈Γ\{0}

|ξ − a|p −min
a∈Γ
|ξ − a|p =

(
min

a∈Γ\{0}
|ξ − a|p − |ξ|p

)
+

and (φε)ε>0 by φε(ξ) := 1
Cφεdφ

(
ξ
ε

)
, where Cφ =

∫
φdλd. For any x∈ Rd,

φε ∗ µ(x) =
∫
Rd
φε(x− ξ)µ(dξ) =

∫
Rd

1
εd
φ(x−ξ

ε )∫
φdλd

µ(dξ)

= 1
Cφεd

∫
Rd

Å
min

a∈Γ\{0}

∣∣∣∣x− ξε − a
∣∣∣∣p −min

a∈Γ

∣∣∣∣x− ξε − a
∣∣∣∣p ãµ(dξ)

= 1
Cφεd+p

ï ∫
Rd

min
a∈Γ\{0}

|x− εa− ξ|p µ(dξ)−
∫
Rd

min
a∈Γ
|x− εa− ξ|p µ(dξ)

ò
.

If we define two N -tuples x̃ and x̃0 as x̃ = (x− εa1, x− εa1, x− εa2, . . . , x− εaN−1)
and x̃0 = (x, x− εa1, x− εa2, . . . , x− εaN−1), then∫
Rd

min
a∈Γ\{0}

|x− εa− ξ|p µ(dξ) = epN,p(µ, x̃) and
∫
Rd

min
a∈Γ
|x− εa− ξ|p µ(dξ) = epN,p(µ, x̃0).

Hence, φε ∗ µ(x) = 1
Cφεd+p

(
epN,p(µ, x̃)− epN,p(µ, x̃0)

)
.

The assumption epN,p(µ, ·) = epN,p(ν, ·) + C implies that

epN,p(µ, x̃)− epN,p(µ, x̃0) = epN,p(ν, x̃)− epN,p(ν, x̃0),

so that, for every x∈ Rd and every ε > 0, φε ∗ µ(x) = φε ∗ ν(x).

One can finally conclude that µ = ν by letting ε→ 0 since (φε)ε>0 is an approximate
identity (see Rudin (1991)[Theorem 6.32]). Hence C = 0.

The following theorem shows that the pointwise convergence of the Lp-mean quan-
tization error function is a necessary and sufficient condition for Wp-convergence of
probability distributions in Pp(Rd).
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Theorem 2.2.2 (Wp-convergence characterization). Let p ∈ [1,+∞) and let | · | be any
norm on Rd. Let µn∈ Pp(Rd) for n∈ N∗∪{∞}. The following properties are equivalent:

(i) Wp(µn, µ∞) n→+∞−−−−−→ 0,

(ii) ∀N ≥ 1, eN,p(µn, ·) n→+∞−−−−−→ eN,p(µ∞, ·) uniformly on Rd,

(iii) ∃N ≥ c(d, | · |) + 1 or N ≥ d+ 2 if | · | is Euclidean such that, eN,p(µn, ·) n→+∞−−−−−→
eN,p(µ∞, ·) pointwise on Rd.

Proof of Theorem 2.2.2. (i)⇒ (ii) is obvious from (2.1.9).

(ii)⇒ (iii) is obvious.

(iii) ⇒ (i) First of all, it follows from the convergence eN,p(µn, ·) n→+∞−−−−−→ eN,p(µ∞, ·)
that

epN,p(µn,0) n→+∞−−−−−→ epN,p(µ∞,0) i.e.
∫
Rd
|ξ|p µn(dξ) n→+∞−−−−−→

∫
Rd
|ξ|p µ∞(dξ) < +∞,

(2.2.4)
where 0 = (0, . . . , 0). In particular, the sequence

( ∫
Rd |ξ|p µn(dξ)

)
n≥1

is bounded. Hence,
the sequence of probability measures (µn)n≥1 is tight.

Let µ̃∞ be a weak limiting probability distribution of (µn)n≥1 i.e. there exists a
subsequence α(n) of n such that µα(n)

(Rd)==⇒ µ̃∞ as n→ +∞.

Let x = (x1, . . . , xN ) be any N -tuple in (Rd)N . We define a continuous function
fx : Rd → R by

fx(ξ) := min
1≤i≤N

|ξ − xi|p − |ξ|p .

Hence, owing to the elementary inequality vp−up ≤ pvp−1(v−u) for any 0 ≤ u ≤ v < +∞,
we derive ∣∣fx(ξ)

∣∣ ≤ max
i∈{1,...,N}

p
(
|ξ|+ |xi|

)p−1 |xi| ≤ Cx,p(1 + |ξ|p−1), (2.2.5)

where Cx,p is a constant depending on x and p.

Owing to (2.2.4) and (2.2.5), the sequence
( ∫

f
p

p−1
x dµn

)
n≥1 is bounded, hence fx

is uniformly integrable with respect to (µn)n≥1 since p
p−1 > 1, so that fx is uniformly

integrable with respect to any subsequence (µα(n))n≥1. It follows that∫
Rd
fx(ξ)µα(n)(dξ)→

∫
Rd
fx(ξ)µ̃∞(dξ),
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as n→ +∞, where∫
Rd
fx(ξ)µα(n)(dξ) =

∫
Rd

(
min

i∈{1,...,N}
|ξ − xi|p − |ξ|p

)
µα(n)(dξ)

= epN,p(µα(n), x)− epN,p(µα(n),0),

and
∫
Rd
fx(ξ)µ̃∞(dξ) = epN,p(µ̃∞, x)− epN,p(µ̃∞,0).

On the other hand, epN,p(µα(n), x)−epN,p(µα(n),0) converges to epN,p(µ∞, x)−epN,p(µ∞,0)
owing to the pointwise convergence in (iii) at 0 = (0, . . . , 0) and x = (x1, . . . , xN ).

Therefore,

epN,p(µ̃∞, x)− epN,p(µ̃∞,0) = epN,p(µ∞, x)− epN,p(µ∞,0),

which implies that for every x ∈ (Rd)N ,

epN,p(µ̃∞, x)− epN,p(µ∞, x) = C,

where C = epN,p(µ̃∞,0)− epN,p(µ∞,0) is a real constant. It follows from Theorem 2.2.1
that µ̃∞ = µ∞, which implies that µ∞ is the only limiting distribution of (µn)n≥1 for
the weak convergence and consequently µn

(Rd)==⇒ µ. We have already proved that∫
Rd
|ξ|p µn(dξ) n→+∞−−−−−→

∫
Rd
|ξ|p µ∞(dξ)

from (2.2.4), which finally shows thatWp(µn, µ∞) n→+∞−−−−−→ 0 owing to Theorem 2.1.1.

A careful reading of the proof shows that the following “à la Paul Lévy” characteri-
zation result holds for limiting functions of Lp-quantization error functions.

Corollary 2.2.1. Let p ∈ [1 +∞). Let (µn)n≥1 be a Pp(Rd)-valued sequence. If

eN,p(µn, ·) n→+∞−−−−−→ f pointwise for some N such that static characterization holds true

(Question 1), then there exists µ∞∈ Pp(Rd) such that µn
(Rd)==⇒ µ∞ as n→ +∞ and

fp = epN,p(µ∞, · ) + lim
n

∫
Rd
|ξ|p µn(dξ)−

∫
Rd
|ξ|p µ∞(dξ).

Now we will take advantage of what precedes to introduce a quantization based distance
on Pp(Rd). Let Cb

(
(Rd)N ,R

)
denote the space of bounded R-valued continuous functions
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defined on (Rd)N equipped with the sup norm ∥·∥sup. Let p ∈ [1,+∞). If µ∈ Pp(Rd),

eN,p(µ, ·)− eN,p(δ0, ·)∈ Cb
(
(Rd)N ,R

)
(note that eN,p

(
δ0, (x1, . . . , xN )

)
= min

i=1,...,N
|xi|) since inequality (2.1.8) implies that

∥eN,p(µ, ·)− eN,p(δ0, ·)∥sup≤ Wp(µ, δ0)=
[ ∫

Rd
|ξ|p µ(dξ)

]1/p
<+∞.

Then, we define a function QN,p on Pp(Rd) by

(µ, ν) 7−→ QN,p(µ, ν) :=
∥∥(eN,p(µ, ·)− eN,p(δ0, ·)

)
−
(
eN,p(ν, ·)− eN,p(δ0, ·)

)∥∥
sup

= ∥eN,p(µ, ·)− eN,p(ν, ·)∥sup . (2.2.6)

For any µ, ν∈ Pp(Rd), inequality (2.1.8) implies QN,p(µ, ν) ≤ Wp(µ, ν) < +∞ so that
QN,p(µ, ν) ∈ [0,+∞). Combining Theorems 2.2.1 and 2.2.2 implies the following result.

Corollary 2.2.2. Let p ∈ [1,+∞).

(a) Nd,p,|·| ≤ c(d, | · |) + 1 for any norm and Nd,p,|·| ≤ d+ 2 if | · | is Euclidean.

(b) If N ≥ c(d, | · |) + 1 or N ≥ d+ 2 if | · | is Euclidean, then QN,p defined by (2.2.6) is a
distance on Pp(Rd) and QN,p is topologically equivalent to the Wasserstein distance Wp.

Comments on optimality. If we consider only the quadratic case p = 2 and a norm | · |
induced by an inner product, the result in Corollary 2.2.2-(a) is in fact not optimal. In
the next section, we will prove that in such a setting, Nd,2,|·| = 2 and this result can also
be extended to any separable (possibly infinite-dimensional) Hilbert space.

2.3 Quadratic quantization based characterization on a
separable Hilbert space

Let H denote a separable Hilbert space with the inner product (· | ·)H . Let | · |H
denote the norm on H induced by (· | ·)H . When there is no ambiguity, we drop the
index H and write (· | ·) and | · |. The separable Hilbert space is a very common setup
for applications, for example in functional data analysis: one can set H = L2([0, T ], dt

)
and X = (Xt)t∈[0,T ] a bi-measurable process such that

∫ T
0 EX2

t dt < +∞. For more
information about functional data analysis with an L2-setup, we refer to Hsing and
Eubank (2015) among others.

We first prove in the quadratic case (p = 2), that both static (see further Propo-
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sition 2.3.1) and W2-convergence (see further Theorem 2.3.1) characterizations can
be obtained at level N = 2 by an analytical method. Then we will show that
NH,2 := NH,2,|·|H = 2 and for any µ, ν ∈ P2(H), Q2,2(µ, ν) := ∥e2,2(µ, ·)− e2,2(ν, ·)∥sup
is a well-defined distance on P2(H) which is topologically equivalent to W2.

Proofs of quadratic quantization based characterizations rely on the following lemma.

Lemma 2.3.1. (a) Let µ, ν∈ P2(H). If for every u∈ H, |u| = 1,

µ ◦
(
ξ 7→ (ξ | u)

)−1 = ν ◦
(
ξ 7→ (ξ | u)

)−1
,

then µ = ν.
(b) Let µn ∈ P2(H) for every n ∈ N∗ ∪ {∞}. If

∫
H |ξ|

2 µn(dξ) n→+∞−−−−−→
∫
H |ξ|

2 µ∞(dξ)
and for every u∈ H, |u| = 1,

µn ◦
(
ξ 7→ (ξ | u)

)−1 (R)==⇒ µ∞ ◦
(
ξ 7→ (ξ | u)

)−1
,

then W2(µn, µ∞)→ 0.

Proof. As (H, | · |) is separable, let (hk)k≥1 be a countable orthonormal basis of (H, | · |).

(a) Let X,Y be random variables with respective distributions µ and ν and let λ∈ H.
We define for every m ≥ 1, X(m) := ∑m

k=1(X |hk)hk, Y (m) := ∑m
k=1(Y |hk)hk and

λ(m) := ∑m
k=1(λ |hk)hk. For m ≥ 1, let u(m) = λ(m)

|λ(m)| (convention 0
|0| = 0), then we have

(λ |X(m)) =
+∞∑
k=1

(λ |hk)(X(m) |hk) =
m∑
k=1

(λ |hk)(X |hk) =
∣∣λ(m)∣∣(X ∣∣u(m)).

Similarly, (λ |Y (m)) =
∣∣λ(m)∣∣(Y ∣∣u(m)). Let i be such that i2 = −1. It follows that

E ei(λ|X(m)) = E ei|λ(m)|(X|u(m)) =
∫
H
ei |λ(m)| ξµ ◦

(
ξ 7→ (u(m) | ξ)

)−1(dξ)

=
∫
H
ei |λ(m)| ξν ◦

(
ξ 7→ (u(m) | ξ)

)−1(dξ) = E ei(λ|Y (m)).

Since we can arbitrarily choose λ, we have for every m ≥ 1, Law(X(m)) = Law(Y (m)).
Let F : H → R be a bounded continuous function. Then, for every m ≥ 1,

EF (X(m)) = EF (Y (m))

which implies EF (X) = EF (Y ) by letting m→ +∞. Hence, µ = ν.

(b) For every n ≥ 1, let Xn be random variables with distribution µn and let X∞ be a
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random variable with distribution µ∞. We define for every n ≥ 1 and for every m ≥ 1,

X(m)
n :=

m∑
i=1

(Xn|hi)hi and X(m)
∞ :=

m∑
i=1

(X∞|hi)hi.

Following the lines of item (a), we get for every m ≥ 1, X(m)
n

(H)==⇒ X
(m)
∞ as n → +∞,

since the convergence of characteristic function implies weak convergence.

Now, let F : H → R be a Lipschitz continuous function with Lipschitz coefficient
[F ]Lip := supx,y∈H

|F (x)−F (y)|
|x−y| . For every (temporarily) fixed m ≥ 1,

lim
n

∣∣EF (Xn)− EF (X∞)
∣∣

≤ lim
n

∣∣EF (Xn)− EF (X(m)
n )

∣∣ + lim
n

∣∣EF (X(m)
n )− EF (X(m)

∞ )
∣∣ +

∣∣EF (X(m)
∞ )− EF (X∞)

∣∣
≤ lim

n

∣∣EF (Xn)− EF (X(m)
n )

∣∣ + 0 +
∣∣EF (X(m)

∞ )− EF (X∞)
∣∣ (since X(m)

n
(H)==⇒ X(m)

∞ ).

Then, for every n ≥ 1,∣∣EF (Xn)− EF (X(m)
n )

∣∣ ≤ E
∣∣F (Xn)− F (X(m)

n )
∣∣ ≤ [F ]LipE

∣∣Xn −X(m)
n

∣∣
≤ [F ]Lip

∥∥Xn −X(m)
n

∥∥
2.

Similarly, we also have
∣∣EF (X(m)

∞ )− EF (X∞)
∣∣ ≤ [F ]Lip

∥∥X∞ −X(m)
∞

∥∥
2.

It follows from Fatou’s Lemma for the weak convergence and the convergence
assumption made on E|Xn|2 that

lim sup
n

∥∥Xn −X(m)
n

∥∥2
2 = lim sup

n
E
∣∣Xn −X(m)

n

∣∣2 = lim sup
n

[
E
∣∣Xn

∣∣2 − E
∣∣X(m)

n

∣∣2]
= E

∣∣X∞
∣∣2 − lim inf

n
E
∣∣X(m)

n

∣∣2 ≤ E
∣∣X∞

∣∣2 − E
∣∣X(m)

∞
∣∣2

=
∥∥X∞ −X(m)

∞
∥∥2

2.

Hence, for every m ≥ 1,

lim
n

∣∣EF (Xn)− EF (X∞)
∣∣ ≤ lim sup

n
[F ]Lip

∥∥Xn −X(m)
n

∥∥
2 + [F ]Lip

∥∥X∞ −X(m)
∞

∥∥
2

≤ 2[F ]Lip
∥∥X∞ −X(m)

∞
∥∥

2.

Then, ∥∥X∞ −X(m)
∞

∥∥
2 → 0 as m→ +∞

by the Lebesgue dominated convergence theorem since
∣∣X∞ −X(m)

∞
∣∣ ≤ ∣∣X∞

∣∣∈ L2(P) so
that EF (Xn)→ EF (X∞) as n→ +∞. Thus, Xn

(H)==⇒ X∞ and we can conclude that
Wp(µn, µ∞)→ 0 by applying Theorem 2.1.1.
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Proposition 2.3.1 (Static characterization). Let µ, ν∈ P2(H). If

e2
2,2(µ, ·) = e2

2,2(ν, ·) + C

for some real constant C, then µ = ν and C = 0.

Proof. Let a, b∈ H, then e2
2,2

(
µ, (a, b)

)
=

∫
H |ξ − a|

2 ∧ |ξ − b|2 µ(dξ).

As e2
2,2

(
µ, (a, b)

)
= e2

2,2
(
ν, (a, b)

)
+ C for every (a, b)∈ H2, in particular, if a = b,∫

H |ξ − a|
2 µ(dξ) =

∫
H |ξ − a|

2 ν(dξ) + C. Hence, using that (x − y)+ = x − x ∧ y, we
have

∀a, b∈ H,
∫
H

(
|ξ − a|2 − |ξ − b|2

)
+µ(dξ) =

∫
H

(
|ξ − a|2 − |ξ − b|2

)
+ν(dξ). (2.3.1)

Note that |ξ − a|2 − |ξ − b|2 = 2
(
b− a

∣∣∣ ξ − a+b
2

)
. Hence, if we take a = λu and b = λ′u

with λ, λ′∈ R, λ′ > λ for some common u∈ H with |u| = 1, we obtain

(
|ξ − a|2 − |ξ − b|2

)
+ = 2(λ′ − λ)

Å
(ξ | u)− λ+ λ′

2

ã
+
.

As a consequence of (2.3.1), we derive that

∀λ, λ′∈ R, λ′ > λ,

∫
H

Å
(ξ | u)− λ+ λ′

2

ã
+
µ(dξ) =

∫
H

Å
(ξ | u)− λ+ λ′

2

ã
+
ν(dξ).

In turn, this implies, by letting λ′ → λ,

∀u∈ H, |u| = 1, ∀λ∈ R,
∫
H

(
(ξ | u)− λ

)
+
µ(dξ) =

∫
H

(
(ξ | u)− λ

)
+
ν(dξ).

(2.3.2)

The function λ 7→
(
(ξ | u)− λ

)
+ is right differentiable with 1(ξ|u)>λ as a right deriva-

tive and µ-integrable. Hence, by the Lebesgue differentiation theorem, we can right
differentiate the equality (2.3.2) which yields for every u∈ H, |u| = 1 and for every λ∈ R,

µ
(
(ξ | u) > λ

)
= ν

(
(ξ | u) > λ

)
.

Hence, for every u∈ H, |u| = 1, µ ◦
(
ξ 7→ (ξ | u)

)−1 =ν ◦
(
ξ 7→ (ξ | u)

)−1 since they have
the same survival function. We conclude by Lemma 2.3.1 (a) that µ = ν and C = 0.

The following theorem shows the equivalence of W2-convergence of (µn)n≥1 in P2(H)
and the pointwise convergence of quadratic quantization error function

(
e2,2(µn, ·)

)
n≥1.
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Theorem 2.3.1 (W2-convergence characterization). Let µn ∈ P2(H) for every n ∈
N∗ ∪ {∞}. The following properties are equivalent:

(i) W2(µn, µ∞) n→+∞−−−−−→ 0,

(ii) e2,2(µn, ·) n→+∞−−−−−→ e2,2(µ∞, ·) uniformly,

(iii) e2,2(µn, ·) n→+∞−−−−−→ e2,2(µ∞, ·) pointwise.

Before proving Theorem 2.3.1, we recall the convergence of left and right derivatives
of a converging sequence of convex functions. Let ∂−f (respectively ∂+f) denote the left
derivative (resp. right derivative) of a convex function f .

Lemma 2.3.2. (See e.g. Lacković (1982)[Theorems 2.5]) Let fn : R → R, n∈ N∗, be
a sequence of convex functions converging pointwise to a function f : R → R. Let
G := {x∈ R | ∂−f(x) ̸= ∂+f(x)}. Then for every point x∈ R \G,

lim
n
∂+fn(x) = lim

n
∂−fn(x) = f ′(x).

Proof of Theorem 2.3.1. (i)⇒ (ii) is obvious from (2.1.9).

(ii)⇒ (iii) is obvious.

(iii)⇒ (i) For every (a, b)∈ H2,

e2
2,2

(
µn, (a, b)

)
=

∫
H
|ξ − a|2 ∧ |ξ − b|2 µn(dξ) n→+∞−−−−−→

e2
2,2

(
µ∞, (a, b)

)
=

∫
H
|ξ − a|2 ∧ |ξ − b|2µ∞(dξ).

In particular, ∀a∈ H,
∫
H |ξ − a|

2 µn(dξ) n→+∞−−−−−→
∫
H |ξ − a|

2 µ∞(dξ). Hence, using that
(x− y)+ = x− x ∧ y, we get

∀a, b∈ H,
∫
H

(
|ξ − a|2 − |ξ − b|2

)
+µn(dξ) n→+∞−−−−−→

∫
H

(
|ξ − a|2 − |ξ − b|2

)
+µ∞(dξ).

Following the lines of the proof of Proposition 2.3.1, we get

∀λ∈ R, ∀u∈ H, |u| = 1,
∫
H

(
(ξ | u)− λ

)
+
µn(dξ) n→+∞−−−−−→

∫
H

(
(ξ | u)− λ

)
+
µ∞(dξ).

(2.3.3)

For µ∈ P2(H) and u∈ S|·|(0, 1), we define the real-valued convex function ϕµ by ϕµ :
λ 7→

∫ (
(ξ | u)− λ

)
+µ(dξ). It follows from (2.3.3) that (ϕµn)n≥0 converges pointwise to

ϕµ∞ . Moreover, ϕµn , ϕµ∞ are right-differentiable and their right derivatives are given by
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∂+ϕµn(λ) = µn
(
(ξ | u) > λ

)
and ∂+ϕµ∞(λ) = µ∞

(
(ξ | u) > λ

)
respectively. Note that

the functions 1− ∂+ϕµn and 1− ∂+ϕµ∞ are the cumulative distribution functions of the
probability distributions µn ◦

(
ξ 7→ (ξ | u)

)−1 and µ∞ ◦
(
ξ 7→ (ξ | u)

)−1 and that the set
of discontinuity points of 1−∂+ϕµ∞ and ∂+ϕµ∞ , is G = {λ : µ∞

(
{ξ : (ξ | u) = λ}

)
> 0}.

We know from Lemma 2.3.2 that for every λ∈ R \G, ∂+ϕµn(λ) n→+∞−−−−−→ ∂+ϕµ∞(λ)
and that ∂−ϕµ∞ is continuous on R \G. Hence

∀u∈ H, |u| = 1, µn ◦
(
ξ 7→ (ξ | u)

)−1 (R)==⇒ µ∞ ◦
(
ξ 7→ (ξ | u)

)−1
. (2.3.4)

Moreover, e2,2
(
µn, (0, 0)

)
converges to e2,2

(
µ∞, (0, 0)

)
, which also reads

∫
H |ξ|

2 µn(dξ)→∫
H |ξ|

2 µ∞(dξ). Consequently, it follows from Lemma 2.3.1-(b) that W2(µn, µ∞)→ 0 as
n→ +∞.

Remark 2.3.1. Proposition 2.3.1 and Theorem 2.3.1 directly imply that NH,2,|·|2 ≤ 2. In
fact, for every a∈ H,

e2
1,2(µ, a) =

∫
H
|ξ − a|2H µ(dξ) =

∫
H
|ξ|2H µ(dξ)− 2

( ∫
H
ξµ(dξ)

∣∣ a)
H

+ |a|2H .

Thus, if µ, ν∈ P2(H) are such that∫
H
|ξ|2H µ(dξ) =

∫
H
|ξ|2H ν(dξ) and

∫
H
ξµ(dξ) =

∫
H
ξν(dξ), (2.3.5)

then we have e1,2(µ, ·) = e1,2(ν, ·). But condition (2.3.5) is clearly not sufficient to have
µ = ν. Consequently, NH,2,|·|2 = 2.

Like what we did in Section 2.2.2, we define a function QH2,2 on
(
P2(H)

)2 by

(µ, ν) 7→ QH2,2(µ, ν) = ∥e2,2(µ, ·)− e2,2(ν, ·)∥sup .

Then inequality (2.1.8) implies that QH2,2(µ, ν) ∈ [0,+∞). Moreover, Proposition 2.3.1
and Theorem 2.3.1 lead to the following corollary.

Corollary 2.3.1. The distances QH2,2 and W2 are topologically equivalent on P2(H).

We conclude this section by an “à la Paul Lévy” characterization of a limit of
quantization error functions.

Theorem 2.3.2 (À la Paul Lévy characterization). Let (H, | · |H) be a separable Hilbert
space. Let (µn)n≥1 be a P2(H)-valued sequence and let f : H2 → R+ be such that

e2,2(µn, ·) n→+∞−−−−−→ f pointwise.
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Then there exists µ∞∈ P2(H) such that µn
(Hw)=⇒ µ∞ (where (Hw) stands for the weak

topology on H) and

f2 = e2,2(µ∞, ·)2 + lim
n

∫
H
|ξ|2 µn(dξ)−

∫
H
|ξ|2 µ∞(dξ).

Proof. The sequence e2,2
(
µn, (0, 0)

)2 =
∫
H |ξ|2µn(dξ), n ≥ 1, is bounded, hence the

sequence (µn)n≥1 is tight for the weak topology (Hw) on H, which generates the same
Borel σ-field as the strong one. Consequently there exists a subnet µφ(n)

(Hw)=⇒ µ∞∈ P2(H)
since the mapping ξ 7→ |ξ|2 is weakly lower semi-continuous and non-negative (see Topsoe
(1974)[Lemma 2.3 and Theorem 3.1] and Kelley (1975)[Chapter 2] for the definition of
subnet). Now note that, for a fixed x = (x1, x2)∈ H2, the mapping

ξ 7→ min
(
|ξ − x1|2, |ξ − x2|2

)
− |ξ|2 = min

(
|x1|2 − 2(x1|ξ), |x2|2 − 2(x2|ξ)

)
is weakly continuous and (µn)n≥1-uniformly integrable since it is sublinear. Hence

e2
2,2(µφ(n), x) −→

∫
H

min
(
|x1|2 − 2(x1|ξ), |x2|2 − 2(x2|ξ)

)
µ∞(dξ) + f2((0, 0)

)
as n→ +∞

= e2
2,2(µ∞, x) + f2((0, 0)

)
−

∫
H
|ξ|2 µ∞(dξ).

For two such limiting distributions µ∞ and µ′
∞ it follows from what precedes that

e2
2,2(µ∞, ·) = e2

2,2(µ′
∞, ·) + C∞ for some real constant C∞. Hence µ∞ = µ′

∞ by Proposi-

tion 2.3.1, which in turn implies that µn
(Hw)=⇒ µ∞.

2.4 Further quantization based characterizations on R

Let | · | denote the absolute value on R. Results from Section 2.2 (Theorem 2.2.1
and 2.2.2, Proposition 2.2.4-(i)) imply that N1,p := N1,p,|·| ≤ 3 for any p ≥ 1. Moreover,
Proposition 2.3.1 and Theorem 2.3.1 imply that N1,2 = 2. Other quantization based
characterizations are developed in Section 2.4.1. Then we discuss the completeness of the
distance Q1,1

(
defined in (2.2.6)

)
on P1(R) and of Q2,2 on P2(R) with opposite answers

in Section 2.4.2.

2.4.1 Quantization based characterization on R

Proposition 2.4.1 (p = 1). (a) Let µ, ν∈ P1(R). If e1,1(µ, ·) = e1,1(ν, ·) + C for some
real constant C, then µ = ν and C = 0.
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(b) If µn∈ P1(R), n∈ N∗ ∪ {∞}, the following properties are equivalent:

(i) W1(µn, µ∞) n→+∞−−−−−→ 0,

(ii) e1,1(µn, ·) n→+∞−−−−−→ e1,1(µ∞, ·) uniformly,

(iii) e1,1(µn, ·) n→+∞−−−−−→ e1,1(µ∞, ·) pointwise.

(c) The distance Q1,1 and W1 are topologically equivalent on P1(R) and N1,1 = 1.

Proof. (a) The function e1,1(µ, ·) reads x 7→
∫
R |ξ − x|µ(dξ), hence it is convex and its

right derivative is given by x 7→ −1 + 2µ
(
]−∞, x]

)
. So if e1,1(µ, ·) = e1,1(ν, ·) + C, we

have µ
(
]−∞, x]

)
= ν

(
]−∞, x]

)
for all x∈ R, which implies µ = ν (and C = 0).

(b) It is obvious that (i)⇒ (ii) and (ii)⇒ (iii). Now we prove (iii)⇒ (i).

For every n ≥ 1, e1,1(µn, ·) can also be written as a 7→
∫
R |ξ − a|µn(dξ), which

is convex with right derivative at a given by −1 + 2µn
(
] − ∞, a]

)
. Consequently, if

e1,1(µn, ·) converges pointwise to e1,1(µ∞, ·) on R, then µn
(
]−∞, a]

)
converges pointwise

to µ∞
(
] −∞, a]

)
for all a∈ R such that µ∞(

{
a
}

) = 0 by Lemma 2.3.2. This implies
µn

(R)==⇒ µ∞. The convergence of the first moment follows from e1,1(µn, 0) n→+∞−−−−−→
e1,1(µ∞, 0). Hence, we conclude that W1(µn, µ∞) n→+∞−−−−−→ 0 by Theorem 2.1.1.

(c) The claim (c) is a direct result from (a) and (b).

Proposition 2.4.2 (Even integer p ≥ 2). Let p be an even integer, p ≥ 2.

(a) Let µ, ν∈ Pp(R) such that ep2,p(µ, ·) = ep2,p(ν, ·) + C for some real constant C. Then
µ = ν.

(b) If µn∈ Pp(R), n∈ N∗ ∪ {∞}, the following properties are equivalent:

(i) Wp(µn, µ∞) n→+∞−−−−−→ 0,

(ii) e2,p(µn, ·) n→+∞−−−−−→ e2,p(µ∞, ·) uniformly,

(iii) e2,p(µn, ·) n→+∞−−−−−→ e2,p(µ∞, ·) pointwise.

(c) The distances Q2,p and Wp are topologically equivalent on Pp(R) and N1,p = 2.

The proof of Proposition 2.4.2 is based on the following lemma.

Lemma 2.4.1. Let p be an even number, p ≥ 2. Let µ∈ Pp(R) be absolutely continuous
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with density f i.e. µ(dξ) = f(ξ)dξ. If f is continuous, then for any a, b∈ R with a < b,

ep−2
2,p−2

(
µ, (a, b)

)
= 1
p(p− 1)

Ç
∂2ep2,p
∂a2

(
µ, (a, b)

)
+
∂2ep2,p
∂b2

(
µ, (a, b)

)
− 2

∂2ep2,p
∂a∂b

(
µ, (a, b)

)å
.

(2.4.1)

Proof of Lemma 2.4.1. Assume that a < b, then ep2,p
(
µ, (a, b)

)
=

∫ a+b
2

−∞ |ξ − a|
p f(ξ)dξ +∫ +∞

a+b
2
|ξ − b|p f(ξ)dξ. Hence, the function ep2,p

(
µ, (a, b)

)
is continuously differentiable in

a, since, for any even number p ≥ 2, we have ∂|ξ−a|pf(ξ)
∂a = p(a− ξ)p−1f(ξ) and

sup
a′∈(a−1,a+1)

∣∣p(a′ − ξ)p−1f(ξ)
∣∣ ≤ p2p−1f(ξ)

[
|a+ 1|p−1 ∨ |a− 1|p−1 + |ξ|p−1 ]∈ L1(λ)

since
∫
R |ξ|

p f(ξ)dξ < +∞. Likewise, ep2,p
(
µ, (a, b)

)
is continuously differentiable in b

with partial derivatives

∂ep2,p
(
µ, (a, b)

)
∂a

= p

∫ a+b
2

−∞
(a−ξ)p−1f(ξ)dξ and

∂ep2,p
(
µ, (a, b)

)
∂b

= p

∫ +∞

a+b
2

(b−ξ)p−1f(ξ)dξ.

Moreover, we have ∂(a−ξ)p−1f(ξ)
∂a = (p− 1)(a− ξ)p−2f(ξ) and

sup
a′∈(a−1,a+1)

∣∣(p− 1)(a′ − ξ)p−2f(ξ)
∣∣

≤ (p− 1)2p−2f(ξ)
[
|a+ 1|p−2 ∨ |a− 1|p−2 + |ξ|p−2 ]∈ L1(dξ)

since
∫
R |ξ|

p f(ξ)dξ < +∞. By a similar reasoning, one derives that ep2,p
(
µ, (a, b)

)
is

continuously twice differentiable with second order partial derivatives

∂2ep2,p
∂a2

(
µ, (a, b)

)
= p

[ ∫ a+b
2

−∞
(p− 1)(a− ξ)p−2f(ξ)dξ − 1

2p (b− a)p−1f(a+ b

2 )
]
,

∂2ep2,p
∂b2

(
µ, (a, b)

)
= p

[ ∫ +∞

a+b
2

(p− 1)(b− ξ)p−2f(ξ)dξ − 1
2p (b− a)p−1f(a+ b

2 )
]
,

∂2ep2,p
∂a∂b

(
µ, (a, b)

)
=
∂2ep2,p
∂b∂a

(
µ, (a, b)

)
= −p 1

2p (b− a)p−1f
(a+ b

2

)
.

Hence, for every (a, b)∈ R2 such that a < b,

∂2ep2,p
∂a2

(
µ, (a, b)

)
+
∂2ep2,p
∂b2

(
µ, (a, b)

)
− 2

∂2ep2,p
∂a∂b

(
µ, (a, b)

)
= p(p− 1)ep−2

2,p−2
(
µ, (a, b)

)
.

Proof of Proposition 2.4.2. (a) Step 1: µ and ν are absolutely continuous with contin-
uous density functions. Note that ep2,p(µ, ·) = ep2,p(ν, ·) + C implies either µ = ν by
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Proposition 2.3.1 if p = 2, or, if p > 2 ep−2
2,p−2(µ, ·) = ep−2

2,p−2(ν, ·) (after differentiation) by
Lemma 2.4.1. We can conclude by induction.

Step 2 (General case). Let X,Y be two random variables with the respective distributions
µ and ν, such that

∀(a, b)∈ R2, ep2,p
(
X, (a, b)

)
= ep2,p

(
Y, (a, b)

)
+ C. (2.4.2)

Let Z be a random variable with probability distribution PZ = N (0, 1), independent of
X and Y . For every ε > 0,

ep2,p
(
X+εZ, (a, b)

)
=

∫∫
min

x∈{a,b}
|ξ + εz − x|p µ(dξ)PZ(dz) =

∫
ep2,p

(
X, (a, b)−εz

)
PZ(dz).

(2.4.3)

We derive from (2.4.2) and (2.4.3) that

∀(a, b)∈ R2, ep2,p
(
X + εZ, (a, b)

)
= ep2,p

(
Y + εZ, (a, b)

)
+ C. (2.4.4)

Moreover, the random variables X + εZ and Y + εZ have distributions N (0, ε2) ∗ µ and
N (0, ε2) ∗ ν respectively, both with continuous densities. It follows from Step 1 that
Law(X + εZ) = Law(Y + εZ) for every ε > 0 so that Law(X)=Law(Y ) by letting ε→ 0.

(b) It is obvious that (i)⇒ (ii) and (ii)⇒ (iii). Now we prove (iii)⇒ (i). It follows from
Lemma 2.4.1 that e2,p(µn, ·) n→+∞−−−−−→ e2,p(µ∞, ·) implies e2,p−2(µn, ·) n→+∞−−−−−→ e2,p−2(µ∞, ·)
and, by induction, yields e2,2(µn, ·) n→+∞−−−−−→ e2,2(µ∞, ·), so that Theorem 2.3.1 and
Theorem 2.1.1 imply that µn converges weakly to µ∞. The convergence of the p-th
moment follows from e2,p(µn,0) n→+∞−−−−−→ e2,p(µ∞,0). Hence Wp(µn, µ∞) n→+∞−−−−−→ 0 by
Theorem 2.1.1.

(c) The claim (a) and (b) directly imply that if p is an even integer, p ≥ 2, the distances
Q2,p and Wp are topologically equivalent on Pp(R) and N1,p ≤ 2. Now we prove that
N1,p = 2. Note that for every x ∈ R,

ep1,p(µ, x) =
∫
R
|ξ − x|p µ(dξ) =

∫
R

(ξ2 − 2ξx+ x2)
p
2µ(dξ),

which is polynomial in x and whose coefficients are the k-th moments of µ, k ∈ {1, ..., p}.
Thus, as soon as two different distributions µ and ν have the same first p moments,
ep1,p(µ, ·) = ep1,p(ν, ·). This implies N1,p > 1.



2.4 Further quantization based characterizations on R 63

2.4.2 About completeness of
(
P1(R),Q1,1

)
and

(
P2(R),QN,2

)
We know from Bolley (2008) that for p ≥ 1, (Pp(R),Wp) is a complete space and we

have proved that Q1,1 (respectively Q2,2) is topologically equivalent to W1 (resp. W2)
on P1(R) (resp. P2(R)). Now we discuss whether Q1,1 and Q2,2 are complete distances.

Proposition 2.4.3. The metric space
(
P1(R),Q1,1

)
is complete.

Proof. The inequality (2.1.8) directly implies that a Cauchy sequence in
(
P1(R),W1

)
is also a Cauchy sequence in

(
P1(R),Q1,1

)
. Now let (µn)n≥1 be a Cauchy sequence in(

P1(R),Q1,1
)
. It follows from the definition of Q1,1 that

(
e1,1(µn, ·)− e1,1(δ0, ·)

)
n≥1 is a

Cauchy sequence in
(
Cb(R,R), ∥·∥sup

)
.

As
(
Cb(R,R), ∥·∥sup

)
is complete, there exists a function g∈ Cb(R,R) such that

∥∥(e1,1(µn, ·)− e1,1(δ0, ·)
)
− g

∥∥
sup

n→+∞−−−−−→ 0. (2.4.5)

Note that for any a∈ R, e1,1(δ0, a) = |a|. The sequence e1,1(µn, 0) − e1,1(δ0, 0) =
e1,1(µn, 0) is also a Cauchy sequence in R. Therefore,

(
e1,1(µn, 0)

)
n≥1 =

( ∫
R |ξ|µn(dξ)

)
n≥1

is bounded, which implies that (µn)n≥1 is tight. It follows from Prohorov’s theorem that
there exists a subsequence (µφ(n))n≥1 weakly converging to µ̃∞. Moreover, by Fatou’s
lemma in distribution, µ̃∞∈ P1(R) since

∫
R |ξ| µ̃∞(dξ) ≤ lim infn

∫
R |ξ|µφ(n)(dξ) < +∞.

Now, we prove that g = e1,1(µ̃, ·)− e1,1(δ0, ·). First, let us define a function fa(ξ) :=
|ξ − a|−|ξ|. For every a∈ R, fa is bounded and continuous. Hence, the weak convergence
of (µφ(n))n≥1 implies that

∫
R
fa(ξ)µφ(n)(dξ)

n→+∞−−−−−→
∫
R
fa(ξ)µ̃∞(dξ).

Besides,∫
R
fa(ξ)µφ(n)(dξ) =

∫
R

[
|ξ − a| − |ξ|

]
µφ(n)(dξ) = e1,1(µφ(n), a)− e1,1(µφ(n), 0),

which converges to
(
g(a)+e1,1(δ0, a)

)
−
(
g(0)+e1,1(δ0, 0)

)
as n→ +∞ by (2.4.5). Hence,

for every a∈ R,

(
g(a) + e1,1(δ0, a)

)
−
(
g(0) + e1,1(δ0, 0︸ ︷︷ ︸

=0

)
)

=
∫
R
fa(ξ)µ̃∞(dξ) = e1,1(µ̃∞, a)− e1,1(µ̃∞, 0),

i.e. e1,1(µ̃∞, a)− e1,1(δ0, a)− g(a) = e1,1(µ̃∞, 0)− g(0). Setting C = e1,1(µ̃∞, 0)− g(0),
we derive that for every a∈ R,

e1,1(µ̃∞, a)− e1,1(δ0, a)− g(a) = C. (2.4.6)
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Now we prove that C = 0. Generally, for any ν∈ P1(R), one has

lim
a→+∞

(
e1,1(ν, a

)
− e1,1(δ0, a)

)
= lim

a→+∞

(
e1,1(ν, a

)
− |a|

)
= lim

a→+∞

(
e1,1(ν, a

)
− a

)
= lim

a→+∞

( ∫
R
|ξ − a| ν(dξ)− a

)
= lim

a→+∞

( ∫
{ξ≥a}

(ξ − a)ν(dξ) +
∫

{ξ<a}
(a− ξ)ν(dξ)− a

)
= lim

a→+∞

( ∫
{ξ≥a}

ξν(dξ)− 2
∫

{ξ≥a}
aν(dξ) +

∫
{ξ<a}

(−ξ)ν(dξ)
)
.

As ν ∈ P1(R) i.e.
∫
R |ξ| ν(dξ) < +∞, we derive that lima→+∞

∫
ξ<a(−ξ)ν(dξ) =∫

R(−ξ)ν(dξ) and lima→+∞
∫

{ξ≥a} ξν(dξ) = 0. This implies

0 ≤ lim
a→+∞

∫
{ξ≥a}

a ν(dξ) ≤ lim
a→+∞

∫
{ξ≥a}

ξ ν(dξ) = 0.

After a similar calculation with lima→−∞
(
e1,1(ν, a

)
− e1,1(δ0, a)

)
, we get

lim
a→+∞

[
e1,1(ν, a

)
− e1,1(δ0, a)

]
=

∫
R

(−ξ)ν(dξ)

and lim
a→−∞

[
e1,1(ν, a

)
− e1,1(δ0, a)

]
=

∫
R
ξν(dξ). (2.4.7)

Combining (2.4.6) and (2.4.7) with ν = µ̃∞ shows that

lim
a→+∞

g(a) = −C −
∫
R
ξµ̃∞(dξ) and lim

a→−∞
g(a) = −C +

∫
R
ξµ̃∞(dξ).

On the other hand, for every n ≥ 1, (2.4.7) applied to ν = µφ(n) implies

lim
a→±∞

e1,1(µφ(n), a)− e1,1(δ0, a) = ∓
∫
R
ξµφ(n)(dξ).

Up to a new extraction of µφ(n), still denoted by µφ(n), we may assume that∫
R
ξµφ(n)(dξ)→ ‹C∈ R

as n→ +∞ since
(
e1,1(µn, 0)

)
n≥1 =

( ∫
R |ξ|µn(dξ)

)
n≥1 is bounded.

Now the uniform convergence (2.4.5) implies that

lim
n

lim
a→±∞

[
e1,1(µφ(n), a)− e1,1(δ0, a)− g(a)

]
= 0

so that ‹C = C +
∫
R ξµ̃∞(dξ) = −C +

∫
R ξµ̃∞(dξ), which in turn implies C = 0, i.e.
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g = e1,1(µ̃∞, ·)− e1,1(δ0, ·). Then it follows from (2.4.5) that∥∥(e1,1(µn, ·)− e1,1(δ0, ·)
)
−
(
e1,1(µ̃∞, ·)− e1,1(δ0, ·)

)∥∥
sup

= ∥e1,1(µn, ·)− e1,1(µ̃∞, ·)∥sup
n→+∞−−−−−→ 0

Hence,W1(µn, µ̃∞)→ 0 by applying Proposition 2.4.1. The completeness of (P1(R),W1)
implies that µ̃∞ is the unique limit of (µn)n≥1, which in turn implies that (P1(R),Q1,1)
is complete.

Theorem 2.4.1. For any N ≥ 2, the metric space
(
P2(R),QN,2

)
is not complete.

We will build a sequence on P2(R) which is Cauchy for QN,2 but not for W2. First,
we have the following result.

Lemma 2.4.2. Let (µn)n≥1 be a P2(Rd)-valued sequence which converges weakly to µ∞

and, for n∈ N∗ ∪ {∞}, let Xn denote a µn-distributed random variable . Assume that
limn E |Xn|2 exists and is finite. Then

sup
a∈Rd

∣∣∣e2,2
(
µn, (a, a)

)
−
»
e2

2,2
(
µ∞, (a, a)

)
+ C0

∣∣∣ n→+∞−−−−−→ 0, (2.4.8)

where C0 = lim
n

E |Xn|2 − E |X∞|2 ∈ [0,+∞).

Proof of Lemma 2.4.2. An elementary computation shows that

e2
2,2

(
µn, (a, a)

)
=

∫
Rd
|ξ − a|2 µn(dξ) =

∫
Rd
|ξ|2 µn(dξ)− 2

( ∫
Rd
ξµn(dξ)

∣∣ a) + |a|2 .

As
( ∫

Rd |ξ|2 µn(dξ)
)
n≥1

is bounded and µn
(Rd)===⇒ µ∞, we have

∫
Rd ξµn(dξ) →∫

Rd ξµ∞(dξ). It follows that

e2
2,2

(
µn, (a, a)

)
=

∫
Rd
|ξ|2 µn(dξ)− 2

( ∫
Rd
ξµn(dξ)

∣∣ a) + |a|2

n→+∞−−−−−→
∫
Rd
|ξ|2 µ∞(dξ) + C0 − 2

( ∫
Rd
ξµ∞(dξ)

∣∣ a) + |a|2 = e2
2,2

(
µ∞, (a, a)

)
+ C0.

Therefore, for every compact set K in Rd, we have

sup
a∈K

∣∣∣e2,2
(
µn, (a, a)

)
−
»
e2

2,2
(
µ∞, (a, a)

)
+ C0

∣∣∣ n→+∞−−−−−→ 0, (2.4.9)

owing to Arzelá-Ascoli theorem, since all functions eN,p are 1-Lipschitz continuous
(see (2.1.5)). On the other hand, we have∣∣∣e2,2

(
µn, (a, a)

)
−
»
e2

2,2(µ∞, (a, a)) + C0

∣∣∣
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=

∣∣∣e2
2,2

(
µn, (a, a)

)
−
(
e2

2,2
(
µ∞, (a, a)

)
+ C0

)∣∣∣
e2,2

(
µn, (a, a)

)
+
»
e2

2,2
(
µ∞, (a, a)

)
+ C0

≤

∣∣∣E( |Xn|2 − 2(a |Xn) + |a|2
)
− E

(
|X∞|2 − 2(a |X∞) + |a|2

)
− C0

∣∣∣
∥Xn − a∥2 + ∥X∞ − a∥2

≤
2 |(a | EX∞ − EXn)|+

∣∣∣E |Xn|2 − E |X∞|2 − C0

∣∣∣
∥Xn − a∥2 + ∥X∞ − a∥2

≤
2 |a| |EX∞ − EXn|+

∣∣∣E |Xn|2 − E |X∞|2 − C0

∣∣∣∣∣ ∥Xn∥2 − |a|
∣∣ +

∣∣ ∥X∞∥2 − |a|
∣∣ . (2.4.10)

Let A := 2 supn∈N∪{∞} E |Xn|2, then

sup
|a|>A

∣∣∣e2,2
(
µn, (a, a)

)
−
»
e2

2,2(µ∞, (a, a)) + C0

∣∣∣
≤ sup

|a|>A

2 |a| |EX∞ − EXn|+
∣∣∣E |Xn|2 − E |X∞|2 − C0

∣∣∣
|a| − ∥Xn∥2 + |a| − ∥X∞∥2

≤ sup
|a|>A

2 |a| |EX∞ − EXn|+
∣∣∣E |Xn|2 − E |X∞|2 − C0

∣∣∣
2 |a| −A

≤ sup
|a|>A

2 |EX∞ − EXn|+

∣∣∣E |Xn|2 − E |X∞|2 − C0

∣∣∣
A

n→+∞−−−−−→ 0 (2.4.11)

Hence, (2.4.9) and (2.4.11) imply that

sup
a∈Rd

∣∣∣e2,2
(
µn, (a, a)

)
−
»
e2

2,2
(
µ∞, (a, a)

)
+ C0

∣∣∣ n→+∞−−−−−→ 0.

Let Z : Ω→ R be N (0, 1)-distributed. We define for every n∈ N,

Xn := e
n
2Z− n2

4 . (2.4.12)

For n ≥ 1, let µn denote the probability distribution of Xn. It is obvious that Xn

converges a.s. to X∞ = 0, so that µ∞ = δ0. Moreover, for every p > 0, EXp
n = e

pn2
8 (p−2).

Hence, EXn = e− n2
8 −→ 0 = EX∞ as n → +∞ so that W1(µn, µ∞) → 0 whereas

EX2
n = 1 for every n∈ N.

Hence EX2
n does not converge to EX2

∞ = 0, which entails that µn does not converge
to µ∞ for the Wasserstein distance W2 and thus µn is not a W2-Cauchy sequence. We
first prove (µn)n≥1 is a Cauchy sequence in

(
P2(R),Q2,2

)
. The proof relies on the

following three lemmas.
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Lemma 2.4.3. Let Z : Ω→ R be N (0, 1)-distributed. Then, ∀z > 0, P(Z ≥ z) ≤ e− z2
2

z
√

2π .

Proof. P(Z ≥ z) =
∫ +∞
z

1√
2πe

− x2
2 dx ≤

∫ +∞
z

x
z

1√
2πe

− x2
2 dx = e− z2

2

z
√

2π .

Lemma 2.4.4. Define (Xn) as in (2.4.12), then supK≥0K E(Xn −K)+ → 0 as n →
+∞.

Proof. We have

K E(Xn −K)+ = K

∫ ∞

0
P
(

(Xn −K)+ ≥ u
)
du = K

∫ +∞

0
P(Xn > u+K)du

= K

∫ +∞

K
P(Xn ≥ v)dv = K

∫ +∞

K
P
(
e

n
2Z− n2

4 ≥ v
)
dv

= K

∫ +∞

K
P
(
Z ≥ n

2 + 2
n

ln v
)
dv = K

∫ ∞

lnK
P
(
Z ≥ n

2 + 2
n
u
)
eudu (setting u = ln v).

By Lemma 2.4.3,

P
(
Z ≥ n

2 + 2
n
u
)
≤ 1√

2π
e− 1

2 ( n
2 + 2

n
u)2

n
2 + 2

nu
= 1√

2π
e− n2

8 − 2
n2 u

2−u

n
2 + 2

nu
.

It follows that,

K E(Xn −K)+ ≤ K
∫ ∞

lnK

e− n2
8 − 2

n2 u
2−u

n
2 + 2

nu
eu

du√
2π
≤ Ke− n2

8

n
2 + 2

n lnK

∫ ∞

lnK
e− 2

n2 u
2 du√

2π

= Ke− n2
8

n
2 + 2

n lnK

∫ ∞

2
n

lnK
e− w2

2
n

2
dw√
2π

(by setting w = 2
n
u)

= Ke− n2
8

n
2 + 2

n lnK
n

2 P
(
Z ≥ 2

n
lnK

)
≤ nKe− n2

8

2(n2 + 2
n lnK)

e− 1
2

4
n2 (lnK)2

√
2π 2

n lnK
(by Lemma 2.4.3)

= n

2
√

2π
e− n2

8
Ke− 2

n2 (lnK)2

(1 + 4
n2 lnK) lnK

= n

2
√

2π
e− n2

8
elnK(1− 2

n2 lnK)

(1 + 4
n2 lnK) lnK

. (2.4.13)

Since the function u 7→ u(1− 2
n2u) attains its maximum at u = n2

4 with maximum value
n2

8 , we will discuss the value of K E(Xn −K)+ in the following two cases:

(i) K ≥ eρn2
4 , (ii) 0 ≤ K ≤ eρn2

4 ,

with the same fixed ρ ∈ (0, 1
2) in both (i) and (ii).
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Case (i): If K ≥ eρn2
4 , then lnK ≥ ρn2

4 . It follows that

K E(Xn −K)+ ≤
ne− n2

8

2
√

2π
elnK(1− 2

n2 lnK)

(1 + 4
n2 lnK) lnK

≤ ne− n2
8

2
√

2π
e

n2
8

(1 + 4
n2 × ρn

2

4 )ρn2

4

= 2
n(1 + ρ)ρ

√
2π
→ 0.

Case (ii): If 0 ≤ K ≤ eρn2
4 , then

K E(Xn −K)+ ≤ e
ρ
4n

2
EXn = e

ρ
4n

2 · e− n2
8 = e

1
4 (ρ− 1

2 )n2 n→+∞−−−−−→ 0.

Therefore, supK>0 K E(Xn −K)+
n→+∞−−−−−→ 0.

By Lemma 2.4.2,

sup
a∈Rd

∣∣∣e2,2
(
µn, (a, a)

)
−
»
e2

2,2
(
µ∞, (a, a)

)
+ C0

∣∣∣ n→+∞−−−−−→ 0.

Consequently, it is reasonable to guess that

eN,2(µn, ·)
∥·∥sup−−−−−−→
n→+∞

»
e2
N,2(µ∞, ·) + 1

so that (µn)n∈N is a Cauchy sequence in (P2(Rd),QN,2). Let gN : RN → R+ be defined
by

(a1, . . . , aN ) 7→ gN
(
(a1, . . . , aN )

)
:=
»
e2
N,2

(
µ∞, (a1, . . . , aN )

)
+ 1 =

…
min

1≤i≤N
|ai|2 + 1.

Proposition 2.4.4. For every N ≥ 2,

sup
(a1,...,aN )∈RN

∣∣eN,2(µn, (a1, . . . , aN )
)
− gN

(
(a1, . . . , aN )

)∣∣ n→+∞−−−−−→ 0.

Therefore, (µn)n∈N is a Cauchy sequence in (P2(R),QN,2) by the definition of QN,2.

Proof. We proceed by induction.

� N = 2. Since the functions g2 and e2,2(µn, ·) are symmetric, it is only necessary to
show that

sup
(a,b)∈R2, |a|≤|b|

∣∣e2,2
(
µn, (a, b)

)
− g2(a, b)

∣∣ n→+∞−−−−−→ 0.
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Note that when |a| ≤ |b|, g2(a, b) =
»
|a|2 + 1 = g2(a, a). We discuss now the value of∣∣e2,2

(
µn, (a, b)

)
− g2(a, b)

∣∣ in the following four cases,

(i) 0 ≤ a ≤ b,

(ii) a ≤ 0 ≤ b,
®

(ii, α) a ≤ 0 ≤ b with |a| ≤ 1
2 |b|

(ii, β) a ≤ 0 ≤ b with 1
2 |b| ≤ |a| ≤ |b| ,

(iii) b ≤ 0 ≤ a, with |a| ≤ |b|,

(iv) b ≤ a ≤ 0.

Cases (iii) and (iv): b < 0 and a+b
2 < 0. The random variables Xn are positive so

that |x− a| ≤ |x− b|. Hence e2,2
(
µn, (a, b)

)
= e2,2

(
µn, (a, a)

)
. With a slight abuse of

notation, we will write in what follows (a, b) ∈ (iii) for

(a, b)∈ {(a, b)∈ R2 | b ≤ 0 ≤ a, and |a| ≤ |b|}.

We will adopt the same notation for other cases too. Then for the case (iii) and (iv), it
is obvious by applying Lemma 2.4.2 that

sup
(a,b)∈(iii)∪(iv)

∣∣e2,2
(
µn, (a, b)

)
−g2(a, b)

∣∣ = sup
(a,b)∈(iii)∪(iv)

∣∣e2,2
(
µn, (a, a)

)
−g2(a, a)

∣∣ n→+∞−−−−−→ 0.

Case (i): 0 ≤ a ≤ b. We have

sup
(a,b)∈(i)

∣∣e2,2
(
µn, (a, b)

)
− g2(a, b)

∣∣
≤ sup

(a,b)∈(i)

∣∣e2,2
(
µn, (a, b)

)
− e2,2

(
µn, (a, a)

)∣∣ +
∣∣e2,2

(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(i)

∣∣∣∣…∫
R
|ξ − a|2 ∧ |ξ − b|2 µn(dξ)−

…∫
R
|ξ − a|2 µn(dξ)

∣∣∣∣
+
∣∣e2,2

(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(i)

…∫
R

[
|ξ − a|2 −

(
|ξ − a|2 ∧ |ξ − b|2

)]
µn(dξ) +

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣
(since

∣∣∣√α−√
β
∣∣∣ ≤√

β − α for β > α > 0)

≤ sup
(a,b)∈(i)

…∫
R

(
|ξ − a|2 − |ξ − b|2

)
+
µn(dξ) +

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(i)

 ∫
R

2(b− a)
(
ξ − b+ a

2

)
+
µn(dξ) +

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(i)
2
 ∫

R

b

2

(
ξ − b

2

)
+
µn(dξ) +

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣
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≤ 2
…

sup
K≥0

K E(Xn −K)+ + sup
a∈R

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣ n→+∞−−−−−→ 0.

Case (ii,α): a ≤ 0 ≤ b, with |a| ≤ 1
2 |b|. We have

sup
(a,b)∈(ii,α)

∣∣e2,2
(
µn, (a, b)

)
− g2(a, b)

∣∣
≤ sup

(a,b)∈(ii,α)

∣∣e2,2
(
µn, (a, b)

)
− e2,2

(
µn, (a, a)

)∣∣ +
∣∣e2,2

(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(ii,α)

 ∫
R

2(b− a)
(
ξ − b+ a

2

)
+
µn(dξ) +

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(ii,α)

 ∫
R

3 · b
(
ξ − b

4

)
+
µn(dξ) +

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ 2
√

3 ·
…

sup
K≥0

K E(Xn −K)+ + sup
a∈R

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣ n→+∞−−−−−→ 0.

Case (ii,β): a ≤ 0 ≤ b, with 1
2 |b| ≤ |a| ≤ |b|. One has

sup
(a,b)∈(ii,β)

∣∣e2,2
(
µn, (a, b)

)
− g2(a, b)

∣∣
≤ sup

(a,b)∈(ii,β)

∣∣e2,2
(
µn, (a, b)

)
− e2,2

(
µn, (a, a)

)∣∣ +
∣∣e2,2

(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(ii,β)

∣∣e2
2,2

(
µn, (a, b)

)
− e2

2,2
(
µn, (a, a)

)∣∣
e2,2

(
µn, (a, b)

)
+ e2,2

(
µn, (a, a)

) +
∣∣e2,2

(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(ii,β)

∫
R 2(b− a)

(
ξ − b+a

2
)

+µn(dξ)
∥Xn − a∥2

+ sup
a∈R

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(ii,β)

2(b− a)E
(
Xn − b+a

2
)

+
∥Xn − a∥2

+ sup
a∈R

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣.
As ∥Xn − a∥2 =

(
EX2

n︸︷︷︸
=1

−2aEXn︸ ︷︷ ︸
≥0

+ |a|2
)1/2 ≥

»
1 + |a|2, we have

sup
(a,b)∈(ii,β)

∣∣e2,2
(
µn, (a, b)

)
− g2(a, b)

∣∣
≤ sup

(a,b)∈(ii,β)

2(b+ |a|)E
[
Xn − b+a

2
]

+»
1 + |a|2

+ sup
a∈R

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣
≤ sup

(a,b)∈(ii,β)

4bEXn»
1 + b2

4

+ sup
a∈R

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣.
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≤ 8EXn + sup
a∈R

∣∣e2,2
(
µn, (a, a)

)
− g2(a, a)

∣∣ n→+∞−−−−−→ 0.

� From N to N+1. Assume now that

sup
(a1,...,aN )∈RN

∣∣eN,2(µn, (a1, . . . , aN )
)
− gN (a1, . . . , aN )

∣∣→ 0 as n→ +∞.

Then, for the level N + 1, we assume without loss of generality that |a1| ≤ |a2| ≤ · · · ≤
|aN+1| since gN+1 and eN,2(µn, ·) are symmetric. Under this assumption,

gN+1(a1, . . . , aN+1) = g2(a1, a1) =
»
|a1|2 + 1. (2.4.14)

We discuss now the value of

sup
(a1,...,aN+1)∈RN+1

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− gN+1(a1, . . . , aN+1)

∣∣
in the following cases:

(i) ∃ i∈ {2, . . . , N + 1} such that ai < 0,

(ii) 0 ≤ a1 ≤ a2 ≤ · · · ≤ aN+1,

(iii) a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1,®
(iii, α) a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1, with |a1| ≤ 1

2 |aN+1|
(iii, β) a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1, with |a1| ≥ 1

2 |aN+1|
.

Case (i): ∃ i∈ {2, . . . ,N + 1} such that ai < 0. For every n ≥ 1, Xn is a.s. positive.
Hence, |Xn − a1| ≤ |Xn − ai| a.s. since we assume that |a1| ≤ |a2| ≤ · · · ≤ |aN+1|.
Therefore,

eN+1,2
(
µn, (a1, . . . , aN+1)

)
= eN,2

(
µn, (a1, . . . , ai−1, ai+1, . . . , aN+1)

)
.

It follows from (2.4.14) that

sup
(a1,...,aN+1)∈RN+1

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− gN+1(a1, . . . , aN+1)

∣∣
= sup

(a1,...,ai−1,ai+1,...,aN+1)∈RN

∣∣eN,2(µn, (a1, . . . , ai−1, ai+1, . . . , aN+1)
)

− gN (a1, . . . , ai−1, ai+1, . . . , aN+1)
∣∣,

which converges to 0 as n→ +∞ owing to the assumption on the level N .
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Case (ii): 0 ≤ a1 ≤ a2 ≤ · · · ≤ aN+1.

sup
0≤a1≤a2≤···≤aN+1

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− gN+1(a1, . . . , aN+1)

∣∣
≤ sup

0≤a1≤a2≤···≤aN+1

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− eN,2

(
µn, (a1, . . . , aN )

)∣∣
+ sup

0≤a1≤a2≤···≤aN+1

∣∣eN,2(µn, (a1, . . . , aN )
)
− gN (a1, . . . , aN )

∣∣. (2.4.15)

The second term on the right hand side of (2.4.15) converges to 0 as n→ +∞ owing to
the assumption on the level N .

For the first term on the right hand side of (2.4.15), we have

sup
0≤a1≤a2≤···≤aN+1

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− eN,2

(
µn, (a1, . . . , aN )

)∣∣
= sup

0≤a1≤a2≤···≤aN+1

 ∫
R

min
1≤i≤N

|ξ − ai|2 µn(dξ)

−
 ∫

R

[
min

1≤i≤N
|ξ − a|2

]
∧ |ξ − aN+1|2 µn(dξ)

≤ sup
0≤a1≤a2≤···≤aN+1

 ∫
R

min
1≤i≤N

|ξ − ai|2 −
[

min
1≤i≤N

|ξ − ai|2
]
∧ |ξ − aN+1|2 µn(dξ)

= sup
0≤a1≤a2≤···≤aN+1

 ∫
R

(
min

1≤i≤N
|ξ − ai|2 − |ξ − aN+1|2

)
+µn(dξ)

≤ sup
0≤a1≤a2≤···≤aN+1

…∫
R

(
|ξ − a1|2 − |ξ − aN+1|2

)
+µn(dξ)

= sup
0≤a1≤a2≤···≤aN+1

…∫
R

2(aN+1 − a1)
(
ξ − a1 + aN+1

2
)

+µn(dξ)

≤ sup
0≤a1≤a2≤···≤aN+1

…∫
R

2 · aN+1
(
ξ − aN+1

2
)

+µn(dξ)

≤ 2 ·
…

sup
K≥0

K E(Xn −K)+
n→+∞−−−−−→ 0.

Case (iii, α): a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1 with |a1| ≤ 1
2 |aN+1|.

sup
(a1,...,aN+1)∈(iii,α)

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− gN+1(a1, . . . , aN+1)

∣∣
≤ sup

(a1,...,aN+1)∈(iii,α)

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− eN,2

(
µn, (a1, . . . , aN )

)∣∣
+ sup

(a1,...,aN+1)∈(iii,α)

∣∣eN,2(µn, (a1, . . . , aN )
)
− gN (a1, . . . , aN )

∣∣. (2.4.16)
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Like in Case (ii), the second term on the right hand side of (2.4.16) converges to 0 as
n→ +∞. For the first term of the right hand side of (2.4.16), we have

sup
(a1,...,aN+1)∈(iii,α)

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− eN,2

(
µn, (a1, . . . , aN )

)∣∣
≤ sup

(a1,...,aN+1)∈(iii,α)

…∫
R

2(aN+1 − a1)
(
ξ − a1 + aN+1

2
)

+µn(dξ)

≤ sup
(a1,...,aN+1)∈(iii,α)

…∫
R

3 · aN+1
(
ξ − aN+1

4
)

+µn(dξ)

≤ 2
√

3 ·
…

sup
K≥0

K E(Xn −K)+ −→ 0.

Case (iii, β): a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1 with |a1| ≥ 1
2 |aN+1| .

Since we assume |a1| ≤ |a2| ≤ · · · ≤ |aN+1|, then for any i∈ {2, . . . , N + 1}, we have
1
2 |ai| ≤ |a1| ≤ |ai|. It follows that

sup
(a1,...,aN+1)∈(iii,β)

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− gN+1(a1, . . . , aN+1)

∣∣
≤ sup

(a1,...,aN+1)∈(iii,β)

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− e2,2

(
µn, (a1, a1)

)∣∣
+ sup
a1∈R

∣∣e2,2
(
µn, (a1, a1)

)
− gN (a1, a1)

∣∣. (2.4.17)

The second part of (2.4.17), sup
a1∈R

∣∣e2,2
(
µn, (a1, a1)

)
− gN (a1, a1)

∣∣ converges to 0 as

n→ +∞ owing to Lemma 2.4.2. Then for the first part of (2.4.17), we have

sup
(a1,...,aN+1)∈(iii,β)

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− e2,2

(
µn, (a1, a1)

)∣∣
= sup

(a1,...,aN+1)∈(iii,β)

e2
2,2

(
µn, (a1, a1)

)
− e2

N+1,2
(
µn, (a1, . . . , aN+1)

)
eN+1,2

(
µn, (a1, . . . , aN+1)

)
+ e2,2

(
µn, (a1, a1)

)
≤ sup

(a1,...,aN+1)∈(iii,β)

∫
R |ξ − a1|2 −min1≤i≤N+1 |ξ − ai|2 µn(dξ)

∥Xn − a1∥2

≤ sup
(a1,...,aN+1)∈(iii,β)

∫
R
(
|ξ − a1|2 −min2≤i≤N+1 |ξ − ai|2

)
+µn(dξ)

∥Xn − a1∥2

≤ sup
(a1,...,aN+1)∈(iii,β)

1
∥Xn − a1∥2

[N+1∑
i=2

∫
R

(
|ξ − a1|2 − |ξ − ai|2

)
+µn(dξ)

]
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Since a1 < 0, ∥Xn − a1∥2 =
(
EX2

n − 2a1EXn + |a1|2
)1/2 ≥

»
1 + |a1|2. Therefore,

∫
R
(
|ξ − a1|2 − |ξ − ai|2

)
+µn(dξ)

∥Xn − a1∥2
=

∫
R 2(ai − a1)

(
ξ − ai+a1

2
)

+µn(dξ)
∥Xn − a1∥2

≤ 4aiEXn»
1 + |a1|2

≤ 4aiEXn
1
2ai

= 8EXn.

for i∈ {2, . . . , N + 1}. Consequently,

sup
(a1,...,aN+1)∈(iii,β)

∣∣eN+1,2
(
µn, (a1, . . . , aN+1)

)
− e2,2

(
µn, (a1, a1)

)∣∣ ≤ 8N EXn = 8Ne−n2/8 −→ 0.

This completes the proof.

Proof of Theorem 2.4.1. Let µn be the probability distribution of Xn defined in (2.4.12).
If for some N ≥ 2,

(
P2(R),QN,2

)
were complete, then there exists a probability mea-

sure µ̃ in P2(R) such that QN,2(µn, µ̃) −→ 0. Then, W2(µn, µ̃) −→ 0 by applying
Proposition 2.4.2, which creates a contradiction.

Remark 2.4.1. The extension of this result to a Hilbert or simply multidimensional
setting, although likely, is not straightforward.

2.5 Appendix: some examples of c(d, | · |r)

Proof of Proposition 2.2.4. (i) is obvious.
(ii) c(2, | · |1) = 2 is obvious (see Figure 2.1). Now we prove that c(2, | · |r) = 3 for every
r ∈ (1,+∞).

We choose a1 = (0, 1), a2 =
(
(1− 2−r) 1

r ,−1
2
)

and a3 =
(
− (1− 2−r) 1

r ,−1
2
)
. We will

first show that S|·|r (0, 1) ⊂ ⋃
1≤i≤3 B̄|·|r (ai, 1).

Let (x, y) be any point on S|·|r (0, 1), then
∣∣x∣∣r +

∣∣y∣∣r = 1.

• If 1
2 ≤ y ≤ 1, then (1− y)r ≤ yr so that∣∣(x, y)− a1

∣∣r
r

=
∣∣x∣∣r + (1− y)r = 1− yr + (1− y)r ≤ 1,

that is, (x, y)∈ B̄|·|r (a1, 1).

• If −1 ≤ y ≤ 1
2 and x ≥ 0, then

∣∣(x, y)− a2
∣∣r
r

=
∣∣x− (1− 2−r)

1
r

∣∣r +
∣∣y + 1

2
∣∣r =

∣∣(1− ∣∣y∣∣r) 1
r − (1− 2−r)

1
r

∣∣r +
∣∣∣y + 1

2

∣∣∣r
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≤
∣∣|y|r − 2−r∣∣ +

∣∣y + 1
2
∣∣r,

the last inequality is due to the fact that the function u 7→ u− 1
r is 1

r -Hölder. As
r ≥ 1, the function y 7→

∣∣|y|r− 2−r∣∣+
∣∣y+ 1

2
∣∣r is convex over [−1, 1

2 ]. Consequently,
it attains its maximum either at −1 or at 1

2 . Hence,
∣∣(x, y)−a2

∣∣r
r

is upper bounded
by 1 since

if y = −1,
∣∣∣∣y∣∣r − 2−r∣∣ +

∣∣y + 1
2
∣∣r = 1− 2−r + 2−r = 1,

if y = 1
2 ,

∣∣∣∣∣y∣∣r − 2−r
∣∣∣ +

∣∣y + 1
2
∣∣r =

∣∣2−r − 2−r∣∣ + 1r = 1.

This implies that (x, y)∈ B̄|·|r (a2, 1).

• If −1 ≤ y ≤ 1
2 and x ≤ 0, then (x, y)∈ B̄|·|r(a3, 1) by the symmetry of the unit

sphere.

Next, we will show c(2, | · |r) > 2 for every 1 < r < +∞. Let a1 and a2 denote the two
centers of balls on the sphere S|·|(0, 1). Since the ℓr-ball is centrally symmetric with
respect to (0, 0), we fix a1 = (x, y) such that x ∈ [(1

2) 1
r , 1], y ∈ [0, (1

2) 1
r ] and xr + yr = 1.

We first prove that if r > 1, x ∈ [(1
2) 1

r , 1], y ∈ (0, (1
2) 1

r ] s.t. xr + yr = 1, then
(x+ y)r > 1. Let q = r − 1, then q > 0 and

(x+ y)r = (x+ y)1+q = (x+ y)(x+ y)q = x(x+ y)q + y(x+ y)q

> xxq + yyq = xr + yr = 1.

• Case 1. We choose a2 such that a2 is centrally symmetric to a1 with respect to
the center (0, 0), i.e. a2 = (−x,−y).

We prove z1 = (y,−x) /∈ ∪i=1,2B̄|·|r(ai, 1) and z2 = (−y, x) /∈ ∪i=1,2B̄|·|r(ai, 1). In
fact, if y = 0, then

∣∣a1 − z1
∣∣
r

=
∣∣a2 − z1

∣∣
r

= 2 > 1. If y > 0, then∣∣a1 − z1
∣∣r
r

=
∣∣a2 − z1

∣∣r
r

=
∣∣a1 − z2

∣∣r
r

=
∣∣a2 − z2

∣∣r
r

= (x+ y)r + (x− y)r

≥ (x+ y)r > 1.

• Case 2. The point a2 is not centrally symmetric to a1.

Let Ha1 := {η = (η1, η2)∈ R2 s.t. x · η2 = y · η1}, which is the straight line (with
respect to the Euclidean distance) across the origin and a1. Then between z1 and
z2, there exists at least one point which is not in the same side of Ha1 as a2, and
this point can not be covered by ∪i=1,2B̄|·|r (ai, 1).

Figure 2.2 illustrates that c(2, | · |r) = 3 when r = 3.
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Figure 2.1 a1 = (− 1
2 , 1

2 ), a2 = ( 1
2 , − 1

2 ),
then S|·|1 (0, 1) ⊂

⋃
i=1,2 B̄|·|1 (ai, 1)

Figure 2.2 c(2, | · |3) = 3

(iii) Let a1 = (−1, 0, . . . , 0) and a2 = (1, 0, . . . , 0). We will show that S|·|∞(0, 1) ⊂⋃
i=1,2 B̄|·|∞(ai, 1).

Let x = (x1, . . . , xd)∈ S|·|∞(0, 1). There exists i0 such that max1≤i≤d |xi| ≤ |xi0 | = 1.

• If i0 = 1, and x1 = −1, then
∣∣x− a1

∣∣
∞ =

∣∣x1 + 1
∣∣ ∨maxi={2,...,d}

∣∣xi∣∣ ≤ 1, that is,
x∈ B̄|·|∞(a1, 1).

• If i0 = 1, and x1 = 1, then
∣∣x − a2

∣∣
∞ =

∣∣x1 − 1
∣∣ ∨maxi={2,...,d}

∣∣xi∣∣ ≤ 1, that is,
x∈ B̄|·|∞(a2, 1).

• If i0 ≥ 2, and x1 ≤ 0, then
∣∣x− a1

∣∣
∞ =

∣∣x1 + 1
∣∣ ∨ 1 ≤ 1, that is, x∈ B̄|·|∞(a1, 1).
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• If i0 ≥ 2, and x1 ≥ 0, then
∣∣x− a2

∣∣
∞ =

∣∣x1 − 1
∣∣ ∨ 1 ≤ 1, that is, x∈ B̄|·|∞(a2, 1).

Consequently, we conclude that S|·|∞(0, 1) ⊂ ⋃
i=1,2 B̄|·|∞(ai, 1) and c(d, | · |∞) > 1 is

obvious.

(iv) Let ai = (0, . . . , 1, . . . , 0) - the ith coordinate of ai is equal to 1 and the others equal
to 0. We will show that S|·|r (0, 1) ⊂ ⋃d

i=1

(
B̄|·|r (ai, 1) ∪ B̄|·|r (−ai, 1)

)
.

For any x = (x1, . . . , xd) ∈ S|·|r(0, 1), then there exists i0 ∈ {1, . . . , d} such that∣∣xi0∣∣ ≥ 1
2 . Otherwise 1 =

∑
1≤i≤d

∣∣xi∣∣r < d× 2−r ≤ 1, which yields a contradiction.

• If xi0 ≥ 1
2 , then

∣∣x− ai0∣∣r = (1− xi0)r + ∑
i ̸=i0

∣∣xi∣∣r = (1− xi0)r + 1− (xi0)r. As
xi0 ≤ 1

2 , we have (1 − xi0)r − (xi0)r ≤ 0, so that
∣∣x − ai0∣∣r ≤ 1, which implies that

x∈ B̄|·|r (ai0 , 1).

• If xi0 ≤ −1
2 , one can similarly prove that x∈ B̄|·|r (−ai0 , 1).

Consequently, we can conclude that S|·|r (0, 1) ⊂ ⋃d
i=1

(
B̄|·|r (ai, 1)∪B̄|·|r (−ai, 1)

)
.





Chapter 3

Convergence Rate of the Optimal
Quantizers and Application to
the Clustering Performance of
the Empirical Measure

This chapter corresponds to the arXiv preprint Liu and Pagès (2018), which is a joint
work with Gilles Pagès.

Abstract: We study the convergence rate of optimal quantization for a probability
measure sequence (µn)n∈N∗ on Rd which converges in the Wasserstein distance in two
aspects: the first one is the convergence rate of optimal quantizer x(n) ∈ (Rd)K of µn at
level K; the other one is the convergence rate of the distortion function valued at x(n),
called the “performance” of x(n). Moreover, we will study the mean performance of the
optimal quantizer of the empirical measure of a distribution µ with finite second moment
but possibly unbounded support. As an application, we show that the mean performance
of the quantization of the empirical measure of the multidimensional normal distribution
N (m,Σ) and of distributions with hyper-exponential tails behave like O( logn√

n
). This

extends the results from Biau et al. (2008) obtained for compactly supported distribution.
We also derive a bound which is sharper in the quantization level K but suboptimal in
n by applying results from Fournier and Guillin (2015).

Keyword: Clustering performance, Convergence rate of quantizers, Distortion
function, Empirical measure, Optimal quantization.
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3.1 Introduction

Let |·| denote the Euclidean norm on Rd induced by the canonical inner product
⟨·|·⟩ and the distance between a point ξ and a set A in Rd is defined by d(ξ, A) =
mina∈A |ξ − a|.

For p ∈ [1,+∞), let Pp(Rd) denote the set of all probability measures on Rd with
a finite pth-moment. Let X be an Rd-valued random variable defined on a probability
space (Ω,A,P) with probability distribution µ ∈ P2(Rd). The (quadratic) quantization
procedure of µ (or of X) at level K ∈ N∗ consists in finding a discrete approximate
quantizer x = (x1, ..., xK) ∈

(
Rd

)K such that its quantization error

eK,µ(x) :=
[
E min

1≤i≤K
|X − xi|2

]1/2

achieves the optimal quantization error e∗
K,µ (or written e∗

K,X) for the distribution µ at
level K, defined as follows,

e∗
K,µ = inf

y=(y1,...,yK)∈(Rd)K

[
E min

1≤i≤K
|X − yi|2

] 1
2 = inf

y=(y1,...,yK)∈(Rd)K

[ ∫
Rd

min
1≤i≤K

|ξ − yi|2 µ(dξ)
] 1

2
.

(3.1.1)
If eK,µ(x) = e∗

K,µ, we call x an optimal quantizer (or called an optimal cluster center) of
X (or of µ) at level K(1). The function x ∈

(
Rd

)K 7→ eK,µ(x) is called the quantization
error function. We denote by GK(µ) the set of all optimal quantizers at level K of µ.

The distortion function is also often used to describe the quantization error of a
quantizer x ∈ (Rd)K , defined as follows,

Definition 3.1.1 (Distortion function). Let K ∈ N∗ be the quantization level. Let X be
an Rd-valued random variable with probability distribution µ ∈ P2(Rd). The (quadratic)
distortion function DK,µ of µ at level K is defined on (Rd)K → R+ by,

x = (x1, ..., xK) 7→ DK,µ(x) = E min
1≤k≤K

|X − xk|2 =
∫
Rd

min
1≤i≤K

|ξ − xi|2 µ(dξ). (3.1.2)

(1) In many references, the quantizer at level K is defined by a set of points Γ ⊂ Rd with its cardinality
card(Γ)≤ K and the quadratic quantization error function is defined by eK,µ(Γ) :=

[
E d(X, Γ)2]1/2.

However, for every Γ = {x1, ..., xk′ } with k′ ≤ K, one can always find a K-tuple xΓ ∈ (Rd)K (by
repeating some elements in Γ) such that eK,µ(Γ) = eK,µ(xΓ). For example, if Γ = {x1, ..., xK−2}
with card(Γ) = K − 2 ≥ 1 (the xi are pointwise distinct), one may set xΓ = (x1, x1, x1, x2, ..., xK−2)
or (x1, x2, x1, x2, x3..., xK−2) among many other possibilities.

In Graf and Luschgy (2000)[Theorem 4.12], the authors have proved that if the cardinality of
the support of µ card

(
supp(µ)

)
≥ K, an optimal quantizer Γ∗ at quantization level K satisfies

card
(
supp(Γ∗)

)
= K. Hence, infΓ⊂Rd, card(Γ)≤K eK,µ(Γ) = infx∈(Rd)K eK,µ(x). Therefore, in this

paper, with a slight abuse of notation, we will mostly use x ∈ (Rd)K but also use (in Section 3.1.1)
Γ ⊂ Rd with card(Γ) ≤ K to represent a quantizer at level K.
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It is clear that for any quantizer x ∈ (Rd)K , DK,µ(x) = e2
K,µ(x). Hence, if

card
(
supp(µ)

)
≥ K, GK(µ) = argminx∈(Rd)KDK,µ. Sometimes we withdraw the sub-

script K of DK,µ if the quantization level K is fixed in the context.

Let µ, ν ∈ Pp(Rd). Let Π(µ, ν) denote the set of all probability measures on (Rd ×
Rd, Bor(Rd)⊗2) with marginals µ and ν. For p ≥ 1, the Lp-Wasserstein distance Wp on
Pp(Rd) is defined by

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
Rd×Rd

d(x, y)pπ(dx, dy)
) 1

p

= inf
{[

E |X − Y |p
] 1

p
, X, Y : (Ω,A,P)→ (Rd, Bor(Rd)) with PX = µ,PY = ν

}
.

(3.1.3)

Pp(Rd) equipped with Wasserstein distance Wp is a separable and complete space (see
Bolley (2008)). If µ, ν ∈ Pp(Rd), then for any q ≤ p, Wq(µ, ν) ≤ Wp(µ, ν).

The target measure µ for the optimal quantization is sometimes unknown. In this
case, in order to obtain the optimal quantizer of µ, we will implement the optimal
quantization to a known distribution sequence µn, n ∈ N∗ which converges (in the
Wasserstein distance) to µ and search the limiting point of optimal quantizers of µn.
For n ∈ N∗, let x(n) denote the optimal quantizer of µn. The consistency of x(n),
i.e. d

(
x(n), GK(µ)

) n→+∞−−−−−→ 0, has been proved by D. Pollard in Pollard (1982b)[see
Theorem 9]. Therefore, a further question is, at which rate the optimal quantizer x(n) of
µn converges to an optimal quantizer x of µ?

In the literature, there are two perspectives to study the convergence rate of optimal
quantizers:

(i) The convergence rate of d
(
xn, GK(µ)

)
;

(ii) The convergence rate of the distortion function of µ valued at x(n):

DK,µ(x(n))− inf
x∈(Rd)K

DK,µ(x).

The latter quantity is also called the “quantization performance” (performance in short)
at x(n) since this value describes how close between the optimal quantization error of µ
and the quantization error of x(n), considered as a quantizer for µ (even x(n) is obviously
not “optimal” for µ).

A typical example of what is described above is the quantization of the empirical mea-
sure. Let X1, ..., Xn, ... be i.i.d Rd-valued observations of X with a unknown probability
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distribution µ, then the empirical measure µωn is defined by:

µωn = 1
n

n∑
i=1

δXi(ω), (3.1.4)

where δa denotes the Dirac mass at a. The convergence of empirical measureWp(µωn , µ) a.s.−−→
0 and EW2(µωn , µ) n→+∞−−−−−→ 0 have been proved in many reference, for example Pollard
(1982b)[see Theorem 7] and Fournier and Guillin (2015)[see Theorem 1] so that we
have the consistency for the optimal quantizers x(n),ω of µωn . Moreover, most references
about the convergence rate result for the optimal quantizers are concerning the empirical
measure as far as we know: A first example is Pollard (1982a). In this paper, the author
has proved that if x denotes the unique limiting point of x(n),ω, the convergence rate
(convergence in law) of

∣∣∣x(n),ω − x
∣∣∣ is O(n−1/2) under appropriate conditions. For the

second perspective, it is proved in a recent work Biau et al. (2008) that if µ has a support
contained in BR, where BR denotes the ball in Rd centered at 0 with radius R, then
EDK,µ(x(n),ω)− infx∈(Rd)K DK,µ(x) ≤ 12K·R2

√
n

.

In this paper, we will generalize these two precedent works.

In Section 3.2, we first establish a non-asymptotic upper bound for the convergence
rate of the performance DK,µ∞(x(n))− infx∈(Rd)K DK,µ∞(x) for any probability distri-
bution sequence µn converging in L2-Wasserstein distance to µ∞. We obtain for every
n ∈ N∗,

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) ≤ 4e∗
K,µ∞W2(µn, µ∞) + 4W2

2 (µn, µ∞). (3.1.5)

Moreover, if DK,µ∞ is twice differentiable on

FK :=
{
x = (x1, ..., xK) ∈ (Rd)K

∣∣ xi ̸= xj , if i ̸= j
}

(3.1.6)

and if the Hessian matrix HDK,µ∞ of DK,µ∞ is positive definite in the neighboorhood
of every optimal quantizer x(∞) ∈ GK(µ∞) having the eigenvalues lower bounded by a
λ∗ > 0, then for n large enough,

d
(
x(n), GK(µ∞)

)2 ≤ 8
λ∗ e

∗
K,µ∞ · W2(µn, µ∞) + 8

λ∗ · W
2
2 (µn, µ∞).

Several discussions around the Hessian matrix HDK,µ
of the distortion function

DK,µ are established in Section 3.3. If µ ∈ P2(Rd) with card
(
supp(µ)

)
≥ K and

if µ is absolutely continuous with respect to Lebesgue measure having a continuous
density function f , we prove in Section 3.3.1 that its distortion function DK,µ is twice
differentiable in every x ∈ FK and give the exact formula of Hessian matrix. Moreover,
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we also discuss several sufficient and necessary conditions for the positive definiteness of
Hessian matrix in dimension d ≥ 2 and in dimension 1.

Section 3.4 is devoted to the convergence rate of optimal quantization of the empirical
measure. Let µωn be the empirical measure of µ defined in (3.1.4) and let x(n),ω denote
the optimal quantizer of µωn. In this section, we focus on the mean performance of
x(n),ω, that is, EDK,µ(x(n),ω)− infx∈(Rd)K DK,µ(x), which is also called the clustering
performance in the field of unsupervised learning. If µ ∈ Pq(Rd) for some q > 2, the
first result of Section 3.4 is Proposition 3.4.1, shown in the following formula, which is a
direct application of the non-asymptotic upper bound (3.1.5) combined with the upper
bound of the convergence rate (convergence in Wasserstein distance) of the empirical
measure from Fournier and Guillin (2015).

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x)

≤ Cd,q,µ,K ×


n−1/4 + n−(q−2)/2q if d < 4 and q ̸= 4
n−1/4( log(1 + n)

)1/2 + n−(q−2)/2q if d = 4 and q ̸= 4
n−1/d + n−(q−2)/2q if d > 4 and q ̸= d/(d− 2)

.

where Cd,q,µ,K is a constant depending on d, q, µ and the quantization level K. Under
certain conditions, this constant Cd,q,µ,K is roughly decreasing as K−1/d (see further
Remark 3.4.1). This result is sharp in K but it suffers from the curse of dimensionality.
Meanwhile, we establish another upper bound for the mean performance in Theorem
3.4.2, which is sharper in n, free from the curse of dimensionality but increasing faster
than linearly in K. The main aim of this theorem is to generalize the mean performance
result for the empirical measure of a distribution µ with bounded support established
in Biau et al. (2008) to any distributions µ having simply a finite second moment. We
obtain

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 2K√
n

[
r2

2n + ρK(µ)2 + 2r1
(
r2n + ρK(µ)

)]
, (3.1.7)

where rn :=
∥∥max1≤i≤n |Xi|

∥∥
2 and ρK(µ) is the maximum radius of L2(µ)-optimal

quantizers, defined by

ρK(µ) := max
{

max
1≤k≤K

|x∗
k| , (x∗

1, ..., x
∗
K) is an optimal quantizer of µ

}
. (3.1.8)

Especially, we will give a precise upper bound for µ = N (m,Σ), the multidimensionnal
normal distribution

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ Cµ ·
2K√
n

[
1 + logn+ γK logK

(
1 + 2

d

)]
, (3.1.9)
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where lim supK γK = 1 and Cµ = 12 ·
[
1 ∨ log

(
2

∫
Rd exp(1

4 |ξ|
4)µ(dξ)

)]
. If µ = N (0, Id),

Cµ = 12(1 + d
2) · log 2.

We will start our discussion with a brief review on the properties of optimal quantizer
and the distortion function.

3.1.1 Properties of the Optimal quantizer and the Distortion Func-
tion

Let X be an Rd-valued random variable with probability distribution µ such that
µ ∈ P2(Rd) and card

(
supp(µ)

)
≥ K. Let GK(µ) denote the set of all optimal quantizers

at level K of µ and let e∗
K,µ denote the optimal quantization error of µ defined in

(3.1.1). The properties below recall some classical background on optimal quantization
of probability measure.

Proposition 3.1.1. Let K ∈ N∗. Let µ ∈ P2(Rd) and card
(
supp(µ)

)
≥ K.

(i) (Decreasing of K 7→ e∗
K,µ) If K ≥ 2, e∗

K,µ < e∗
K−1, µ.

(ii) (Existence and boundedness of optimal quantizers) The set

G′
K(µ) :=

{
Γx = {x1, ..., xK}

∣∣ x = (x1, ..., xK) ∈ argminDK,µ
}

is nonempty and compact so that ρK(µ) defined in (3.1.8) is finite for any fixed
K. Moreover, if Γ∗ ⊂ Rd is an optimal quantizer of µ, then card(Γ∗) = K. In
particular, if Γ∗ = {x1, ..., xK}, then xΓ∗ := (x1, ..., xK) ∈ argminDK,µ = GK(µ)
and vice versa.

(iii) If µ has a compact support and if the norm |·| on Rd is Euclidean, drived by an
inner product ⟨·|·⟩, then all the optimal quantizers Γ∗ = {x1, ..., xK} are contained
in the closure of convex hull of supp(µ), denoted by Hµ := conv

(
supp(µ)

)
.

For the proof of Proposition 3.1.1-(i) and (ii), we refer to Graf and Luschgy (2000)[see
Theorem 4.12] and for the proof of (iii) to Appendix A.

Theorem 3.1.1. (Non-asymptotic Zador’s theorem) Let η > 0. If µ ∈ P2+η, then for
every quantization level K, there exists a constant Cd,η ∈ (0,+∞) which depends only
on d and η such that

e∗
K,µ ≤ Cd,η · σ2+η(µ)K−1/d, (3.1.10)

where for r ∈ (0,+∞), σr(µ) = mina∈Rd

[ ∫
Rd |ξ − a|r µ(dξ)

]1/r.
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For the proof of non-asymptotic Zador’s theorem, we refer to Luschgy and Pagès
(2008) and Pagès (2018)[see Theorem 5.2]. Now we introduce some properties of ρK(µ)
defined in (3.1.8). When µ has an unbounded support, we know from Pagès and Sagna
(2012) that limK ρK(µ) = +∞. The same paper also gives an asymptotic upper bound of
ρK when µ has a polynomial tail or hyper-exponential tail. We first give the definitions
of different tails of probability measure,

Definition 3.1.2. Let µ ∈ P2(Rd) be absolutely continuous with respect to Lebesgue
measure λd on Rd and let f denote its density function.

(i) A distribution µ has a k-th radial-controlled tail if there exists A > 0 and a
continuous and decreasing function g : R+ → R+ such that

∀ξ ∈ Rd, |ξ| ≥ A, f(ξ) ≤ g(|ξ|) and
∫
R+
xkg(x)dx < +∞.

(ii) A distribution µ has a c-th polynomial tail if there exists τ > 0, β ∈ R, c > d and
A > 0 such that ∀ξ ∈ Rd, |ξ| ≥ A =⇒ f(ξ) = τ

|ξ|c (log |ξ|)β.

(iii) A distribution µ has a (ϑ, κ)-hyper-exponential tail if there exists τ > 0, κ, ϑ >
0, c > −d and A > 0 such that ∀ξ ∈ Rd, |ξ| ≥ A =⇒ f(ξ) = τ |ξ|c e−ϑ|ξ|κ.

The purpose of the definition of radial-controlled tail is to control the convergence
rate of the density function f(x) to 0 when x converges in every direction to infinity.
Remark that the c-th polynomial tail with c > k + 1 and the hyper-exponential tail are
sufficient conditions to k-th radial-controlled tail. A typical example of hyper-exponential
tail is the multidimensional normal distribution N (m,Σ).

Theorem 3.1.2. (Pagès and Sagna (2012)[see Theorem 1.2]) Assume that µ = f · λd

(i) Polynomial tail. For p ≥ 2, if µ has a c-th polynomial tail with c > d+ p, then

lim
K

log ρK
logK = p+ d

d(c− p− d) . (3.1.11)

(ii) Hyper-exponential tail. If µ has a (ϑ, κ)-hyper-exponential tail, then

lim sup
K

ρK
(logK)1/κ ≤ 2ϑ−1/κ

(
1 + 2

d

)1/κ
. (3.1.12)

Furthermore, if d = 1, limK
ρK

(logK)1/κ =
( 3
ϑ

)1/κ.



86 Convergence Rate of the Optimal Quantizers and Clustering Performance

Quantization theory has a close connection with Voronoï partitions. Let x =
(x1, ..., xK) be a quantizer at level K and let |·| be any norm on Rd. The Voronoï cell
(or Voronoï region) generated by xi is defined by

Vxi(x) =
{
ξ ∈ Rd : |ξ − xi| = min

1≤j≤K
|ξ − xj |

}
, (3.1.13)

and
(
Vxi(x)

)
1≤i≤K is called the Voronoï diagram of Γ, which is a locally finite covering

of Rd. A Borel partition
(
Cxi(x)

)
1≤i≤K is called a Voronoï partition of Rd induced by x

if
∀i ∈ {1, ...,K}, Cxi(x) ⊂ Vxi(x). (3.1.14)

We also define the open Voronoï cell generated by xi by

V o
xi

(x) =
{
ξ ∈ Rd : |ξ − xi| < min

1≤j≤K,j ̸=i
|ξ − xj |

}
. (3.1.15)

As |·| denotes the Euclidean norm on Rd, we know from Graf and Luschgy (2000)[see
Proposition 1.3] that intVxi(x) = V o

xi
(x), where intA denotes the interior of a set A.

Moreover, if we denote by λd the Lebesgue measure on Rd, we have λd
(
∂Vxi(x)

)
= 0,

where ∂A denotes the boundary of A (see Graf and Luschgy (2000)[Theorem 1.5]). If
µ ∈ P2(Rd) and x∗ is an optimal quantizer of µ, even if µ is not absolutely continuous
with the respect of λd, we have µ

(
∂Vxi(x∗)

)
= 0 for all i ∈ {1, ...,K} (see Graf and

Luschgy (2000)[Theorem 4.2]).

For any K-tuple x = (x1, ..., xK) ∈ (Rd)K such that xi ̸= xj , i ≠ j, one can rewrite
the distortion function DK,µ with the definition of Voronoï partition Cxi(x) as follows,

DK,µ(x) =
K∑
i=1

∫
Cxi (x)

|ξ − xi|2 µ(dξ). (3.1.16)

If x∗ = (x∗
1, ..., x

∗
K) ∈ argminDK,µ, we know from Proposition 3.1.1 that x∗

i ̸= x∗
j , i ̸= j

and we have µ
(
∂Vxi(x∗)

)
= 0. In this case, DK,µ is differentiable at x∗ (see Pagès

(2018)[Chapter 5]) and its gradient is given by

∇DK,µ(x∗) = 2
[ ∫

Ci(x∗)
(x∗
i − ξ)µ(dξ)

]
i=1,...,K

. (3.1.17)

For µ, ν ∈ P2(Rd), if we denote by DK,µ the distortion function of µ and DK, ν the
distortion function of ν. Then, for every K ∈ N∗,∥∥∥D1/2

K,µ −D
1/2
K, ν

∥∥∥
sup

:= sup
x∈(Rd)K

∣∣∣D1/2
K,µ(x)−D1/2

K, ν(x)
∣∣∣ ≤ W2(µ, ν), (3.1.18)
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by a simple application of the triangle inequality for the L2−norm (see Graf and Luschgy
(2000) Formula (4.4) and Lemma 3.4). Hence, if (µn)n≥1 is a sequence in P2(Rd)
converging for the W2-distance to µ∞ ∈ P2(Rd), then for every K ∈ N∗∥∥∥D1/2

K,µn
−D1/2

K,µ∞

∥∥∥
sup
≤ W2(µn, µ∞) n→+∞−−−−−→ 0. (3.1.19)

Let µn, n ∈ N∗, µ∞ ∈ P2(R) such that W2(µn, µ∞) n→+∞−−−−−→ 0. For a fixed quanti-
zation level K ∈ N∗, the consistency of optimal quantizers is firstly established by D.
Pollard by using

µK ∈ P(K) :=
{
ν ∈ P2(Rd) such that card

(
supp(ν)

)
≤ K

}
to represent a quantization “quantizer” at level K and µK is called “optimal” for a
probability mesure µ ifW2(µK , µ) = e∗

K,µ(µ). We will annonce differently the consistency
theorem by letting x(n) = (x(n)

1 , ..., x
(n)
K ) ∈ (Rd)K to represent the optimal quantizer of

µn (of course we still call the theorem “Pollard’s Theorem”) and we will give the proof
of Pollard’s Theorem with respect of this representation to Annex B.

Theorem 3.1.3 (Pollard’s Theorem). Let K ∈ N∗ be the quantization level. Let
µn, µ∞ ∈ P2(Rd) such that W2(µn, µ∞) → 0. Assume card

(
supp(µn)

)
≥ K, for n ∈

N∗ ∪ {+∞}. For n ≥ 1, let x(n) =
(
x

(n)
1 , ..., x

(n)
K

)
be a K-optimal quantizer for µn, then

the quantizer sequence (x(n))n≥1 is bounded in Rd and any limiting point of (x(n))n≥1,
denoted by x(∞), is an optimal quantizer of µ∞.

3.2 General case

Let µn, n ∈ N∗, µ∞ ∈ P2(Rd) such that W2(µn, µ∞)→ 0 as n→ 0. Fix a quantization
level K ∈ N∗ through this section. For every n ∈ N∗, let x(n) = (x(n)

1 , ..., x
(n)
K ) ∈

argminx∈(Rd)KDK,µn which is, after Proposition 3.1.1 - (ii), an optimal quantizer of µn
at level K. In this section, we first establish a non-asymptotic upper bound of the
convergence rate for the quantization performance DK,µ∞(x(n))− infx∈(Rd)K DK,µ∞(x).
Then we discuss the convergence rate of d(x(n), GK(µ)).

Theorem 3.2.1 (Non-asymptotic convergence rate for the quantization performance).
Let K ∈ N∗ be the fixed quantization level. For every n ∈ N∗ ∪ {∞}, let µn ∈ P2(Rd)
with card

(
supp(µn)

)
≥ K such that W2(µn, µ∞) → 0 as n → +∞. For every n ∈ N∗,

let x(n) be an optimal quantizer of µn. Then

(i) eK,µ∞(x(n))− e∗
K,µ∞ ≤ 2W2(µn, µ∞)



88 Convergence Rate of the Optimal Quantizers and Clustering Performance

(ii) DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) ≤ 4e∗
K,µ∞W2(µn, µ∞) + 4W2

2 (µn, µ∞),

where e∗
K,µ∞ is the optimal quantization error of µ∞ at level K.

Proof of Theorem 3.2.1. Let x(∞) be an optimal quantizer of µ∞. Remark that we don’t
need to

∣∣∣x(n) − x(∞)
∣∣∣ n→+∞−−−−−→ 0. Then

eK,µ∞(x(n))− e∗
K,µ∞ = eK,µ∞(x(n))− eK,µn(x(n)) + eK,µn(x(n))− eK,µ∞(x(∞))

≤ 2 ∥eK,µ∞ − eK,µn∥sup ≤ 2W2(µn, µ∞), (3.2.1)

where the first inequality is due to the fact that for any µ, ν ∈ P2(Rd) with respective
K-level optimal quantizers xµ and xν , if eK,µ(xµ) ≥ eK,ν(xν), we have

|eK,µ(xµ)− eK,ν(xν)| = eK,µ(xµ)− eK,ν(xν) ≤ eK,µ(xν)− eK,ν(xν) ≤ ∥eK,µ∞ − eK,µn∥sup .

If eK,µ(xµ) ≤ eK,ν(xν), we have the same inequality by the same reasoning(1).

Moreover,

DK,µ∞(x(n))− inf
x∈(Rd)K

DK,µ∞(x) = DK,µ∞(x(n))−DK,µ∞(x(∞))

≤
[
D1/2
K,µ∞

(x(n)) +D1/2
K,µ∞

(x(∞))
](
eK,µ∞(x(n))− eK,µ∞(x(∞))

)
≤ 2

[
D1/2
K,µ∞

(x(n))−D1/2
K,µ∞

(x(∞)) + 2D1/2
K,µ∞

(x(∞))
]
· W2(µn, µ∞)

(
by (3.2.1)

)
≤ 4

[
W2(µn, µ∞) + e∗

K,µ∞

]
· W2(µn, µ∞)

(
by (3.2.1)

)
≤ 4e∗

K,µ∞W2(µn, µ∞) + 4W2
2 (µn, µ∞).

Before we establish the convergence rate of the optimal quantizer sequence x(n), n ∈ N,
we first discuss the differentiability of DK,µ. Let B(x, r) denote the ball centered at
x with radius r. Remark that if x ∈ FK , where FK is defined in (3.1.6), then every
y ∈ B

(
x, 1

3 min1≤i,j≤K,i̸=j |xi − xj |
)

lies still in FK (see Section 3.5.3 for the proof).

Lemma 3.2.1. Let µ ∈ P2(Rd) with card
(
supp(µ)

)
≥ K. If the probability distribution

µ is absolutely continuous with respect to Lebesgue measure and has a continuous density
function f , written by µ(dξ) = f(ξ)λd(dξ), then its distortion function DK,µ is twice
differentiable in every x ∈ FK .

(1) This part of preuve also appears in Linder (2002)[Corollary 4.1].
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The proof of Lemma 3.2.1 is postponed in Section 3.3.1 in which we also give the
exact formula of the Hessian matrix. In the following theorem we show the convergence
rate of the optimal quantizer sequence x(n), n ∈ N∗.

Theorem 3.2.2 (Convergence rate of optimal quantizers). Let K ∈ N∗ be the fixed
quantization level. For every n ∈ N∗ ∪ {∞}, let µn ∈ P2(Rd) with card

(
supp(µn)

)
≥ K

such that W2(µn, µ∞) → 0 as n → +∞. For every n ∈ N∗, let x(n) be an optimal
quantizer of µn and let GK(µ∞) denote the set of all optimal quantizers of µ∞. If

(a) the probability distribution µ∞ is absolutely continuous with respect to Lebesgue
measure λd and has a continuous density function f , written by µ∞(dξ) = f(ξ)λd(dξ),

(b) for every x(∞) ∈ GK(µ∞), the Hessian matrix of DK,µ∞, denoted by HDK,µ∞ , is
positive definite in the neighbourhood of x(∞) having eigenvalues lower bounded by
some λ∗ > 0,

then, for n large enough,

d
(
x(n), GK(µ∞)

)2 ≤ 8
λ∗ e

∗
K,µ∞ · W2(µn, µ∞) + 8

λ∗ · W
2
2 (µn, µ∞).

Remark 3.2.1. (1) Owing to Lemma 3.2.1 and Proposition 3.1.1-(ii), the Condition (a)
in the above theorem implies that the distortion function DK,µ∞ is twice differentiable
in every x(∞) ∈ GK(µ∞) and its neighbourhood so that the use of the Hessian matrix
HD∞ in Condition (b) is permitted. However, the conditions (b) is not obvious to satisfy.
In Section 3.3, we give an exact formula of the Hessian matrix HDK,µ∞ . Thus, one may
obtain the positive definiteness of Hessian matrix HDK,µ∞ (condition (b)) by an explicite
computation or by numerical methods. Moreover, in Section 3.3, we also establish a
sufficient condition for the continuity of every term in the Hessian matrix in dimension
d and several sufficient conditions for the positive definiteness of the Hessian matrix
HDK,µ∞ in the neighbourhood of x(∞) ∈ GK(µ∞) in dimension 1.

(2) If the distribution µ∞ is d-th radial-controlled, a necessary condition of Condition (b)
is card

(
GK(µ∞)

)
< +∞ (we will prove this statement later in Lemma 3.3.3). Thus, if

card
(
GK(µ∞)

)
= +∞, it is better to use the non-asymtotic upper bound of the perfor-

mance (Theorem 3.2.1) as a tool to study the convergence rate of optimal quantization.
A typical example is µ∞ = N (0, Id), the standard multidimensional normal distribution:
it is d-th radial-controlled and any rotation of an optimal quantizer x is still an optimal
quantizer so that card

(
GK(µ∞)

)
= +∞.

Proof of Theorem 3.2.2. Since the quantization level K is fixed throughout the proof,
we will drop the subscripts K and µ of the distortion function DK,µ and we will denote
by Dn (respectively, D∞) the distortion function of µn (resp. of µ∞).
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After Pollard’s theorem in Section 3.1.1, (x(n))n∈N∗ is bounded and any limiting point
of x(n) is in GK(µ∞). We may assume that, up to a subsequence of x(n), still denoted
by x(n), we have x(n) → x(∞) ∈ GK(µ∞). Hence d

(
x(n), GK(µ∞)

)
≤

∣∣∣x(n) − x(∞)
∣∣∣.

By Lemma 3.2.1 and Proposition 3.1.1-(ii), Condition (a) implies that the distortion
function D∞ is twice-differentiable at x(∞). Hence, the Taylor expansion of D∞ at x(∞)

reads:

D∞(x(n)) = D∞(x(∞)) +
〈
∇D∞(x(∞)) | x(n) − x(∞)〉 + 1

2HD∞(ζ(n))(x(n) − x(∞))⊗2,

where HD∞ denotes the Hessian matrix of D∞, ζ(n) lies in the geometric segment
(x(n), x(∞)), and for a matrix A and a vector u, Au⊗2 stands for uTAu.

As x(∞) ∈ GK(µ∞) = argminD∞ and card
(
supp(µ∞)

)
≥ K, one has ∇D∞(x(∞)) =

0 by applying Fermat’s theorem on stationary point. Hence

D∞(x(n))−D∞(x(∞)) = 1
2HD∞(ζ(n))(x(n) − x(∞))⊗2. (3.2.2)

It follows that

HD∞(ζ(n))(x(n) − x(∞))⊗2 = 2
(
D∞(x(n))−D∞(x(∞))

)
≤ 8e∗

K,µ∞W2(µn, µ∞) + 8W2
2 (µn, µ∞). (3.2.3)

By condition (b), HD∞(x) is assumed to be positive definite in the neighbourhood
of all x(∞) ∈ GK(µ∞) having eigenvalues lower bounded by some λ∗. Since ζ(n) lies in
the geometric segment (x(n), x(∞)) and x(n) → x(∞), then there exists an n0(x(∞)) such
that for all n ≥ n0, HD∞(ζ(n)) is a positive definite matrix. It follows that for n ≥ n0,

λ∗
∣∣∣x(n) − x(∞)

∣∣∣2 ≤ HD∞(ζ(n))(x(n) − x(∞))⊗2

≤ 8e∗
K,µ∞W2(µn, µ∞) + 8W2

2 (µn, µ∞).

Thus, one can directly conclude by multiplying 1
λ∗ at each side of the above inequality.

Based on conditions in Theorem 3.2.2, if moreover, we know the exact limit of the
optimal quantizer sequence x(n),we have the following result whose proof is similar to
the proof of Theorem 3.2.2.

Corollary 3.2.1. Let µn, µ∞ ∈ P2(Rd) and W2(µn, µ∞) → 0 as n → +∞. Assume
that card

(
supp(µn)

)
≥ K for every n ∈ N∗ ∪ {∞}. Let x(n) ∈ argmin DK,µn such that

limn x
(n) → x(∞). If the Hessian matrix of DK,µ∞ is a positive definite matrix in the
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neighbourhood of x(∞), then for n large enough∣∣∣x(n) − x(∞)
∣∣∣2 ≤ C(1)

µ∞ · W2(µn, µ∞) + C(2)
µ∞ · W

2
2 (µn, µ∞),

where C(1)
µ∞ and C(2)

µ∞ are constants only depending on µ∞.

3.3 Hessian matrix HDK, µ
of the distortion function DK,µ

Let µ ∈ P2(Rd) with card
(
supp(µ)

)
≥ K and let x∗ be an optimal quantizer of µ at

level K. In Section 3.3.1, we prove Lemma 3.2.1 by giving the exact formula for the
Hessian matrix HDK, µ

of the distortion function DK,µ when µ is absolutely continuous
with the respect of Lebesgue measure λd on Rd, having a continuous density function
f . Moreover, we also give a sufficient condition for the continuity of every term of the
Hessian matrix HDK, µ

and a necessary condition for the positive definitiveness of the
Hessian matrix HDK, µ

(x∗). Next, in Section 3.3.2, we give several sufficient conditions
for the positive definiteness of the Hessian matrix HDK, µ

in the neighbourhood of x∗ in
dimension 1.

3.3.1 Hessian matrix HDK, µ
on Rd

If µ is absolutely continuous with the respect of Lebesgue measure λd on Rd with
the density functionf , DK,µ is differentiable (see Pagès (1998)) and at all point x =
(x1, ..., xK) ∈ FK with

∂DK,µ
∂xi

(x) = 2
∫
Vi(x)

(xi − ξ)f(ξ)λd(dξ), for i = 1, ...,K. (3.3.1)

Now we use Lemma 11 in Fort and Pagès (1995) to compute the Hessian matrix HDK, µ

of DK,µ.

Lemma 3.3.1 (Lemma 11 in Fort and Pagès (1995)). Let φ be a countinous R-valued
function defined on [0, 1]d. For every x ∈ DK :=

{
y ∈

(
[0, 1]d

)K | yi ̸= yj if i ≠ j
}

, let
Φi(x) :=

∫
Vi(x) φ(ω)dω. Then Φi is continuously differentiable on DK and

∀i ̸= j,
∂Φi

∂xj
(x) =

∫
Vi(x)∩Vj(x)

φ(ω)
{1

2
−→n ij
x + 1
|xj − xi|

× (xi + xj
2 − ω)

}
λijx (dω) (3.3.2)

and ∂Φ
∂xi

(x) = −
∑

1≤j≤K,j ̸=i

∂Φj

∂xi
(x), (3.3.3)
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where −→n ij
x := xj−xi

|xj−xi| ,

Mx
ij :=

{
u ∈ Rd | ⟨u− xi + xj

2 | xi − xj⟩ = 0
}

(3.3.4)

and λijx (dω) the Lebesgue measure on Mx
ij.

One can simplify the result of Lemma 3.3.1 as follows,

∀i ̸= j,
∂Φi

∂xj
(x) =

∫
Vi(x)∩Vj(x)

φ(ω)
{1

2
xj − xi
|xj − xi|

+ 1
|xj − xi|

(xi + xj
2 − ω)

}
λijx (dω)

=
∫
Vi(x)∩Vj(x)

φ(ω) 1
|xj − xi|

{xj − xi
2 + xi + xj

2 − ω
}
λijx (dω)

=
∫
Vi(x)∩Vj(x)

φ(ω) 1
|xj − xi|

(xj − ω)λijx (dω). (3.3.5)

Now we prove Lemma 3.2.1 and give the exact formula of the Hessian matrix HDK,µ

in the proof.

Proof of Lemma 3.2.1. Set φi(ξ) = (xi − ξ)f(ξ) and Φi(x) =
∫
Vi(x) φ(ξ)dξ = ∂DK, µ

∂xi
for

i = 1, ...,K. It follows from Lemma 3.3.1 that for j = 1, ...,K and j ̸= i

∂2DK,µ
∂xj∂xi

(x) = 2∂Φi(x)
∂xj

= 2
∫
Vi(x)∩Vj(x)

(xi− ξ)⊗ (xj − ξ) ·
1

|xj − xi|
f(ξ)λijx (dξ), (3.3.6)

and for i = 1, ...,K,

∂2DK, µ

∂x2
i

(x) = ∂Φi(x)
∂xi

= 2
[
µ
(
Vi(x)

)
Id−

∑
i ̸=j

1≤j≤K

∫
Vi(x)∩Vj(x)

(xi−ξ)⊗(xi−ξ)·
1

|xj − xi|
f(ξ)λij

x (dξ)
]
,

(3.3.7)
where in (3.3.6) and (3.3.7), u ⊗ v := [uivj ]1≤i,j≤d for any two vectors u = (u1, ..., ud)
and v = (v1, ..., vd) in Rd.

Next, we show in the following lemma a sufficient condition to the continuity of the
Hessian matrix HDK,µ

in FK so that under this condition, if the Hessian matrix HDK,µ
is

positive definite in x∗, it is also positive definite in the neighbourhood of x∗. The proof
of Lemma 3.3.2 is in Appendix C.

Lemma 3.3.2. Let µ ∈ P2(Rd) be absolutely continuous with the respect to Lebesgue
measure λd on Rd with a continuous density function f . If µ has a d-th radial-controlled
tail, then every element of the Hessian matrix HDK,µ

of the distortion function DK,µ is
a continuous function.
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Under the condition of Lemma 3.3.2, we prove now that Condition (b) in Theorem
3.2.2 implies card

(
GK(µ∞)

)
< +∞.

Lemma 3.3.3. Let µ ∈ P2(Rd) be absolutely continuous with the respect to Lebesgue
measure λd on Rd with a continuous density function f . If µ∞ has a d-th radial-controlled
tail and card

(
GK(µ∞)

)
= +∞, then there exists a point x ∈ GK(µ∞) such that the

Hessian matrix HDK,µ∞ of DK,µ∞ valued at x has an eigenvalue 0.

Remark 3.3.1. If µ∞ satisfies the condtions in Lemma 3.3.3 and if card
(
GK(µ∞)

)
< +∞,

a sufficient condition of Condition (b) in Theorem 3.2.2 is that HDK,µ∞ is positive definite
in every x ∈ GK(µ∞). In this case, one can take λ∗ = minx∈GK(µ∞) λHDK,µ∞

(x) − ε for
a ε > 0, where λA denotes the smallest eigenvalue of a matrix A.

Proof of Lemma 3.3.3. We denote by HD∞ instead of HDK,µ∞ to simplify the notation.
Proposition 3.1.1 implies that GK(µ∞) is a compact set. If card

(
GK(µ∞)

)
= +∞, there

exists x, x(k) ∈ GK(µ∞), k ∈ N∗ such that x(k) → x when k → +∞. Set uk := x(k)−x
|x(k)−x| ,

k ≥ 1, then we have |uk| = 1 for all k ∈ N∗. Hence, there exists a subsequence φ(k) of k
such that uφ(k) converges to some ũ with |ũ| = 1.

The Taylor expansion of DK,µ∞ at x reads:

DK,µ∞(xφ(k)) = DK,µ∞(x) +
〈
∇DK,µ∞(x)

∣∣ xφ(k) − x
〉

+ 1
2HD∞(ζφ(k))(xφ(k) − x)⊗2,

where ζφ(k) lies in the geometric segment (xφ(k), x). Since x, x(k), k ∈ N∗ ∈ GK(µ∞),
then ∇DK,µ∞(x) = 0 and for any k ∈ N∗, DK,µ∞(xφ(k)) = DK,µ∞(x). Hence, for any
k ∈ N∗, HD∞(ζφ(k))(xφ(k) − x)⊗2 = 0. Consequently, for any k ∈ N∗,

HD∞(ζφ(k))
( xφ(k) − x∣∣xφ(k) − x

∣∣)⊗2
= 0.

Thus we have HD∞(x)ũ⊗2 = 0 by letting k → +∞, which implies that HD∞(x) has an
eigenvalue 0.

3.3.2 A criterion for positive definiteness of HD∞(x∗) in 1-dimension

Let X denote a real random variable with distribution µ satisfying µ ∈ P2(R). Assume
that µ is absolutely continuous with the respect of the Lebesgue measure with a continuous
density function f , written by µ(dξ) = f(ξ)dξ. In the one-dimensional case, it is
necessary to point out a sufficient condition for the uniqueness of optimal quantizer. A
probability distribution µ is called strongly unimodal if its density function f satisfies
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that I = {f > 0} is an open (possibly unbounded) interval and log f is concave on I.
Moreover, we also have the uniqueness of optimal quantizer for such distributions.

Lemma 3.3.4. For K ∈ N∗, if µ is strongly unimodal with card
(
supp(µ)

)
≥ K, then

there are only one stationary (then optimal) quantizer of level K.

We refer to Kieffer (1983), Trushkin (1982) and Graf and Luschgy (2000)[see Theorem
5.1] for the proof of Lemma 3.3.4 and for more details.

Let F+
K :=

{
x = (x1, ..., xK) ∈ RK | −∞ < x1 < x2 < ... < xK < +∞

}
. Given

an K-tuple x = (x1, ..., xK) ∈ F+
K , the Voronoi region Vi(x) can be explicitly written:

V1(x) = (−∞, x1+x2
2 ], VK(x) = [xK−1+xK

2 ,+∞) and Vi(x) = [xi−1+xi

2 , xi+xi+1
2 ] for i =

2, ...,K − 1. For all x ∈ F+
K , DK,µ is differentiable at x and from (3.3.1), and

∇DK,µ(x) =
ï∫
Vi(x)

2(xi − ξ)f(ξ)dξ
ò
i=1,...,K

. (3.3.8)

Therefore, one can solve the optimal quantizer x∗ ∈ F+
K from ∇DK,µ(x∗) = 0,

x∗
i =

∫
Vi(x∗) ξf(ξ)dξ
µ
(
Vi(x∗)

) , for i = 1, ...,K. (3.3.9)

For any x ∈ F+
K , the Hessian matrix HDK,µ

of DK,µ at x is a tridiagonal symmetry
matrix and can be calculated as follows,

HDK,µ
(x) =



A1 −B1,2 −B1,2
. . .

−Bi−1,i Ai −Bi−1,i −Bi,i+1 −Bi,i+1
. . .

−BK−1,K AK −BK−1,K

 ,

(3.3.10)
where Ai = 2µ

(
Ci(x)

)
for 1 ≤ i ≤ K and Bi,j = 1

2(xj − xi)f(xi+xj

2 ) for 1 ≤ i < j ≤ K.
Let Fµ be the cumulative distribution function of µ, then

A1 = 2µ
(
C1(x)

)
= 2Fµ

(x1 + x2
2

)
,

Ai = 2µ
(
Ci(x)

)
= 2

[
Fµ

(xi+1 + xi
2

)
− Fµ

(xi−1 + xi
2

)]
, for i = 2, ...,K − 1,

AK = 2µ
(
CK(x)

)
= 2

[
1− Fµ

(xK−1 + xK
2

)]
.

Then the continuity of each term in the matrix HDK,µ
(x) can be directly obtained by

the continuity of Fµ and f .
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For 1 ≤ i ≤ K, we define Li(x) :=
K∑
j=1

∂2DK,µ
∂xi∂xj

(x). The following proposition gives

sufficient conditions to obtain the positive definiteness of HDK,µ
(x∗).

Proposition 3.3.1. Any of the following two conditions implies the positive definiteness
of HDK,µ

(x∗),

(i) µ is the uniform distribution,

(ii) f is differentiable and log f is strictly concave.

In particular, (ii) also implies that Li(x∗) > 0, i = 1, ...,K.

Remark that, under the conditions of Proposition 3.3.1, µ is strongly unimodal so
that, if x∗ = (x∗

1, ..., x
∗
K) ∈ F+

K ∩ argminDK,µ, then Γ∗ = {x1, ..., xK} is the unique
optimal quantizer for µ at level K (viewed as a set). Proposition 3.3.1 is proved in
Appendix D. The conditions in Proposition 3.3.1 directly imply the convergence rate
results.

Theorem 3.3.1. Let µn, µ∞ ∈ P2(R) such that W2(µn, µ∞) → 0. Let x(n) be the
optimal quantizer of µn which converges to x(∞). Suppose µ∞ is absolutely continuous
with the respect of Lebesgue measure, written µ∞(dξ) = f(ξ)dξ. Any one of the following
conditions implies the existence of a constant Cµ∞ only depending on µ∞ such that∣∣∣x(n) − x(∞)

∣∣∣2 ≤ Cµ∞ · W2(µn, µ∞).

(i) µ∞ is the uniform distribution,

(ii) f is differentiable and log f is strictly concave.

Proof. Let DK,µ∞ denote the distortion function of µ∞ and let HD∞ denote the Hessian
matrix of DK,µ∞ .

(i) Let fk(x) be the k-th leading principal minor of HD∞(x) defined in (3.5.11), then
fk(x), k = 1, ...,K, are continuous functions in x since every element in this matrix is
continuous. Proposition 3.3.1 implies fk(x(∞)) > 0, thus there exists r > 0 such that for
every x ∈ B(x(∞), r), fk(x(∞)) > 0 so that HD∞(x) is positive definite. What remains
can be directly proved by Corollary 3.2.1.

(ii) Li(x) :=
K∑
j=1

∂2DK,µ∞

∂xi∂xj
(x) is continuous on x and Proposition 3.3.1 implies that

Li(x(∞)) > 0. Hence, there exists r > 0 such that ∀x ∈ B(x(∞), r), Li(x) > 0. From
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(3.5.11), one can remark that the i-th diagonal elements in HD∞(x) is always larger than
Li(x) for any x ∈ RK , then after Gershgorin Circle theorem, we have HD∞(x) is positive
definite for every x ∈ B(x(∞), r). What remains can be directly proved by Corollary
3.2.1.

3.4 Empirical measure case

Let µ ∈ P2+ε(Rd) for some ε > 0 and card
(
supp(µ)

)
≥ K. Let X be a random variable

with distribution µ and let (Xn)n≥1 be a sequence of independent identically distributed
Rd-valued random variables with probability distribution µ. The empirical measure is
defined for every n ∈ N∗ by

µωn := 1
n

n∑
i=1

δXi(ω), ω ∈ Ω, (3.4.1)

where δa is the Dirac measure on a. Let K ∈ N∗ be the quantization level . For n ≥ 1,
let x(n),ω be an optimal quantizer of µωn. The superscript ω is to emphasize that both
µωn and x(n),ω are random and we will drop ω when there is no ambiguity. We will cite
two results of the convergence of W2(µωn , µ) among so many researches in this topic:
the a.s. convergence in Pollard (1982b)[see Theorem 7] studied by D. Pollard, and the
Lp-convergence rate of Wp(µωn , µ) studied in Fournier and Guillin (2015).

Theorem 3.4.1. (Fournier and Guillin (2015)[see Theorem 1]) Let p > 0 and let
µ ∈ Pq(Rd) for some q > p. Let µωn denote the empirical measure of µ defined in (3.4.1).
There exists a constant C only depending on p, d, q such that, for all n ≥ 1,

E
(
Wp

p (µω
n , µ)

)
≤ CMp/q

q (µ)×


n−1/2 + n−(q−p)/q if p > d/2 and q ̸= 2p
n−1/2 log(1 + n) + n−(q−p)/q if p = d/2 and q ̸= 2p
n−p/d + n−(q−p)/q if p ∈ (0, d/2) and q ̸= d/(d− p)

,

(3.4.2)
where Mq(µ) =

∫
Rd |ξ|q µ(dξ).

As the empirical measure µωn is usually used as an estimator of µ, a natural estimator
of the optimal quantizer of µ is x(n),ω, the optimal quantizer for µωn. Let DK,µ denote
the distortion function of µ and let DK,µn denote the distortion fuction of µωn for any
n ∈ N∗. Recall by Definition 3.1.1 that for c = (c1, ..., cK) ∈ (Rd)K ,

DK,µ(c) = E min
1≤k≤K

|X − ck|2 = E
[
|X|2 + min

1≤k≤K

(
− 2⟨X|ck⟩+ |ck|2

)]
,

and DK,µn(c) = 1
n

n∑
i=1

min
1≤k≤K

|Xi − ck|2 = 1
n

n∑
i=1
|Xi|2 + min

1≤k≤K

Ç
− 2
n

n∑
i=1
⟨Xi|ck⟩+ |ck|2

å
.



3.4 Empirical measure case 97

The a.s. convergence of optimal quantizers for the empirical measure has been proved
in Pollard (1981). We have the following convergence rate result for the clustering
performance by applying directly Theorem 3.2.1 and (3.4.2).

Proposition 3.4.1. Let µ ∈ Pq(Rd) for some q > 2 with card(supp(µ)) ≥ K and let µωn
be the empirical measure of µ defined in (3.4.1). Fix a quantization level K ∈ N∗. Let
x(n),ω be an optimal quantizer at level K of µωn. Then for any n > K,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x)

≤ Cd,q,µ,K ×


n−1/4 + n−(q−2)/2q if d < 4 and q ̸= 4
n−1/4( log(1 + n)

)1/2 + n−(q−2)/2q if d = 4 and q ̸= 4
n−1/d + n−(q−2)/2q if d > 4 and q ̸= d/(d− 2)

,

(3.4.3)

where Cd,q,µ,K is a constant depending on d, q, µ and the quantization level K.

The reason why we only consider n > K is that for a fixed n ∈ N∗, the empirical
measure µn defined in (3.4.1) is supported by n points, which implies that if n ≤ K,
the optimal quantizer of µn at level K, viewed as a set, is in fact supp(µn). This makes
the above bound of no interest. Following the remark after Theorem 1 in Fournier and
Guillin (2015), one can remark that if the probability distribution µ has sufficiently
many moments (namely if q > 4 when d ≤ 4 and q > 2d/(d− 2) when d > 4), then the
term n−(q−2)/2q is small and can be removed.

Proof of Proposition 3.4.1. For every ω ∈ Ω and for every n > K, Theorem 3.2.1 implies
that

DK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗
K,µW2(µωn , µ) + 4W2

2 (µωn , µ).

Thus,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗
K,µEW2(µωn , µ) + 4EW2

2 (µωn , µ).

It follows from (3.4.2) that

EW2
2 (µωn , µ) ≤ Cd,q,µ ×


n−1/2 + n−(q−2)/q if d < 4 and q ̸= 4
n−1/2 log(1 + n) + n−(q−2)/q if d = 4 and q ̸= 4
n−2/d + n−(q−2)/q if d > 4 and q ̸= d/(d− 2)

,

(3.4.4)
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where Cd,q,µ = C ·M2/q
q (µ) and C is the constant in 3.4.2. Moreover, as EW2(µωn , µ) ≤(

EW2
2 (µωn , µ)

)1/2 and
√
a+ b ≤

√
a+
√
b for any a, b ∈ R+, the inequality (3.4.2) also

implies

EW2(µωn , µ) ≤ C1/2
d,q,µ ×


n−1/4 + n−(q−2)/2q if d < 4 and q ̸= 4
n−1/4( log(1 + n)

)1/2 + n−(q−2)/2q if d = 4 and q ̸= 4
n−1/d + n−(q−2)/2q if d > 4 and q ̸= d/(d− 2)

.

Consequently,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗
K,µEW2(µωn , µ) + 4EW2

2 (µωn , µ).

≤ 8(C1/2
d,q,µe

∗
K,µ ∨ Cd,q,µ)×

n−1/4 + n−(q−2)/2q if d < 4 and q ̸= 4
n−1/4( log(1 + n)

)1/2 + n−(q−2)/2q if d = 4 and q ̸= 4
n−1/d + n−(q−2)/2q if d > 4 and q ̸= d/(d− 2)

.

(3.4.5)

One can conclude by letting Cd,q,µ,K := 8(C1/2
d,q,µe

∗
K,µ ∨ Cd,q,µ).

Remark 3.4.1. When d ≥ 4, if q−2
q > 2

d i.e. q > 2d
d−2 , the inequality (3.4.4) can be upper

bounded as follows,

EW2
2 (µωn , µ) ≤ 2Cd,q,µn−1/d ×

n− 1
4 log(1 + n) if d = 4 and q ̸= 4

n− 1
d if d > 4 and q ̸= d/(d− 2)

≤ 2Cd,q,µK−1/d ×

n− 1
4 log(1 + n) if d = 4 and q ̸= 4

n− 1
d if d > 4 and q ̸= d/(d− 2)

,

since we consider only n ≥ K and if q > 2d
d−2 , the term n−(q−2)/2q is smaller than the

first term. Consequently, (3.4.5) can be bounded by

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗
K,µEW2(µωn , µ) + 4EW2

2 (µωn , µ).

≤ 8(C1/2
d,q,µe

∗
K,µ ∨ 2Cd,q,µK−1/d)×n− 1

4
[
(log(1 + n)) 1

2 + log(1 + n)
]

if d = 4 and q ̸= 4
2n− 1

d if d > 4 and q ̸= d/(d− 2)
. (3.4.6)

By the non-asymptotic Zador theorem (3.1.10), one has

e∗
K,µ ≤ Cd,q(µ)σq(µ)K−1/d
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with σq(µ) = mina∈Rd [
∫
Rd |ξ − a|q µ(dξ)]1/q. Thus, the inequality (3.4.6) can be upper-

bounded as follows,

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 4e∗
K,µEW2(µωn , µ) + 4EW2

2 (µωn , µ).

≤ 8K−1/d(C1/2
d,q,µCd,q(µ)σq(µ) ∨ 2Cd,q,µ

)
×n− 1

4
[
(log(1 + n)) 1

2 + log(1 + n)
]

if d = 4 and q ̸= 4
2n− 1

d if d > 4 and q ̸= d/(d− 2)
,

from which one can remark that the right side of this inequality is strictly decreasing
with respect to K.

Theorem 3.4.2. Let K ∈ N∗ be the quantization level. Let µ ∈ P2(Rd) with card(supp(µ)) ≥
K and let µωn be the empirical measure of µ defined in (3.4.1), generated by i.i.d obser-
vation X1, ..., Xn. We denote by x(n),ω ∈ (Rd)K an optimal quantizer of µωn at level K.
Then,

(a) General upper bound of the performance.

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ 2K√
n

[
r2

2n+ρK(µ)2 +2r1
(
r2n+ρK(µ)

)]
, (3.4.7)

where rn :=
∥∥max1≤i≤n |Xi|

∥∥
2 and ρK(µ) is the maximum radius of optimal quan-

tizers of µ, defined in (3.1.8).

(b) Asymptotic upper bound for measure with polynomial tail. For p > 2, if µ has a
c-th polynomial tail with c > d+ p, then

EDK,µ(x(n),ω)− inf
x∈(Rd)K

DK,µ(x) ≤ K√
n

[
Cµ,p n

2/p + 6K
2(p+d)

d(c−p−d)γK

]
,

where Cµ,p is a constant depending µ, p and limK γK = 1.

(c) Asymptotic upper bound for measure with hyper-exponential tail. Recall that µ has
a hyper-exponential tail if µ = f · λd and there exists τ > 0, κ, ϑ > 0, c > −d and
A > 0 such that ∀ξ ∈ Rd, |ξ| ≥ A⇒ f(ξ) = τ |ξ|c e−ϑ|ξ|κ. If κ ≥ 2, we can obtain a
more precise upper bound of the performance

E
[
DK,µ(x(n),ω)− inf

x∈(Rd)K
DK,µ(x)

]
≤ Cϑ,κ,µ·

K√
n

[
1+(logn)2/κ+γK(logK)2/κ(1+2

d

)2/κ
]
,

where Cϑ,κ,µ is a constant depending ϑ, κ, µ and lim supK γK = 1.
In particular, if µ = N (m,Σ), the multidimensional normal distribution, we have

E
[
DK,µ(x(n),ω)− inf

x∈(Rd)K
DK,µ(x)

]
≤ Cµ ·

K√
n

[
1 + logn+ γK logK

(
1 + 2

d

)]
,
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where lim supK γK = 1 and Cµ = 24 ·
(
1 ∨ log 2Ee|X|2/4) where X is a random

variable with distribution µ. Moreover, when µ = N (0, Id), Cµ = 24(1 + d
2) · log 2.

The proof of Theorem 3.4.2 relies on the Rademacher process theory. A Rademacher
sequence (σi)i∈{1,...,n} is a sequence of i.i.d random variables with a symmetric {±1}-
valued Bernoulli distribution, independent to (X1, ..., Xn) and we define the Rademacher
process Rn(f), f ∈ F by Rn(f) := 1

n

∑n
i=1 σif(Xi). Remark that the Rademacher

process Rn(f) depends on the sample {X1, ..., Xn} of probability measure µ.

Theorem 3.4.3 (Symmetrization inequalites). For any class F of P-integrable functions,
we have

E ∥µn − µ∥F ≤ 2E ∥Rn∥F ,

where for a probability distribution ν, ∥ν∥F := supf∈F |ν(f)| := supf∈F |
∫
Rd fdν| and

∥Rn∥F := supf∈F |Rn(f)|.

For the proof of the above theorem, we refer to Koltchinskii (2011)[see Theorem 2.1].
Another more detailed reference is Van der Vaart and Wellner (1996)[see Lemma 2.3.1].
We will also introduce the Contraction principle in the following theorem and we refer
to Boucheron et al. (2013)[see Theorem 11.6] for the proof.

Theorem 3.4.4 (Contraction principle). Let x1, ..., xn be vectors whose real-valued
components are indexed by T , that is, xi = (xi,s)s∈T . For each i = 1, ..., n let φi : R→ R
be a Lipschitz function such that φi(0) = 0. Let σ1, ..., σn be independent Rademacher
random variables and let cL = max1≤i≤n supx,y∈R

x ̸=y

∣∣∣φi(x)−φi(y)
x−y

∣∣∣ be the Lipschitz constant.

Then
E
[

sup
s∈T

n∑
i=1

σiφi(xi,s)
]
≤ cL · E

[
sup
s∈T

n∑
i=1

σixi,s

]
. (3.4.8)

Remark that if we consider random variables (Y1,s, ..., Yn,s)s∈T independent of
(σ1, ..., σn) and for all s ∈ T and i ∈ {1, ..., n}, Yi,s is valued in R, then (3.4.8) im-
plies that

E
[

sup
s∈T

n∑
i=1
σiφi(Yi,s)

]
= E

{
E
[

sup
s∈T

n∑
i=1

σiφi(Yi,s) | (Y1,s, ..., Yn,s)s∈T

]}
≤cL · E

{
E
[

sup
s∈T

n∑
i=1

σiYi,s | (Y1,s, ..., Yn,s)s∈T

]}
≤ cL · E

[
sup
s∈T

n∑
i=1

σiYi,s
]
. (3.4.9)

The proof of Theorem 3.4.2 is principally inspired by the proof of Theorem 2.1 in Biau
et al. (2008).

Proof of Theorem 3.4.2. (a) In order to simplify the notation, we will denote by D
(respectively Dn) instead of DK,µ (resp. DK,µn) as the distortion function of µ (resp.
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µn). For any c = (c1, ..., cK) ∈ (Rd)K , recall the distortion function D(c) of µ can be
written as

D(c) = E
[

min
1≤k≤K

|X − ck|2
]

= E
[
|X|2 + min

1≤k≤K
(−2⟨X|ck⟩+ |ck|2)

]
.

We define D(c) := min1≤k≤K
(
− 2⟨X|ck⟩+ |ck|2

)
. Similarly, for the distortion function

Dn of the empirical measure µn,

Dn(c) = 1
n

n∑
i=1

min
1≤k≤K

|Xi − ck|2 = 1
n

n∑
i=1
|Xi|2 + min

1≤k≤K

(
− 2
n

n∑
i=1
⟨Xi|ck⟩+ |ck|2

)
,

we define Dn(c) := min1≤k≤K
(
− 2

n

∑n
i=1⟨Xi|ck⟩ + |ck|2

)
. We will drop ω in x(n),ω to

alleviate the notation throughout the proof. Let x ∈ GK(µ). It follows that

E
[
D(x(n))−D(x)

]
= E

[
D(x(n))−D(x)

]
= E

[
D(x(n))−Dn(x(n))

]
+ E

[
Dn(x(n))−D(x)

]
≤ E

[
D(x(n))−Dn(x(n))

]
+ E

[
Dn(x)−D(x)

]
. (3.4.10)

Define for η, x ∈ Rd, fη(x) = −2⟨η|x⟩+ |η|2.

Part (i): Upper bound of E[D(x(n))−Dn(x(n))]. Let Rn(ω) := max1≤i≤n |Xi(ω)|. Remark
that for every ω ∈ Ω, Rn(ω) is invariant with the respect to all permutation of the
components of (X1, ..., Xn). Let BR denote the ball centred at 0 with radius R. Then
owing to Proposition 3.1.1-(iii), x(n) ∈ BK

Rn
. Hence,

E [D(x(n))−Dn(x(n))] ≤ E sup
c∈BK

Rn

(
D(c)−Dn(c)

)
=E

[
sup

c∈BK
Rn

(
E min

1≤k≤K
fck

(X)− 1
n

n∑
i=1

min
1≤k≤K

fck
(Xi)

)]
=E

[
sup

c∈BK
Rn

E
[ 1
n

n∑
i=1

min
1≤k≤K

fck
(X ′

i)−
1
n

n∑
i=1

min
1≤k≤K

fck
(Xi)

∣∣X1, ..., Xn

]]
,

(3.4.11)

where X ′
1, ..., X

′
n are i.i.d random variable with the distribution µ, independent of

(X1, ..., Xn). Let R2n := max1≤i≤n |Xi| ∨ |X ′
i|, then (3.4.11) becomes

E [D(x(n))−Dn(x(n))]

≤E
[

sup
c∈BK

R2n

E
[ 1
n

n∑
i=1

min
1≤k≤K

fck
(X ′

i)−
1
n

n∑
i=1

min
1≤k≤K

fck
(Xi)

∣∣X1, ..., Xn

]]
≤E

[
E
[

sup
c∈BK

R2n

( 1
n

n∑
i=1

min
1≤k≤K

fck
(X ′

i)−
1
n

n∑
i=1

min
1≤k≤K

fck
(Xi)

)∣∣X1, ..., Xn

]]
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=E
[

sup
c∈BK

R2n

1
n

n∑
i=1

(
min

1≤k≤K
fck

(X ′
i)− min

1≤k≤K
fck

(Xi)
)]
. (3.4.12)

The distribution of (X1, ..., Xn, X
′
1, ..., X

′
n) and that of R2n are invariant with the respect

to all permutation of the components in (X1, ..., Xn, X
′
1, ..., X

′
n). Hence,

E [D(x(n))−Dn(x(n))] = E
[

sup
c∈BK

R2n

1
n

n∑
i=1

σi
(

min
1≤k≤K

fck
(X ′

i)− min
1≤k≤K

fck
(Xi)

)]
≤E

[
sup

c∈BK
R2n

1
n

n∑
i=1

σi min
1≤k≤K

fck
(X ′

i)
]

+ E
[

sup
c∈B

RK
2n

1
n

n∑
i=1

σi min
1≤k≤K

fck
(Xi)

]
=2E

[
sup

c∈BK
R2n

1
n

n∑
i=1

σi min
1≤k≤K

fck
(Xi)

]
. (3.4.13)

In the second line of (3.4.13), we can change the sign before the second term since −σi
has the same distribution of σi, and we will continue to use this property throughout

the proof. Let SK = E
[

sup
c∈BK

R2n

1
n

n∑
i=1

σi min
1≤k≤K

fck
(Xi)

]
.

▶ For K = 1,

S1 =E
[

sup
c∈BR2n

1
n

n∑
i=1

σi min
1≤k≤K

fc(Xi)
]

= E
[

sup
c∈BR2n

1
n

n∑
i=1

σi
(
− 2⟨c|Xi⟩+ |c|2

)]
≤2E

[
sup

c∈BR2n

1
n

n∑
i=1

σi⟨c|Xi⟩
]

+ E
[

sup
c∈BR2n

1
n

n∑
i=1

σi |c|2
]

≤ 2
n
E
[

sup
c∈BR2n

⟨c|
n∑
i=1

σiXi⟩
]

+ 1
n
E
[ ∣∣∣∣∣ n∑
i=1

σi

∣∣∣∣∣ · |R2n|2
]

≤ 2
n
E
[

sup
c∈BR2n

∣∣∣∣∣ n∑
i=1

σiXi

∣∣∣∣∣ · |c| ] + 1
n
E

∣∣∣∣∣ n∑
i=1

σi

∣∣∣∣∣ · E |R2n|2

(by Cauchy-Schwarz inequality and independence of σi and Xi)

≤ 2
n

∥∥∥∥∥ n∑
i=1

σiXi

∥∥∥∥∥
2
· ∥R2n∥2 + 1

n

∥∥∥∥∥ n∑
i=1

σi

∥∥∥∥∥
2

2
· ∥R2n∥22

≤ 2
n

√
n ∥X1∥2 · ∥R2n∥2 + 1√

n
∥R2n∥22 ≤

∥R2n∥2√
n

(
2 ∥X1∥2 + ∥R2n∥2

)
. (3.4.14)

The first inequality of the last line of (3.4.14) is due to E |
∑n
i=1 σiXi|2 = E

∑n
i=1 σ

2
iX

2
i =

nEX2
1 since the (σ1, ..., σn) is independent of (X1, ..., Xn) and Eσi = 0. For n ∈ N∗,

define rn := ∥max1≤i≤n |Yi|∥2, where Y1, ..., Yn are i.i.d random variable with probability
distribution µ. Hence, r2n = ∥R2n∥2, since (Y1, ..., Y2n) has the same distribution than
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(X1, ..., Xn, X
′
1, ..., X

′
n). Therefore,

S1 ≤
r2n√
n

(
2 ∥X1∥2 + r2n

)
.

▶ For K = 2,

S2 =E
[

sup
c=(c1,c2)∈B2

R2n

1
n

n∑
i=1

σi
(
fc1(Xi) ∧ fc2(Xi)

)]
=1

2E
[

sup
c∈B2

R2n

1
n

n∑
i=1

σi
(
fc1(Xi) + fc2(Xi)− |fc1(Xi)− fc2(Xi)|

)]
(as a ∧ b = a+ b

2 − |a− b|2 )

≤1
2

{
E
[

sup
c∈B2

R2n

1
n

n∑
i=1

σi
(
fc1(Xi) + fc2(Xi)

)]
+ E

[
sup

c∈B2
R2n

1
n

n∑
i=1

σi |fc1(Xi)− fc2(Xi)|
]}

≤1
2

{
2S1 + E

[
sup

c∈B2
R2n

1
n

n∑
i=1

σi
(
fc1(Xi)− fc2(Xi)

)]} (
by (3.4.9)

)
≤1

2

{
2S1 + E

[
sup

c1∈BR2n

1
n

n∑
i=1

σifc1(Xi)
]

+ E
[

sup
c2∈BR2n

1
n

n∑
i=1

σifc2(Xi)
]}
≤ 2S1.

(3.4.15)

▶ Next, we will show by recurrence that SK ≤ KS1 for every K ∈ N∗. Assume that
SK ≤ KS1, for K + 1,

SK+1 = E
[

sup
c∈BK+1

R2n

1
n

n∑
i=1

σi min
1≤k≤K+1

fck
(Xi)

]
= E

[
sup

c∈BK+1
R2n

1
n

n∑
i=1

σi
(

min
1≤k≤K

fck
(Xi) ∧ fcK+1(Xi)

)]
≤ 1

2E
{

sup
c∈BK+1

R2n

1
n

n∑
i=1

σi

[(
min

1≤k≤K
fck

(Xi) + fcK+1(Xi)
)
−
∣∣∣∣ min
1≤k≤K

fck
(Xi)− fcK+1(Xi)

∣∣∣∣ ]}
≤ 1

2E
{

sup
c∈BK+1

R2n

1
n

n∑
i=1

σi
(

min
1≤k≤K

fck
(Xi) + fcK+1(Xi)

)
+ sup
c∈BK+1

R2n

1
n

n∑
i=1

σi

∣∣∣∣ min
1≤k≤K

fck
(Xi)− fcK+1(Xi)

∣∣∣∣ }
≤ 1

2(SK + S1 + SK + S1) ≤ SK + S1 ≤ (K + 1)S1. (3.4.16)
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Hence,

E [D(x(n))−Dn(x(n))] ≤ 2SK ≤ 2KS1 ≤
2K · r2n√

n

(
2 ∥X1∥2 + r2n

)
. (3.4.17)

Part (ii): Upper bound of E [Dn(x)−D(x)]. As x = (x1, ..., xK) is an optimal quantizer
of µ, we have max1≤k≤K |xk| ≤ ρK(µ) owing to the definition of ρK(µ) in (3.1.8).
Consequently,

E
[
Dn(x)−D(x)

]
≤ E sup

c∈BK
ρK (µ)

[
Dn(c)−D(c)

]
By the same reasoning of Part (I), we have

E
[
Dn(x)−D(x)

]
≤ 2K√

n
ρK(µ)

(
2 ∥X1∥2 + ρK(µ)

)
.

Hence

E
[
D(x(n))−D(x)

]
≤ 2K√

n
r2n

(
2 ∥X1∥2 + r2n

)
+ 2K√

n
ρK(µ)

(
2 ∥X1∥2 + ρK(µ)

)
≤ 2K√

n

[
r2

2n + ρ2
K(µ) + 2r1

(
r2n + ρK(µ)

)]
. (3.4.18)

(b) If µ has a c-th polynomial tail with c > d+ p, then µ ∈ Pp(Rd). Let X,X1, ..., Xn

be i.i.d random variable with probability distribution µ. Then,

rn = ∥Rn∥22 = E
[

max (|X1| , ..., |Xn|)2] = E
[

max(|X1|p , ..., |Xn|p)2/p]
≤E

([ n∑
i=1
|Xi|p

]2/p
)
≤

[
E
( n∑
i=1
|Xi|p

)]2/p
=

[
nE |X|p

]2/p
= n2/p ∥X∥2p , (3.4.19)

where the last line is due to the fact that X1, ..., Xn have the same distribution as X.
Moreover, we have

ρK(µ) = K
p+d

d(c−p−d)γK with lim
K→+∞

γK = 1 (3.4.20)

owing to (3.1.11). It follows from (3.4.18) that

E
[
D(x(n))−D(x)

]
≤ 2K√

n

[
3r2

2n +
(
(2m2) ∨ ρK(µ)

)
· ρK(µ)

]
since r2n ≥ m2 after the definitions of r2n and m2. In addition, (3.4.20) implies that
ρK(µ)→ +∞ as K → +∞ and, for large enough K, ρK(µ) ≥ 2m2. Therefore,

E
[
D(x(n))−D(x)

]
≤2K√

n

(
3 · (2n)2/p ∥X∥2p + 3K

p+d
d(c−p−d)γK

)
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= K√
n

(
Cµ,p n

2/p + 6K
p+d

d(c−p−d)γK

)
,

where Cµ,p = 6 · 22/p ∥X∥2p and limK γK = 1.

(c) µ is assumed to have a hyper-exponential tail, that is, µ = f · λd and f(ξ) =
τ |ξ|c e−ϑ|ξ|κ with c > −d for |ξ| large enough. The real constant κ is assumed to be
greater than or equal to 2. Let X be a random variable with probability distribution µ.
Therefore, for every λ ∈ (0, ϑ), E eλ|X|κ < +∞, and

rn = ∥Rn∥22 = E
[

max(|X1| , ..., |Xn|)2] = E
[

max(|X1|κ , ..., |Xn|κ)2/κ]
=E

([ 1
λ

log
(

max(eλ|X1|κ , ..., eλ|Xn|κ)
)]2/κ)

≤
Å 1
λ

ã2/κ [
logEmax(eλ|X1|κ , ..., eλ|Xn|κ)

]2/κ

≤
Å 1
λ

ã2/κ {
logE

[ n∑
i=1

eλ|Xi|κ
]}2/κ

=
Å 1
λ

ã2/κ {
log(nE eλ|X|κ)

}2/κ

=
Å 1
λ

ã2/κ (
logE eλ|X|κ + logn

)2/κ
, (3.4.21)

where the last line of (3.4.21) is due to the fact that X1, ..., Xn have the same distribution
than X. Under the same assumption as before,

ρK(µ) = γK(logK)1/κ · 2ϑ−1/κ(1 + 2
d

)1/κ with lim sup
K→+∞

γK ≤ 1 (3.4.22)

by applying (3.1.12). Moreover, it follows from (3.4.18) that

E
[
D(x(n))−D(x)

]
≤ 2K√

n

[
3r2

2n +
(
(2m2) ∨ ρK(µ)

)
· ρK(µ)

]
since r2n ≥ m2 after the definitions of r2n and m2. In addition, (3.4.22) implies that
ρK(µ)→ +∞ as K → +∞ and, for large enough K, ρK(µ) ≥ 2m2. Therefore,

E
[
D(x(n))−D(x)

]
≤2K√

n

{
3 ·

(
1 ∨ log 2E eλ|X|κ)2/κ( 1

λ

)2/κ[(logn)2/κ + 1
]}

+ 4ϑ−2/κγK(logK)2/κ(1 + 2
d

)2/κ
. (3.4.23)

The inequality (3.4.23) is true for all λ ∈ (0, ϑ). We may take λ = ϑ
2 . It follows that

E
[
D(x(n))−D(x)

]
≤ Cϑ,κ,µ ·

K√
n

[
1 + (logn)2/κ + γK(logK)2/κ(1 + 2

d

)2/κ
]
, (3.4.24)

where Cϑ,κ,µ =
[
6
( 2
ϑ

)2/κ · (1 ∨ log 2E eϑ|X|κ/2)
]
∨ 8ϑ−2/κ and lim supK γK = 1.

Multi-dimensional normal distribution is a special case of hyper-exponential tail
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distribution, i.e. if µ = N (m,Σ), we have κ = 2, ϑ = 1
2 and c = 0. By the same reasoning

as before,

E
[
D(x(n))−D(x)

]
≤ Cµ ·

K√
n

[
1 + logn+ γK logK

(
1 + 2

d

)]
,

where Cµ = 24 ·
(
1 ∨ log 2E e|X|2/4). When µ = N (0, Id), Cµ = 24(1 + d

2) · log 2, since
E e|X|2/4 = 2d/2 by the moment-generating function of χ2 distribution.

3.5 Appendix

3.5.1 Appendix A: Proof of Proposition 3.1.1 - (iii)

Proof. Assume that there exists a x∗ = (x∗
1, ..., x

∗
K) ∈ GK(µ) in which there exists

k ∈ {1, ...,K} such that x∗
k /∈ Hµ.

Case (I): µ
(
V o
x∗

k
(Γ∗)∩supp(µ)

)
= 0. After (3.1.16), the distortion function can be written

as

DK,µ(x∗) =
K∑
i=1

∫
Cxi (x)

|ξ − x∗
i |

2 µ(dξ) =
K∑
i=1

∫
V o

xi
(x)
|ξ − x∗

i |
2 µ(dξ)

(Since x∗ is optimal and |·| is Euclidean, µ
(
∂Vxi(Γ∗)

)
= 0 and intVxi(Γ) = V o

xi
(Γ))

=
K∑

i=1,i ̸=k

∫
V o

xi
(x)
|ξ − x∗

i |
2 µ(dξ) = DK,µ(x̃), (3.5.1)

where x̃ = (x∗
1, ..., x

∗
k−1, x

∗
k+1, ..., x

∗
K). Therefore, Γ̃ = {x∗

1, ..., x
∗
k−1, x

∗
k+1, ..., x

∗
K} is also

a K-level optimal quantizer with card(Γ̃) < K, contradictory to Proposition 3.1.1 - (i).

Case (II): µ
(
V o
x∗

k
(Γ∗) ∩ supp(µ)

)
> 0. Since x∗

k ̸= Hµ, there exists a hyperplane H
strictly separating x∗

k and Hµ. Let x̂∗
k be the orthogonal projection of x∗

k on H. For any
z ∈ Hµ, let b denote the point in the segment joining z and x∗

k which lies on H, then
⟨b− x̂∗

k|x∗
k − x̂∗

k⟩ = 0. Hence,

|x∗
k − b|

2 = |x̂∗
k − b|

2 + |x∗
k − x̂∗

k|
2 > |x̂∗

k − b|
2 .

Therefore, |z − x̂∗
k| ≤ |z − b|+ |b− x̂∗

k| < |z − b|+ |x∗
k − b| = |z − x∗

k|.

Let B(x, r) denote the ball on Rd centered at x with radius r. Since µ
(
V o
x∗

k
(Γ∗) ∩

supp(µ)
)
> 0, there exists α ∈ V o

x∗
k
(Γ∗) ∩ supp(µ) such that ∃r ≥ 0, µ

(
B(α, r)

)
> 0
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(when r = 0, B(α, r) = {r}). Moreover,

∀β ∈ B(α, r), |β − x̂∗
k| < |β − x∗

k| < min
i ̸=k
|β − x̂∗

i | . (3.5.2)

Let x̂ := (x∗
1, ..., x

∗
k−1, x̂

∗
k, x

∗
k+1, ..., x

∗
K), (3.5.2) implies DK,µ(x̂) < DK,µ(x∗). This is

contradictory with the fact that x∗ is an optimal quantizer. Hence, x∗ ∈ Hµ.

3.5.2 Appendix B: Proof of Pollard’s Theorem

Proof of Pollard’s Theorem. Since the quantization level K is fixed, in this proof, we
will withdraw K in the subscript of the distortion function DK,µ and denote by Dn
(respectively, D∞) as the distortion function of µn (resp. µ∞).

We know x(n) ∈ argmin Dn owing to Proposition 3.1.1, that is, for all y ∈
(y1, ..., yK) ∈ (Rd)K , we have Dn(x(n)) ≤ Dn(y). For every fixed y = (y1, ..., yK),
we have Dn(y)→ D∞(y) after (3.1.19), then

lim sup
n

Dn(x(n)) ≤ inf
y∈(Rd)K

D∞(y) (3.5.3)

We assume that there exists an index set I ⊂ {1, ...,K} and Ic ̸= ∅ such that
(x(n)
i )i∈I,n≥1 is bounded and (x(n)

i )i∈Ic,n≥1 is not bounded. Then there exists a subse-
quence ψ(n) of n such that x

ψ(n)
i → x̃

(∞)
i i ∈ I∣∣∣xψ(n)

i

∣∣∣→ +∞ i ∈ Ic

After (3.1.19), we have Dψ(n)(x(ψ(n)))1/2 ≥ D∞(x(ψ(n)))1/2 −W2(µψ(n), µ∞). Hence,

lim inf
n
Dψ(n)(x(ψ(n)))1/2 ≥ lim inf

n
D∞(x(ψ(n)))1/2,

so that

lim inf
n
Dψ(n)(x(ψ(n)))1/2 ≥ lim inf

n
D∞(x(ψ(n)))1/2

=
[

lim inf
n

∫
min

i∈{1,...,K}

∣∣∣x(ψ(n))
i − ξ

∣∣∣2 µ∞(dξ)
]1/2

≥
[ ∫

lim inf
n

min
i∈{1,...,K}

∣∣∣x(ψ(n))
i − ξ

∣∣∣2 µ∞(dξ)
]1/2

=
[ ∫

min
i∈I

∣∣∣x(∞)
i − ξ

∣∣∣2 µ∞(dξ)
]1/2

. (3.5.4)
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Thus, (3.5.3) and (3.5.4) imply that∫
min
i∈I

∣∣∣x(∞)
i − ξ

∣∣∣2 µ∞(dξ) ≤ inf
y∈(Rd)K

D∞(y). (3.5.5)

This implies that I = {1, ...,K} after Proposition 3.1.1 (otherwise, (3.5.5) implies that
e|I|,∗(µ∞) ≤ eK,∗(µ∞) with |I| < K, which is contradictory to Proposition 3.1.1-(i)).
Therefore, (x(n)) is bounded and any limiting point x(∞) ∈ argminx∈(Rd)KD∞(x).

3.5.3 Appendix C: Proof of Lemma 3.3.2

Recall that FK :=
{
x = (x1, ..., xK) ∈ (Rd)K | xi ̸= xj , i ̸= j

}
. We first prove that if

x ∈ FK and y is close enough to x, then y ∈ FK .

Lemma 3.5.1. If x ∈ FK , then any point y such that y ∈ B
(
x, 1

3 min1≤i,j≤K,i̸=j |xi − xj |
)

lies still in FK .

Proof of Lemma 3.5.1. If there exist i, j ∈ {1, ...,K}, i ̸= j such that yi = yj , then

|xi − xj | ≤ |xi − yi|+ |yj − xj | ≤
2
3 min

1≤i,j≤K,i̸=j
|xi − xj | ,

which is contradictory. Hence, y ∈ FK .

Now we prove Lemma 3.3.2.

Proof of Lemma 3.3.2. We will only prove the continuity of ∂
2DK,µ

∂x1∂x2
and ∂2DK,µ

∂x2
1

in a point

x ∈ FK . For the continuity of ∂2DK,µ

∂xi∂xj
for any others i, j ∈ {1, ...,K} the proof is similar.

Let
α(x, ξ) := (x1 − ξ)⊗ (x2 − ξ) ·

1
|x2 − x1|

f(ξ).

Then
∂2DK,µ
∂x1∂x2

(x) = 2
∫
V1(x)∩V2(x)

α(x, ξ)λ12
x (dξ).

Let (e1, ..., ed) denote the canonical basis of Rd. Set ux = x1−x2
|x1−x2| . As x1 ̸= x2, if we

write the coordinate of ux by ux = ∑d
i=1 uiei, then there exists at least one i0 ∈ {1, ..., d}

s.t. ui0 ≠ 0. Then (ux, ei, 1 ≤ i ≤ d, i ̸= i0) forms a new basis of Rd. Applying
the Gram-Schmidt orthonormalization procedure, we derive the existence of a new
orthonormal basis (ux1 , ..., uxd) of Rd such that ux1 = ux. Moreover, the Gram-Schmidt
orthonormalization procedure also implies that uxi , 1 ≤ i ≤ d is continuous in x. With



3.5 Appendix 109

respect to the new basis (ux1 , ..., uxd), the hyperplan Mx
12 defined in (3.3.4) can be written

by
Mx

12 = x1 + x2
2 + span

(
uxi , i = 2, ..., d.

)
,

where span(S) denotes the subspace of Rd spanned by a set S. Moreover, remark that

V1(x) ∩ V2(x) =
{
ξ ∈Mx

12
∣∣ min
k=3,...,K

|xk − ξ| ≥ |x1 − ξ| = |x2 − ξ|
}
.

Then for every fixed ξ /∈ ∂
(
V1(x)∩V2(x)

)
, the function x 7→ 1V1(x)∩V2(x)(ξ) is continuous

in x ∈ FK and
λ12
x

(
∂
(
V1(x) ∩ V2(x)

))
= 0 (3.5.6)

since V1(x) ∩ V2(x) is a polyhedral convex set in Mx
12.

Now by a change of variable ξ = x1+x2
2 + ∑d

i=2 riu
x
i ,

∂2DK,µ
∂x1∂x2

(x) = 2
∫
Rd−1

1V12(x)
(
(r2, ..., rd)

)
α
(
x,
x1 + x2

2 +
d∑
i=2

riu
x
i

)
dr2...drd,

where

V12(x) :=
{

(r2, ..., rd) ∈ Rd−1
∣∣∣ min

3≤k≤K

∣∣∣xk− x1 + x2
2 −

d∑
i=2

riu
x
i

∣∣∣ ≥ ∣∣∣x1 − x2
2 −

d∑
i=2

riu
x
i

∣∣∣}.
Let

∂V12(x) :=
{

(r2, ..., rd) ∈ Rd−1
∣∣∣ min

3≤k≤K

∣∣∣xk−x1 + x2
2 −

d∑
i=2

riu
x
i

∣∣∣ =
∣∣∣x1 − x2

2 −
d∑
i=2

riu
x
i

∣∣∣}.
Then (3.5.6) implies that λRd−1

(
∂V12(x)

)
= 0 where λRd−1 denotes the Lebesgue measure

of the subspace span
(
uxi , i = 2, ..., d

)
.

Let us now consider a sequence x(n) = (x(n)
1 , ..., x

(n)
K ) ∈ (Rd)K converging to a point

x = (x1, ..., xK) ∈ FK . By lemma 3.5.1, for n large enough, we have x(n) ∈ FK . For
a fixed (r2, ..., rd) ∈ Rd−1, the continuity of x 7→ α(x, x1+x2

2 + ∑d
i=2 riu

x
i ) in FK can

be obtained by the continuity of (x, ξ) 7→ α(x, ξ) and the continuity of Gram-Schmidt
orthonormalization procedure.

Moreover, it is obvious that for any a = (a1, ..., ad), b = (b1, ..., bd) ∈ Rd, we have
|aibj | ≤ |a| |b| , 1 ≤ i, j ≤ d. Thus the absolute value of every term in the matrix

α(x, x1 + x2
2 +

d∑
i=2

riu
x
i )
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=
(
x1−x2

2 −
∑d
i=2 riu

x
i

)
⊗
(
x2−x1

2 −
∑d
i=2 riu

x
i

)
|x2 − x1|

f
(x1 + x2

2 +
d∑
i=2

riu
x
i

)
(3.5.7)

can be upper-bounded by∣∣x1−x2
2 −

∑d
i=2 riu

x
i

∣∣∣∣x2−x1
2 −

∑d
i=2 riu

x
i

∣∣
|x2 − x1|

f
(x1 + x2

2 +
d∑
i=2

riu
x
i

)

≤

(∣∣x1−x2
2

∣∣ +
∣∣∑d

i=2 riu
x
i

∣∣)2

|x2 − x1|
f
(x1 + x2

2 +
d∑
i=2

riu
x
i

)
≤ Cx(1 +

d∑
i=2

r2
i )f

(x1 + x2
2 +

d∑
i=2

riu
x
i

)
(3.5.8)

where Cx > 0 is a constant depending x.

The distribution µ is assumed to have a d-the radial-controlled tail. Recall that
this means there exist a constant A > 0 and a continuous and decreasing function
g : R+ → R+ such that

∀ξ ∈ Rd, |ξ| ≥ A, f(ξ) ≤ g(|ξ|) and
∫
R+
xdg(x)dx < +∞. (3.5.9)

Now let K := 1
2 supn

∣∣∣x(n)
1 + x

(n)
2

∣∣∣ ∨ A and let r := ∑d
i=2 riu

x
i . As g is a decreasing

function, it follows that

Cx(1 +
d∑
i=2

r2
i )f

(x(n)
1 + x

(n)
2

2 +
d∑
i=2

riu
x
i

)
≤ Cx(1 + |r|2) sup

ξ∈B(0,3K)
f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g

(∣∣∣x(n)
1 + x

(n)
2

2 +
d∑
i=2

riu
x
i

∣∣∣)1{|r|≥2K}.

≤ Cx(1 + |r|2) sup
ξ∈B(0,3K)

f(ξ)1{|r|≤2K} + Cx(1 + |r|2)g
(
|r| −K

)
1{|r|≥2K}. (3.5.10)

By a change of variable to polar coordinate system, one obtains by letting γ = |r|∫
Rd−1

Cx |r|2 g
(
|r| −K

)
1{|r|≥2K}dr2...drd

≤ Cx,d
∫
R+

γ2g(γ −K)1{γ≥2K}γ
d−2dγ ≤ Cx,d

∫ ∞

K
(γ +K)dg(γ)dγ

≤ 2dCx,d
∫ ∞

K
(Kd + γd)g(γ)dγ < +∞,
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where the last inequality is owing to (3.5.9). Thus one obtains∫
Rd−1

[
Cx(1+|r|2) sup

ξ∈B(0,3K)
f(ξ)1{|r|≤2K}+Cx(1+|r|2)g

(
|r|−K

)
1{|r|≥2K}

]
dr2...drd < +∞,

which implies ∂2DK,µ

∂x1∂x2
(x(n))→ ∂2DK,µ

∂x1∂x2
(x) as n→ +∞ by applying Lebesgue’s dominated

convergence theorem. Thus ∂2DK,µ

∂x1∂x2
is continuous in x ∈ FK .

It remains to prove the continuity of x 7→ µ
(
V1(x)

)
=

∫
Rd 1V1(x)(ξ)f(ξ)λd(dξ) to

obtain the continuity of ∂2DK,µ

∂x2
1

defined in (3.3.7). Remark that

V1(x) =
{
ξ ∈ Rd

∣∣ |ξ − x1| ≤ min
1≤j≤K

|ξ − xj |
}
,

and by Graf and Luschgy (2000)[Proposition 1.3],

∂V1(x) =
{
ξ ∈ Rd

∣∣ |ξ − x1| = min
1≤j≤K

|ξ − xj |
}
.

Then for any ξ /∈ ∂V1(x), the function x 7→ 1V1(x)(ξ) is continuous. As the norm |·|
is the Euclidean norm, then λd(∂Vi(x)) = 0 (see Graf and Luschgy (2000)[Proposi-
tion 1.3 and Theorem 1.5]). For any x ∈ FK and a sequence x(n) converging to x,
we have 1V1(x(n))(ξ)f(ξ) ≤ f(ξ) ∈ L1(λd). Thus the continuity of x 7→ µ

(
V1(x)

)
=∫

Rd 1V1(x)(ξ)f(ξ)λd(dξ) is a direct application of Lebesgue’s dominated convergence
theorem.

3.5.4 Appendix D: Proof of Proposition 3.3.1

Proof. (i) We will only prove for the uniform distribution U([0, 1]). The proof is similar
for other uniform distributions.

In Graf and Luschgy (2000)[see Example 4.17 and 5.5], the authors show that
Γ∗ = {2i−1

2K : i − 1, ...,K} is the unique optimal quantizers of U([0, 1]). Let x∗ =
( 1

2K , ...,
2i−1
2K , ..., 2K−1

2K ), then one can compute explicitly HD(x∗):

HD(x∗) =



3
2K − 1

2K 0
. . . . . . . . .

− 1
2K

1
K − 1

2K
. . . . . . . . .

0 − 1
2K

3
2K

 , (3.5.11)
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The matrix HD(x∗) is tridiagonal. If we denote by fk(x∗) its k-th leading principal
minor and we define f0(x∗) = 1, then

fk(x∗) = 1
K
fk−1(x∗)− 1

4K2 fk−2(x∗) for k = 2, ...,K − 1, (3.5.12)

and f1(x∗) = 3
2K and fK(x∗) = |HD(x∗)| = 3

K fK−1(x∗)− 1
4K2 fK−2(x∗) (see El-Mikkawy

(2003)). One can solve from the three-term recurrence relation that

fk(x∗) = 2k + 1
2kKk

, for k = 1, ...,K − 1 (3.5.13)

And fK(x∗) = 2K + 1
2KKK

+ 1
2KfK−1. (3.5.14)

In fact, (3.5.13) is true for k = 1. Suppose (3.5.13) holds for k ≤ K − 2, then owing to
(3.5.12)

fk+1(x∗) = 1
K
· 2k + 1

2kKk
− 1

4K2 ·
2(k − 1) + 1
2k−1Kk−1 = 2(k + 1) + 1

2k+1Kk+1 .

Then it is obvious that fk(x∗) > 0 for k = 1, ...,K. Thus, HD(x∗) is positive definite.

(ii) We define for i = 2, ...,K, x̃∗
i = x∗

i−1+x∗
i

2 , then the Voronoi region Vi(x∗) =
[x̃∗
i , x̃

∗
i+1] for i = 2, ...,K − 1, V1(x∗) = (−∞, x̃∗

2] and VK(x∗) = [x̃∗
K ,+∞).

For 2 ≤ i ≤ K − 1,

Li(x∗) = Ai − 2Bi−1,i − 2Bi,i+1

= 2µ
(
Vi(x∗)

)
− (x∗

i − x∗
i−1)f(

x∗
i−1 + x∗

i

2 )− (x∗
i+1 − x∗

i )f(
x∗

i + x∗
i+1

2 )

= 2µ
(
Vi(x∗)

)
− 2(x∗

i − x̃∗
i )f(x̃∗

i )− 2(x̃∗
i+1 − x∗

i )f(x̃∗
i+1)

= 2
µ
(
Vi(x∗)

){µ(Vi(x∗)
)2 − [x∗

iµ
(
Vi(x∗)

)
− x̃∗

iµ
(
Vi(x∗)

)
]f(x̃∗

i )− [x̃∗
i+1µ

(
Vi(x∗)

)
− x∗

iµ
(
Vi(x∗)

)
]f(x̃∗

i+1)
}

= 2
µ
(
Vi(x∗)

){µ(Vi(x∗)
)2 − [

∫
Vi(x∗)

ξf(ξ)dξ − x̃∗
i

∫
Vi(x∗)

f(ξ)dξ]f(x̃∗
i )

− [x̃∗
i+1

∫
Vi(x∗)

f(ξ)dξ −
∫

Vi(x∗)
ξf(ξ)dξ]f(x̃∗

i+1)
} (

owing to (3.3.9)
)

= 2
µ
(
Vi(x∗)

){µ(Vi(x∗)
)2 − f(x̃∗

i )
∫

Vi(x∗)
(ξ − x̃∗

i )f(ξ)dξ + f(x̃∗
i+1)

∫
Vi(x∗)

(ξ − x̃∗
i+1)f(ξ)dξ︸ ︷︷ ︸

=:Di(x∗)

}
.

(3.5.15)

For u = (u1, ..., uK+1) ∈ F+
K+1, we define a function φi(u) in order to study the
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positivity of Di(x∗), for any i ∈ {1, ...,K},

φi(u) :=
[ ∫ ui+1

ui

f(ξ)dξ
]2− f(ui)

∫ ui+1

ui

(ξ−ui)f(ξ)dξ+ f(ui+1)
∫ ui+1

ui

(ξ−ui+1)f(ξ)dξ,
(3.5.16)

Lemma 3.5.2. If f is positive and differentiable and if log f is strictly concave, then
for all u = (u1, ..., uK+1) ∈ F+

K+1, we have the following results for φi(u) defined in
(3.5.16),

(a) for every i = 1, ...,K, φi(u) > 0;

(b) ∂φ1
∂u1

(u) < 0;

(c) ∂φK
∂uK+1

(u) > 0.

Proof of lemma 3.5.2. For a fixed i ∈ {1, ...,K}, the partial derivatives of φi are

∂φi
∂ui

(u) = −2
[ ∫ ui+1

ui

f(ξ)dξ
]
f(ui)− f ′(ui)

∫ ui+1

ui

(ξ − ui)f(ξ)dξ + f(ui)f(ui+1)(ui+1 − ui)

∂φi
∂ui+1

(u) = 2
[ ∫ ui+1

ui

f(ξ)dξ
]
f(ui+1) + f ′(ui+1)

∫ ui+1

ui

(ξ − ui+1)f(ξ)dξ

− f(ui)f(ui+1)(ui+1 − ui)
∂φi
∂ul

(u) = 0, for all l ̸= i and l ̸= i+ 1. (3.5.17)

The second derivatives of φi are

∂2φi
∂ui+1∂ui

(u) = ∂2φi
∂ui∂ui+1

(u) = −f(ui+1)f(ui) + (ui+1 − ui)
(
f(ui)f ′(ui+1)− f ′(ui)f(ui+1)

)
∂2φi
∂ul∂ui

(u) = ∂2φi
∂ui∂ul

(u) = 0 for all l ̸= i and l ̸= i+ 1. (3.5.18)

If log f is strictly concave, then (log f)′ = f ′

f
is strictly decreasing. For u ∈ F+

K+1,
we have ui+1 > ui, then

f ′(ui+1)
f(ui+1) −

f ′(ui)
f(ui)

= f ′(ui+1)f(ui)− f(ui+1)f ′(ui)
f(ui)f(ui+1) < 0.

Thus f ′(ui+1)f(ui)− f(ui+1)f ′(ui) < 0 and from which one can get ∂2φi
∂ui+1∂ui

(u) < 0.

In fact, φi, ∂φi
∂ui

, ∂φi
∂ui+1

and ∂2φi
∂ui+1∂ui

are functions of only (ui, ui+1).
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(a) For 1 ≤ i ≤ K, φi(ui+1, ui+1) = 0. After the Mean value theorem, there exists a
γ ∈ (ui, ui+1) such that

1
ui − ui+1

(
φi(ui, ui+1)− φi(ui+1, ui+1)

)
= ∂φi
∂ui

(γ, ui+1). (3.5.19)

Moreover, there exists a ζ ∈ (γ, ui+1) such that

1
ui+1 − γ

(∂φi
∂ui

(γ, ui+1)− ∂φi
∂ui

(γ, γ)
)

= ∂2φi
∂ui+1∂ui

(γ, ζ).

As γ < ζ, ∂2φi
∂ui+1∂ui

(γ, ζ) < 0. Thus ∂φi
∂ui

(γ, ui+1) < 0, since ∂φi
∂ui

(γ, γ) = 0. Then

φi(ui, ui+1) > 0 by applying ∂φi
∂ui

(γ, ui+1) < 0 in (3.5.19).

(b) After the Mean value theorem, there exists a γ′ ∈ (u1, u2) such that

∂2φ1
∂u1∂u2

(u1, γ
′) = 1

u2 − u1

(∂φ1
∂u1

(u1, u2)− ∂φ1
∂u1

(u1, u1)
)
.

As ∂2φ1
∂u1∂u2

(u1, γ
′) < 0 and ∂φ1

∂u1
(u1, u1) = 0, one can get ∂φ1

∂u1
(u1, u2) < 0.

(c) In the same way, there exists a ζ ′ ∈ (uK , uK+1) such that

∂2φK
∂uK∂uK+1

(ζ ′, uK+1) = 1
uK − uK+1

( ∂φK
∂uK+1

(uK , uK+1)− ∂φK
∂uK+1

(uK+1, uK+1)
)
.

As ∂2φK
∂uK∂uK+1

(ζ ′, uK+1) < 0 and ∂φK
∂uK+1

(uK+1, uK+1) = 0, one can get ∂φK
∂uK+1

(uK , uK+1) >
0.

Proof of Proposition 3.3.1, continuation. We set x̃∗,M := (−M, x̃∗
2, ..., x̃

∗
K ,M) with a M

large enough such that x̃∗,M ∈ F+
K+1, then for 2 ≤ i ≤ K − 1, Li(x∗) = 2

µ(Vi(x∗))φi(x̃
∗,M ).

Thus Li(x∗) > 0, i = 2, ...,K − 1 owing to Lemma 3.5.2 (i).

For i = 1,

L1(x∗) = A1(x∗)− 2B1,2(x∗)

= 2
µ
(
V1(x∗)

){µ(V1(x∗)
)2 − f(x̃∗

2)
∫
V1(x∗)

(x̃∗
2 − ξ)f(ξ)dξ

}
.
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If we denote D1(x∗) := µ
(
V1(x∗)

)2 − f(x̃∗
2)

∫
V1(x∗)(x̃∗

2 − ξ)f(ξ)dξ, then

D1(x∗) = lim
M→+∞

φ1(x̃∗,M ) + f(−M)
∫
V M

1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ,

where VM
1 (x∗) = [−M, x̃∗

2].

For all M such that −M < x̃∗
2, f(−M)

∫
V M

1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ > 0, then

lim
M→+∞

f(−M)
∫
V M

1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ ≥ 0.

After Lemma 3.5.2 (ii), ∂φ1
∂u1

(u) < 0 for u ∈ F+
K+1, so that for a fixed M1 such that

x̃∗,M1 ∈ F+
K+1, we have φ1(x̃∗,M1) ≤ lim

M→+∞
φ1(x̃∗,M ). We also have φ1(x̃∗,M1) > 0 by

applying Lemma 3.5.2 (1). It follows that

D1(x∗) = lim
M→+∞

φ1(x̃∗,M ) + lim
M→+∞

f(−M)
∫
V M

1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ

≥ φ1(x̃∗,M1) + lim
M→+∞

f(−M)
∫
V M

1 (x∗)

(
ξ − (−M)

)
f(ξ)dξ

> 0.

Then L1(x∗) = 2
µ
(
V1(x∗)

)D1(x∗) > 0.

The proof of LK(x∗) is similar by applying Lemma 3.5.2 (iii). Thus HD(x∗) is positive
definite owing to Gershgorin circle theorem.





Part II:
McKean-Vlasov Equation:
Particle Method, Quantization
Based and Hybrid Scheme,
Application to the Convex
Ordering





Chapter 4

Introduction of Part II

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and let (E, ∥·∥E) be a separable
Banach space. For any random variable X : (Ω,F ,P) → (E, ∥·∥E), we denote by
PX = P◦X−1 its probability distribution on (E, ∥·∥E) and denote by ∥X∥p its Lp−norm
defined by ∥X∥p =

[
E ∥X∥pE

]1/p.

Let (Bt)t≥0 be an (Ft)−standard Brownian motion defined on the probability space
(Ω,F , (Ft)t≥0,P) and valued in Rq. Let Md,q(R) denote the set of matrices with d rows
and q columns, equipped with an operator norm |||A||| := sup|z|≤1 |Az|q, where |·|d denotes
the norm on Rd (we drop the subscript d when there is no ambiguity). We consider an
Rd-valued McKean-Vlasov Equation defined bydXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dBt

∀t ≥ 0, µt denotes the probability distribution of Xt,
(4.0.1)

where X0 is an Rd-valued random variable defined on (Ω,F , (Ft)t≥0,P) and independent
to Brownian motion (Bt)t≥0, b, σ are Borel functions defined on [0, T ] × Rd × Pp(Rd)
having values in Rd and Md,q(R) respectively.

For p ∈ [1,+∞), let Pp(Rd) denote the set of probability distributions on Rd with
p-th finite moment. For any µ, ν ∈ Pp(Rd), the Wasserstein distance Wp on Pp(Rd) is
defined by

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
Rd×Rd

d(x, y)pπ(dx, dy)
) 1

p

= inf
{[

E |X − Y |p
] 1

p
, X, Y : (Ω,A,P)→ (Rd, Bor(Rd)) withPX = µ, PY = ν

}
,

(4.0.2)
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where in the first ligne of (4.0.2), Π(µ, ν) denotes the set of all probability measures
on (Rd × Rd, Bor(Rd)⊗2) with marginals µ and ν. For two Rd-valued random variables
X and Y with respective probability distributions µ and ν in Pp(Rd), with an obvious
abuse of notation, we will also denote by Wp(X,Y ) to represent the Lp-Wasserstein
distance between µ and ν.

We suppose throughout Part II:

Assumption (I): There exists p ∈ [2,+∞) such that ∥X0∥p < +∞. Moreover, b, σ are
continuous in t, Lipschitz continuous in x and in µ with Lipschitz constant L uniformly
with respect to t ∈ [0, T ], i.e.

∀t ∈ [0, T ],∀x, y ∈ Rd and ∀µ, ν ∈ Pp(Rd),
|b(t, x, µ)− b(t, y, ν)| ∨ |||σ(t, x, µ)− σ(t, y, ν)||| ≤ L

[
|x− y|+Wp(µ, ν)

]
.

In the so-called Vlasov case, that is, there exist β : [0, T ] × Rd × Rd → Rd and
a : [0, T ]× Rd × Rd →Md,q(R) such that

b(t, x, µ) =
∫
Rd
β(t, x, u)µ(du) and σ(t, x, µ) =

∫
Rd
a(t, x, u)µ(du), (4.0.3)

a sufficient condition to fulfill Assumption (I) is to assume β and a continuous in t,
Lipschitz continuous in x and u uniformly with respect to t ∈ [0, T ], i.e.

∀t ∈ [0, T ],∀x1, x2, u1, u2 ∈ Rd,

|β(t, x1, u1)− β(t, x2, u2)| ∨ |a(t, x1, u1)− a(t, x2, u2)| ≤ L
(
|x1 − x2|+ |u1 − u2|

)
.

Chapter 5 is devoted to the proof of existence and uniqueness of a strong solution
of the McKean-Vlasov equation and the convergence of theoretical Euler scheme. Our
proof of existence and uniqueness of a strong solution of the McKean-Vlasov equation
(4.0.1) under Assumption (I) is based on Feyel’s method (see Bouleau (1988)[Section
7]). The idea is to define an application ΦC depending on some constant C ∈ R+ on a
product space, namely, “path space × path distribution space” as follows

(Y, PY ) 7→ΦC(Y, PY )

:=
((
X0 +

∫ t

0
b(s, Ys, νs)ds+

∫ t

0
σ(s, Ys, νs)dBs

)
t∈[0,T ]︸ ︷︷ ︸

=:Φ(1)
C (Y,PY )

, PΦ(1)
C (Y,PY )

)
(4.0.4)

then to show that the product space is complete and that ΦC is a contraction mapping
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by controlling the value of C. Thus the existence and uniqueness of a strong solution
of the McKean-Vlasov equation is a direct result by applying the fixed-point theorem.
During the proof, we also give a rigorous definition of such “path space” and “path
distribution space” which will be also used in the sections devoted to numerical schemes.

Once obtained the existence and uniqueness of a strong solution, we show in Section
5.2 the convergence rate of Euler scheme of the McKean-Vlasov equation (4.0.1). Let
M ∈ N∗ and let h = T

M . For m = 0, ...,M , define tm = tMm := m · h = m · TM . The Euler
scheme of the McKean-Vlasov equation (4.0.1) is defined as follows,X̄M

tm+1 = X̄M
tm + h · b(tm, X̄M

tm , µ̄
M
tm) +

√
hσ(tm, X̄M

tm , µ̄
M
tm)Zm+1

X̄0 = X0
, (4.0.5)

where µ̄Mtm denotes the probability distribution of X̄M
tm and Zm,m = 0, ...,M are i.i.d

random variables having an Rq-standard normal distribution N (0, Iq). When there is
no ambiguity, we will omit the superscript M and use X̄tm and µ̄tm instead of X̄M

tm and
µ̄Mtm in the following discussion.

We call (4.0.5) the “theoretical” Euler scheme since it does not directly indicate
how to simulate µ̄tm and we will propose several spatial discretizations later in Chapter
7 to simulate µ̄tm . In Section 5.2, we establish the following convergence rate of the
theoretical Euler scheme

sup
0≤m≤M

Wp(µ̄tm , µtm) ≤
∥∥∥∥∥ sup

0≤m≤M

∣∣Xtm − X̄tm

∣∣∥∥∥∥∥
p

≤ Ceh
1
2 ∧γ , (4.0.6)

with Ce a constant depending on b, σ, L, T, L̃ and ∥X0∥p, under Assumption (I) and the
following condition

∀t, s ∈ [0, T ], s < t, ∀x ∈ Rd, ∀µ ∈ P(Rd), there exist L̃, γ ∈ R+ s.t.
|b(t, x, µ)− b(s, x, µ)| ∨ |||σ(t, x, µ)− σ(s, x, µ)||| ≤ L̃

(
1 + |x|+Wp(µ, δ0)

)
(t− s)γ .

(4.0.7)

In Chapter 6, we establish the functional convex order result for the scaled McKean-
Vlasov equation. For any two random variables X, Y valued in a Banach space (E, ∥·∥E),
if for any convex function φ : E → R such that

Eφ(X) ≤ Eφ(Y ) as soon as these two expectations make sense,

then we call X is dominated by Y for the convex order and denote by X ⪯ cv Y . Let
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(Xt)t∈[0,T ], (Yt)t∈[0,T ] be two processes defined by

dXt = (αXt + β)dt+ σ(t,Xt, µt)dBt, X0 ∈ Lp(Rd),
dYt = (αYt + β) dt+ θ(t, Yt, νt) dBt, Y0 ∈ Lp(Rd), (4.0.8)

where α, β ∈ R and for any t ∈ [0, T ], µt = PXt , νt = PYt . We first prove that the
theoretical Euler scheme (4.0.5) of the McKean-Vlasov equation propagates the convex
order of random variables. Let X̄tm , Ȳtm ,m = 0, ...,M respectively denote the theoretical
Euler scheme of (Xt)t∈[0,T ], (Yt)t∈[0,T ] defined by (4.0.5). If X0 ⪯ cv Y0 and the coefficient
functions σ, θ are ordered by a matrix order in the sense that

∀t ∈ [0, T ], ∀x ∈ Rd, ∀µ ∈ P(Rd),
θ(t, x, µ)θ(t, x, µ)∗ − σ(t, x, µ)σ(t, x, µ)∗ is a positive semi-definite matrix,

and σ is convex in x and non-decreasing in µ with respect to the convex order, then for any
m = 0, ...,M , X̄tm ⪯ cv Ȳtm . Moreover, owing to the convergence result of the theoretical
Euler scheme (4.0.6), we derive a functional convex order result for the processes
X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ], i.e. for any convex function F : C([0, T ],Rd) → R
having an r-polynomial growth with respect to the sup-norm, 1 ≤ r ≤ p, in the sense
that

∀α ∈ C([0, T ],Rd), ∃C ≥ 0 s.t. |F (α)| ≤ C(1 + ∥α∥rsup)

we have
EF (X) ≤ EF (Y ). (4.0.9)

This result generalizes the functional convex order results in Pagès (2016) established for
the one dimensional martingale diffusion, which is the solution of stochastic differential
equation dXt = σ(t,Xt)dBt. Furthermore, we generalize the above functional convex
result (4.0.9) to a function

G : (α, (γt)t∈[0,T ]) ∈ C([0, T ],Rd)× C([0, T ],Pp(Rd))→ G(α, (γt)t∈[0,T ]) ∈ R

convex in α, non-decreasing for the convex order in (γt)t∈[0,T ] and having a r-polynomial
growth, 1 ≤ r ≤ p and obtain a new convex order result for X and Y and its probability
distributions defined in (4.0.8) as follows,

EG(X, (µt)t∈[0,T ]) ≤ EG(Y, (νt)t∈[0,T ]).

Chapter 7 is devoted to the study of (several) simulable discretization schemes for the
McKean-Vlasov equation. In order to simplify the notation, the discussion of Chapter 7
is based on the homogeneous McKean-Vlasov equation which means that the coefficient
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functions b and σ do not depend on t, i.e.

(A) :


dXt = b(Xt, µt)dt+ σ(Xt, µt)dBt
X0 : (Ω,F ,P)→

(
Rd,B(Rd)

)
random variable indenpendent to (Bt)t∈[0,T ]

∀t ≥ 0, µt denotes the probability distribution of Xt

.

In the homogeneous setting, b and σ automatically satisfy the condition in (4.0.7).
Let X1,N

0 , ..., XN,N
0 be i.i.d random variables with the same distribution as X0 in (A)

and let (Bn
t )t≥0, n = 1, ..., N be i.i.d Ft-standard Brownian motions independent to

(X1,N
0 , ..., XN,N

0 ). The N -particle system associated to the McKean-Vlasov equation (A)
is defined by

(B) :


∀n ∈ {1, ..., N},
dXn,N

t = b(Xn,N
t , µNt )dt+ σ(Xn,N

t , µNt )dBn
t ,

for any t ∈ [0, T ], µNt := 1
N

∑N
n=1 δXn,N

t
,

where δx denotes the Dirac mass at x. The convergence of µNt to µt and the asymptotic
mutual independence of the componentsXn,N

t as n→ +∞ is usually called by propagation
of chaos in the literature (see for example Gärtner (1988) and Lacker (2018), also
Chassagneux et al. (2019) for a detailed analysis of the weak error).

We rewrite the theoretical Euler scheme in the homogeneous case,

(C) :

X̄tm+1 = X̄tm + h · b(X̄tm , µ̄tm) +
√
hσ(X̄tm , µ̄tm)Zm+1

X̄0 = X0, µ̄tm = PX̄tm

,

and we propose several spatial discretizations in Chapter 7.

A first method of the spatial discretization is the particle method inspired by the
N -particle system (B), which is the Euler scheme of the N -particle system (B). Let
X̄1,N

0 , ..., X̄N,N
0 be i.i.d copies of X0 in (A). We take the same M and h as in (C) and

the particle method is defined by

(D) :


∀n ∈ {1, ..., N},
X̄n,N
tm+1 = X̄n,N

tm + hb(X̄n,N
tm , µ̄Ntm) +

√
hσ(X̄n,N

tm , µ̄Ntm)Znm+1

µ̄Ntm := 1
N

∑N
n=1 δX̄n,N

tm

,

where Znm, n = 1, ..., N,m = 0, ...,M i.i.d∼ N (0, Iq). In the particle method, we use µ̄Ntm
as an estimator of µ̄tm for each time step. In one dimensional setting, the convergence
rate of µ̄Ntm to µ̄m as N → +∞ has been established in Bossy and Talay (1997). For the
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convergence rate in high dimension (d ≥ 2), we obtain in Section 7.1 that∥∥∥∥∥ sup
1≤m≤M

Wp(µ̄Ntm , µ̄tm)
∥∥∥∥∥
p

≤ Cd,p,L,T
∥∥∥Wp(µ̄, νN )

∥∥∥
p
,

where µ̄ denotes the probability distribution of X̄ = (X̄t)t∈[0,T ] defined further in (5.2.3)
and νN denotes the empirical measure of µ̄. Moreover, if ∥X0∥p+ε < +∞ for some ε > 0,
then we also derive in Section 7.1 from recent results on empirical measures (see Fournier
and Guillin (2015)) that∥∥∥∥∥ sup

1≤m≤M
Wp(µ̄Ntm , µ̄m)

∥∥∥∥∥
p

≤ ‹C
×


n

− 1
2p + n

− ε
p(p+ε) if p > d/2 and ε ̸= p

n
− 1

2p
[

log(1 + n)
] 1

p + n
− ε

p(p+ε) if p = d/2 and ε ̸= p

n− 1
d + n

− ε
p(p+ε) if p ∈ (0, d/2) and p+ ε ̸= d

(d−p)

,

where ‹C is a constant depending on p, ε, d, b, σ, L, T .

Another method to approximate µ̄tm ,m = 0, ...,M in the theoretical Euler scheme
(C) is the quadratic optimal quantization method, which is also known as K-means
method. Now we recall some definitions and properties of this method.

Let Y : (Ω,F ,P) → (Rd, |·|) be a random variable with probability distribution
ν ∈ P2(Rd), where |·| is the Euclidean norm on Rd. The quadratic quantization error
function at level K of Y (or of ν), denoted by eK,ν (or eK,Y ), is defined by

y = (y1, ..., yK) ∈ (Rd)K 7→ eK,ν(y) :=
[ ∫

Rd
min

1≤k≤K
|ξ − yk|2 ν(dξ)

]1/2
. (4.0.10)

Moreover, the L2-distortion function of ν (or of Y ) at level K, denoted by DK,ν , is
defined by DK,ν = e2

K,ν .

In the framework of the optimal quantization, the variable y ∈ (Rd)K of the quanti-
zation error function eK,ν is called a quantizer. A K-tuple y∗ = (y∗

1, ..., y
∗
K) ∈ (Rd)K is

called an optimal quantizer of Y (or of ν) at level K if

y∗ ∈ argmin eK,ν ( or equivalently, y∗ ∈ argminDK,ν). (4.0.11)

For the proof of the existence of an optimal quantizer, we refer to Graf and Luschgy
(2000)[Theorem 4.12] among other references.

Quantization theory has a close connection with the Voronoï partition. Let y =
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(y1, ..., yK) be a quantizer at level K. The Voronoï cell (or Voronoï region) generated by
yk is defined by

Vk(y) = Vyk
(y) :=

{
ξ ∈ Rd : |ξ − yk| = min

1≤j≤K
|ξ − yj |

}
, (4.0.12)

and
(
Vk(y)

)
1≤k≤K is called the Voronoï diagram of y which is a finite covering of Rd. A

Borel partition
(
Ck(y)

)
1≤k≤K is called a Voronoï partition of Rd generated by y if

∀ k ∈ {1, ...,K}, Ck(y) ⊂ Vk(y). (4.0.13)

The boundary of a Voronoï cell Vk(y), denoted by ∂ Vk(y), is contained in ∪j ̸=kHk,j ,
where Hk,j is the median hyperplane of yk and yj

Hk,j :=
{
ξ ∈ Rd : |ξ − yk| = |ξ − yj |

}
.

For a fixed quantizer y = (y1, ..., yK) ∈ (Rd)K and a Voronoï partition
(
Ck(y)

)
1≤k≤K

generated by y, we can define a projection function Projy by

ξ ∈ Rd 7→ Projy(ξ) =
K∑
k=1

yk1Ck(y)(ξ). (4.0.14)

Then for an Rd-valued variable Y with probability distribution ν ∈ P2(Rd), we define
its projection on y by “Y y := Projy(Y ). (4.0.15)

When there is no ambiguity, we write “Y instead of “Y y. If y∗ = (y∗
1, ..., y

∗
K) is an optimal

quantizer of ν and if ν̂∗ denotes the probability distribution of Projy∗(Y ), we have

eK,ν(y∗) =
∥∥∥Y − “Y y∗

∥∥∥
2

=W2(ν, ν̂∗) (4.0.16)

and ν
(
∂Vk(y∗)

)
= 0 for every k = 1, ...,K (see Graf and Luschgy (2000)[Lemma 3.4 and

Theorem 4.2] for the proof of (4.0.16)).

The optimal quantizer has the following properties,

Proposition 4.0.1. (a) (Stationary of optimal quantization) Let X be a random vari-
able with probability distribution ν ∈ P2(Rd) and assume that card(supp(ν)) ≥ K.
Any quadratic optimal quantizer x = (x∗

1, ..., x
∗
K) ∈ (Rd)K of X is stationary in the

following sense,
E (X | “Xx∗) = “Xx∗

,

where “Xx∗ is defined in (4.0.15).
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(b) (Non-asymptotic Zador’s theorem) For every ν ∈ P2+ε(Rd) with ε > 0 and for every
quantization level K, there exists a constant Cd,ε ∈ (0,+∞) which depends on d and
ε such that

eK,ν(y∗) ≤ Cd,ε · σ2+ε(ν)K1/d, (4.0.17)

where y∗ is an optimal quantizer of ν and for r ∈ (0,+∞),

σr(ν) := min
a∈Rd

[ ∫
Rd
|ξ − a|r ν(dξ)

]1/r
.

(c) (Consistency of the optimal quantization) If νn ∈ P2+η(Rd), n ∈ N∗ ∪{∞}, for some
η > 0 such that W2+η(νn, ν∞) n→+∞−−−−−→ 0 and card

(
supp(νn)

)
≥ K, n ∈ N∗ ∪ {∞},

then any limiting point of K-level quadratic optimal quantizer y(n) of νn is an optimal
quantizer of ν∞, and

DK,ν∞(y(n))− inf
y∈(Rd)K

DK,ν∞(y) ≤

W2(νn, ν∞)
[Cν∞,d,ε

K−1/d + 2W2(νn, ν∞) +
‹Cd,ε
K−1/dWp(νn, ν∞)

]
.

We refer to Pagès (2018)[Proposition 5.1] for the proof of Proposition 4.0.1-(a), to
Luschgy and Pagès (2008) and Pagès (2018)[Theorem 5.2] for the proof of (b) and refer
to Liu and Pagès (2018) for the proof of (c).

Quadratic optimal quantizer can be computed by several numerical methods, for
example the CLVQ algorithm and the Lloyd I algorithm presented in the introduction
of this thesis (Section 1.1.3.2). In Chapter 7, we will use Lloyd I algorithm to find the
optimal quantizer, but we could also use the CLVQ algorithm as well.

The idea of applying the optimal quantization method to the simulation of the
McKean-Vlasov equation was firstly introduced in Gobet et al. (2005)[Section 4] in a
slightly different framework. Let x(m) = (x(m)

1 , ..., x
(m)
K ), m = 1, ...,M be the quantizer of

X̄tm in the m-th Euler step. The quantization based Euler scheme of the McKean-Vlasov
equation (A) is defined by

(E) :



‹X0 = X0, “X0 = Projx(0)(‹X0)‹Xtm+1 = “Xtm + h · b(“Xtm , µ̂tm) +
√
hσ(“Xtm , µ̂tm)Zm+1, m = 0, ...,M − 1

where h = T
M and µ̂tm = P“Xtm“Xtm+1 = Projx(m+1)(‹Xtm+1),

.

Such quantization based Euler schemes have been introduced in Pagès and Sagna (2015)
for standard Brownian diffusions. They also appear in a somewhat hidden way in Pages
et al. (2004) and Gobet et al. (2005). Same as the theoretical Euler scheme, (E) does
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not indicate how to explicitly express µ̂tm , so we call (E) the theoretical quantization
procedure. We propose the following solutions to explicitly express µ̂tm .

(1) In the Vlasov case (4.0.3), we can use the recursive quantization method, which
is firstly introduced in Pagès and Sagna (2015) and Gobet et al. (2006) for the
stochastic differential equation dXt = b(t,Xt)dt + σ(t,Xt)dBt. By the recursive
quantization method, we obtain the Markovian transitions of (“Xtm , µ̂tm) based on the
quantized scheme (E). Let p(m) = (p(m)

1 , ..., p
(m)
K ) denote the corresponding weight

of quantizer x(m) = (x(m)
1 , ..., x

(m)
K ). Thus µ̂tm = ∑K

k=1 δx(m)
k

p
(m)
k . The Markovian

transition of (“Xtm , µ̂tm) that we propose in Section 7.3 can be written as (with an
obvious slight abuse of notation)

P
(“Xtm+1 = x

(m+1)
j | “Xtm = x

(m)
i , p(m))

= P
[(
x

(m)
i + h

K∑
k=1

p
(m)
k β(x(m)

i , x
(m)
k ) +

√
h

K∑
k=1

p
(m)
k a(x(m)

i , x
(m)
k )Zm+1

)
∈ Cj(x(m+1))

]

so that given p(m), we can compute p(m+1)
j for every j = 1, ...,K by

p
(m+1)
j = P

(“Xtm+1 = x
(m+1)
j

∣∣ p(m))
=

K∑
i=1

P
(“Xtm+1 = x

(m+1)
j | “Xtm = x

(m)
i , p(m)) · P(“Xtm = x

(m)
i ).

A proof of the above equalities is provided in Section 7.3, where we also explain in
the same section how to combine this scheme with the Lloyd I algorithm to optimize
the quantizer x(m) at each time step, as proposed in Pagès and Sagna (2015).

(2) The second solution to simulate µ̂tm is to use the optimal quantizer of the normal
distribution N (0, Iq) and its weight, which can be downloaded from the website

www.quantize.maths− fi.com/gaussian _ database

for dimensions q = 1, ..., 10. Let x(m) = (x(m)
1 , ..., x

(m)
K ) denote the quantizer of X̄tm

in m-th Euler step. Let z = (z1, ..., zJ) be the optimal quantizer of N (0, Iq) with
J > K and let w = (w1, ..., wJ) be the corresponding weight vector of the quantizer
z. This simulation method by using the optimal quantizer of N (0, Iq)(1), that is,

(1) By a slight abus of notation, we use here the same notation as in (E).
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replacing Zm+1 by Ẑzm+1, reads

(H) :



‹X0 = X0, “X0 = Projx(0)(‹X0)‹Xtm+1 = “Xtm + h · b(“Xtm , µ̂tm) +
√
hσ(“Xtm , µ̂tm)Ẑzm+1, m = 0, ...,M − 1

where h = T
M and µ̂tm = P“Xtm“Xtm+1 = Projx(m+1)(‹Xtm+1),

,

where Ẑzm
i.i.d∼

∑J
j=1 δzjwj and (Ẑzm)m=1,...,M are independent to X0. This new

scheme, denoted by (H), will be called the doubly quantized scheme. We will show
in Section 7.4 the error analysis of this scheme.

(3) Once we obtain the convergence of Wp(µ̄Ntm , µ̄tm) in Section 7.1, it follows from
Proposition 4.0.1-(c) that we may use the optimal quantizer of µ̄Ntm as a quasi-optimal
quantizer of µ̄tm . Let x(m) = (x(m)

1 , ..., x
(m)
K ), m = 0, 1, ...,M , be the quantizer for

the empirical measure µ̄Ntm in (D). We implement the optimal quantization method
for the particle system (D) as follows:

(F ) :



∀n ∈ {1, ..., N},‹Xn,N
tm+1 = ‹Xn,N

tm + h · b(‹Xn,N
tm , µ̂Ktm) +

√
hσ(‹Xn,N

tm , µ̂Ktm)Znm+1

µ̂Ktm =
( 1
N

∑N
n=1 δ‹Xn,N

tm

)
◦ Proj−1

x(m) = ∑K
k=1

[
δ
x

(m)
k

·
∑N
n=1 1Vk(x(m))(‹Xn,N

tm )
]

X̄n,N
0

i.i.d∼ X0, Znm
i.i.d∼ N (0, Iq).

We call (F ) the hybrid particle-quantization scheme.

Chapter 7 is displayed as Figure 4.1 in which we also briefly mention the convergence
rate of the different methods.

At the end of Chapter 7, we give two examples of simulation where we test the
above numerical methods. The first one is the simulation of a one-dimensional Burgers
equation introduced in Sznitman (1991) and Bossy and Talay (1997). The solution of
this Burgers equation admits a closed form so that we can compare the accuracy of
different methods. The second example is 3-dimensional which was firstly introduced
and simulated in Baladron et al. (2012) and also simulated in Reis et al. (2018).
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X0 is an Rd-valued random variable, for
t ∈ [0, T ],dXt = b(Xt, µt)dt + σ(Xt, µt)dBt

µt = PXt

A. McKean-Vlasov equation

N particles X1,N , ..., XN,N ,
dXn,N

t = b(Xn,N
t , µN

t )dt + σ(Xn,N
t , µN

t )dBn
t

µN
t = 1

N

∑N

n=1 δ
X

n,N
t

Xn,N
0

i.i.d∼ X0

B. N-particle system

M ∈ N∗, h = T
M

, tm = m · h,
Zm

i.i.d∼ N (0, Iq)
X̄tm+1 = X̄tm + b(X̄tm , µ̄tm )h

+σ(X̄tm , µ̄tm )
√

hZm+1

µ̄tm = PX̄tm
; X̄0 = X0

C. Theoretical Euler scheme
Zn

m
i.i.d∼ N (0, Iq), ∀n ∈ {1, ..., N}

X̄n,N
tm+1 = X̄n,N

tm
+ b(X̄n,N

tm
, µ̄N

tm
)h

+σ(X̄n,N
tm

, µ̄N
tm

)
√

hZn
m+1

µ̄N
tm

= 1
N

∑N

n=1 δ
X̄

n,N
tm

X̄n,N
0

i.i.d∼ X0

D. Discrete N-particle system

x(m) = (x(m)
1 , ..., x

(m)
K ) quantizer for the

m-th Euler step.

‹Xtm+1 = “Xtm + b(“Xtm , µ̂tm )h
+σ(“Xtm , µ̂tm )

√
hZm+1,

µ̂tm = PX̂tm
; X̄0 = X0“Xtm+1 = Projx(m+1) (‹Xtm+1 )

E. Theoretical Quantization

Zn
m

i.i.d∼ N (0, Iq), x(m) = (x(m)
1 , ..., x

(m)
K )

quantizer for the m-th Euler step.
∀n ∈ {1, ..., N}

‹Xn,N
tm+1 = ‹Xn,N

tm
+ b(‹Xn,N

tm
, µ̂K

tm
)h

+σ(‹Xn,N
tm

, µ̂K
tm

)
√

hZn
m+1

µ̂K
tm

=
( 1

N

∑N

n=1 δ
X̃

n,N
tm

)
◦ Proj−1

x(m)

=
∑K

k=1 δ
x

(m)
k

[∑N

n=1 1Vk(x(m))(‹Xn,N
tm

)
]‹Xn,N

0 = X̄n,N
0

F. Hybrid particle-quantization scheme

In the Vlasov case, compute a Markovian
transition:

(“Xtm+1 , µ̂m+1)

= F (“Xtm , µ̂m, Zm+1, x(m+1)).
where F has an explicit formula.

G. Recursive Quantization

x(m) = (x(m)
1 , ..., x

(m)
K ) quantizer for X̄tm ;

Ẑm
i.i.d∼

∑J

j=1 δzj wj .

‹X0 = X0, “X0 = Projx(0) (‹X0)‹Xtm+1 = “Xtm + h · b(“Xtm , µ̂tm )
+

√
h σ(“Xtm , µ̂tm )Ẑm+1,

µ̂tm = PX̂tm
; ‹X0 = X0“Xtm+1 = Projx(m+1) (‹Xtm+1 ),

H. Doubly quantized scheme

Propagation
of chaos

∥X̄tm −Xtm ∥
p

∼O(M−1/2)

Section 5.2

Wp(µ̄N
tm
, µ̄tm )

∼O(N−1/d)

Section 7.1

For a fixed M
∥“Xtm −X̄tm∥2∼O(K−1/d)

Section 7.2

For a fixed M
Wp(µ̂K

tm
, µ̄N

tm
)∼O(K−1/d)

Section 7.5

Section 7.3 Section 7.4

Figure 4.1 Structure of this paper
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Main algorithms

4.0.0.1 A review of the Lloyd I algorithm

Lloyd I algorithm, described as follows, is an efficient way to numerically find a
quadratic optimal quantizer for a probability distribution ν ∈ P2(Rd).

Algorithm 0: Lloyd I algorithm
Set K ∈ N∗

Input : y[0] = (y[0]
1 , ..., y

[0]
K ) such that y[0]

k ⊂ supp(ν), k = 1, ...,K
repeat

y
[l+1]
k :=

∫
Ck(y[l]) ξν(dξ)
ν
(
Ck(y[l])

) , k = 1, ...,K, (4.0.18)

until {y[l+1]
1 , ..., y

[l+1]
K } = {y[l]

1 , ..., y
[l]
K} or other stopping criterion occurs

Output : y[l] = (y[l]
1 , ..., y

[l]
K)

4.0.0.2 Algorithm based on the particle method (D)

Assume that b(x, µ) and σ(x, µ) are calculable for a countable sum of weighted dirac
measures µ = ∑N

i=1 piδyi .

Algorithm 1: Particle method
Set N,M ∈ N∗

begin Euler step 0
Simulate N random variables X1,N

0 , ..., XN,N
0

i.i.d∼ X0

repeat
Compute for every n ∈ {1, ..., N},

X̄n,N
tm+1 = X̄n,N

tm + b(X̄n,N
tm , µ̄Ntm)h+ σ(X̄n,N

tm , µ̄Ntm)
√
hZnm+1, (4.0.19)

where µ̄Ntm := 1
N

∑N
n=1 δX̄n,N

tm

.

until m+ 1 > M
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4.0.0.3 Algorithm based on the recursive quantization method (G)

The algorithm based on the recursive quantization method is:

Algorithm 2: Recursive quantization method-Part 1
Function Euler(x, p):

Input : x = (x1, ..., xK) ∈ (Rd)K , p = (p1, ..., pK) ∈ [0, 1]K
Output : y = (y1, ..., yK) ∈ (Rd)K
Simulate Z ∼ N (0, Iq)

Compute yi = xi + h
K∑
k=1

β(xi, xk)pk +
√
h

K∑
k=1

a(xi, xk)pk · Z, i = 1, ...,K.

Function f(ξ : m,Σ): /* density function of N (m,Σ2) */
Input :m = (m1, ...,md) ∈ Rd, Σ ∈Md,d

Output : function f

f(ξ) = 1√
(2π)d |Σ|

exp
(
− 1

2(ξ −m)⊤Σ−1(ξ −m)
)

Function Transition(x, p,A):
Input : x = (x1, ..., xK) ∈ (Rd)K , p = (p1, ..., pK) ∈ [0, 1]K , A ∈ B(Rd)
Output : e = (e1, ..., eK) ∈ (Rd)K , p = (p1, ..., pK) ∈ [0, 1]K
Compute m = (m1, ...,mK) ∈ (Rd)K and Σ = (Σ1, ...,ΣK) ∈ (Md,d)K by

mi = xi+h
K∑
k=1

β(xi, xk)pk, Σi = h
[ K∑
k=1

a(xi, xk)pk
]⊤[ K∑

k=1
a(xi, xk)pk

]
, i = 1, ...,K.

Compute e = (e1, ..., eK) by ei =
K∑
i=1

[ ∫
A
ξf(ξ : mi,Σi)λd(dξ)

]
pi, i = 1, ...,K.

Compute p = (p1, ..., pK) by pi =
K∑
i=1

[ ∫
A
f(ξ : mi,Σi)λd(dξ)

]
pi, i = 1, ...,K.
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Algorithm 2: Recursive quantization method-Part 2
Set K,M ∈ N∗

begin Euler step 0
Choose x(0) = (x(0)

1 , ..., x
(0)
k ) ⊂ supp(µ0)(a).

begin Lloyd iteration
Define Υ [0] = (y[0]

1 , ..., y
[0]
K ) by letting y[0]

k ← x
(0)
k , k = 1, ...,K.

repeat

Compute y[l+1]
k =

∫
Ck(Υ [l]) ξµ0(dξ)
µ0

(
Ck(Υ [l])

) , k = 1, ...,K.

until Υ [l+1] = Υ [l] or some stopping criterion occurs

Set x(0) = (x(0)
1 , ..., x

(0)
k )← (y[l]

1 , ..., y
[l]
K),

Compute p(0)
k = µ0

(
Ck(x(0))

)
, k = 1, ...,K.

Euler step m −→ Euler step m+ 1:
repeat

Input : x(m) = (x(m)
1 , ..., x

(m)
K ) ∈ (Rd)K , p(m) = (p(m)

1 , ..., p
(m)
K ) ∈ [0, 1]K

Compute x(m+1) = (x(m+1)
1 , ..., x

(m+1)
k ) by x(m+1)

k = Euler(x(m), p(m))[k].
begin Lloyd iteration

Define Υ [0] = (y[0]
1 , ..., y

[0]
K ) by letting y[0]

k ← x
(m+1)
k , k = 1, ...,K.

repeat

Compute y[l+1]
k = Transition

(
x(m),p(m),Ck(y[l])

)
[e]

Transition
(
x(m),p(m),Ck(y[l])

)
[p]

, k = 1, ...,K.

until Υ [l+1] = Υ [l] or some stopping criterion occurs
(b)

Set x(m+1) = (x(m+1)
1 , ..., x

(m+1)
k )← (y[l]

1 , ..., y
[l]
K),

Compute p(m+1)
k = Transition

(
x(m), p(m), Ck(x(m+1))

)
[p], k = 1, ...,K.

Output : x(m+1) = (x(m+1)
1 , ..., x

(m+1)
k ), p(m+1) = (p(m+1)

1 , ..., p
(m+1)
K )

until m+ 1 > M

(a) x(0) can be obtained by sampling K random variables with the probability distribution µ0 or the
self-quantization method.

(b) In the Lloyd iteration, we need to compute the integral of the density function f(ξ) and ξ · f(ξ)
over a Voronoï cell. In dimension 1, there exists a close formula to compute them (see further
(7.3.8)). In low dimension, we recommend the package Qhull (http://www.qhull.org) or package
pysdot (https://github.com/sd-ot/pysdot). In high dimension, we recommend to use other algorithms
proposed in this chapter.
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4.0.0.4 Algorithm based on the doubly quantized scheme (H)

Assume that b(x, µ) and σ(x, µ) are calculable for a countable sum of weighted
dirac measures µ = ∑N

i=1 piδyi . Assume that we have already the optimal quantizer
z = (z1, ..., zJ) of N (0, Iq) and its corresponding weight w = (w1, ..., wJ) with J large
enough.

Algorithm 3: Doubly quantized scheme

Function f(x, µ, z):
Input : x ∈ Rd, µ = ∑K

k=1 δxk
wk, z ∈ Rq.

Output : x+ h · b(x, µ) +
√
hσ(x, µ)z

Set K,M ∈ N∗

begin Euler step 0
Choose x(0) = (x(0)

1 , ..., x
(0)
k ) ⊂ supp(µ0).

begin Lloyd iteration
Define Υ [0] = (y[0]

1 , ..., y
[0]
K ) by letting y[0]

k ← x
(0)
k , k = 1, ...,K.

repeat

Compute y[l+1]
k =

∫
Ck(Υ [l]) ξµ0(dξ)
µ0

(
Ck(Υ [l])

) , k = 1, ...,K.

until Υ [l+1] = Υ [l] or some stopping criterion occurs

Set x(0) = (x(0)
1 , ..., x

(0)
k )← (y[l]

1 , ..., y
[l]
K),

Compute p(0)
k = µ0

(
Ck(x(0))

)
, k = 1, ...,K.

Euler step m −→ Euler step m+ 1:
repeat

Input : x(m) = (x(m)
1 , ..., x

(m)
K ) ∈ (Rd)K , p(m) = (p(m)

1 , ..., p
(m)
K ) ∈ [0, 1]K .

Thus µ̂tm = ∑K
k=1 δx(m)

k

p
(m)
k .

Compute fkj = f(x(m)
k , µ̂tm , zj), k = 1, ...,K, j = 1, ..., J.

begin Lloyd iteration
Define Υ [0] = (y[0]

1 , ..., y
[0]
K ) by letting y[0]

k ← x
(m+1)
k , k = 1, ...,K.

repeat

Compute y[l+1]
i =

∑
kj
p

(m)
k

wjfkj1{fkj ∈Ci(y[l])}∑
kj
p

(m)
k

wj1{fkj ∈Ci(y[l])}

, i = 1, ...,K.

until Υ [l+1] = Υ [l] or some stopping criterion occurs

Set x(m+1) = (x(m+1)
1 , ..., x

(m+1)
k )← (y[l]

1 , ..., y
[l]
K),

Set p(m+1)
k = ∑

kj p
(m)
k wj1{fkj∈Ck(y[l])}, k = 1, ...,K.

Output : x(m+1) = (x(m+1)
1 , ..., x

(m+1)
k ), p(m+1) = (p(m+1)

1 , ..., p
(m+1)
K ).

until m+ 1 > M
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4.0.0.5 Algorithm based on the hybrid particle-quantization scheme (F )

Assume that b(x, µ) and σ(x, µ) are calculable for a countable sum of weighted dirac
measures µ = ∑N

i=1 piδyi . The algorithm based on the hybrid scheme (F ) is:

Algorithm 4: Hybrid particle-quantization scheme
Set K,M,N ∈ N∗ with K ≤ N .
begin Euler step 0

Simulate X1,N
0 , ..., XN,N

0
i.i.d∼ X0.

Choose x(0) = (x(0)
1 , ..., x

(0)
k ) ⊂ supp(PX0).

begin Lloyd iteration
Define Υ [0] = (y[0]

1 , ..., y
[0]
K ) by letting y[0]

k ← x
(0)
k , k = 1, ...,K.

repeat

Compute y[l+1]
k =

∑N
n=1X

n,N
0 1Ck(y[l])(X

n,N
0 )∑N

n=1 1Ck(y[l])(X
n,N
0 )

, k = 1, ...,K.

until Υ [l+1] = Υ [l] or some stopping criterion occurs

Set x(0) = (x(0)
1 , ..., x

(0)
k )← (y[l]

1 , ..., y
[l]
K),

Compute p(0)
k = 1

N

∑N
n=1 1Ck(y[l])(X

n,N
0 ), k = 1, ...,K.

Euler step m −→ Euler step m+ 1:
repeat

Input : x(m) = (x(m)
1 , ..., x

(m)
K ) ∈ (Rd)K , p(m) = (p(m)

1 , ..., p
(m)
K ) ∈ [0, 1]K

Simulate N -particle X1,N
m+1, ..., X

N,N
m+1 by

Xn,N
m+1 = Xn,N

m + h · b
(
Xn,N

m ,

K∑
k=1

δ
x

(m)
k

p
(m)
k

)
+
√
h · σ

(
Xn,N

m ,

K∑
k=1

δ
x

(m)
k

p
(m)
k

)
Zm+1, n = 1, ..., N.

Compute the initial quantizer x(m+1) = (x(m+1)
1 , ..., x

(m+1)
k ) by

x
(m+1)
j = x

(m)
j + h · b

(
x

(m)
j ,

K∑
k=1

δ
x

(m)
k

p
(m)
k

)
+
√
h · σ

(
x

(m)
j ,

K∑
k=1

δ
x

(m)
k

p
(m)
k

)
Zm+1, j = 1, ...,K.

begin Lloyd iteration
Define Υ [0] = (y[0]

1 , ..., y
[0]
K ) by letting y[0]

k ← x
(m+1)
k , k = 1, ...,K.

repeat

Compute y[l+1]
k =

∑N
n=1X

n,N
m+11Ck(y[l])(X

n,N
m+1)∑N

n=1 1Ck(y[l])(X
n,N
m+1)

, k = 1, ...,K.

until Υ [l+1] = Υ [l] or some stopping criterion occurs

Set x(m+1) = (x(m+1)
1 , ..., x

(m+1)
k )← (y[l]

1 , ..., y
[l]
K),

Compute p(m+1)
k = 1

N

∑N
n=1 1Ck(y[l])(X

n,N
m+1), k = 1, ...,K.

until m+ 1 > M
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Frequently used notation

(Ω,F , (Ft)t≥0,P) filtered probability space
(E, ∥·∥E) Banach space with norm ∥·∥E
PX the probability distribution of the random variable X,

i.e. PX = P ◦X−1

∥·∥p Lp-norm of the random variable
|·| norm on Rd, Euclidean norm in Section 7.2-7.5
(Bt)t≥0 Ft-standard Brownian motion, valued in Rq

Md,q(R) set of matrices with size d× q
|||·||| norm on Md,q(R), defined by |||A||| := sup|z|q≤1 |Az|
δx Dirac measure on x

P(E) set of probability distributions on E

Pp(E) set of probability distributions on E with p-th finite moment
Wp Wasserstein distance on Pp(Rd)
L Lipschitz constant in Assumption (I)
Iq q × q identity matrix
N (0, Iq) Rq-standard normal distribution
card cardinality
supp(µ) support of a probability distribution µ

Vk(x) Voronoï cell generated by x ∈ (Rd)K , defined in (4.0.12)
(Ck(x))1≤k≤K Voronoï partition generated by x ∈ (Rd)K , defined in (4.0.13)
eK,ν quadratic quantization error function, defined in (4.0.10)
DK,ν quadratic distortion function, DK,ν = e2

K,ν

Projx projection function on x, defined in (4.0.14)
C([0, T ],Rd) the space of Rd-valued continuous applications defined on [0, T ]
∥·∥sup sup norm on C([0, T ],Rd), defined by ∥α∥sup = supt∈[0,T ] |αt|
LpC([0,T ],Rd)(Ω,F ,P) Lp-space of random variables defined on (Ω,F ,P)

and valued in C([0, T ],Rd)
∥·∥p,C,T norm on LpC([0,T ],Rd)(Ω,F ,P), defined in (5.1.1)
Hp,C,T space of Ft-adapted process in LpC([0,T ],Rd)(Ω,F ,P)
Pp

(
C([0, T ],Rd)

)
probability distribution µ on C([0, T ],Rd) s.t.∫

C([0,T ],Rd) ∥ξ∥
p
sup µ(dξ) < +∞

Wp Wasserstein distance on Pp
(
C([0, T ],Rd)

)
Π(µ, ν) set of all probability distribution with marginals µ and ν

C
(
[0, T ],Pp(Rd)

)
(µt)t∈[0,T ] s.t. t 7→ µt is continuous,
and µt ∈ P(Rd) for every t ∈ [0, T ]

dC distance on C
(
[0, T ],Pp(Rd)

)
, defined in (5.1.5)

πt marginal projection on C([0, T ],Rd)→ Rt: α 7→ πt(α) = αt

Wp,t truncated Wasserstein distance defined in (5.1.6)
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dH×P distance on Hp,C,T × C
(
[0, T ],Pp(Rd)

)
defined in (5.1.7)

ι application defined on Pp
(
C([0, T ],Rd)

)
→ C

(
[0, T ],Pp(Rd)

)
by µ 7→ ι(µ) := (µ ◦ π−1

t )t∈[0,T ] = (µt)t∈[0,T ]
⊥⊥ independence of two random variables
⪯ cv convex order between two random variables or two probability

distributions, see Definition 6.0.1
⪯ partial matrix order in Md×q, defined in (6.0.3)



Chapter 5

Existence and Uniqueness of a
Strong Solution of the
McKean-Vlasov Equation,
Convergence of the Theoretical
Euler Scheme

In this chapter, we first discuss the existence and uniqueness of a strong solution of
the McKean-Vlasov equation

dXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dBt,
X0 : (Ω,F ,P)→

(
Rd,B(Rd)

)
random variable, X0 ⊥⊥ (Bt)t∈[0,T ],

∀t ≥ 0, µt denotes the probability distribution of Xt,

(5.0.1)

under Assumption (I). Furthermore, in Section 5.2, we establish the Lp-convergence rate
of its theoretical Euler scheme:

X̄tm+1 = X̄tm + h · b(tm, X̄tm , µ̄tm) +
√
hσ(tm, X̄tm , µ̄tm)Zm+1,

µ̄tm = PX̄tm
, Zm

i.i.d∼ N (0, Iq),
X̄0 = X0,

(5.0.2)

where M ∈ N is the chosen number of Euler steps, h = T
M and tm = m · h = m · TM ,

m = 0, ...,M .
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5.1 Existence, uniqueness and properties of a strong solu-
tion of the McKean-Vlasov equation under Lipschitz
condition

Let
(
C
(
[0, T ],Rd

)
, ∥·∥sup

)
denote the space of Rd-valued continuous applications de-

fined on [0, T ], equipped with the uniform norm ∥x∥sup := supt∈[0,T ] |xt|. Let LpC([0,T ],Rd)(Ω,F ,P)
denote the space of C([0, T ],Rd)-valued random variable Y = (Yt)t∈[0,T ] having an Lp-
norm ∥Y ∥p :=

[
E ∥Y ∥psup

]1/p =
[
E supt∈[0,T ] |Yt|

p ]1/p
< +∞. For a fixed constant C > 0,

we define another norm ∥·∥p,C,T on LpC([0,T ],Rd)(Ω,F ,P) by

∥Y ∥p,C,T = sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
0≤s≤t

|Ys|
∥∥∥∥∥
p

. (5.1.1)

It is obvious that ∥·∥p,C,T and ∥·∥p are equivalent since

∀Y ∈ LpC([0,T ],Rd)(Ω,F ,P), e−CT ∥Y ∥p ≤ ∥Y ∥p,C,T ≤ ∥Y ∥p . (5.1.2)

We define

Hp,C,T :=
{
Y ∈ LpC([0,T ],Rd)(Ω,F , (Ft)t∈[0,T ],P) s.t. Y is Ft − adapted.

}
(5.1.3)

Lemma 5.1.1. The space Hp,C,T equipped with ∥·∥p,C,T is a complete space.

Proof. The space
(
LpC([0,T ],Rd)(Ω,F ,P), ∥·∥p

)
is a complete space. Moreover, it follows

from (5.1.2) that ∥·∥p and ∥·∥p,C,T are equivalent. Thus for any Cauchy sequence

X(n) ∈ Hp,C,T ⊂ LpC([0,T ],Rd)(Ω,F ,P),

there exists X(∞) ∈ LpC([0,T ],Rd)(Ω,F ,P) such that∥∥∥X(n) −X(∞)
∥∥∥
p

n→+∞−−−−−→ 0,

which directly implies∥∥∥X(n) −X(∞)
∥∥∥
p,C,T

≤
∥∥∥X(n) −X(∞)

∥∥∥
p

n→+∞−−−−−→ 0

and
∥∥∥X(∞)

∥∥∥
p,C,T

≤
∥∥∥X(∞)

∥∥∥
p
≤ lim infn

∥∥∥X(n)
∥∥∥
p
< +∞ owing to Fatou’s Lemma.

The fact that
∥∥∥X(n) −X(∞)

∥∥∥
p

n→+∞−−−−−→ 0 implies also that there exists a subsequence
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Xφ(n) such that ∥∥∥Xφ(n)(ω)−X(∞)(ω)
∥∥∥

sup
→ 0 a.s..

Thus there exists Ω0 ⊂ Ω, Ω0 ∈ F with P(Ω0) = 1 such that for every ω ∈ Ω0,∥∥∥Xφ(n)(ω)−X(∞)(ω)
∥∥∥

sup
→ 0

and for every ω ∈ Ω\Ω0, we can arbitrarily change the definition of X(∞)(ω). For
example, for every ω ∈ Ω\Ω0, set X(∞)(ω) = 0. Thus, for any t ∈ [0, T ],

X
(∞)
t (ω) =

limX
φ(n)
t (ω), ω ∈ Ω0

0, ω ∈ Ω\Ω0
.

This implies that X(∞) is (Ft)−adapted. Consequently, X(∞) ∈ Hp,C,T and the space(
Hp,C,T , ∥·∥p,C,T

)
is a Banach space.

For any random variable Y ∈ LpC([0,T ],Rd)(Ω,F ,P), its probability distribution PY

naturally lies in

Pp
(
C([0, T ],Rd)

)
:=
ß
µ probability distribution on C([0, T ],Rd) s.t.

∫
C([0,T ],Rd)

∥α∥psup µ(dα) < +∞
™
.

We also define an Lp-Wasserstein distance Wp on Pp
(
C([0, T ],Rd)

)
by

∀µ, ν ∈ Pp
(
C([0, T ],Rd)

)
,

Wp(µ, ν) :=
[

inf
π∈Π(µ,ν)

∫
C([0,T ],Rd)×C([0,T ],Rd)

∥x− y∥psup π(dx, dy)
] 1

p
, (5.1.4)

where Π(µ, ν) denote the set of probability measures on C([0, T ],Rd)×C([0, T ],Rd) with
respective marginals µ and ν. The space Pp

(
C([0, T ],Rd)

)
equipped with Wp is complete

and separable since
(
C([0, T ],Rd), ∥·∥sup

)
is a Polish space (see Bolley (2008)).

Let us consider now

C
(
[0, T ],Pp(Rd)

)
:=

{
(µt)t∈[0,T ] s.t. t 7→ µt is a continuous application from [0, T ] to

(
Pp(Rd),Wp

)}
equipped with the distance

dC
(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]
Wp(µt, νt). (5.1.5)
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As
(
Pp(Rd),Wp

)
is a complete space (see Bolley (2008)), C

(
[0, T ],Pp(Rd)

)
equipped

with the uniform distance dC is also a complete space.

For any t ∈ [0, T ], we define πt : C([0, T ],Rd)→ Rd by α 7→ πt(α) = αt.

Lemma 5.1.2. The application ι : Pp
(
C([0, T ],Rd)

)
→ C

(
[0, T ],Pp(Rd)

)
defined by

µ 7→ ι(µ) = (µ ◦ π−1
t )t∈[0,T ] = (µt)t∈[0,T ]

is well-defined.

Proof. For any µ ∈ Pp
(
C([0, T ],Rd)

)
, there exists X : (Ω,F ,R)→ C([0, T ],Rd) such that

PX = µ and E ∥X∥psup < +∞ so that supt∈[0,T ] E |Xt|p < +∞. Hence, for any t ∈ [0, T ],
we have µt ∈ Pp(Rd).

For a fixed t ∈ [0, T ], choose (tn)n∈N∗ ∈ [0, T ]N∗ such that tn → t. Then, for any
ω ∈ Ω, Xtn(ω)→ Xt(ω) since for any ω ∈ Ω, X(ω) has a continuous path. Moreover,

sup
n
∥Xtn∥p ∨ ∥Xt∥p ≤

∥∥∥∥∥ sup
0≤s≤T

|Xs|
∥∥∥∥∥
p

< +∞,

Hence, ∥Xtn −Xt∥p → 0 owing to the dominated convergence theorem, which implies
that Wp(µtn , µt)→ 0 as n→ +∞, that is, t 7→ µt is a continuous application. Hence,

ι(µ) = (µt)t∈[0,T ] ∈ C
(
[0, T ],Pp(Rd)

)
.

If we have a probability distribution µ ∈ Pp
(
C([0, T ],Rd)

)
, with a slight abuse of

notation, we denote directly (µt)t∈[0,T ] := ι(µ) ∈ C
(
[0, T ],Pp(Rd)

)
. The relation between

dC and Wp has been introduced by D. Lacker in Lacker (2018). He defines an application
Wp,t on Pp

(
C([0, T ],Rd)

)
× Pp

(
C([0, T ],Rd)

)
, called “truncated Wasserstein distance”,

by

Wp,t(µ, ν) :=
[

inf
π∈Π(µ,ν)

∫
C([0,T ],Rd)×C([0,T ],Rd)

sup
s∈[0,t]

|xs − ys|p π(dx, dy)
] 1

p (5.1.6)

and indicates the relation between sups∈[0,t]Wp(µs, νs) and Wp,t(µ, ν) as follows.

Lemma 5.1.3. For any µ, ν ∈ Pp
(
C([0, T ],Rd)

)
, we have

∀t ∈ [0, T ], sup
s∈[0,t]

Wp(µs, νs) ≤Wp,t(µ, ν),
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where µs = µ ◦ π−1
s . In particular, for any µ, ν ∈ Pp

(
C([0, T ],Rd)

)
,

dC(ι(µ), ι(ν)) ≤Wp(µ, ν)

and the application ι is continuous.

Proof. We consider the canonical space Ω = C([0, T ],Rd)× C([0, T ],Rd) equipped with
the σ-algebra F generated by the distance

d
(
(ω1, ω2), (α1, α2)

)
:=

∥∥ω1 − α1∥∥
sup ∨

∥∥ω2 − α2∥∥
sup

and P ∈ Π(µ, ν) where Π(µ, ν) is the set of probability measures with marginals µ and
ν. For any ω = (ω1, ω2) ∈ Ω, we define the canonical projections X : Ω→ C([0, T ],Rd)
and Y : Ω→ C([0, T ],Rd) by

∀ω = (ω1, ω2), ∀t ∈ [0, T ], Xt(ω) = ω1
t and Yt(ω) = ω2

t .

The couple (X,Y ) makes up the canonical process on Ω. Since P ∈ Π(µ, ν), then X has
probability distribution µ and Y has probability distribution ν. Moreover, we have

sup
s∈[0,t]

Wp
p (µs, νs) ≤ sup

s∈[0,t]
E |Xs − Ys|p ≤ E sup

s∈[0,t]
|Xs − Ys|p .

Then we can choose by the usual arguments P ∈ Π(µ, ν) such that

E sup
s∈[0,t]

|Xs − Ys|p =
(
Wp,t(µs, νs)

)p
to conclude the proof.

We define a distance dH×P on Hp,C,T × C
(
[0, T ],Pp(Rd)

)
as follows:

∀
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
∈ Hp,C,T × C

(
[0, T ],Pp(Rd)

)
,

dH×P

((
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

))
= ∥X − Y ∥p,C,T + sup

t∈[0,T ]
e−CtWp(µt, νt).

(5.1.7)

We define also a distance dp,C,T on C
(
[0, T ],Pp(Rd)

)
as follows:

∀(µt)t∈[0,T ], (νt)t∈[0,T ] ∈ C
(
[0, T ],Pp(Rd)

)
,

dp,C,T
(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]
e−CtWp(µt, νt).
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Lemma 5.1.4. Both
(
C
(
[0, T ],Pp(Rd)

)
, dp,C,T

)
and

(
Hp,C,T ×C

(
[0, T ],Pp(Rd)

)
, dH×P

)
are complete metric spaces.

Proof. The distance dp,C,T and dC are equivalent since for any (µt) := (µt)t∈[0,T ], (νt) :=
(νt)t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
, we have

dp,C,T
(
(µt), (νt)

)
≤ dC

(
(µt), (νt)

)
≤ eCTdp,C,T

(
(µt), (νt)

)
.

Thus
(
C
(
[0, T ],Pp(Rd)

)
, dp,C,T

)
is complete. Moreover, it follows from Lemma 5.1.1 that(

Hp,C,T ×C
(
[0, T ],Pp(Rd)

)
, dH×P

)
is also a complete metric space as the product of two

complete metric spaces.

Before proving that the McKean-Vlasov equation (5.0.1) has a unique strong solution
under Assumption (I), we firstly recall two important technical tools used throughout the
proof: the generalized Minkowski Inequality and the Burkölder-Davis-Gundy Inequality.
We refer the proof of these two inequalities to Pagès (2018)[Section 7.8] among other
references.

Lemma 5.1.5 (The Generalized Minkowski Inequality). For any (bi-measurable) process
X = (Xt)t≥0, for every p ∈ [1,∞) and for every T ∈ [0,+∞],∥∥∥∥∫ T

0
Xtdt

∥∥∥∥
p

≤
∫ T

0
∥Xt∥p dt.

Lemma 5.1.6 (Burkölder-Davis-Gundy Inequality (continuous time)). For every p ∈
(0,+∞), there exists two real constants cBDGp > 0 and CBDGp > 0 such that, for every
continuous local martingale (Xt)t∈[0,T ] null at 0,

cBDGp

∥∥∥»⟨X⟩T∥∥∥
p
≤

∥∥∥∥∥ sup
t∈[0,T ]

|Xt|
∥∥∥∥∥
p

≤ CBDGp

∥∥∥»⟨X⟩T∥∥∥
p
.

In particular, if (Bt) is an (Ft)-standard Brownian motion and (Ht)t≥0 is an (Ft)-
progressively measurable process having values in Md,q(R) such that

∫ T
0 ∥Ht∥2 dt < +∞

P− a.s., then the d-dimensional local martingale
∫ ·

0 HsdBs satisfies∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣∫ t

0
HsdBs

∣∣∣∣
∥∥∥∥∥
p

≤ CBDGd,p

∥∥∥∥∥
 ∫ T

0
∥Ht∥2 dt

∥∥∥∥∥
p

. (5.1.8)

Now we start to prove the existence and uniqueness of a strong solution of the
McKean-Vlasov equation (5.0.1). Firstly, under Assumption (I), the coefficient functions
b and σ have the following properties.

Lemma 5.1.7. Under Assumption (I), we have
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(a) The functions b and σ have a linear growth in the sense that there exists a constant
Cb,σ,L,T depending on b, σ, L and T such that

∀t ∈ [0, T ], ∀x ∈ Rd,∀µ ∈ Pp(Rd), |b(t, x, µ)|∨|||σ(t, x, µ)||| ≤ Cb,σ,L,T (1+|x|+Wp(µ, δ0)),

where δ0 denotes the Dirac mass at {0}.

(b) For any
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
∈ Hp,C,T × C

(
[0, T ],Pp(Rd)

)
and for any

t ∈ [0, T ],∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(u,Xu, µu)− b(u, Yu, νu)

]
du

∣∣∣∣
∥∥∥∥∥
p

≤ L
∫ t

0

[
∥Xu − Yu∥p + ∥Wp(µu, νu)∥p

]
du,

and∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,Xu, µu)− σ(u, Yu, νu)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤ Cd,p,L
{ ∫ t

0

[
∥Xu − Yu∥2p + ∥Wp(µu, νu)∥2p

]
du

} 1
2

where Cd,p,L is a constant only depending on d, p, L.

Proof. (a) For any x ∈ Rd and for any µ ∈ Pp(Rd), Assumption (I) implies that

∀t ∈ [0, T ], |b(t, x, µ)| − |b(t, 0, δ0)| ≤ |b(t, x, µ)− b(t, 0, δ0)| ≤ L
(
|x|+Wp(µ, δ0)

)
.

Hence,

|b(t, x, µ)| ≤ |b(t, 0, δ0)|+ L
(
|x|+Wp(µ, δ0)

)
≤ (|b(t, 0, δ0)| ∨ L)(1 + |x|+Wp(µ, δ0))

Similarly, we have |||σ(t, x, µ)||| ≤ (|||σ(t, 0, δ0)||| ∨ L)(1 + |x|+Wp(µ, δ0)), so we can take
Cb,σ,L,T = supt∈[0,T ] |b(t, 0, δ0)| ∨ supt∈[0,T ] |||σ(t, 0, δ0)||| ∨ L to complete the proof.

(b) For any
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
∈ Hp,C,T ×C

(
[0, T ],Pp(Rd)

)
, for any t ∈ [0, T ],

we have∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ t

0

[
b(u,Xu, µu)− b(u, Yu, νu)

]
du

∣∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
s∈[0,t]

∫ s

0

∣∣b(u,Xu, µu)− b(u, Yu, νu)
∣∣du∥∥∥∥∥

p

=
∥∥∥∥∫ t

0

∣∣b(u,Xu, µu)− b(u, Yu, νu)
∣∣du∥∥∥∥

p

≤
∫ t

0
∥b(u,Xu, µu)− b(u, Yu, νu)∥p du (by Lemma 5.1.5)

≤
∫ t

0

∥∥L[ |Xu − Yu|+Wp(µu, νu)
]∥∥
p
du ≤ L

∫ t

0

[
∥Xu − Yu∥p + ∥Wp(µu, νu)∥p

]
du,
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and ∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,Xu, µu)− σ(u, Yu, νu)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤ CBDGd,p

∥∥∥∥∥
 ∫ t

0
|||σ(u,Xu, µu)− σ(u, Yu, νu)|||2du

∥∥∥∥∥
p

(by Lemma 5.1.6)

≤ CBDGd,p

∥∥∥∥∫ t

0
|||σ(u,Xu, µu)− σ(u, Yu, νu)|||2du

∥∥∥∥ 1
2

p
2

(since
∥∥∥√U∥∥∥

p
=

[
EU

p
2
] 2

p × 1
2 = ∥U∥

1
2
p
2
, when U ≥ 0)

≤ CBDGd,p

[ ∫ t

0

∥∥∥|||σ(u,Xu, µu)− σ(u, Yu, νu)|||2
∥∥∥

p
2

du
] 1

2

(by Minkowski’s inequality, since p ∈ [2,+∞))

≤ CBDGd,p

[ ∫ t

0

∥∥|||σ(u,Xu, µu)− σ(u, Yu, νu)|||
∥∥2
p
du

] 1
2

(
since

∥∥∥|U |2∥∥∥
p
2

=
[(
E |U |p

) 1
p

]2
= ∥U∥2p

)
≤ CBDGd,p

[ ∫ t

0

∥∥L[ |Xu − Yu|+Wp(µu, νu)
]∥∥2
p
du

] 1
2

(by Assumption (I))

≤ CBDGd,p L
[ ∫ t

0

[
∥Xu − Yu∥p + ∥Wp(µu, νu)∥p

]2
du

] 1
2

≤
√

2CBDGd,p L
[ ∫ t

0

[
∥Xu − Yu∥2p + ∥Wp(µu, νu)∥2p

]
du

] 1
2
.

Then we can conclude the proof by letting Cd,p,L =
√

2CBDGd,p L.

The idea of our proof follows from Feyel’s approach, originally developped for the
existence and uniqueness of a strong solution for SDE dXt = b(Xt)dt+ σ(Xt)dBt (see
Bouleau (1988)[Section 7]). We define an application ΦC : Hp,C,T × C

(
[0, T ],Pp(Rd)

)
→

Hp,C,T × C
(
[0, T ],Pp(Rd)

)(1) by

∀(Y, (νt)t∈[0,T ]) ∈ Hp,C,T × C
(
[0, T ],Pp(Rd)

)
,

ΦC(Y, (νt)t∈[0,T ]) =
((
X0 +

∫ t

0
b(s, Ys, νs)ds+

∫ t

0
σ(s, Ys, νs)dBs

)
t∈[0,T ]︸ ︷︷ ︸

=:Φ(1)
C (Y,(νt)t∈[0,T ])

, ι(PΦ(1)
C (Y,(νt)t∈[0,T ])

)
)
.

The application ΦC has the following property.

Proposition 5.1.1. (i) The function ΦC is well-defined.

(1) The C in the subscripe of ΦC is the same constant C as in (Hp,C,T , ∥·∥p,C,T ), the same below.
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(ii) Under Assumption (I), ΦC is Lipschitz continuous in the sense that: for any(
X, ι(PX)

)
and

(
Y, ι(PY )

)
in Hp,C,T × C

(
[0, T ],Pp(Rd)

)
,

dH×P

(
ΦC

(
X, ι(PX)

)
,ΦC

(
Y, ι(PY )

))
≤

(K1
C

+ K2√
C

)
·dH×P

((
X, ι(PX)

)
,
(
Y, ι(PX)

))
,

where K1, K2 are real constants which do not depend on the constant C.

Proof. (i) It follows from Lemma 5.1.2 that for everyX ∈ Hp,C,T , ι(PX) ∈ C
(
[0, T ],Pp(Rd)

)
.

Let ν = PY . Next, we prove Φ(1)
C

(
Y, ι(ν)

)
∈ Hp,C,T . For any t ∈ [0, T ],∥∥∥∥∥ sup

s∈[0,t]

∣∣Φ(1)
C

(
Y, ι(ν)

)
s

∣∣∥∥∥∥∥
p

=
∥∥∥∥∥ sup
s∈[0,t]

∣∣X0 +
∫ s

0
b(u, Yu, νu)du+

∫ s

0
σ(u, Yu, νu)dBu

∣∣∥∥∥∥∥
p

≤
∥∥∥∥∥X0 +

∫ t

0

∣∣b(u, Yu, νu)
∣∣du+ sup

s∈[0,t]

∣∣∣ ∫ s

0
σ(u, Yu, νu)dBu

∣∣∣∥∥∥∥∥
p

≤∥X0∥p +
∥∥∥∥∫ t

0

∣∣b(u, Yu, νu)
∣∣du∥∥∥∥

p

+
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣ ∫ s

0
σ(u, Yu, νu)dBu

∣∣∣∥∥∥∥∥
p

(5.1.9)

Owing to Assumption (I), we have ∥X0∥p < +∞. For the second part of (5.1.9), it
follows from Lemma 5.1.7-(a) that∥∥∥∥∫ t

0
b(u, Yu, νu)du

∥∥∥∥
p

≤
∫ t

0
∥b(u, Yu, νu)∥p du ≤

∫ t

0
Cb,σ,L,T

(
1 + ∥Yu∥p + ∥Wp(νu, δ0)∥p

)
du

≤ 2Cb,σ,L,T
∫ t

0

(
1 + ∥Yu∥p

)
du ≤ 2Cb,σ,L,T

∫ t

0

(
1 + eCT ∥Y ∥p,C,T

)
du < +∞.

Moreover,∥∥∥∥∥ sup
s∈[0,t]

∣∣∣ ∫ s

0
σ(u, Yu, νu)dBu

∣∣∣∥∥∥∥∥
p

≤ CBDGd,p

∥∥∥∥∥
 ∫ t

0
|||σ(u, Yu, νu)|||2du

∥∥∥∥∥
p

(by Lemma 5.1.6)

≤ CBDGd,p

∥∥∥∥∫ t

0
|||σ(u, Yu, νu)|||2du

∥∥∥∥ 1
2

p
2

(since
∥∥∥√X∥∥∥

p
=

[
EX

p
2
] 2

p × 1
2 = ∥X∥

1
2
p
2

)

≤ CBDGd,p

[ ∫ t

0

∥∥∥|||σ(u, Yu, νu)|||2
∥∥∥

p
2

du
] 1

2 (by Minkowski’s inequality, since p ∈ [2,+∞))

≤ CBDGd,p

[ ∫ t

0

∥∥|||σ(u, Yu, νu)|||
∥∥2
p
du

] 1
2 (since

∥∥∥|X|2∥∥∥
p
2

=
(
E |X|2× p

2
) 2

p = ∥X∥2
p )
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≤ CBDGd,p

{ ∫ t

0

∥∥Cb,σ,L,T [1 + |Yu|+Wp(νu, δ0)
]∥∥2
p
du

} 1
2 (by Lemma 5.1.7-(a))

≤ CBDGd,p · Cb,σ,L,T
{ ∫ t

0

[
1 + ∥Yu∥p +Wp(νu, δ0)

]2
du

} 1
2

≤ CBDGd,p · Cb,σ,L,T
{ ∫ t

0

[
1 + 2 ∥Yu∥p

]2
du

} 1
2 (since Wp(νu, δ0) ≤ ∥Yu∥p)

≤ CBDGd,p · Cb,σ,L,T
{

2T +
∫ t

0
4 ∥Yu∥p du

} 1
2
< +∞ (since (a+ b)2 ≤ 2(a2 + b2) ),

where the last inequality of the above formula is due to∫ t

0
4 ∥Yu∥p du ≤

∫ t

0
4eCT ∥Y ∥p,C,T du ≤ 4T · eCT ∥Y ∥p,C,T < +∞.

Hence for every t ∈ [0, T ],
∥∥∥sups∈[0,t]

∣∣∣Φ(1)
C

(
Y, ι(ν)

)
s

∣∣∣∥∥∥
p
< +∞, which directly implies

∥∥∥Φ(1)
C

(
Y, ι(ν)

)∥∥∥
p,C,T

= sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Φ(1)
C

(
Y, ι(ν)

)
s

∣∣∣∥∥∥∥∥
p

< +∞.

Thus Φ(1)
C

(
Y, ι(ν)

)
∈ Hp,C,T .

(ii) We will first prove that for any X,Y ∈ Hp,C,T , dp,C,T
(
ι(PX), ι(PY )

)
≤ ∥X − Y ∥p,C,T .

In fact

dp,C,T
(
ι(PX), ι(PY )

)
= sup

t∈[0,T ]
e−CtWp(PX ◦ π−1

t , PY ◦ π−1
t ) ≤ sup

t∈[0,T ]
e−Ct ∥Xt − Yt∥p

≤ sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

|Xs − Ys|
∥∥∥∥∥
p

≤ ∥X − Y ∥p,C,T .

Next, we will prove that Φ(1)
C is Lipschitz continuous. For any X,Y ∈ Hp,C,T , set

µ = PX and ν = PY . Then∥∥∥Φ(1)
C

(
X, ι(µ)

)
− Φ(1)

C

(
Y, ι(ν)

)∥∥∥
p,C,T

=
∥∥∥∥∫ ·

0

(
b(u,Xu, µu)− b(u, Yu, νu)

)
du+

∫ ·

0

(
σ(u,Xu, µu)− σ(u, Yu, νu)

)
dBu

∥∥∥∥
p,C,T

≤
∥∥∥∥∫ ·

0

(
b(u,Xu, µu)− b(u, Yu, νu)

)
du

∥∥∥∥
p,C,T

+
∥∥∥∥∫ ·

0

(
σ(u,Xu, µu)− σ(u, Yu, νu)

)
dBu

∥∥∥∥
p,C,T

= sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(u,Xu, µu)− b(u, Yu, νu)

]
du

∣∣∣∣
∥∥∥∥∥
p
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+ sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,Xu, µu)− σ(u, Yu, νu)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

Owing to Lemma 5.1.7, we have

sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(u,Xu, µu)− b(u, Yu, νu)

]
du

∣∣∣∣
∥∥∥∥∥
p

≤ L sup
t∈[0,T ]

e−Ct
∫ t

0

(
∥Xu − Yu∥p +Wp(µu, νu)

)
du

≤ L sup
t∈[0,T ]

e−Ct
∫ t

0
(2 ∥Xu − Yu∥p)du (since Wp(µu, νu) ≤ ∥Xu − Yu∥p)

≤ 2L sup
t∈[0,T ]

e−Ct
∫ t

0
eCu

(
e−Cu ∥Xu − Yu∥p

)
du

≤ 2L sup
t∈[0,T ]

e−Ct
∫ t

0
eCudu · ∥X − Y ∥p,C,T (since e−Cu ∥Xu − Yu∥p ≤ ∥X − Y ∥p,C,T )

= 2L sup
t∈[0,T ]

e−Ct e
Ct − 1
C

· ∥X − Y ∥p,C,T

≤ 2L
C
∥X − Y ∥p,C,T ,

and

sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,Xu, µu)− σ(u, Yu, νu)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤ sup
t∈[0,T ]

e−CtCd,p,L

{ ∫ t

0

[
∥Xu − Yu∥2p +W2

p (µu, νu)du
]} 1

2 (by Lemma 5.1.7)

≤ sup
t∈[0,T ]

e−CtCd,p,L

{ ∫ t

0
2 ∥Xu − Yu∥2p du

} 1
2 (since Wp(µu, νu) ≤ ∥Xu − Yu∥p)

≤
√

2Cd,p,L sup
t∈[0,T ]

e−Ct
{ ∫ t

0
e2Cu

(
e−Cu ∥Xu − Yu∥p

)2
du

} 1
2

≤
√

2Cd,p,L ∥X − Y ∥p,C,T sup
t∈[0,T ]

e−Ct
{ ∫ t

0
e2Cudu

} 1
2

(since e−Cu ∥Xu − Yu∥p ≤ ∥X − Y ∥p,C,T )

≤
√

2Cd,p,L ∥X − Y ∥p,C,T · sup
t∈[0,T ]

e−Ct
[e2Ct − 1

2C

] 1
2

≤ Cd,p,L√
C
· ∥X − Y ∥p,C,T ,



148 Existence and Uniqueness of a Strong Solution, Convergence of the Euler Scheme

since supt∈[0,T ] e
−Ct

[
e2Ct−1

2C

] 1
2 ≤ supt∈[0,T ]

[
1−e−2Ct

2C

] 1
2 = 1√

2C . Consequently,

∥∥∥Φ(1)
C

(
X, ι(µ)

)
− Φ(1)

C

(
Y, ι(ν)

)∥∥∥
p,C,T

≤
∥∥∥∥∫ ·

0
b(u,Xu, µu)du−

∫ ·

0
b(u, Yu, νu)du

∥∥∥∥
p,C,T

+
∥∥∥∥∫ ·

0
σ(u,Xu, µu)du−

∫ ·

0
σ(u, Yu, νu)dBu

∥∥∥∥
p,C,T

≤
(2L
C

+ Cd,p,L√
C

)
∥X − Y ∥p,C,T .

Therefore,

dH×P

(
ΦC

(
X, ι(µ)

)
,ΦC

(
Y, ι(ν)

))
=

∥∥∥Φ(1)
C

(
X, ι(µ)

)
− Φ(1)

C

(
Y, ι(ν)

)∥∥∥
p,C,T

+ dp,C,T (PΦ(1)
C (X,ι(µ)), PΦ(1)

C (Y, ι(ν)))

≤ 2
∥∥∥Φ(1)

C

(
X, ι(µ)

)
− Φ(1)

C

(
Y, ι(ν)

)∥∥∥
p,C,T

≤ 2
(2L
C

+ Cd,p,L√
C

)
∥X − Y ∥p,C,T .

≤ 2
(2L
C

+ Cd,p,L√
C

)
· dH×P

(
(X,µ), (Y, ν)

)
.

Hence we can conclude the proof by letting K1 = 4L and K2 = 2Cd,p,L.

Proposition 5.1.1 directly implies the existence and uniqueness of a strong solution
of the McKean-Vlasov equation (5.0.1) as shown below.

Theorem 5.1.1. Under Assumption (I), the McKean-Vlasov equation defined in (5.0.1)
has a unique strong solution.

Proof. Proposition 5.1.1 implies that ΦC is a Lipschitz continuous function. Thus, FC :=
ΦC

(
Hp,C,T × C

(
[0, T ],Pp(Rd)

))
is a closed set in Hp,C,T × C

(
[0, T ],Pp(Rd)

)
. Moreover,

For a large enough constant C, we have
(
K1
C + K2√

C

)
< 1, then ΦC is a contraction mapping.

Therefore, ΦC has a unique fixed point
(
H, ι(PH)

)
∈ FC ⊂ Hp,C,T×C

(
[0, T ],Pp(Rd)

)
and

this process H is the unique strong solution of the McKean-Vlasov equation (5.0.1).

5.2 Convergence rate of the theoretical Euler scheme

We add the following assumption in this section.

Assumption (II): For every s, t ∈ [0, T ] with s < t, there exist positive constants L̃, γ
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such that

∀x ∈ Rd, ∀µ ∈ P(Rd),
|b(t, x, µ)− b(s, x, µ)| ∨ |||σ(t, x, µ)− σ(s, x, µ)||| ≤ L̃

(
1 + |x|+Wp(µ, δ0)

)
(t− s)γ .

Let (Xt)t∈[0,T ] be the unique solution of (5.0.1) and let µt = PXt , t ∈ [0, T ] be its
marginal distribution at time t ∈ [0, T ]. Moreover, let (X̄tm)m=0,...,M be the Euler scheme
defined by (5.0.2) and let µ̄tm = PX̄tm

,m = 0, ...,M . The main result of this section is
the following proposition.

Proposition 5.2.1 (Convergence rate of the theoretical Euler Scheme). Under Assump-
tion (I) and (II), one has

sup
0≤m≤M

Wp(µ̄Mtm , µtm) ≤
∥∥∥∥∥ sup

0≤m≤M

∣∣∣Xtm − X̄M
tm

∣∣∣∥∥∥∥∥
p

≤ C̃h
1
2 ∧γ , (5.2.1)

where C̃ is a constant depending on L, L̃, p, d, ∥X0∥p , T, γ.

Remark 5.2.1. If the McKean-Vlasov equation (5.0.1) is homogeneous, i.e. the coefficient
functions b and σ do not depend on t, Assumption (II) is directly satisfied with γ as
large as we want. In this case, the convergence rate of theoretical Euler scheme is

sup
0≤m≤M

Wp(µ̄Mtm , µtm) ≤
∥∥∥∥∥ sup

0≤m≤M

∣∣∣Xtm − X̄M
tm

∣∣∣∥∥∥∥∥
p

≤ C̃h
1
2 . (5.2.2)

In order to prove Proposition 5.2.1, we introduce the continuous time Euler scheme
(X̄t)t∈[0,T ] which reads as follows: set X̄0 = X0 and for every t ∈ [tm, tm+1), define

X̄t := X̄tm + b(tm, X̄tm , µ̄tm)(t− tm) + σ(tm, X̄tm , µ̄tm)(Bt −Btm). (5.2.3)

The above definition implies that X̄ := (X̄t)t∈[0,T ] is a C([0, T ],Rd)-valued stochastic
process. Let µ̄ denote the probability distribution of X̄ and for every t ∈ [0, T ], let µ̄t
denote the marginal distribution of X̄t. Then (X̄t)t∈[0,T ] is the solution ofdX̄t = b(t, X̄t, µ̄t)dt+ σ(t, X̄t, µ̄t)dBt,

X̄0 = X0,
(5.2.4)

where for every t ∈ [tm, tm+1), t := tm.

Now we recall a variant version of Gronwall’s Lemma and we refer to Pagès
(2018)[Lemma 7.3] for a proof (among many others).

Lemma 5.2.1 (“À la Gronwall" Lemma). Let f : [0, T ]→ R+ be a Borel, locally bounded,
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non-negative and non-decreasing function and let ψ : [0, T ] → R+ be a non-negative
non-decreasing function satisfying

∀t ∈ [0, T ], f(t) ≤ A
∫ t

0
f(s)ds+B

Å∫ t

0
f2(s)ds

ã 1
2

+ ψ(t),

where A,B are two positive real constants. Then, for any t ∈ [0, T ],

f(t) ≤ 2e(2A+B2)tψ(t).

The proof of Proposition 5.2.1 relies on the following lemma.

Lemma 5.2.2. Under Assumption (I), let X be the unique strong solution of (5.0.1)
and let (X̄t)t∈[0,T ] be the process defined in (5.2.3). Then

(a) There exists a constant Cp,d,b,σ depending on p, d, b, σ such that for every t ∈ [0, T ],

∀M ≥ 1,
∥∥∥∥∥ sup
u∈[0,t]

|Xu|
∥∥∥∥∥
p

∨
∥∥∥∥∥ sup
u∈[0,t]

∣∣∣X̄M
u

∣∣∣∥∥∥∥∥
p

≤ Cp,d,b,σeCp,d,b,σt(1 + ∥X0∥p).

(b) There exists a constant κ depending on L, b, σ, ∥X0∥ , p, d, T such that for any s, t ∈
[0, T ], s < t,

∀M ≥ 1,
∥∥∥X̄M

t − X̄M
s

∥∥∥
p
∨ ∥Xt −Xs∥p ≤ κ

√
t− s.

Proof. (a) If X is the unique strong solution of (5.0.1), then its probability distribution
µ is the unique weak solution. We define two new coefficient functions depending on
ι(µ) = (µt)t∈[0,T ] by

b̃(t, x) := b(t, x, µt) and σ̃(t, x) := σ(t, x, µt).

Now we discuss the continuity in t of b̃ and σ̃. In fact,∣∣b̃(t, x)− b̃(s, x)
∣∣ ≤ |b(t, x, µt)− b(s, x, µs)|
≤ |b(t, x, µt)− b(s, x, µt)|+ |b(s, x, µt)− b(s, x, µs)|
≤ |b(t, x, µt)− b(s, x, µt)|+Wp(µt, µs), (5.2.5)

and we have a similar inequality for σ̃. Moreover, we know from Assumption (I) that b and
σ are continuous in t and from Lemma 5.1.2 that ι(µ) = (µt)t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
.

Hence, b̃ and σ̃ are continuous in t. Moreover, it is obvious that b̃ and σ̃ are still Lipschitz
in x. Consequently, X is also the unique strong solution of the following stochastic
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differential equation
dXt = b̃(t,Xt)dt+ σ̃(t,Xt)dBt

with X0 same as in (5.0.1).

Hence, the inequality∥∥∥∥∥ sup
u∈[0,t]

|Xu|
∥∥∥∥∥
p

≤ Cp,d,b,σeCp,d,b,σt(1 + ∥X0∥p)

can be obtained by the usual method for the regular stochastic differential equation for
which we refer to Pagès (2018)[Proposition 7.2 and (7.12)] among many other references.

Next, we prove the inequality for
∥∥∥supu∈[0,t]

∣∣X̄M
u

∣∣∥∥∥
p
.

We go back the discrete Euler scheme

X̄M
tm+1 = X̄M

tm + h · b(tm, X̄M
tm , µ̄

M
tm) +

√
hσ(tm, X̄M

tm , µ̄
M
tm)Zm+1.

We write X̄tm instead of X̄M
tm in the following. By Minkovski’s inequality, we have

∥∥X̄tm+1

∥∥
p

=
∥∥X̄tm

∥∥
p

+ h
∥∥b(tm, X̄tm , µ̄tm)

∥∥
p

+
√
h
∥∥∥∣∣∣∣∣∣σ(tm, X̄tm , µ̄tm)

∣∣∣∣∣∣ |Zm+1|
∥∥∥
p
.

As Zm+1 is independent of the σ−algebra generated by X̄t0 , ..., X̄tm , one can imply the
linear growth result in Lemma 5.1.7 and obtain∥∥X̄tm+1

∥∥
p

=
∥∥X̄tm

∥∥
p

+ Cb,σ,L,T (h+ cph
1/2)

(
1 +

∥∥X̄tm

∥∥
p

+Wp(δ0, X̄tm)
)
,

where Cb,σ,L,T and cp are two real constants. As Wp(δ0, X̄tm) ≤
∥∥X̄tm

∥∥
p
, there exists a

constant C such that ∥∥X̄tm+1

∥∥
p
≤ C

∥∥X̄tm

∥∥
p
,

which in turn implies by induction that

max
m=0,...,M

∥∥X̄tm

∥∥
p
< +∞

since
∥∥X̄0

∥∥
p

= ∥X0∥p < +∞.

For every t ∈ [tm, tm+1], it follows from the definition (5.2.3) that∥∥∥X̄M
t

∥∥∥
p
≤

∥∥X̄tm

∥∥
p

+ (t− tm)
∥∥b(tm, X̄tm , µ̄tm)

∥∥
p

+
∥∥∥∣∣∣∣∣∣σ(tm, X̄tm , µ̄tm)

∣∣∣∣∣∣ |Bt −Btm |∥∥∥
p
.

We write X̄t instead of X̄M
t in the following when there is no ambiguity.
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As Bt −Btm is independent to σ(Fs, s ≤ tm), it follows that∥∥X̄t

∥∥
p
≤

∥∥X̄tm

∥∥
p

+ Cb,σ,L,T
(
1 +

∥∥X̄tm

∥∥
p

+Wp(δ0, X̄tm)
)(
h+ cp(t− tm)p

)
≤ C1

∥∥X̄tm

∥∥
p

+ C2,

where C1 and C2 are two constants. Finally, for every M ≥ 1,

sup
t∈[0,T ]

∥∥∥X̄M
t

∥∥∥
p
< +∞. (5.2.6)

Consequently,∥∥∥∥∥ sup
u∈[0,t]

∣∣∣X̄M
u

∣∣∣∥∥∥∥∥
p

≤ ∥X0∥p +
∥∥∥∥∫ t

0

∣∣b(s, X̄s, µ̄s)
∣∣ ds∥∥∥∥

p

+
∥∥∥∥∥ sup
u∈[0,t]

∣∣∣∣∫ u

0
σ(s, X̄s, µ̄s)dBs

∣∣∣∣
∥∥∥∥∥
p

(Minkowski’s Inequality)

≤ ∥X0∥p +
∫ t

0

∥∥b(s, X̄s, µ̄s)
∥∥
p
ds+ CBDGd,p

∥∥∥∥∥
 ∫ t

0

∣∣∣∣∣∣σ(s, X̄s, µ̄s)
∣∣∣∣∣∣2ds∥∥∥∥∥

p

(by Lemma 5.1.5 and 5.1.6)

≤ ∥X0∥p +
∫ t

0
Cb,σ,L,T

∥∥1 +
∣∣X̄s

∣∣ +Wp(µ̄s, δ0)
∥∥
s
ds

+ CBDGd,p,L

∥∥∥∥∥
 ∫ t

0

∣∣1 +
∣∣X̄s

∣∣ +Wp(µ̄s, δ0)
∣∣2ds∥∥∥∥∥

p

(by Lemma 5.1.7− (a))

≤ ∥X0∥p +
∫ t

0
Cb,σ,L,T (1 + 2

∥∥X̄s

∥∥
p
)ds+ CBDGd,p,L

∥∥∥∥∥
 ∫ t

0
4
(
1 +

∣∣X̄s

∣∣2 +W2
p (µ̄s, δ0)

)
ds

∥∥∥∥∥
p

≤ ∥X0∥p +
∫ t

0
Cb,σ,L,T (1 + 2

∥∥X̄s

∥∥
p
)ds

+ CBDGd,p,L

∥∥∥∥∥
 

4
[
t+

∫ t

0

∣∣X̄s

∣∣2 ds+
∫ t

0
W2
p (µ̄s, δ0)ds

]∥∥∥∥∥
p

≤ ∥X0∥p +
∫ t

0
Cb,σ,L,T (1 + 2

∥∥X̄s

∥∥
p
)ds+ CBDG

′
d,p,L

∥∥∥∥∥√t+
 ∫ t

0

∣∣X̄s

∣∣2 ds+
 ∫ t

0
W2
p (µ̄s, δ0)ds

∥∥∥∥∥
p

≤ ∥X0∥p +
∫ t

0
Cb,σ,L,T (1 + 2

∥∥X̄s

∥∥
p
)ds

+ CBDG
′

d,p,L

[√
t+

∥∥∥∥∥
 ∫ t

0

∣∣X̄s

∣∣2 ds∥∥∥∥∥
p

+
 ∫ t

0
W2
p (µ̄s, δ0)ds

]
≤ ∥X0∥p +

∫ t

0
Cb,σ,L,T (1 + 2

∥∥X̄s

∥∥
p
)ds
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+ CBDG
′

d,p,L

[√
t+

∥∥∥∥∫ t

0

∣∣X̄s

∣∣2 ds∥∥∥∥ 1
2

p
2

+
Å∫ t

0
W2
p (µ̄s, δ0)ds

ã 1
2 ]

≤ ∥X0∥p +
∫ t

0
Cb,σ,L,T (1 + 2

∥∥X̄s

∥∥
p
)ds

+ CBDG
′

d,p,L

[√
t+

[ ∫ t

0

∥∥∥∣∣X̄s

∣∣2∥∥∥
p
2

ds
] 1

2 +
[ ∫ t

0
W2
p (µ̄s, δ0)ds

] 1
2
]

(by Lemma 5.1.5 since p

2 ≥ 1). (5.2.7)

It follows from
∥∥∥∣∣X̄s

∣∣2∥∥∥
p
2

=
[
E
∣∣X̄s

∣∣2· p
2
] 2

p =
∥∥X̄s

∥∥2
p

and

[ ∫ t

0
W2
p (µ̄s, δ0)ds

] 1
2 ≤

[ ∫ t

0

∥∥Wp(µ̄s, δ0)
∥∥2
p
ds
] 1

2 ≤
[ ∫ t

0

∥∥X̄s

∥∥2
p
ds
] 1

2

that∥∥∥∥∥ sup
u∈[0,t]

∣∣∣X̄M
u

∣∣∣∥∥∥∥∥
p

≤∥X0∥p +
∫ t

0
Cb,σ,L,T (1 + 2

∥∥X̄s

∥∥
p
)ds+ CBDG

′
d,p,L

(√
t+

[ ∫ t

0

∥∥X̄s

∥∥2
p
ds
] 1

2
)
.

(5.2.8)

Hence, for any t ∈ [0, T ], (5.2.8) implies that, for every M ≥ 1,∥∥∥∥∥ sup
u∈[0,t]

∣∣∣X̄M
u

∣∣∣∥∥∥∥∥
p

< +∞

owing to (5.2.6).

In order to establish the uniformity in M , we come back to (5.2.8). As
∥∥X̄s

∥∥
p
≤∥∥∥supu∈[0,s]

∣∣X̄u

∣∣∥∥∥
p
, it follows that

∥∥∥∥∥ sup
u∈[0,t]

∣∣∣X̄M
u

∣∣∣∥∥∥∥∥
p

≤∥X0∥p + Cb,σ,L,T (t+ CBDG
′

d,p,L

√
t).

+ Cb,σ,L,T

{ ∫ t

0

∥∥∥∥∥ sup
u∈[0,s]

∣∣X̄u

∣∣∥∥∥∥∥
p

ds+ CBDG
′

d,p,L

[ ∫ t

0

∥∥∥∥∥ sup
u∈[0,s]

∣∣X̄u

∣∣∥∥∥∥∥
2

p

ds
] 1

2
}
.

Hence, ∥∥∥∥∥ sup
u∈[0,t]

∣∣∣X̄M
u

∣∣∣∥∥∥∥∥
p

≤ 2e(2Cb,σ,L,T +CBDG′2
d,p,L )t(∥X0∥p + Cb,σ,L,T (t+ CBDGd,p,L

√
t)),
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by appling Lemma 5.2.1. Thus one can take

Cp,d,b,σ = (2Cb,σ,L,T + CBDG
′2

d,p,L ) ∨ 2Cb,σ,L,T (T + CBDGd,p,L

√
T ) ∨ 2

to conclude the proof.

(b) It follows from |Xt −Xs| =
∣∣∣∫ ts b(u,Xu, µu)du+

∫ t
s σ(u,Xu, µu)dBu

∣∣∣ that,

∥Xt −Xs∥p ≤
∥∥∥∥∫ t

s
b(u,Xu, µu)du

∥∥∥∥
p

+
∥∥∥∥∫ t

s
σ(u,Xu, µu)dBu

∥∥∥∥
p

≤
∫ t

s
∥b(u,Xu, µu)∥p du+ CBDGd,p

∥∥∥∥∫ t

s
|||σ(u,Xu, µu)|||2du

∥∥∥∥ 1
2

p
2

(by Lemma 5.1.5 and Lemma 5.1.6)

≤
∫ t

s
Cb,σ,L,T

[
1 + ∥Xu∥p + ∥Wp(µp, δ0)∥p

]
du

+ CBDGd,p

∥∥∥∥∫ t

s
Cb,σ,L,T

[
1 + ∥Xu∥p + ∥Wp(µp, δ0)∥p

]2
du

∥∥∥∥ 1
2

p
2

(by Lemma 5.1.7− (a))

≤
∫ t

s
Cb,σ,L,T

[
1 + 2 ∥Xu∥p

]
du+ 4CBDGd,p · Cb,σ,L,T

∥∥∥∥∫ t

s

[
1 + ∥Xu∥2p +W2

p (µp, δ0)
]
du

∥∥∥∥ 1
2

p
2

≤
∫ t

s
Cb,σ,L,T

[
1 + 2 ∥Xu∥p

]
du

+ 4CBDGd,p · Cb,σ,L,T
[
(t− s) +

∥∥∥∥∫ t

s
|Xu|2 du

∥∥∥∥
p
2

+
∥∥∥∥∫ t

s
W2
p (µu, δ0)du

∥∥∥∥
p
2

] 1
2

≤
∫ t

s
Cb,σ,L,T

[
1 + 2 ∥Xu∥p

]
du

+ 4CBDGd,p · Cb,σ,L,T
[√

t− s+
[ ∫ t

s

∥∥∥|Xu|2
∥∥∥

p
2

du
] 1

2 +
[ ∫ t

s

∥∥W2
p (µu, δ0)

∥∥
p
2
du

] 1
2

≤
∫ t

s
Cb,σ,L,T

[
1 + 2

∥∥∥∥∥ sup
u∈[0,T ]

|Xu|
∥∥∥∥∥
p

]
du

+ 4CBDGd,p · Cb,σ,L,T
{√

t− s+
 ∫ t

s
∥Xu∥2p du +

 ∫ t

s
∥Wp(µu, δ0)∥2p du

}
≤ Cb,σ,L,T

[
1 + 2

∥∥∥∥∥ sup
u∈[0,T ]

|Xu|
∥∥∥∥∥
p

]
(t− s)

+ 4CBDGd,p · Cb,σ,L,T
{√

t− s+ 2
√
t− s

∥∥∥∥∥ sup
u∈[0,T ]

|Xu|
∥∥∥∥∥

2

p

}

≤
{
Cb,σ,L,T

[
1 + 2

∥∥∥∥∥ sup
u∈[0,T ]

|Xu|
∥∥∥∥∥
p

]√
T + 4CBDGd,p · Cb,σ,L,T [1 + 2

∥∥∥∥∥ sup
u∈[0,T ]

|Xu|
∥∥∥∥∥

2

p

]
}√

t− s.
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Owing to the result in (a),
∥∥∥supu∈[0,T ] |Xu|

∥∥∥
p
≤ Cp,d,b,σe

Cp,d,b,σt(1 + ∥X0∥p), then one
can conclude by setting

κ = CL,b,σ,∥X0∥,p,d,T :=Cb,σ,L,T
[
1 + 2Cp,d,b,σeCp,d,b,σt(1 + ∥X0∥p)

]√
T

+ 4CBDGd,p · Cb,σ,L,T [1 + 2C2
p,d,b,σe

2Cp,d,b,σt(1 + ∥X0∥p)
2 ].

Proof of Proposition 5.2.1. We write X̄t and µ̄t instead of X̄M
t and µ̄Mt to simplify the

notation in this proof. For every s ∈ [0, T ], set

εs := Xs−X̄s =
∫ s

0

(
b(u,Xu, µu)−b(u, X̄u, µ̄u)

)
du+

∫ s

0

(
σ(u,Xu, µu)−σ(u, X̄u, µ̄u)

)
dBu,

and let

f(t) :=
∥∥∥∥∥ sup
s∈[0,t]

|εs|
∥∥∥∥∥
p

=
∥∥∥∥∥ sup
s∈[0,t]

∣∣Xs − X̄s

∣∣∥∥∥∥∥
p

.

It follows from Lemma 5.2.2-(a) that X̄ = (X̄t)t∈[0,T ] ∈ L
p
C([0,T ],Rd)(Ω,F ,P). Con-

sequently, µ̄ ∈ Pp
(
C([0, T ],Rd)

)
and ι(µ) = (µt)t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
by applying

Lemma 5.1.2. Hence,

f(t) =
∥∥∥∥∥ sup
s∈[0,t]

∣∣Xs − X̄s

∣∣∥∥∥∥∥
p

≤
∥∥∥∥∥

∫ t

0

∣∣b(s,Xs, µs)− b(s, X̄s, µ̄s)
∣∣ ds+ sup

s∈[0,t]

∣∣∣∣∫ s

0

(
σ(u,Xu, µu)− σ(u, X̄u, µ̄u)

)
dBu

∣∣∣∣
∥∥∥∥∥
p

≤
∫ t

0

∥∥b(s,Xs, µs)− b(s, X̄s, µ̄s)
∥∥
p
ds+ CBDGd,p

∥∥∥∥∥
 ∫ t

0

∣∣∣∣∣∣σ(s,Xs, µs)− σ(s, X̄s, µ̄s)
∣∣∣∣∣∣2ds∥∥∥∥∥

p

=
∫ t

0

∥∥b(s,Xs, µs)− b(s, X̄s, µ̄s)
∥∥
p
ds+ CBDGd,p

∥∥∥∥∫ t

0

∣∣∣∣∣∣σ(s,Xs, µs)− σ(s, X̄s, µ̄s)
∣∣∣∣∣∣2ds∥∥∥∥ 1

2

p
2

≤
∫ t

0

∥∥b(s,Xs, µs)− b(s, X̄s, µ̄s)
∥∥
p
ds+ CBDGd,p

[ ∫ t

0

∥∥∥∣∣∣∣∣∣σ(s,Xs, µs)− σ(s, X̄s, µ̄s)
∣∣∣∣∣∣2∥∥∥

p
2

ds
] 1

2

=
∫ t

0

∥∥b(s,Xs, µs)− b(s, X̄s, µ̄s)
∥∥
p
ds+ CBDGd,p

[ ∫ t

0

∥∥∣∣∣∣∣∣σ(s,Xs, µs)− σ(s, X̄s, µ̄s)
∣∣∣∣∣∣∥∥2

p
ds
] 1

2

≤
∫ t

0
∥b(s,Xs, µs)− b(s,Xs, µs)∥p ds+

∫ t

0

∥∥b(s,Xs, µs)− b(s, X̄s, µ̄s)
∥∥
p
ds

+ CBDGd,p

[ ∫ t

0

∥∥|||σ(s,Xs, µs)− σ(s,Xs, µs)|||+
∣∣∣∣∣∣σ(s,Xs, µs)− σ(s, X̄s, µ̄s)

∣∣∣∣∣∣∥∥2
p
ds
] 1

2
,

(5.2.9)
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where the last term of (5.2.9) can be upper-bounded by

CBDGd,p

[ ∫ t

0

∥∥|||σ(s,Xs, µs)− σ(s,Xs, µs)|||+
∣∣∣∣∣∣σ(s,Xs, µs)− σ(s, X̄s, µ̄s)

∣∣∣∣∣∣∥∥2
p
ds
] 1

2

≤ CBDGd,p

[ ∫ t

0

[∥∥|||σ(s,Xs, µs)− σ(s,Xs, µs)|||
∥∥
p

+
∥∥∣∣∣∣∣∣σ(s,Xs, µs)− σ(s, X̄s, µ̄s)

∣∣∣∣∣∣∥∥
p

]2
ds
] 1

2

≤
√

2CBDGd,p

[ ∫ t

0

∥∥|||σ(s,Xs, µs)− σ(s,Xs, µs)|||
∥∥2
p
ds
] 1

2

+
√

2CBDGd,p

[ ∫ t

0

∥∥∣∣∣∣∣∣σ(s,Xs, µs)− σ(s, X̄s, µ̄s)
∣∣∣∣∣∣∥∥2

p
ds
] 1

2 . (5.2.10)

It follows that∫ t

0
∥b(s,Xs, µs)− b(s,Xs, µs)∥p ds+

√
2CBDGd,p

[ ∫ t

0

∥∥|||σ(s,Xs, µs)− σ(s,Xs, µs)|||
∥∥2
p
ds
] 1

2

≤
∫ t

0

∥∥(s− s)γL̃
(
1 + |Xs|+Wp(µs, δ0)

)∥∥
p
ds

+
√

2CBDGd,p

[ ∫ t

0

∥∥(s− s)γL̃
(
1 + |Xs|+Wp(µs, δ0)

)∥∥2
p
ds
] 1

2 (by Assumption (II))

≤ hγT L̃(1 + 2
∥∥ sup
s∈[0,T ]

|Xs|
∥∥
p
) +
√

2hγL̃CBDGd,p

[
T (2 + 4

∥∥ sup
s∈[0,T ]

|Xs|
∥∥2
p
)
] 1

2

≤ hγT L̃(1 + 2
∥∥ sup
s∈[0,T ]

|Xs|
∥∥
p
) +
√

2hγL̃CBDGd,p

[√
2T + 2

√
T
∥∥ sup
s∈[0,T ]

|Xs|
∥∥
p
] (5.2.11)

and∫ t

0

∥∥b(s,Xs, µs)− b(s, X̄s, µ̄s)
∥∥
p
ds+

√
2CBDGd,p

[ ∫ t

0

∥∥∣∣∣∣∣∣σ(s,Xs, µs)− σ(s, X̄s, µ̄s)
∣∣∣∣∣∣∥∥2

p
ds
] 1

2

≤
∫ t

0

∥∥L( ∣∣Xs − X̄s

∣∣ +Wp(µs, µ̄s)
)∥∥
p
ds+

√
2CBDGd,p

[ ∫ t

0

∥∥L( ∣∣Xs − X̄s

∣∣ +Wp(µs, µ̄s)
)∥∥2
p
ds
] 1

2

≤
∫ t

0
2L

∥∥Xs − X̄s

∥∥
p
ds+

√
2CBDGd,p

[ ∫ t

0
4L2 ∥∥Xs − X̄s

∥∥2
p
ds
] 1

2

≤
∫ t

0
2L

[∥∥Xs −Xs

∥∥
p︸ ︷︷ ︸

≤κ
√
s−s≤κ

√
h

+
∥∥Xs − X̄s

∥∥
p

]
ds

+
√

2CBDGd,p

[ ∫ t

0
4L2[∥∥Xs −Xs

∥∥
p︸ ︷︷ ︸

≤κ
√
s−s≤κ

√
h

+
∥∥Xs − X̄s

∥∥
p

]2
ds
] 1

2 (by applying Lemma 5.2.2-(b))

≤
∫ t

0
2L

[
κ
√
h+

∥∥Xs − X̄s

∥∥
p

]
ds

+
√

2CBDGd,p

[ ∫ t

0
4L2[κ√h+

∥∥Xs − X̄s

∥∥
p

]2
ds
] 1

2

≤ 2Ltκ
√
h+ 4CBDGd,p L

√
tκ
√
h+ 2L

∫ t

0
f(s)ds+

√
2CBDGd,p 4L

[ ∫ t

0
f(s)2ds

] 1
2 . (5.2.12)

Let κ̃(T, ∥X0∥p) = Cp,d,b,σe
Cp,d,b,σt(1 + ∥X0∥p), which is the right hand side of results in
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Lemma 5.2.2-(a). A combination of (5.2.9), (5.2.10), (5.2.11) and (5.2.12) leads to

f(t) =
∥∥∥∥∥ sup
s∈[0,t]

∣∣Xs − X̄s

∣∣∥∥∥∥∥
p

≤ hγT L̃(1 + 2
∥∥ sup
s∈[0,T ]

|Xs|
∥∥
p
) +
√

2hγL̃CBDGd,p

[√
2T + 2

√
T
∥∥ sup
s∈[0,T ]

|Xs|
∥∥
p
]

+ 2Ltκ
√
h+
√

2CBDGd,p 2
√

2L
√
tκ
√
h+ 2L

∫ t

0
f(s)ds+

√
2CBDGd,p 4L

[ ∫ t

0
f(s)2ds

] 1
2 .

≤ h
1
2 ∧γψ(T ) + 2L

∫ t

0
f(s)ds+

√
2CBDGd,p 4L

[ ∫ t

0
f(s)2ds

] 1
2 ,

where

ψ(T ) =T γ−γ∧ 1
2
[
T L̃

(
1 + 2κ̃(T, ∥X0∥p)

)
+
√

2L̃CBDGd,p

(√
2T + 2

√
T κ̃(T, ∥X0∥p)

)]
+ T

1
2 −γ∧ 1

2
[
2LTκ+ 4CBDGd,p L

√
Tκ

]
.

Then it follows from lemma 5.2.1 that f(t) ≤ 2e(4L+16CBDG2
d,p L2)T · ψ(T )hγ∧ 1

2 . Then we
can conclude the proof by letting C̃ = 2e(4L+16CBDG2

d,p L2)T · ψ(T ).

The proof of Proposition 5.2.1 directly derives the following result.

Corollary 5.2.1. Let X̄ := (X̄t)t∈[0,T ] denote the process defined by the continuous time
Euler scheme (5.2.3) with step h = T

M and let X := (Xt)t∈[0,T ] denote the unique solution
of the McKean-Vlasov equation (5.0.1). Then under Assumption (I) and (II), one has

Wp(X̄,X) ≤
∥∥∥∥∥ sup
t∈[0,T ]

∣∣Xt − X̄t

∣∣∥∥∥∥∥
p

≤ C̃h
1
2 ∧γ , (5.2.13)

where C̃ is the same as in Proposition 5.2.1.





Chapter 6

Functional Convex Order for the
McKean-Vlasov Equation

The aim of this section is to establish functional convex order results for d-dimensional
scaled McKean-Vlasov equation, which extends results in Pagès (2016) obtained for
one dimensional martingale diffusion, solution of stochastic differential equations of the
form dXt = σ(t,Xt)dBt. The convex order result is also an direct application of the
convergence of the theoretical Euler scheme proved in Chapter 5, even this scheme is
not directly computable.

Let P(Rd) denote the set of all probability distributions on Rd. Let σ, θ be two
functions defined on [0, T ]× Rd × P(Rd) and valued in Md×q. We define two McKean-
Vlasov processes (Xt)t∈[0,T ] and (Yt)t∈[0,T ] by

dXt = (αXt + β)dt+ σ(t,Xt, µt)dBt, X0 ∈ Lp(P), (6.0.1)
dYt = (αYt + β)dt+ θ(t, Yt, νt) dBt, Y0 ∈ Lp(P), (6.0.2)

where p ≥ 1 α, β ∈ R and for any t ∈ [0, T ], µt and νt respectively denote the probability
distribution of Xt and Yt. The main goal of this section is to prove if σ and θ are ordered
for some matrix order, then the process (Xt)t∈[0,T ] and (Yt)t∈[0,T ] defined in (6.0.1),
(6.0.2) are accordingly ordered for the functional convex order. To be more precise, let
us first recall the definition of convex order for two Rd-valued random variables U and
V and generalize this definition to two probability distributions µ, ν on

(
Rd,B(Rd)

)
.

Definition 6.0.1. (i) Let U, V : (Ω,F ,P)→
(
Rd,B(Rd)

)
be two random variables. We

call U is dominated by V for the convex order - denoted by U ⪯ cv V - if for any convex
function φ : Rd → R,

Eφ(U) ≤ Eφ(V ),
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as soon as these two expectations make sense in R := R ∪ {±∞}.

(ii) Let µ, ν ∈ P(Rd). We call the distribution µ is dominated by ν for the convex order
- denoted by µ ⪯ cv ν - if for every convex function φ : Rd → R,∫

Rd
φ(ξ)µ(dξ) ≤

∫
Rd
φ(ξ)ν(dξ),

as soon as these two integrals make sense in R.

If we denote by PX = P ◦X−1 the probability distribution of a random variable X,
it is obvious that if X ⪯ cv Y , then PX ⪯ cv PY and vice versa.

We define a partial order between matrices in Md×q as follows:

∀A,B ∈Md×q, we write A ⪯ B, if BB∗ −AA∗ is a positive semi-definite matrix.
(6.0.3)

Moreover, we assume that X0, Y0, σ and θ in (6.0.1) and (6.0.2) satisfy the following
conditions:

Assumption (III): (i) For every fixed t ∈ R+, µ ∈ P(Rd), σ(t, ·, µ) is convex in x in
the sense that

∀x, y ∈ Rd, ∀λ ∈ [0, 1], σ(t, λx+ (1−λ)y, µ) ⪯ λσ(t, x, µ) + (1−λ)σ(t, y, µ). (6.0.4)

(ii) For every fixed t ∈ R+, x ∈ Rd, σ(t, x, ·) is non-decreasing in µ with respect to the
convex order, that is,

∀µ, ν ∈ P(Rd) µ ⪯ cv ν, =⇒ σ(t, x, µ) ⪯ σ(t, x, ν). (6.0.5)

(iii) For every (t, x, µ) ∈ R+ × Rd × P(Rd),

σ(t, x, µ) ⪯ θ(t, x, µ). (6.0.6)

(iv) X0 ⪯ cv Y0.

The main theorem of this section is the following

Theorem 6.0.1. Let X := (Xt)t∈[0,T ], Y := (Yt)t∈[0,T ] respectively denote the solution
of McKean-Vlasov equations (6.0.1) and (6.0.2). Assume that the equations (6.0.1)
and (6.0.2) satisfy Assumption (I), (II) and (III). Then for any convex function F :
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C([0, T ],Rd)→ R with (r, ∥·∥sup)-polynomial growth, 1 ≤ r ≤ p in the sense that

∀α ∈ C([0, T ],Rd), there exists C > 0, s.t. |F (α)| ≤ C
(
1 + ∥α∥rsup

)
, (6.0.7)

one has
EF (X) ≤ EF (Y ). (6.0.8)

Let M ∈ N∗ and let h = T
M . For m = 0, ...,M , we write tMm := h ·m = T

M ·m
(1). The

Euler schemes of (Xt)t∈[0,T ] and (Yt)t∈[0,T ] areX̄M
tm+1 = X̄M

tm + h · (αX̄M
tm + β) +

√
h · σ(tMm , X̄M

tm , µ̄
M
tm)Zm+1, X̄0 = X0,

ȲM
tm+1 = ȲM

tm + h · (α ȲM
tm + β) +

√
h · θ(tMm , ȲM

tm , ν̄
M
tm)Zm+1, Ȳ0 = Y0,

(6.0.9)

where Zm,m = 1, ...,M,
i.i.d∼ N (0, Iq) and µ̄Mtm , ν̄

M
tm respectively denote the probability

distribution of X̄M
tm and ȲM

tm , m = 0, ...,M .

We first show the functional convex order for the Euler scheme X̄M
tm and ȲM

tm in
Section 6.1 by proving

EF (X̄M
t0 , ..., X̄

M
tM

) ≤ EF (ȲM
t0 , ..., Ȳ

M
tM

) (6.0.10)

for any convex function F : (Rd)M+1 → R with r-polynomial growth, 1 ≤ r ≤ p. Next,
based on the convergence of the theoretical Euler scheme established in Section 5.2, we
derive the functional convex order result (6.0.8) from (6.0.10) by letting M → +∞.

6.1 Convex order for the Euler scheme

In order to simplify the notations, we rewrite the Euler scheme defined by (6.0.9) by
letting X̄m := X̄M

tm , Ȳm := ȲM
tm , µ̄m := µ̄Mtm and ν̄m := ν̄Mtm as follows,

X̄m+1 = ᾱX̄m + β̄ + σm(X̄m, µ̄m)Zm+1, X̄0 = X0, (6.1.1)
Ȳm+1 = ᾱ Ȳm + β̄ + θm(Ȳm, ν̄m )Zm+1, Ȳ0 = Y0, (6.1.2)

where ᾱ = αh+ 1, β̄ = βh, and for every m = 0, ...,M ,

σm(x, µ) :=
√
h · σ(tm, x, µ), θm(x, µ) :=

√
h · θ(tm, x, µ).

Then it follows from Assumption (III) that X0, Y0, σm, θm,m = 0, ...,M, satisfy the
following conditions.

(1) When there is no ambiguity, we write tm instead of tM
m .
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Assumption (III’): (i) Convex in x :

∀x, y ∈ Rd, ∀λ ∈ [0, 1], σm
(
λx+ (1−λ)y, µ

)
⪯ λσm(x, µ) + (1−λ)σm(y, µ). (6.1.3)

(ii) Non-decreasing in µ with respect to the convex order:

∀µ, ν ∈ P(Rd), µ ⪯ cv ν, σm(x, µ) ⪯ σm(x, ν). (6.1.4)

(iii) Order of σm and θm:

∀(x, µ) ∈ Rd × P(Rd), σm(x, µ) ⪯ θm(x, µ). (6.1.5)

(iv) X̄0 ⪯ cv Ȳ0.

The main result of this section is the following proposition.

Proposition 6.1.1. Under Assumption (III), for any convex function F : (Rd)M+1 → R
with r-polynomial growth, 1 ≤ r ≤ p, in the sense that

∀x = (x0, ..., xM ) ∈ (Rd)M+1, ∃C > 0, such that |F (x)| ≤ C
(
1 + sup

0≤i≤M
|xi|r

)
,

(6.1.6)
we have

EF (X̄0, ..., X̄M ) ≤ EF (Ȳ0, ..., ȲM ).

The proof of Proposition 6.1.1 relies on the following two lemmas.

Lemma 6.1.1 (see Jourdain and Pagès (2019) and Fadili (2019)). Let Z ∼ N (0, Iq). If
u1, u2 ∈Md×q with u1 ⪯ u2, then u1Z ⪯ cv u2Z.

Proof. We define M1 := u1Z and M2 := M1 +
√
u2u∗

2 − u1u∗
1 · Z̃, where

√
A denotes the

square root of a positive semi-definite matrix A and Z̃ ∼ N (0, Id), Z̃ is independent to Z.
Hence the probability distribution of M2 is N (0, u2u

∗
2), which is the same distribution

as u2Z.

For any convex function φ such that Eφ(M1) and Eφ(M2) make sense, we have

E
[
φ(M2)

]
= E

[
φ
(
M1 +

√
u2u∗

2 − u1u∗
1 · Z̃

)]
= E

[
E
[
φ
(
M1 +

√
u2u∗

2 − u1u∗
1 · Z̃

)
| Z

] ]
≥ E

[
φ
(
E
[
M1 +

√
u2u∗

2 − u1u∗
1 · Z̃ | Z

]) ]
= E

[
φ
(
M1 + E

[√
u2u∗

2 − u1u∗
1 · Z̃

])]
= Eφ(M1). (6.1.7)
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Hence, u1Z ⪯ cv u2Z owing to the equivalence of convex order of the random variable
and its probability distribution (see Definition 6.0.1).

Let φ : Rd → R be a Borel convex function. We define an operator Q : C(Rd,R)→
C(Rd ×Md×q,R) associated to a random variable Z ∼ N (0, Iq) by

(x, u) ∈ Rd ×Md×q 7→ (Qφ)(x, u) := Eφ(ᾱx+ β̄ + uZ) (6.1.8)

The following lemma is a generalisation to dimension d of Pagès (2016)[Lemma 2.1].

Lemma 6.1.2 (Revisited Jensen’s Lemma). Let φ : Rd → R be a convex function.
Then,

(i) The function Qφ defined by (6.1.8) is convex.

(ii) For any fixed x ∈ Rd, the function Qφ(x, ·) reaches its minimum at 0d×q, where
0d×q is the zero-matrix of size d× q.

(iii) The function Qφ(x, ·) is non-decreasing in u with respect to the partial order of
d× q matrix (6.0.3).

Proof. (i) For every (x1, u1), (x2, u2) ∈ Rd ×Md×q and λ ∈ [0, 1],

Qφ
(
λ(x1, u1) + (1− λ)(x2, u2)

)
= E

[
φ
(
ᾱ
(
λx1 + (1− λ)x2

)
+ β̄ +

(
λu1 + (1− λ)u2

)
Z
)]

= E
[
φ
(
λ
(
ᾱx1 + β̄

)
+ (1− λ)

(
ᾱx2 + β̄

)
+ λu1Z + (1− λ)u2Z

)]
= λE

[
φ
(
ᾱx1 + β̄ + u1Z

)]
+ (1− λ)E

[
φ
(
ᾱx2 + β̄ + u2Z

)]
(by the convexity of φ and linearity of the expectation)

= λQφ(x1, u1) + (1− λ)Qφ(x2, u2).

Hence, Qφ is a convex function.

(ii) If we fix an x ∈ Rd, then for any u ∈Md×q,

Qφ(x, u) = E
[
φ(ᾱx+ β̄ + uZ)

]
≥ φ

(
E [ᾱx+ β̄ + uZ]

)
= φ

(
ᾱx+ β̄ + 0d×1

)
= Qφ(x,0d×q). (6.1.9)

(iii) For a fixed x ∈ Rd, it is obvious that φ(ᾱx+ β̄ + ·) is also a convex function. Thus,
Lemma 6.1.1 directly implies that if u1 ⪯ u2, then Eφ(ᾱx+β̄+u1Z) ≤ Eφ(ᾱx+β̄+u2Z),
which is equivalent to Qφ(x, u1) ≤ Qφ(x, u2).
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Before proving Proposition 6.1.1, we first show in the next section by a forward
induction that the Euler scheme defined in (6.1.1) and (6.1.2) propagates the marginal
convex order step by step, i.e. X̄m ⪯ cv Ȳm, m = 0, ...,M .

6.1.1 Marginal convex order

Let Zm,m = 1, ...,M be i.i.d random variable with distributions N (0, Iq) in the
definition of Euler scheme (6.1.1) and (6.1.2). For every m = 1, ...,M , we define an
operator Qm : C(Rd,R)→ C

(
Rd ×Md×q,R

)
associated with Zm by

(x, u) ∈ Rd ×Md×q 7→ (Qm φ)(x, u) := E
[
φ(ᾱx+ β̄ + uZm)

]
. (6.1.10)

For every m = 0, ...,M , let Fm denote the σ-algebra generated by X0, Z1, ..., Zm.

Proposition 6.1.2. Let (X̄m)m=0,...,M , (Ȳm)m=0,...,M be random variables defined by
(6.1.1) and (6.1.2). If for every m = 0, ...,M , σm and θm satisfy Assumption (III’), then

X̄m ⪯ cv Ȳm,m = 0, ...,M.

The proof of Proposition 6.1.2 relies on the following lemma.

Lemma 6.1.3. If φ : Rd → R is a convex function, then for a fixed µ ∈ P(Rd), the
function x 7→ E

[
φ
(
ᾱx+ β̄ + σm(x, µ)Zm

)]
is also convex, m = 0, ...,M .

Proof of Lemma 6.1.3. Let x, y ∈ Rd and λ ∈ [0, 1]. For every m = 0, ...,M , we have

E
[
φ
(
ᾱ
(
λx+ (1− λ)y

)
+ β̄ + σm

(
λx+ (1− λ)y, µ

)
Zm

)]
≤ E

[
φ
(
λ
(
ᾱx+ β̄

)
+ (1− λ)

(
ᾱy + β̄

)
+ λσm(x, µ)Zm + (1− λ)σm(y, µ)Zm

)]
(by Assumption (6.1.3) and Lemma 6.1.2)

≤ λE
[
φ
(
ᾱx+ β̄ + σm(x, µ)Zm

)]
+ (1− λ)E

[
φ
(
ᾱy + β̄ + σm(y, µ)Zm

)]
(by the convexity of φ).

Proof of Proposition 6.1.2. Assumption (III’) directly implies X0 ⪯ cv Y0.

Assume that Xm ⪯ cv Ym, then for any convex function φ such that Eφ(X̄m+1) and
Eφ(Ȳm+1) make sense,

E [φ(X̄m+1)] = E
[
φ
(
ᾱX̄m + β̄ + σm(X̄m, µ̄m)Zm+1

)]
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= E
[
E
[
φ(ᾱX̄m + β̄ + σm(X̄m, µ̄m)Zm+1) | Fm

]]
=

∫
Rd
µ̄m(dx)E

[
φ(ᾱx+ β̄ + σm(x, µ̄m)Zm+1)

]
≤

∫
Rd
µ̄m(dx)E

[
φ(ᾱx+ β̄ + σm(x, ν̄m)Zm+1)

]
(by Lemma 6.1.2 and Assumption (6.1.4), since µ̄m ⪯ cv ν̄m )

≤
∫
Rd
ν̄m(dx)E

[
φ(ᾱx+ β̄ + σm(x, ν̄m)Zm+1)

]
(by Lemma 6.1.3, since µ̄m ⪯ cv ν̄m)

≤
∫
Rd
ν̄m(dx)E

[
φ(ᾱx+ β̄ + θm(x, ν̄m)Zm+1)

]
(
by Lemma 6.1.2 and Assumption (6.1.5)

)
= E [φ(Ȳm+1)].

Thus one concludes by a forward induction.

6.1.2 Global functional convex order

The main goal of this section is to prove Proposition 6.1.1. For any m1,m2 ∈ N∗

with m1 ≤ m2, we denote by xm1:m2 := (xm1 , xm1+1, ..., xm2) ∈ (Rd)m2−m1+1. Similarly,
we denote by µm1: m2 := (µm1 , ..., µm2) ∈

(
P(Rd)

)m2−m1+1. We recursively define a
function sequence Φm : (Rd)m+1 ×

(
P(Rd)

)M−m+1 → R,m = 0, ...,M as follows.

Set
ΦM (x0:M , µM ) := F (x0, ..., xM ), (6.1.11)

where the function F is the same as in Proposition 6.1.1. For m = 0, ...,M − 1, set
Φm(x0:m, µm:M ) :=

(
Qm+1Φm+1(x0:m, · , µm+1:M )

)(
xm, σm(xm, µm)

)
= E

[
Φm+1

(
x0:m, ᾱxm + β̄ + σm(xm, µm)Zm+1, µm+1:M

)]
. (6.1.12)

The functions Φm,m = 0, ...,M have the following properties.

Lemma 6.1.4. For every m = 0, ...,M ,

(i) for a fixed µm:M ∈
(
P(Rd)

)M−m+1, the function Φm( · , µm:M ) is convex in x0:m,

(ii) for a fixed x0:m ∈ (Rd)m+1, the function Φm(x0:m, · ) is non-decreasing in
µm:M with respect to the convex order in the sense that for any µm:M , νm:M ∈(
P(Rd)

)M−m+1 such that µi ⪯ cv νi, i = m, ...,M ,

Φm(x0:m, µm:M ) ≤ Φm(x0:m, νm:M ). (6.1.13)
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Proof. (i) The function ΦM is convex in x0:M owing to the hypotheses on F . Now
assume that Φm+1 is convex in x0:m+1. For any x0:m, y0:m ∈ (Rd)m+1 and λ ∈ [0, 1], it
follows that

Φm

(
λx0:m + (1− λ)y0:m, µm:M

)
= EΦm+1

(
λx0:m + (1− λ)y0:m, ᾱ

(
λxm + (1− λ)ym

)
+ β̄

+ σm(λxm + (1− λ)ym, µm)Zm+1, µm+1:M

)
≤ EΦm+1

(
λx0:m + (1− λ)y0:m, λ(ᾱxm + β̄) + (1− λ) · (ᾱym + β̄)

+
[
λσm(xm, µm) + (1− λ)σm(ym, µm)

]
Zm+1, µm+1:M

)
(by the Assumption (6.1.3) and Lemma 6.1.2

since Φm+1(x0:m, ·, µm+1:M ) is a convex function)
≤ λEΦm+1

(
x0:m, ᾱxm + β̄ + σ(xm, µm)Zm+1, µm+1:M

)
+ (1− λ)EΦm+1

(
y0:m, ᾱym + β̄ + σ(ym, µm)Zm+1, µm+1:M

)
(since Φm+1(x0:m, ·, µm+1:M ) is a convex function)
= λΦm(x0:m, µm:M ) + (1− λ)Φm(y0:m, µm:M ).

Thus one concludes by a backward induction.

(ii) Firstly, it is obvious that for any µM , νM ∈ P(Rd) such that µM ⪯ cv νM , we have

ΦM (x0:M , µM ) = F (x0:M ) = ΦM (x0:M , νM ).

Assume that Φm+1(x0:m+1, · ) increases with respect to the convex order of µm+1:M . For
any µm:M , νm:M ∈

(
P(Rd)

)M−m+1 such that µi ⪯ cv νi, i = m, ...,M, we have

Φm(x0:m, µm:M ) = E
[
Φm+1

(
x0:m, ᾱxm + β̄ + σm(xm, µm)Zm+1, µm+1:M

)]
≤ E

[
Φm+1

(
x0:m, ᾱxm + β̄ + σm(xm, νm)Zm+1, µm+1:M

)]
(by Assumption (6.1.4) and Lemma 6.1.2 since Φm+1(x0:m, ·, µm+1:M ) is a convex function)

≤ E
[
Φm+1

(
x0:m, ᾱxm + β̄ + σm(xm, νm)Zm+1, νm+1:M

)]
(by the assumption on Φm+1)

= Φm(x0:m, νm:M ).

We can conclude by a backward induction.

As F has an r-polynomial growth, then the integrability of

F (X̄0, ..., X̄M ) and F (Ȳ0, ..., ȲM )
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is guaranteed by Lemma 5.2.2 since
∥∥X̄0

∥∥
r

=
∥∥Ȳ0

∥∥
r
< +∞ as X0, Y0 ∈ Lp(P), p ≥ r.

We define for every m = 0, ...,M ,

Xm := E
[
F (X̄0, ..., X̄M )

∣∣ Fm].
Recall that µ̄m = PX̄m

,m = 0, ...,M.

Lemma 6.1.5. For every m = 0, ...,M , Φm(X̄0:m, µ̄m:M ) = Xm.

Proof. It is obvious that

ΦM (X̄0:M , µ̄M ) = F (X̄0, ..., X̄M ) =: XM .

Assume that Φm+1(X̄0:m+1, µ̄m+1:M ) = Xm+1. Then

Xm = E
[
Xm+1 | Fm

]
= E

[
Φm+1(X̄0:m+1, µ̄m+1:M ) | Fm

]
= E

[
Φm+1(X̄0:m, ᾱX̄m + β̄ + σm(X̄m, µ̄m)Zm+1, µ̄m+1:M ) | Fm

]
=

(
Qm+1Φm+1(X̄0:m, ·, µ̄m+1:M )

)(
X̄m, σm(X̄m, µ̄m)

)
= ΦM (X̄0:m, µ̄m:M ).

We conclude by a backward induction.

Similarly, we define Ψm : (Rd)m+1 ×
(
P(Rd)

)M−m+1 → R, m = 0, ...,M by

ΨM (x0:M , µM ) := F (x0:M )
Ψm(x0:m, µm:M ) :=

(
Qm+1Ψm+1(x0:m, · , µm+1:M )

)(
xm, θm(xm, µm)

)
= E

[
Ψm+1

(
x0:m, ᾱxm + β̄ + θm(xm, µm)Zm+1, µm+1:M

)]
. (6.1.14)

Recall that ν̄m := PȲm
. It follows from the same reasoning as in Lemma 6.1.5 that

Ψm(Ȳ0, ..., Ȳm, ν̄m, ..., ν̄M ) = E
[
F (Ȳ0, ..., Ȳm) | Fm

]
.

Proof of Proposition 6.1.1. We first prove, this time by a backward induction that for
every m = 0, ...,M , Φm ≤ Ψm.

It follows from the definition of ΦM and ΨM that ΦM = ΨM . Assume Φm+1 ≤ Ψm+1.
Then for any x0:m ∈ (Rd)m+1 and µm:M ∈

(
P(Rd)

)M−m+1, we have

Φm(x0:m, µm:M )
= E

[
Φm+1

(
x0:m, ᾱxm + β̄ + σm(xm, µm)Zm+1, µm+1:M

)]
≤ E

[
Φm+1

(
x0:m, ᾱxm + β̄ + θm(xm, µm)Zm+1, µm+1:M

)]
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(by Assumption (6.1.5) and Lemma 6.1.2,
since Lemma 6.1.4 shows that Φm+1 is convex in x0:m+1)

≤ E
[
Ψm+1

(
x0:m, ᾱxm + β̄ + θm(xm, µm)Zm+1, µm+1:M

)]
= Ψ(x0:m, µm:M ).

Thus, the backward induction is completed and

∀m = 0, ...,M, Φm ≤ Ψm. (6.1.15)

Consequently,

E
[
F (X̄0, ..., X̄M )

]
= EΦ0(X̄0, µ̄0:M )
= EΦ0(Ȳ0, µ̄0:M ) (by Lemma 6.1.4-(i) since X̄0 ⪯ cv Ȳ0)
≤ EΦ0(Ȳ0, ν̄0:M ) (by Lemma 6.1.4-(ii) and Proposition 6.1.2)
≤ EΨ0(Ȳ0, ν̄0:M ) (by (6.1.15))
= E

[
F (Ȳ0, ..., ȲM )

]
, (6.1.16)

owing to the martingale property.

6.2 Functional convex order for the McKean-Vlasov pro-
cess

This section is devoted to prove Theorem 6.0.1. Recall that tMm = m · TM ,m = 0, ...,M .
We define two interpolators as follows.

Definition 6.2.1. (i) For every integer M ≥ 1, we define the piecewise affine inter-
polator iM : x0:M ∈ (Rd)M+1 7→ iM (x0:M ) ∈ C([0, T ],Rd) by

∀m = 0, ...,M − 1, ∀ t ∈ [tMm , tMm+1],

iM (x0:M )(t) = M

T

[
(tMm+1 − t)xm + (t− tMm )xm+1

]
.

(ii) For every M ≥ 1, we define the functional interpolator IM : C
(
[0, T ],Rd

)
→

C
(
[0, T ],Rd

)
by

∀α ∈ C([0, T ],Rd), IM (α) = iM
(
α(tM0 ), ..., α(tMM )

)
.

It is obvious that

∀x0:M ∈ (Rd)M+1, ∥iM (x0:M )∥sup ≤ max
0≤m≤M

|xm| (6.2.1)
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since the norm |·| is convex. Consequently,

∀α ∈ C([0, T ],Rd), ∥IM (α)∥sup ≤ ∥α∥sup . (6.2.2)

Moreover, for any α ∈ C([0, T ],Rd), we have

∥IM (α)− α∥sup ≤ w(α, T
M

), (6.2.3)

where w denotes the uniform continuity modulus of α. The proof of Theorem 6.0.1 relies
on the following lemma.

Lemma 6.2.1 (Lemma 2.2 in Pagès (2016)). Let XM ,M ≥ 1 be a sequence of continuous
processes weakly converging towards X as M → +∞ for the ∥·∥sup-norm. Then the
sequence of interpolating processes ‹XM = IM (XM ),M ≥ 1 is weakly converging toward
X for the ∥·∥sup-norm topology.

Proof of Theorem 6.0.1. Let M ∈ N∗, h = T
M , t

M
m = m · h = m · TM . Let (X̄M

tm)m=0,...,M

and (ȲM
tm )m=0,...,M denote the Euler scheme defined in (6.0.9). Let X̄M := (X̄M

t )t∈[0,T ],
ȲM := (ȲM

t )t∈[0,T ] (defined as follows) be the continuous Euler scheme of (Xt)t∈[0,T ],
(Yt)t∈[0,T ],

∀m = 0, ...,M − 1, ∀t ∈ [tm, tm+1),
X̄M
t = X̄M

tm + (αX̄M
tm + β)(t− tm) + σ(tMm , X̄M

tm , µ̄
M
tm)(Bt −Btm), (6.2.4)

ȲM
t = ȲM

tm + (αȲM
tm + β)(t− tm) + θ(tMm , ȲM

tm , ν̄
M
tm)(Bt −Btm). (6.2.5)

By Lemma 5.2.2, there exists a constant C̃ such that∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣X̄M
t

∣∣∣∥∥∥∥∥
r

∨
∥∥∥∥∥ sup
t∈[0,T ]

|Xt|
∥∥∥∥∥
r

≤ C̃(1 + ∥X0∥r) = C̃(1 + ∥X0∥p) < +∞,∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣ȲM
t

∣∣∣∥∥∥∥∥
r

∨
∥∥∥∥∥ sup
t∈[0,T ]

|Yt|
∥∥∥∥∥
r

≤ C̃(1 + ∥Y0∥r) = C̃(1 + ∥Y0∥p) < +∞ (6.2.6)

as 1 ≤ r ≤ p and X0, Y0 ∈ Lp(P). Hence, F (X) and F (Y ) are in L1(P) since F has a
r-polynomial growth.

We define a function FM : (Rd)M+1 → R by

x0:M ∈ (Rd)M+1 7→ FM (x0:M ) := F
(
iM (x0:M )

)
. (6.2.7)

The function FM is obviously convex since iM is a linear application. Moreover, FM has
also an r-polynomial growth by (6.2.1).
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Furthermore, we have IM (X̄M ) = iM
(
(X̄M

t0 , ..., X̄
M
tM

)
)

by the definition of continuous
Euler scheme and interpolators iM and IM , so that

FM (X̄M
t0 , ..., X̄

M
tM

) = F
(
iM

(
(X̄M

t0 , ..., X̄
M
tM

)
))

= F
(
IM (X̄M )

)
.

It follows from Proposition 6.1.1 that

EF
(
IM (X̄M )

)
= EF

(
iM (X̄M

0 , ..., X̄M
M )

)
= EFM

(
X̄M

0 , ..., X̄M
M

)
≤ EFM

(
ȲM

0 , ..., ȲM
M

)
= EF

(
iM (ȲM

0 , ..., ȲM
M )

)
= EF

(
IM (ȲM )

)
. (6.2.8)

The function F is ∥·∥sup−continuous since it is convex with ∥·∥sup−polynomial
growth (see Lemma 2.1.1 in Lucchetti (2006)). Moreover the process X̄M weakly
converges to X as M → +∞ by Corollary 5.2.1. Then IM (X̄M ) weakly converges to X
by applying Lemma 6.2.1. Hence the inequality (6.2.8) implies that

EF (X) ≤ EF (Y ),

by letting M → +∞ and by applying the Lebesgue dominated convergence theorem
owing to (6.2.6) since F has a r-polynomial growth.

Remark 6.2.1. The functional convex order result, in a general setting, can be used to
establish a robust option price bound (see e.g. Alfonsi et al. (2019)). However, in the
McKean-Vlasov setting, the functional convex order result Theorem 6.0.1, is established
by using the theoretical Euler scheme (C) which is not directly computable so that there
are still some work to do to produce simulatable approximations which are consistent
for the convex order. In the next chapter, we propose the computable particle method
for (6.0.1) and (6.0.2), which reads,
∀n ∈ {1, ..., N},
X̄n,N
tm+1 = X̄n,N

tm + h(αX̄n,N
tm + β) +

√
hσ(X̄n,N

tm , µ̄Ntm)Znm+1, with µ̄Ntm := 1
N

∑N
n=1 δX̄n,N

tm

,

Ȳ n,N
tm+1 = Ȳ n,N

tm + h(αȲ n,N
tm + β) +

√
hθ(Ȳ n,N

tm , ν̄Ntm)Znm+1, with ν̄Ntm := 1
N

∑N
n=1 δȲ n,N

tm

,

where tm = tMm := m · TM , M ∈ N∗, X̄n,N
0 are i.i.d copies of X0 and Ȳ n,N

0 are i.i.d copies
of Y0.

Unfortunately, this scheme based on the particle method does not propagate nor
preserve the convex order like in Proposition 6.1.2 since we cannot obtain for a convex
function φ that,

1
N

N∑
n=1

φ
(
Xn,N
tm (ω)

)
≤ 1
N

N∑
n=1

φ
(
Y n,N
tm (ω)

)
, a.s.
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under the condition that Xn,N
tm ⪯ cv Y

n,N
tm , n = 1, ..., N , even if the random variables

Xn,N
tm , n = 1, ..., N and Y n,N

tm , n = 1, ..., N were both i.i.d. (see the same paper Alfonsi
et al. (2019)).

6.3 Extension of the functional convex order result

In this section, we will extend the result of Theorem 6.0.1 to functionals of both the
path of process and its marginal distributions. If we consider a function

G :
(
α, (γt)t∈[0,T ]

)
∈ C

(
[0, T ],Rd

)
× C

(
[0, T ],Pp(Rd)

)
7→ G

(
α, (γt)t∈[0,T ]

)
∈ R

satisfying the following conditions:

(i) G is convex in α,

(ii) G has an r-polynomial growth, 1 ≤ r ≤ p, in the sense that

∀
(
α, (γt)t∈[0,T ]

)
∈ C

(
[0, T ],Rd

)
× C

(
[0, T ],Pp(Rd)

)
, there exists C ∈ R+ s.t.

G
(
α, (γt)t∈[0,T ]

)
≤ C

[
1 + ∥α∥rsup + sup

t∈[0,T ]
W r
p (γt, δ0)

]
, (6.3.1)

(iii) G is continuous in (γt)t∈[0,T ] with respect to the distance dC defined in (5.1.5) and
non-decreasing in (γt)t∈[0,T ] with respect to the convex order in the sense that

∀(γt)t∈[0,T ], (γ̃t)t∈[0,T ] ∈ C
(
[0, T ],Pp(Rd)

)
such that ∀t ∈ [0, T ], γt ⪯ cv γ̃t,

∀α ∈ C
(
[0, T ],Rd

)
, G

(
α, (γt)t∈[0,T ]

)
≤ G

(
α, (γ̃t)t∈[0,T ]

)
, (6.3.2)

the result in Theorem 6.0.1 can be extended as follows.

Theorem 6.3.1. Let X := (Xt)t∈[0,T ], Y := (Yt)t∈[0,T ] respectively denote the solution
of the McKean-Vlasov equation (6.0.1) and (6.0.2). For every t ∈ [0, T ], let µt, νt
respectively denote the probability distribution of Xt and Yt. If the equations (6.0.1) and
(6.0.2) satisfy conditions in Assumption (I), (II) and (III), then for any function G

satisfying the above conditions (i), (ii) and (iii), one has

EG
(
X, (µt)t∈[0,T ]

)
≤ EG

(
Y, (νt)t∈[0,T ]

)
. (6.3.3)

The proof of Theorem 6.3.1 is very similar to the proof of Theorem 6.0.1. Firstly,
in order to prove the functional convex order result for the Euler schemes (6.1.1) and
(6.1.2)

E G̃(X̄0, ..., X̄m, µ̄0, ..., µ̄M ) ≤ E G̃(Ȳ0, ..., Ȳm, ν̄0, ..., ν̄M ) (6.3.4)
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with
G̃ : (x0:M , γ0:M ) ∈ (Rd)M+1 ×

(
Pp(Rd)

)M+1 7→ G̃(x0:M , γ0:M ) ∈ R

convex in x0:M , non-decreasing in γ0:M with respect to the convex order and having
an r-polynomial growth, we just need to replace the definition of Φm in (6.1.11) and
(6.1.12) by Φ′

m : (Rd)m+1 ×
(
Pp(Rd)

)M+1
,m = 0, ...,M, which are defined by

∀(x0:m, γ0:M ) ∈ (Rd)m+1 ×
(
Pp(Rd)

)M+1
,

Φ′
M (x0:M , γ0:M ) = G̃(x0:M , γ0:M )

and
Φ′
m =

(
Qm+1Φ′

m+1(x0:m, · , γ0:M )
)(
xm, σm(xm, γm)

)
.

Now we discuss the key step from the functional convex order of Euler scheme (6.3.4)
to the functional convex order of process and its marginal probability distribution (6.3.3).

Let λ ∈ [0, 1]. For any two random variables X1, X2 with respective probability
distributions γ1, γ2 ∈ Pp(Rd), we define a linear combination of γ1, γ2, denoted by
λγ1 + (1− λ)γ2, by

∀A ∈ B(Rd),
(
λγ1 + (1− λ)γ2

)
(A) := λγ1(A) + (1− λ)γ2(A). (6.3.5)

It is obvious from the above definition (6.3.5) that λγ1 + (1 − λ)γ2 ∈ Pp(Rd) and
λγ1 + (1− λ)γ2 is in fact the distribution of

1{U≤λ}X1 + 1{U>λ}X2,

where U is a random variable with probability distribution U([0, 1]) and independent
to (X1, X2). Moreover, for a fixed (γ1, γ2) ∈

(
Pp(Rd)

)2, the application λ ∈ [0, 1] 7→
λγ1 + (1− λ)γ2 ∈ Pp(Rd) is continuous with respect to Wp.

From (6.3.5) we can extend the definition of interpolator iM (respectively IM ) to the
probability distribution space

(
Pp(Rd)

)M+1 (resp. C
(
[0, T ],Pp(Rd)

)
) as follows

∀m = 0, ...,M − 1, ∀ t ∈ [tMm , tMm+1],

∀γ0:M ∈
(
Pp(Rd)

)M+1
,

iM (γ0:M )(t) = M

T

[
(tMm+1 − t)γm + (t− tMm )γm+1

]
,

∀(γt)t∈[0,T ] ∈ C
(
[0, T ],Pp(Rd)

)
,

IM
(
(γt)t∈[0,T ]

)
= iM

(
γtM0

, ..., γtMM

)
. (6.3.6)

Let µ̄M and ν̄M respectively denote the probability distribution of X̄M = (X̄M
t )t∈[0,T ]
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and ȲM = (ȲM
t )t∈[0,T ], which is defined by (6.2.4) and (6.2.5). For every t ∈ [0, T ], let

µ̃Mt := IM
(
(µ̄Mt )t∈[0,T ]

)
t
.

We know from Lemma 5.1.3 and Corollary 5.2.1 that for any p ≥ 2

sup
t∈[0,T ]

Wp(µt, µ̄Mt ) ≤Wp(µ, µ̄M )→ 0 as M → +∞. (6.3.7)

Now we prove that supt∈[0,T ]Wp(µ̄Mt , µ̃Mt )→ 0 as M → +∞. For every t ∈ [tMm , tMm+1],
let

X̃M
t := 1®

Um≤
M(tM

m+1−t)
T

´X̄M
tm + 1®

Um>
M(tM

m+1−t)
T

´X̄M
tm+1 ,

where (U0, ..., UM ) is independent to the Brownian Motion (Bt)t∈[0,T ] in (6.0.1), (6.0.2)
and (Z0, ..., ZM ) in (6.0.9). Thus, for every t ∈ [tMm , tMm+1], X̃M

t has the probability
distribution µ̃Mt . It follows that

∀m ∈ {0, ...,M}, ∀t ∈ [tMm , tMm+1],

Wp
p (µ̄Mt , µ̃Mt ) ≤ E

∣∣∣X̄M
t − X̃M

t

∣∣∣p
= E

∣∣∣∣∣∣∣X̄M
t − 1®

Um≤
M(tM

m+1−t)
T

´X̄M
tm − 1®

Um>
M(tM

m+1−t)
T

´X̄M
tm+1

∣∣∣∣∣∣∣
p

≤ Cp
(
E
∣∣∣X̄M

t − X̄M
tm

∣∣∣p + E
∣∣∣X̄M

t − X̄M
tm+1

∣∣∣p )
and it follows from Lemma 5.2.2-(b) that

∀s, t ∈ [tMm , tMm+1], s < t,

E
∣∣∣X̄M

t − X̄M
s

∣∣∣p ≤ (κ
√
t− s )p ≤ κp( T

M
)

p
2 → 0, as M → +∞.

Thus we have supt∈[0,T ]Wp
p (µ̄Mt , µ̃Mt )→ 0 as M → +∞. Hence,

sup
t∈[0,T ]

Wp
p (µt, µ̃Mt ) ≤ sup

t∈[0,T ]
Wp
p (µ̄Mt , µt) + sup

t∈[0,T ]
Wp
p (µ̄Mt , µ̃Mt )→ 0 as M → +∞.

Consequently,

EG
(
IM (X̄M ), (µ̃t)t∈[0,T ]

)
= EG

(
IM (X̄M ), IM

(
(µ̄Mt )t∈[0,T ]

))
= EG

(
iM (X̄M

t0 , ..., X̄
M
tM

), iM (µ̄Mt0 , ..., µ̄
M
tM

)
)

= EGM
(
X̄M
t0 , ..., X̄

M
tM
, µ̄M0 , ..., µ̄MtM

)
≤ EGM

(
ȲM
t0 , ..., Ȳ

M
tM
, ν̄Mt0 , ..., ν̄

M
tM

)
= EG

(
iM (ȲM

t0 , ..., Ȳ
M
tM

), iM (ν̄Mt0 , ..., ν̄
M
tM

)
)

= EG
(
IM

(
ȲM , (ν̄Mt )t∈[0,T ]

))
, (6.3.8)
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where for any (x0:M , γ0:M ) ∈ (Rd)M+1 ×
(
Pp(Rd)

)M+1,

GM (x0:M , γ0:M ) := G
(
iM (x0:M ), iM (γ0:M )

)
.

Thus one can obtain (6.3.3) by the assumption (iii) on G and by applying the Lebesgue
dominated convergence theorem.



Chapter 7

Particle Method, Quantization
Based and Hybrid Scheme,
Examples of Simulation

In this chapter, we consider the homogeneous McKean-Vlasov equationdXt = b(Xt, µt)dt+ σ(Xt, µt)dBt
∀t ∈ [0, T ], µt = PXt

(7.0.1)

and establish the error analysis of the particle method (Section 7.1) and several different
quantization based schemes (Section 7.2-7.5) under Assumption (I). At the end of this
chapter, we compare the performances of these schemes on two examples in dimension 1
and 3. In Section 7.2-7.5, we assume that the conditions in Assumption (I) is satisfied
with p = 2 and |·| denotes the Euclidean norm on Rd induced by the inner product ⟨· | ·⟩.

7.1 Convergence rate of the particle method (D → C)

Recall that the particle method is the following time discretized system,

(D) :


∀n ∈ {1, ..., N},
X̄n,N
tm+1 = X̄n,N

tm + hb(X̄n,N
tm , µ̄Ntm) +

√
hσ(X̄n,N

tm , µ̄Ntm)Znm+1,

µ̄Ntm := 1
N

∑N
n=1 δX̄n,N

tm

where tm = tMm := m · TM , M ∈ N∗, Xn,N
0

i.i.d∼ X0.
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In this section, we study the convergence of Wp(µ̄Ntm , µ̄tm) as N → +∞, where µ̄tm
is the probability distribution of X̄tm defined in the theoretical Euler scheme (C) and
µ̄Ntm is defined in the above Euler scheme of the N -particle system (D). The main result
of this section is the following proposition.

Proposition 7.1.1. Assume that Assumption (I) is in force. Then,

(a) Let µ̄ be the probability distribution of X̄ = (X̄t)t∈[0,T ] defined in (5.2.3) and let νN

denote the empirical measure of µ̄ generated by i.i.d copies of process X̄ = (X̄t)t∈[0,T ].
Then ∥∥∥∥∥ sup

1≤m≤M
Wp(µ̄Ntm , µ̄tm)

∥∥∥∥∥
p

≤ Cd,p,L,T
∥∥∥Wp(µ̄, νN )

∥∥∥
p
.

(b) If moreover, ∥X0∥p+ε < +∞ for some ε > 0, then

∥∥∥∥∥ sup
1≤m≤M

Wp(µ̄Ntm , µ̄m)
∥∥∥∥∥
p

≤ ‹C ×
N− 1

2p +N− ε
p(p+ε) if p > d/2 and ε ̸= p

N− 1
2p
[

log(1 +N)
] 1

p +N− ε
p(p+ε) if p = d/2 and ε ̸= p

N− 1
d +N− ε

p(p+ε) if p ∈ (0, d/2)
and p+ ε ̸= d

(d−p)

,

where ‹C is a constant depending on p, ε, d, b, σ, L, T .

We define the continuous time Euler scheme of (D), as what we did in Section 5.2
for the theoretical Euler scheme. For any n ∈ {1, ..., N} and for any t ∈ [tm, tm+1), set

X̄ n,N
t = X̄ n,N

tm + b
(
X̄ n,N
tm , µ̄Ntm

)
(t− tm) + σ

(
X̄ n,N
tm , µ̄Ntm

)
(Bn

t −Bn
tm) (7.1.1)

where Bn := (Bn
t )t∈[0,T ], n = 1, ..., N are independent standard Brownian motions defined

on (Ω,F ,P). For any t ∈ [tm, tm+1), define t = tm. Then, for every n ∈ {1, ..., N}, X̄n,N
t

is the solution of

dX̄ n,N
t = b(X̄ n,N

t , µ̄Nt )dt+ σ(X̄ n,N
t , µ̄Nt )dBn

t , (7.1.2)

where µ̄Nt = 1
N

∑N
n=1 δX̄ n,N

t
.

Now we construct an i.i.d sample of size N of the process X̄ = (X̄t)t∈[0,T ] defined
in (5.2.3). It follows from Lemma 5.2.2-(a) that X̄ ∈ LpC([0,T ],Rd)(Ω,F ,P), hence its
probability distribution µ̄ ∈ Pp

(
C([0, T ],Rd)

)
and ι(µ̄) = (µ̄t)t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
(see Lemma 5.1.2). Based on the same Brownian motions Bn, n = 1, ..., N in (7.1.1), we
define N Itô processes Y n, n = 1, ..., N, bydY n

t = b(Y n
t , µ̄t)dt+ σ(Y n

t , µ̄t)dBn
t

Y n
0 = X̄ n,N

0
.
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Then Y n, n = 1, ..., N , are i.i.d copies of X̄ and

νN,ω := 1
N

N∑
n=1

δY n(ω), (7.1.3)

is the empirical measure of µ̄. When there is no ambiguity, we will write νN instead of
νN,ω.

The random measure νN,ω is valued in Pp
(
C([0, T ],Rd)

)
. In fact, for every ω ∈ Ω,

Y n(ω) lies in C([0, T ],Rd) so that ∥Y n(ω)∥sup < +∞. Hence, for every ω ∈ Ω,

∫
C([0,T ],Rd)

∥ξ∥psup ν
N,ω(dξ) = 1

N

N∑
n=1
∥Y n(ω)∥psup < +∞.

Notice that

νN,ωt := νN,ω ◦ π−1
t = 1

N

N∑
n=1

δY n
t (ω)

and it follows from Lemma 5.1.2 that ι(νN,ω) = (νN,ωt )t∈[0,T ] ∈ C
(
[0, T ],Pp(Rd)

)
.

Let us recall the following theorem from Fournier and Guillin (2015), which yields a
non-asymptotic upper bound of the convergence rate in the Wasserstein distance of the
empirical measures.

Theorem 7.1.1. (Fournier and Guillin (2015)[see Theorem 1]) Let p > 0 and let
µ ∈ Pq(Rd) for some q > p. Let U1(ω), ..., Un(ω), ... be i.i.d random variables with
distribution µ. Let µωn denote the empirical measure of µ defined by

µωn := 1
n

n∑
i=1

δU i(ω).

Then, there exists a real constant C only depending on p, d, q such that, for all n ≥ 1,

E
(
Wp
p (µωn , µ)

)
≤ CMp/q

q (µ)×


n−1/2 + n−(q−p)/q if p > d/2 and q ̸= 2p
n−1/2 log(1 + n) + n−(q−p)/q if p = d/2 and q ̸= 2p
n−p/d + n−(q−p)/q if p ∈ (0, d/2) and q ̸= d/(d− p)

,

where Mq(µ) :=
∫
Rd |ξ|q µ(dξ).

In particular, Theorem 7.1.1 implies that if p ≥ 2,

∥Wp(µω
n , µ)∥p ≤ CM

1/q
q (µ)×


n−1/2p + n−(q−p)/qp if p > d/2 and q ̸= 2p
n−1/2p

(
log(1 + n)

)1/p + n−(q−p)/qp if p = d/2 and q ̸= 2p
n−1/d + n−(q−p)/qp if p ∈ (0, d/2) and q ̸= d/(d− p)

.

(7.1.4)
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Proof of Proposition 7.1.1. (a) For any n ∈ {1, ..., N}, we have∣∣∣Y n
t − X̄

n,N
t

∣∣∣ =
∣∣∣∣∫ t

0

[
b(Y n

u , µ̄u)− b(X̄ n,N
u , µ̄Nu )

]
du+

∫ t

0

[
σ(Y n

u , µ̄u)− σ(X̄ n,N
u , µ̄Nu )

]
dBu

∣∣∣∣ .
Hence,∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Y n
s − X̄n,N

s

∣∣∣∥∥∥∥∥
p

=
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(Y n

u , µ̄u)− b(X̄ n,N
u , µ̄Nu )

]
du+

∫ s

0

[
σ(Y n

u , µ̄u)− σ(X̄ n,N
u , µ̄Nu )

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(Y n

u , µ̄u)− b(X̄ n,N
u , µ̄Nu )

]
du

∣∣∣∣ + sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(Y n

u , µ̄u)− σ(X̄ n,N
u , µ̄Nu )

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(Y n

u , µ̄u)− b(X̄ n,N
u , µ̄Nu )

]
du

∣∣∣∣
∥∥∥∥∥
p

+
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(Y n

u , µ̄u)− σ(X̄ n,N
u , µ̄Nu )

]
dBu

∣∣∣∣
∥∥∥∥∥
p

(by the Minkowski inequality)

≤ L
∫ t

0

[ ∥∥∥Y n
u − X̄ n,N

u

∥∥∥
p

+
∥∥∥Wp(µ̄u, µ̄Nu )

∥∥∥
p

]
du

+ Cd,p,L

[ ∫ t

0

[ ∥∥∥Y n
u − X̄ n,N

u

∥∥∥2

p
+

∥∥∥Wp(µ̄u, µ̄Nu )
∥∥∥2

p

]
du

] 1
2 (

by Lemma 5.1.7-(b)
)

≤ L
∫ t

0

∥∥∥∥∥ sup
v∈[0,u]

∣∣∣Y n
v − X̄ n,N

v

∣∣∣∥∥∥∥∥
p

du+ Cd,p,L

[ ∫ t

0

∥∥∥∥∥ sup
v∈[0,u]

∣∣∣Y n
v − X̄ n,N

v

∣∣∣∥∥∥∥∥
2

p

du
] 1

2 + ψ(t),

where

ψ(t) = L

∫ t

0

∥∥∥Wp(µ̄u, µ̄Nu )
∥∥∥
p
du+ Cd,p,L

[ ∫ t

0

∥∥∥Wp(µ̄u, µ̄Nu )
∥∥∥2

p
du

] 1
2
, (7.1.5)

owing to
√
a+ b ≤

√
a+
√
b for any a ≥ 0, b ≥ 0. Then by Lemma 5.2.1, we have∥∥∥∥∥ sup

s∈[0,t]

∣∣∣Y n
s − X̄n,N

s

∣∣∣∥∥∥∥∥
p

≤ 2 e(2L+C2
d,p,L) tψ(t).

Moreover, the empirical measure 1
N

∑N
n=1 δ(X̄ n,N ,Y n) is a coupling of the random

measures µ̄N and νN . Thus

EWp
p,t(µ̄N , νN ) = E

[
inf

π∈Π(µ̄N ,νN )

∫
C([0,T ],Rd)×C([0,T ],Rd)

sup
s∈[0,t]

|xs − ys|p π(dx, dy)
]

≤ E
[ ∫

C([0,T ],Rd)×C([0,T ],Rd)
sup
s∈[0,t]

|xs − ys|p
1
N

N∑
n=1

δ(X̄ n,N ,Y n)(dx, dy)
]
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= E
[ 1
N

N∑
n=1

sup
s∈[0,t]

∣∣∣X̄n,N
s − Y n

s

∣∣∣p ] = 1
N

N∑
n=1

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣X̄n,N
s − Y n

s

∣∣∣∥∥∥∥∥
p

p

≤
[
2 e(2L+C2

d,p,L) tψ(t)
]p
≤

[
2 e(2L+C2

d,p,L)Tψ(t)
]p
.

By Lemma 5.1.3, we have sups∈[0,t]Wp
p (µ̄Ns , νNs ) ≤Wp

p,t(µ̄N , νN ), so that∥∥∥∥∥ sup
s∈[0,t]

Wp(µ̄Ns , νNs )
∥∥∥∥∥
p

≤ Cd,p,L,Tψ(t), (7.1.6)

with Cd,p,L,T = 2 e(2L+C2
d,p,L)T . It follows that,∥∥∥∥∥ sup

s∈[0,t]
Wp(µ̄Ns , µ̄s)

∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
s∈[0,t]

[
Wp(µ̄Ns , νNs ) +Wp(νNs , µ̄s)

]∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
s∈[0,t]

Wp(µ̄Ns , νNs )
∥∥∥∥∥
p

+
∥∥∥∥∥ sup
s∈[0,t]

Wp(νNs , µ̄s)
∥∥∥∥∥
p

≤ Cd,p,L,Tψ(t) +
∥∥∥∥∥ sup
s∈[0,t]

Wp(νNs , µ̄s)
∥∥∥∥∥
p

(by applying (7.1.6))

≤
∥∥∥∥∥ sup
s∈[0,t]

Wp(νNs , µ̄s)
∥∥∥∥∥
p

+ Cd,p,L,T · L
∫ t

0

∥∥∥Wp(µ̄u, µ̄Nn )
∥∥∥
p
du

+ Cd,p,L,T · Cd,p,L
[ ∫ t

0

∥∥∥Wp(µ̄u, µ̄Nn )
∥∥∥2

p
du

] 1
2

(by the defintion of ψ(t) in (7.1.5))

≤
∥∥∥∥∥ sup
s∈[0,t]

Wp(νNs , µ̄s)
∥∥∥∥∥
p

+ Cd,p,L,T · L
∫ t

0

∥∥∥∥∥ sup
v∈[0,u]

Wp(µ̄v, µ̄Nv )
∥∥∥∥∥
p

du

+ Cd,p,L,T · Cd,p,L
[ ∫ t

0

∥∥∥∥∥ sup
v∈[0,u]

Wp(µ̄v, µ̄Nv )
∥∥∥∥∥

2

p

du
] 1

2
.

Then, by Lemma 5.2.1, we obtain∥∥∥∥∥ sup
s∈[0,t]

Wp(µ̄Ns , µ̄s)
∥∥∥∥∥
p

≤ 2e(2A+B2)T

∥∥∥∥∥ sup
s∈[0,t]

Wp(µ̄s, νNs )
∥∥∥∥∥
p

, (7.1.7)

where A = Cd,p,L,TL and B = Cd,p,L,T · Cd,p,L. Finally,∥∥∥∥∥ sup
1≤m≤M

Wp(µ̄Ntm , µ̄m)
∥∥∥∥∥
p

≤ 2e(2A+B2)T

∥∥∥∥∥ sup
s∈[0,T ]

Wp(µ̄s, νNs )
∥∥∥∥∥
p

≤ 2e(2A+B2)T
∥∥∥Wp(µ̄, νN )

∥∥∥
p
−→ 0 as N → +∞
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by applying Lemma 5.1.3.

(b) If ∥X0∥p+ε < +∞ for some ε > 0, then Lemma 5.2.2 implies

∥∥X̄∥∥
p+ε =

∥∥∥∥∥ sup
u∈[0,T ]

∣∣X̄u

∣∣∥∥∥∥∥
p+ε
≤ Cp,d,b,σeCp,d,b,σ

(
1 + ∥X0∥p+ε

)
< +∞.

Thus µ̄ ∈ Pp+ε
(
C([0, T ],Rd)

)
, which implies that µ̄s ∈ Pp+ε(Rd) for any s ∈ [0, T ] by

Lemma 5.1.2.

For any s ∈ [0, T ], νNs is the empirical measure of µ̄s. It follows from Theorem 7.1.1
that for any s ∈ [0, T ],∥∥∥Wp(νNs , µ̄s)

∥∥∥
p
≤ CM1/p+ε

p+ε (µ̄s)

×


N−1/2p +N

− ε
p(p+ε) if p > d/2 and ε ̸= p

N−1/2p( log(1 +N)
)1/p +N

− ε
p(p+ε) if p = d/2 and ε ̸= p

N−1/d +N
− ε

p(p+ε) if p ∈ (0, d/2) and p+ ε ̸= d
(d−p)

.

(7.1.8)

Moreover, Lemma 5.2.2 implies that

sup
s∈[0,T ]

Mp+ε(µ̄s) = sup
s∈[0,T ]

E
[
|Xs|p+ε ] ≤ ∥∥∥∥∥ sup

s∈[0,T ]
|Xs|

∥∥∥∥∥
p+ε

p+ε

≤
[
Cp,d,b,σe

Cp,d,b,σT (1 + ∥X0∥p+ε)
]p+ε

< +∞. (7.1.9)

Thus it follows from (7.1.7) that∥∥∥∥∥ sup
1≤m≤M

Wp(µ̄Ntm , µ̄m)
∥∥∥∥∥
p

≤ ‹C ×
N

− 1
2p +N

− ε
p(p+ε) if p > d/2 and ε ̸= p

N
− 1

2p
[

log(1 +N)
] 1

p +N
− ε

p(p+ε) if p = d/2 and ε ̸= p

N− 1
d +N

− ε
p(p+ε) if p ∈ (0, d/2) and p+ ε ̸= d

(d−p)

,

where ‹C is a constant depending on p, ε, d, b, σ, L, T and ∥X0∥p+ε.
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7.2 L2-error analysis of the theoretical quantization (E→C)

From now on, let |·| denote the Euclidean norm on Rd induced by the inner product
⟨· | ·⟩. Recall that the theoretical quantization procedure reads

(E) :



‹X0 = X0, “X0 = Projx(0)(‹X0)‹Xtm+1 = “Xtm + hb(“Xtm , µ̂tm) +
√
hσ(“Xtm , µ̂tm)Zm+1, m = 0, ...,M − 1,

where h = T
M and µ̂tm = P“Xtm“Xtm+1 = Projx(m+1)(‹Xtm+1), m = 0, ...,M − 1,

where for m = 0, ...,M , x(m) = (x(m)
1 , ..., x

(m)
Km

) is the Km-quantizer of ‹Xtm .

For m = 1, ...,M , let Ξm := e
K,‹Xtm

(
x(m)) denote the quadratic quantization error of‹Xtm induced by x(m). The next proposition establishes the L2-error of the quantization

method at every time tm, m = 1, ...,M .

Proposition 7.2.1. Assume that Assumption (I) is satisfied with p = 2.

(a) For any m ∈ {1, ...,M},

∥∥∥X̄tm − “Xtm

∥∥∥
2
≤

m∑
j=1

[
1 + 2Lh(1 + Lh+ Lq)

]m−j · e
K,‹Xtj

(
x(j)). (7.2.1)

(b) If for every m = 0, 1, ...,M , x(m) = (x(m)
1 , ..., x

(m)
K ) is an optimal quantizer of X̄tm

and if moreover, ∥X0∥2+ε < +∞ for some ε > 0, then∥∥∥X̄tm − “Xtm

∥∥∥
2

= O(K−1/d). (7.2.2)

Remark 7.2.1. From Proposition 7.2.1 we know that in order to obtain a simulation with
the minimum error by the quantization method, we need to reduce at each step m the
quantization error Ξm. Thus we can apply the Lloyd algorithm (4.0.18) at each step m,
as mentioned in Algorithm 2 and Algorithm 4.

Proof of Proposition 7.2.1. (a) Let b̄m = b(X̄tm , µ̄tm), σ̄m = σ(X̄tm , µ̄tm), b̂m = b(“Xtm , µ̂tm)
and σ̂m = σ(“Xtm , µ̂tm). The definition of ‹Xtm in (E) and X̄tm in (C) directly imply that∣∣∣X̄tm+1 − ‹Xtm+1

∣∣∣ =
∣∣∣(X̄tm − “Xtm) +

[
b̄m − b̂m

]
h+

[
σ̄m − σ̂m

]√
hZm+1

∣∣∣ .
Hence,

E
∣∣∣X̄tm+1 − ‹Xtm+1

∣∣∣2
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= E
∣∣∣(X̄tm − “Xtm

)
+ h

[
b̄m − b̂m

]∣∣∣2 + hE
∣∣[σ̄m − σ̂m]Zm+1

∣∣2
+ 2
√
hE

〈(
X̄tm − “Xtm

)
+ h

[
b̄m − b̂m

] ∣∣ [σ̄m − σ̂m]Zm+1

〉
= E

∣∣∣X̄tm − “Xtm

∣∣∣2 + h2E
∣∣∣b̄m − b̂m∣∣∣2 + 2hE

〈
X̄tm − “Xtm

∣∣ b̄m − b̂m〉
+ hE

∣∣[σ̄m − σ̂m]Zm+1
∣∣2 + 2

√
hE

〈(
X̄tm − “Xtm

)
+ h

[
b̄m − b̂m

] ∣∣ [σ̄m − σ̂m]Zm+1

〉
.

(7.2.3)

For any m ∈ {1, ...,M}, define Fm the σ-algebra generated by X0, Z1, ..., Zm. Then,

E
〈(
X̄tm − “Xtm

)
+ h

[
b̄m − b̂m

] ∣∣ [σ̄m − σ̂m]Zm+1

〉
= E

[[(
X̄tm − “Xtm

)
+ h

(
b̄m − b̂m

)]⊤(
σ̄m − σ̂m

)
Zm+1

]
= E

{
E
[[(

X̄tm − “Xtm

)
+ h

(
b̄m − b̂m

)]⊤(
σ̄m − σ̂m

)
Zm+1

∣∣Fm ]}
= E

{[[(
X̄tm − “Xtm

)
+ h

(
b̄m − b̂m

)]⊤(
σ̄m − σ̂m

)]
E
[
Zm+1

]}
= 0.

Moreover, Assumption (I) implies that

E
∣∣∣b̄m − b̂m∣∣∣2 ≤ 2L2

[
E
∣∣∣X̄tm − “Xtm

∣∣∣2 + EW2
2 (µ̄m, µ̂m)

]
≤ 4L2 E

∣∣∣X̄tm − “Xtm

∣∣∣2
so that

E
〈
X̄tm − “Xtm

∣∣ b̄m − b̂m〉 ≤ ∥∥∥X̄tm − “Xtm

∥∥∥
2

∥∥∥b̄m − b̂m∥∥∥
2
≤ 2LE

∣∣∣X̄tm − “Xtm

∣∣∣2
and

E
∣∣(σ̄m − σ̂m)Zm+1

∣∣2 ≤ E
[
|||σ̄m − σ̂m|||2Z2

m+1
]
≤ E

[
E
[
|||σ̄m − σ̂m|||2Z2

m+1|Fm
]]

= E
[
|||σ̄m − σ̂m|||2E

[
Z2
m+1

]]
≤ 4L2q E

∣∣∣X̄tm − “Xtm

∣∣∣2 .
Consequently,

E
∣∣∣X̄tm+1 − ‹Xtm+1

∣∣∣2 ≤ [
1 + 4Lh(1 + Lh+ Lq)

]
· E

∣∣∣X̄tm − “Xtm

∣∣∣2
so that ∥∥∥X̄tm+1 − ‹Xtm+1

∥∥∥
2
≤
»

1 + 4Lh(1 + Lh+ Lq)
∥∥∥X̄tm − “Xtm

∥∥∥
2

≤
[
1 + 2Lh(1 + Lh+ Lq)

] ∥∥∥X̄tm − “Xtm

∥∥∥
2
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and ∥∥∥X̄tm+1 − “Xtm+1

∥∥∥
2
≤

∥∥∥X̄tm+1 − ‹Xtm+1

∥∥∥
2

+
∥∥∥‹Xtm+1 − “Xtm+1

∥∥∥
2

≤
[
1 + 2Lh(1 + Lh+ Lq)

] ∥∥∥X̄tm − “Xtm

∥∥∥
2

+ Ξm+1.

This directly implies

∥∥∥X̄tm − “Xtm

∥∥∥
2
≤

m∑
j=1

[
1 + 2Lh(1 + Lh+ Lq)

]m−jΞj .

(b) It follows from Proposition 5.2.1 that, if ∥X0∥2+ε < +∞, then for everym ∈ {1, ...,M},
µ̄tm ∈ P2+ε(Rd). Thus, if for every m = 1, ...,M , x(m) is the optimal quantizer of X̄tm ,
the convergence rate (7.2.2) is a direct consequence of Zador’s theorem (see Proposition
4.0.1-(b)).

7.3 Recursive quantization for the Vlasov equation (G→E)

7.3.1 Recursive quantization for a fixed quantizer sequence

For m = 1, ...,M , let x(m) = (x(m)
1 , ..., x

(m)
K ) ∈ (Rd)K be the quantizer of X̄tm defined

in (C) and let
(
Ck(x(m))

)
1≤k≤K denote the Voronoï partition generated by x(m). For

any m ∈ {1, ...,M} and k ∈ {1, ...,K}, let p(m)
k = P(‹Xtm ∈ Ck(x(m))) = P(“Xtm = x

(m)
k )

and p(m) = (p(m)
1 , ..., p

(m)
K ). Hence the probability distribution of Projx(m)(‹Xtm) is

µ̂m =
K∑
k=1

p
(m)
k δ

x
(m)
k

.

In the Vlasov case, that is, there exist β : Rd ×Rd → Rd and a : Rd ×Rd →Md,q(R)
such that

b(x, µ) =
∫
Rd
β(x, u)µ(du) and σ(x, µ) =

∫
Rd
a(x, u)µ(du),

the theoretical quantization formulas (E) can be written as‹Xtm+1 = “Xtm + b(“Xtm , µ̂m)h+ σ(“Xtm , µ̂m)
√
hZm+1

= “Xtm + h
K∑
k=1

β(“Xtm , x
(m)
k )p(m)

k +
√
hZm+1

K∑
k=1

a(“Xtm , x
(m)
k )p(m)

k .
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Thus, given “Xtm and p(m), we have‹Xtm+1 ∼ N
(“Xtm+h

K∑
k=1

p
(m)
k β(“Xtm , x

(m)
k ), h

[ K∑
k=1

p
(m)
k a(“Xtm , x

(m)
k )

]⊤[ K∑
k=1

p
(m)
k a(“Xtm , x

(m)
k )

] )
since Zm+1 ∼ N (0, Iq). Thus, (“Xtm , p

(m))0≤m≤M makes up a Markov chain with transi-
tion probability

π
(m)
ij :=P

(“Xtm+1 = x
(m+1)
j | “Xtm = x

(m)
i , p(m))

=P
(‹Xtm+1 ∈ Cj(x(m+1)) | “Xtm = x

(m)
i , p(m))

=P
[(
x

(m)
i + h

K∑
k=1

p
(m)
k β(x(m)

i , x
(m)
k ) +

√
h

K∑
k=1

p
(m)
k a(x(m)

i , x
(m)
k )Zm+1

)
︸ ︷︷ ︸

Ei(x(m),p(m),Zm+1)

∈ Cj(x(m+1))
]

(7.3.1)

and

P
(“Xtm+1 = x

(m+1)
j

∣∣ p(m)) = P
(‹Xtm+1 ∈ Cj(x(m+1))

∣∣ p(m))
=

K∑
i=1

P
(“Xtm+1 = x

(m+1)
j | “Xtm = x

(m)
i , p(m)) · P(“Xtm = x

(m)
i )

=
K∑
i=1

P
(
Ei(x(m), p(m), Zm+1) ∈ Cj(x(m+1))

)
· p(m)
i . (7.3.2)

The formula (7.3.2) is in fact the value of p(m+1)
j given p(m).

7.3.2 Application of Lloyd’s algorithm to the recursive quantization

In order to implement Lloyd’s algorithm, we need to compute

E
[‹Xtm+11Cj(x(m+1))(‹Xtm+1) | p(m)]

=E
[
E
[‹Xtm+11Cj(x(m+1))(‹Xtm+1) | “Xtm = x

(m)
i , p(m)] ∣∣∣ p(m)

]
=

K∑
i=1

E
[‹Xtm+11Cj(x(m+1))(‹Xtm+1) | “Xtm = x

(m)
i , p(m)] · P(“Xtm = x

(m)
i )

=
K∑
i=1

E
[‹Xtm+11Cj(x(m+1))(‹Xtm+1) | “Xtm = x

(m)
i , p(m)] · p(m)

i , (7.3.3)
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where

E
[‹Xtm+11Cj(x(m+1))(‹Xtm+1) | “Xtm = x

(m)
i , p(m)] = E

[
Y 1Cj(x(m+1))(Y )

]
(7.3.4)

with

Y ∼ N
(
x

(m)
i +h

K∑
k=1

p
(m)
k β(x(m)

i , x
(m)
k ), h

[ K∑
k=1

p
(m)
k a(x(m)

i , x
(m)
k )

]⊤[ K∑
k=1

p
(m)
k a(x(m)

i , x
(m)
k )

] )
.

(7.3.5)
Then, given p(m), we can use (7.3.3) and (7.3.2) to compute the Lloyd iteration (4.0.18)
in order to obtain the optimal quantizer of ‹Xtm+1 .

Remark 7.3.1. The recursive quantization method has a high computing speed in
dimension 1 since the the Voronoï cells in dimension 1 are in fact intervals of R. For
example, let x = (x1, ..., xK) ∈ RK be a quantizer with xi < xi+1, i = 1, ...,K, one can
choose a Voronoï partition as follows:

C1(x) =
(
−∞, x1 + x2

2
)
,

Ck(x) =
[xk−1 + xk

2 ,
xk + xk+1

2
)
, k = 2, ...,K − 1,

CK(x) =
[xK−1 + xK

2 ,+∞).

Let x(m) = (x(m)
1 , ..., x

(m)
K ) be the quantizer of the m-th Euler step. The transition

probability π(m)
ij in (7.3.1) reads

Fm,σ2

(x(m)
j+1 + x

(m)
j

2

)
− Fm,σ2

(x(m)
j−1 + x

(m)
j

2

)
,

where Fm,σ2 denotes the cumulative distribution function of N (m,σ2) with

m = x
(m)
i + h

K∑
k=1

p
(m)
k β(x(m)

i , x
(m)
k ) and σ =

√
h
[ K∑
k=1

p
(m)
k a(x(m)

i , x
(m)
k )

]
. (7.3.6)

Moreover, the Lloyd iteration (7.3.4) depends on

∫ (x(m)
j+1+x(m)

j )/2

(x(m)
j−1+x(m)

j )/2
ξ · fm,σ2(ξ)dξ (7.3.7)

where fm,σ2(ξ) is the density function of N (m,σ2) with the same m and σ as in (7.3.6).
In fact, to avoid computing the integral, (7.3.7) can be alternatively calculated by the
following method,

∀a, b ∈ R,
∫ b

a
ξ · fm,σ2(ξ)(ξ)dξ =

∫ b

a

1√
2πσ2

ξe− (ξ−m)2

2σ2 dξ,
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= σ√
2π

ï
−e− (ξ−m)2

2σ2

òb
a

+m
[
Fm,σ2(b)− Fm,σ2(a)

]
.

(7.3.8)

However, in high dimension, there does not exist such an alternative formula as
(7.3.8) to accelerate the calculation. We refer to the website www.qhull.com for the
cubature formulas of the numerical integration over a convex set in low dimensions.

7.4 L2-error analysis of doubly quantized scheme (H)

Let x(m) = (x(m)
1 , ..., x

(m)
K ) denote the quantizer of X̄tm at m-th Euler step. Recall

that the doubly quantized scheme can be written as follows(1) (a more detailed version
is in Algorithm 3),

(H) :



‹X0 = X0, “X0 = Projx(0)(‹X0)‹Xtm+1 = “Xtm + h · b(“Xtm , µ̂tm) +
√
hσ(“Xtm , µ̂tm)Ẑm+1, m = 0, ...,M − 1

where h = T
M and µ̂tm = P“Xtm“Xtm+1 = Projx(m+1)(‹Xtm+1),

,

where z = (z1, ..., zJ) is an L2-optimal quantizer of N (0, Iq) with J ≫ K(2), w =
(w1, ..., wJ) the corresponding weight of z, Ẑm i.i.d∼

∑J
j=1 δzjwj , and (Ẑ1, ..., ẐM ) is

independent to X0.

The reason why we can explicitly represent µ̂tm if we use Ẑm instead of Zm is the
following. If we have two independent random variables X and Y with respective discrete
distributions X ∼∑N

n=1 δxnp
x
n, Y ∼∑M

m=1 δymp
y
m, M,N ∈ N∗, we can always explicitly

write the distribution of f(X) + g(X)Y with f, g Borel function by enumerating all
possible occurrences of this random variable, namely

f(X) + g(X)Y ∼
∑

1≤n≤N
1≤m≤M

δf(xn)+g(xn)ym
· pxn pym.

The following proposition establish an error bound for the doubly quantization
method.

Proposition 7.4.1. Let “Xtm, µ̂tm define as in (H) and let X̄tm and µ̄tm define as in

(1) By a slight abus of notation, we use here the same notation as in (E).
(2) It is a natural recommendation for practitioners but not a mathematical requirement.



7.4 L2-error analysis of doubly quantized scheme 187

(C). Assume that Assumption (I) is satisfied with p = 2, then

W2(µ̄tm , µ̂tm) ≤
∥∥∥X̄tm − “Xtm

∥∥∥
2
≤

m∑
j=0

[
1 + hL(2 + 2hL+ q)

]m−j[
Ξj +

√
h · C̃ · eK2,Z

]j
,

where e2
K2,Z

denotes the quantization error of Z on its optimal quantizer z and Ξm =∥∥∥‹Xm − “Xm

∥∥∥
2

denotes the L2-quantization error of ‹Xm on x(m).

Proof. In order to simplify the notation, we write X̄m (respectively, ‹Xm, “Xm) instead of
X̄tm (respectively, ‹Xtm , “Xtm). It follows that

E
∣∣∣X̄m+1 − ‹Xm+1

∣∣∣2
= E

∣∣∣(X̄m − “Xm

)
+ h

[
b(X̄m, µ̄m)− b(“Xm, µ̂m)

]
+
√
h
[
σ(X̄m, µ̄m)Zm+1 − σ(“Xm, µ̂m)Ẑm+1

]∣∣∣2
= E

∣∣∣(X̄m − “Xm

)
+ h

[
b(X̄m, µ̄m)− b(“Xm, µ̂m)

]∣∣∣2︸ ︷︷ ︸
(a)

+ E
[
h
∣∣σ(X̄m, µ̄m)Zm+1 − σ(“Xm, µ̂m)Ẑm+1

∣∣2]︸ ︷︷ ︸
(b)

+ 2
√
hE

〈(
X̄m − “Xm

)
+ h

[
b(X̄m, µ̄m)− b(“Xm, µ̂m)

] ∣∣∣ σ(X̄m, µ̄m)Zm+1 − σ(“Xm, µ̂m)Ẑm+1

〉
︸ ︷︷ ︸

(c)

.

(7.4.1)

Remark that at each step m, we take the optimal quantizer of N (0, Iq) so that by
Proposition 4.0.1-(a), we have for every m = 0, ...,M ,

E
[
Zm+1 | Ẑm+1

]
= Ẑm+1. (7.4.2)

Hence, E
[
Ẑm+1

]
= E

[
Zm+1

]
= 0q. Consequently, Term (c) of (7.4.1) equals to 0.

For Term (a) of (7.4.1), we have

(a) = E
∣∣∣(X̄m − “Xm

)
+ h

[
b(X̄m, µ̄m)− b(“Xm, µ̂m)

]∣∣∣2
= E

[ ∣∣∣X̄m − “Xm

∣∣∣2 + h2
∣∣∣b(X̄m, µ̄m)− b(“Xm, µ̂m)

∣∣∣2
+ 2h

〈
X̄m − “Xm

∣∣ b(X̄m, µ̄m)− b(“Xm, µ̂m)
〉]
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and

⟨X̄m − “Xm

∣∣ b(X̄m, µ̄m)− b(“Xm, µ̂m)
〉
≤

∣∣∣X̄m − “Xm

∣∣∣ ∣∣∣b(X̄m, µ̄m)− b(“Xm, µ̂m)
∣∣∣

≤ L
∣∣∣X̄m − “Xm

∣∣∣ [ ∣∣∣X̄m − “Xm

∣∣∣ +W2(µ̄m, µ̂m)
]
,

so that owing to the fact that W2
2 (µ̄m, µ̂m) ≤ E

∣∣∣X̄m − “Xm

∣∣∣2,

(a) ≤ E
[ ∣∣∣X̄m − “Xm

∣∣∣2 + 4h2L2
∣∣∣X̄m − “Xm

∣∣∣2 + 4hL
∣∣∣X̄m − “Xm

∣∣∣2 ]
≤

(
1 + 4h2L2 + 4hL

)
E

∣∣∣X̄m − “Xm

∣∣∣2 .
Next, for Part (b) of (7.4.1), we have

(b) = E
[
h
∣∣σ(X̄m, µ̄m)Zm+1 − σ(“Xm, µ̂m)Ẑm+1

∣∣2]
= hE

[ ∣∣∣σ(X̄m, µ̄m)(Zm+1 − Ẑm+1) +
[
σ(X̄m, µ̄m)− σ(“Xm, µ̂m)

]
Ẑm+1

∣∣∣2 ]
= h

[
E
∣∣∣σ(X̄m, µ̄m)(Zm+1 − Ẑm+1)

∣∣∣2 + E
∣∣∣[σ(X̄m, µ̄m)− σ(“Xm, µ̂m)

]
Ẑm+1

∣∣∣2 ],
where the last equality is due to the orthogonality between Zm+1 − Ẑm+1 and Ẑm+1 by
(7.4.2). It follows that

E
∣∣∣σ(X̄m, µ̄m)(Zm+1 − Ẑm+1)

∣∣∣2 ≤ E
∣∣∣∣∣∣σ(X̄m, µ̄m)

∣∣∣∣∣∣2 · E ∣∣∣Zm+1 − Ẑm+1

∣∣∣2
≤ Cb,σ,L

(
1 +

∥∥X̄m

∥∥2
2
)
· e2
K2,Z

≤ Cb,σ,L
(

1 +
∥∥ sup

1≤m≤M

∣∣X̄m

∣∣ ∥∥2
2

)
· e2
K2,Z

≤ Cb,σ,L,T,∥X0∥2
· e2
K2,Z ,

where e2
K2,Z

denote the quantization error of Z on its optimal quantizer z and the last
inequality is due to Lemma 5.2.2, and

E
∣∣∣[σ(X̄m, µ̄m)− σ(“Xm, µ̂m)

]
Ẑm+1

∣∣∣2 ≤ E
∣∣∣∣∣∣∣∣∣σ(X̄m, µ̄m)− σ(“Xm, µ̂m)

∣∣∣∣∣∣∣∣∣2 · E ∣∣∣Ẑm+1

∣∣∣2
≤ 2Lq E

∣∣∣X̄m − “Xm

∣∣∣2 ,
where the last inequality is due to (7.4.2)

E
∣∣∣Ẑm+1

∣∣∣2 = E
[ ∣∣∣E [Zm+1 | Ẑm+1]

∣∣∣2 ] ≤ E
[
|Zm+1|2

]
= q.
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Consequently,

E
∣∣∣X̄m+1 − ‹Xm+1

∣∣∣2 ≤ [
1 + 2hL(2 + 2hL+ q)

]
E
∣∣∣X̄m − “Xm

∣∣∣2 + h · C̃ · e2
K2,Z ,

where C̃ = Cb,σ,L,T,∥X0∥2
. Thus∥∥∥X̄m+1 − “Xm+1

∥∥∥
2
≤
»

1 + 2hL(2 + 2hL+ q)
∥∥∥X̄m − “Xm

∥∥∥
2

+
√
h · C̃ · eK2,Z

≤
[
1 + hL(2 + 2hL+ q)

] ∥∥∥X̄m − ‹Xm

∥∥∥
2

+
√
h · C̃ · eK2,Z .

Finally, let Ξm =
∥∥∥‹Xm − “Xm

∥∥∥
2

denote the L2-quantization error of ‹Xm on x(m), then

∥∥∥X̄m − “Xm

∥∥∥
2
≤

m∑
j=0

[
1 + hL(2 + 2hL+ q)

]m−j[
Ξj +

√
h · C̃ · eK2,Z

]j
and one concludes by using the fact that W2(µ̄m, µ̂m) ≤

∥∥∥X̄m − “Xm

∥∥∥
2
.

Remark 7.4.1. Comparing with the result of Proposition 7.4.1 and Proposition 7.2.1, the
doubly quantized scheme adds at each step a quantization error of N (0, Iq) in the sum.
Here we give a brief comparison between the recursive quantization method and the
doubly quantized scheme.

Doubly quantized scheme Recursive quantization method

Application scope McKean-Vlasov equation Vlasov equation

Computing time better in dimension 1, better in dimension 1,

acceptable in higher dimension slow for higher dimension

Accuracy higher L2-error lower L2-error

Table 7.1 A brief comparison between the recursive quantization method and the doubly
quantized scheme

7.5 L2-error analysis of the hybrid particle-quantization
scheme (G→D)

For m = 0, ...,M , let x(m) = (x(m)
1 , ..., x

(m)
K ) be the quantizer of µ̄Ntm defined in (D)

and let
(
Ck(x(m))

)
1≤k≤K be a Voronoï partition generated by x(m). Let Projx(m) denote
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the projection function on x(m).

We recall the definition of the hybrid particle-quantization scheme:

(F ) :



∀n ∈ {1, ..., N},‹Xn,N
tm+1 = ‹Xn,N

tm + b(‹Xn,N
tm , µ̂Ktm)h+ σ(‹Xn,N

tm , µ̂Ktm)
√
hZnm+1

µ̂Ktm =
( 1
N

∑N
n=1 δ‹Xn,N

tm

)
◦ Proj−1

x(m) = ∑K
k=1

[
δ
x

(m)
k

·
∑N
n=1 1Vk(x(m))(‹Xn,N

tm )
]

X̄n,N
0

i.i.d∼ X0, Znm
i.i.d∼ N (0, Iq), (X̄n,N

0 )1≤n≤N ⊥⊥ (Znm)1≤n≤N,1≤m≤M .

Then we use µ̂Ktm as an estimator of µ̄Ntm in (D). The following proposition provides an
upper bound of EW2

(
µ̂Ktm , µ̄

N
tm

)
.

Proposition 7.5.1. Assume that the conditions in Assumption (I) is true with p = 2.
Then for any m ∈ {1, ...,M}, we have

EW2
(
µ̂Ktm , µ̄

N
tm

)
≤ C2

m−1∑
j=0

Cj1

√
E Ξ̂2

m−1−j + E Ξ̂m. (7.5.1)

where Ξ̂m =W2
(
µ̂Ktm ,

1
N

∑N
i=1 δ‹Xn,N

tm

)
and C1, C2 are constants depending on h, L and q.

Remark 7.5.1. For every m = 1, ...,M , it follows from (1.1.15) that

E Ξ̂m = EW2
(
µ̂Ktm ,

1
N

N∑
i=1

δ‹Xn,N
tm

)
= E e

K, 1
N

∑N

i=1 δX̃
n,N
tm

(x(m)).

Thus one can implement Lloyd’s algorithm at each Euler step in order to minimize the
error bound on the right-hand side of (7.5.1), as what mentioned in Algorithm 4.

Proof of Proposition 7.5.1. For any m ∈ {1, ...,M}, the measure 1
N

∑N
n=1 δ(‹Xn,N

tm
,X̄n,N

tm
)

is a random coupling of 1
N

∑N
n=1 δ‹Xn,N

tm

and µ̄Ntm = 1
N

∑N
n=1 δX̄n,N

tm

. Thus, for any m ∈
{1, ...,M},

E
[
W2

2
( 1
N

N∑
n=1

δ‹Xn,N
tm

, µ̄Ntm
)]
≤ E

[ ∫
Rd×Rd

|x− y|2 1
N

N∑
n=1

δ(‹Xn,N
tm

,X̄n,N
tm

)(dx, dy)
]

= E
[ 1
N

N∑
n=1

∣∣∣‹Xn,N
tm − X̄n,N

tm

∣∣∣2 ]. (7.5.2)

On the other hand,‹Xn,N
tm+1 − X̄

n,N
tm+1 =‹Xn,N

tm − X̄n,N
tm +

[
b(‹Xn,N

tm , µ̂Ktm)− b(X̄n,N
tm , µ̄Ntm)

]
h

+
[
σ(‹Xn,N

tm , µ̂Ktm)− σ(X̄n,N
tm , µ̄Ntm)

]√
hZnm+1. (7.5.3)
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Let bQ
m := b(‹Xn,N

tm , µ̂Ktm), bEuler
m := b(X̄n,N

tm , µ̄Ntm), σQ
m := σ(‹Xn,N

tm , µ̂Ktm) and σEuler
m :=

σ(X̄n,N
tm , µ̄Ntm). Let Fm be the σ−algebra generated by X0, Znm, n = 1, ..., N,m = 1, ...,M .

Then bEuler
m , bQ

m, σEuler
m , σQ

m are Fm-measurable and Znm+1, n ∈ {1, ..., N} are independent
of Fm. Hence, it follows from (7.5.3) that

E
∣∣∣‹Xn,N

tm+1 − X̄
n,N
tm+1

∣∣∣2
= E

[ ∣∣∣(‹Xn,N
tm − X̄ n,N

tm ) +
(
bQ
m − bEuler

m

)
h
∣∣∣2 ] + E

[ ∣∣∣(σQ
m − σEuler

m

)√
hZnm+1

∣∣∣2 ]
+ 2E

[〈
(‹Xn,N

tm − X̄ n,N
tm ) + (bQ

m − bEuler
m )h

∣∣ (σQ
m − σEuler

m )
√
hZnm+1

〉]
︸ ︷︷ ︸

=0 since Zn
m+1, n=1,...,N are independent of Fm.

. (7.5.4)

Moreover, Assumption (I) implies,∣∣∣bQ
m − bEuler

m

∣∣∣ ∨ ∣∣∣σQ
m − σEuler

m

∣∣∣ ≤ L[ ∣∣∣‹Xn,N
tm − X̄n,N

tm

∣∣∣ +W2(µ̂Ktm , µ̄
N
tm)

]
.

Hence, we have

E
[ ∣∣∣bQ

m − bEuler
m

∣∣∣2 ] ≤ 2L2
[
E
∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 + EW2
2 (µ̂Ktm , µ̄

N
tm)

]
,

and

E
[ ∣∣∣(σQ

m − σEuler
m )

√
hZnm+1

∣∣∣2 ] ≤ hE{E[∣∣∣∣∣∣∣∣∣σQ
m − σEuler

m

∣∣∣∣∣∣∣∣∣2 ∣∣Znm+1
∣∣2 | Fm]}

= hE
{∣∣∣∣∣∣∣∣∣σQ

m − σEuler
m

∣∣∣∣∣∣∣∣∣2E[ ∣∣Znm+1
∣∣2 ]} = h q E

[∣∣∣∣∣∣∣∣∣σQ
m − σEuler

m

∣∣∣∣∣∣∣∣∣2]
≤ 2L2h q

[
E
∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 + EW2
2 (µ̂Ktm , µ̄

N
tm)

]
.

Hence, (7.5.4) becomes

E
[ ∣∣∣‹Xn,N

tm+1 − X̄
n,N
tm+1

∣∣∣2 ]
= E

[ ∣∣∣(‹Xn,N
tm − X̄n,N

tm ) +
(
bQ
m − bEuler

m

)
h
∣∣∣2 ] + E

[ ∣∣∣(σQ
m − σEuler

m

)√
hZnm+1

∣∣∣2 ]
= E

[
(
∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 ] + E
[ ∣∣∣bQ

m − bEuler
m

∣∣∣2 h2] + E
[ ∣∣∣(σQ

m − σEuler
m

)√
hZnm+1

∣∣∣2 ]
+ 2hE

[
⟨‹Xn,N

tm − X̄n,N
tm | bQ

m − bEuler
m ⟩

]
≤ E

[
(‹Xn,N

tm − X̄n,N
tm )2] + 2L2(h2 + hq)

[
E
∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 + EW2
2 (µ̂Ktm , µ̄

N
tm)

]
+ hE

[ ∣∣∣‹Xn,N
tm − X̄n,N

tm

∣∣∣2 +
∣∣∣bQ
m − bEuler

m

∣∣∣2 ]
≤ E

[
(‹Xn,N

tm − X̄n,N
tm )2] + 2L2(h2 + hq)

[
E
∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 + EW2
2 (µ̂Ktm , µ̄

N
tm)

]
+ hE

[ ∣∣∣‹Xn,N
tm − X̄n,N

tm

∣∣∣2 ] + 2L2h
[
E
∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 + EW2
2 (µ̂Ktm , µ̄

N
tm)

]
,
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≤
[
1 + 2L2(h2 + hq) + h+ 2L2h

]
E
[ ∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 ]
+ (2L2(h2 + hq) + 2L2h)EW2

2 (µ̂Ktm , µ̄
N
tm).

Let C1 := 1 + 2L2(h2 + hq) + h+ 2L2h, C2 := 2L2(h2 + hq) + 2L2h. Let

Ξ̂m =W2
(
µ̂Ktm ,

1
N

N∑
i=1

δ‹Xn,N
tm

)
.

It follows that,Ã
1
N

N∑
i=1

E
[ ∣∣∣‹Xn,N

tm+1 − X̄
n,N
tm+1

∣∣∣2 ]

=

Ã
C1

1
N

N∑
i=1

E
[
(‹Xn,N

tm − X̄n,N
tm )2

]
+ C2E

[
W2

2 (µ̂Ktm , µ̄Ntm)
]

≤

Ã
C1 ·

1
N

N∑
i=1

E
[ ∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 ] + C2

[
2EW2

2 (µ̂Ktm ,
1
N

N∑
i=1

δ‹Xn,N
tm

) + 2EW2
2 ( 1
N

N∑
i=1

δ‹Xn,N
tm

, µ̄Ntm)
]

≤

Ã
(C1 + 2C2) · 1

N

N∑
i=1

E
[ ∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 ] + 2C2E Ξ̂2
m (by (7.5.2))

≤
√
C1 + 2C2

Ã
1
N

N∑
i=1

E
[ ∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 ] +
√

2C2

»
E Ξ̂2

m. (7.5.5)

Let C̄1 :=
√
C1 + 2C2 and C̄2 =

√
2C2 . The inequality (7.5.5) impliesÃ

1
N

N∑
i=1

E
[ ∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 ] ≤ C̄2

m−1∑
j=0

C̄j1

√
E Ξ̂2

m−1−j .

Hence, it follows from (7.5.2) that

EW2
( 1
N

N∑
i=1

δ‹Xn,N
tm

, µ̄Ntm
)
≤

Ã
EW2

2
( 1
N

N∑
i=1

δ‹Xn,N
tm

, µ̄Ntm
)
≤

Ã
1
N

N∑
i=1

E
[ ∣∣∣‹Xn,N

tm − X̄n,N
tm

∣∣∣2 ]
≤ C̄2

m−1∑
j=0

C̄j1

√
E Ξ̂2

m−1−j .

Consequently,

EW2
(
µ̂Ktm , µ̄

N
tm

)
≤ EW2

( 1
N

N∑
i=1

δ‹Xn,N
tm

, µ̄Ntm
)

+ EW2
( 1
N

N∑
i=1

δ‹Xn,N
tm

, µ̂Ktm
)
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≤ C̄2

m−1∑
j=0

C̄j1

√
EΞ̂2

m−1−j + E Ξ̂m.

7.6 Simulation examples

In this section, we illustrate our theoretical results by two simulations. The first one
is the Burgers equation introduced and already considered for numerical tests in Bossy
and Talay (1997). This is a one-dimensional example with an explicit solution and we use
this example to compare the accuracy and computational time of the different simulation
methods under consideration. The second example is the Network of FitzHugh-Nagumo
neurons already numerically investigated in Baladron et al. (2012) (also in Reis et al.
(2018)), which is a 3-dimensional example. All examples are written in Python 3.7.

7.6.1 Simulation of the Burgers equation, comparison of the three
algorithms

In Bossy and Talay (1997), the authors analyse the solution and investigate the
particle method of the Burgers equation

dXt =
∫
RH(Xt − y)µt(dy)dt+ σdBt

∀t ∈ [0, T ], µt = PXt

X0 : (Ω,F ,P)→ (R,B(R))

, (7.6.1)

where H is the Heaviside function (H(z) = 1, if z ≥ 0, H(z) = 0, if z < 0) and σ is a
real constant. If we denote by V (t, x) the cumulative distribution function of µt, then
V (t, x) satisfies ∂V

∂t = 1
2σ

2 ∂2V
∂x2 − V ∂V

∂x

V (0, x) = V0(x)
. (7.6.2)

Moreover, if the initial cumulative distribution function V0 satisfies
∫ x

0 V0(y)dy = O(x),
then the function V has a closed form given by (see Hopf (1950))

V (t, x) =

∫
R V0(y)exp

(
− 1

σ2

[ (x−y)2

2t +
∫ y

0 V0(z)dz
])
dy∫

R exp
(
− 1

σ2

[ (x−y)2

2t +
∫ y

0 V0(z)dz
])
dy

, (t, x) ∈ [0, T ]× R. (7.6.3)
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Hence, if we consider X0 = 0, then the cumulative distribution function at time T = 1 is

FT=1(x) =

∫
R+

exp
(
− 1

σ2

[ (x−y)2

2 + y
])
dy∫

R exp
(
− 1

σ2

[ (x−y)2

2 + y1y≥0
])
dy
. (7.6.4)

Figure 7.1 True cumulative distribution function

As there exists an explicit formula of the cumulative distribution function at time
T = 1, we can compute the accuracy of the different numerical methods proposed in the
former sections by computing

∥Fsimu − Ftrue∥sup , (7.6.5)

where Fsimu represents the simulated cumulative distribution function by different
numerical methods and Ftrue is the true cumulative distribution function (7.6.4). We
know that for two probability distributions µ, ν ∈ Pp(Rd) with respective cumulative
distribution function F and G, the Wasserstein distance Wp(µ, ν) can be computed by

Wp
p (µ, ν) =

∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣p du, p ≥ 1. (7.6.6)

However, it is computationally extremely costly to directly compute the inverse function
of the cumulative distribution function (7.6.4) and if we compute (7.6.6) by using
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Monte-Carlo simulation, it will induce its own statistical error which may disturb our
comparisons. Thus, instead of considering (7.6.6), we preferred to compute (7.6.5) by

∥Fsimu(x)− Ftrue(x)∥sup ≃ sup
x∈Unifset

|Fsimu(x)− Ftrue(x)| ,

where Unifset is a uniformly spaced point set in [−2.5, 3.5]. One may consider that
this measure of the errors is more stringent than the Wasserstein distance, at least if
Unifset contains a great number of points.

In the following simulation, we choose σ2 = 0.2 and M = 50 so that we have the
same time step h = T

M = 0.02 for each method.

We first give a preliminary illustration of the simulated cumulative distribution
function by Algorithm 1,2 and 4. The Burgers equation (7.6.1) is a one-dimensional
Vlasov equation so that Algorithm 2 based on the recursive quantization method
outperforms Algorithm 3 (see Remark 7.4.1). Hence, we omit the simulation by the
doubly quantized scheme (Algorithm 3) in this example.

In a second phase, we will precisely present the decreasing rate of the error (7.6.5) of
the particle method (Algorithm 1) and of the recursive quantization method without
Lloyd quantizer optimization (Algorithm 2) respectively according to N and K. At the
end of this section, we will give some comments of the numerical performance of different
methods mainly through two aspects: the accuracy and the computing time.
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Figure 7.2 Simulated cumulative distribution function by the particle method (Algorithm
1)

Figure 7.3 Simulated cumulative distribution function by the recursive quantization
method without Lloyd iteration (Algorithm 2)
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Figure 7.4 Simulated cumulative distribution function by the recursive quantization
method with 5 Lloyd iterations at each Euler step (Algorithm 2)

Figure 7.5 Simulated cumulative distribution function by the hybrid particle-quantization
scheme without Lloyd iteration (Algorithm 4)
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Figure 7.6 Simulated cumulative distribution function by the hybrid particle-quantization
scheme with 5 Lloyd iterations at each Euler step (Algorithm 4)

A detailed comparison of the different methods is displayed in the following table.
Remind that the particle method (Algorithm 1) and the hybrid particle-quantization
scheme (Algorithm 4) are random algorithms so that their accuracy are computed by
taking an average error computed over 50 independent identical simulations.
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Now we present the convergence rate of the error of the particle method (Algorithm 1)
with respect to the particle size N = 28, 29, 210, 211, 212, 213 for a fixed M = 50. As the
particle method (Algorithm 1) is a random algorithm, the simulation results are also ran-
dom, including the error ∥Fsimu − Ftrue∥sup. Consequently, we will rerun independently
and identically 500 times for each value of N .

N 28 29 210 211 212 213

Error ∥Fsimu − Ftrue∥sup 0.04691 0.03409 0.02438 0.01785 0.01407 0.01131

Standard deviation 0.01207 0.00939 0.00687 0.00469 0.00408 0.00294

Table 7.3 Error of the particle method (Algorithm 1) with respect to the particle size N

In the following figure we show the curve of the error with respect to N and the
log-error with respect to log2(N).

Figure 7.7 Error of the particle method (Algorithm 1) with respect to the particle size N
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Figure 7.8 Log-error of the particle method (Algorithm 1) with respect to log2(N).
The slope is approximately equal to -0.28451.
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Figure 7.9 The standard deviation of the error of the particle method (Algorithm 1)
with respect to N

Now we present the convergence rate of the error of the recursive quantization method
(Algorithm 2) with respect to the quantizer size K for a fixed M = 50. We will take
K = 25, 26, 27, 28, 29, 210. Remind that here we use a fixed quantizer sequence which is
a uniformly spaced point set in [-2.5, 3.5] without Lloyd I algorithm for the quantizer
optimization.

K 25 26 27 28 29 210

Error ∥Fsimu − Ftrue∥sup 0.07347 0.04176 0.02360 0.01471 0.01043 0.00829

Table 7.4 Error of the recursive quantization method (Algorithm 2) with respect to the
quantizer size K

In the following figure we show the curve of the error with respect to K and the log
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error with respect to log2(K).

Figure 7.10 Error of the recursive quantization method (Algorithm 2) with respect to
the quantizer size K
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Figure 7.11 Log-error of the recursive quantization method (Algorithm 2) with respect
to log2(K). The slope is approximately equal to -0.43626.

Now we provide some comments on the performance of the numerical methods.

• Comparison of the computing time.

The particle method (Algorithm 1) and the recursive quantization method (Algo-
rithm 2) without Lloyd iteration are the two fastest methods. In fact, these two
methods are essentially computing a Markov chain in RN and RK respectively.
The application of the Lloyd procedure in Algorithm 2 is a little faster than in
Algorithm 4 since we used the formulas showed in (7.3.8). However, in a higher
dimension, the Lloyd procedure in Algorithm 4 will be faster than in Algorithm 2.

• Comparison of the accuracy computed by ∥Fsimu(x)− Ftrue(x)∥sup.

– Algorithm 1 and Algorithm 4 are “random” algorithms whose simulation
results, including the error ∥Fsimu(x)− Ftrue(x)∥sup, depend on ω in (Ω,F ,P).
In Figure 7.7 and Figure 7.9, we display the standard deviation of errors of
Algorithm 1 comparing with the errors themselves. Comparing with these
two algorithms, Algorithm 2 is more robust and deterministic.
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– Comparing with the particle size N in Table 7.3 and the quantizer size K
in Table 7.4, one can remark that to achieve the same accuracy, we need
fewer points in the quantizer than in the particle. So if we need a discrete
representation of the cumulative distribution function F (or equivalently,
a discrete representation of the probability distribution µ) to compute a
further functional of µ, such as an integral with respect to µ, the recursive
quantization based scheme provides a smaller data set (K-size quantizer and
K-size weight vector) than the particle method.

– The error of Algorithm 2, especially when we implement without the Lloyd I
quantizer optimization, much depends on the choice of quantizer. Generally,
a practical way to choose the initial quantizer of a probability distribution
µ is to use self-quantization technique for which we refer to Delattre et al.
(2006), Graf and Luschgy (2000)[Section 7.1 and Section 14], Pagès and
Printems (2003) and Pages et al. (2004). Another efficient trick to improve
this optimization phase is to rely on a so-called “splitting method” which uses
the trained quantizer of Euler step l as a initial quantizer of Euler step l + 1.

In this one dimensional case, we did not remark the obvious advantage of the
hybrid particle quantization scheme (Algorithm 4) comparing with other methods.
However, in the next section, we will show that the hybrid method provides a fair
balance between the accuracy and the obtained data size.

7.6.2 Simulation of the network of FitzHugh-Nagumo neurons in di-
mension 3

We consider the network of FitzHugh-Nagumo neurons introduced in Baladron et al.
(2012):

dXt = b(Xt, µt)dt+ σ(Xt, µt)dBt (7.6.7)

with b : R3 × P(R3)→ R3 and σ : R3 × P(R3)→M3×3 defined by

b(x, µ) :=

Ü
x1 − (x1)3/3− x2 + I −

∫
R3 J(x1 − Vrev)z3 µ(dz)

c(x1 + a− bx2)
ar

Tmax(1−x3)
1+exp

(
−λ(x1−VT )

) − adx3

ê
,

σ(x, µ) :=

Ö
σext 0 −

∫
R3 σJ(x1 − Vrev)z3 µ(dz)

0 0 0
0 σ32(x) 0

è
,
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with

σ32 := 1x3∈(0,1)

 
ar

Tmax(1− x3)
1 + exp

(
− λ(x1 − VT )

) + ad x3 Γ exp
(
− Λ

1− (2x3 − 1)2
)
.

The probability distribution of X0 is

X0 ∼ N

ÖÖ
V0

ω0

y0

è
,

Ö
σV0 0 0
0 σω0 0
0 0 σy0

èè
with the following parameter values

V0 = 0 σV0 = 0.4 a = 0.7 b = 0.8 c = 0.08 I = 0.5 σext = 0.5
ω0 = 0.5 σω0 = 0.4 Vrev = 1 ar = 1 ad = 1 Tmax = 1 λ = 0.2
y0 = 0.3 σy0 = 0.05 J = 1 σJ = 0.2 VT = 2 Γ = 0.1 Λ = 0.5.

In this section, we compare the performance of the particle method (introduced in
Section 7.1) and the hybrid method (introduced in Section 7.5) in two aspects. First,
we intuitively compare these two methods by simulating the density function of (x1, x2)
for T = 1.5, as in the original paper Baladron et al. (2012)[Page 31, Figure 4, the third
one in the right]. In this step, we choose the Euler step number M = 5000 to reduce
(as much as possible) the error of the discretization in time. In Figures 7.12, 7.13, 7.15
and 7.16, we display the images of the density function simulated by these two methods.
Next, as the particle method and the hybrid method are both random methods, we take

φ(µsimu
T ) :=

∫
R3
|ξ|2 µsimu

T (dξ) = E
∣∣Xsimu

T

∣∣2
as a test function for the simulated distribution µsimu

T at time T , rerun 200 times for each
method and compare the mean and the standard deviation of φ(µsimu

T ). As this network
example is a 3-dimensional example, the doubly quantization method (introduced in
Section 7.4) and the recursive quantization method (introduced in Section 7.3) are costly
in the computing time (for a laptop) at present, due to the quantizer size of the normal
distribution to obtain Ẑm in (H) and the integral of (7.3.5) over a Voronoï cell.

The images of the density function simulated respectively by the particle method
and the hybrid method are as follows.
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Particle method (Algorithm 1):

Figure 7.12 The first and second coordinates of 5000 particles at time T = 1.5
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Figure 7.13 The simulated density function smoothened by the Gaussian kernel method
(bandwith = 0.241)
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The hybrid particle-quantization scheme (Algorithm 4):

Figure 7.14 The quantizer of (x0, x1), simulated with particle numberN = 5000, quantizer
size K = 300 and 10 Lloyd iterations at each Euler step



210Particle Method, Quantization Based and Hybrid Scheme, Examples of Simulation

Figure 7.15 The Voronoï cells of the above quantizer. The color of each Voronoï cell
represents the weight of this cell (the darker the heavier).
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Figure 7.16 The density function simulated by Algorithm 4. The vertical axis is the
weight divided by the area of the corresponding Voronoï cell.
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Figure 7.17 The smoothen density function of Figure 7.16 by the Gaussian kernal method
(bandwidth = 0.22).

The obtained density functions have a similar form by these two methods but the
data size obtained by the particle method is

5000 (the number of particle)× 3 (dimension),

while the data size obtained by the hybrid method is

300 (the quantizer size)× 4 (dimension + weight for each quantizer).

For a more precise comparing, we fix now the time discretization number M = 150,
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consider the following test function for the simulated distribution µsimu
T at T = 1.5

φ(µsimu
T ) :=

∫
R3
|ξ|2 µsimu

T (dξ) = E
∣∣Xsimu

T

∣∣2
and rerun 200 times for each method. We obtain the following results.

Particle method Hybrid method

N=300 N=3000 N = 5000 and K = 300

Obtained data size for µsimu
T 300×3 3000×3 300×4

Average computing time
for each Euler step

0.00184s 0.01097s 0.43060s

Test function
φ(µsimu

T )

Mean 1.43673 1.41452 1.42159

Standard
deviation

0.01907 0.00574 0.00534

Table 7.5 Comparison of the simulation result φ(µsimu
T )

Intuitively, the hybrid method can be considered as adding a “feature extraction”
step on the particle method. Comparing the third and fourth columns of the above table,
one can remark that this added step needs more computing time but highly reduces
the size of the output data size for the further computing of the test function φ(µsimu

T )
without enlarging the standard deviation. However, the second column of the above table
shows that if we implement the particle method with a similar data size, the computing
results of φ(µsimu

T ) provides a much larger standard deviation.
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