F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre et al., «Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries»; CA: a cancer journal for clinicians 68, pp.394-424, 2018.

D. Ribatti,

J. Folkman, the study of angiogenesis, vol.11, pp.3-10, 2008.

A. M. Byrne, D. J. Bouchier-hayes, and &. J. Harmey, Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF)»; Journal of cellular and molecular medicine 9, pp.777-794, 2005.

Y. Singh, «Tumor angiogenesis: clinical implications», Nepal Journal of Neuroscience, vol.1, pp.61-63, 2004.

N. S. Vasudev-&-a and . Reynolds, «Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions», Angiogenesis, vol.17, pp.471-494, 2014.

C. N. Sternberg, I. D. Davis, J. Mardiak, C. Szczylik, J. Wagstaff et al., «Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial», Journal of Clinical Oncology, 2010.

F. J. Mbeunkui-&-d and . Johann, «Cancer and the tumor microenvironment: a review of an essential relationship»; Cancer chemotherapy and pharmacology 63, pp.571-582, 2009.

E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei et al., Annals of human biology, vol.40, pp.463-471, 2013.

D. Trichopoulos, F. P. Li-&-d, and . Hunter, «What causes cancer?»; Scientific American 275, pp.80-87, 1996.

T. M. Iyama-&-d and I. Wilson,

, «DNA repair mechanisms in dividing and non-dividing cells

, DNA repair, vol.12, pp.620-636, 2013.

V. Chopra;-«mutagenesis, Investigating the process and processing the outcome for crop improvement»; CURRENT SCIENCE-BANGALORE-89, p.353, 2005.

E. L. Goode, C. M. Ulrich, and J. D. , Potter; «Polymorphisms in DNA repair genes and associations with cancer risk»; Cancer Epidemiology and Prevention Biomarkers 11, pp.1513-1530, 2002.

T. Reya, S. J. Morrison, M. F. Clarke-&-i, and . Weissman, «Stem cells, cancer, and cancer stem cells»; nature 414, p.105, 2001.

C. E. Bronner, S. M. Baker, P. T. Morrison, G. Warren, L. G. Smith et al., «Mutation in the DNA mismatch repair gene homologue hMLH 1 is associated with hereditary non

, Nature, vol.368, p.258, 1994.

M. Aarnio, R. Sankila, E. Pukkala, R. Salovaara, L. A. Aaltonen et al., «Cancer risk in mutation carriers of DNA-mismatch-repair genes», International journal of cancer, vol.81, pp.214-218, 1999.

J. A. Joyce and &. W. Pollard,

, «Microenvironmental regulation of metastasis», Nature reviews cancer, vol.9, p.239, 2009.

R. L. Siegel, K. D. Miller, and &. , CA: a cancer journal for clinicians 67, Cancer statistics, pp.7-30, 2017.

P. Correa;-«, Human gastric carcinogenesis: a multistep and multifactorial process-first American Cancer Society award lecture on cancer epidemiology and prevention»; Cancer research 52, pp.6735-6740, 1992.

S. Bouée, P. Grosclaude, A. Alfonsi, V. Florentin, and F. , Clavel-Chapelon & F. Fagnani

, «Projection de l'incidence du cancer du sein en 2018 en France», Bulletin du Cancer, vol.97, pp.293-299, 2010.

S. G. Pandya-&-r and . Moore, Clinical obstetrics and gynecology, vol.54, pp.91-95, 2011.

B. Weigelt, J. L. Peterse-&-l, and . Van,

, Breast cancer metastasis: markers and models», Nature reviews cancer, vol.5, p.591, 2005.

L. Hutchinson, «Breast cancer: challenges, controversies, breakthroughs, 2010.

E. Elston and &. I. Ellis, «Method for grading breast cancer.»; Journal of clinical pathology, vol.46, p.189, 1993.

H. Bloom and &. Richardson,

, «Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years», British journal of cancer, vol.11, p.359, 1957.

E. A. Rakha, J. S. Reis-filho, F. Baehner, D. J. Dabbs, T. Decker et al., «Breast cancer prognostic classification in the molecular era: the role of histological grade», Breast Cancer Research, vol.12, p.207, 2010.

L. Ricci-vitiani, D. G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro et al., «Identification and expansion of human colon-cancer-initiating cells», Nature, vol.445, p.111, 2007.

B. S. Ooi, Y. H. Ho, K. W. Eu, and &. , Seow Choen; «Primary colorectal signet-ring cell carcinoma in Singapore»; ANZ journal of surgery 71, pp.703-706, 2001.

P. C. Nowell, «Mechanisms of tumor progression», Cancer Research, vol.46, pp.2203-2207, 1986.

M. Wang, J. Zhao, L. Zhang, F. Wei, Y. Lian et al., «Role of tumor microenvironment in tumorigenesis», Journal of Cancer, vol.8, p.761, 2017.

K. Norton, C. Gong, S. &. Jamalian, and . Popel, «Multiscale agent-based and hybrid modeling of the tumor immune microenvironment, vol.7, p.37, 2019.

J. Li, F. Chen, M. M. Cona, Y. Feng, U. Himmelreich et al.,

, «A review on various targeted anticancer therapies, pp.69-85, 2012.

M. J. Smyth, S. F. Ngiow, and A. &. Ribas, Teng; «Combination cancer immunotherapies tailored to the tumour microenvironment», Nature reviews Clinical oncology, vol.13, p.143, 2016.

, J. Couzin-Frankel

, «Cancer immunotherapy, 2013.

J. K. Adam, B. &. Odhav, and . Bhoola, «Immune responses in cancer

, Pharmacology & therapeutics, vol.99, pp.113-132, 2003.

A. B. Albini-&-m and . Sporn, The tumour microenvironment as a target for chemoprevention

, Nature Reviews Cancer, vol.7, p.139, 2007.

S. Chouaib, C. Kieda, H. Benlalam, M. Z. Noman, F. Mami-chouaib et al.,

, Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells», Critical Reviews TM in Immunology, vol.30, 2010.

W. Risau, «Mechanisms of angiogenesis, vol.386, p.671, 1997.

S. Dal-ros, Dysfonction endothéliale et pathologies cardiovasculaires: rôle du stress oxydant et effets protecteurs des polyphénols végétaux, 2009.

F. W. Orr, H. H. Wang, R. M. Lafrenie, S. &. Scherbarth, and . Nance, «Interactions between cancer cells and the endothelium in metastasis», The Journal of pathology, vol.190, pp.310-329, 2000.

J. Rak, Kerbel; «Reciprocal paracrine interactions between tumour cells and endothelial cells: the 'angiogenesis progression'hypothesis», European Journal of Cancer, vol.32, pp.2438-2450, 1996.

M. Dellian, C. Abels, G. Kuhnle, and &. Goetz, «Effects of photodynamic therapy on leucocyte-endothelium interaction: differences between normal and tumour tissue»; British journal of cancer 72, p.1125, 1995.

O. Oudar, Spheroids: relation between tumour and endothelial cells»; Critical reviews in oncology/hematology 36, pp.99-106, 2000.

P. P. Nawroth-&-d and . Stern, «Modulation of endothelial cell hemostatic properties by tumor necrosis factor.», Journal of Experimental Medicine, vol.163, pp.740-745, 1986.

G. E. Bergers-&-l and . Benjamin, Angiogenesis: tumorigenesis and the angiogenic switch

, Nature reviews cancer, vol.3, p.401, 2003.

P. K. Carmeliet-&-r and . Jain,

, Angiogenesis in cancer and other diseases, vol.407, p.249, 2000.

M. Shibuya, Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-and pro-angiogenic therapies

, Genes & cancer, vol.2, pp.1097-1105, 2011.

G. D. Yancopoulos-&-f, Alt; «Developmentally controlled and tissue-specific expression of unrearranged VH gene segments», Cell, vol.40, pp.271-281, 1985.

J. H. Harmey and &. Bouchier-hayes,

, Vascular endothelial growth factor (VEGF), a survival factor for tumour cells: Implications for anti-angiogenic therapy», Bioessays, vol.24, pp.280-283, 2002.

J. Folkman, «Role of angiogenesis in tumor growth and metastasis

, Semin Oncol, vol.29, pp.8-15, 2002.

O. Creech, E. Krementz, R. F. Ryan, and &. N. Winblad,

, Chemotherapy of cancer: regional perfusion utilizing an extracorporeal circuit»; Annals of surgery 148, p.616, 1958.

A. Stein, W. Voigt, and &. K. Jordan, «Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management»; Therapeutic advances in medical oncology 2, pp.51-63, 2010.

M. L. Slevin, L. Stubbs, H. J. Plant, P. Wilson, W. M. Gregory et al., «Attitudes to chemotherapy: comparing views of patients with cancer with those of doctors, nurses, and general public.», Bmj, vol.300, pp.1458-1460, 1990.

G. C. Jayson, R. Kerbel, L. M. Ellis-&-a, and . Harris,

, Antiangiogenic therapy in oncology: current status and future directions»; The Lancet 388, pp.518-529, 2016.

C. A. Staton, S. M. Stribbling, S. Tazzyman, R. Hughes, N. J. Brown-&-c et al.,

, «Current methods for assaying angiogenesis in vitro and in vivo», International journal of experimental pathology, vol.85, pp.233-248, 2004.

I. Tadeo, G. Bueno, A. P. Berbegall, M. M. Fernández-carrobles, V. Castel et al., Oncotarget, vol.7, pp.19-935, 2016.

M. Fernandez-carrobles, I. Tadeo, G. Bueno, R. Noguera, O. Déniz et al.,

, «TMA vessel segmentation based on color and morphological features: application to angiogenesis research», The Scientific World Journal, 2013.

D. M. Long, «Capillary ultrastructure in human metastatic brain tumors», vol.51, pp.53-58, 1979.

E. Bullitt, S. Aylward, K. Smith, S. Mukherji, M. Jiroutek et al., Symbolic description of intracerebral vessels segmented from magnetic resonance angiograms and evaluation by comparison with X-ray angiograms», Medical Image Analysis, vol.5, pp.157-169, 2001.

F. Yi, L. Yang, S. Wang, L. Guo, C. Huang et al., «Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks», BMC bioinformatics, vol.19, p.64, 2018.

P. Trepagnier, «Asynchronous fluorescence scan, p.668, 2003.

A. Allalou and &. Wählby, «BlobFinder, a tool for fluorescence microscopy image cytometry»; Computer methods and programs in biomedicine 94, pp.58-65, 2009.

X. Chen, X. T. Zhou-&-s, and . Wong, Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy», IEEE Transactions on Biomedical Engineering, vol.53, pp.762-766, 2006.

D. Parrello, C. Mustin, D. Brie, S. Miron, and &. Billard,

, «Multicolor whole-cell bacterial sensing using a synchronous fluorescence spectroscopy-based approach»; PloS one 10, pp.122-848, 2015.

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle et al., «Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy», Gut, vol.59, pp.1046-1055, 2010.

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner et al.,

M. F. Galle, Kiesslich; «In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor», Gastroenterology, vol.138, pp.435-446, 2010.

S. Lingala, Y. Cui, X. Chen, B. H. Ruebner, X. Qian et al.,

, «Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma

, Experimental and molecular pathology 89, pp.27-35, 2010.

A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang et al., CellProfiler: image analysis software for identifying and quantifying cell phenotypes, p.100, 2006.

S. S. Al-amri and N. V. Kalyankar, «Image segmentation by using threshold techniques», 2010.

E. Cuevas and H. Sossa, «A comparison of nature inspired algorithms for multi-threshold image segmentation»; Expert Systems with Applications 40, pp.1213-1219, 2013.

, Soille; Mathematical morphology and its applications to image processing, J. Serra & P

D. Wang,

, «A multiscale gradient algorithm for image segmentation using watershelds

, Pattern recognition, vol.30, pp.2043-2052, 1997.

S. Beucher and &. F. Meyer, The morphological approach to segmentation: the watershed transformation»; Mathematical morphology in image processing 34, pp.433-481, 1993.

H. Greenspan, A. Ruf, and &. Goldberger, «Constrained Gaussian mixture model framework for automatic segmentation of MR brain images», IEEE transactions on medical imaging, vol.25, pp.1233-1245, 2006.

Z. Kato and &. Pong,

«. Markov, random field image segmentation model for color textured images»; Image and Vision Computing 24, pp.1103-1114, 2006.

F. M. Lord-&-m and . Novick, , 2008.

A. Kadambi, C. M. Carreira, C. Yun, T. P. Padera, D. E. Dolmans et al., «Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A»; Cancer research 61, pp.2404-2408, 2001.

J. Griffin and &. Treanor, «Digital pathology in clinical use: where are we now and what is holding us back?», Histopathology, vol.70, pp.134-145, 2017.

L. Pantanowitz, «Digital images and the future of digital pathology», Journal of pathology informatics, p.1, 2010.

M. Prochorec-sobieszek,

, «Future perspectives of digital pathology, vol.66, pp.277-284, 2016.

M. Chandra, «Digital pathology slides in medical education», Indian Journal of Dermatopathology and Diagnostic Dermatology, vol.1, p.17, 2014.

D. N. Louis, H. W. Virgin, and S. L. Asa,

, Next-generation" pathology and laboratory medicine», 2011.

M. G. Rojo, V. Punys, J. Slodkowska, T. Schrader, C. Daniel et al., Europe: coordinating patient care and research efforts, vol.150, pp.997-1001, 2009.

S. Park, A. V. Parwani, R. D. Aller, L. Banach, M. J. Becich et al.,

B. A. Carter, M. G. Friedman, A. Rojo, and . Georgiou, «The history of pathology informatics: A global perspective», Journal of pathology informatics, vol.4, 2013.

N. Farahani, A. V. Parwani, and &. Pantanowitz, «Whole slide imaging in pathology: advantages, limitations, and emerging perspectives», Pathol Lab Med Int, vol.7, pp.23-33, 2015.

W. F. Lever, «Histopathology of the Skin, 1949.

A. C. Ruifrok and D. A. Johnston, «Quantification of histochemical staining by color deconvolution»; Analytical and quantitative cytology and histology 23, pp.291-299, 2001.

A. H. Fischer, K. A. Jacobson, J. Rose, and &. Zeller,

, «Hematoxylin and eosin staining of tissue and cell sections»; Cold Spring Harbor Protocols, p.4986, 2008.

D. C. Cire?an, A. Giusti, L. M. Gambardella, and &. Schmidhuber,

, «Mitosis detection in breast cancer histology images with deep neural networks»; dans «International Conference on Medical Image Computing and Computer-assisted Intervention, pp.411-418, 2013.

O. Ronneberger, P. Fischer, and &. Brox,

«. , Convolutional networks for biomedical image segmentation»; dans «International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.

J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu et al., «Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images

, IEEE transactions on medical imaging, vol.35, pp.119-130, 2016.

R. Zemouri, N. Zerhouni, and &. Racoceanu, Deep Learning in the Biomedical Applications: Recent and Future Status»; Applied Sciences 9, p.1526, 2019.

B. L. Lecun and Y. , «Gradient-based learning applied to document recognition

, Proc. IEEE p, pp.2278-2324, 1998.

M. U. Ciresan and D. , «Multi-column deep neural networks for image classification

, Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition p, pp.3642-3649, 2012.

M. K. Matsugu and M. , «Subject independent facial expression recognition with robust face detection using a convolutional neural network»

, Neural Netw, vol.16, pp.555-559, 2003.

C. S. Avenel-&-m and . Kulikova, «Marked point processes with simple and complex shape objects for cell nuclei extraction from breast cancer H&E images»; dans «Medical Imaging, Digital Pathology», tome 8676p. 86760Z (International Society for Optics and Photonics, 2013.

E. Choi and &. C. Lee, «Feature extraction based on the Bhattacharyya distance»; Pattern Recognition 36, pp.1703-1709, 2003.

D. F. Gamerman-&-h and . Lopes, Markov chain Monte Carlo: stochastic simulation for Bayesian inference, 2006.

D. Van-ravenzwaaij, P. &. Cassey, and . Brown,

, «A simple introduction to Markov Chain Monte-Carlo sampling»; Psychonomic bulletin & review 25, pp.143-154, 2018.

D. J. Daley and &. , An introduction to the theory of point processes: volume II: general theory and structure, 2007.

A. V. Baddeley-&-m and . Lieshout,

, Stochastic geometry models in high-level vision», Journal of Applied Statistics, vol.20, pp.231-256, 1993.

C. Lacoste, X. Descombes, and &. Zerubia, «Road network extraction in remote sensing by a Markov object process»; dans, Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429)», tome, pp.3-1017, 2003.

X. Descombes, F. Plouraboué, A. E. Boustani, C. Fonta, and G. L. Duc, Weitkamp; «Vascular network segmentation: An unsupervised approach», R. Serduc & T

, 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.1248-1251, 2012.

S. Basu, M. Kulikova, E. Zhizhina, W. T. Ooi, and &. Racoceanu,

, A stochastic model for automatic extraction of 3d neuronal morphology, dans «International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.396-403, 2013.

S. Basu, W. T. Ooi, and &. Racoceanu, «Improved marked point process priors for single neurite tracing»; dans «, Workshop on Pattern Recognition in Neuroimaging, pp.1-4, 2014.

S. Basu-&-d.-racoceanu and ;. , Reconstructing neuronal morphology from microscopy stacks using fast marching»; dans «, IEEE international conference on image processing (ICIP), pp.3597-3601, 2014.

X. Descombes, G. Malandain, C. Fonta, L. Negyessy, and &. Mosko, Automatic dendrite spines detection from X-ray tomography volumes»; dans «, IEEE 10th International Symposium on Biomedical Imaging, pp.436-439, 2013.

Y. Lecun, Y. Bengio, and &. Hinton, «Deep learning, vol.521, p.436, 2015.

M. E. Vandenberghe, M. L. Scott, P. W. Scorer, M. Söderberg, D. Balcerzak et al., Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer, pp.45-938, 2017.

W. Sun, B. Zheng, and &. Qian, «Computer aided lung cancer diagnosis with deep learning algorithms»; dans, computer-aided diagnosis», tome 9785p. 97850Z (International Society for Optics and Photonics, vol.2016, 2016.

K. Preuer, R. P. Lewis, S. Hochreiter, A. Bender, K. C. Bulusu et al.,

«. Deepsynergy, predicting anti-cancer drug synergy with Deep Learning», Bioinformatics, vol.34, pp.1538-1546, 2017.

A. Kadurin, A. Aliper, A. Kazennov, P. Mamoshina, Q. Vanhaelen et al., «The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology», Oncotarget, vol.8, pp.10-883, 2017.

Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. S. Wu-&-m et al., «Deep learning for visual understanding: A review», Neurocomputing, vol.187, pp.27-48, 2016.

A. Radford, L. Metz, and &. S. Chintala,

, Unsupervised representation learning with deep convolutional generative adversarial networks, 2015.

F. Milletari, N. Navab, and &. Ahmadi,

«. , Fully convolutional neural networks for volumetric medical image segmentation»; dans «, Fourth International Conference on 3D Vision (3DV), pp.565-571, 2016.

T. Mikolov, M. Karafiát, L. Burget, J. ?ernock?, and &. S. Khudanpur, «Recurrent neural network based language model»; dans «Eleventh annual conference of the international speech communication association, 2010.

H. Lee, R. Grosse, R. &. Ranganath, and . Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations»; dans «Proceedings of the 26th annual international conference on machine learning, pp.609-616, 2009.

A. Moor, C. Guevara, H. Altermatt, R. Warth, R. Jaggi et al., «PRO_10-A new tissue-based prognostic multigene marker in patients with early estrogen receptor-positive breast cancer», Pathobiology, vol.78, pp.140-148, 2011.

G. D. Finlayson-&-g, Tian; «Color normalization for color object recognition»; International, Journal of Pattern Recognition and Artificial Intelligence, vol.13, pp.1271-1285, 1999.

M. Veta, P. J. Van-diest, R. Kornegoor, A. Huisman, M. A. Viergever et al.,

, Automatic nuclei segmentation in H&E stained breast cancer histopathology images»; PloS one 8, pp.70-221, 2013.

S. Wienert, D. Heim, K. Saeger, A. Stenzinger, M. Beil et al., Denkert & F. Klauschen; «Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach, p.503, 2012.

M. Kulikova, A. Veillard, L. Roux, and &. Racoceanu, «Nuclei extraction from histopathological images using a marked point process approach»; dans, Medical Imaging 2012: Image Processing», tome 8314p. 831428 (International Society for Optics and Photonics, 2012.

P. Kharazmi, M. I. Aljasser, H. Lui, Z. J. Wang-&-t, and . Lee, Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification, vol.21, pp.1675-1684, 2017.

Y. Liang, F. Wang, D. Treanor, D. Magee, G. Teodoro et al., «Liver whole slide image analysis for 3D vessel reconstruction»; dans «, IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.182-185, 2015.

C. Tsou, Y. Lu, A. Yuan, Y. Chang, and &. Chen, «A heuristic framework for image filtering and segmentation: application to blood vessel immunohistochemistry

, Analytical Cellular Pathology, 2015.

J. N. Kather, A. Marx, C. C. Reyes-aldasoro, L. R. Schad, F. G. Zöllner et al., «Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images», Oncotarget, vol.6, pp.19-163, 2015.

S. Basu, W. T. Ooi, and &. Racoceanu,

, «Neurite tracing with object process»; IEEE transactions on medical imaging 35, pp.1443-1451, 2016.

L. Yu, H. Chen, Q. Dou, J. Qin, and &. Heng, Automated melanoma recognition in dermoscopy images via very deep residual networks», IEEE transactions on medical imaging, vol.36, pp.994-1004, 2017.

Y. Yuan, M. Chao, and &. Lo, Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance», IEEE transactions on medical imaging, vol.36, pp.1876-1886, 2017.

N. C. Codella, Q. Nguyen, S. Pankanti, D. Gutman, B. Helba et al., Smith; «Deep learning ensembles for melanoma recognition in dermoscopy images, J. R

, IBM Journal of Research and Development, vol.61, pp.5-6, 2017.

R. and J. M. Vargas, «The probabilistic basis of Jaccard's index of similarity»; Systematic biology 45, pp.380-385, 1996.

M. Kass, A. Witkin-&-d.-terzopoulos, and ;. Snakes, International journal of computer vision, vol.1, pp.321-331, 1988.

A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and &. Tannenbaum,

, «A geometric snake model for segmentation of medical imagery», IEEE Transactions on medical imaging, vol.16, pp.199-209, 1997.

L. He, Z. Peng, B. Everding, X. Wang, C. Y. Han et al., Wee; «A comparative study of deformable contour methods on medical image segmentation»; Image and vision computing 26, pp.141-163, 2008.