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Abstract

The timing of major life events such as migration or mating in animals or flowering in
plants has evolved to follow the Earth’s revolution around the Sun. In temperate oceans,
yearly transitions from winter to spring are accompanied by an increase in abundance of
phytoplankton. Marine phytoplankton is at the basis of the food chain in the oceans, and
plays an essential role in biogeochemical cycles, as it generates roughly 50% of the global
primary production.

A time series was established at the coastal sampling station SOLA (Bay of Banyuls,
North Western Mediterranean Sea) in 2007. Since then, environmental and biological
parameters have been recorded at least twice a month. Using a metabarcoding approach,
it was demonstrated, in the first chapter, that several photosynthetic eukaryotes, bacte-
ria and archaea amplicon sequence variants (ASVs) displayed reoccurring seasonal pat-
terns, despite stochastic environmental perturbations, inherent to coastal ecosystems. Day
length and temperature were determined to be the main drivers of this rhythmicity.

The sampling frequency was increased to twice a week for three years (2015-2017)
during the seasonal blooms of eukaryotic picophytoplankton (January to March). Net-
work analyses, described in the second chapter, revealed that salinity and temperature
deeply impacted the microbial community structure. In depth analysis of subnetworks
highlighted that persistent ASVs during the 3 years, including rhythmic ones, switched
their first neighbors depending on the environmental perturbations they faced. These
observations suggest the existence of functional redundancy in marine microbial commu-
nities.

The third chapter reported on microcosm experiments conducted on natural micro-
bial communities. These experiments confirmed that a +/-2°C temperature increment
strongly affected the community structure. Bathycoccus and Micromonas dominated the
incubated communities at low temperature, whereas diatoms, namely Skeletonema, pre-
vailed at higher temperatures. These results help explain why Bathycoccus prasinos peak
of abundance occurs every year at the temperature minimum at SOLA.

In conclusion, the breadth of data stemming from long term time series, such as the one
in the Bay of Banyuls, not only offer global insight into the microbial diversity at these
stations, but also give environmental context to data acquired in vitro. Furthermore,
by integrating results from a time series and microcosms experiments, this manuscript
helps unravel the impact of anthropologically driven climate change on marine microbial
communities.

Key words: Mediterranean Sea | Time series | Metabarcoding | Microbial communi-
ties | Rhythmicity | Microbial networks | Microcosms
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Résumé

Certains évènements majeurs de la vie, tels que la migration ou l’accouplement chez les
animaux, ainsi que la floraison chez les plantes ont évolué afin de suivre la révolution de
la Terre autour du soleil. Dans les océans tempérés, les transitions annuelles de l’hiver au
printemps sont accompagnées d’une augmentation de l’abondance de phytoplancton. Le
phytoplancton marin est à la base de la chaine alimentaire dans les océans et joue un rôle
essentiel dans les cycles biogéochimiques, il produit notamment la moitié de la production
primaire global.

Une série temporelle a été établie à une station d’échantillonnage côtière, SOLA (Baie
de Banyuls, Nord-Ouest méditerranéen) en 2007. Depuis, les paramètres environnemen-
taux et biologiques ont été mesurés deux fois par mois. En utilisant la technique du
« metabarcoding », il a été démontré dans le premier chapitre de cette thèse, que plusieurs
« amplicon sequence variants » (ASVs) assignés aux eucaryotes photosynthétiques, bac-
téries et archées avaient des motifs annuels récurrents, malgré les perturbations environ-
nementales aléatoires, caractéristiques des zones côtières. La photopériode et la tempéra-
ture étaient les principaux drivers de cette rythmicité.

La fréquence d’échantillonnage a été augmenté a deux fois par semaines pendant trois
ans (2015-2017) lors des efflorescences saisonnières d’eucaryotes picophytoplanctoniques
(Janvier-Mars). L’analyse de réseaux, décrit dans le deuxième chapitre, a révélé que la
salinité et la température impactaient profondément la structure des communautés mi-
crobiennes. Puis, l’analyse des sous-réseaux a montré que des ASVs persistant lors des
trois années, dont certains étaient rythmiques, changeaient de voisins les plus proches en
fonction des contraintes environnementales auxquelles ils étaient exposés. Ces observa-
tions suggèrent l’existence de redondance fonctionnelle dans les communautés microbienne
marine.

Le troisième chapitre rend compte d’expériences de microcosmes menées sur les com-
munautés microbiennes naturelles qui ont confirmé qu’une variation de température de
+/- 2°C affectait fortement la structure de la communauté. Bathycoccus et Micromonas
dominaient les communautés incubées à basse température, tandis que les diatomées,
principalement Skeletonema prévalait aux températures plus fortes. Ces résultats ten-
dent à expliquer pourquoi le maximum d’abondance de Bathycoccus prasinos se produit
tous les ans au minimum de température à SOLA.

En conclusion, la richesse des données issues de séries temporelles de longue durée,
comme celle de la Baie de Banyuls, offre à la fois un aperçu global de la diversité mi-
crobienne à ces stations, mais permet aussi de remettre des données acquis in vitro dans
leur contexte environnemental saisonnier. De plus, ce manuscrit intégrant à la fois les
résultats d’une série temporelle et de microcosmes a permis d’éclaircir certain impact
anthropologique sur les communautés microbiennes marines.

Mots clefs: Mer méditerranée | Séries temporelle | Metabarcoding | Communautés
microbienne | Rythmicité | Réseaux microbien | Microcosmes
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Chapter 1

State of the art

1.1 Importance of marine microbes in the ocean

Marine microbes, comprised of eukaryotic phytoplankton, bacteria, archaea and viruses,

dominate the biomass in the oceans and have vitally important contributions to marine

ecosystes and global biogeochemical cycles (1 ). The ecological and metabolic diversity

of these microorganisms explains how they can be involved in a wide range of functions

(Fig.1.1). For example, photosynthesis, the process that transforms inorganic carbon into

organic matter via light energy is undertaken by phytoplankton in the ocean (2 ). It is

a fundamental event, and coupled with the grazing of phytoplankton by zooplankton, it

transfers carbon compounds to higher trophic levels (3 ). Matching the output of land

plants, whilst only representing a fraction of their biomass, marine phytoplankton are

responsible for half of the global primary production (4 ). On the other hand, bacterio-

plankton consume the organic matter released by primary producers and either channel

these compounds up the food chain or continuously recycle it (5 ). This process is known

as the microbial loop, and it allows previously unusable organic matter to become avail-

able for higher trophic levels. Leftover organic matter is either transported as sinking

particles to the deep ocean via the biological pump (6 ) or, if it is too recalcitrant, the

microbial carbon pump keeps it stored in the ocean (7 ). Marine microbial communities

also have primordial contributions to the biogeochemical cycles of important elements

such as nitrogen and phosphorus (8 ).
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Chapter 1 – State of the art

Figure 1.1: Role of marine microbes in the fate of organic matter in the ocean.
(1) Phytoplankton, via photosynthesis, transforms inorganic carbon (CO2) into organic
matter. (2) This organic matter is then released into the seawater either as dissolved
organic matter (DOM; which includes dissolved organic carbon (DOC), dissolved organic
nitrogen (DON) and dissolved organic phosphorous (DOP)) or particulate organic matter
(POM; which includes particulate organic carbon (POC), particulate organic nitrogen
(PON) and particulate organic phosphorous (POP)). (3) Zooplankton graze on the phy-
toplankton. (4) Heterotrophic bacteria recycle organic matter in the microbial loop. (5)
Leftover organic matter, when it becomes too recalcitrant after successive microbial trans-
formations, becomes sequestered in the ocean via the microbial carbon pump. (6) The
sinking of POM is known as the biological pump. (Adapted from (9 )).

2



1.2. Diversity of marine microbes

1.2 Diversity of marine microbes

1.2.1 Eukaryotes

Microbial single celled eukaryotes, also known as protist, are involved in a wide range

of ecological functions in the ocean. Protists are composed of different classes that are

the result of multiple evolutionary processes. Their trophic characteristics can be com-

plicated as some of them do not have a clear cut feeding process. Indeed, some protists

are phototrophs and are capable of photosynthesis, such as mamiellophyceaes. Others

are considered hetetrophic, such as cilliates, and some groups are mixotrophs, such as

dinoflagellates.

Photoautotrophs are made up of numerous species with unique features and re-

quirements. These features can be different pigments that react to specific wavelengths

of light to carry out photosynthesis, or it can be the fact that they display different phys-

iological structures. These precise structures were initially used to distinguish species,

but now molecular tools offer a better resolution. Photoautotrophs not only exhibit

preferential temperature and photoperiod niches but also specific nutrient and vitamin

requirements. The denomination photoautotrophs actually represents multiple groups of

microbes. Within this group are ecologically important divisions, such as Chlorophyta,

Heterokonta, Haptophyta, Cryptophyta.

Chlorophyta, which are at the origin of the green lineage of plants (10 ), include

some of the smallest known eukaryotes, such as Ostreococcus (11 ). Heterokonta, also

referred as Stramenopile, are a complex group as they contain phototrophs, heterotrophs

and mixotrophs. They have a large geographical distribution. Among the phototrophic

Heterokonta, diatoms are abundant in the fossil records and play major roles in biogeo-

chemical cycles (12 ). The Haptophyta division also contains phototrophs, heterotrophs

and mixotrophs. Within phototrophic Haptophyta are coccolitophores, of which the most

well known representative is Emiliania huxleyi. This species can form massive blooms

and since it has a calcium carbonate structure, it impacts biogeochemical cycles (13 ).

Additionally, it is highly susceptible to ocean acidification. Cryptophyta is a less well

3
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known division, but display a specific photosynthetic pigment, phycobiliproteins, that

allow them to convert light energy at low light intensities (14 ).

Heterotrophs are characterized by their capacity to graze on picophytoplankton and

feed off bacterioplankton. Without being exhaustive, the main contributors to this group

are Ciliates, Rhizaria and Flagellates. Ciliates have multiple cilia (small hairs) on their

cell body for motility. Due to their large size, they can feed off bacteria as well as mi-

croalgae and other protists as well (15 ). However, many remain mixotrophs since they

can scavenge and use the chloroplast of ingested prey (kleptoplastidy) (16 ). The Rhizaria

supergroup displays a large diversity of organisms with multiple structures. For example,

Cercozoa can have flagellates (17 ), Foraminifera display calcareous tests (18 ) and Radio-

laria have intricate mineral skeletons (19 ). Flagellates are a highly diverse group as well

of which some representatives are Heterokonta (also known as Stramenopiles) and alveo-

lates. Heterotrophic Heterokonta tend to be small, round or oval organisms that can have

two flagella, one hairy flagellum and one hairless flagellum that are of unequal size (20 ).

Heterokonta encompass different lineages and display a wide trophic range as they can be

heterophic, mixotrophic or phototrophic (as seen previously with diatoms). Belonging to

the alveolates is an ecologically important group, the dinoflagellates. They can have two

flagella and a theca (cellulose plates) that protects them. Furthermore, they cover a large

range of functions as not only are some phototrophic but they can also be grazers and

predators on other protists and bacteria (21 ). All things considered, heterotrophic pro-

tists comprise a large diversity of organisms with multiple shapes, sizes and appearances.

They also display multiple trophic functions since they consume algae, other protists or

bacteria. But depending on the state of the ecosystem, some can show periods of mixotro-

phy or even phototrophy. Consequently, their physiology and taxonomical classification

remains complex particularly given the lack of data concerning cultivated individuals.

1.2.2 Prokaryotes

Marine prokaryotes are composed of bacteria and archaea. These organisms are usually

taxonomically classified based on the phylogeny of their 16S ribosomal RNA. However,

4
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it is not because two prokaryotes are phylogentically related that they are functionally

similar. Even though microorganisms in the same division share core genes (16s rRNA,

"house keeping" etc.) it should be noted that thanks to several processes, such as horizontal

gene transfer or gene loss, bacteria can gain, or loose, functions relatively rapidly, making

them functionally diverse, even for closely related prokaryotes.

Alphaproteobacteria are among the most abundant bacteria found in culture inde-

pendent studies. They are usually found in surface samples and can occur in a wide range

of ecosystems, such as the water column, sediments, fresh water, ice etc.

SAR 11 is a branch of the Alphaproteobacteria that was discovered thanks to novel

sequencing methods (22 ). It is one of the most abundant bacteria in the oceans and is

composed of multiple subclades that have preferences for different depth and ecosystems

(23 ).

Gammaproteobacteria is a large group that contains many ecologically and medi-

cally (i.e pathogens) important organisms. Among the marine Gammaproteobacteria, the

vibrio bacteria is probably the most well studied, since it is relatively easily maintained

in culture. Vibrio are curved rod shaped bacteria that have been isolated from the water

column, sediment and from other organisms such as squid or oysters. They are suscep-

tible to communicate between themselves via quorum sensing (24 ). Other examples of

well known Gammaprotobactetia are Alteromonas, Pseudoalteromonas and Shewanella,

but are less well known due to the lack of cultured representatives.

Bacteroidetes is a highly diverse group that encompasses, for example, Flavobac-

teria, Bacteroides as well as Cytophaga. Due to the lack of Bacteroidetes in culture,

information concerning their physiology is rather limited. However, they are often found

in conjunction with phytoplankton blooms and are speculated to take part in the degra-

dation of organic matter (25 ).

Cyanobacteria, with a majority of their members cultured and their complete genome

sequenced, are presumably the most well understood group of marine bacteria. Cyanobac-

teria are capable of photosynthesis, which is not found in other marine bacterial groups.

They have been observed in most marine ecosystems except for the cold polar seas (26 ).
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Cyanobacteria are divided into two main genera, Procholorococcus and Synechococcus.

Procholorococcus is the most abundant genus and was identified with the use of flow cy-

tometry (27 ). On the other hand, Synechococcus is less abundant but was observed earlier

because its specific pigment, phycoerythrin, is more easily detected (28 ).

Marine Archaea were first discovered by Carl Woese and collegues’ in the late 70’s

(29 ). This discovery lead to a new branch in the tree of life. At fisrt all Archaea were

thought to be extremophiles, since they were generally found in extreme habitats. But by

applying universal primers, Archaea were discovered in the seawater (30 ) and were then

shown to be quite abundant. Archaea are divided into two main groups, Crenarchaeota

and Euryarchaeota.

1.2.3 Microbial ecosystem stability: the plankton paradox

Clearly, there is a tremendous diversity in marine microbes. But one might ask, how

is this diversity maintained? Presumably, some species must grow better than others

and should have dominated the microbial biomass by now. This notion is expressed in

Hutchinson’s "paradox of plankton" that discusses competitive exclusion (31 ). In the

early 60’s Hutchinson asked how was it possible for multiple species of phytoplankton

to coexist in the same environment when they are all competing for the same nutrients.

This question is based on the competitive exclusion theory that stats that when a group

of species are competing for the same resources, eventually the most efficient species will

outcompete the others, dominate the limited resources and lead the other species towards

extinction. Despite this Hutchinson observed multiple phytoplankton species in the lake

he was sampling. Hutchinson then offered potential solutions to this paradox.

Firstly, he dismissed the idea that different species could take advantage of microhabi-

tats resulting from varying physical conditions (for example depth). Indeed, he considered

that the lakes he was sampling were too homogeneous to support multiple different species.

He then suggested that, since it was reasonably possible that phytoplankton existed in

symbiosis, one less efficient organism could provide essential vitamins to a more efficient

organism, which would lead to an equilibrium in the population. He also briefly suggested

6
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that predators could impact competition between species enough to allow for coexistenceof

multiple species. Additionally, he pointed out that, under changing environmental condi-

tions, no single organisms could continually outcompete the others for sufficient enough

time to exclude them, which would prevent reaching an equilibrium.

Since Hutchinson’s paper, ecologists have offered several solution to the paradox.

One explanation is the fact that homogeneous well-mixed conditions (which was part

of Hutchinson’s assumptions) do not really exist. In reality, there are constant varia-

tions in environmental conditions, that give rise to numerous microhabitats that allow

for the coexistence between competitive species. Moreover, competition and predation

models suggest that plankton will not arrange into a steady state but instead bring about

oscillations and chaos, with continual variations in the microbial community (32 ).

Furthermore, predation and viruses promote the coexistence of species. Indeed, the

"Killing the winner" theory explains how predators and viruses affect community compo-

sition. By being shape and size specific, grazers affect differently organisms in the system,

which prevents a dominant species from becoming too abundant (33 ). Additionally, since

viral lysis is linked to host abundance, and the fact that viruses tend to be species specific,

they are remarkably efficient in restraining dominant species in marine habitats (33 ).

1.3 Regulation of microbial community composition

1.3.1 Abiotic factors

Marine community compositions are subject to multiple environmental parameters. Phys-

ical factors can structure the water column, which inherently influence microbial commu-

nity dynamics. One of the first studies to investigate bloom initiation was in 1953, when

Sverdrup offered the critical depth hypothesis (34 ). This hypothesis states that at any

moment and location in the ocean, phytoplankton growth is equal to the loss of phyto-

plankton biomass (by sinking, grazing or respiration). However, when the mixed layer

becomes less deep than the critical depth (35 ), then the growth rate can surpass the

loss rate, which leads to a phytoplankton bloom. Sverdrup’s critical depth hypothesis
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resulted in the assumption that improved growth rates, and thus the bloom, were not

just correlated but were actually induced by improved temperature, light and stratifica-

tion conditions. Opposing this view, Behrenfeld offered his dilution-recoupling hypothesis

that states that bloom initiation is not necessarily due to the depth of the mixed layer,

but rather it is the seasonal mixing that tips the balance between growth and loss, which

then leads to a bloom (36 ). Subsequently, other physical impacts were hypothesized to

impact community composition, such as turbulences in the water column (37 ) or eddies

(38 ).

Other abiotic factors have been shown to affect community composition. For example,

at the time series station ALOHA in the North Pacific Subtropical Gyre, which is con-

sidered a stable habitat, it has been shown that wind speed and solar irradiance affected

community composition (39 ). In the Western English Channel, temperature and nutri-

ents, mainly phosphate, drove bacterial community structure (40 ). Furthermore, in high

latitude sampling sites, light had a drastic effect on eukaryotic community dynamics. A

size fractionation of photosynthetic cells was observed, as large cells were found in spring

and summer, whereas small cells dominated the biomass the rest of the year (41 ). Simi-

larly, seasonal haptophytes were driven by light and temperature during a two year time

series in Norway (42 ). Nutrient levels can impact community composition by limiting or

promoting the growth of microbes at specific moments of the year. This is particularly

visible at coastal sites, where heavy rains and river runoffs can lift nutrient limitations

and enhance the growth of microbial species, as observed in the Bay of Bengal (43 ) and

in the Gulf of Trieste (44 ).

1.3.2 Biotic factors

Simultaneously, community composition is also shaped by an array of biotic factors. Mi-

crobial community members form a complex system with intricate interactions between

its members, which can be sorted into two main types.

Positive interactions. For example, microalgae generate dissolved organic matter,

either via exudates, zooplankton grazing or following viral lysis, which is utilized and
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remineralized by heterotrophic bacteria (45 ). This event could be considered allelopathy.

But, on the other hand, several microalgae have been shown to be auxotrophic for vitamin

B1 and B12 (46 , 47 ), and could possibly interact with bacteria to obtain these required

micronutrients in situ. Both these interactions show that phytoplankton and bacteria

possibly have a mutualistic relationship (Fig.1.2).

Figure 1.2: Interactions between phytoplankton and bacteria. Phytoplankton and
bacteria can exchange compounds, such as carbon or vitamins, but they can also be in
competition for inorganic nutrients. As these compounds are required for their respective
growth, this leads to complex interaction networks (48 ).

Negative interactions. As inorganic nutrients are limited in the ocean, phytoplankton

and bacteria can also be in competition since they both need those resources. In a fresh

water lake, parasitic groups in the small eukaryote fraction were found to have an impact

on microbial community composition, suggesting the ecological relevance of parasitism,

a usually ignored biotic interaction (49 ). Within the marine food web, one of the main

negative interaction is predation, which has been shown to induce bloom termination

(50 ). Predation, which is also a form of competition as zooplankton and protists are rivals

when it comes to phytoplankton grazing, serves other roles such as the remineralization

of nutrients and trace metals (51 ).
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1.3.3 Microbial interactions as networks

To help researchers investigate increasingly larger datasets, novel methods are being im-

plemented that help visualize possible interactions within microbial communities. Cor-

relation networks (Fig.1.3) depict individual microbes as nodes and the edge connecting

two nodes can be computed by several methods, some of which have been studied and

compared recently (52 ). Intuitively, if these connections are positive it could suggest a

mutualistic interaction between nodes, and if it is negative, this could mean that two

nodes are mutually exclusive, for example if they have a predator-prey interaction. Fur-

thermore, with the aim of investigating time lagged interactions between individuals,

the local similarity analysis has been developed (53 ). This time dependent analysis is

particularly useful for time series studies as it can demonstrate a progression in micro-

bial interactions. For example, it has helped researchers suggest possible symbioses or

parasitism between dinoflagellates and specific eukaryotes (54 ).

In practice, interpreting network results is not that straight forward, as nodes could be

co-occurring or mutually exclusive for multiple reasons. Furthermore, network analyses

are powerful tools to visualize data and emit new theories, however, drawing conclusions

directly from networks is not recommended (55 ).

In reality, abiotic and biotic factors conjointly affect community dynamics. It has

recently been presented that temperature and salinity along with cyanobacteria could

influence bacterial composition in the Baltic Sea (56 ). Similar results were found where

temperature and phosphate drove microbial dynamics, which demonstrated a covariance

with cyanobacteria as well (57 ). Furthermore, in the North Sea, bacterial community

composition was primarily influenced by phytoplankton blooms, but also, and on a longer

time scale, by temperature (58 ). Clearly it remains a complicated endeavor to study

separately abiotic and biotic factors in situ.
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Figure 1.3: Representation of microbial interactions as a network. (a) Hypotheti-
cal abundances of four organisms over time. Organisms A and C are positively correlated,
A and B as well, but with a time lag of one month and A and D are negatively correlated.
(b) The previously described correlations are then translated into a network. (c) Using
the previous nomenclature (from (b)), this network describes all the correlations between
the four hypothetical organisms (59 ).

1.4 Seasonality of marine microbes

1.4.1 Initial observations

Marine macroscopic events such as red tides or coastal bioluminescence, have been ob-

served during history and were hypothesized to be seasonal (60 , 61 ). More recently, with

the development of satellite imagery, phytoplanktonic blooms have been observed around

the globe (Fig.1.4).

However, knowledge concerning marine microbial community composition and func-

tion is lacking, as it mainly derives from isolated 16S and 18S rRNA gene analysis stud-

ies. The development of “-omics” is helping improve the understanding of community

function, but it is not sufficient to predict interactions, nutrient limitations or responses

to environmental factors. Therefore, details concerning marine microbial community

compositions, dynamics or functions when facing naturally or anthropologically evolv-

ing ecosystems are unobtainable with standard, and often segregated studies. Long term
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Figure 1.4: Macroscopic event. Satellite image of the eastern coast of New Zealand
before (a) and during (b) a diatom bloom (adapted from (9 )).

and frequent sampling at a same study site, insuring a temporal investigation, could help

elucidate microbial community characteristics as well as improve the prediction of micro-

bial community reoccurrences. In the context of climate change, and considering that

phytoplankton is the basis of the marine food chain, there is a need for robust predictions

of algal blooms. Knowing how susceptible phytoplankton can be to changing tempera-

tures (62 ), the predicted changes in seawater temperature, that have been increasing for

the past 30 years (Fig.1.5), could have a major impact on bloom dynamics and micro-

bial community composition overall. With the aim of monitoring changes in community

composition, long term sampling sites have been implemented around the globe (Fig.1.6).

1.4.2 The establishment of time series

Various studies covering diverse time scales and focalizing on different questions have been

published in the last two decades. Without being exhaustive, some significant discoveries

were found at different long term sampling sites, for example, at the Hawaiian Ocean

Time-series (HOT) 25 years of data allowed to confirm that three, previously unknown,

major players in the microbial marine community are procholorococcus, the alphapro-

teobacteria SAR11 and planktonic archaea (63 ). At the Bermuda Atlantic Time-series

Study (BATS) site, several years of sampling allowed for a better understanding of the

evolutionary diversification of SAR11 clades (64 ). Depicting the Bray-Curtis similarity

between samples, according to the number of months between samples, Fuhrman and

colleagues have shown that communities at the San Pedro Oceanic Time series (SPOT)
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Figure 1.5: Temperature anomaly. Sea surface temperature differences from the
average sea surface temperature of the 20th century since 1880 between the 60S and
60N latitudes in degrees Fahrenheit (from: https://www.globalchange.gov/browse/
indicators/indicator-sea-surface-temperatures).

Figure 1.6: Global investigation. Map showing the location of active marine time series
(from: https://www.st.nmfs.noaa.gov/copepod/time-series/.)
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are more similar when they are 12 months apart and more dissimilar when they are 6

months apart (Fig.1.7). Moreover, this pattern is reoccurring yearly during 10 years (59 ).

The Bray-Curtis similarity is an equation that quantifies the similarity of two sites, based

on the species count of each site. The result of the equation is between 0 and 1, where

two sites that have a Bray-Curtis similarity of 0 do not share any species, whereas two

sites that have a Bray-Curtis of 1 share all the species (65 ). In the literature, it is also

possible to read about the Bray-Curtis dissimilarity, with reversed values (0 meaning all

species are shared and 1 implying that no species are shared). Both are commonly used,

and there does not seem to be a consensus as to which one is favored.

Figure 1.7: Temporal investigation. Bray-Curtis similarity between monthly samples
at the San Pedro Ocean Time-series (SPOT) over 10 years (adapted from (59 )).

Furthermore, coastal time series have been carried out in the Western channel near

Plymouth and surface bacterial populations were shown to have a high seasonality (66 ).

Marine archaea community structures have also been studied in a time series, and it was

shown that both rare and abundant archaea were seasonally inclined and that different

ecotypes of archaea had different patterns (67 , 68 ). More recently, a 21 day study of the

dynamics of picoplankton communities revealed a daily succession of archaea, bacteria and

eukaryotes highlighting the importance of microbial interactions during a bloom (69 ).

Although long term sampling stations are powerful tools to investigate marine mi-

crobial community dynamics, there is still room for improvement. The question of de-

termining the right balance between sampling effort and the resolution of observations

has been raised (70 ). Most time series started off with a monthly frequency as sampling

open ocean sites is not that straightforward and, at the time, sequencing was still expen-
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sive. Nowadays, most sampling sites have observed that a weekly or even daily sampling

frequency is required to capture high resolution community dynamics (71 , 72 ).

At the same time, there have also been advancements in taxonomic analysis. Initial

time series studies had no other choice than to use the tools that were available at that

time, such as denaturing gradient gel electrophoresis or sequencing clone libraries (22 , 73 ),

which only allowed for a coarse taxonomic resolution of community composition. With

the increased prevalence of next generation sequencing, researchers are able to access

taxonomy at a finer resolution. For examples, the assemblage of Operational Taxonomic

Units (OTUs) (74 ) went from a similarity threshold of >97% to >99%, which greatly

improved the taxonomical resolution. Besides, several research groups are transitioning

from OTUs to Amplicon Sequence Variants (ASVs) (75 ) or even to oligotyping (76 ) or

minimum entropy decomposition (77 ).

Previously, most long term sampling sites were confined to analyze bacterial genetic

data, as it was the only domain to have a strong database at the time, and eukaryote

data was mainly derived from microscopy observations (45 , 78 ). More recently, certain

studies have started exploring multi-domain data (69 , 71 ), whereas other studies are

now including viruses in their analysis (79 , 80 ). Moreover, the use of “-omics” data

for time series studies is revealing not only the taxonomy of microorganisms, but also

the microbial activity and functions found in situ (81 , 82 ). With modern sequence

analysis tools (75 , 76 ), and cheaper sequencing prices, analyzing high resolution time

series is becoming easier and more accessible to an increasing number of laboratories.

By increasing the prevalence of temporal investigations, and coupling them with recent

multi-omics possibilities would allow for a more in-depth examination of marine microbial

communities around the globe.
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1.5 Laboratory studies

1.5.1 Microsoms

To have a better grasp on naturally occurring processes, it is sometimes required to reduce

the complexity of the system. By allowing researchers to change one variable at a time,

microcosms are the perfect tool to investigate the impact of individual parameters. For

example, a study (56 ) wanted to investigate the possible impact of climate change on their

study site. Given the context of the Baltic Sea, they assumed that temperature would

increase and salinity would decrease. With the use of microcosms, they were capable

of replicating these assumptions and examined their impact on community composition.

They observed specific responses of communities to the expected changes in environmen-

tal parameters. Higher temperatures lead to earlier cyanobacterial blooms, whereas low

salinity had a strong impact on the bacterial community. Combined, the effects of global

warming in the Baltic Sea could reduce the availability of carbon for marine microbes

and thus impact the bacterial community dynamics. Furthermore, the effect of three UV

conditions (PAR+UV-A+UV-B, PAR+UV-A and PAR only) were tested on marine bac-

terioplankton communities from the South Atlantic in 25 L microcosms during eight days.

Taxonomical analysis showed that PAR+UV-A and PAR displayed more similarity than

PAR+UV-A+UV-B. Different radiation conditions thus have different impacts on marine

microbial community composition (83 ). However, researchers must remain cautious when

generalizing results inferred from microcosms studies as transcriptional changes can be

drastic when dealing with complex marine communities that are incubated (84 ).

1.5.2 Strains physiological characterization

At an even finer scale, culture work allows to ask very specific questions and investigate

processes at the molecular level. A culture study done on six strains of synechococcus

that were isolated from different latitudes, maintained the strains at 22°C, then exposed

them to a cold stress (13°C). The strains demonstrated different molecular capabilities

that reflected adaptations to their preferred thermic niches. Furthermore, these molecular
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adaptations could suggest a correlation between clade radiation and temperature toler-

ance in synechococcus (85 ). Another study demonstrated a similar result but with the

micromonas genus. Thermal responses of eleven strains from four species of micromonas

were studied by culture work and modeling. As these strains have specific responses to

changing temperatures, it has been suggested that the micromonas genus could be used

as a sentinel species to anticipate the impact of climate change (62 ). The complexity of

marine microbial interactions and behavior makes clear conclusions almost impossible to

achieve with in situ studies alone. Thus, even though time series studies allow to develop

novel hypotheses, there is a need to confirm these ideas specifically and precisely in cul-

ture studies. Despite the recent improvements in technology, allowing for better sequence

analysis and complex modeling, understanding marine microbe interactions and functions

remains challenging.

1.6 Study site

The sampling station, Service d’Observation Laboratoire Arago (SOLA), presented in

this manuscript is situated in the Bay of Banyuls, a coastal, generally oligotrophic site,

located in the North Western Mediterranean Sea (Fig.1.8). The Service d’Observation en

Milieu LITtoral (SOMLIT) program, which SOLA is part of, aims to monitor the changes

in coastal ecosystems on the long term, and to quantify the influence of environmen-

tal and anthropologic variability on these systems (http://somlit.epoc.u-bordeaux1.

fr/). This program has allowed for a coordinated effort on the entire French coastline,

with a homogeneous sampling of physical, chemical and biological variables.

SOLA being a coastal site (Fig.1.9), fresh water such as rainfall, storms and runoffs

from multiple rivers in the vicinity impact nutrient and salinity levels at the sampling

station. These sporadic events have been shown to have an impact on the phytoplankton

community (87 ).
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Figure 1.8: Geographical context. (a) Map showing the location of local rivers, with
the black square being the intermittent river near the sampling site. Green and blue
squares are the nearby and farther rivers, respectively. (b) Close up of the sampling site,
showing the sampling site SOLA (adapted from (86 )).

Figure 1.9: Study site. Picture of the buoy at SOLA and the coastline of the bay of
Banyuls (©Stefan Lambert).

1.7 Hypothesis

In order to study the seasonality of microbial communities, it is fundamental to acquire

data from a long-term sampling site. This data will help elucidate the influence of en-

vironmental factors on marine microbial community composition. This manuscript was

structured around three main questions:

• Are marine microbes capable of conserving a yearly rhythm despite sporadic envi-

ronmental factors?

• Are microbial co-occurrences affected by challenging environmental events?
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• Can microcosms help elucidate the dynamics of microbial communities when ex-

posed to varying environmental factors?

First, a seven-year time series was used to elucidate the yearly rhythmicity of microbial

taxa (Chapter II). Then we investigated, at a higher resolution, the co-occurrences that

happened during 3 years at SOLA when faced with different environmental challenges

(Chapter III). And finally, to bridge the gap between in situ observations and in vitro

experiments, microcosms experiments were carried out to verify the effect of multiple

environmental factors independently (Chapter IV).
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Prologue

Seasonality is the result of the rotation of the Earth on its axis and around the Sun.

Major life events have evolved to follow this seasonality and result in drastic macroscopic

events such as migration or mating in animals or flowering in plants. In temperate oceans

however, yearly transitions from winter to spring are accompanied by an increase in abun-

dance of phytoplankton. Marine phytoplankton is at the basis of the food chain in the

oceans and plays an essential role in biogeochemical cycles, as it generates roughly 50%

of the global primary production. Yearly variations in bacterial and archaeal populations

have also been observed. Environmental and biological parameters have been recorded

twice a month at SOLA Station (Bay of Banyuls, North Western Mediterranean Sea)

since 2008. We have investigated this time series, using a metabarcoding approach tar-

geted towards the three domains of life. Several photosynthetic eukaryotes, bacteria and

archaea amplicon sequence variants (ASVs) showed reoccurring seasonal patterns. Day

length and temperature were determined to be the main structuring factors. Further-

more, though a minority of ASVs were truly rhythmic over the entire time series, they

represented more than 31.3%, 31.6% and 75.6% of photosynthetic eukaryotes, bacterial

and archaea total ASV sequences, respectively. Determining the rhythmicity of seasonal

ASVs could provide a better insight into their ecological roles in coastal environments.

Heatmaps showed co-occurrences between ASVs of different domains hinting that, even in

a continuously changing environment, a strong influence of biological co-occurrences con-

trolling the population dynamics throughout the time series exists. Moreover, rhythmic

autotrophs could be leading the re-occurrences of heterotrophs but shared environmental

niches may be driving seasonality as well. Determining the rhythmicity of seasonal ASVs

could provide a better insight into their ecological roles in coastal environments.
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Abstract
Seasonality in marine microorganisms has been classically observed in phytoplankton blooms, and more recently studied at
the community level in prokaryotes, but rarely investigated at the scale of individual microbial taxa. Here we test if specific
marine eukaryotic phytoplankton, bacterial and archaeal taxa display yearly rhythms at a coastal site impacted by irregular
environmental perturbations. Our seven-year study in the Bay of Banyuls (North Western Mediterranean Sea) shows that
despite some fluctuating environmental conditions, many microbial taxa displayed significant yearly rhythms. The robust
rhythmicity was found in both autotrophs (picoeukaryotes and cyanobacteria) and heterotrophic prokaryotes. Sporadic
meteorological events and irregular nutrient supplies did, however, trigger the appearance of less common non-rhythmic
taxa. Among the environmental parameters that were measured, the main drivers of rhythmicity were temperature and day
length. Seasonal autotrophs may thus be setting the pace for rhythmic heterotrophs. Similar environmental niches may be
driving seasonality as well. The observed strong association between Micromonas and SAR11, which both need thiamine
precursors for growth, could be a first indication that shared nutritional niches may explain some rhythmic patterns of co-
occurrence.

Introduction

Regular and predictable fluctuations of environmental
parameters have a great impact on life. Seasonality sets the
pace for many reoccurring life events, such as mating or

migrations in animals, flowering in plants and blooms in
plankton communities [1–3]. Phytoplanktonic blooms in
temperate oceanic areas are a typical example of seasonal
events. Several classical theories, from Sverdrup’s “Critical
Depths Hypothesis” [4] to Behrenfeld’s “Dilution-Recou-
pling Hypothesis” [5], have attempted to explain the
mechanisms triggering bloom formation. However, these
theories do not aim to explain the reoccurrence and sea-
sonality of specific microbial taxa. In macroscopic organ-
isms, seasonality results from a fine interplay between
external environmental factors and the internal circadian
clock, which is an endogenous timekeeper [6]. In marine
microorganisms, circadian rhythms are less well known and
they have been reported only in cyanobacteria and in some
eukaryotic microalgae [7–10]. However, the effect of
environmental forcing on the seasonality of entire bacterial
communities has been studied more extensively and reoc-
curring microbial communities are often observed
responding to environmental changes [11–15].

Oceans are fluctuating habitats that are often marked by a
strong seasonality. These regular environmental changes
allow for an overall high microbial community diversity,
since the environment can accommodate different species in

* François-Yves Bouget
francois-yves.bouget@obs-banyuls.fr

* Pierre E. Galand
pierre.galand@obs-banyuls.fr

1 CNRS, Laboratoire d’Océanographie Microbienne (LOMIC),
Observatoire Océanologique de Banyuls, Sorbonne Université,
Banyuls sur Mer, Paris, France

2 CNRS, UMR7144, Station Biologique de Roscoff, Sorbonne
Université, Roscoff, Paris, France

3 CNRS, Laboratoire d’Ecogéochimie des Environnements
Benthiques (LECOB), Observatoire Océanologique de Banyuls,
Sorbonne Université, Banyuls sur Mer, Paris, France

Electronic supplementary material The online version of this article
(https://doi.org/10.1038/s41396-018-0281-z) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:



the same space, but at different times of the year [16].
Within a year, diversity also varies locally with peaks
observed in winter at high latitudes [15, 17] and community
composition changes with seasons. Seasonal cycles in
abiotic and/or biotic factors drive these community changes
[18, 19]. To understand the seasonality of marine microbial
communities, several long term sampling sites have been
established within the last couple decades leading to some
important findings on the seasonality of major microbial
groups in the surface of the ocean [14, 20–23] and the
reoccurring patterns of microbial community composition
[12, 24].

Most of earlier studies focused on bacteria and there are
only few reports on the seasonality of the other domains of
life. For marine archaea, it has been shown that both rare
and abundant members of the community were re-occurring
seasonally and that different ecotypes of archaea had dif-
ferent seasonal patterns [20, 25]. For phytoplankton, evi-
dence for global patterns of temporal dynamics were
obtained by compiling seasonal data of chlorophyll a con-
centrations [26]. Molecular techniques also revealed that
microbial eukaryote assemblages displayed seasonality
patterns in surface marine waters [27, 28], but interestingly
not always in the deeper ocean [28]. Reports on the sea-
sonality of archaea and eukaryotes are scarce, but there are
even fewer time series studies covering simultaneously the
three domains of life. Steele et al. [29] identified the
microorganisms that co-occurred during a 3-year study at
the SPOT station (Southern California, USA). At the same
site, a 21-day study of the dynamics of phytoplankton,
archaea and bacteria revealed a rapid succession of micro-
bial species during a bloom [30], which highlighted the
importance of taking into account microbial interactions
when studying the seasonality of marine microbial com-
munities. However, long-term surveys of the annual
dynamics and succession of photosynthetic picoeukaryotes,
bacteria and archaea are currently lacking. Moreover, most
time series have covered open ocean sampling sites and
there are very few studies dealing with the long term
monitoring of microbial communities at coastal sites. In the
Mediterranean Sea, coastal environments are characterized
by quite variable conditions caused by land to sea transfer
of nutrients, organic matter and pollutants through seasonal
river discharge during periods of strong precipitations. In
such fluctuating environments, predictable patterns of
reoccurring microbial communities would be less likely.

The main objective of this study was to test if the
eukaryotic phytoplankton, bacteria and archaea commu-
nities demonstrated significant patterns of rhythmicity at a
coastal site. We conducted a 7-year survey of the taxonomic
diversity of microbial plankton community at the Banyuls
Bay microbial observatory (SOLA) in the North Western
Mediterranean Sea, and investigated the environmental

factors that could contribute to microbial seasonality. We
also used statistical tools to quantify the rhythmicity of the
picoplankton and to detect patterns of co-occurrence
between eukaryotic picophytoplankton (less than 3 µm),
bacteria and archaea.

Materials and methods

Environmental sampling

Surface seawater (3 m depth) was collected roughly every
2 weeks from October 2007 to January 2015 at the Service
d’Observation du Laboratoire Arago (SOLA) sampling
station (42°31′N, 03°11′E) in the Bay of Banyuls-sur-Mer,
North Western Mediterranean Sea, France. Seawater was
collected in 10 l Niskin bottles and then kept in 10 l carboys
until arrival to the laboratory within one hour. A subsample
of 5 l was prefiltered through 3 μm pore-size polycarbonate
filters (Merck-Millipore, Darmstadt, Germany), and the
microbial biomass was collected on 0.22 μm pore-size GV
Sterivex cartridges (Merck-Millipore) and stored at –80 °C
until nucleic acid extraction.

For cytometry, unfiltered seawater samples were fixed at
a final concentration of 1% glutaraldehyde, incubated for
15 min at ambient temperature in the dark, frozen in liquid
nitrogen and stored at −80 °C. Cytometry analyses were
performed on a Becton Dickinson FacsCalibur. Cells were
excited at 488 nm and discriminated by SSC and red
fluorescence (measured at 670 nm; chlorophyll content).
Orange fluorescence (measured at 585 ± 21 nm), produced
by phycoerythrin, was used to discriminate Synechococcus
from Prochloroccocus populations [15].

The physicochemical (temperature, salinity, nitrite,
nitrate, ammonium, phosphate and silicate) and biological
(chlorophyll a) parameters were provided by the Service
d’Observation en Milieu Littoral (SOMLIT).

DNA extraction, amplification and sequencing

The nucleic acid extraction followed protocols published
earlier [25]. Briefly, the Sterivex filters were thawed on ice,
followed by addition of lysis buffer (40 nM EDTA, 50 nM
Tris, 0.75M sucrose) and 25 µl of lysozyme (20 mgml−1).
The filters were then incubated on a rotary mixer at 37 °C
for 45 min. The 8 µl of Proteinase K (20 mgml−1) and 26 µl
of sodium dodecyl sulfate (20% v/v) were added before
incubating at 55 °C for 1 h. Total DNA was extracted and
purified with the Qiagen AllPrep kit (Qiagen, Hilden,
Germany) following the kit’s protocol.

Specific primer pairs were used to target different
domains of life. We used primers 515 F (5’-GTGY
CAGCMGCCGCGGTA) [31] and NSR951 (5’-TTG
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GYRAATGCTTTCGC) [32] to amplify the V4 region of
18S rRNA eukaryote gene. Primers 27 F (5’-AGRGTTY
GATYMTGGCTCAG) [33] and 519 R (5’-GTNTTAC
NGCGGCKGCTG) [34] were used for regions V1-V3 of
the bacterial 16S rRNA gene, and finally primers 519 F
(5’-CAGCMGCCGCGGTAA) [35] and 1041 R (5’-GG
CCATGCACCWCCTCTC) [36] to amplify regions V4-V6
of the archaeal 16S rRNA gene.

As with all primers, there can biases introduced during
the amplification steps, either because some taxa can be
preferentially amplified, or because of the uneven number
of rRNA gene copies between taxa. A known example is the
absence of haptophytes when classical 18S rRNA V4 pri-
mers are used [37]. Our eukaryote primers do amplify
haptophytes, but no primers are perfect, we hope to have
reduced primer biases in this study.

Sequencing was carried out with Illumina MiSeq 2 × 300
bp kits by Research and Testing Laboratory (Lubbock,
Texas). We noticed that the R2 reads were of lower quality
and therefore chose to conduct our analysis with R1 reads
only (300 bp). Having a good quality R2 reads would have
been more informative. It could have improved taxa dif-
ferentiation, taxonomic assignation and overall sequence
quality. However, we remain confident, considering the
length of the R1, that our data are robust. All the sequences
were deposited in NCBI under accession number
SRP139203.

Sequence analysis

The analysis of the raw sequences was done by following
the standard pipeline of the DADA2 package (https://
benjjneb.github.io/dada2/index.html, version 1.6) in “R”
(https://cran.r-project.org) with the following parameters:
trimLeft= 21, maxN= 0, maxEE= c(5,5), truncQ= 2.
Briefly, the package includes the following steps: filtering,
dereplication, sample inference, chimera identification, and
merging of paired-end reads [38]. DADA2 infers exact
amplicon sequence variants (ASVs) from sequencing data,
instead of building operational taxonomic units from
sequence similarity. In total, we had 159, 160 and
158 samples for the eukaryotic phytoplankton, bacteria and
archaea datasets respectively, and an average of ca. 27,000,
29,000 and 16,000 reads per sample respectively. The
sequence data were normalized by dividing counts by
sample size. This could influence our seasonality analyses,
but considering our raw data, we found that the most
appropriate transformation was to use proportional abun-
dances [39]. The taxonomy assignments were done with the
SILVA v.128 database (https://www.arb-silva.de/
documentation/release-128/) and the “assignTaxonomy”
function in DADA2 that implements the RDP naive
Bayesian classifier method described in Wang et al. [40].

For some ASVs, in order to obtain a finer taxonomical
resolution, we did an additional BLAST [41] search (blastn,
95% minimum similarity), which results can be found in the
column “Blast” of the supplementary table 1. We also did a
PR2 [42] assignation for the rhythmic eukaryotic phyto-
plankton (supplementary table 1). In this study, we aimed to
focus more specifically on autotrophic picoeukaryotes in
order to highlight the co-occurrence patterns and rhythmi-
city of phototrophs versus heterotrophs. We have therefore
selected a subset of the eukaryotic datasets by retaining
sequences belonging to the divisions: Chlorophyta, Dino-
flagellata (without including Syndiniales, which are para-
sitic), Ochrophyta and Haptophyta. Here we considered all
non-parasitic Dinoflagellata to be photosynthetic, but it
should be noted that organisms from this group display a
range of metabolisms: phototrophic, mixotrophic and het-
erotrophic [43].

Statistics

The Lomb Scargle periodogram (LSP) was used to deter-
mine if periodic patterns were present in microbial ASVs.
The LSP, based on the Fourier transform, was originally
adapted by astrophysicists to detect periodic signals in time
series that were unevenly sampled due to limited access to
telescopes and varying weather conditions [44, 45]. The
LSP was then successfully used in biological studies to
determine the periodicity of an unevenly sampled signal
[46]. Owing to the robustness of the method and the fact
that the sampling effort at SOLA was unevenly spaced, the
LSP appeared as the best tool for our study. Computing the
peak normalized power (PNmax) of the LSP was accom-
plished via the “Lomb” package (https://cran.r-project.
org/web/packages/lomb/) in the “R” software. ASVs were
considered rhythmic when they had a PNmax > 10. The
threshold for PNmax is automatically calculated by the
package. In summary, the LSP gives both the significance
of the rhythmicity and the period of the rhythm. The LSP
looks for all possible rhythmic patterns in a signal,
regardless of their period. To estimate the time of the year
of maximal abundance, we determined for each year and
each rhythmic ASV the week of the year with the highest
number of sequences. Then we selected, over the entire time
series, the week that most often showed highest number of
sequences.

The Shannon index, to estimate community diversity,
was calculated for each sample and for eukaryotic phyto-
plankton, bacteria and archaea, respectively, with the
function “diversity” from the “Vegan” package in “R”
(https://cran.r-project.org/web/packages/vegan/).

Distances between samples were calculated for eukar-
yotic phytoplankton, bacteria and archaea based on com-
munity composition with a canonical correspondence
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analyses (CCA). Contribution of environmental factors
were added as arrows, and their significance was tested with
an analysis of variance (ANOVA) from the “Vegan”
package in "R".

Patterns of co-occurrences between taxa were measured
with the sparse partial least squares (sPLS) regression [47].
The sPLS was used to relate the abundance matrices of
eukaryotic phytoplankton against bacteria and archaea with
these parameters: ncomp= 3, mode= ‘regression’, in the
“mixOmics” package (https://cran.r-project.org/web/packa
ges/mixOmics/) in "R". Relationships between taxa were
then visualized by a heatmap with the “CIM” function, from
the same package.

Eukaryotic phytoplankton, bacteria and archaea ASV
tables containing reference sequences, taxonomy and pro-
portional abundance in the different samples are available as
supplementary table 1.

Results

Environmental conditions

Chlorophyll a concentrations showed yearly reoccurring
patterns with maxima reaching up to 2.50 µg l−1 during the
winter to spring transitions, and minima at 0.04 µg l−1

during summer months (Fig. 1). Similarly, temperature
levels showed yearly patterns but with much less pro-
nounced inter-annual variations. Water temperature at
SOLA were warmest during the months of August and
September usually, reaching 22 °C, and coldest between
February and March, with values as low as 10 °C. Salinity
fluctuated from 38.49 to 34.27 psu, with an average of
37.63 psu. Nitrate levels extended from undetectable to
9.52 µmol l−1 with an average of 0.90 µmol l −1. Phosphate
concentrations varied from 0.01 µmol l−1 to 0.36 µmol l −1

with an average of 0.04 µmol l–1. Nitrate, phosphate and
chlorophyll a concentrations had highest values at the
winter/spring transition and lowest in summer. However,
salinity, nitrate and phosphate concentrations varied more
than average in November 2011, March 2013 and January
2014 when decreases in salinity levels co-occurred with
increases in nitrate and phosphate levels (Fig. 1).

Eukaryotic phytoplankton, bacteria and archaea
community composition

Overall, the datasets yielded 6398, 6242 and 918 ASVs for
the eukaryotic phytoplankton, bacterial and archaeal com-
munities respectively. Within the eukaryotes, 1801 ASVs
corresponded to autotrophs (eukaryotic phytoplankton). The
Shannon index showed similar patterns of diversity for
autotrophic eukaryotes, bacteria and archaea, with higher

values at the beginning and the end of winter, and lower
values during late summer (Supplementary Fig. 1). Bac-
terial communities had, on average, the highest diversity,
followed by eukaryotic phytoplankton and then archaeal
communities.

Canonical correspondence analyses (CCA) were per-
formed on the eukaryotic phytoplankton, bacteria and
archaea datasets to investigate the relationships between
community composition and measured environmental
variables (Fig. 2a–c). The communities showed a strong
seasonal pattern but the environmental parameters that we
measured explained only 7, 12 and 14% of the variance for
the eukaryotic phytoplankton, bacteria and archaea com-
munities respectively (Supplementary Table 2). The main
explaining factors were temperature (T), day length (DL)
for the three datasets, and also Nitrate (NO3) and Salinity
(S) for bacteria (ANOVA, p= 0.001). Temperature and day
length explained close to half of the total variance for
eukaryotic phytoplankton, bacteria and archaea (Supple-
mentary Table 2). The eukaryotic phytoplankton commu-
nities grouped together according to the month of sampling.
The communities showed more divergence on the CCA
plots during the months of April and May, whereas they
were grouped during the other months (Fig. 2a). Bacterial
communities showed a similar seasonal structure with
higher separation between samples from March to June
(Fig. 2b). Finally, the archaea had a comparable structure of
monthly successions, but with highest variability between
samples from July to October (Fig. 2c).

From 2007 to 2015, at the division level, the photo-
synthetic picoeukaryote community was composed of
Dinoflagellata, Chlorophyta, Ochrophyta and Haptophyta
(44.01% of the sequences, 29.45, 13.23, 13.31% respec-
tively) (Supplementary Fig. 2). Dinoflagellata were domi-
nated by Dinophyceae (99.19% of the sequences) and
Chlorophyta by Mamiellophyceae (94.36%). Within
Mamiellophyceae, three main genera were found, Micro-
monas, Bathycoccus and Ostreococcus (64.59, 31.89 and
3.49%, respectively) (Supplementary Fig. 2). Bacteria
(Supplementary Fig. 3) were dominated by the phyla Pro-
teobacteria (76.74%) and Cyanobacteria (12.12%). The
main contributors of the Proteobacteria were Alphapro-
teobacteria (89.79%, mainly SAR11) and Gammaproteo-
bacteria (9.93%). Synechococcus ASVs represented 95.8%
of Cyanobacteria sequences. Finally, archaea were divided
between the Thaumarchaeota (64.36%) and the Eur-
yarchaeota (35.07%) (Supplementary Fig. 4).

Rhythmicity of the environmental and biological
compartments

In order to test if environmental factors and microbial taxa
had significant rhythmic patterns during the 7-year time
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series, the Lomb Scargle periodogram (LSP) algorithm was
applied to the eukaryotic phytoplankton, bacteria, archaea
and environmental datasets. The most rhythmic environ-
mental parameters were day length and temperature with a
PNmax score of 60.00 and 55.67 respectively. Other
rhythmic factors were NO2, NO3, chlorophyll a and
NH4 but with lower PNmax scores of 37.17, 24.27,
21.37 and 13.44, respectively. SIOH4, PO4 and salinity had
PNmax scores that did not cross the statistical threshold to
be considered rhythmic (PNmax scores of 9.95, 7.03 and
5.45, respectively). A total of 15 picoeukaryote, 89 bacteria
and 31 archaea ASVs had significant patterns of

rhythmicity. The rhythmic ASVs and environmental factors
all had a period of one year. Theses rhythmic microbial
ASVs were selected for further detailed analysis.

Timing of yearly reoccurrences and relative
abundance of rhythmic ASVs

Among the 135 ASVs (Fig. 3, Supplementary Table 3) that
showed significant reoccurrences throughout the year, dif-
ferent domains displayed different patterns. Bacterial
rhythmic ASVs showed phases of maximal abundance that
spread throughout the year, whereas eukaryotic

Fig. 1 Salinity, nitrates (NO3), phosphates (PO4), chlorophyll a (CHLA) and temperature from 2008 to 2015 at the SOLA station in the Banyuls
Bay
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phytoplankton and archaeal rhythmic ASVs phases were
confined to certain moments of the year. Eukaryotic phy-
toplankton rhythmic ASVs had maximal abundance from

November to April, while archaeal rhythmic ASVs had
maximal abundance from September to March.

On average 30.5% of the eukaryotic phytoplankton
sequences were rhythmic but the proportion varied
throughout the year. Rhythmic ASVs represented up to 96%
of the sequences in January and as low as 2.5% of the
sequences in July (Fig. 4b). All classes followed a similar
pattern with high levels (50 to 60% of total sequences) from
mid-Autumn to mid-Spring (October to April) and lower
levels (less than 15% of total sequences) during the rest of
the year. The lowest number of rhythmic sequences were
seen during the summer months (Fig. 4b). Flow cytometry
showed that picoeukaryotes had low abundances during the
summer months and high abundances during winter months
(Fig. 5).

At the eukaryotic class level, (Fig. 4a), the Mamiello-
phyceae rhythmic ASVs were found mostly from the end of
November to the end of March. The Dinophyceae rhythmic
ASVs had peaks of abundances year-round. The Dictyo-
chophyceae rhythmic ASV was only abundant at the
beginning of February. Within Mamiellophyceae, the
Bathycoccus prasinos ASV peaked around the middle of
February (7th week of the year) (Fig. 4c) with a distribution
going from January to April (Fig. 4d). Micromonas com-
moda was recurrent from December to the end of March
(Fig. 4c) and distributed from February to April (Fig. 4d).
Micromonas sp.1 ASV was more present at the end of
November (Fig. 4c) with a distribution from November to
February (Fig. 4d). Micromonas bravo, however, had ASVs
peaks from December to February (Fig. 4c) and was present
from October to April (Fig. 4d).

Rhythmic bacterial ASVs were present throughout the
year (Fig. 6a), and represented in average 31.3% of the
sequences, with variations from 18 to 45.7% of the
sequences (Fig. 6b). The contributors to the rhythmic ASVs
were Acidimicrobiia, Alphaproteobacteria, Betaproteo-
bacteria, Cyanobacteria, Flavobacteria, Gammaproteo-
bacteria, SAR202 and candidate Proteobacteria
SPOTSOCT00m83 (Fig. 6a, b).

The different rhythmic bacterial classes showed different
types of patterns. The Acidimicrobiia, Gammaproteo-
bacteria, SAR202 and candidate Proteobacteria
SPOTSOCT00m83 showed high numbers from October to
April and were almost absent during the summer months
(Fig. 6b). They displayed similar reoccurrence patterns as
well, mainly from December to February (Fig. 6a).

Fig. 2 Canonical correspondence analyses (CCA) of the eukaryotic
phytoplankton (a), bacteria (b), and archaea (c) community compo-
sition in relation to environmental factors. The communities are color
coded according to the month of sampling. The arrows represent the
different environmental factors (T: temperature, DL: day length, NH4:
ammonium, NO3: nitrates, NO2: nitrites, PO4: phosphates, SIOH4:
silicates, S: salinity)
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Cyanobacteria rhythmic ASVs demonstrated an opposite
pattern, with high levels during the warm summer and
autumn months (March to October) and low levels the rest
of the year (Fig. 6b). Cytometry data showed the same
seasonal pattern in terms of cell abundance (Fig. 5). Fla-
vobacteria had similar patterns as cyanobacteria. However,
their reoccurrence patterns were different. Rhythmic Cya-
nobacteria ASVs reoccurred from the end of March to
October, whereas Flavobacteria ASVs had two periods of
maximal reoccurrence, one from March to July and another
during December (Fig. 6a). Betaproteobacteria ASVs were
more abundant from January to May and were absent the
rest of the year (Fig. 6b), and were only recurrent at the end
of February (Fig. 6a). Alphaproteobacteria rhythmic ASVs
displayed similar sequence numbers throughout the year,
accounting for half of the rhythmic ASVs sequence num-
bers (15%) (Fig. 6b). Similarly, the Alphaproteobacteria
ASVs reoccurrences covered the whole year except for
March (Fig. 6a).

Amongst the rhythmic Alphaproteobacteria, a majority
of ASVs belonged to SAR11. All sub-groups of SAR11
(SAR11Ia, SAR11Ib, SAR11Ic, SAR11IIa, SAR11IIIa and
SAR11IV) had high numbers of rhythmic ASVs from
September to the end of February (Supplementary Fig. 5A).
These groups also showed higher number of sequences

during winter months (Supplementary Fig. 5B), except for
SAR11IIIa which had higher sequence abundance from
June to November (Supplementary Fig. 5B).

Finally, archaeal rhythmic ASVs had maximum occur-
rences from the end of August to March, both for Eur-
yarchaeota and Thaumarchaeota (Fig. 6c). Rhythmic ASVs
dominated the dataset as they represented an average of
74.6% of total sequence numbers, ranging from 47.3 to
89.2% (Fig. 6d). Within the Euryarchaeota phylum,
rhythmic ASVs of Marine group II (MGII) and Marine
group III (MGIII) were found. Rhythmic MGII ASVs
showed reoccurrence patterns from September to March
(Fig. 6c) and highest relative sequence numbers from July
to October (Fig. 6d). MGIII rhythmic ASVs had a more
restrained occurrence, from end of November to beginning
of December (Fig. 6c) and were less present in relative
abundance (Fig. 6d). The Thaumarchaeota rhythmic ASVs
displayed high levels of presence throughout the year with
the exception of the months of September. The months
preceding and succeeding September showed a steady
decrease and increase of relative sequence number,
respectively (Fig. 6d). Thaumarchaeota had high occur-
rences all year, except from March to May (Fig. 6c).

We also observed a large number of ASVs that were not
rhythmic and thus had peaks of abundance at different

Fig. 3 Polar plot showing when during the year the rhythmic ASVs
reoccur and the strength of reoccurrence (PNmax, calculated via the
LSP). The black circle shows the statistical threshold for significant

rhythmicity (PNmax= 10). The ASVs are color coded according to
which domain of life they belong to
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moments from year to year. Non-rhythmic ASVs had dif-
ferent patterns of seasonal dynamics. Some ASVs, like the
Gymnodiniphycidae ASV00020, were absent from most of
the samples but shows sudden and irregular peaks of
abundance (Supplementary Fig. 6). Other, like the Gym-
nodiniphycidae ASV00036, were more frequent and had
irregular peaks of sequence abundance that co-occurred
with irregular environmental events such as freshening sea
surface waters and increased nitrate concentrations (Sup-
plementary Fig. 6).

Co-occurrence at the ASV level

To determine co-occurrences, heatmaps were created with
the rhythmic ASVs after calculating Sparse Partial Least
Squares (sPLS) regressions for one dataset against the other
(bacteria vs. picoeukaryote, bacteria vs. archaea and archaea
vs. picoeukaryote). For bacteria vs. picoeukaryotes
(Fig. 7a), the highest correlation scores (>0.6) were between
Micromonas sp.1 (ASV 00013) and a SAR11 sequence
(ASV 00054) as well as 3 Rhodospirillaceae (ASV 00020,

ASV 00112 and ASV 00266). A Dinophyceae (ASV
00011) also had a high correlation (0.55) with the same
Alphaproteobacteria ASVs. Other high correlations were
found between Bathycoccus prasinos and Alpha- and
Gammaproteobacteria. Micromonas bravo (ASV 00002)
also had high correlations with an Alphaproetobacteria
(ASV 00112). A Dinophyceae ASV (ASV00053) displayed
a specific high correlation with a group of bacteria that were
not correlated to other eukaryotic phytoplankton. This is
probably due to the fact that Dinophyceae is the only
rhythmic picoeukaryote to peak in summer (Fig. 4a).

The archaea vs. picoeukaryote heatmap revealed high
correlation ( > 0.5) between Bathycoccus prasinos
and MGII ASVs (ASV 00050 and ASV 00008). Micro-
monas bravo (ASV 00040) showed a similar trend. On the
other hand, Micromonas commada (ASV 00084) had high
correlations ( > 0.5) with MGIII ASVs (ASV 00012
and ASV 00028). As with the bacteria dataset, the Dino-
phyceae, ASV 00053, displayed high correlations when all
other eukaryotic phytoplankton ASVs had low correlations
(Fig. 7b).

Fig. 4 Polar plots representing the rhythmic eukaryotic phytoplankton
classes (a) and the rhythmic Mamiellophyceae ASVs (c). The bar plots
show the proportion of sequences belonging to rhythmic ASVs

averaged per week of the year for eukaryotic phytoplankton classes (b)
and Mamiellophyceae ASVs (d)
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In the bacteria vs. archaea heatmap the main co-
occurrences were observed between a Thaumarchaeota
ASV and a Gammaproteobacteria ASV, as well as between
a MGII and Alphaproteobacteria ASV (Supplementary
Fig. 7).

Discussion

Our 7-year survey in the NW Mediterranean Sea showed
that within all domains of life some taxa showed significant
patterns of rhythmicity with a one year period. The number
of rhythmic taxa differed between domains. Phototrophic
picoeukaryotes had 1% of rhythmic ASVs, bacteria 3.1 %
and archaea 3.4%, but these ASVs represented a large
proportion of the total number of sequences (31.3, 31.6 and
75.5%, respectively). The large proportion of rhythmic
sequences supports the idea of microbial communities that
come back year after year at the same season. The concept
of re-occurring communities has been demonstrated in
several long term studies [14, 20, 24] but coastal observa-
tions are quite scarce [48]. The Banyuls Bay is a coastal site
with seasonal characteristics specific to the NW

Mediterranean. It has a marked seasonality but interestingly
it is also characterized by strong and ephemeral inputs of
nutrients brought from sediment mixing during episodic
winter storms and during flash floods from incoming rivers
[49]. Nutrients are known to strongly structure communities
by promoting planktonic blooms and by stimulating the
growth of certain microbes [12, 50]. However, despite
irregular nutrient supply from year to year, as illustrated by
salinity and phosphate variations during winter and spring
(Fig. 1), we could still observe a large number of rhythmic
eukaryotic phytoplankton, bacteria and archaea sequences.
The CCA analysis (Fig. 2) confirmed that day length and
temperature were major factors structuring the communities
and we can suppose that they directly or indirectly control
the dynamics of the rhythmic taxa.

Day length has been shown to be a strong driver of
community structure in temperate and polar marine envir-
onments such as the English Channel [14], or a high-Arctic
fjord [50]. Temperature is another strong driver as it can
affect gene expression and subsequently the structure and
the function of the microbial communities [51]. The avail-
ability of nutrients has also been shown to be an important
factor in community composition as demonstrated in the

Fig. 5 Photosynthetic picoeukaryote and cyanobacteria abundance determined by flow cytometry from 2009 to 2015 at the SOLA station in the
Banyuls Bay
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BATS time series in the Atlantic Ocean [3]. Our data from
the Banyuls Bay shows that in a coastal ecosystem, envir-
onmental parameters like temperature and day length have
such a structuring effect that sporadic meteorological events
do not appear to impact the overall microbial rhythms of re-
occurring dominant groups of eukaryotic phytoplankton,
bacteria and archaea. However, even though rhythmic
ASVs could be predominately influenced by day length and
temperature, we observed non-rhythmic ASVs, which were
influenced by irregular environmental factors. For example,
the dynamics of the Gymnodiniphycidae ASV00036 was
associated to the irregular peaks of nitrate concentration
(Supplementary Fig. 6).

The importance of day length in driving the rhythm of
individual microorganisms brings the question whether
seasonality is driven by circadian clocks in marine
microbes. The presence of a functional circadian clock
governing day/night biological processes bas been
demonstrated in the mamiellophyceae Ostreococcus [8,
52], however, the existence of a photoperiod dependent
regulation of blooms remains to be established formally in

this order. In diatoms from northern Norwegian coastal
waters, it has been reported that the timing of the spring
bloom varies little from year to year whether water stra-
tification had occurred or not [53]. The authors hypothe-
sized that the photoperiod was the major factor that
relieved diatoms resting spores from dormancy, leading to
seasonal blooms. However, the internal mechanisms
triggering these rhythms remain unknown since the pre-
sence of circadian clocks remain to be shown in diatoms.
Amongst the prokaryotes, cyanobacteria are the only
known group to have a genuine circadian clock [7] and the
occurrence of circadian clock remain to be established in
heterotrophic bacteria and archaea. The rhythmicity of
some heterotrophic microorganisms could thus be gov-
erned directly by day length or indirectly through inter-
actions with the rhythmic autotrophs. Interestingly,
altogether, eukaryotic and prokaryotic autotrophs were
present during the entire year, but they showed clear
differences in their seasonal dynamics. Picoeukaryotes
had highest abundance from autumn to spring, and cya-
nobacteria during the summer.

Fig. 6 Polar plots representing the rhythmic bacteria ASVs (a) and the rhythmic archaea ASVs (c). The bar plots show the proportion of sequences
belonging to rhythmic ASVs averaged per week of the year, for bacteria (b) and archaea (d)
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Fig. 7 Heatmap based on a sPLS regression showing co-occurrences
between rhythmic eukaryotic phytoplankton ASVs and bacteria ASVs

(a) and between rhythmic eukaryotic phytoplankton ASVs and archaea
ASVs (b). Correlations > 0.4 are highlighted
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We observed a large number of rhythmic ASV sequen-
ces, which were mainly seen within abundant members of
the communities. The eukaryotic phytoplankton were
represented primarily by Mamiellophyceae and Dinophy-
ceae, which have important ecological roles as primary
producers and as links in the predator/prey food chain [54].
Among prokaryotic rhythmic ASVs, there were many
representative of the SAR11, known for being the most
common group of marine bacteria [23]. Seasonality has
been observed for SAR11 and Flavobacteria groups earlier
[15, 55]. Rhythmic archaea were found in MGII, MGIII and
Thaumarchaeota, which have already been shown to have
reoccurring yearly patterns [20, 25]. The dominance of
abundant groups within rhythmic ASVs raises the question
as whether our analysis underestimated the rhythmicity of
less abundant ASVs. It should be noted, however, that some
rare ASVs, with occurrences of 0.034, 0.009 and 0.115%
respectively for the eukaryotic phytoplankton, bacteria and
archaea dataset, were also found to be rhythmic. In agree-
ment with our observations, Alonso-Sáez et al. [55] recently
showed that, also in a coastal system, both rare and abun-
dant bacterial species had patterns of rhythmicity in the
Atlantic Ocean [55] and that many species that remained
rare all year long also showed significant patterns of
rhythmicity. Rhythmicity of marine microbes, at the ASV
level, remains to be verified in other sites as there have been
only few studies conducted at this level of resolution. While
the re-occurrence of entire communities is now well docu-
mented [13, 14, 24], the long-term monitoring of individual
taxa is not common [12, 21] and the use of statistics to test
patterns of ASV rhythmicity is even less frequent.

There have been very few studies looking at the temporal
dynamics across the three domains of life in marine
microbial ecosystems. One of the first long term study
covering the three domains did not focus on the rhythm of
the individual taxa but rather looked at co-occurrence net-
works [29]. They showed that correlations between
microbes were more prevalent than correlations between
microbes and environmental factors. This is probably due to
the stability of the deep chlorophyll maximum at their study
site [29]. More recently, Needham and Fuhrman looked at
the succession of phytoplankton, archaea and bacteria, but
only during 6 months [30]. Another study in the same
ecosystem, relying on automated sampling, showed daily
and highly dynamic population variations in the three
domains of life, and extensively described the biological
interactions that took place during the sampling period [56].
A study looking at bacterioplankton diversity and phyto-
plankton microscopy counts, has shown that despite inter-
annual variations in phytoplankton blooms, bacter-
ioplankton microdiversity patterns seem stable in both
bloom and non-bloom conditions [57]. The present dataset
showed high co-occurrence between some eukaryotic

phytoplankton and prokaryotes ASVs. The most significant
correlations were found between Mamiellophyceae and the
alphaproteobacteria SAR11. This co-occurrence could be
explained by the fact that Micromonas and SAR11 might
interact by exchanging compounds such as vitamins,
growth factors and organic carbon [58, 59]. However,
SAR11 was recently shown to be auxotrophic to the thia-
mine precursor 4-amino-5-hydroxymethyl-2-methyl pyr-
imidine [60], thus resulting in similar needs as Micromonas
for thiamin precursors [61]. The co-occurrence of these two
microbes therefore may be explained by their requirement
for similar nutritional niches rather than by a relationship of
interdependency depending on environmental factors.

In conclusion, through the analysis of our time series we
demonstrated that a large proportion of members of
eukaryotic phytoplankton, bacteria and archaea datasets,
showed rhythmicity with a one year period of reoccurrence
over then entire time series. The main drivers of seasonality
were photoperiod and temperature. Sporadic meteorological
events and irregular nutrient supply characteristic of our
coastal site did not affect significantly the seasonality,
indicating that the yearly rhythms were robust. Rhythmicity
was found in both autotrophs (picoeukaryotes and cyano-
bacteria) and heterotrophic prokaryotes. Seasonal auto-
trophs, which respond to light, may be setting the pace for
rhythmic heterotrophs but similar environmental niches
may be driving seasonality as well.
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Addendum

My contribution:

For this chapter I was in charge of the sequence analysis (firstly done with mothur, but

redone with DADA2 because it was better suited to our needs), the management of the

time series data (gathering and putting together the biological and environmental data),

the exploitation of the time series data (finding and using the Lomb Scargle periodigram

to investigate the rhythmicity of ASVs in an unenvenly sampled time series), setting up

the figures and supplementary data and the writing of the article with the co-authors.

The seawater sampling and DNA extractions were done before I started my PhD by people

from the observatory. The PCRs and sequencing was done by a private company. The

environmental data was made available thanks to the SOMLIT.

Corrections to the chapter:

Additionally, the reviewers suggested to look at different factors that could explain the

seasonality. Here the CCAs were plotted but with a color coding corresponding to the

sample’s month of sampling, sea surface temperature or nitrate levels.

In the following figures we can see a gradient both in temperature and nutrients for the

three data sets. The variations in temperature and nitrate follow the direction of their

corresponding arrow. Indeed, temperature increases during the summer months which

also correspond to low nutrient levels. During winter it is the opposite, we find high

nutrient levels and low temperatures. However, certain communities found in the original

CCA showed peculiar distributions. For example, in the eukaryotic phytoplankton data

there is a point that was sampled in January (blue) but that groups with samples from

March (turquoise). However, temperature and nutrient levels can explain why these

communities group together since they have similar temperature as well as high nutrient

values (the highest levels of the data set).

Another example is the October sample (purple) that groups with samples from the month

of May (green). Unfortunately, temperature and nitrate levels are quite different between

these samples (19°C vs 16°C and 1.5µmol l-1 vs 0µmol l-1 for October vs May, respectively).
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Chapter 2 – Rhythmicity of coastal marine microbes

Other factors such as salinity or phosphate levels could help explain the distribution of

this point.
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CCA of eukaryotic phytoplankton communities showing the samples month, temperature
or nitrate levels
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CCA of bacterial communities showing the samples month, temperature or nitrate levels



CCA of archaeal communities showing the samples month, temperature or nitrate levels
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Chapter 3 – Environmentally driven changes in microbial co-occurrences

3.1 <3µm time series data

Prologue

Microbial interactions could have a high impact on community structure and dynamics.

To grasp a better understanding of microbial interactions in the Bay of Banyuls, we in-

creased the sampling frequency to twice a week. This was performed for three years,

during the most productive months (January to March) to focus on the phytoplankton

bloom period. Coastal environments are submitted to irregular freshwater influxes from

nearby rivers and other meteorological events, which can amplify the impact of environ-

mental factors on marine microbe interactions. We showed that salinity and nutrient con-

centrations at the SOLA sampling station were influenced by these freshwater influxes,

of which the origin remains unclear. Bray Curtis dissimilarity analyses and principal

coordinate analyses showed that community composition and abundance were mainly

impacted by salinity and to a lesser extent by temperature. The Maximal Information

Coefficient (MIC) correlation statistic was used to determine co-occurrences between in-

dividual ASVs, rendered as a network with Cytoscape. According to network analysis,

salinity and temperature impacted community structure. Subnetworks analyses revealed

that dominant ASVs, present throughout the three-year time series, switched their first

neighbors depending on the environmental perturbations they faced. In addition, eu-

karyotes co-occurred preferentially with eukaryotes, and prokaryotes with prokaryotes.

Overall, our study highlighted that increasing the sampling frequency allows for an im-

proved understanding of microbial community dynamics, while long term lower resolution

time series (i.e. Chapter I) help build a baseline that give appropriate context to future

measurements. Time series will be, if they are not already, powerful tools to help monitor

the impact of climate change on microbial communities.

This manuscript is currently in preparation.
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Switching neighbors in environmentally challenged 1

coastal marine microbes 2

Stefan Lamberta, Jean-Claude Lozanoa, François-Yves Bougeta, and Pierre E. Galandb
3

aCNRS, Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Sorbonne 4

Université, Banyuls sur Mer, Paris, France; bCNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques 5

(LECOB), Observatoire Océanologique de Banyuls, Sorbonne Université, Banyuls sur Mer, Paris, France 6

Coastal ecosystems, that are subject to seasonal phytoplanktonic blooms and stochastic

freshwater influxes from nearby rivers, magnify the impact of environmental factors on ma-

rine microbe interactions. Sampling twice a week, for three years, during the most productive

months (January – March) allowed us to show that freshwater influxes strongly impacted salin-

ity and nutrient concentrations at the SOLA sampling station and that community composition

and abundance were impacted by environmental stresses. Cluster analysis of yearly networks

showed that low salinity conditions could have influenced network structure. Despite these en-

vironmental perturbations, subnetworks showed persistent amplicon sequence variants that

could switch their first neighbors when faced with different environmental challenges. Further-

more, eukaryotes showed a preferred co-occurrence with eukaryotes, whereas prokaryotes

preferred to co-occur with prokaryotes. Long term, high resolution, sampling stations are crit-

ical in order to characterize marine microbial interactions. Implementing and maintaining time

series, since they allow distinction between seasonal events and novel impacts to community

dynamics, will improve the study of anthropological perturbations.
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Introduction7

Microbial communities are complex systems of co-occurring species (1–5) formed by different types8

of relationships defined as, for example, parasitism, mutualism or predator-prey interactions (6, 7).9

Networks analysis have been used to study these interactions (5, 8–11) and have demonstrated the10

impact of environmental conditions (10), or hydrological factors (12) on community structures. The11

networks have also revealed specific ecological niches for bacterioplankton (9, 13) and time-lagged12

interactions (4, 5) detected with local similarity analysis (14).13

Community compositions are shaped and impacted by changes in environmental conditions.14

These variations can be reoccurring yearly, such as seasonalsa temperature changes (11), day15

length transitions (10, 15), phytoplankton blooms forming during the winter to spring transition16

(16, 17) or seasonal mixing of the water column (11, 18). Furthermore, in temperate coastal17

ecosystems, microbial community composition depends on sudden and often dramatic events such18

as the influx of freshwater from land, sediment resuspension during storms (12), or short timescale19

events such as wind direction and precipitation (19). As the impact of environmental changes is20

increasing, exacerbated by anthropological pressure, the question remains whether communities, and21

their interactions, could remain stable over time, or if the predicted increases in temperature and22

precipitation could disrupt individual interactions within communities (20, 21).23

Long term sampling stations have helped elucidate links between environment and microbial24

communities. They have shown the temporal reoccurrences of microbial communities (6, 22, 23)25

and allowed the discovery of major novel marine groups (24). Time series analyses are helping us26

understand and decipher yearly biological events and determine the prevalence of these events in27

different ecosystems (25). However, most long term study sites demonstrate a monthly sampling28

period (10, 13, 26) and inherently miss any event that lasted less than a month. It has been shown29

that weekly and even daily samplings are needed to observe short time scale events, such as species30

successions and associations during bloom periods (4, 27–29). Furthermore, multiyear time series31

studies are important for discriminating microbial community dynamics from stochastic events (16).32

With the recent access to cheap sequencing technology, and the development of powerful tools to33
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analyze the data produced, there have been multiple enhancements to time series analyses. There has 34

been a shift from broad taxonomic resolution (10) to amplicon sequence variants (ASVs) (30), and a 35

transition from single domain studies (13, 22) to studies focusing on multiple domains (3, 4, 31). 36

We have previously observed in a coastal site of North western Mediterranean Sea that about a 37

third of picoeukaryotes and bacteria and 70% of archaea ASVs sequences displayed robust annual 38

rhythms despite irregular environmental conditions (23). The aim of this study was to investigate 39

at the same sampling point (SOLA, bay of Banyuls), with a higher sampling frequency, the effect 40

of environmental perturbations on the microbial community composition and microbe-microbe 41

co-occurrences. We sampled a coastal site (SOLA) weekly for 3 years, and increased the sampling 42

frequency to twice a week during the most productive winter months (January-March). Sampling 43

included an “average” year (2015) in terms of physical and chemical parameter seasonal dynamics 44

(23) and two atypical years, 2016 and 2017, marked by strong environmental perturbations in terms 45

of temperature and freshwater influx, respectively. We investigated the effect of these disturbances 46

on both eukaryotes and prokaryotes diversity, by amplifying 18S and 16S rRNA genes respectively, 47

and we used ASVs to resolve taxa. 48

Materials and Methods 49

Sampling. Surface water (3m) was collected from January 2015 to March 2017 at the Service 50

d’Observation du Laboratoire Arago (SOLA) sampling station (42°31’N, 03°11’E) in the Bay of 51

Banyuls, North Western Mediterranean Sea, France. Samples were collected twice a week during the 52

periods of January – March 2015, January – April 2016 and December 2016 – March 2017 and roughly 53

once a week otherwise. Niskin bottles were used to obtain seawater that was stored in 10 L carboys 54

until arrival to the laboratory. 5 L of seawater were prefiltered through 3 µm pore-size polycarbonate 55

filters (Merck-Millipore, Darmstadt, Germany), and the microbial biomass was collected on 0.22-µm 56

pore-size GV Sterivex cartridges (Merck-Millipore) and stored at –80 °C until nucleic acid extraction. 57

The physicochemical (temperature, salinity, nitrate) and biological (chlorophyll a) parameters were 58

provided by the Service d’Observation en Milieu Littoral (SOMLIT). The levels of the nearby river, 59

the Baillaury, were obtained online from the “Service Central d’Hydrométéorologie et d’Appui à la 60
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Prévision des Inondations” (http://www.hydro.eaufrance.fr/)61

DNA extraction, amplification and sequencing.The nucleic acid extraction followed protocols62

published earlier (23). To summarize, the sterivex filters were thawed on ice, followed by addition of63

lysis buffer (40nM EDTA, 50nM Tris, 0.75M sucrose) and 25 µL of lysozyme (20 mg mL-1). The64

filters were then incubated for 45 minutes at 37°C on a rotary mixer. Subsequently, 8µL of Proteinase65

K (20mg mL-1) and 26µL of sodium dodecyl sulfate (20% v/v) were added before incubating for66

1 hour at 55°C. Total DNA extracted and purified with the Qiagen AllPrep kit (Qiagen, Hilden,67

Germany) following the kit’s protocol.68

Specific primers were used to target either the eukaryotic V4 region (TAReuk_F1 [5’-69

CCAGCASCYGCGGTAATTCC] and TAReuk_R [5’-ACTTTCGTTCTTGATYRATGA], (32))70

or the prokaryotic V4-V5 region (515F-Y [5’-GTGYCAGCMGCCGCGGTAA] and 926R [5’-71

CCGYCAATTYMTTTRAGTTT], (33)). Sequencing was carried out by the Genotoul plateform72

(Toulouse, France), with the Illumina Miseq 2x250 bp kits.73

Sequence analysis and preprocessing.The standard pipeline of the DADA2 package (https:74

//benjjneb.github.io/dada2/index.html, version 1.6) in “R” (https://cran.r-project.org)75

was used to do the analysis of the raw sequences. The parameters used for the eukaryote dataset76

were: trimLeft=c(20, 21) ,truncLen=c(250,250), maxN=0, maxEE=c(2,2), truncQ=2. And for the77

prokaryote dataset: trimLeft=c(19, 20), truncLen=c(240,200), maxN=0, maxEE=c(2,5), truncQ=2.78

The prokaryote sequences were of slightly lower quality, which explains the shorter cutoff and the79

higher expected error parameter. We analyzed 141 and 142 samples for the eukaryote and prokaryote80

datasets respectively and obtained 3.8 and 3.4 million total reads respectively, which is an average81

of ca. 27000 and 24000 reads per sample respectively (Supplementary Table 1). The taxonomy82

assignments were done with PR2 v.4.10.0 database (https://github.com/vaulot/pr2database/83

releases) for the eukaryote dataset and with SILVA v.128 database (https://www.arb-silva.84

de/documentation/release128/) for the prokaryote dataset. The “assignTaxonomy” function in85

DADA2 implements the RDP naive Bayesian classifier method described in Wang et al (34).86

Taxa belonging to the supergroup “Opisthokonta” were removed from the eukaryote dataset.87
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Comparably, taxa belonging to eukaryotes were removed from the prokaryote dataset. Samples 88

containing less than 5000 reads and 9000 reads were removed from the eukaryote and prokaryote 89

dataset respectively. A total of 139 and 137 samples remained for the eukaryotes and the prokaryotes 90

respectively. These preprocessing steps were done with the “R” package “Phyloseq” (https: 91

//joey711.github.io/phyloseq/). Sequence counts for both datasets were normalized with the 92

“DESeq2” package (https://github.com/mikelove/DESeq2). 93

Statistics.The Bray-Curtis (BC) dissimilarity index was calculated between community composition 94

of two successive samples (t vs t+1) within each dataset with the “vegdist” function of the “Vegan” 95

package in “R” (https://cran.r-project.org/web/packages/vegan/). Similarity between sam- 96

ples based on Bray Curtis similarity was visualized in a principal coordinate analysis (PCoA) for 97

each dataset with the “Phyloseq” package in “R”. 98

The Maximal Information Coefficient (MIC), (35) was computed for the 20 most abundant ASVs 99

per sample and per year. The output of the MIC was then used to build a network in Cytoscape 100

(36). The full network was pruned to visualize ASV interactions that had a Pearson linear regression 101

> 0 and a MIC > 0.75 (Selected ASVs found in Supplementary Table 2). The layout chosen for the 102

network was edge-weighted spring embedded, using the MIC parameter. Each ASV is represented 103

by a node in the network, which size is proportional to the abundance of the ASV that year. The 104

sample of maximum abundance per ASV was determined, and the corresponding environmental 105

parameters were used for the subsequent color codding of the network. Cluster analyses were done 106

with the CytoCluster app (37) for Cytoscape, using the HC-PIN clustering algorithm with the default 107

parameters (Weak, Threshold: 2.0 and ComplexSize Threshold: 3) (Results in Supplementary Table 108

3). Network analysis was done using the NetworkAnalyzer tool included in Cytoscape (Results in 109

Supplementary Table 4). The networks were treated as undirected. 110

The Venn diagram was made using an online tool (http://bioinformatics.psb.ugent.be/ 111

webtools/Venn/) and applying it to the ASVs pruned from the main network (Supplementary Table 112

2). 113

Radar plots were made with the “fmsb” package (https://cran.r-project.org/web/packages/ 114

fmsb) in “R”. 115
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Results116

Environmental conditions.Chlorophyll a, temperature, salinity and nitrate were measured at the117

sampling point SOLA (Fig. 1). When focusing on the most productive winter months, average118

chlorophyll a concentrations varied from 0.58 µg L-1 to 1.37 µg L-1. In 2014-2015, chlorophyll a119

concentrations were under average during the whole winter, except during the month of March,120

which was above average. During 2015-2016, chlorophyll a levels stayed rather close to the average.121

There were two increases, one at the end of December and ended mid-January and the second during122

the month of April. Comparably, 2016-2017 chlorophyll a concentrations were close to average most123

of the year, except for two major increases, during the month of December 2016 (2.11 µg L-1) and124

February 2017 (3.74 µg L-1).125

The average temperature over 8 years varied from 11.4°C to 15.1°C during the period of December126

to April with lowest values at the end of February. Temperature in winter 2014-2015 was warmer127

than average in December (+1.65°C) and January (+0.59°C). The following months were close to128

average. Water temperature in winter 2015-2016 remained, on average, warmer in January (+1.25°C)129

and February (+1.52°C). Minimum values were observed at the beginning of March, when it finally130

returned closer to the 8-year average. Winter 2016-2017 showed a different pattern by staying close131

to the average temperature from December to February, and then 1°C warmer than average in132

March and April.133

The average salinity over 8 years varied from 37.38 psu to 37.84 psu during the winter period.134

Winter 2014-2015 showed salinity close to average values with the only exception at the end of135

March (36.44 psu). Salinity in 2015-2016 remained above average throughout most of the winter.136

The winter of 2016-2017 displayed two marked decreases in salinity, in December 2016 (35.54 psu)137

and February 2017 (35.30 psu). Those decreases lasted almost the full months. On the other hand,138

the salinities of January and March were slightly above average, and April was close to the average.139

Nitrate followed similar patterns as salinity. Average nitrate varied from 0.72 µmol L-1 to 2.68140

µmol L-1. Nitrate concentrations in 2014-2015 and 2015-2016 remained under average most of the141

year. However, 2016-2017 had two major increases in nitrate levels during the months of December142
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Fig. 1. : Chlorophyll a, temperature, salinity, nitrate (NO3), and the level of the nearby river (The Baillaury) from December
to April at the SOLA station in the Bay of Banyuls. The black line depicts the average value (with s.e.) from 2007 to 2015
(2008 to 2015 for the Baillaury level). The red, green and blue line show the values for the winter of 2014/2015, 2015/2016
and 2016/2017, respectively.
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(5.05 µmol L-1) and February (9.50 µmol L-1).143

On average the water levels of the nearby river, the Baillaury, varied from 26.8 cm to 48.8 cm144

between 2008 to 2018. (Fig. 1E). The height of the Baillaury remained fairly stable throughout145

the 2014-2015 winter, apart from the month of March that displayed a very important increase146

(178.35 cm). The Baillaury was mostly dry from December 2015 to February 2016. It then had a147

sudden increase at the end of February. The levels thereafter were close to the average. In 2017, the148

height of the Baillaury had two increases, one during January (64.87 cm) and another mid-February149

(116.23 cm).150

Pairwise changes in community composition.To compare the community composition of succes-151

sive samples (i.e. t sample vs t+1 sample), the Bray-Curtis (BC) dissimilarity indices were calculated152

for the periods of January – March 2015, January – April 2016 and December 2016 – March 2017.153

Salinity corresponding to the t+1 samples were plotted with the BC scores for eukaryotes (Fig. 2A)154

and prokaryotes (Fig. 2B). Regardless of the dataset, high BC scores between successive samples,155

which indicate changes in community composition, were observed when salinity decreased. During156

the sharp decrease of salinity at the end of March 2015, the BC scores increased. This was more157

visible in the prokaryote dataset than in the eukaryote dataset. The progressive decrease in salinity158

from March to April 2016 was mirrored by the high BC scores at the same moment in both datasets.159

Both major decreases in salinity in December 2016 and February 2017 were echoed in the BC scores160

for the same samples in both data sets as well. Even during the early onset of the decrease in salinity161

(beginning of February) there was an increase of the BC score of the corresponding sample.162

Similarly, temperature, corresponding to the t+1 sample, was plotted with BC dissimilarity index163

between succeeding samples for the eukaryote (Fig. 3A) and the prokaryote (Fig. 3B) data sets.164

Variations in temperature did not fit the variations of BC scores as well as salinity.165

Seasonal community composition.Principal coordinates analysis (PCoA) were carried out on166

both the eukaryote and prokaryote datasets so as to compare the composition of communities during167

the sampling period (Fig. 4). Communities grouped generally by month of sampling, but March168

communities were more variable, regardless of the year. In addition, December 2016 and February169

8



Fig. 2. : Bray-Curtis dissimilarity index between two succeeding samples,
separated by year of sampling for eukaryotes (A) and prokaryotes (B). The line represents seawater salinity.

Fig. 3. : Bray-Curtis dissimilarity scores between two succeeding samples,
separated by year of sampling for eukaryotes (A) and prokaryotes (B). The line represents seawater temperature.
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2017 also displayed more diverging communities. The axis of the PCoAs had a higher explanation170

percentage for the prokaryote dataset (28.4% and 19.7%) than the eukaryote dataset (17.5% and171

10.4%). Overall, a seasonal dynamic was visible for both domains. The eukaryote communities went172

from the top left of their PCoA to the bottom part of the graph with time, whereas the prokaryote173

communities went from the bottom left to the top left of the graph.174

Fig. 4. : Principal Coordinate Analysis (PCoA) for eukaryote (A) and prokaryote community composition (B).

Abundance at the class level.With the aim of visualizing possible changes in abundances, ASVs175

counts, after being grouped at the class level, were separated according to month and year of176

sampling. The eukaryotic dataset (Fig. 5A) was divided into four main classes, Bacillariophyta,177

Dinophyceae, Mamiellophyceae and Syndiniales. Bacillariophyta showed relatively low levels of178

average abundance throughout the sampling period. January 2016 had higher levels of average179

abundance than 2015 and 2017, whereas February 2017 showed a higher level of average abundance180

compared to the two other years. Concerning March, 2017 had a high level of average abundance.181

However, Bacillariophyta were nearly not present during March 2016. Average abundance in the182

Dinophyceae class remained relatively stable during the three years of sampling, with higher levels183

in January and February 2017. On the other hand, Mamiellophyceae had more variable average184

abundances. For the month of January, 2015 had the highest average abundance. The rest of 2015185

was quite stable. Average abundance of Mamiellophyceae showed a progressive increase with time in186
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Fig. 5. : Average relative abundance of eukaryote (A) and prokaryote (B) classes according to year of sampling.

2016, starting off at very low levels in January, and ending up at the highest level for that class 187

in March. Mamiellophyceae decreased from January 2017 to relatively low levels in February and 188

March 2017. Syndiniales showed consistent levels of average abundance in 2015. This was also true 189

in 2016, with a slight increase in March. However, in 2017, the average abundance showed high 190

levels in January and March, but February had low levels. 191

The Average relative abundance was calculated for the primary classes of the prokaryote dataset, i.e. 192

Alphaproteobacteria, Cyanobacteria, Flavobacteria and Gammaproteobacteria. Alphaproteobacteria 193

relative average abundances, per year, remained similar during the sampling period. Decreases in 194

abundance only happened in February and March 2017. Cyanobacteria average abundances were 195

relatively low and stable during the three years of sampling, except for a sharp increase in March 196

2017. Average abundance for Flavobacteria in 2015 and 2016 was fairly stable, with an increase in 197

March for both years. However, Flavobacteria in 2017 had a higher than average relative abundance, 198

particularly in February. Finally, Gammaproteobacteria demonstrated relatively stable abundances 199

for each year, respectively. 200

Co-occurrences of amplicon sequence variants. In order to investigate co-occurrences between 201

ASVs, their Maximal Information Coefficients (MICs) were calculated and MICs > 0.75 were 202
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represented in yearly networks (Fig. 6). Nodes depict ASVs and their size correspond to the203

abundance of the ASV for each year (Fig. 6). Cluster analysis (Supplementary Table 3) revealed that204

the 2015 network was composed of 2 main clusters, with a modularity of 12.4 and 5.7, respectively,205

as well as 4 smaller clusters (modularity < 1), and had an average number of neighbors (ANN,206

summarized in Supplementary Table 4) of 11.6. The 2016 network consisted of 3 clusters with a207

modularity of 14.5, 6 and 3, respectively, and had an ANN of 8.1. Finally, the 2017 network formed208

8 low modularity clusters (modularity between 4.4 and 0.5) with an ANN of 5.5. The ASVs found209

in the 2015 network were mainly associated with an average salinity (37 psu). Whereas the ASVs in210

the 2016 network were mainly related to high salinity (38 psu). The 2017 network demonstrated211

high, average and low salinity ASVs (38, 37 and 35 psu) (Fig. 6A). The 2015 network did not show212

any discernible pattern for temperature distribution. The 2016 network was separated into a low213

temperature (11-12°C) group and a high temperature (13-14°C) group. In contrast, the 2017 network214

showed a central structure (13°C), with lower temperature fringes (12°C) (Fig. 6B). The 2015 and215

2016 network depicted a temporal transition from January to March. As with other parameters,216

the 2017 network showed dispersed ASVs, especially considering the month of February, that was217

dispersed all over the network (Fig. 6C).218

Additionally, we color coded the ASVs according to trophic group for eukaryotes and taxonomical219

classification for prokaryotes (Fig. 7). Details concerning this color coding can be found in220

supplementary table 7 and 8 for the eukaryotes and prokaryotes, respectively. This figure shows221

complex co-occurrences between different groups. Even though there is no general discernible222

pattern between the tree networks, we can observe that in 2015, for example, there is are multiple223

co-occurrences between autotrophs and parasites. On the other hand, in 2016, there are multiple224

co-occurrences between autotrophs and grazers. And in 2017 we can see that the low salinity ASVs225

correspond mainly to flavobacteria.226

With the purpose of visualizing shared and year-specific ASVs between the networks, a Venn227

diagram was created (Fig. 8). A total of 42 ASVs were shared amongst the three winters of sampling.228

Year 2016 had a higher number of specific ASVs (51). Year 2015 and 2017 both had 45 year-specific229

ASVs. The ASVs that were shared between two years were consistent as well.230
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Fig. 6. : Networks showing co-occurrences between ASVs calculated with the MIC statistic. The size of the node is
proportional to the sequence abundance of its corresponding ASV. The color coding of each ASV reflects either salinity (A),
water temperature (B) or the month of sampling (C).
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Fig. 7. : (Addenum) Yearly networks showing co-occurrences between ASVs calculated with the MIC statistic. The size of
the node is proportional to the sequence abundance of its corresponding ASV. The color coding of each ASV reflects either
the trophic group for eukaryotes or taxonomical classification for prokayotes
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Fig. 8. : Venn diagram showing the shared and/or specific eukaryotic and bacterial ASVs per year.

Changes of ASVs co-occurrences. In order to assess co-occurrences at a fine taxonomical level, we 231

selected five ASVs, among the most abundant that were found every year (Supplementary Table 6), 232

to build subnetworks. Yearly co-occurrences with other ASVs for each subnetwork were visualized in 233

radar plots (Fig. 9). The radius corresponds to the MIC score between the central ASV (described 234

under each respective plot) and its first ASV neighbors. We selected two mamiellophyceae, one 235

cryptophyceae, one pelagophyceae and one dinophyceae to represent the eukaryotes. They shared 236

similar number of total first neighbors (TFN), ranging from 14 to 22. For the prokaryotes, three 237

alphaproteobacteria, one flavobacteria and one cyanobacteria were selected. TFN numbers were 238

divided into two groups, Rhodobacteraceae, SAR11 surface 2 and Tenacibaculum had 14, 20 and 239

19 TFNs respectively, whereas SAR11 surface 1 and Synechococcus had 44 and 42 TFNs, each. 240

In these subnetworks, each ASV predominately co-occurred with members of the same domain of 241

life, except for Synechococcus that had similar numbers of eukaryote and prokaryote first neighbors 242

(Supplementary Table 5). 243

The mamiellophyceae and dinophyceae had more first neighbors in 2016, whereas the cryptophyceae 244

had more first neighbors in 2015. The pelagophyceae had similar number of co-occurrences every 245

year. Concerning the prokaryotes, rhodobacteria, SAR11 surface 1 and synechococcus had more first 246

neighbors in 2015. SAR11 surface 2 had more first neighbors in 2016, whereas Tenacinaculum had 247

a balanced number of first neighbors every year. Most ASVs had specific first neighbors depending 248
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Fig. 9. : Radar plot depicting the first neighbors, per year, of selected ASVs (Supplementary Table 5). The radius
corresponds to the MIC score between the central ASV (described under each plot) and its first neighbor.

on the year of sampling. Few ASVs demonstrated conserved partners between sampling periods.249

Discussion250

We compared the average environmental conditions in winter at the SOLA station (2007 - 2017)251

to data from 2015-2017. It showed that for all environmental variables, 2015 remained close to252

the weekly average throughout the sampling period and could thus be considered as a “standard253

year”. Year 2016 displayed a higher temperature during most of the sampling period and 2017254

demonstrated sharp salinity decreases at times with strong co-occurring nutrient and chlorophyll255

increases. 2016 and 2017 were thus defined as years with unusual environmental events.256

The high sampling frequency (every 3 to 4 days) revealed biological variations at a high resolution.257

In both the eukaryote and prokaryote dataset, when there was a decrease in salinity, abrupt258

(December 2016 and February 2017) or progressive (March to April 2016), there was a marked259

increase in community dissimilarity between two successive samples (Fig. 2). Similarly, both datasets260
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showed increased differences in community composition between samples (Fig. 4) during the low 261

salinity periods. This was particularly visible for samples taken in December 2016 and February 2017. 262

The class abundance data also showed responses to decreases in salinity (Fig. 5). The eukaryotes 263

displayed an increase in diatoms and a decrease in mamiellophyceae during the month of February 264

2017. However, syndiniales showed an important increase in abundance after the decrease in salinity 265

(i.e. January and March 2017). In the prokaryote dataset, the months that displayed a decrease in 266

salinity also showed a decrease in Alphaproteobacteria abundance that seems to be compensated by 267

an increase in Flavobacteria and Cyanobacteria. 268

At the SOLA station, salinity drop and nutrient concentration increase are certainly due to the 269

freshwater influx from the nearby Baillaury river triggered punctually by local precipitations (38). 270

Large rivers further up the coast and low salinity lenses from the Rhone River have also been shown 271

to impact the study site (39). Freshwater can impact marine community composition through 272

different mechanisms, either by increasing nutrient concentrations and lowering salinity, which leads 273

to a highly productive system that can, for example, lead to a prevalence of Flavobacteria (12), 274

or by the physical movement of the freshwater acting as a transporter for allochthones taxa (12). 275

It should be noted that distinguishing the separate physical effects of salinity and the biological 276

effect of nutrients in situ is challenging. However, sampling across the salinity gradient of the Baltic 277

Sea has demonstrated the importance of salinity itself in shaping community composition (40, 41). 278

Co-occurring changes in nutrient levels have also been shown to impact community composition 279

(15). 280

For this study, the MIC statistic (35) was determined to be the most appropriate tool to calculate 281

correlations between different ASVs (42) in order to build yearly networks (Fig. 6). Microbial 282

networks can demonstrate many thousands of possible interactions. The MIC was designed for 283

rapid exploration of large date sets. It is a non-parametric method that can identify important 284

relationships and was designed to give similar scores to equally noisy relationships regardless of the 285

type of relationship (such as linear or exponential). Cluster analysis done with the CytoCluster 286

app revealed that the three winters had different network structures. Year 2015 was dominated by 287

two main modules surrounded by smaller ones. 2016 was composed of three main modules, and 288
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2017 consisted of eight small modules (Supplementary Table 3). Modules could suggest different289

ecological processes that shape the overall co-occurrences in the network or represent specialized290

niches (43). Hence, module characteristics in 2017 could indicate harsher environmental conditions291

that lead to an increase in ecological niches. For this same reason, the 2015 and 2016 network could292

display broader ecological niches, since they show larger modules. However, the origin of these293

modules demand more investigation and, in any case, drawing conclusions from networks alone is not294

evident (43). Earlier network analysis have however demonstrated that bacterioplankton successions295

were determined directly by short term phytoplankton bloom and indirectly by temperature (11).296

Using wavelet-based identification of pairwise associations, daily changes and rapid transition in297

community composition were presented in a 93-consecutive-day time series (28). Networks spanning298

multiple years have been used to investigate co-occurrences between community members, either by299

using the local similarity analysis (14) at a single study site (5) but also to create a meta-analysis of300

publicly available 16S data (8).301

Regardless of the environmental perturbations, some ASVs reoccur every year (23). After302

determining representative ASVs in both datasets (Supplementary Table 6), we identified their first303

neighbors within each network (Fig. 9, Supplementary Table 5). It appears that these resident ASVs304

changed co-occurring partners when they were faced with fluctuating environmental factors. An305

increase in salinity probably created a stress that promoted specific species to dominate the system306

(44). Salinity and pH stresses can have an impact on community composition and resilience (45).307

Furthermore, changes in salinity facilitates the establishment of specialist species (46). Hence salinity308

and/or temperature stresses observed during the sampling period could promote the establishment309

of resident species observed in this study.310

For the prokaryote dataset, we observed resident ASVs belonging to the Alphaproteobacteria,311

Flavobacteria and Cyanobacteria classes. These same classes have already been found to be persistent312

in other time series analysis (13). Moreover, the Flavobacteria Tenacibaculum was observed to co-313

occur with different diatoms in 2015 and 2017. This co-occurrence has been shown in a daily sampling314

study off the coast of San Pedro (4). However, the same study site showed a correlation between315

Rhodobacteraceae and diatoms (47), but our study showed that the Rhodobacteraceae co-occurred with316
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dinoflagellates (Supplementary Table 5). Furthermore, it was shown that Eukaryota sequences had 317

weak correlations with other domains of life (47, 48) and that bacterial taxa had stronger correlations 318

with themselves than with eukaryotes (10). Similarly, Steele et al. (5) demonstrated that subnetworks 319

centered on bacteria contained more bacteria and that eukaryotes co-occurred more with eukaryotes. 320

Similar results were found in our study, except for synechococcus, which displayed an equal number 321

of eukaryote and prokaryote first neighbors (Fig. 9, Supplementary Table 5). Bathycoccus prasinos 322

have been shown earlier to co-occur with Alpha- and Gammaproteobacteria (23), and micromonas 323

to co-occur SAR11. However, in the present study, both SAR11 ASVs (Supplementary Table 5) 324

co-occurred mainly with dinoflagellates and diatoms, and not with micromonas. This could be 325

because we did not use the same primers between both studies, thus modifying the observable 326

community. 327

In summary, environmental factors have an impact on community composition and abundance 328

of coastal marine microbes. Network analysis revealed that low salinity conditions could impact 329

co-occurrences between ASVs. Despite these impacts, certain persistent ASVs demonstrated different 330

co-occurrences when faced with environmental perturbations. To fully investigate community 331

composition and functional adaptations when facing environmental changes would require increases 332

in time series prevalence and outputs. Indeed, impacts of major environmental events can only 333

be appreciated when the average or the baseline has been characterized. It has been shown that 334

after a mild winter there was a loss of spring bloom, and thus its carbon export. Even the summer 335

cyanobacteria bloom was not capable of compensating this loss (21). Microcosms experiments 336

corroborate the fact that future predicted environmental conditions could lead to lower carbon 337

exports (20). Considering the changes to come, having well established time series to monitor 338

anthropological impact seems essential. 339
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3.1. <3µm time series data

Addendum

My contribution:

Concerning this chapter, I participated in the biweekly sampling during the winter months,

as well as the weekly sampling during the rest of the year. I helped fill the carboys with

sea water on the boat and filter the sea water once back at the laboratory. I also did

the DNA extractions and the PCRs (under the supervision of team members). The DNA

sequencing was done by the Genotoul sequencing platform. Regarding the data analysis, I

was in charge of sequence analysis, investigating and exploiting the data sets and creating

the figures. Finally, I helped write the article with the co-authors.

Corrections to the chapter:

The reviewers suggested adding a description of the community composition for this

chapter:

We can see here that, during the winter, the eukaryotic data set is dominated by

Syndiniales (26.97%), Mamiellophyceae (16.56%), Dinophyceae (14,24%) and Baccillario-

phyta (12.94%) (Table 1). Syndiniales had similar number of reads in 2015 and 2016, but

had a higher number of reads in 2017. Mamiellophyceae on the other hand, showed similar

number of reads and trend in 2015 and 2016. They were abundant at the beginning of

the year, but then were less abundant and the end of the sampling period. Surprisingly,

in 2017 Mamiellophyceae showed relatively low number of reads (Figure 1).

Additionally, the prokaryote data set was composed mainly of Alphaproteobacteria (38.97%),

Flavobacteria (25.82%) and Gammaproteobacteria (15.18%) (Table 1). Alphaproteobac-

teria showed high number of reads during the 3 winters of sampling. Flavobacteria had

similar number of reads in 2015 and 2016, but displayed a higher number of reads in 2017.

Moreover, Gammaproteobacteria had a higher number of reads in 2015 than 2016 or 2017

(Figure 1).

Furthermore, the reviewers asked for other clarifications. Here is a list of these clari-

fications and were to find them in the chapter:

• Investigating ecological functions in the networks: page 14 (of this chapter)
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• Better explanation of the MIC: page 17 (of this chapter)

Table 1: Number and percentages of reads per group

Eukaryotes Prokaryotes
Class Number of reads % Class Number of reads %
Syndiniales 53096 26.97 Alphaproteobacteria 129596 38.97
Mamiellophyceae 32609 16.56 Flavobacteria 85860 25.82
Dinophyceae 28045 14.24 Gammaproteobacteria 50490 15.18
Bacillariophyta 25473 12.94 Cyanobacteria 16059 4.83
Spirotrichea 16179 8.22 Acidimicrobiia 15204 4.57
Cryptophyceae 7837 3.98 Marine Group I 6605 1.99
MAST 7205 3.66 Planctomycetacia 5606 1.69
Prymnesiophyceae 3471 1.76 Thermoplasmata 4229 1.27
Pelagophyceae 2834 1.44 Betaproteobacteria 4169 1.25
Labyrinthulea 2249 1.14 Deltaproteobacteria 2099 0.63
Dictyochophyceae 2085 1.06 Verrucomicrobiae 2066 0.62
Chrysophyceae 1230 0.62 Cytophagia 1857 0.56
MOCH 1039 0.53 Opitutae 1441 0.43
Other 13535 6.87 Other 7285 2.19
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Figure 1: Number of normalized reads per year per group for Eukaryotes (top) and
Prokaryotes (bottom).
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3.2 >3µm time series data

My contribution: Concerning the 3µm filters data, I regrouped the samples from 2013

to 2017, carried out multiple tests to allow for sufficient DNA extractions. Indeed, the

QUIAGEN kit, used for the sterivex of the time series, did not yield enough DNA for

the 3µm filters. Once the DNA extraction protocol optimized, I carried out the DNA

extractions and the PCRs (with the help of Jean-Claude Lozano). The DNA sequencing

was done by the Genotoul sequencing platform. Similarly to the sterivex, I was in charge

of the sequence analysis and I did some initial data analysis on the 3µm filter data set.

Originally, the 3µm filter data (2015-2017) was supposed to be analyzed with the sterivex

data (2015-2017), but this complicated the message of the chapter.

Context

In order to have a better understanding of the microbial ecology at SOLA, it was decided,

in 2013, to keep the 3µm pre-filters. This would allow to look at a larger picture of marine

microbes. Indeed, before 2013 only the "free-living" (between 3µm and 0.22µm) fraction

was kept and analyzed, which can be quite limiting when one studies microbial eukaryotes

or particle attached prokaryotes. In this part of the chapter I present preliminary results

concerning the 3µm filter data from 2013 to 2017. The DNA was extracted from these

filters and the sequencing allowed to yield data concerning eukaryotes and prokaryotes.

Material and methods

Sampling Surface water (3m) was collected at the Service d’Observation du Laboratoire

Arago (SOLA) sampling station in the Bay of Banyuls, North Western Mediterranean

Sea, France. Samples were collected roughly once a week from January 2015 to March

2017. However, during the periods of January – March 2015, January – April 2016 and

December 2016 – March 2017 the sampling frequency was increased to twice a week.

However, during 2013 and 2014 sampling was done twice a month on average. Niskin

bottles were used to obtain seawater that was stored in 10 L carboys until arrival to
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the laboratory. 5 L of seawater were prefiltered through 3 µm pore-size polycarbonate

filters (Merck-Millipore, Darmstadt, Germany), and the microbial biomass was collected

on 0.22-µm pore-size GV Sterivex cartridges (Merck-Millipore). Both sets of filters were

stored at –80 °C until nucleic acid extraction.

DNA extraction and sequence analysis: The samples were extracted with the Nu-

cleospin plant II kit (Macherey-Nagel). Specific primers were used to target either the

eukaryotic V4 region (TAReuk_F1 [5’-CCAGCASCYGCGGTAATTCC] and TAReuk_R

[5’-ACTTTCGTTCTTGATYRATGA]) or the prokaryotic V4-V5 region (515F-Y [5’-

GTGYCAGCMGCCGCGGTAA] and 926R [5’-CCGYCAATTYMTTTRAGTTT]). The

standard pipeline of the DADA2 (version 1.6) was used to do the analysis of the raw se-

quences. The parameters used for eukaryotes were: trimLeft=c(20, 21) ,truncLen=c(250,220),

maxN=0, maxEE=c(2,5), truncQ=2. And for prokaryotes: trimLeft =c(19, 20) ,trun-

cLen=c(240,200),maxN=0, maxEE=c(2,5), truncQ=2. The taxonomy assignments were

done with PR2 v.4.10.0 database for eukaryotes and with SILVA v.128 database for

prokaryotes. Taxa belonging to the supergroup “Opisthokonta” were removed from the

eukaryote dataset. Comparably, taxa belonging to eukaryotes were removed from the

prokaryote dataset. Samples containing less than 10000 reads and 4500 reads were re-

moved from the eukaryote (3 samples removed) and prokaryote (3 samples removed)

dataset respectively.

Results

As explained in the methods section of the second and third chapter, the time series

0.22µm filters were actually pre-filtered on 3µm filters. These pre-filters contain valuable

information on community composition and seasonality of large eukaryotic and prokary-

otic cells. Unfortunately, before 2013 the pre-filters were discarded after the filtration

step of the protocol. For prokaryotes, the size fraction > 3µm is often considered the

"particle attached" fraction. As prokaryotes tend to be smaller than 3µm, they need to

stick together or to a particle in order to accumulate on the 3µm filters.

The sequence abundance data reveals that there is a dominance of large eukaryotic
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cells such as dinoflagellates (41.74%), syndiniales (22.27%) and diatoms (12.88%). Smaller

cells, such as mamiellophyceae (dominant in the < 3µm size fraction), make up only a

small fraction (3.75%) of the total sequence abundance in this dataset (Table 1).

Concerning the prokaryote dataset, the dominant groups are flavobacteria (34.92%),

alphaproteobacteria (19.14%) and planctomycetacia (13.32%) (Table 1).

For both the eukaryotes and prokaryotes, there are no major differences of sequence

abundance between samples (Fig. 3). The main difference can probably be attributed to

the different depth of sequencing between the samples (i.e. the overall total number of

reads per sample).

Principal Coordinates Analyses (PCoAs) were done on both data sets (Fig. 4). The

months of November to April of the eukaryote communities displayed a higher dispersal

compared to the warmer months of May to October. On the other hand, the prokaryotic

communities grouped together during most months of the year. The axis show a better

explanation percentage for the prokaryote dataset (24% and 12.5%) than the eukaryote

dataset (20.3% and 9%) (Fig. 4).

Table 1: Number and percentages of reads per group found during winter on the 3µm
filters

Eukaryotes Prokaryotes
Class Number of reads % Class Number of reads %
Dinophyceae 88667 41.74 Flavobacteria 75374 34.92
Syndiniales 47305 22.27 Alphaproteobacteria 41321 19.14
Bacillariophyta 27356 12.88 Planctomycetacia 28747 13.32
Spirotrichea 9243 4.35 Gammaproteobacteria 20146 9.33
Mamiellophyceae 7964 3.75 Cyanobacteria 17918 8.30
MAST 5355 2.52 Verrucomicrobiae 8013 3.71
Other 26537 12.49 Acidimicrobia 7610 3.53

Other 16729 7.75
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Figure 3: Sequence abundance for 3µm filters during winter from 2015 to 2017 for the
eukaryotes (A) and prokaryotes (B).



Figure 4: Principal Coordinate Analysis (PCoA) for eukaryote (A) and prokaryote com-
munity composition (B) found on 3µm filters from 2013 to 2017.
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Prologue

This chapter is a compilation of microcosms results acquired during my PhD that, due

to multiple factors, were not exploited during that time.

My contribution: Concerning the microcosms, I participated in the sea water sam-

pling. Once the sea water arrived in the laboratory, I was in charge of pre-filtering (3µm

filters) the samples, managing the incubators, sub-sampling each condition daily and, at

the end of the incubation period, the filtration on sterivex (0.22µm). Furthermore, I car-

ried out the flow-cytometry, DNA extraction and sequence analysis for all the microcosm

samples. All of this, as well as designing the experiments was done under supervision of

my PhD advisor.

All things considered, this chapter represents a large amount of data: 30 weeks of

microcosm flow cytometry and DNA analysis data. Unfortunately, due to an initial lack

of significant results for the flow cytometry data, we did not have the resources to properly

exploit this data at the time.
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Context

The initial objective of the microcosms was to individually test the effect of temperature

and photoperiod variations on natural microbial communities. With time, we also tested

the effects of light attenuation and the enrichment in different vitamin conditions.

The microcosms experiments were divided into four categories:

• Solstice: The solstice experiments are named this way because they were carried

out during the four yearly solstices (spring, summer, fall, winter). We carried out the

same experiment at multiple moments of the year to test (i) the response of different

initial populations to identical light and temperature conditions and (ii) to investigate

moments of nutrient limitations. The average day length and sea surface temperature

were calculated for the months of March, June, September and December. These values

were used to recreate the conditions of March, June, September and December in the

incubators, regardless of the moment of sampling.

• Depth: These experiments were designed to test the effect of light attenuation on

microbial communities. After measuring light attenuation at several depth at SOLA, we

recreated similar light attenuation levels in the incubators. The conditions tested were

simulations of 0, 3, 12 and 24 meters of depth with light intensities of 100%, 50%, 12.5%

and 0.5%, respectively.

• Temperature and photoperiod: Here we wanted to test the effect of temperature

variations and increases in photoperiod. Temperature variations were done by either

increasing or lowering the temperature of the incubators by 2°C increments. Additionally,

increases in photoperiod were done by selecting the light intensity of the following month

or more. For example if the sampling was done in March, we would test the effects of

photoperiod of March, April and May.

• Vitamin: Another condition that we tested was the effect of different vitamins

and precursors on microbial communities. We tested the addition, at two concentra-

tions(1nM and 1µM), of vitamins B1, B12, or both, or the addition of cHET, HMP,
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or both. The compounds cHET (2-(2-carboxy-4-methylthiazol-5-yl)ethyl) and HMP (4-

amino-5-hydroxymethyl-2-methylpyrimidine) are precursors to vitamin B1.

Here is a list of the different microcosm experiments carried out during my PhD:

Table 1: Summary of microcosms experiments

Conditions Solstice Depth Temperature
and
photoperiod

Vitamin

Experimental replicates 8 3 10 6

Number of sterivex 56 24 90 69

Approx. number of
flow cytometry samples

1350 580 2160 1660

Material and methods

3µm filtration: Seawater was sampled at the SOLA sampling station at a depth of

3 meters. This water was then taken back to the laboratory and filtered on 3µm filters

(millipore) to remove predators. 400 mL of filtered seawater was transferred to cell culture

flasks which were then placed in light and temperature controlled incubators. Experiments

were carried out in biological triplicates.

Microbial abundance: Microbial abundance was determined by flow cytometry (Accuri

C6 sampler). Daily samples of 1.5 ml were fixed with 60µl of glutaraldehyde then stored

at -80°C awaiting flow cytometry analysis.

0.2µm filtration: At the end of the incubation period, triplicates were pooled together

and filtrated out on sterivex filters (0.2µm) to accumulate the microbial biomass and were

stored at -80°C until DNA extraction. The reason for pooling the triplicates was to get

sufficient microbial biomass for the DNA extractions.

DNA extraction and sequence analysis: The samples were extracted with the Nu-

cleospin plant II kit (Macherey-Nagel). Specific primers were used to target either the

eukaryotic V4 region (TAReuk_F1 [5’-CCAGCASCYGCGGTAATTCC] and TAReuk_R
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[5’-ACTTTCGTTCTTGATYRATGA]) or the prokaryotic V4-V5 region (515F-Y [5’-

GTGYCAGCMGCCGCGGTAA] and 926R [5’-CCGYCAATTYMTTTRAGTTT]). The

standard pipeline of the DADA2 (version 1.6) was used to do the analysis of the raw

microcosm sequences. The parameters used for eukaryotes were: trimLeft=c(20, 21)

,truncLen=c(280,230), maxN=0, maxEE=c(2,2), truncQ=2. And for prokaryotes: trim-

Left =c(19, 20) ,truncLen=c(240,200),maxN=0, maxEE=c(2,5), truncQ=2. The taxon-

omy assignments were done with PR2 v.4.10.0 database for eukaryotes and with SILVA

v.128 database for prokaryotes. Taxa belonging to the supergroup “Opisthokonta” were

removed from the eukaryote dataset. Comparably, taxa belonging to eukaryotes were

removed from the prokaryote dataset. Samples containing less than 1000 reads were

removed from the eukaryote (1 sample removed) and prokaryote (3 samples removed)

datasets.

Results

Unfortunately, only few of the microcosm experiments showed interesting results. As an

example, a temperature variation experiment, done during the month of March, will be

discussed here, but it should be noted that similar flow cytometry and sequencing data

exists for all the microcosm experiments.

We observed here that temperature promotes growth (Fig. 1) for both cyanobacteria

and picoeukaryotes. However, at lower temperatures, there seemed to be a limitation in

growth for picoeukaryotes. It can also be noted that similar results were obtained in both

normal and enriched conditions (+NO3/PO4). This suggests that the environment was

not limited in nutrients during the initial sampling.

With the sequence abundance data we can observe a different story. The chlorophyta

demonstrated an increase in sequence abundance at low temperature in both the normal

and enriched conditions (Fig. 2A). However, at higher temperatures the ochrophyta (di-

atoms) showed an increase in sequence abundance, especially in non-enriched conditions.

The flow cytometry data and the sequencing data do not show similar results. Indeed,

we observed very little growth at low temperature, but an increase of sequence abun-
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dance. This can be explained by different factors. First of all this could result from the

normalization of the sequencing data. Or this could come from a bias in the amplification

step before the sequencing. Furthermore, DNA sequencing can not inform us if the cells

are active, but only if the DNA was present. These reasons could explain why we do not

observe a similar trend in these results.

Overall, picoeukaryotes seemed to be better suited to survive at lower temperatures

compared to diatoms, for example.

Figure 1: Cell density for picoeukaryotes and cyanobacteria during a 4 day incubation
in a light and temperature controlled microcosm. Temperature variations were tested on
natural communities in normal or enriched conditions.

Table 2: Microcosm conditions and corresponding temperatures

Condition Temperature
March -4C 7°C
March -2C 9°C
March 11°C
March +2C 13°C

Concerning the prokaryotes, there is only sequencing data available. Here we can
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observe a rather stable trend in the different conditions tested. At higher temperatures,

namely March 11°C non-enriched as well as 11°C and 13°C enriched, there is an increase

in sequence abundance, but the proportions between the different groups seem to be

conserved. Once again, there are not many differences between the enriched and the

non-enriched conditions (Fig. 2B).
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Figure 2: Sequence abundance of eukaryotes (A) and prokaryotes (B) in a microcosm
experiments. T0 corresponds to starting moment of the experiment, sampled at SOLA.
The legend is the taxonomy of eukaryotes at the division level and prokaryotes at the
class level



Chapter 5

Discussion and perspectives

Discussion

It is now well established that marine microbial communities display seasonal reoccur-

rences in large areas of the world ocean (59 , 88 , 89 ). Here, we wanted to investigate

the seasonality of the microbial community in a coastal site, characterized by fluctuat-

ing environmental parameters linked to meteorological events. Thanks to a decade long

sampling effort, we were able to demonstrate that some marine microbes display a yearly

rhythm despite sporadic freshwater and nutrient supply by nearby rivers (Chapter II).

Furthermore, improving sampling frequency from 2015 to 2017 to twice a week, allowed

us to demonstrate that microbes were capable of switching to novel co-occurring neighbors

when environmentally challenged (Chapter III). Going to an even finer scale, microcosms

experiments showed that temperature affected community composition by promoting or

limiting growth of specific groups. This could potentially account for the bloom dynamics

of Bathycoccus prasinos, a dominant seasonal microalga, found at our study site, which

blooms around the minimum of temperature every year (Chapter IV).

5.1 Reviewing ten years of results

Roughly a decade of sampling data allowed us to show that several marine microbes

demonstrated yearly rhythmicity. Taking a step back from the data, we can ask ourselves:

where does this rhythmicity come from and what is its ecological meaning? Furthermore,

what can physiological studies tell us about these rhythmic species?
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5.1.1 Driving forces

Abiotic factors

Identifying yearly rhythms of abundance in a seven-year time series has led us to ask what

the underlying physical and chemical drivers of this rhythmicity are. Firstly, abiotic fac-

tors such as light and temperature had the strongest effect on community structure and

dynamics. Considering the light requirements that autotrophs have to produce organic

matter through photosynthesis, it is not surprising to find light, and therefore photope-

riodism (day length), as a main structuring factor. Day length is a highly reproducible

factor driving seasonality. Additionally, although inter-annual variations were observed,

the temperature trend did not increase throughout the seven-year time series (Fig. 5.1).

Figure 5.1: Seasonality at SOLA. The sea surface temperature is stable throughout
the time series.

It is therefore conceivable that light and temperature cycles play an important role

in driving biological rhythms. These biological rhythms most probably involve circadian

clocks, which are autonomous timekeeping molecular mechanisms that orchestrate bio-
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logical and physiological processes along the 24-hour day/night cycle. This enables living

organisms to anticipate the predictable night/day and day/night transitions along the

year. Despite the fact that the involvement of clock components for all marine micro-

bial species remains to be formally demonstrated, it is plausible that they play a role in

photoperiodism. For example, a minimal clock, involving two master clock genes, was

found in the mamiellophyceae Ostreococcus tauri (90 ). And with respect to prokary-

otes, the presence of a functional circadian clock has been shown in the cyanobacterium

Synechococcus (91 ).

In the second chapter, we also showed that some heterotrophic prokaryotes, including

the dominant order of SAR11, exhibited robust annual rhythms. Additionally, evidence

for the presence of circadian rhythms and circadian clocks in heterotrophic bacteria in

culture remains scarce. It is therefore tempting to speculate that annual rhythms of

microbial heterotrophs could be indirectly controlled by their possible interactions with

autotrophs through trophic interactions (see below). The annual patterns of phototroph

occurrences would be compatible with this hypothesis, since picoeukaryotes are dominant

from autumn to spring, and cyanobacteria during the summer. However, experimental

evidence for both circadian rhythms of heterotrophic bacteria in the sea, and of a possible

entrainment of heterotrophs by autotrophs, is still lacking.

Biotic factors

Biotic interactions, on the other hand, are less obvious and more complex to study, since

they are rarely directly observable (59 ). Positive and negative correlations can reflect

not only possible interactions, but also changes in shared environmental niches. Intri-

cate trophic interactions and marine microbial metabolisms are not well understood and

have been observed to be dynamic, as the organisms adapt to changing environmental

factors (92 ). Thankfully, with the increased taxonomical and temporal resolution of time

series, the inferred co-occurrences are becoming more and more robust, but the type of

interactions remain to be deciphered.

Among possible inferred interactions, vitamin auxotrophy and vitamin exchanges be-
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tween heterotrophs and autotrophs provided an interesting case study. Metagenome-

assembled genomes originating from estuaries, marine and freshwater samples revealed

that many bacterioplankton are vitamin B1 auxotrophs (93 ). Auxotrophy for vitamin

B1 was also demonstrated in phytoplankton (47 ). This would suggest that certain ma-

rine microbes rely on exogenous vitamin B1 (or its precursors). With this knowledge, we

hypothesized that the co-occurrences observed between SAR11 and Micromonas could

result from a mutual need for vitamin B1, rather than an ecological interaction (Chapter

II). However, we cannot rule out that, in natural conditions, the observed co-occurrences

between Micromonas and SAR11 could also stem from several other factors.

Besides, trophic interactions remain a complex subject and most probably involve

multiple exchanges and partners, as illustrated in a recent study that demonstrated a

mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae (94 ). The

microalgae and the bacteria traded vitamins B1 and B12, provided by the bacteria to the

microalga, and in return vitamins B3 and B7 were supplied by Ostreococcus to Dinore-

oseobacter to alleviate their mutual auxotrophy (94 ).

Grazing is another biotic interaction that has a massive impact on community dynam-

ics. This top-down control is mainly visible towards the end of a winter bloom, since that

is the moment when predators have large amounts of available prey (82 ). That being said,

a study showed that predation did not have an impact on community composition (95 ).

Clearly, there is still much to learn concerning trophic interactions in marine microbes.

In the third chapter, the radar plots showed a co-occurrence between mamiellophyceae

and ciliates, the latter being known predators of phytoplankton (96 ). It is very likely that

this observed co-occurrence is in reality a predator/prey relationship. Interestingly, the

predator/prey interactions (observed as first neighbor in networks) were highly dependent

on environmental conditions, highlighting the complexity of interactions between biotic

and abiotic parameters.

To expand our understanding of microbial interaction in our coastal system, it would

be useful to integrate a time-lagged aspect during the network analysis. For example,

at the San Pedro sampling site they use the local similarity analysis (97 ) that allows
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to identify significant time-delayed co-occurrences happening in their microbial networks

(54 ). Moreover, with this method, they have investigated top-down control on microbial

communities (98 ), species succession (69 ) as well as high resolution microbial interactions

(71 , 99 ).

5.1.2 Physiological feedback

In order to obtain physiological responses, microcosms with simplified communities are

powerful tools at our disposal. This has lead us to investigate the complex interaction

between light and temperature and how these factors impact different groups of organ-

isms present in the Bay of Banyuls (Chapter IV). One strain of Bathycoccus prasinos, two

strains of Ostreococcus mediterraneus and four strains of Ostreococcus tauri were used to

study physiological responses to different light and temperature conditions. The strains

behaved differently and demonstrated preferential light and temperature niches. Temper-

ature was the main factor that influenced growth and photosynthetic capabilities of the

strains. Indeed, at low temperature, responses to light were strain-dependent, but when

the temperature was increased, all strains responded similarly to light. The temperature

increase seemed to alleviated a potential photoinhibition under long photoperiods at low

temperature.

By simplifying the complexity of the system, researchers can obtain better insight

into what is happening in the field. For example, it would seem that we observed a

salinity niche for Flavobacteria in the third chapter. However, field data and network

analysis alone cannot verify this. Furthermore, variations in salinity are a complex subject

since this generally involves the mixing of the water column, which is dependent on

multiple factors, such as wind direction and strength (100 ). That is why recreating these

conditions in the laboratory and testing different salinity levels in microcosm would be

a realistic investigation that could demonstrate preferred interactions between species.

Then, isolating these species and carrying out molecular studies would allow for a high-

resolution answer, or at least a better understanding of the ongoing molecular processes.
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5.1.3 Ecological interpretations

Comparing the findings from the seven-year low resolution and the three-year high resolu-

tion studies has been very informative. While the long time series revealed robust annual

rhythms for specific ASVs, suggesting a partial resilience of microbial communities, the

short time series, in contrast, highlighted that the community networks were highly af-

fected by salinity and temperature variations. Both findings may appear contradictory.

However, after investigating the co-occurrences of the rhythmic species found during the

high-resolution sampling, such as Micromonas, Bathycoccus and SAR11, we observed that

these species were switching to novel neighbors when faced with environmental challenges.

Even though irregular abiotic factors, such as nutrient or salinity, do not impact the

overall rhythmicity of specific species (Chapter II), they forced these same species to

switch their first neighbors when environmental perturbations arose (Chapter III). Why

was there a switch? Could it be possible that co-occurrences were altered because of

changes in shared niches (i.e. modification of vitamin or nutrient levels)? Or instead, is it

possible that these co-occurrences were random and did not have any ecological meaning

and that they did not involve any possible biological interactions? Or, moreover, was

it because other species could fulfill similar functions? Different species could produce

the same compound but be present one year and not the other, due to variations in

environmental factors. In other words, autotroph/heterotroph consortia would not rely on

specific interactions between defined microorganisms but rather on functional interactions

between equivalent microorganisms.

This hints towards functional redundancy, a highly controversial subject in microbial

ecology (101 ). Does an ecosystem need specific species to function? Or just specific func-

tions to be carried out, regardless of who is undertaking that role? Is this what we could

be showing since specific interactions change yearly, but overall dynamics of rhythmic

species is conserved? Unfortunately, there is limited knowledge concerning this point,

as coastal sites have either acknowledged the importance of the question (40 ) or just

assumed that OTUs demonstrated functional redundancy, but displayed temporal pref-

erences according to their ecological niches (58 ). Metagenomic and metatranscriptomic
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studies could help answer these questions concerning functional redundancy in the future.

5.1.4 Microbial seasonality

Seasonality could help maintain diversity

Species that carry out the same function could be maintained because they do not fulfill

that function at the same moment of the year (102 ). Photosynthesis, for example, is

carried out mainly by mamiellophyceae in the winter, but during the summer, it is carried

out by cyanobacteria. This oscillation of abundance can be observed in the flow cytometry

data in chapter 2. Despite this very broad example, as mamiellophyceae are not going to

replace cyanobacteria any time soon (or vice versa), we could hypothesize, at a finer level,

competing organisms carrying similar functions but that thrive at different moments of

the year, or that are not suceptible to the same predators. Thus the seasonality of these

organisms, or at least the factors driving their seasonality, would allow for a greater

diveristy of marine microbes.

Seasonality at the gene level

Another aspect of seasonality that would deserve a deeper investigation is the season-

ality of gene transcription. Diel variations were observed for eukaryotes, bacteria and

archaea (103 ). Furthermore, they speculated that since short time scale variations lead

to changes in microbial communities, they could also lead to seasonal or monthly vari-

ations (104 ). Indeed, understanding these short time scale variations would allow for a

better understanding of broader and seasonal variations.

Why are some species not rhythmic?

Another point to ponder is why are some species not rhythmic? Indeed, in the second

chapter we showed a finite number of rhythmic microbes, consequently, that implies that

some microbes are not rhythmic. If we put aside the possible methodological biases (PCR

primers, sequence analysis or the LSP), what does it mean to be "not rhythmic" ?
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One possibility is that these species could be opportunists that only arise when con-

ditions are favorable. For example, some species could display a bloom or bust behaviour

and take advantage of sudden yet irregular influxes of nutrients during flooding events

of the Baillaury river. Or resting stages produced by phytoplankton could come out of

dormancy during these high nutrient moments as well (105 ). Additionally, the growth of

these "non rhythmic" organisms could hinge on a delicate balance between nutrient and

predator levels. Perhaps, for these species, the moment when growth overcomes loss only

happens sporadically.

Furthermore, a study offers that it is not necessarily the environmental factors that

make the organisms seasonal. Predator/prey models with multiple species suggest that

interannual variability could arise without variations in external conditions (106 ). This

means that seasonality could result from a fine balance between intrinsic parameters such

as the biological clock, even though it is entrained by robust drivers (e.g. photoperiod)

and less rhythmic drivers (e.g. nutrients supply from the rivers or sediment resuspension).

This implies that for some species, which growth depends on both day length and nutrient

supply, the annual rhythms may be skewed by the irregular nutrient supply driver. An

example of this are diatoms that are strongly influenced by nutrient supply and they did

not appear to be rhythmic in our analysis. On the other hand, Mamiellophyceae are an

ideal system to study annual rhythms as they have a strong seasonal pattern. In the Bay

of Banyuls, a nutrient influx usually occurs in April/May, just after the main blooms of

Micromonas and Bathycoccus. Some years there is a double peak of Bathycoccus, the

second usually happening when there is a flood event. This could be an example of a

rhythmic species taking advantage of a high nutrient moment, but it could be affecting

its seasonality, as well as the seasonality of its predators.

We should also mention that another possible reason we do not observe annual rhythms

for a large number of species is because we were very stringent on the way we quantified

their rhythmicity. We set out to identify rhythmic species in a mathematical sense, which

lead us to use harsh cut-offs. In contrast, the Bray Curtis analyses revealed a clear

seasonality in our microbial communities.
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For the reasons mentioned above, maybe another way of addressing the seasonality of

marine microbes would be to survey the seasonality of gene transcription with metatran-

scriptomic studies as well as to increase the focus on microbial trophic interactions.

5.2 Bathycoccus: A case study for the seasonality of

phytoplankton

Going over the results presented in this manuscript, it transpired that one strain, Bathy-

coccus prasinos was found in all three chapters, as well as the study found in annex. By

concentrating on this strain and reviewing the results from the different chapters, it is

possible to paint a broader picture of the effect of temperature, photoperiod and biotic

interactions at different scales of time and resolution (Fig.5.2).

Seven years of sampling at low resolution (I). Thanks to a sampling effort started in

2007, Bathycoccus sequence dynamics displayed seasonal reoccurrences. With the use of

the Lomb-Scargle periodogram, it was determined that Bathycoccus was actually rhythmic

since it bloomed every year during the same week. Furthermore, it was observed that these

reoccurrences coincided with the yearly sea surface temperature minimum (Chapter II).

Three winters of sampling at high resolution (II). By sampling twice a week during the

most productive months, we demonstrated high resolution co-occurrences between ma-

rine microbial species. This lead us to determine that even though some species, such as

Bathycoccus prasinos, are rhythmic, other species that co-occurred with them can change.

Among the environmental factors measured, salinity and temperature had the most effect

on microbial community composition (Chapter III). It would be interesting to function-

ally analyze the species co-occurring with Bathycoccus under changing environmental

conditions through metagenomic and metatranscriptomic approaches. Such analyses may

provide cues towards a better understanding of Bathycoccus preferred niches, in particular

with respect to vitamins and growth factors.

High resolution culture work (III). Via a collaboration with a post-doc in the team,

microcosms and culture work showed that different strains had specific responses to light
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Figure 5.2: A decade of Bathycoccus prasinos. An integrated summary of Bathy-
coccus dynamics.
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and temperature conditions. These experiments have allowed us to demonstrate that

Bathycoccus was the best suited, in average temperature conditions, to shorter photoperi-

ods compared to other strains. However, once the temperature was increased, Bathycoccus

showed similar preferences as other strains to longer photoperiods. These finding give a

possible explanation as to why Bathycoccus blooms at temperature minimums every year

(Annex).

Perspectives

Considering the involvement of marine microbial communities in biogeochemical cycles,

that have an impact on global climate, it seems essential to continue to investigate mi-

crobial dynamics. Furthermore, given the context of climate change and how it has been

shown to impact phytoplankton communities (107 ), there is a need for continued moni-

toring. Indeed, the marine food web and half of the primary production depends directly

on marine phototrophs. Altering the balance found at such a primary trophic level could

have unpredictable impacts on predators and the rest of the food chain.

An additional point to decipher would be determining the precise origin of the salinity

decreases and influxes of nutrients (108 ). This would help explain how abiotic factors

impact community composition. Particular matter dispersal studies done in the region

could help elucidate this point (109 ).

5.3 Enhancing time series

Reaping the benefits of initiatives started over a decade or two ago, publications con-

cerning time series studies have been increasing over the past couple years. However,

improvements are still possible. In order to capture high resolution variations in com-

munity dynamics, two aspects need to be increased: the sampling frequency and the

taxonomic resolution and depth. Augmenting the sampling frequency can be done in two

different ways, either by sampling more frequently, for example going from monthly to

weekly sampling (69 , 110 ), or by implementing an automated sampler at the sampling
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point (71 , 72 ). Increasing sampling frequency seems rather straightforward, but multi-

plying the number of samples per year directly increases all the steps involved in acquiring

and processing the samples, which can lead to a massive increase in work load. On the

other hand, automating the sampling would give the best temporal resolution, but is far

more expensive, and thus not available for all laboratories. Concerning the taxonomic res-

olution, implementing metagenomic and metatranscriptomic analyses, instead of limited

metabarcoding sequencing, would yield far greater results. However, without powerful

bioinformatic capabilities, many laboratories are left stranded, unable to investigate at

such a high resolution.

5.4 Potential applications of time series observations

With the increasing number of time series studies being published, and considering the

fact that multiple ecosystems have been investigated (59 ) there is a tremendous potential

for meta-analyses of time series data (59 , 111 ).

Moreover, specific observations done in the field, either during cruises or with au-

tonomous measurements (buoys, gliders), could be verified with a better integration with

microcosm and/or culture studies (Fig.5.3). This could help explain, at a minute level,

how different factors can influence community dynamics and help researchers formulate

novel hypotheses to be investigated in the field.

By accumulating large amounts of data, for a long amount of time, time series permit

the establishment of a baseline that future variations can be compared to. Given the

context of climate change, this is particularly useful since long term data can demonstrate

actual observations of the sea surface temperatures variations within the last couple of

decades. Moreover, the baselines determined by time series data allow for predictions to

be made. This is particularly useful when researchers want to study reoccurring events

such as phytoplanktonic blooms. These blooms can have consequences on health and the

economy. For example, the early detection, or even prediction, of harmful algal blooms

would prevent people from getting sick by consuming contaminated shellfish (113 ).

Additionally, given the findings in chapter II, we should be able to predict the re-
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Figure 5.3: Holistic investigation. To achieve a better understanding of community
behavior, integration between field observations and laboratory experiments is required
(112 ).

occurrence of rhythmic species every year. The argument could be made that if these

rhythmic species suddenly lose their rhythmicity, or if they disappear entirely, then there

must be a significant impact on the ecosystem. Consequently, the rhythmic species found

in chapter II could be used as sentinel species to monitor the marine ecosystem of the

Bay of Banyuls. Even though the use of specific species as proxies to the health of an

ecosystem is a concept that has already been used for macroscopic species, the far greater

diversity of microorganisms could yield more fine-tuned results. For example, the mi-

cromonas genus has a ubiquitous distribution in the world’s oceans, with strain specific

thermal preferences. Thus, the diversity of the micromonas genus makes it an ideal proxy

to monitor sea surface temperature changes at a global level (62 ).

All things considered, with the amount of time series, microcosms and physiological

data available around the globe, researchers are acquiring better context to build global

climate models. These models are used to predict the effects of climate change and help

governing bodies decide on the changes that are necessary to limit the anthropological

impact on Earth.
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Annex

Contribution of light and temperature niches to sea-

sonal patterns of photosynthetic picoeukaryotes

Prologue

The observations made during the time series analysis brought on two main conclusions,

(i) light and temperature are the main drivers of seasonality and (ii) microbial marine

species co-exist in intricate ways. They can co-occur (mutualism, predation etc. . . ) or

follow variations in shared ecological niches. To be able to elucidate both these points

at a higher level of resolution, seven strains of mamiellophyceae, that had been previ-

ously isolated from the Bay of Banyuls, were exposed to different light and temperature

conditions. For each strain, a corresponding light and temperature preferendum was es-

tablished. This demonstrated that, even within species, there were different physiological

responses. Furthermore, microcosm experiments on natural microbial communities con-

firmed the importance of temperature in community dynamics. It was also observed that

Bathycoccus prasinos dominated the incubated communities at low temperature. The

results found in this chapter help understand why Bathycoccus prasinos is found to bloom

every year at the temperature minimum at SOLA. Furthermore, as seen in the micro-

cosms, a mild temperature increase could drastically impact the community structure

and potentially the seasonal dynamics of marine microbial communities.

This manuscript is currently in preparation.
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In temperate regions of the ocean, seasonal blooms of phytoplankton usually occur in winter

and spring and are major contributors to primary production. A recent seven-year metabarcod-

ing analysis of diversity in a North Western Mediterranean coastal site (SOLA station, Banyuls

sur Mer, France) revealed robust annual rhythms of abundance of photosynthetic picoeukary-

otes belonging to mamiellophyceae (Bathycoccus, Micromonas and Ostreococcus) genera

which represent up to 80% of rhythmic ASV sequences in winter. Bathycoccus, in particular,

showed yearly reoccurring peaks at the time of seawater temperature minima. The abundance

of phytoplanktonic species results from both biotic interactions with heterotrophs (bacteria,

grazers) and from the influence of environmental factors such as light and temperature, which

have a strong impact on the physiology and growth of microalgal photosynthetic cells. In this

study, we report the growth response of 7 strains belonging to the Ostreococcus and Bathy-

coccus, (including 6 strains previously isolated from the Bay of Banyuls) exposed to realistic

day light and temperature conditions in homemade dedicated incubators. Our results reveal

the existence of temperature and light preferenda at the genus, species but also infra species

level, which could contribute to defining ecotypes and temporal niches of occurrence. Rais-

ing the temperature by 2°C, corresponding to a warm winter, resulted in a higher influence

of the light parameter on the growth response. Finally, microcosm experiments on February

and March natural communities revealed that temperature modulations of +/- 2°C had a great

impact shifting initial communities toward either mamiellophyceae or diatoms.
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Introduction9

Eukaryotic and prokaryotic picophytoplankton contribute significantly to primary production in large10

areas of the oceans, from polar to tropical regions and from oligotrophic open ocean to eutrophic11

coastal regions (1). In recent years, phylogeographic studies, based on massive metabarcoding12

of marine microbial communities, have revealed the occurrence of ribotypes of eukaryotic and13

prokaryotic autotrophs associated to contrasted environmental niches in terms of temperature14

and photoperiod regimes (2–4). Only few studies have addressed the physiological basis of strain15

adaptation to light, temperature or nutrients bioavailabilty. Laboratory studies of Synechococcus16

isolates, suggested the existence of thermal ecotypes that are adapted to latitudinal gradients of17

temperature (5).18

In temperate and polar regions, temperature and light vary not only with latitude but also along the19

year. Seasonal rhythms of phytoplankton diversity and abundance rise from interplays between biotic20

(light, temperature, nutrients) and abiotic (interaction with bacteria, grazing, viral lysis) drivers (6).21

In winter, low light limits photosynthesis and growth of phytoplanktonic cells (7). Temperature, as22

well, differentially affects the growth of phytoplanktonic cells and their interaction with grazers and23

viruses (8). Therefore, the overall impact of temperature variations on phytoplanktonic blooms is24

difficult to predict (9, 10). Mamiellophyceae, including the genera Ostreococcus, Bathycoccus and25

Micromonas, provide a case study to understand how light and temperature interact to regulate26

spatial and temporal patterns of phytoplankton abundance (11–13). Mamiellophyceae have a27

worldwide distribution in the ocean, representing the 4th group in 18S barcode in the TARA ocean28

cruise (14). This order often dominates coastal and mesotrophic transition zones (15–17), however29

phylogeographic studies revealed an Ostreococcus clade OII infeodated to open ocean as opposed to30

OI, which is predominantly in coastal ecosystems (2). Studies of comparative physiology identified31

open ocean adapted strains occupying low light (RCC809) or low iron (RCC802) environmental32

niches in Ostreococcus (18, 19). Different responses in growth rates and carotenoid contents were also33

observed in response to light, temperature and salinity between the RC802, RCC809 and Ostreococcus34
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tauri lagoon strain (20). Using a metabarcoding approach on a seven-year time series in the Bay of 35

Banyuls we recently showed that Mamiellophyceae dominated the eukaryotic picophytoplankton in 36

winter, exhibiting strong annual rhythms (17). 37

In this study, we explored the effect of light and temperature on the physiological responses of 7 38

strains of Mamiellophyceae and natural picoplanktonic communities from the Bay of Banyuls by 39

simulating light and temperature conditions corresponding to “low” and “warm” years in microcosms. 40

For each strain, we could define a distinct light and temperature month preferendum, corresponding 41

to a potential environmental niche. Inter- and intraspecific comparisons of light and temperature 42

responses in Ostreococcus tauri and Ostreococcus mediterraneus revealed that the species taxonomic 43

level resolution does not account for differences in physiological responses between strains. Growth 44

appeared to result from complex interactions between light and temperature. Metabarcoding of 45

natural microbial communities exposed to various temperatures in microcosms further supported 46

the role of temperature in shaping microbial community and the fitness of Bathycoccus prasinos at 47

low temperatures. 48

Materials and Methods 49

Description of strains and cell culture conditions. Ostreococcus tauri (OT745, OT1108 OT1560 50

and OT1113), Ostreococcus mediterraneus (OM1120 and OM1121) and Bathycoccus prasinos 51

(BP4222) were isolated from the Bay of Banyuls in the Northwestern Mediterranean Sea. The 52

isolation of these strains was carried out over several years, but always between the months of October 53

and May (Table 1). Since then, these strains have been maintained in the Roscoff Culture Collection 54

(RCC). For maintenance, all strains were cultured in 50mL flasks containing 20mL of artificial sea 55

water with 36 g.L-1 salt (20). The strains were cultivated in 96 deepwell plates (Nuc, Perki Elmer) 56

during experimentation phases. Cells were incubated under five different light conditions corre- 57

sponding to realistic sunlight measurement done in the Bay of Banyuls. The photoperiods applied 58

were of 299, 318, 461, 640 and 799 µmol.quanta.m-1.s-1 maximal irradiance at midday corresponding 59

to December, January, February, March and April, respectively. For each treatment, sun light 60

curves of 8.29h.d-1(December), 8.53h.d-1(January), 10.02h.d-1(February), 11.22h.d-1(March) and 61
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12.46h.d-1(April) of light irradiance were applied in temperature controlled incubators (Panasomic62

MIR-154-PE). The light intensity that was applied for each condition corresponded to measurements63

done at three meters of depth in the water column at the SOLA sampling station present in Bay of64

Banyuls.65

Microalgae cells were inoculated in triplicate at 1 million cell.mL-1 during the initial acclimation66

period and during kinetics experiments. The acclimation period corresponded to 7 days of culture67

in the same conditions as the growth rate experiment. To quantify cells, the BD accury C6 flow68

cytometer was used. Samples from biological triplicate (20µl) were fixed with 0.25% glutaraldehyde69

(Sigma-Aldright, St Louis, MO) for 15 minutes at room temperature. Thereafter, fixed sample were70

frozen and stored at -20°C until cell counting.71

Table 1. Description of Mamiellophyceae strains used in this study

Species Strain (RCC #) Isolation date Clade

Bathycoccus prasinos1 BP4222 (RCC 4222) 2006.01.01 NA
Ostreococcus mediterraneus1 OM1121 (RCC 1121) 2007.02.19 D
Ostreococcus mediterraneus1 OM1120 (RCC 1120) 2007.02.19 D
Ostreococcus tauri1 OT1113 (RCC 1113) 2006.10.02 C
Ostreococcus tauri1 OT1560 (RCC 1560) 2007.02.19 C
Ostreococcus tauri1 OT1108 (RCC 1108) 2006.01.01 C
Ostreococcus tauri2 OT745 (RCC 745) 1995.05.03 C

Isolated at sea surface from the Bay of Banyuls1 or the Thau Lagoon2

Acquiring kinetic values and specific growth rates.After inoculating at 1 million cells.mL-1 of72

acclimate cells, samples were monitored in batch culture for seven to ten days until the end of the73

exponential phase. Daily measurements were carried out with the BD accury flow cytometer. At74

the end of each experiment growth curves and specific growth rates were determined.75

In batch culture, the specific growth rate (µ) was calculated according the formula: µ=(lnNt2-76

lnNt1)/(t2-t1), where N is the number of cell during the exponential growth phase and t is the time77

in days.78

Microcosms data processing.Seawater sampled from SOLA in the Bay of Banyuls was filtered79

on 3µm pore-size polycarbonate filters (Merck-Millipore, Darmstadt, Germany), to remove large80

cells, into 400mL flasks. These flasks were then incubated in light and temperature controlled81
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incubators for 4 days under gentle agitation. Each condition was carried out in triplicate. As 82

described previously, realistic light and temperature conditions were applied. Alongside testing 83

natural conditions, these incubators allow for modifications in light and temperature that would 84

not be feasible in situ. At the end of the incubation period, the triplicates were pooled together 85

and filtered onto 0.22µm pore-size GV Sterivex cartridges (Merck-Millipore) to collect the microbial 86

biomass. These filters were then stored at -80°C awaiting extraction. 87

The DNA samples analyzed in this study consisted of time series data (59 samples) and microcosms 88

data (23 samples), which were extracted and analyzed independently. 89

Firstly, the time series samples were obtained and extracted as previously described (17). Total 90

DNA was extracted and purified with the Qiagen AllPrep kit (Qiagen, Hilden, Germany). The 91

primers used for the amplification phase were 515F (5’-GTGYCAGCMGCCGCGGTA-3’) and 92

NSR591 (5’- TTGGYRAATGCTTTCGC-3’) (21, 22). Sequencing was carried out with illumina 93

Miseq 2x300 bp kits by Research and testing Laboratory (Lubbock, Texas). Sequence analysis was 94

done with the DADA2 package (23) (https://benjjneb.github.io/dada2/index.html, version 95

1.6) in “R” (https://cran.r-project.org)). Details concerning the sequence analysis have been 96

published previously (17). 97

Secondly, the microcosm samples were extracted with the Nucleospin plant II kit (Macherey- 98

Nagel, Düren, Germany). The primers used for this amplification phase were TAReukF1 99

(5’-CCAGCASCYGCGGTAATTCC-3’) and TAReukR (5’-ACTTTCGTTCTTGATYRATGA-3’). 100

These are updated primers that have a better eukaryotic coverage (24). Similarly, the stan- 101

dard pipeline of the DADA2 (version 1.6) was used to do the analysis of the raw microcosm 102

sequences. The parameters used were: trimLeft=c(20, 21) ,truncLen=c(280,230), maxN=0, 103

maxEE=c(2,2), truncQ=2. The taxonomy assignments were done with PR2 v.4.10.0 database 104

(https://github.com/vaulot/pr2database/releases). 105

RDA, Heatmap and statistical analysis.Heatmap, boxplot and Redundancy analyses (RDAs) were 106

generated using the statistical software “R”. All statistical analyses were performed in “R” at the 107

significant level of 0.05. Environmental parameters were analyzed using Redundancy analysis (RDA). 108

RDAs were used to explain the variability in phytoplankton growth rates. 109
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The vegan package, and more particularly the adonis and vegdist function using the Bray-Curtis110

permutation tests (999 permutations), was applied to compute the distance matrices. The Simper111

function established the significance of hypothetical relationships between treatments on the different112

strains. Heatmaps illustrated the abundance of different ASVs and diversity from microcosms. In113

order to test robustness of the diversity response, Shannon tests were used, excluding all species114

with a relative abundance <5%. The results from the “2013 and 2014 years” were compared using115

the one-way analysis of variance method. The results are summarized using boxplot diagram. Each116

boxplot shows the growth rate values of Mamiellophyceae species compared to environmental factor.117

Student t-test was used to compare growth rates (Fig. 2B).118

Results119

Mamiellophyceae temporal occurrences in the 2007-2014 metabarcoding dataset.We have pre-120

viously observed, in a seven-year time series at SOLA, that Bathycoccus and three clades of121

Micromonas were among the most abundant ASVs (amplicon sequence variant) (17). For these two122

genera, maximal numbers of ASV were found in winter between December and April (Fig. 1 and Fig.123

S1). Bathycoccus occurred every year around the time of temperature minima (Fig. 1). A temporal124

succession was observed for the three clades of Micromonas. Micromonas bravo and Micromonas sp.125

were usually preceding Micromonas commoda. Although less abundant, the 4 clades of Ostreococcus126

(A, B, C and D) were present in the metabarcoding dataset. Ostreococcus tauri showed irregular127

occurrences, usually in the fall but it was occasionally detected in January (2014), summer (2008 and128

2010) or absent (2007 and 2009). Ostreococcus mediterraneus had a more even distribution from year129

to year with maximal abundances between January and March (Fig. 1C). Similarly, Ostreococcus130

sp and Ostreococcus lucimarinus were usually detected in fall and winter, reaching up to 25% and131

15% of photosynthetic picoeukaryote ASVs in fall or late winter, respectively (Fig. S1 D and E).132

The climatology of the 2007-2014 time series was marked by important interannual variations in133

temperature in particular for the months of December or June.134

Effect of temperature on selected strains of Mamiellophyceae.We first tested the effect of tem-135

perature on the growth of 6 mamiellophyceae isolated from the Bay of Banyuls, including one136
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Fig. 1. : Distribution of Bathycoccus prasinos (A). Ostreococcus tauri (B). Ostreococcus mediterraneus (C) at SOLA
sampling station (Northwestrern Mediterranean Sea) from 2007 to 2015, plotted alongside average monthly sea surface
temperatures in the Bay of Banyuls for the same period (D). Significant differences between the months of the year are
represented by letters; December (d). January (j). February (f), March (m), April (a), May (my), June (jn), July (jl), August
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strain of Bathycoccus prasinos (BP4222), two strains of Ostreococcus mediterraneus (OM1120 and137

OM1121), three strains of Ostreococcus tauri (OT1113, OT1560 and OT1108) as well as the reference138

strain of O. tauri (OT745) isolated from the Thau lagoon (Table 1).139

Dedicated incubators, that were developed in our laboratory, were used to simulate realistic140

environmental conditions of light at 3m of depth on February 15th at the latitude corresponding to141

the Bay of Banyuls (day length: 10H02, 0.461 mmol at solar noon). This corresponded to an average142

photoperiod during the period of presence of Mamiellophyceae in the metabarcoding dataset (Fig. 2A).143

Four temperatures were tested (9.2°C, 11.2°C, 13.2°C and 15.2°C) to cover the range of temperature144

observed during the course of the Mamiellophyceae bloom (17). Growth rates were measured on145

cultures that had been acclimated for a week at the different temperatures. A redundancy analysis146

(RDA) was conducted to compare the 7 strains under the different temperature conditions (Fig.147

2A). The first component accounted for 84.28% of the observed variability. Overall the highest148

temperature 15.2°C and to some extent 13.2°C accounted for the most observed differences in149

growth rates, with a more pronounced effect on two O.tauri strains OT745 and OT1108. Comparing150

growth rates at different temperatures revealed striking differences between the strains. Lowering the151

temperature had little effect on the growth rate of O.tauri (OT1113), O.mediterraneus (OM1121)152

with values of 0.48 and 0.52 d-1 at 15.2°C compared to 0.45 and 0.45 d-1 at 9.2°C, respectively. In153

contrast, lowering temperature from 15.2°C to 9.2°C resulted in a 2-fold decrease in O.tauri strains154

OT745 and OT1108. Bathycoccus prasinos 4222, O. tauri OT1560 and O. mediterraneus OM1120155

showed an intermediate response with a 1.5 to 1.2 fold reduction in growth rate between 15.2°C156

and 9.2°C, respectively. Noteworthily, marked temperature-dependent variations in growth rates157

between strains belonging to the same genus (eg. OT1108 vs OT1113 in O. tauri) were observed,158

but strains belonging to different genera had similar responses (e.g. Bathycoccus BP4222 and O.159

tauri OT1113 or O. mediterrenaeus OM1121).160

Effect of photoperiod on growth rates.The Mamiellophyceae strains were exposed to various161

photoperiod lengths corresponding to the months of December, January, February, March and April at162

the latitude of the Bay of Banyuls. Day lengths varied between 8h29 and 12h46 (December and April163

respectively). Light intensities ranged from 0.299 to 0.799 mmol.quanta.m-1.s-1 between December164

8



Fig. 2. : Redundancy analysis (RDA) illustrating the growth rates of the seven strains incubated in different temperature
conditions(A). Phytoplankton strains are represented by solid black arrows, whereas growth rate triplicates are grouped
according to temperature (9.2°C, 11.2°C, 13.2°C and 15.2°C) as colored polygons (blue, light blue, orange and red,
respectively). Temperature dependent growth rates of seven strains are plotted as bar charts (B) with SD (n=3). Significant
differences between temperature conditions 9.2°C, 11.2°C, 13.2°C and 15.2°C are represented by letters a, b, c and d,
respectively. Significant differences with all other treatments is symbolyzed by * (p<0.05 t-test).
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and April. Photoperiod experiments were performed at two temperatures, which corresponded to165

the mean temperature observed in February (11.2°C) and December/April (13.2°C) in the 2007-2014166

time series. RDAs performed on growth rates revealed contrasted responses to photoperiod between167

the two temperature conditions. The first component accounted for most of the variability observed168

under the different photoperiod conditions (50.05% (PC1) vs 26.76% for the second component169

at 11.2°C and 73.75% (PC1) vs 13.91% for the second component at 13.2°C). At 11.2°C OT745,170

OM1121 and, to some extent, OT1560 were associated to the February photoperiod. OT1108 and171

BP4222, in contrast, were the main contributors to the March and December photoperiod responses.172

At 13.2°C, photoperiod responses were much less influenced by specific strain responses except for173

February and April which were associated with OT1560 and OM1120, respectively.174

Comparing the combined effect of photoperiod and temperature on growth rates has revealed175

that, in general, high temperature and long photoperiod stimulated cell growth (Fig. 3B). However,176

contrasted responses were observed between the strains. Under short photoperiods (December and177

January), little or no differences in growth rates were observed between 11.2°C and 13.2°C for178

BP4222, OM1121, OT1108 and OT1113 (Fig. 3). In contrast, OT1560 and OM1120 grew better at179

11.2°C. When comparing the overall responses of strains to photoperiod, the growth rate profiles fell180

into 4 mains categories. BP4222 and OT1108 showed little variations in growth rates in all conditions.181

The growth of OM1121 and OT1113 increased under long photoperiods at high temperature but not182

at low temperature. The strains OT1560 and OM1120 had similar responses, with higher growth183

rates under short photoperiod at low temperature and under long photoperiod at high temperature.184

Finally, O. tauri differed from the other strains in that temperature promoted growth regardless of185

photoperiod length. RDAs performed on each individual strain further confirmed the differences in186

growth rates in responses to light and temperature (Fig. S3).187

Growth under simulated light and temperature conditions.The selected Mamiellophyceae strains188

were exposed to realistic photoperiods (December to April) and temperature conditions, correspond-189

ing to two contrasted winter/spring periods. Between December and April, the mean monthly190

temperature in 2013 was low (11.8°C) compared to the average monthly temperature of 2007-2014191

(12.4°C). In contrast, 2014 could be considered a warmer winter since the mean monthly temperature192
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Fig. 3. : Redundancy analysis (A & B) and line charts (C) depict growth rates of seven strains incubated under several
photoperiod conditions, separated into two temperature conditions (11.2°C and 13.2°C; represented, respectively, as blue
and red lines in (C)). These light and temperature conditions mimic naturally occurring conditions found in the Bay of
Banyuls. Monthly photoperiod conditions, corresponding to the months of December (blue), January (light blue), February
(brown), March (light orange), and April (orange) are represented by colored polygons. Each corner of the polygon
represents a growth rate measured during that specific irradiance condition. The percentage of variation in growth rates
explained by each axis is indicated on the side of each biplot. Photoperiod variables used in the RDA are represented by
polygon. Each point represents the growth rate measure at a specific month.
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was 12.9 °C between December and April (Fig. S4). RDAs performed on growth rates revealed193

that the first component accounted for most of variability in 2014 (87.38%) and to some extent194

in 2013 (69.18%) (Fig. 4). Contrasted responses were observed between 2013 and 2014. In 2013,195

BP4222, and OT1113 were associated to December and February/March photoperiods, respectively.196

All other strains showed a preference for April, the longest tested photoperiod condition. In contrast,197

in 2014 all strains showed a preference for the April photoperiod. Correlation plots confirmed that,198

compared to other strains, BP4222 and OT1113 had different responses in 2013 but not in 2014199

(Fig. 4).200

Plotting growth rates against temperature confirmed that in the 2014 simulation, growth rates201

increased in response to photoperiod lengthening in all strains (Fig. 5). In the 2013 simulation,202

however, marked differences were observed between the different strains. In the April photoperiod203

condition growth rates were higher for OT1108 and OT1560 but they were lower for BP4222 and204

OT1113 compared to other months. Several strains, including OT745 and OM1120, showed little205

variations in growth rates between the different month conditions (Fig. S5).206

Effect of light and temperature on phytoplankton growth in microcosms.Together figure 3 and 4207

indicate that (i) temperature is the main regulator of growth in our study, (ii) at lower temperatures,208

complex interaction between light and temperature regulate growth in a strain dependent manner.209

Microcosms experiments were designed to estimate the impact of temperature on growth of natural210

phytoplankton communities sampled at different months of winter and spring (February to June211

2015).212

The 19 most abundant ASVs in the time series dataset from the Bay of Banyuls samples were213

selected for comparative analysis (Fig. 6). Bathycoccus prasinos, Micromonas bravo, Bacillariophyta214

(Diatoms) and Dinoflagellates were the four dominant groups present in the control and treatments215

(53-91% of total reads, Fig. 6).216

Although the sequence composition of starting communities varied, Bathycoccus was found in all217

of them except for June. Micromonas bravo ASVs were more abundant in February (16/02/2015 and218

23/02/2015) compare to others initial communities. Natural communities were prefiltered on 3 µm219

and were subsequently incubated for 5 days. They were submitted to photoperiods corresponding220
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Fig. 4. : Redundancy analysis (RDA) showing growth rates of seven strains under light and temperature conditions
emulating the year 2013 (A) and 2014 (B). Phytoplankton strains are represented by solid black arrow and monthly growth
rate triplicates as colored ellipses (December (blue), January (light blue), February (brown), March (light orange) and April
(orange)). Associated correlations represent positive (Light blue to blue) and negative (Light red to red) affiliation between
strains.
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Figure 5 or 6 : Comparison of overall strains growth rates under irradiance and temperature levels 
corresponding to the winter of 2013 (A) and 2014 (B). The boxplots are displayed with whiskers extending to 
the highest and lowest values (n=3) per month. Intra-annual differences between the months of December, 
January, February, March and April are represented by letters a, b, c, d and e, respectively. Differences with 
all treatments is symbolized by * (p<0.05 t-test). 
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Fig. 5. : Comparison of overall strains growth rates under irradiance and temperature levels corresponding to the winter of
2013 (A) and 2014 (B). The boxplots are displayed with whiskers extending to the highest and lowest values (n=3) per
month. Intra-annual differences between the months of December, January, February, March and April are represented by
letters a, b, c, d and e, respectively. Differences with all treatments is symbolized by * (p<0.05 t-test).

to the month of sampling and different temperatures ranging from -4 °C below to +4°C above the221

sampling temperature (Fig. 6). At day 5 we observed 19 mains ASVs of phytoplankton (>5% of the222

dataset).223

March communities were dominated by diatoms, and more particularly Skeletonema. However,224

lowering the temperature by 2 to 4°C (i.e from 11°C to 9°C and 7°C, respectively) promoted the225

growth of Bathycoccus to the detriment of Skeletonema. Conversely, increasing the temperature in226

the February photoperiod from 11.2°C to 13.2°C or 15.2°C stimulated the growth of Skeletonema227

and had a negative impact on the growth of Bathycoccus.228

Discussion229

In the Bay of Banyuls, Mamiellophyceae sequences dominated the 18S metabarcode dataset between230

December and April. Photosynthetic picoeukaryotes ASVs represented up to 80% of sequences in231

January and February between 2007 and 2014 (Fig. 1, (17)). Highly reproducible annual patterns232

were observed, with Micromonas species preceding Bathycoccus in order of appearance every winter233
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Fig. 6. : Relative abundances of phytoplankton communities sampled from the SOLA are presented as a heatmap (A) and
a bar chart (B). The heatmap compares the relative abundance at the end of the incubation period for each microcosm
condition. On the other hand, the bar chart shows the relative abundance in percentages of the initial sample (black star)
and the final sample for each microcosm condition. Only ASVs that demonstrate at least 5% of relative abundance in at
least one sample are shown here. Temperature conditions that microcosm communities were exposed to are reflected in
sample names.
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(Fig. 1, (17)). Light and temperature were the main factor driving seasonality of picoeukaryotes.234

Evidences for thermotypes in Mamiellophyceae.Our present study aimed to evaluate the light235

and temperature preferences of selected Mamiellophyceae from Banyuls both (i) at the species236

level by comparing the physiological responses of three species Bathycoccus prasinos, Ostreococcus237

mediterraneus and Ostreococcus tauri; and (ii) at the infra-species level by comparing 2 strains of238

Ostreococcus mediterraneus and 4 strains of Ostreococcus tauri (including one from the nearby Thau239

lagoon). As shown in Figure 2, growth rates increased along with temperature for all strains, even240

though strains like OT1108, OM1120 or OT745 were much more sensitive to temperature variations241

than OT1560, OT1113, OM1121 and to some extent BP4222, which maintained steady state growth242

rates between 9.2°C and 15.2°C. Temperature is a key environmental parameter regulating the growth243

and driving the geographic distribution, of phytoplankton (4). Studies investigating Micromonas and244

Synechococcus unveiled the existence of thermotypes adapted to specific latitudes (5, 8). However,245

to the best of our knowledge, the impact of temperature has not been investigated on the temporal246

succession of phytoplanktonic species neither at the species nor the infra-species levels.247

Temperature dependent effect of photoperiod on growth.While temperature increases had an248

overall positive impact on the growth of all strains, the effect of light was more complex and249

temperature dependent. Temperature primarily affects metabolic rates and physiological processes250

which are involved in light assimilation and conversion into organic compounds (25). Low light supply251

under short photoperiod may therefore be limiting for photosynthesis under optimal temperature252

conditions. Under the December/January short photoperiods, all strains were weakly impacted253

by temperature variations (11.2°C to 13.2°C) but OM1120 and OT1560 were not impacted by254

temperature increases, suggesting that light, not temperature, is the primary factor limiting cell255

growth (Fig. 3C). At 13.2°C, photoperiod lengthening enhanced cell growth of all strains except256

for OT1108 and BP4222 (Fig. 3B). Under long photoperiods, both OT1108 and BP4222 displayed257

similar growth rates at both temperatures suggesting that light is the main limiting factor to growth.258

Few examples in the literature have reported the interactions between environmental factors in the259

regulation of phytoplankton growth. In Thalassiosira pseudonana diatom growth is strongly influence260
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by temperature-nutrient interaction (4) and it was shown that photoperiod and temperature can 261

compensate moderate nutrient limitation from Stephanodiscus minutulus and Nitzschia acicularis 262

diatoms growth (26). 263

Connecting light/temperature responses to environmental niches.The ultimate goal of our study 264

was to determine the light/temperature responses of phytoplanktonic strains and to what extent 265

they accounted for temporal patterns of appearance in annual time series. Contrasted physiological 266

responses were observed when exposing selected Mamiellophyceae to various combinations of 267

photoperiod and temperature (Fig. 2, 3 and 4). The Ostreococcus strains in our study represented 268

only a few percent of 18S sequences in the metabarcode dataset, making it difficult to correlate 269

their physiological responses to their time of occurrence in the environment (Fig. 1 and Fig. S1). 270

Even though O. mediterraneus ASVs represented less than 1% of sequence, the patterns were 271

reproducible from year to year with maximal numbers between February and April. OM1120 and 272

OM1121 had similar responses showing a preference for April conditions of 2013, a low temperature 273

year, compared to the 2007-2014 time series (Fig. 4A). O tauri strains had more complex and 274

heterogeneous responses to photoperiod and temperature. While OT1113 was associated to the 275

February 2013 condition, OT1108 and OT1560 were associated to the April 2013 condition (Fig. 276

4A). The 4 strains of O. tauri also exhibited contrasted responses to photoperiods at 11.2°C and 277

13.2°C (Fig. 3C). While OT1108 maintained stable growth rates under all conditions, the growth 278

of OT1113 increased in response to photoperiod and temperature. Finally, OT1560 displayed an 279

unusual response compared to other strains with higher growth rates at low temperature under short 280

photoperiod (Fig. 3C). The temporal pattern of O. tauri ASV abundances in the environment was 281

also irregular from year to year. The contrasted responses of the different strains of Ostreococcus 282

tauri suggest that these strains may correspond to different ecotypes of O. tauri which may occupy 283

different environmental niches along the year. 284

Unlike O. tauri, Bathycoccus prasinos presented robust annual rhythms of abundance in the 285

metabarcoding dataset, with maximal number of sequences in February, corresponding to the yearly 286

minimum of temperature ((17); Fig. 1). Microcosm experiments performed on natural communities, 287

filtered on 3 µm to remove predators, revealed that low temperature promoted the growth of BP4222 288
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in February and March communities. In contrast, an increase in temperature in February shifted289

the picoeukaryote community towards Micromonas. Bathycoccus appeared to dominate around290

60% of ASVs in March (Fig. 6B). The growth of Bathycoccus was stimulated in response to a291

temperature decrease. Compared to several other Mamiellophyceae, the growth of Bathycoccus was292

neither stimulated by temperature increases above 11.2°C (Fig. 1B), nor by photoperiod lengthening293

(Fig. 2).294

When taken together, environmental observations, culture work and microcosms experiment results,295

suggest some plasticity in the physiological response of Bathycoccus to temperature variations. This296

could explain the predominance of Bathycoccus at low temperatures, while at higher temperatures297

other microalgae, such as Skeletonema, or even Micromonas bravo, could outcompete Bathycoccus in298

natural communities. To test this hypothesis, it would be important to determine the physiological299

response to light and temperature of Micromonas strains isolated from the Bay of Banyuls.300

Conclusion301

Several studies investigating phytoplankton have unveiled the existence of thermotypes in both the302

cyanobacteria of the genus Synechoccocus and Mamiellophycea of the genus Micromonas, which are303

adapted to specific latitudes (5, 8). In contrast, Ostreococcus clades are distributed along a coast to304

ocean gradient (12). Our study demonstrated, for the first time, which Mamiellophyceae strains,305

isolated at a single location, have distinct temperature/photoperiod preferenda in culture. Differences306

in physiological responses were observed not only between strains belonging to different genera307

and species but also between strains of O.tauri and of O.mediterraneus suggesting the existence of308

ecotypes in these species. An increase in temperature had an overall positive effect on cell growth in309

culture. The effect of photoperiod, in contrast, was more complex and strain dependent. Under310

short photoperiods (e.g. December), light was the main limiting factor to growth. In contrast,311

under longer photoperiod conditions (e.g. April) light led to photoinhibition and reduced growth.312

Microcosms experiments confirmed the predominance of Bathycoccus in microbial communities under313

low temperature conditions. The growth rates of Bathycoccus varied little between the different314

photoperiod conditions at low temperature. The yearly reoccurrence of Bathycoccus at the minimum315
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of temperature in February may result from its improved growth at low temperatures and, conversely, 316

its reduced growth at higher temperatures compared to other strains. Simulation of an unusually 317

warm winter shifted the photoperiod preferences of Bathycoccus from short to long, suggesting that, 318

in the long term, a 2°C increase in temperature may affect the seasonality of Bathycoccus. 319
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  information	
  
	
  
Supplementary	
  Fig	
  1:	
  Bar	
  charts	
  of	
  the	
  relative	
  abundance,	
  in	
  percentages,	
  of	
  reads	
  
corresponding	
  to	
  Micromonas	
  bravo	
  (A).	
  Micromonas	
  sp	
  (B).	
  Micromonas	
  commoda	
  (C).	
  
Ostreococcus	
  clade	
  B	
  (D)	
  and	
  Ostreococcus	
  lucimarinus	
  (E)	
  Taxa	
  were	
  assigned	
  with	
  PR2.	
  
	
  

	
  



Supplementary	
  Fig	
  2:	
  Line	
  graph	
  of	
  light	
  intensities	
  that	
  microalgae	
  were	
  exposed	
  to	
  during	
  
growth	
  phase.	
  Each	
  curve	
  (blue,	
  light	
  blue,	
  brown,	
  light	
  orange	
  and	
  orange)	
  represents	
  the	
  
light	
  intensity	
  measured	
  at	
  a	
  specific	
  month	
  (December,	
  January,	
  February,	
  March	
  and	
  April,	
  
respectively)	
  during	
  one	
  day.	
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Supplementary	
  Fig	
  3:	
  Redundancy	
  analyses	
  (RDA)	
  relating	
  monthly	
  irradiance	
  to	
  
temperature	
  variables	
  for	
  each	
  specific	
  strain.	
  The	
  axes	
  explain	
  the	
  percentage	
  of	
  variation	
  
in	
  growth	
  rates	
  for	
  each	
  strain.	
  Temperature	
  variables	
  used	
  in	
  the	
  RDA	
  are	
  represented	
  by	
  
vectors	
  (11.2°C	
  and	
  13.2°C).	
  Each	
  point	
  represents	
  growth	
  rate	
  triplicates	
  and	
  are	
  grouped	
  
according	
  to	
  photoperiod	
  (December,	
  January,	
  February,	
  March	
  and	
  April)	
  as	
  colored	
  
polygons	
  (blue,	
  light	
  blue,	
  brown,	
  light	
  orange	
  and	
  orange,	
  respectively).	
  
	
  

	
  
	
   	
  



Supplementary	
  Fig	
  4:	
  Line	
  graph	
  and	
  values	
  of	
  winter	
  sea	
  surface	
  temperature	
  in	
  2013,	
  2014	
  
and	
  the	
  2007-­‐2014	
  average	
  at	
  3m	
  of	
  depth	
  in	
  the	
  bay	
  of	
  Banyuls.	
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December 12,7 12,7 14,2
January 12,2 12,4 11,9
February 10,8 12,3 10,9
March 11,2 12,9 11,7
April 12,2 14,2 13,1



Supplementary	
  Fig	
  5:	
  Monthly	
  growth	
  rates	
  for	
  each	
  specific	
  strain	
  when	
  exposed	
  to	
  
simulated	
  natural	
  conditions.	
  Green	
  triangles	
  correspond	
  to	
  2013	
  and	
  red	
  squares	
  to	
  2014.	
  
	
  

	
  
	
   	
  



Supplementary	
  Table	
  1:	
  
Growth	
  rates	
  for	
  each	
  microcosms	
  condition	
  (d-­‐1).	
  Initial	
  sea	
  surface	
  temperatures	
  at	
  SOLA	
  
are	
  marked	
  with	
  black	
  star.	
  
	
  

	
  

Date T°C µmax+(d.1)

16/02/2015

9,6 0,25+± 0,04
11,6 0,5+± 0,02
13,6 0,63+± 0,02
15,6 0,56+± 0,02

23/02/2015

9,2 0,19+± 0,01
11,2 0,35+± 0,04
13,2 0,30+± 0,08
15,2 0,52+± 0,08

02/03/2015

7 0,47+± 0,23
9 0,49+± 0,09
11 0,68+± 0,22
13 0,76+±0,20

15/06/2015
19 0,58+± 0,16
21 0,77+± 0,04
23 0,92+± 0,05





Addendum

My contribution: In this chapter my contribution amounted to carrying out the mi-

crocosms experiments, extracting and amplifying the DNA from those experiments and

doing the sequence analysis. I also provided the time series data and helped write, edit

and format the manuscript.
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Abstract
In temperate oceans, yearly transitions from winter to spring are accompanied by a phy-
toplanktonic bloom. Phytoplankton, at the basis of the food chain in the oceans, plays
an essential role in biogeochemical cycles as it generates 50% of the global primary pro-
duction. A time series established in 2007 at SOLA, a coastal site in the North Western
Mediterranean Sea, monitors environmental and biological parameters. In the first chap-
ter, we demonstrated that several microbial amplicon sequence variants (ASVs) displayed
yearly rhythmicity, despite stochastic environmental perturbations, inherent to coastal
ecosystems. Network analyses, described in the second chapter, revealed that salinity
and temperature deeply impacted the microbial community structure. Subnetworks high-
lighted that persistent ASVs switched their first neighbors depending on environmental
perturbations. These observations suggest the existence of functional redundancy in ma-
rine microbial communities. In the third chapter, microcosms confirmed that temperature
fluctuations strongly affected natural microbial community structure. Picophytoplankton
dominated the incubated communities at low temperature, whereas diatoms prevailed at
higher temperatures. These results help explain Bathycoccus prasinos peak of abundance
every year at the temperature minimum at SOLA. By integrating results from a time
series, cell culture and microcosms experiments, this manuscript helps unravel the impact
of anthropologically driven climate change on marine microbial communities.
Key words: Mediterranean Sea | Time series | Microbial communities | Rhythmicity |
Microcosms

Résumé
Dans les océans tempérés, les transitions printanières annuelles sont accompagnées de
blooms phytoplanctoniques. Le phytoplancton joue un rôle essentiel dans les cycles
biogéochimiques et produit la moitié de la production primaire globale. Une série tem-
porelle établie en 2007 à SOLA, un site côtier dans le Nord-Ouest méditerranéen, surveille
les paramètres environnementaux et biologiques. Dans le premier chapitre, plusieurs
« amplicon sequence variants » (ASVs) microbiens avaient des motifs annuels récurrents,
malgré les perturbations environnementales caractéristiques des zones côtières. L’analyse
de réseaux, décrite dans le deuxième chapitre, a révélé que la salinité et la température
impactaient la structure des communautés microbiennes. Des sous-réseaux ont montré
que des ASVs persistant changeaient de partenaires en fonction des perturbations environ-
nementales. Ces observations suggèrent l’existence de redondance fonctionnelle dans les
communautés microbiennes marines. Dans le troisième chapitre, des experiences micro-
cosmes ont confirmé que des variations de température affectaient la structure des com-
munautés microbiennes naturelles. À basse température, les picophytoplanctons étaient
dominants, tandis que les diatomées prévalaient aux températures plus fortes. Ces ré-
sultats permettent d’expliquer le maximum d’abondance de Bathycoccus prasinos tous
les ans au minimum de température à SOLA. Ce manuscrit, intégrant à la fois les résul-
tats d’une série temporelle, de cultures cellulaires et de microcosmes, a permis d’éclaircir
l’impact anthropologique sur les communautés microbiennes marines.
Mots clefs: Mer méditerranée | Séries temporelles | Communautés microbiennes | Ryth-
micité | Microcosmes
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