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Abstract
Image comparison, which consists in deciding whether or not several images represent
some common or similar objects, is a problem recognized as difficult, especially because
of the viewpoint changes between images. The apparent deformations of objects caused by
changes of the camera position can be locally approximated by affine maps. This has mo-
tivated the quest for affine invariant local descriptors in the last 15 years. Unfortunately,
existing descriptors cannot handle angle viewpoint differences larger than 45 degrees, and
fail completely beyond 60 degrees. In this thesis, we address several strategies to resolve
this limitation, and we show at the end that they complete each other.

Three main branches to obtain affine invariance are actively being investigated by the
scientific community:

1. Through affine simulations followed by (less invariant) matching of many simulated
image pairs;

2. Through a description that is already independent from the viewpoint;

3. Through local affine patch normalization.
In this thesis we explore all three approaches. We start by presenting a distance be-

tween affine maps that measures viewpoint deformation. This distance is used to generate
optimal (minimal) sets of affine transformations, to be used by Image Matching by Affine
Simulation (IMAS) methods. The goal is to reduce the number of affine simulations while
keeping the same performance level in the matching process. We use these optimal sets of
affine maps and other computational improvements to boost the well established ASIFT
method. We also propose a new method, Optimal Affine-RootSIFT whose performance
and speed significantly improve on those of ASIFT. As a side quest and direct application
of the IMAS methodology, we propose two descriptors suitable to track repeated objects
based on the Number of False Alarms (NFA), test their viewpoint tolerance and generate
accordingly proper sets of affine simulations. In that way we end up with two IMAS
methods able to handle repetitive structures under strong viewpoint differences.

Our search for improvement focuses then on local descriptors, which once were manually-
designed, but are currently being learned from data with the promise of a better perfor-
mance. This motivates our proposition of an affine invariant descriptor (called AID)
based on a convolutional neural network trained with optical affine simulated data. Even
if not trained for occlusion nor noise, the performance of AIDs on real images is surpris-
ingly good. This performance confirms that it might be possible to attain a straightaway
common description of a scene regardless of viewpoint.

Finally, recent advances in affine patch normalization (e.g. Affnet) help circumvent
the lack of affine invariance of state-of-the-art descriptors. As usual with affine normal-
ization, patches are normalized to a single representation and then described. We instead
propose to rely not on the precision nor on the existence of a single affine normalizing
map, by presenting an Adaptive IMAS method that computes a small set of possible
normalizing representations. This method aggregates the Affnet information to attain a
good compromise between speed and performance. At the end of the day, our inquiries
lead to a method that fuses normalization and simulation ideas to get a still faster and
more complete affine invariant image matcher.

All in all, affine invariance is a way to remove the viewpoint information from patches
and focus on what the scene really describes. However, clues on how geometry is trans-
formed can be useful when matching two images, e.g., recovering the global transfor-
mation, the proposal of new tentative matches, among others. With that in mind, we
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propose a LOCal Affine Transform Estimator (locate) which is proved to be valuable for
affine guided matching and homography estimation. These two applications of locate
provide complementary tools that improve still more the affine invariant image matchers
presented above.
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Résumé
La mise en correspondance d’images, qui consiste à décider si plusieurs images représen-
tent ou non des objets communs ou similaires, est un problème reconnu comme difficile,
notamment en raison des changements de point de vue entre les images. Les déforma-
tions apparentes des objets causées par les changements de position de la caméra peuvent
être approximées localement par des transformations affines. Cette propriété a motivé la
recherche de descripteurs locaux invariants affines depuis une quinzaine d’années. Mal-
heureusement, les descripteurs existants ne permettent pas de traiter des différences de
point de vue d’angle supérieures à 45 degrés, et échouent complètement au-delà de 60 de-
grés. Dans cette thèse, nous abordons plusieurs stratégies pour résoudre cette limitation,
et nous montrons qu’elles se complètent.

Trois directions principales pour obtenir l’invariance affine sont activement étudiées
par la communauté scientifique :

1. Par des simulations affines suivies d’un appariement (moins invariant) de nombreux
couples d’images simulées ;

2. Par une description indépendante du point de vue ;

3. Grâce à une normalisation affine locale de patchs.

Dans cette thèse, nous explorons les trois approches. Nous commençons par présen-
ter une distance entre les transformations affines qui mesure la déformation du point
de vue. Cette distance est utilisée pour générer des ensembles optimaux (minimaux)
de transformations affines, qui sont utilisés par les méthodes de mise en correspondance
d’images par simulation affine (IMAS). L’objectif est de réduire le nombre de simula-
tions affines à simuler tout en conservant le même niveau de performance dans le proces-
sus d’appariement. Nous utilisons ces ensembles optimaux de transformations affines et
d’autres améliorations informatiques pour renforcer la méthode ASIFT. Nous proposons
également une nouvelle méthode, Optimal Affine-RootSIFT, dont les performances et la
vitesse sont nettement supérieures à celles d’ASIFT. Dans une application directe de la
méthodologie IMAS pour un problème connexe, nous proposons deux descripteurs perme-
ttant de suivre des objets répétés en mesurant un nombre de fausses alarmes (NFA), de
tester leur tolérance au changement de point de vue, et de générer en conséquence des en-
sembles appropriés de simulations affines. De cette façon, nous obtenons deux méthodes
IMAS capables de traiter des structures répétitives avec de fortes différences de points de
vue.

Notre recherche d’amélioration se concentre ensuite sur les descripteurs locaux, qui
étaient autrefois conçus heuristiquement, mais qui sont actuellement appris à partir de
données massives, avec la promesse d’une meilleure performance. Nous proposons un
descripteur invariant affine (appelé AID) appris par un réseau neuronal convolutionnel
entraîné avec des données optiques affines simulées. Même si ce réseau n’est pas entraîné
pour les occlusions ou le bruit, la performance des descripteurs AIDs sur des images
réelles est étonnamment bonne. Cette performance confirme qu’il est possible d’obtenir
immédiatement une description commune d’une scène, quel que soit le point de vue.

Enfin, les progrès récents dans la normalisation affine des patchs (par exemple Affnet)
permettent de contourner l’absence d’invariance affine des descripteurs de l’état de l’art.
Comme d’habitude avec la normalisation affine, les patchs sont normalisés en une représen-
tation unique, qui est transformée en descripteur. Nous préférons ne pas nous fier à la
précision ni à l’existence d’une seule normalisation affine, et présentons une méthode
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IMAS adaptative qui calcule un petit ensemble de représentations normalisantes possi-
bles. Cette méthode agrège les informations d’Affnet pour obtenir un bon compromis
entre vitesse et performance. En fin de compte, nos recherches aboutissent à une méth-
ode qui fusionne les idées de normalisation et de simulation pour obtenir une mise en
correspondance d’images invariante affine encore plus rapide et plus complète.
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Introduction

Image matching aims at establishing correspondences between similar objects that ap-
pear in different images. This is a fundamental step in many computer vision and
image processing applications such as scene recognition [VGS10,BS11, SAS07, FBA+06,
MP04, RdSLD07, VvHR05, GL06, YC07, MP07] and detection [FSKP, NTG+06], object
tracking [ZYS09], robot localization [SLL01,VL10,MMK06,BSBB06,NS06], image stitch-
ing [AAC+06,BL03], image registration [YSST07,LYT11] and retrieval [HL04,GLGP13],
3D modeling and reconstruction [Fau93, GZS11, VV05, AFS+11, RTA06], motion esti-
mation [WRHS13], photo management [SSS06,Yan07, LCC06,Cha05], symmetry detec-
tion [LE06] or even image forgeries detection [CPV15].

The general (solid) shape matching problem starts with several photographs of a
physical object, possibly taken with different cameras and viewpoints. These digital
images are the query images. Given other digital images, the target images, the question
is whether some of them contain, or not, a view of the object taken in the query image.
This problem is by far more restrictive than the categorization problem, where the question
is to recognize a class of objects, like chairs or cats. In the shape matching framework
several instances of the very same object, or of copies of this object, are to be recognized.
The difficulty is that the change of camera position induces an apparent deformation of the
object’s image. Thus, recognition must be invariant with respect to such deformations.
Let us point out that this matching problem consists in localizing common structures
between images, but also in deciding whether a structure is present or not in an image.
Indeed, computer vision systems have to deal with situations where the object of interest
is not present. It is thus of great interest to limit the number of false matches, especially
in the case of very large image databases.

The state-of-the-art image matching algorithms usually consist of three parts: detector,
descriptor and matching step. They first detect points of interest in the compared images
and select a region around each point of interest, and then associate an invariant descriptor
or feature to each region. Correspondences may thus be established by matching the
descriptors. Detectors and descriptors should be as invariant as possible.

Local image detectors can be classified by their incremental invariance properties.
All of them are translation invariant. The Harris point detector [HS88] is also rotation
invariant. The Harris-Laplace, Hessian-Laplace and the DoG (Difference-of-Gaussian) re-
gion detectors [MS01,MS04,Low04,Fév07] are invariant to rotations and changes of scale.
Based on the AGAST [MHB+10] corner score, BRISK [LCS11] performs a 3D nonmaxima
suppression and a series of quadratic interpolations to extract the BRISK keypoints; both
detections aim to quickly provide rotation and scale invariances. Some moment-based
region detectors [LG94,Bau00] including the Harris-Affine and Hessian-Affine region de-
tectors [MS02,MS04], an edge-based region detector [TVO99,TV04], an intensity-based
region detector [TV00,TV04], an entropy-based region detector [KZB04], and two level

13



line-based region detectors MSER (“maximally stable extremal region”) [MCUP04] and
LLD (“level line descriptor”) [MSCG03,MSC+06,CLM+08] are designed to be invariant
to affine transforms. MSER, in particular, has been demonstrated to have often better
performance than other affine invariant detectors, followed by Hessian-Affine and Harris-
Affine [MTS+05].

In his keystone paper [Low04], Lowe has proposed a scale-invariant feature transform
(SIFT) that is invariant to image scaling and rotation and partially invariant to illumina-
tion and viewpoint changes. The SIFT method combines the DoG region detector that is
rotation, translation and scale invariant (a mathematical proof of its scale invariance is
given in [MY08]) with a descriptor based on the gradient orientation distribution in the
region, which is partially illumination and viewpoint invariant [Low04]. These two stages
of the SIFT method will be called respectively SIFT detector and SIFT descriptor. The
SIFT detector is a priori less invariant to affine transforms than the Hessian-Affine and
the Harris-Affine detectors [MS01,MS04].

The SIFT descriptor has been shown to be superior to other many descriptors [MS05]
such as the distribution-based shape context [ATRB95], the geometric histogram [ATRB95]
descriptors, the derivative-based complex filters [Bau00, SZ02], and the moment invari-
ants [VMU96]. A number of SIFT descriptor variants and extensions, including PCA-
SIFT [KS04], GLOH (gradient location-orientation histogram) [MS05] and SURF (speeded
up robust features) [BTV06] have been developed ever since [FS07, LÁJA06]. More re-
cently, RootSIFT has been proposed in [AZ12], which suggests a slight modification to
SIFT descriptors in order for them to be compared by a Hellinger kernel. Most of these
SIFT variants claim more robustness and distinctiveness with scaled-down complexity.

Binary descriptors constitute another branch of local descriptors that focuses on speed
and efficiency. In BRIEF [CLSF10] a smoothed local patch surrounding the keypoint is
sampled in a set of random pixel pairs whose values are compared, thus producing a
binary string. This allows to exploit differential characteristics of the local patch in a
different way from the gradient histogram-based approaches like SIFT, and leads to a
compact signature, represented by a sequence of bits. Similarly, the BRISK descriptor
is a binary string resulting from brightness differences computed around the keypoint.
Another alternative to binary local image descriptors is LATCH [LH16] which is a fast
and compact binary descriptor used to represent local image regions. Its authors claim
that its extraction time is only slightly longer than other binary descriptors and far faster
than floating point representations.

Nonlinear scale spaces have also been used in order to make blurring locally adaptive
to the image data; blurring small details but preserving object boundaries. The KAZE
features method, introduced in [ABD12], claims that it increases repeatability and dis-
tinctiveness with respect to SIFT and SURF thanks to the use of a nonlinear diffusion
filter. The main drawback of KAZE is speed. An accelerated version of KAZE, called
AKAZE [ANB13], generates computationally less demanding features while still based on
nonlinear diffusion.

The mentioned state-of-the-art methods have achieved brilliant success. However,
none of them is fully affine invariant. As pointed out in [Low04], Harris-Affine and
Hessian-Affine start with initial feature scales and locations selected in a non-affine in-
variant manner. The non-commutation of optical blur and affine transforms pointed
out in [YM11] explains the limited affine invariance performance of the normalization
methods MSER, LLD, Harris-Affine and Hessian-Affine. As shown in [CLM+08], MSER
and LLD are not scale invariant: they do not cope with the drastic level line structure
changes caused by blur. SIFT (and its direct variants) is actually the only method that

14



(a) 45◦ visibility around a frontal view (b) 45◦ visibility around a slanted view of 45◦

Figure 1: (Perspective views)
Green point - Query camera position
Dashed line - ∂B

(
[Id] , log 4

√
2
)

Black surface - Visible target camera positions

is fully scale invariant. However, since it is not designed to cover the whole affine space,
its performance drops quickly under substantial viewpoint changes. In fact, all the afore-
mentioned descriptors are not fully invariant to viewpoint changes; they have been proved
to be recognizable under viewpoint angles up to 60◦ for planar objects [YM11,MMP15]
but with a drastic performance drop for angles larger than 45◦ [Kar16]. In Figure 1, we
show fixed query camera positions (green points) and all possible target camera positions
(black surfaces) with affine viewpoints under 45◦.

In this thesis the question of viewpoint invariance in image matching is central. As
many others in the literature, we reach this objective through affine invariance, which can
be obtained by exploiting affine properties at different places of the matching pipeline.
Our main contributions regarding image matching under strong viewpoint changes are
shown in Table 1. We list in Table 2 several tools and methods designed to validate our
claims. Table 3 presents all techniques appearing in this thesis to attain affine invariance,
and ultimately viewpoint invariance. Finally, Table 4 enumerates all affine invariant
matching methods appearing in this thesis.

Covering the Space of Tilts

In Chapter 1 we start by computing exact formulas to determine those black accessibility
surfaces displayed in Figure 1. This amounts to obtain a formula for the distance that
measures tilt deformation. We then propose a mathematical method to analyze the nu-
merous algorithms performing Image Matching by Affine Simulation (IMAS). To become
affine invariant they apply a discrete set of affine transforms to the images, previous to
the comparison of all images by a Scale Invariant Image Matching (SIIM) like SIFT, see
Figure 2. Obviously, this multiplication of images to be compared increases the image
matching complexity. Three questions arise: a) what is the best set of affine transforms
to apply to each image to gain full practical affine invariance? b) what is the lowest
attainable complexity for the resulting method? c) how to choose the underlying SIIM
method? We provide an explicit answer and a mathematical proof of quasi-optimality of
the solution to the first question. Figure 3 highlights the benefits of this methodology
by optimizing the set of affine simulations of the classic ASIFT [MY09,YM11] method.
As an answer to b) we find that the near-optimal complexity ratio between full affine
matching and scale invariant matching is more than halved, compared to the current
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Table 1 Main contributions to image comparison under strong viewpoint changes.

Proposals Chap.
1

Chap.
2

Chap.
3

Chap.
5

Chap.
6

Chap.
7

Analytic formulas to mea-
sure tilt deformations

3

Optimal coverings in the
Space of Tilts 3 3 3

Distinctive matchers
able to capture repet-
itive structures under
viewpoint

3 3 3

Viewpoint invariant de-
scriptors beyond 60◦ 3

Estimating local geometry
transformations

3

Complexity reduction 3 3 3 3

Table 2 Tools and methods for validation of affine properties.

Validation Chap.
1

Chap.
2

Chap.
3

Chap.
4

Chap.
5

Chap.
6

Chap.
7

Chap.
8

Synthesized data 3 3 3 3 3

Successful homography re-
trievals on real images 3 3 3 3 3 3 3 3

Successful homography re-
trievals on more than one
database

3 3 3 3

Density estimations on de-
scriptors measurements 3 3

Density estimations of
affine parameters 3

Density estimations in the
Space of Tilts 3

ROC curves 3

Table 3 Techniques to attain affine invariance.

Techniques Chap.
1

Chap.
2

Chap.
3

Chap.
4

Chap.
5

Chap.
6

Chap.
7

Chap.
8

Optical affine simulations 3 3 3 3 3 3 3

Direct descriptions 3 3 3 3

Patch normalization 3 3 3
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Table 4 Available methods for affine invariant image comparison. No reference indicated
means that the method has been implemented in this thesis. Appearing in braces, all
possible descriptors for a fixed setting.

Methods Chap.
1

Chap.
2

Chap.
3

Chap.
4

Chap.
5

Chap.
6

Chap.
7

Chap.
8

ASIFT [MY09] 3 3 3

FAIR-SURF [PLYP12] 3 3

Optimal Affine-RootSIFT 3 3 3 3 3 3

Optimal Affine-RootSIFT
Revisited

3 3

Optimal Affine-SURF 3 3 3

Optimal Affine-{SIFT,
BRISK, BRIEF, ORB,
AKAZE, LATCH,
FREAK, AGAST, LU-
CID, DAISY}

3 3

Optimal Affine-{LDA64,
LDA128, DIF64, DIF128,
HalfRootSIFT, HalfSIFT}

3

Optimal Affine-{AC, AC-
W, AC-Q} 3 3

SIFT-AID 3 3 3

SIFT+Affnet+HardNet 3

HesAffNet [MRM18] 3 3

Adaptive-ARootSIFT,
Greedy-ARootSIFT 3

HessAff-{AID, AID21} 3

HessAffnet-{AID, AID21}
3
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Figure 2: IMAS algorithms start by applying a finite set of optical affine simulations to u and v, followed by
pairwise comparisons.

(a) ASIFT [MY09, YM11], a 56◦-covering
with a set of 41 affine simulations that ren-
ders target camera viewpoints visible up to
80◦. Highly redundant, nonetheless it does
cover the region it was meant to.

(b) Our proposition, 56◦-covering with a set
of 28 affine simulations that renders target
camera viewpoints visible up to 82◦.

Figure 3: Coverings
Green points - Affine camera simulations

Red lines - Visibility tolerance from each affine simulation
Black surfaces - Visible viewpoints regions

Dashed line - Covered regions

IMAS methods. This means that the number of key points necessary for affine matching
can be halved, and that the matching complexity is divided by four for exactly the same
performance. This also means that an affine invariant set of descriptors can be associated
with any image. The price to pay for full affine invariance is that the cardinality of this
set is around 6.4 times larger than for a SIIM.

Fast affine invariant image matching
Chapter 2 focuses mainly on implementation details, two structural modifications and
some other improvements to IMAS methods. As stated before, these methods attain affine
invariance by applying a finite set of affine transforms to the images before comparing
them with a SIIM method like SIFT or SURF. We describe in Chapter 2 how to optimize
these IMAS methods. First, we detail an algorithm computing a minimal discrete set of

18



Figure 4: A hyper-descriptor d = {ω1, ω2, ω3}
Black point - Center of d and of each ωi

Colored parallelograms - Affine views described by ωi
(Affine views are square patches of
regions enclosed by parallelograms)

affine transforms to be applied to each image before comparison. It yields a full practical
affine invariance at the lowest computational cost. The matching complexity of current
IMAS algorithms is divided by about 4. Our approach also associates to each image an
affine invariant set of descriptors, which is twice smaller than the set of descriptors usually
used in IMAS methods, and only 6.4 times larger than the set of similarity invariant
descriptors of SIIM methods. In order to reduce the number of false matches, which are
inherently more frequent in IMAS approaches than in SIIM, we introduce the notion of
hyper-descriptor, which groups descriptors whose keypoints are spatially close. Hyper-
descriptors aim to provide different affine representations of a commun scene. Figure 4
shows three affine zones that are to be described and grouped into a hyper-descriptor.
Finally, we also propose a matching criterion allowing each keypoint of the query image
to be matched with several keypoints of the target image, in order to deal with situations
where an object is repeated several times in the target image. An online demo allowing
to reproduce all results is available in the IPOL article

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=225,

where the source code is also made available. Compilation and usage instructions are
included in the README.md file of the archive. Complementary information on Chapter 2
is available at the web page of this work:

https://rdguez-mariano.github.io/pages/hyperdescriptors.

Image comparison under repetitive structures

In Chapter 3 we focus on the problem of affine invariant image comparison in the pres-
ence of noise and repetitive structures. The classic scheme of keypoints, descriptors and
matcher is used. A local field of image gradient orientations is used as descriptor (see
Figure 5) and two matchers are proposed, based on the a-contrario theory, for handling
repetitive structures. The affine invariance is obtained by affine simulations. The proposed
methods achieve state-of-the-art performance under repetitive structures. Complemen-
tary information on Chapter 3 is available at the web page of this work:

https://rdguez-mariano.github.io/pages/acdesc.
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Figure 5: Three image patches and their corresponding orientation fields used as descriptors. The first two are
similar while the third one is different.

AID: An affine invariant descriptor

In the same line as in previous chapters, the classic approaches to image descriptors are
adapted in Chapter 5. A descriptor encodes the local information around the keypoint.
An advantage of local approaches is that viewpoint deformations are well approximated
by affine maps. This has motivated the never ending quest for affine invariant local de-
scriptors. Despite numerous efforts, such descriptors have remained elusive, ultimately
resulting in a compromise between using viewpoint simulations or patch normalization to
attain affine invariance. In Chapter 5 we propose a CNN-based patch descriptor which
captures affine invariance without the need for viewpoint simulations or patch normaliza-
tion. This is achieved by training a neural network to associate similar vectorial represen-
tations to patches related by affine transformations. During matching, these vectors are
compared very efficiently. The method’s matching invariance to translation, rotation and
scale is still obtained by the first stages of SIFT, which produce the keypoints. The pro-
posed descriptor outperforms the state-of-the-art descriptors in retaining affine invariant
properties. Figure 6 shows density estimations for positive and negative patch pairs for
RootSIFT, BigAID (ours) and AID (ours). Complementary information on Chapter 5 is
available at the web page of this work:

https://rdguez-mariano.github.io/pages/siftaid.

Robust estimation of local affine maps

The corresponding point coordinates determined by classic image matching approaches
define local zero-order approximations of the global mapping between two images. But
the patches around keypoints typically contain more information, which may be exploited
to obtain a first-order approximation of the mapping, incorporating local affine maps be-
tween corresponding keypoints. See Figure 7 for a visual representation of these first-order
approximations. In Chapter 6, we propose a LOCal Affine Transform Estimator (locate)
method learned by a neural network. We show that locate drastically improves the ac-
curacy of local geometry estimation by tracking inverse maps. A second contribution on
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RootSIFT
L2 Norm

BigAID
Cosine Proximity

AID
Sign Alignments

Figure 6: Positive and negative density estimation on measurements. For that, 6 · 105 random intra and extra
class pairs were used. The vertical line depicts the threshold minimizing both error probabilities: false negatives
and false positives.

guided matching and refinement is also presented. The novelty here consists in the use of
locate to propose new SIFT-keypoint correspondences with precise locations, orienta-
tions and scales. Our experiments show that the precision gain provided by locate does
play an important role in applications such as guided matching. The third contribution
of this chapter consists in a modification of the RANSAC algorithm, that uses locate to
improve the homography estimation between a pair of images. These approaches outper-
form RANSAC for different choices of image descriptors and image datasets, and permit
to increase the probability of success in identifying image pairs in challenging matching
databases. Complementary information on Chapter 3 is available at the web page of this
work:

https://rdguez-mariano.github.io/pages/locate.

CNN-assisted coverings in the Space of Tilts
As stated above, affine invariant descriptors have remained elusive, which explains the
development of IMAS methods. These methods simulate viewpoint changes to attain
the desired invariance. Yet, recent CNN-based methods seem to provide a way to learn
affine invariant descriptors. Still, as a first contribution, we show that current CNN-based
methods remain far from reaching the state-of-the-art performance provided by IMAS.
This confirms that there is still room for improvement for learned methods. Second, we
show that recent advances in affine patch normalization can be used to create adaptive
IMAS methods that select their affine simulations depending on query and target images.
Figure 8 shows kernel density estimations in the Space of Tilts (formally introduced in
Chapter 1) for query and target images in the ‘cat’ pair from the EVD [MMP15] dataset.
Notice the concentration around orthogonal directions in the Space of Tilts of affine maps
provided by Affnet [MRM18] from query and target images. Just by looking at those
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Figure 7: Some correspondences together with local affine maps estimated by the proposed locate network.
Patches on the target are warped versions of their corresponding query patch.

densities one can already infer that the common object to both images was seen from
camera positions that differ by 90◦. In practice, Affnet [MRM18] predictions will be
used to select convenient affine transformations to be tested in IMAS methods. The
proposed methods are shown to attain a good compromise: on the one hand, they reach
the performance of state-of-the-art IMAS methods but are faster; on the other hand,
they perform significantly better than non-simulating methods, including recent ones.
Complementary information on Chapter 3 is available at the web page of this work:

https://rdguez-mariano.github.io/pages/adimas.
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Source codes have been published in github. They are:
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(a) Common object to query (left) and target (right) images.

(b) Kernel density estimations of query (left) and target (right) Affnet [MRM18] affine maps.

Figure 8: Kernel density estimations in the Space of Tilts of affine maps extracted by Affnet [MRM18] for
both images in the ‘cat’ pair from the EVD [MMP15] dataset.

1. The tester framework, figures and the covering optimizer appearing in [RDM18a]
can be found at:

https://github.com/rdguez-mariano/imas_analytics

2. All IMAS methods presented in [RDM18b,RGvG18] can be found at:

https://github.com/rdguez-mariano/fast_imas_IPOL

3. The SIFT-AID method as well as all results appearing in [RFGvG+19] can be found
at:

https://github.com/rdguez-mariano/sift-aid

4. The locate method, plus two applications (affine guided matching and a version of
RANSAC homography), some other matching methods (e.g. HessAff+Affnet+HardNet,
HessAff+AID and SIFT+Affnet+HardNet) and all results appearing in [RFGvG+20]
can be found at:

https://github.com/rdguez-mariano/locate

5. The Adaptive IMAS methods appearing in [RFvG+20] can be found at:

https:
//github.com/rdguez-mariano/fast_imas_IPOL/tree/master/adaptiveIMAS
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Introduction en français

La comparaison d’images vise à établir des correspondances entre des objets similaires
qui apparaissent dans différentes images. Il s’agit d’une étape fondamentale dans de
nombreuses applications de vision par ordinateur et de traitement d’images, telles que la
reconnaissance de scènes [VGS10,BS11,SAS07,FBA+06,MP04,RdSLD07,VvHR05,GL06,
YC07,MP07], la détection d’objet [FSKP,NTG+06], le suivi d’objet [ZYS09], la locali-
sation de robot [SLL01,VL10,MMK06,BSBB06,NS06], l’assemblage d’images [AAC+06,
BL03], le recalage d’image [YSST07,LYT11], la recherche par le contenu [HL04,GLGP13],
la modélisation et reconstruction 3D [Fau93,GZS11,VV05,AFS+11,RTA06], l’estimation
de mouvement [WRHS13], la gestion de photos [SSS06,Yan07,LCC06,Cha05], la détection
de symétrie [LE06] ou même la détection de contrefaçons [CPV15].

Le problème général de la correspondance de formes (solides) suppose que l’on ait
plusieurs photographies d’un objet physique, éventuellement prises avec des caméras et
des points de vue différents. Ces images numériques sont les images requêtes. Étant donné
d’autres images numériques, les images cibles, la question est de savoir si certaines parmi
elles contiennent ou non une vue de l’objet présent dans l’image requête. Ce problème est
bien plus difficile que le problème de la catégorisation, où il s’agit de reconnaître une classe
d’objets, comme des chaises ou des chats. Dans le cadre de la correspondance de formes,
plusieurs instances de l’objet même, ou des copies de cet objet, doivent être reconnues. La
difficulté est que le changement de position de la caméra induit une déformation apparente
de l’objet dans l’image. Ainsi, la reconnaissance doit être invariable aux déformations.
Signalons que ce problème de mise en correspondance consiste à localiser des structures
communes entre les images, mais aussi à décider si une structure est présente ou non
dans une image. En effet, les systèmes de vision par ordinateur doivent faire face à des
situations où l’objet d’intérêt n’est pas nécessairement présent. Il est donc important
de limiter le nombre de fausses correspondances, notamment dans le cas de très grandes
bases d’images.

Les algorithmes les plus performants pour la mise en correspondance d’images sont
divisés généralement en trois étapes : détection, description et appariement. Ils détectent
d’abord les points d’intérêt dans les images à comparer, sélectionnent une région autour de
chaque point d’intérêt, puis ils associent un descripteur, ou une caractéristique invariante,
à chaque région. La mise en correspondance consiste alors à apparier ces descripteurs.
Les étapes de détection et de description doivent être aussi invariantes que possible.

Les détecteurs de points d’intérêt peuvent être classés selon leurs propriétés d’invariance
de manière incrémentale. Tous sont invariants par translation. Le détecteur de point Har-
ris [HS88] est également invariant par rotation. Les détecteurs Harris-Laplace, Hessian-
Laplace et le Détecteur de régions DoG (Différence de Gaussiennes) [MS01,MS04,Low04,
Fév07] sont invariants aux rotations et aux changements d’échelle. Sur la base du score
du détecteur de coin AGAST [MHB+10], le détecteur BRISK [LCS11] effectue une sup-
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pression des non maxima 3D et une série d’interpolations quadratiques pour extraire des
points clés; les deux détections visent à fournir rapidement des invariances aux rotations et
à l’échelle. Certains détecteurs de région basés sur les moments [LG94,Bau00], comme les
détecteurs de région Harris-Affine et Hessian-Affine [MS02,MS04], un détecteur de régions
basé sur les bords [TVO99,TV04], un détecteur de région basé sur l’intensité [TV00,TV04],
un détecteur de région basé sur l’entropie [KZB04], le détecteur de régions basé sur deux
lignes de niveaux MSER (“maximally stable extremal region”) [MCUP04] et le LLD
(“level line descriptor”) [MSCG03,MSC+06,CLM+08], sont conçus pour être invariants
aux transformations affines. Le détecteur MSER, en particulier, a démontré qu’il était
souvent plus performant que d’autres détecteurs invariants affines, suivi par les détecteurs
Hessian-Affine et Harris-Affine [MTS+05].

Dans son article de référence [Low04], Lowe a proposé une transformée de l’image en un
ensemble de descripteurs (appelée SIFT), qui est invariante aux changements d’échelle,
translations et rotations, et partiellement invariante à l’éclairage et aux changements
de point de vue. La méthode SIFT combine un détecteur de points clés DoG qui est
invariant à la rotation, la translation et l’échelle (une preuve mathématique de son in-
variance à l’échelle est donnée dans [MY08]) avec un descripteur basé sur la distribution
de l’orientation du gradient dans le voisinage du point clé, qui est partiellement invari-
ant par changements d’illumination et de point de vue [Low04]. Ces deux étapes de la
méthode SIFT seront appelées respectivement détecteur SIFT et descripteur SIFT. Le
détecteur SIFT est a priori moins invariant aux transformations affines que les détecteurs
Hessian-Affine et Harris-Affine [MS01,MS04].

Il a néanmoins été montré que le descripteur SIFT est supérieur à de nombreux autres
descripteurs [MS05] tels que les distribution-based shape context [ATRB95], les geomet-
ric histogram descriptors [ATRB95], les derivative-based complex filters [Bau00, SZ02],
et les invariants basés sur des moments [VMU96]. Un certain nombre de variantes
et d’extensions du descripteur SIFT, y compris PCA-SIFT [KS04], GLOH [MS05] et
SURF [BTV06] ont été développées depuis [FS07,LÁJA06]. Plus récemment, RootSIFT
a été proposé dans [AZ12], et suggère une légère modification des descripteurs SIFT afin de
les comparer par un noyau de Hellinger. La plupart de ces variantes de SIFT revendiquent
plus de robustesse et de pouvoir de discrimination avec une complexité réduite.

Les descripteurs binaires constituent une autre branche des descripteurs locaux met-
tant l’accent sur la rapidité et l’efficacité. Dans BRIEF [CLSF10] un patch local flouté
entourant le point clé est échantillonné sur un ensemble de paires de pixels aléatoires dont
les valeurs sont comparées, produisant ainsi une chaîne binaire. Cela permet d’exploiter
les caractéristiques du patch d’une manière différente à celles basées sur des histogrammes
comme SIFT, et conduit à une signature compacte, représentée par une séquence de bits.
De même, le descripteur BRISK est une chaîne binaire résultant de la différence de lumi-
nosité calculée autour du point clé. Une autre alternative de descripteur binaire local est
le descripteur LATCH [LH16]. Ses auteurs affirment que son temps d’extraction n’est que
légèrement supérieur à d’autres descripteurs binaires et bien plus rapide que les représen-
tations flottantes (“floats”).

Des espaces-échelle non linéaires ont également été utilisés afin de rendre le flou adap-
tatif à l’image, de manière locale ; ils floutent les petits détails mais préservent les bords
des objets. La méthode de description KAZE, introduite dans [ABD12], est censée aug-
menter la répétabilité et le pouvoir de distinction de SIFT et de SURF grâce à l’utilisation
d’un filtre de diffusion non linéaire. Le principal inconvénient de KAZE est la vitesse. Une
version accélérée, appelée AKAZE [ANB13], génère des caractéristiques moins exigeantes
sur le plan du calcul tout en restant basé sur une diffusion non linéaire.
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(a) 45◦ de visibilité autour d’une vue frontale(b) 45◦ de visibilité autour d’une vue oblique de 45◦

Figure 9: (Points de vue en perspective)
Point vert - position de la caméra requête

Ligne pointillée - ∂B
(
[Id] , log 4

√
2
)

Surface noire - Positions visibles des caméras de cibles

Les méthodes mentionnées précédemment ont connu beaucoup de succès. Cependant,
aucune d’entre elles n’est totalement invariante affine. Comme indiqué dans [Low04], les
approches Harris-Affine et Hessian-Affine débutent par des échelles de caractéristiques
initiales et des positions sélectionnées d’une manière qui n’est pas elle-même invariante
affine. Le fait que le flou optique et les transformées affines ne commutent pas, comme
signalé dans [YM11], explique la performance limitée de l’invariance affine de la nor-
malisation des méthodes MSER, LLD, Harris-Affine et Hessian-Affine. Comme indiqué
dans [CLM+08], MSER et le LLD ne sont pas invariants à l’échelle : ils ne s’adaptent
pas aux changements drastiques de la structure des lignes de niveau causés par le flou.
SIFT (et ses variantes directes) est en fait la seule méthode qui soit totalement invari-
ante à l’échelle. Cependant, puisque SIFT n’est pas conçu pour couvrir l’ensemble de
l’espace affine, ses performances chutent rapidement en cas de changement de point de
vue important. En fait, tous les descripteurs cités ne sont pas totalement invariants aux
changements de point de vue ; ils continuent à fonctionner pour des angles de vue allant
jusqu’à 60◦ pour les objets plats [YM11,MMP15], mais leur performance chute drastique-
ment pour les angles supérieurs à 45◦ [Kar16]. Dans la Figure 9, nous montrons des
positions fixes de la caméra de requête (points verts) et toutes les positions possibles de
la caméra cible (surfaces noires) avec des variations d’angle de vue inférieurs à 45◦.

Dans cette thèse, la question de l’invariance au point de vue pour la mise en cor-
respondance d’images est centrale. Comme beaucoup d’autres dans la littérature, nous
atteignons cet objectif par invariance affine locale, invariance qui peut être obtenue en
exploitant les propriétés affines à différents endroits de la démarche de mise en correspon-
dance. Nos principales contributions concernant la mise en correspondance d’images en
cas de fortes variations de point de vue sont présentées dans le Tableau 5. Nous énumérons
dans le Tableau 6 plusieurs outils et méthodes conçus pour valider nos affirmations. Le
Tableau 7 présente toutes les techniques apparaissant dans cette thèse pour atteindre
une invariance affine, et en définitive, une invariance au point de vue. Enfin, le Tableau 8
énumère toutes les méthodes de mise en correspondance par invariance affine apparaissant
dans cette thèse.
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Table 5 Principales contributions à la comparaison d’images dans le cadre de forts
changements de points de vue.

Propositions Chap.
1

Chap.
2

Chap.
3

Chap.
5

Chap.
6

Chap.
7

Formules analytiques pour
mesurer les déformations
induites par changement
de point de vue

3

Recouvrements optimaux
dans l’espace de tilts 3 3 3

Appariements distinctifs
capables de saisir des
structures répétitives avec
changement de point de
vue

3 3 3

Descripteurs invariants
aux points de vue au-delà
de 60◦

3

Estimations de transfor-
mations de la géométrie lo-
cale

3

Réduction de la complex-
ité

3 3 3 3

Table 6 Outils et méthodes pour la validation des propriétés affines.

Validation Chap.
1

Chap.
2

Chap.
3

Chap.
4

Chap.
5

Chap.
6

Chap.
7

Chap.
8

Données synthétisées 3 3 3 3 3

Récupération réussie
d’homographies sur des
images réelles

3 3 3 3 3 3 3 3

Récupération réussie
d’homographies dans plus
d’une base de données

3 3 3 3

Estimations de la densité
sur les mesures des de-
scripteurs

3 3

Estimation de la densité
des paramètres affines 3

Estimations de la densité
dans l’espace des tilts 3

Courbes ROC 3
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Table 7 Techniques pour atteindre l’invariance affine.

Techniques Chap.
1

Chap.
2

Chap.
3

Chap.
4

Chap.
5

Chap.
6

Chap.
7

Chap.
8

Simulations optiques
affines

3 3 3 3 3 3 3

Descriptions directes 3 3 3 3

Normalisation des patchs 3 3 3

Table 8 Méthodes disponibles pour la comparaison d’images invariante affine. S’il n’y a
aucune référence indiquée, cela signifie que la méthode a été proposée dans cette thèse.
Entre accolades, tous les descripteurs possibles pour un réglage fixe.

Méthodes Chap.
1

Chap.
2

Chap.
3

Chap.
4

Chap.
5

Chap.
6

Chap.
7

Chap.
8

ASIFT [MY09] 3 3 3

FAIR-SURF [PLYP12] 3 3

Optimal Affine-RootSIFT 3 3 3 3 3 3

Optimal Affine-RootSIFT
Revisited

3 3

Optimal Affine-SURF 3 3 3

Optimal Affine-{SIFT,
BRISK, BRIEF, ORB,
AKAZE, LATCH,
FREAK, AGAST, LU-
CID, DAISY}

3 3

Optimal Affine-{LDA64,
LDA128, DIF64, DIF128,
HalfRootSIFT, HalfSIFT}

3

Optimal Affine-{AC, AC-
W, AC-Q} 3 3

SIFT-AID 3 3 3

SIFT+Affnet+HardNet 3

HesAffNet [MRM18] 3 3

Adaptive-ARootSIFT,
Greedy-ARootSIFT 3

HessAff-{AID, AID21} 3

HessAffnet-{AID, AID21}
3
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Figure 10: Les algorithmes IMAS commencent par appliquer un ensemble fini de simulations affines optiques
à u et v, suivies de comparaisons par paires.

Recouvrement de l’espace des tilts
Dans le Chapitre 1, nous commençons par calculer des formules exactes pour déterminer
les surfaces d’accessibilité noires affichées dans la Figure 9. Cela revient à obtenir une
formule pour la distance qui mesure la déformation par tilt. Nous proposons ensuite une
méthode mathématique pour analyser les nombreux algorithmes mettant en correspon-
dance les images par simulation affine (IMAS). Pour devenir invariant affine, ces algo-
rithmes appliquent un ensemble discret de transformations affines aux images, avant de
comparer toutes les images obtenues par une comparaison d’images invariante à l’échelle
(SIIM) comme SIFT (voir la Figure 10). De toute évidence, cette multiplication d’images
à comparer augmente la complexité de la mise en correspondance. Trois questions se
posent alors : a) quel est le meilleur ensemble de transformations affines à appliquer à
chaque image pour obtenir une invariance affine pratique et complète ? b) quelle est
la complexité la plus faible possible pour la méthode résultante ? c) comment choisir
la méthode SIIM sous-jacente ? Nous fournissons une réponse explicite et une preuve
mathématique de la quasi-optimalité de la solution à la première question. La Figure 11
souligne les avantages de cette méthode en optimisant l’ensemble des simulations affines
de la méthode classique ASIFT [MY09,YM11]. En réponse à la question b), nous con-
statons que le rapport de complexité quasi optimal entre l’appariement affine complet et
l’appariement invariant à l’échelle est réduit de plus de moitié par rapport aux méthodes
IMAS actuelles. Cela signifie que le nombre de points clés nécessaires à l’appariement
affine peut être réduit de moitié et que la complexité de l’appariement est divisée par
quatre pour obtenir exactement les mêmes performances. Cela signifie également qu’un
ensemble de descripteurs invariants affines peut être associé à n’importe quelle image. Le
prix à payer pour une invariance affine complète est que le cardinal de cet ensemble est
environ 6,4 fois plus grand que pour un SIIM.

Mise en correspondance rapide et invariante affine d’images
Le Chapitre 2 se concentre principalement sur les détails de mise en oeuvre des méth-
odes proposées au chapitre précédent, avec deux modifications structurelles et quelques
autres améliorations des méthodes IMAS. Comme indiqué précédemment, ces méthodes
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(a) ASIFT [MY09,YM11], un recouvrement
de 56◦ avec un ensemble de 41 simulations
affines qui rendent les points de vue des
caméras cibles visibles jusqu’à 80◦. Haute-
ment redondant, il recouvre néanmoins la ré-
gion pour laquelle il a été conçu.

(b) Notre proposition, un recouvrement de
56◦ avec un ensemble de 28 simulations
affines qui rendent les points de vue des
caméras cibles visibles jusqu’à 82◦.

Figure 11: Recouvrements
Points verts - Simulations de caméra affine

Lignes rouges - Tolérance de visibilité de chaque simulation affine
Surfaces noires - Régions de points de vue visibles

Ligne pointillée - Régions recouvertes

atteignent l’invariance affine en appliquant un ensemble fini de transformations affines
aux images avant de les comparer avec une méthode SIIM comme SIFT ou SURF. Nous
décrivons dans le Chapitre 2 comment optimiser ces méthodes IMAS. Tout d’abord, nous
détaillons un algorithme calculant un ensemble discret minimal de transformées affines
à appliquer à chaque image avant la comparaison. Cela permet d’obtenir une invari-
ance affine pratique, complète, au coût de calcul le plus bas possible. La complexité de
l’appariement des algorithmes IMAS actuels est divisée par 4 environ. Notre approche
associe également à chaque image un ensemble de descripteurs invariants affines, qui est
deux fois plus petit que l’ensemble de descripteurs habituellement utilisés dans les méth-
odes IMAS, et seulement 6,4 fois plus grand que l’ensemble de descripteurs invariants
affines de méthodes SIIM. Afin de réduire le nombre de fausses correspondances, qui sont
intrinsèquement plus fréquentes dans les méthodes IMAS que dans les méthodes SIIM,
nous introduisons la notion d’hyper-descripteur, qui regroupe les descripteurs dont les
points clés sont spatialement proches. Les hyper-descripteurs visent à fournir différentes
représentations affines d’une scène commune. La Figure 12 montre trois zones affines
qui doivent être décrites et regroupées dans un hyper-descripteur. Enfin, nous proposons
également un critère de comparaison permettant de faire correspondre chaque point clé
de l’image requête avec plusieurs points clés de l’image cible, afin de traiter les situations
où un objet est répété plusieurs fois dans l’image cible. Une démo en ligne permettant de
reproduire tous les résultats est disponible dans l’article d’IPOL

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=225,

où le code source est également mis à disposition. Les instructions de compilation et
d’utilisation sont incluses dans le fichier README.md de l’archive. Des informations com-
plémentaires sur le Chapitre 2 sont disponibles sur la page web :

https://rdguez-mariano.github.io/pages/hyperdescriptors.
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Figure 12: Un hyper-descripteur d = {ω1, ω2, ω3}
Point noir - Centre de d et de chaque ωi

Parallélogrammes colorés - Vues affines décrites par ωi
(Les vues affines sont des patchs carrés des
régions désignées par les parallélogrammes)

Figure 13: Trois patchs d’image et leurs champs d’orientation correspondants utilisés comme descripteurs. Les
deux premiers sont similaires, tandis que le troisième est différent.

Comparaison d’images avec structures répétitives
Dans le Chapitre 3, nous nous concentrons sur le problème de la comparaison invariante
affine d’images en présence de bruit et de structures répétitives. On conserve le schéma
classique des points clés, descripteurs et appariement. Un champ local d’orientations
du gradient d’image est utilisé comme descripteur (voir Figure 13) et deux méthodes
d’appariement sont proposées, sur la base d’une apprcohe a contrario, pour le traite-
ment des structures répétitives. L’invariance affine est obtenue par des simulations. Les
méthodes proposées permettent d’obtenir des performances compétitives dans le cadre
de structures répétitives. Des informations complémentaires pour le Chapitre 3 sont
disponibles sur la page web :

https://rdguez-mariano.github.io/pages/acdesc.

AID : Un descripteur invariant affine
Le Chapitre 5 s’intéresse toujours à la comparaison invariante affine, mais cette fois-ci
à l’aide de réseaux de neurones. Un descripteur encode les informations locales autour
d’un point clé. Un avantage de ces approches locales est que les déformations des points
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RootSIFT
Norme L2

BigAID
Distance Cosinus

AID
Alignements des signes

Figure 14: Estimation de la densité pour les mesures dans les cas positifs et négatifs. Pour cela, 6 · 105 paires
de patchs aléatoires intra-classe et extra-classe ont été utilisées. La ligne verticale représente le seuil minimisant
les deux probabilités d’erreur : faux négatifs et faux positifs.

de vue sont bien approximées par des transformations affines locales. Cela a motivé la
quête sans fin de descripteurs locaux invariants affines. Malgré de nombreux efforts, de
tels descripteurs sont restés inatteignables, ce qui a finalement poussé à un compromis
entre l’utilisation de simulations de points de vue et la normalisation de patchs pour
atteindre une vraie invariance affine. Dans le Chapitre 5, nous proposons un descripteur
de patch basé sur un réseau convolutif qui capture l’invariance affine sans avoir besoin
de simulations de point de vue ou de normalisation de patch. Ceci est rendu possible en
entraînant un réseau de neurones à associer des représentations vectorielles similaires à
des patchs liés par des transformations affines. Lors de l’appariement, ces vecteurs sont
comparés très efficacement. L’invariance de la méthode à la translation, la rotation et
l’échelle est encore obtenue par les premières étapes de SIFT, qui produisent les points
clés. Le descripteur proposé surpasse les meilleurs descripteurs pour la conservation des
propriétés d’invariance affine. La Figure 14 montre les estimations de densité pour les
paires de patchs positifs et négatifs pour RootSIFT, et nos descripteurs BigAID et AID.
Des informations complémentaires sur le Chapitre 5 sont disponibles sur la page web :

https://rdguez-mariano.github.io/pages/siftaid.

Estimation robuste des transformations affines locales
Les coordonnées des points correspondants déterminées par les approches classiques de
comparaison d’images définissent des approximations locales d’ordre zéro de la transfor-
mation globale entre deux images. Mais les patchs autour des points clés contiennent
généralement plus d’informations, qui peuvent être exploitées pour obtenir une approxi-
mation du premier ordre de la transformation, en incorporant des transformations affines
locales entre les points clés correspondants (voir la Figure 15 pour une représentation
visuelle de ces approximations du premier ordre). Dans le Chapitre 6, nous proposons
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Figure 15: Quelques correspondances ainsi que des transformations affines locales estimées par le réseau locate
proposé. Les patchs sur la cible sont des versions transformées de leur patch de requête correspondant.

une méthode d’estimation de la transformation affine locale (locate) apprise par un
réseau de neurones. Nous montrons que locate améliore considérablement la précision
de l’estimation de la géométrie locale en retrouvant aussi les transformations inverses.
Une deuxième contribution sur la mise en correspondance guidée et le raffinement est
également présentée. La nouveauté consiste ici à utiliser locate pour proposer des nou-
velles correspondances SIFT avec des localisations, orientations et échelles précises. Nos
expériences montrent que le gain en précision fourni par locate joue un rôle important
dans des applications telles que la mise en correspondance guidée. La troisième contri-
bution de ce chapitre consiste en une modification de l’algorithme RANSAC, qui utilise
locate pour améliorer l’estimation de l’homographie entre une paire d’images. Ces ap-
proches sont plus performantes que RANSAC pour différents choix de descripteurs et
de bases de données d’images, et permettent d’augmenter la probabilité de succès dans
l’identification de paires d’images dans des bases de données exigeantes. Des informations
complémentaires sur le Chapitre 3 sont disponibles sur la page web :

https://rdguez-mariano.github.io/pages/locate.

Recouvrements assistés par CNN dans l’espace des tilts
Comme indiqué ci-dessus, les descripteurs invariants affines restent inatteignables, ce qui
explique le succès et le développement des méthodes IMAS. Ces méthodes simulent les
changements de point de vue pour atteindre l’invariance souhaitée. Pourtant, les méth-
odes récentes basées sur CNN semblent fournir un moyen d’apprendre des descripteurs
invariants affines. Dans le Chapitre 3, en guise de première contribution, nous montrons
que les méthodes actuelles basées sur des CNN sont loin d’atteindre les performances des
approches IMAS. Cela confirme que les méthodes apprises peuvent encore être améliorées.
Deuxièmement, nous montrons que les récentes avancées en matière de normalisation des
patchs affines par CNN peuvent être utilisées pour créer des méthodes IMAS adaptatives
qui sélectionnent leurs simulations affines en fonction des images requête et cible. La
Figure 16 montre les estimations de la densité dans l’espace des tilts (formellement intro-
duit dans le Chapitre 1) pour les images requête et cible dans la paire ‘cat’ de la base de
données EVD [MMP15]. On remarque la concentration autour de directions orthogonales
dans l’espace des tilts des transformations affines fournies par Affnet [MRM18] à partir
des images de requête et de cible. Rien qu’en regardant ces densités, on peut déjà déduire
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(a) Objet commun aux images requête (à gauche) et cible (à droite).

(b) Estimations de la densité par noyau des transformations affines d’Affnet [MRM18] de la requête (à
gauche) et de la cible (à droite).

Figure 16: Estimations de la densité par noyaux dans l’espace des tilts des cartes affines extraites par
Affnet [MRM18] pour la paire d’images ’cat’ de la base de données EVD [MMP15].

que l’objet commun aux deux images a été vu à partir de positions de caméra qui diffèrent
de 90◦. En pratique, les prédictions d’Affnet [MRM18] seront utilisées pour sélectionner
des transformations affines convenables à tester dans les méthodes IMAS. Les méthodes
hybrides ainsi proposées se révèlent être un bon compromis : d’une part, elles atteignent
les performances des meilleures méthodes IMAS mais sont plus rapides ; d’autre part,
elles sont nettement plus performantes que les méthodes sans simulation, y compris les
plus récentes. Des informations complémentaires sur le Chapitre 3 sont disponibles sur la
page web :

https://rdguez-mariano.github.io/pages/adimas.
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Part I

Image Matching by Affine
Simulations
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1 Covering the space of tilts

1.1 Introduction

Image matching, which consists in detecting shapes common to two images, is a crucial
preliminary step of a large number of computer vision applications, such as scene recog-
nition [VGS10, BS11, SAS07] and detection [FSKP, NTG+06], object tracking [ZYS09],
robot localization [SLL01,VL10,MMK06], image stitching [AAC+06, BL03], image reg-
istration [YSST07, LYT11] and retrieval [HL04,GLGP13], 3D modeling and reconstruc-
tion [Fau93,GZS11,VV05,AFS+11], motion estimation [WRHS13], photo management [SSS06],
symmetry detection [LE06] or even image forgeries detection [CPV15]. The problem has
implementation variants depending on the set up. If for example the user knows that both
compared images are related, the focus is on detecting the most reliable common set of
shape descriptors. In the detection set up, an image is compared to a database of images
and the question is to retrieve related images in the database. This is for example crucial
for performing video search [SSR+09]. Local shape descriptors must be extracted for this
purpose, and this description should be as invariant as possible to viewpoint changes and
of course as sparse as possible. In our discussion we will most of the time refer to the
simpler set up where two images are being compared. But the reduction of the number of
descriptors is of course still more important for comparing an image to an image database
as initially proposed in [SZ+03]. In this last reference, large sets of descriptors are sparsi-
fied by clustering techniques. This only indicates how important it is to reduce as much
as possible the set of affine descriptors of each image.

Detectors, descriptors and affine invariance Given a query image of some physical
object and a set of target images, the first goal of image matching is to decide if these
target images contain a view of the same object. If the answer is positive, image matching
aims at localizing this object in these target images. Deciding if the object is present is
difficult and becomes especially tricky for large image databases, for which the control
of false matches is crucial. Another difficulty of the matching problem comes from the
change of camera viewpoints between images. In order to cope with these viewpoint
changes, the whole matching process should be as invariant as possible to the resulting
image deformations. As we shall develop, this requires affine invariance for the recognition
process.

The classical approach to image matching consists in three steps: detection, descrip-
tion and matching. First, keypoints are detected in the compared images. Second, regions
around these points are described and encoded in local invariant descriptors. Finally, all
these descriptors are compared and possibly matched. Using local descriptors yields ro-
bustness to context changes. Both the detection and description steps are usually designed
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to ensure some invariance to various geometrical or radiometric changes.
Local image point detectors are always translation invariant. While the venerable

Harris point detector [HS88] is only invariant to translations and rotations, the Harris-
Laplace [MS01], Hessian-Laplace [MS04] or DoG (Difference-of-Gaussian) region detec-
tors [Low04] are invariant to similarity transformations, i.e. translations, rotations and
scale changes. To ensure invariance to affine transforms, some authors have proposed
moment-based region detectors [LG94, Bau00] including the Harris-Affine and Hessian-
Affine region detectors [MS02,MS04]. Locally affine invariant region detectors can also be
based on edges [TVO99,TV04], intensity [TV00,TV04], or entropy [KZB04]. Finally, the
detectors MSER (“maximally stable extremal region”) [MCUP04] and LLD (“level line
descriptor”) [MSCG03,MSC+06,CLM+08] both rely on level lines. Yet the affine invari-
ance of these detectors is limited by the fact that optical blur and affine transforms do
not commute, as pointed out in [MY09]. Level line based detectors like MSER therefore
are not fit to handle scale changes. Indeed, they do not take into account the effect of
blur on the level line geometry [CLM+08].

In the last 15 years, numerous invariant image descriptors have been proposed in the
literature, but the most well-known and the most widely used remains the scale-invariant
feature transform (SIFT), introduced by Lowe in his landmark paper [Low04]. SIFT
makes use of a DoG region detector. It is fully invariant to similarities (see [MY08] for
a mathematical proof of this fact). Each SIFT descriptor is composed of histograms
of gradient orientation around a key point, invariant to local radiometric changes and
to geometrical image similarities. As a result, the SIFT method can be considered as
partially invariant to illumination, fully invariant to geometrical similarities. But its
success is certainly also due to its robustness to reasonable viewpoint changes.

The superiority of SIFT based descriptors has been demonstrated in several com-
parative studies [MS05,MP07]. As a consequence, many variants of the SIFT descrip-
tor have emerged, among which we can mention PCA-SIFT [KS04], GLOH (gradient
location-orientation histogram) [MS05], SURF (speeded up robust features) [BTV06] or
RootSIFT [AZ12]. The main claims of these variants are a lower complexity or a greater
robustness to viewpoint changes. In the same vein, binary descriptors have also received
much attention. Focusing on speed and efficiency, the BRIEF [CLSF10], BRISK [LCS11]
or LATCH [LH16] descriptors are compact and represented by sequences of bits, and
can be compared more quickly than floating point descriptors like those used in SIFT.
Descriptors based on nonlinear scale spaces, such as KAZE [ABD12] or its accelerated
version AKAZE [ANB13], have also been proposed to locally adapt blur to the image
data.

None of the previously mentioned state-of-the-art methods is fully affine invariant.
The SIFT method does not cover the whole affine space and its performance drops under
substantial viewpoint changes. SIFT and the other aforementioned descriptors cannot
cope with viewpoint differences larger than 60◦ for planar objects [MY09,MMP15], and
are still usable but much less efficient for angles larger than 45◦ [Kar16]. We shall give
and use here concrete measurements of their resilience to view angle changes.

To overcome this limitation, several simulation-based solutions have been recently
proposed. The core idea of these algorithms, that we choose to call by the generic term
IMAS (Image Matching by Affine Simulation), is to simulate a set of views from the
initial images, by varying the camera orientation parameters. These simulations allow
to capture far stronger viewpoint angles than standard matching approaches, up to 88◦.
Among those IMAS algorithms, we can mention ASIFT [YM11], FAIR-SURF [PLYP12]
and MODS [MMP15].
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A first suggestion to simulate affine distortions before applying a SIIM (Scale Invari-
ant Image Matching) appeared in [PH03] where the authors proposed to simulate two tilts
and two shear deformations followed by SIFT in a cloth motion capture application. As
argued in [YM11,MMP15,PLYP12], if a physical object has a smooth or piecewise smooth
boundary, its views obtained by cameras in different positions undergo smooth apparent
deformations. These regular deformations are locally well approximated by affine trans-
forms of the image plane. By focusing on local image descriptors, the changes of aspect
of objects can therefore be modeled by affine image deformations.

The problem of constructing affine invariant image descriptors by using an affine
Gaussian scale space, that is equivalent to simulating affine distortions followed by the
heat equation, has a long story starting with [Iij71,Blo92,Lin93,LG94]. The idea of affine
shape adaptation underlying one of the methodologies for achieving affine invariance, was
then in turn used as a base for the work on affine invariant interest points and affine
invariant matching in [LG94,Bau00,MS02,MS04,TVO99,TV04,TV00]. The notion of an
affine invariant reference frame was further developed in [Lin11, Lin13a]. Nevertheless,
to the best of our knowledge, the direct constructions of affine invariant descriptors as
fixed points for an iterative affine normalization process have never found a mathematical
justification.

The first IMAS method provided with a mathematical proof of affine invariance is
ASIFT [MY09, YM11]. The authors of this paper proposed it as an affine invariant
extension of SIFT and proved it to be fully affine invariant in a continuous model. The
structure of ASIFT is generic in the sense that it can be implemented with any local
descriptor, provided this descriptor has some robustness to viewpoint changes like the
SIFT descriptors. Unlike MSER, LLD, Harris-Affine and Hessian-Affine, which attempt
at normalizing all of the six affine parameters, ASIFT simulates three parameters and
normalizes the rest. More specifically, ASIFT simulates the two camera axis parameters,
and then applies SIFT which simulates the scale and normalizes the rotation and the
translation. Of the six parameters required for affine invariance, three are therefore
simulated and three normalized.

Two recent successful methods follow the same affine simulation path. FAIR-SURF
[PLYP12] combines the affine invariance of ASIFT and the efficiency of SURF. The MODS
image comparison algorithm introduced in [MMP15] also relies on this principle and
affine simulations are generated on-demand if needed in the process of comparing two
images. MODS employs a combination of different detectors when comparing images. It
outperforms state-of-the-art image comparison approaches both in affine robustness and
speed.

Other IMAS approaches without local descriptors have also been put up for template
matching. FAsT-Match [KRTA13] delivers affine invariance by assuming that the tem-
plate (a patch in the query image) can be recovered inside the target image by a unique
affine map. Meaning there is no subjacent projective map to identify. Contrary to IMAS
with local descriptors, the six required parameters to attain affine invariance are simulated
instead of the three used in the present chapter.

In this chapter, we are interested in generic IMAS algorithms based on local descrip-
tors and in their geometric optimization. In order to measure the degree of viewpoint
change between different views of the same scene, we draw on the concept of absolute
and relative transition tilts, previously introduced in [MY09, YM11], and we illustrate
why simulating large tilts on both compared images is necessary to obtain a fully affine
invariant recognition. Indeed, transition tilts can in practice be much larger than absolute
tilts, since they may behave like the square of absolute tilts.
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The key question of IMAS methods is how to choose the list of affine transforms
applied to the images before comparison. This list should be as short as possible to
limit the computing time. But it should also sample the widest possible range of affine
transforms. As we shall see, this question is closely related to the question of finding
optimal coverings of the space of affine tilts. This question is formalized and solved in
Section 1.2, where we find nearly optimal coverings. Section 1.3 applies this result to
IMAS algorithms. It first presents a complete mathematical theory of IMAS algorithms,
proving that they are fully affine invariant under the assumption that the underlying SIIM
has a (quantifiable) limited affine invariance. Section 1.4 gives an experimental validation.
It starts by measuring the exact extent of affine invariance for several SIIMs and deduces
the corresponding complexity required to attain full affine invariance from each.

1.2 The space of affine tilts
In this section, we introduce the space of tilts for planar affine transforms, and we look
for optimal coverings of this space. Optimal coverings will be used in the next section to
define an optimal discrete set of affine transformations as the basis for IMAS algorithms.
The rest of this section can be read as a sequence of purely geometric results. However,
the reader might prefer to keep in mind that the affine transforms considered here can be
interpreted as different viewpoints of a camera, or more generally as the transition from
an image taken from a viewpoint to an image taken from another viewpoint. Indeed, given
a frontal snapshot of a planar object u(x) = u(x, y), we can transition from any affine
view Bu of the same object to any other affine view Au through the affine transformation
AB−1. This requires some notation. For any linear invertible map A ∈ GL+ (2), we
denote the affine transform A of a continuous image u(x) by Au(x) = u(Ax). We recall
classic notation for three subsets of the general linear group GL (2) of invertible linear
maps of the plane,

GL+ (2) = {A ∈ GL (2) | det (A) > 0} ,
GO+ (2) =

{
A ∈ GL+ (2) |A is a similarity

}
,

GL+
∗ (2) = GL+ (2) \GO+ (2) ,

where we call similarity any combination of a rotation and a zoom, and the symbol \
denotes the set difference operator. Our central notion in the discussion is the tilt of an
affine transform, which we now define.

1.2.1 Absolute tilts

Proposition 1.1 ( [MY09]). Every A ∈ GL+
∗ (2) is uniquely decomposed as

A = λR1 (ψ)TtR2 (φ) (1.1)

where R1, R2 are rotations and Tt =
[
t 0
0 1

]
with t > 1, λ > 0, φ ∈ [0, π[ and ψ ∈ [0, 2π[.

Remark 1.1. A similar decomposition to (1.1) was also presented in [Lin95] for small
deformations around the identity.

Remark 1.2. It follows from this proposition that any affine map A ∈ GL+ (2) is either
uniquely decomposed as in (1.1) or is directly expressed as a similarity λR1.
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Figure 1.1: Geometric Interpretation of (1.1)

Figure 1.1 shows a camera viewpoint interpretation of this affine decomposition where
the longitude φ and latitude θ = arccos 1

t characterize the camera’s viewpoint angles,
ψ parameterizes the camera spin and λ corresponds to the zoom. In the ideal affine
model, the camera is supposed to stand at infinite distance from a flat image u, so that
the deformation of u induced by the camera indeed is an affine map. But the above
approximation is still valid provided the image’s size is small with respect to the camera
distance. In other terms the affine model is locally valid for each small and approximately
flat patch of a physical surface photographed by a camera at some distance. Yet, the affine
deformation of the object’s aspect will be different for each of its patches. This explains
why affine invariant recognition methods deal with local descriptors. The parameter t
defined above measures the so-called absolute tilt between the frontal view and a slanted
view. The uniqueness of the decomposition in (1.1) justifies the next definition.

Definition 1.1. We call absolute tilt of A the real number τ (A) defined by
GL+ (2) → [1,∞[

A 7→
{

1 if A ∈ GO+ (2)
t if A ∈ GL+

∗ (2)

where t is the parameter found when applying Proposition 1.1 to A.

Proposition 1.2. Let A ∈ GL+ (2). Then

τ (A) =
√
λ1
λ2

= |||A|||2
∣∣∣∣∣∣∣∣∣A−1

∣∣∣∣∣∣∣∣∣
2

where λ1 ≥ λ2 are the singular values of A and |||·|||2 is the usual Euclidean matrix norm.

Proof. The case of a similarity being straightforward, suppose that A ∈ GL+
∗ (2). Then,

using (1.1) we can re-write

A = R1

(
γ1 0
0 γ2

)
R2

where R1, R2 are two rotations and γ1 ≥ γ2 > 0. So

A?A = Rt2

(
γ2

1 0
0 γ2

2

)
R2
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whose eigenvalues are
λ1 = γ2

1 and λ2 = γ2
2

but γ1, γ2 > 0 imply

A =
√
λ2R1

(√
λ1
λ2

0
0 1

)
R2

and finally τ (A) =
√

λ1
λ2
. In addition, it is well known that

|||A|||2 =
√
ρ (A?A) =

√
λ1,∣∣∣∣∣∣∣∣∣A−1

∣∣∣∣∣∣∣∣∣
2

=
√
ρ
(
(AA?)−1

)
= 1√

λ2

where ρ (A?A) is the largest eigenvalue of A?A, i.e, the largest singular value of A.

1.2.2 Transition Tilts

Image descriptors like those proposed in the SIFT method are invariant to translations,
rotations and Gaussian zooms, which in terms of the camera position interpretation (see
Figure 1.1) correspond to a fronto-parallel motion of the camera, a spin of the camera
and to an optical zoom. We shall focus on the last part TtR2 of the decomposition (1.1)
because it is the one that is imperfectly dealt with by SIIMs. SIIMs are instead able to
detect objects up to a similarity. This leads us to the next definition.

Definition 1.2. Let A,B ∈ GL+ (2). Then we define the right equivalence relation ∼ as

A ∼ B ⇔ AB−1 ∈ GO+ (2) .

Remark 1.3. It is important to notice here that the right and left equivalence relations
do differ. For example, take

A = T2Rπ
4
and B−1 = Rπ

4
T2,

then
AB−1 = 2Rπ

2
∈ GO+

whereas
B−1A = Rπ

4
T4Rπ

4
/∈ GO+.

Definition 1.3. Let A,B ∈ GL+ (2). We call transition tilt between A and B the absolute
tilt of AB−1, i.e.

τ
(
AB−1

)
.

The transition tilt has an agreeable visual interpretation appearing in Figure 1.2. By
Formula (1.1) applied to AB−1, passing from an image Bu to an image Au comprises
a single non-Euclidean transformation, namely the central tilt matrix Tτ(AB−1) which
squeezes the image in the direction of x after having rotated it. Thus the transition tilt
measures the amount of image distortion caused by a change of view angle. We now state
and give a brief proof of the formal properties of the transition tilt stated in [MY09].
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Figure 1.2: Passage from transition tilts (left side) to absolute tilts (right side).

Proposition 1.3. For A,B ∈ GL+ (2) we have

1. τ
(
AB−1) = 1 ⇔ A ∼ B;

2. τ (A) = τ
(
A−1);

3. τ
(
AB−1) = τ

(
BA−1);

4. τ
(
AB−1) ≤ τ (A) τ (B);

5. max
{
τ(A)
τ(B) ,

τ(B)
τ(A)

}
≤ τ

(
AB−1).

Proof. 1)
τ
(
AB−1

)
= 1⇔ AB−1 = λR⇔ A = λRB

2) By proposition 1.2

τ (A) = |||A|||2
∣∣∣∣∣∣∣∣∣A−1

∣∣∣∣∣∣∣∣∣
2

= τ
(
A−1

)
3) From 2) we have

τ
(
AB−1

)
= τ

((
AB−1

)−1
)

= τ
(
BA−1

)
4) By proposition 1.2

τ
(
AB−1

)
=

∣∣∣∣∣∣∣∣∣AB−1
∣∣∣∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣∣∣∣∣(AB−1
)−1

∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ |||A|||2
∣∣∣∣∣∣∣∣∣B−1

∣∣∣∣∣∣∣∣∣
2
|||B|||2

∣∣∣∣∣∣∣∣∣A−1
∣∣∣∣∣∣∣∣∣

2
= τ (A) τ (B)

5) From 4) we have

τ (A) = τ
(
AB−1B

)
≤ τ

(
AB−1

)
τ (B)

and the same relation for B.
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Definition 1.4. We call Space of Tilts, denoted by Ω, the quotient GL+ (2) / ∼ where
the equivalence relation ∼ has been given in Definition 1.2.

This proposition completes Definition 1.2 and clarifies the geometrical interpretation
of the space of tilts: an element in the space of tilts represents the set of all the camera
spins and zooms associated with a certain tilt in a certain direction.

Notation 1.1. Let A ∈ GL+ (2). We denote by [A] the equivalence class in the space of
tilts associated to A i.e.

[A] =
{
B ∈ GL+ (2) |A ∼ B

}
.

Definition 1.5. We denote by i the canonical injection from the space of tilts to GL+ (2)
defined by

i :
{

Ω → GL+ (2)
[A] 7→ Tτ(A)Rφ(A)

.

This injection filters out the canonical representative from each class which is a mere
tilt in the x direction.

Remark 1.4. Clearly, the function i satisfies

[A] = [i ([A])]

and the space of tilts can be parameterized by picking these representative elements in each
class as

Ω = [Id]
⋃  ⋃

(t,φ)∈]1,∞[×[0,π[
[TtRφ]

 .

The next proposition brings an additional justification to Definition 1.4. It means
that the transition tilt does not depend on the choice of the class representative in the
space of tilts.

Proposition 1.4. Let A, B, C, D ∈ GL+ (2) satisfying C ∈ [A] and D ∈ [B]. Then

τ
(
AB−1

)
= τ

(
CD−1

)
.

Proof. Let C ∈ [A] , D ∈ [B]. We first remark that if either A ∈ GO+ (2) or B ∈ GO+ (2)
then the transition tilt operation is respectively the absolute tilt of D or C, which does
not depend on the class representative.

So without loss of generality suppose A,B ∈ GL+
∗ (2). Then, by proposition 1.1, they

are re-written in a unique way as

A = λAQATsRA

B = λBQBTtRB

and the same result can be applied to the following two matrices

AB−1 = λAB−1QAB−1Tτ(AB−1)RAB−1 (1.2)
TsRAR

−1
B T−1

t = αQ3Tt3R3.
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Moreover
AB−1 = λAQATsRA (λBQBTtRB)−1

= αλA
λB

(QAQ3)︸ ︷︷ ︸
rotation

Tt3

(
R3Q

−1
B

)
︸ ︷︷ ︸
rotation

.

Then, by uniqueness of decomposition in equation (1.2) we have Tτ(AB−1) = Tt3 , implying

τ
(
AB−1

)
= τ

(
TsRAR

−1
B T−1

t

)
.

Again, the same methodology applied to
C = λCQCA

= λCλAQCQATsRA

and
D = λDQDB

= λDλBQDQBTtRB

shows that
τ
(
CD−1

)
= τ

(
TsRAR

−1
B T−1

t

)
= τ

(
AB−1

)
.

The next proposition follows directly from Proposition 1.3.
Proposition 1.5. The function d

d :
{

Ω × Ω → R+
([A] , [B]) 7→ log τ

(
AB−1)

is a metric acting on the space of tilts.
Proof. First, d is well defined thanks to Proposition 1.4 which ensures the independence
from class representatives. Let us now prove the four metric axioms:
1) By definition of the absolute tilt ∀A,B ∈ GL+ (2) one has that τ

(
AB−1) ≥ 1. This

implies
d ([A] , [B]) ≥ 0.

2) By Proposition 1.3-1) ∀A,B ∈ GL+ (2)

d ([A] , [B]) = 0 ⇔ τ
(
AB−1

)
= 1

⇔ A ∼ B
⇔ [A] = [B]

3) ∀A,B ∈ GL+ (2), Proposition 1.3-3) states that

τ
(
AB−1

)
= τ

(
BA−1

)
which implies

d ([A] , [B]) = d ([B] , [A])
4) ∀A,B,C ∈ GL+ (2), Proposition 1.3-4) assures that the following inequality holds

τ

(
BC−1

(
AC−1

)−1
)
≤ τ

(
BC−1

)
τ
(
AC−1

)
.

As the logarithm is monotone in [1,∞[, by simply applying it to both sides one obtains
the triangular inequality for d.
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1.2.3 Neighborhoods in the space of tilts

Now that we have introduced the space of tilts and the adequate metric on this space to
measure image distortion, we wish to explore optimal coverings for this space. We start
by establishing closed formulas for disks in this 2D space.

Theorem 1.1. Given an element of the space of tilts in canonical form [TtR (φ1)], the disk
B ([TtR (φ1)] , r) in the space of tilts centered at this element and with radius r corresponds
to the following set {

[TsR (φ2)] |G (t, s, φ1, φ2) ≤ e2r + 1
2er

}
where

G (t, s, φ1, φ2) =
(
t
s + s

t

2

)
cos2 (φ1 − φ2) +

( 1
st + st

2

)
sin2 (φ1 − φ2) .

The proof of this theorem is given in the appendix. Figure 1.3 displays such disks in
polar coordinates (log τ cos (φ) , log τ sin (φ)). This representation will be convenient to
visualize region coverings defined by disks in the space of tilts. Figure 1.4 is illustrating
an observation hemisphere, which displays in a geometric environment the space of tilts,
the class of affine transformations in question (green dots) and their neighborhoods (black
surfaces). Notice that green dots represent camera viewpoints as depicted in Figure 1.1.
In both representations, the pairs (τ, φ) and (τ, φ+ π) are denoting the same element of
the space of tilts. This is easily interpreted: Two identical images of a planar scene are
indeed obtained by an affine camera positioned with a π longitude difference.

Proposition 1.6. Let A,B,C ∈ GL+ (2). Then

[A]C = [AC] ,

i.e, classes in Ω are stable by right multiplication. Moreover,

d ([AC] , [BC]) = d ([A] , [B]) .

Proof. 1) Proof of [A]C ⊂ [AC].

B ∈ [A] =⇒ B = λRA

=⇒ BC = λRAC

=⇒ BC ∈ [AC]

2) Proof of [AC] ⊂ [A]C.

D ∈ [AC] =⇒ D = λRAC

=⇒ D ∈ [A]C

3)

d ([AC] , [BC]) = log τ
(
AC (BC)−1

)
= log τ

(
AB−1

)
= d (A,B)
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(a) B
(
[Id], log

√
2
)

(b) B
([
T√2R0

]
, log
√

2
)

(c) B
(
[T2R0], log

√
2
)

(d) B
(
[T4R0], log

√
2
)

Figure 1.3: (Polar coordinates)

Green point - Affine transformation in question
Dashed line - ∂B

(
[Id] , log 4

√
2
)

Dotted line - Equal tilts
Red line - Disk’s boundary

Remark 1.5. Proposition 1.6 guarantees that transition tilts remain unchanged by right
compositions. Furthermore, as argued in the proof of Proposition 1.7, the right compo-
sition with an element C ∈ GL+ (2) could be seen as a modification from a hypothetic
frontal image u to another hypothetic frontal image C−1u. All this gives both motivation
and meaning to the forthcoming Theorem 1.2.

Remark 1.6. One might also be interested in the way disks are transformed by left mul-
tiplication of elements belonging to GL+ (2). Unfortunately, in general

C [A] 6= [CA] .

Take for example C = A = Tt so

Rπ
2

= Tt

(1
t
Rπ

2
Tt

)
/∈ [Tt2 ] .
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(a) B
(
[Id], log

√
2
)

(b) B
([
T√2R0

]
, log
√

2
)

(c) B
(
[T2R0], log

√
2
)

(d) B
(
[T4R0], log

√
2
)

Figure 1.4: (Perspective views)
Green point - Affine transformation in question

Dashed line - ∂B
(
[Id] , log 4

√
2
)

Black surface - Disk in question

Furthermore, for C ∈ GL+ (2) one has

τ
(
CAB−1C−1

)
= c2

(
CAB−1C−1

)
=
∣∣∣∣∣∣∣∣∣CAB−1C−1

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣∣∣∣C (AB−1
)−1

C−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ |||C|||22
∣∣∣∣∣∣∣∣∣C−1

∣∣∣∣∣∣∣∣∣2
2

∣∣∣∣∣∣∣∣∣AB−1
∣∣∣∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣∣∣∣∣(AB−1
)−1

∣∣∣∣∣∣∣∣∣∣∣∣
2

= τ (C)2 τ
(
AB−1

)
so, in general

d ([CA] , [CB]) ≤ 2d ([C] , [Id]) + d ([A] , [B]) .

The following theorem will be crucial in the next Section to explain why IMAS algo-
rithms are truly affine invariant.

Theorem 1.2. Let

Γ1 = B ([Id] , log Λ1)
Γ2 = B ([Id] , log Λ2)
Γ′ = B ([Id] , log Λ2r) .
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be three neighborhoods of [Id] in Ω where Λ1,Λ2, r ∈ [1,∞[, and assume that S1,S2 ⊂ Ω
are two log r-coverings of Γ1 and Γ′, i.e

Γ1 ⊂
⋃
S∈S1

B (S, log r)

Γ′ ⊂
⋃
S∈S2

B (S, log r) .

Then, for every [A] ∈ Γ1, [B] ∈ Γ2, there exist C ∈ GL+ (2) with τ (C) ≤ r, SA ∈ S1 and
SB ∈ S2 such that

d
(
SA,

[
(AC)−1

])
= 0

d
(
SB,

[
(BC)−1

])
≤ log r.

A sketch of Theorem 1.2 appears in Figure 1.5.

Proof. Let us set C = A−1i (SA)−1 where i appears in Definition 1.5.
1) Proof of d

(
SA,

[
(AC)−1

])
= 0.

Proposition 1.3-2) directly implies

d ([Id] , [A]) = d
(
[Id] ,

[
A−1

])
.

Then, as S1 is a log r-covering of Γ1, there exists SA ∈ S1 such that[
A−1

]
∈ B (SA, log r)

meaning that, the following inequality holds

d
(
[Id] ,

[
A−1i (SA)−1

])
= log τ

(
A−1i (SA)−1

)
= d

([
A−1

]
, SA

)
≤ log r.

Finally, as d is a metric (by Proposition 1.5) we know

d
(
SA,

[
(AC)−1

])
= d (SA, [i (SA)]) = 0.

2) Proof of d
(
SB,

[
(BC)−1

])
≤ log r.

By first using Proposition 1.3 followed by Proposition 1.5 we have

τ (BC) ≤ τ (B) τ
(
C−1

)
= Λ2r

⇓

d
(
[Id] ,

[
(BC)−1

])
= log τ (BC) ≤ log Λ2r

⇓[
(BC)−1

]
∈ Γ′.

Once more, as S2 is a log r-covering of Γ′, there exists SB ∈ S2 such that[
(BC)−1

]
∈ B (SB, log r) .
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[Id]

Γ1

SA=
[
(AC)−1

]

[Id]

Γ2

Γ′

SA

B (SA, log r)

[
A−1
]

[
B−1
]

SB[
(BC)−1

]
B (SB , log r)

Figure 1.5: Sketch of Theorem 1.2.

1.3 Application: optimal affine invariant image matching
algorithms

The theory and results presented above provide a well suited geometrical framework
for image matching by affine simulation (IMAS). This section gives the mathematical
formalism and a mathematical proof that IMAS based algorithms are fully affine invariant,
up to sampling errors. While the former sections only dealt with affine geometry, we
now must introduce in the formalism the camera blur, as we shall deal with digital image
recognition. Our goal is to define rigorously affine invariant recognition for digital images.

Consider a continuous and bounded image u (x) defined for every x = (x, y) ∈ R2. All
continuous image operators including the sampling will be written in capital letters A, B
and their composition as a mere juxtaposition AB.

Definition 1.6. For any A ∈ GL+ (2), we define the affine transform A of a continuous
image u by

Au(x) :=u(Ax).

Homotheties and rotations acting on continuous images are similarly written as

Hλu (x) = u (λx) ;
Rφu (x) = u (Rφx) .

We now introduce a compact notation for the various convolutions with Gaussians.
We shall denote by ?x the 1-D convolution operator in the x-direction, i.e.

G ?x u (x, y) =
∫
R
G (z)u (x− z, y) dz.

Similarly, we denote by ?y the 1-D convolution operator in the y-direction. We denote
by Gσ, Gx

σ and Gy
σ respectively the 2D and 1D convolution operators in the x and y
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directions with

Gcσ (x, y) := 1
2π(cσ)2 e

−x
2+y2

2(cσ)2

Gxcσ (x) := 1√
2πcσ

e
− x2

2(cσ)2

Gycσ (y) := 1√
2πcσ

e
− y2

2(cσ)2

namely

Gσu := Gcσ ? u

Gx
σu := Gxcσ ?x u

Gy
σu := Gycσ ?y u.

Here the constant c ≥ 0.7 is large enough to ensure that all convolved images, initially
sampled at 1 distance, can be sub-sampled at Nyquist distance σ without causing signif-
icant aliasing.

Remark 1.7. Gσ satisfies the semigroup property

GσGβ = G√
σ2+β2 . (1.3)

By a mere change of variables in the integral defining the convolution, the next formula
holds and will be useful:

GσHγu = HγGσγu. (1.4)

In the classic Shannon-Nyquist framework, we shall denote the image sampling opera-
tor (on a unary grid) by S1. Thus S1u is defined on the grid Z2. The Shannon-Whittaker
interpolator of a digital image on Z2 will be denoted by I.

As developed in [YM11], the whole image comparison process, based on local features,
can proceed as though images where (locally) obtained by using digital cameras that stand
far away, at infinity. The geometric deformations induced by the motion of such cameras
are affine maps. A model is also needed for the two main camera parameters not deducible
from its position, namely sampling and blur. The digital image is defined on the camera
CCD plane. The pixel width can be taken as length unit, and the origin and axes chosen
so that the camera pixels are indexed by Z2. The digital initial image is always assumed
well-sampled and obtained by a Gaussian blur with standard deviation around 0.8. In all
that follows, u0 denotes the (theoretical) infinite resolution image that would be obtained
by a frontal snapshot of a plane object with infinitely many pixels. The digital image
obtained by any camera at infinity is therefore formalized as u = S1G1AT u0, where A is
any linear map with positive singular values and T any plane translation. Thus we can
summarize the general image formation model with cameras at infinity as follows.

Definition 1.7 (Image formation model). Digital images of a planar object whose
frontal infinite resolution image is u0, obtained by a digital camera far away from the
object, satisfy

u =: S1G1AT u0 (1.5)
where A is any linear map and T any plane translation. G1 denotes a Gaussian kernel
broad enough to ensure no aliasing by 1-sampling, namely IS1G1AT u0 = G1AT u0.

The image formation model in Definition 1.7 is illustrated in Figure 1.6.
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Figure 1.6: The projective camera model u = S1G1Au0. A is a planar projective transform (a homography).
G1 is an anti-aliasing Gaussian filtering. S1 is the CCD sampling.

1.3.1 Inverting tilts

We now formalize the notion of tilt. There are actually three different notions of tilt,
that we must carefully distinguish.

Definition 1.8. Given t > 1, the tilt factor, define:
• Geometric tilts

T xt u0(x, y) =: u0(tx, y);
T yt u0(x, y) =: u0(x, ty).

• Simulated tilts (taking into account camera blur)

Txt v =: T xt Gx√
t2−1 ?x v;

Tyt v =: T yt G
y√
t2−1 ?y v.

• Digital tilts (transforming a digital image u into a digital image)

u→S1Txt Iu;
u→S1Tyt Iu.

Digital tilts are the ones used in practice. It all adds up because the simulated tilt
yields a blur permitting S1-sampling.

If u0 is an infinite resolution image observed with a camera tilt of t in the x direction,
the observed image is G1T

x
t u0. Our main problem is to reverse such tilts. This operation

is in principle impossible, because geometric tilts do not commute with blur. However,
the first formula of the next Theorem 1.3 shows that Tyt is, up to a zoom out, a pseudo
inverse to T xt .

The meaning of this result is that a tilted image G1T
x
t u can be tilted back by tilting

in the orthogonal direction. The price to pay is a t zoom out. The second relation in the
theorem means that the application of the simulated tilt to an image that can be well
sampled by S1 yields an image that keeps that well sampling property.

Theorem 1.3. Let t ≥ 1. Then

TytG1T
x
t = G1Ht; (1.6)

TytG1 = G1T
y
t . (1.7)
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Proof. Since Ht = T yt T
x
t , (1.6) follows from (1.7) by composing both sides on the right

by T xt . Let us now prove (1.7). We shall use the following obvious facts

G1 = Gx
1G

y
1 = Gy

1G
x
1 (1.8)

which follows from the separability of the Gaussian and Fubini’s theorem and the com-
mutation

Gx
1T

y
t = T yt Gx

1 (1.9)

which is true because Gx
1 and T yt act separably on the variables x and y. Using first (1.4)

in the y dimension where T yt is a mere homothety, and then successively (1.9), (1.8), the
semigroup property for the Gaussians, and Definition 1.8 we get

T yt G
y
t = Gy

1T
y
t ⇒

Gx
1T

y
t G

y
t = Gx

1G
y
1T

y
t ⇒

T yt G
y
tGx

1 = G1T
y
t ⇒

T yt G
y√
t2−1G

y
1G

x
1 = G1T

y
t ⇒

TytG1 = G1T
y
t ,

which proves (1.7).

The meaning of Theorem 1.3 is that we can design an exact algorithm that simulates
all inverse tilts for comparing two digital images. This algorithm handles two images
u = G1AT1w0 and v = G1BT2w0 that are two snapshots from different view points of a
flat object whose front infinite resolution image is denoted by w0.

1.3.2 Proof that IMAS works

In this section, the formal IMAS algorithm is duly presented (Algorithm 1). Our goal is
to prove that it works. This proof is a direct application of the results introduced of the
previous section. The algorithm and its proof rely on the formal assumption that there
exists an image comparison algorithm able to compare image pairs with tilts lower than
r. The core idea of IMAS algorithms is illustrated in Figure 1.7.
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Algorithm 1 Formal IMAS (Image Matching by Affine Simulation)
environment:
Parameters and assumptions from Theorem 1.2 with

Si =
{[
T xti
k
Rφi

k

]}
k=1,...,ni

.

input:
Query and target images: u and v.
start:
foreach k ∈ {1, ..., n1} do

uk = Txt1
k
Rφ1

k
u.

foreach k ∈ {1, ..., n2} do
vk = Txt2

k
Rφ2

k
v.

foreach (k1, k2) ∈ {1, ..., n1} × {1, ..., n2} do
Mk1,k2 = SIIM-Matches(uk1 , vk2).

return:

M =
⋃

(k1,k2)∈{1,...,n1}×{1,...,n2}
Mk1,k2 .

Figure 1.7: IMAS algorithms start by applying a finite set of optical affine simulations to u and v, followed by
pairwise comparisons.
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Proposition 1.7. Let u and v be respectively query and target images which are related by
a transition tilt under Λ1Λ2, i.e. there exist a continuous image w0 and A,B ∈ GL+ (2)
with

τ (A) ≤ Λ1 and τ (B) ≤ Λ2

such that
u = G1AT1w0 and v = G1BT2w0 (1.10)

where T1, T2 are planar translations. Then, under the assumptions of Theorem 1.2, the
formal IMAS of Algorithm 1 generates two affine versions of the images u and v with a
transition tilt lower than r.

Proof. By Theorem 1.2 there exist SA ∈ S1, SB ∈ S2 and C ∈ GL+ (2) with τ (C) ≤ r
such that

d
(
SA,

[
(AC)−1

])
= 0

d
(
SB,

[
(BC)−1

])
≤ log r.

Consider the slanted view of the frontal continuous image w0 defined by w1 := C−1w0.
Then we can rewrite query and target images as

u = G1ACT1w1 and v = G1BCT2w1.

By Proposition 1.6, the above modification keeps transitions tilts stable, i.e.

d ([AC] , [BC]) = d ([A] , [B]) ,

so we can reason as if w1 were the frontal image, instead of w0.
Now, the formal IMAS Algorithm 1 will apply i (SA) = T xtARφA and i (SB) = T xtBRφB

respectively on the query and target images. This is:

1. TxtARφA to u, which yields

ũ = G1i (SA)ACT1w1

= G1λRT1w1.

2. TxtBRφB to v, which yields

ṽ = G1i (SB)BCT2w1.
But

d ([Id] , [i (SB)BC]) = log τ (i (SB)BC)

= d
(
SB,

[
(BC)−1

])
≤ log r

which proves that the affine relation between ũ and ṽ involves a transition tilt under r.

Remark 1.8. Two log r-coverings of the same region

Γ = B ([Id] , log Λ)

would then ensure that the formal IMAS Algorithm 1 manages to reduce transition tilts
under Λ2

r between two images into transition tilts under r. A relation between covered
absolute tilts, attainable transition tilts and maximal viewpoint angle can be found in
Table 1.1.
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Table 1.1 Link between absolute tilts, transition tilts and viewpoint.
Covered Attainable Viewpoint

absolute tilts transition tilts angle
(τ (A) ≤

√
rΛ and τ (B) ≤

√
rΛ)

(
τ
(
AB−1) ≤ Λ2) (

arccos 1
Λ2

)
Λ = 8 64 89.1◦

Λ = 4
√

2 32 88.2◦
Λ = 4 16 86.4◦

Λ = 2
√

2 8 82.8◦
Λ = 2 4 75.5◦

Λ =
√

2 2 60◦

1.3.3 Optimal discrete coverings in the space of tilts

We now consider the problem of providing two optimal sets S1,S2 ⊂ Ω permitting the
application of Theorem 1.2. These sets should ensure a minimal complexity for the IMAS
algorithm. We thus need to define an optimality criterion. We observe that an IMAS al-
gorithm simulates affine transformations on a digital image and then compares descriptors
coming from those simulated versions. One would like to minimize the overall number
of descriptor comparisons while maintaining the detection efficiency. This minimization
is not equivalent to a minimization of the number of simulated versions being used. We
shall base our efficiency criterion on two straightforward remarks. The first one is that if
a digital image suffers a tilt t in any direction, its area gets modified by a factor 1

t . The
second one is that the expected number of keypoints in a digital image is proportional
to its area. Both remarks imply that the complexity of an IMAS algorithm will be given
by the overall area of the simulated images being ultimately compared. This justifies the
next definition.

Definition 1.9. We call area ratio of S (a finite set of elements in Ω) the real number

∑
S∈S

1
τ (S) .

The area ratio fixes the factor (larger than 1) by which the image area is being mul-
tiplied when summing the areas of all of its tilted versions. Then, as the ultimate goal is
to reduce the number of key points comparisons, it is natural to look for a set S whose
area ratio is close to the infimum among all log r-coverings of Γ. Unfortunately, even
in R2, the mathematical problem of finding a covering of a certain set with a minimum
amount of disks is well known to be NP-hard. It is therefore difficult to find an optimal
solution for our problem, and unlikely that it will be proved to be optimal even if it is.
Fortunately, our search space in the set of log r-coverings can be drastically reduced by
imposing practical and theoretical constraints to S. Those constraints follow from simple
requirements for an image matching method.
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Definition 1.10. We shall say that a set S ∈ Ω is feasible if and only if:

1. [Id] ∈ S.

2. There exist n ∈ N+ and

(t1, ..., tn, φ1, ..., φn) ∈ [1,∞[n × ]0, π]n

such that
S \ {[Id]} =

n⋃
i=1

{
[TtiRkφi ] ∈ Ω | k = 0, ...,

⌊
π

φi

⌋}
where bac denotes the nearest integer less than or equal to a real number a.

Remark 1.9. Definition 1.10-1) avoids an image resolution loss before comparison, an
obvious requirement. Imposing groups of concentric equidistant tilts as in Definition 1.10-
2) is a sound isotropy requirement.

Definition 1.11. Set Γ = B ([Id] , log Λ). A feasible set S ∈ Ω with parameters

(n, (t1, ..., tn, φ1, ..., φn)) ∈ N+ × [1,∞[n × ]0, π]n

is said to be optimal among feasible sets if and only if it realizes the minimal area ratio.
In other words, optimal feasible sets are solutions of:

arg min
(n,(t1,...tn,φ1,...φn))∈N+×[1,∞[n×]0,π]n

1 +
n∑
i=1

|Jti,φi |
ti

(1.11)

subject to: Γ ⊂ Blog r
[Id] ∪

 ⋃
1≤i≤n

⋃
S∈Jti,φi

Blog r
[S]


where Jti,φi is the set of transformations of the form

TtiRφi , TtiR2φi ..., TtiR
⌊
π
φi

⌋
φi
,

|Jti,φi | is the cardinal of Jti,φi and B
log r
[S] is denoting B ([S] , log r).

Fortunately for our problem with the realistic values Λ = 6 and r = 1.8, n = 2
can be fixed, as easy heuristics indicate that any covering with n > 2 has a far too
large area ratio. Thus our optimization in a realistic setting ends up being performed
in dimension 4 for sets (t1, t2, φ1, φ2). With n thus fixed the optimization problem in
(1.11) can be exhaustively optimized. In this minimization we deal with 4 dimensions
and more specifically with 1004 feasible sets by sampling each parameter. This yields
an almost exact discrete exhaustive optimization by sampling densely the explored set
(t1, t2, φ1, φ2) with 100 different values for each parameter. The next proposition describes
the result of this optimization and verifies that it is indeed feasible.

Proposition 1.8. There exists a feasible log 1.8-covering, depicted in Figure 1.9c, with
area ratio equal to 6.34. It is an approximated solution of the optimization problem in
(1.11) for Γ = {[TtRφ] | t ≤ 6}, n = 2. Therefore, the infimum area ratio among all
log 1.8-coverings of {[TtRφ] | t ≤ 6} is lower than 6.34.
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Proof. We are dealing with 4 dimensions to minimize and more specifically with 1004

feasible sets. Computing area ratios for each feasible set is straightforward but validating
the covering condition is a more involved computational issue. For the sake of clearness,
the intersection of disks boundaries, which are composed at most of two elements for non
identical disks, shall be denoted by

Σ1 = ∂Blog 1.8
[Tt1 ] ∩ ∂B

log 1.8[
Tt1Rφ1

] Σ2 = ∂Blog 1.8
[Tt2 ] ∩ ∂B

log 1.8[
Tt2Rφ2

]
and their respective closest and farthest elements will be denoted by

minΣ1 := arg min
S∈Σ1

d (S, [Id]) maxΣ1 := arg max
S∈Σ1

d (S, [Id]) ,

minΣ2 := arg min
S∈Σ2

d (S, [Id]) maxΣ2 := arg max
S∈Σ2

d (S, [Id]) .

Covered area

B ([Id] , log r)

[Id] [Tt1 ]

[Tt1Rφ1 ]

min Σ1
max Σ1

(a) Second condition

Covered area

Γ

B ([Id] , log r)

[Id] [Tt2 ]

[Tt2Rφ2 ]

min Σ2 max Σ2

(b) Third condition

B ([Id] , log r)

[Id] [Tt1 ]

[Tt1Rφ1 ]

max Σ1

[Tt2 ]

[Tt2Rφ2 ]

min Σ2

Fε
(c) Fourth condition

Figure 1.8: Verifying covering conditions for feasible sets in Proposition 1.8.
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In order to check if a feasible set does cover the specified region we propose to verify
the following four conditions depicted in Figure 1.8:

1. Σ1 6= ∅ and Σ2 6= ∅.

2. minΣ1 must lie inside the ball Blog 1.8
[Id] , which ensures a covering of Blog τ(maxΣ1)

[Id] .

3. maxΣ2 must lie outside the region Γ, which ensures a covering of the annulus defined
by Γ \ Blog τ(minΣ2)

[Id] .

4. For ε small, all elements S ∈ Fε must lie inside some disks of radius log (1.8− ε),
i.e.

S ∈
⋃

1≤i≤2

⋃
S′∈Jti,φi

Blog(1.8−ε)
[S′] ,

where Fε is a finite ε-dense set of the annulus defined by

Blog τ(minΣ2)
[Id] \ Blog τ(maxΣ1)

[Id] .

Notice that the fourth condition only ensures a log (1.8− ε)-covering up to an error

ε = max
S′∈Γ

min
S∈Fε

d
(
S, S′

)
and so, by dilating back disks radius to 1.8 one ensures log 1.8-coverings.

By using the procedure described above, an approximated solution to the optimization
problem in (1.11) has been obtained. Its parameters can be found in Table 1.2. Its
corresponding representation in the space of tilts appears in Figure 1.9c.

Table 1.2 Approximated solution to the optimization problem in (1.11)
Parameter Value

topt1 2.88447
φopt1 0.394085
topt2 6.2197
φopt2 0.196389

The procedure in the proof of Proposition 1.8 has also been applied to find more near
optimal coverings appearing in Figure 1.9.

1.4 Experimental Validation
We are now able to propose and evaluate for each SIIM method its IMAS, namely its
affine-invariant extension. This affine invariant version relies on two facts. First, each
SIIM identifies viewpoint changes, under a certain transition tilt threshold (that we shall
estimate in this section). Second, any smooth map is locally approximable by an affine
map. Hence, under the assumption that the surface of photographed objects is locally
smooth, all viewpoint changes can be understood as local transition tilts changes (see
Figure 1.1). Third, once provided with a log r-covering of Γ = Γ′, where r is less than
the transition tilt threshold of the SIIM, Proposition 1.7 states that Algorithm 1 offers
an affine-invariant version of the considered SIIM. Indeed, there is at least one pair of
simulated images whose transition tilt is less than r, and on these two images the SIIM
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(a) Optimal log 1.6-covering of {[TtRφ] | t ≤ 5.6}
with 28 affine simulations representing an area ra-
tio of 8.42.

(b) Optimal log 1.7-covering of {[TtRφ] | t ≤ 5.8}
with 25 affine simulations representing an area ra-
tio of 7.06.

(c) Optimal log 1.8-covering of {[TtRφ] | t ≤ 6}
with 25 affine simulations representing an area ra-
tio of 6.34.

(d) Optimal log 1.9-covering of {[TtRφ] | t ≤ 8}
with 27 affine simulations representing an area ra-
tio of 6.18.

(e) Optimal log 2-covering of {[TtRφ] | t ≤ 10} with
32 affine simulations representing an area ratio of
6.02.

Figure 1.9: Near-optimal coverings in the space of tilts.
Gray areas - Uncovered.
Blue areas - Covered by at least two disks.
White areas - Covered by only one disk.
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can succeed. The affine invariance property is ensured for transition tilts changes up to
Λ1Λ2, i.e. for viewpoint angle changes of about arccos

(
1

Λ1Λ2

)
. We shall denote by ts1×s2max

the associated maximum tilt tolerance with respect to a matching method for images with
size larger than s1 × s2.

In our experiments, all SIIM methods were immersed in the same affine extension
set-up. The simulation of optical tilts, matching and filtering were handled in the very
same way. This set-up received as a parameter the name of the base detector+extractor
method to perform, then a brute force matcher was performed with the second-closest
neighbor acceptance criterion proposed by D. Lowe in [Low04]. Finally, as presented in
[MY09,YM11], three main filters were applied: first, only unique matches were taken into
account; second, groups of multiple-to-one and one-to-multiple matches were removed;
finally, only matches coming from the most significant geometric model (if it existed!)
were kept. In our case, as all tests were based on planar transformations, the ORSA
homography detector [MMM12] (a parameterless variant of RANSAC) was applied to
filter out matches not compatible with the dominant homography.

All detectors, all extractors and the matcher were taken from the Open Source Com-
puter Vision (OPENCV) Library, version 3.2.0.

1.4.1 Maximal tilt tolerance computation for each SIIM

From the complexity viewpoint, the main quantitative parameter for extending a SIIM
into an IMAS is its tilt tolerance. We do not question the invariance of descriptors with
respect to zoom and rotations but rather how they perform against transition tilts changes
incurred when matching, for example, G1Id u to G1TtRφu where t ∈ [1,∞[ and φ ∈ [0, π[.

We used the tolerance image dataset displayed in Figure 1.10 to evaluate the maximal
tilt tolerance of each SIIM with respect to images of similar size. Images in this dataset
have a fixed size and were selected to obtain a diversity of challenging scenarios. In order
to approximate t700×550

max , we simulated optical tilts on the tolerance image dataset and
then tested whether this affine simulation was identified by ORSA Homography with a
precision of 3 pixels. This test determined upper bounds U700×550

max depicted in Figure 1.11
for nine of the best state-of-the-art SIIMs.

This test yielded upper bounds for t700×550
max , based on its application to nine images

whose sizes are close to 700× 550. Supposing a maximal angle error computation of π
10 ,

we assumed that for each SIIM

t700×550
max = U700×550

max
1

|cos( π10)|
≈ U700×550

max
1.05

and constructed its affine invariant version with log t700×550
max -coverings.

1.4.2 Affine-invariant methods

The matching process is as symmetric as possible. No significant changes should come
along by interchanging the roles of the query and target images. In the case of IMAS
algorithms this symmetry implies a unique set of optical tilts to simulate on both query
and target images. Thus, if this unique set of optical tilts represents a log r-covering of

Γ1 = Γ′ = {[TtRφ] | t ≤ Λ}

then Proposition 1.7 ensures that any IMAS based on a SIIM whose maximum tilt toler-
ance is greater than r is able to identify all tilts under Λ2

r by simulating all affine maps
in the log r-covering.
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(a) 640× 480 (b) 650× 488 (c) 850× 680

(d) 800× 600 (e) 468× 493 (f) 800× 640

(g) 640× 480 (h) 800× 600 (i) 640× 480

Figure 1.10: Tolerance image dataset.

Several coverings in the space of tilts have been proposed in [MY09,YM11,PLYP12,
MMP15] for SIFT and SURF. Figure 1.14 displays these coverings. They are clearly not
optimal. Indeed, most of these coverings do not really cover the region they were meant
to, except for ASIFT [MY09, YM11] (which instead is visually redundant) and for the
affine DoG-SIFT version in [MMP15].

In order to compare the efficiency of those coverings, query and target images were
generated in a way so as to test Algorithm 1 to the limit, i.e., forcing the worst case
scenario in which

[
(BC)−1

]
lies in Γ′ \ Γ2. We simulated the optical tilts on query and

target images coming from one single image. This image, denoted by w0 and appearing
in Figure 1.12, was then used to compute the inputs of Algorithm 1 as follows:

• Query image (non-fixed tilt), G1At,φw0 where At,φ = RφTtRπ
2
.

• Target image (fixed tilt), G1Bφw0 where Bφ = Rφ+π
2
TΛ.

The veritable interest of these affine maps being the inverse maps they determine, namely,[
A−1
t,φ

]
=
[
TtRπ

2−φ
]
,[

B−1
φ

]
= [TΛRφ] ,

which according to Proposition 1.3-4, attain maximal transition tilts for fixed tilts such
as t and Λ, i.e.

τ
(
A−1
t,φBφ

)
= tΛ.

When ORSA Homography was able to identify the affine map that relates query and
target images, we counted the event as a success. Clearly, if Γ′ and Γ2 are truly log r-
covered then Proposition 1.7 implies that all tests for which

[
A−1
t,φ

]
∈ Γ1 should be counted
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(a) RootSIFT
(
U700×550

max = 2
)

(b) SIFT
(
U700×550

max = 1.8
)

(c) FREAK
(
U700×550

max = 1.8
)

(d) AKAZE
(
U700×550

max = 1.7
)

(e) BRISK
(
U700×550

max = 1.7
)

(f) ORB
(
U700×550

max = 1.5
)

(g) SURF
(
U700×550

max = 1.5
)

(h) LATCH
(
U700×550

max < 1.4
)

(i) BRIEF
(
U700×550

max � 1.4
)

Figure 1.11: Represented in the space of tilts, the associated upper bounds (U700×550
max ) for maximum tilt

tolerances.
Black dot - [Id].
Coloured dots stand for tested tilts [TtRφ] where t ∈ {1.4, 1.5, · · · , 2.4} and φ ∈ {0, 10, · · · , 170}.
Blue dots - attainable tilts for all images in the dataset.
Red dots - unattainable tilts for at least one image in the dataset.
Gray areas -

{
[TtRφ] |t ≥ U700×550

max
}
.

White areas -
{

[TtRφ] |t ≤ U700×550
max

}
.

as a success. Results in Figure 1.13 were as expected and highlight the importance of
using the right coverings for extreme cases. Both ASIFT and Optimal Affine-SIFT were
able to capt most of all transition tilts that Proposition 1.7 predicted, namely those under
Λ2

r .
We must keep in mind that these log r-coverings depend on tilt tolerances found over

images in Figure 1.10. Maximal tilt tolerances are linked to the size of images being
compared and as a consequence the disks radius might grow or shrink proportionally to
the minimum size of all simulated images. Moreover, Proposition 1.7 does not take into
account discretization errors and relies on two main hypotheses:

1. The considered SIIM is truly rotation and zoom invariant.

2. For images similar to the input image, the SIIM under consideration has a maximal
tilt tolerance not smaller than r.

As anticipated, the area ratio associated to a covering reliably evaluates the difference
of performance between affine versions of the same matching method. Being proportion-
ally linked to the total amount of keypoints, the area ratio of Definition 1.9 predicts the
order of growth in computation time. For example, the SIFT keypoint computation part
induced by the optimal covering in Figure 1.9b is twice faster than the one induced by the
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Figure 1.12: Image w0 (3264× 1836) for the IMAS efficiency test

ASIFT covering. The same goes for the matching part, only this time the optimal ver-
sion is four times faster. Since both coverings cover about the same region, our Optimal
Affine-SIFT supplants ASIFT with no qualitative matching loss.

Two examples of performance over query and target images from Figure 1.15 and
1.16 are respectively found in Table 1.3 and Table 1.4. In Table 1.3, Affine-ORB and
Affine-BRIEF both fail because of too many false matches. The best scores found by
ORSA to identify meaningful homographies were respectively 16 out of 905 and 6 out
of 1409. Code optimization, smart tweaks and parallelism performance may vary from
SIIM to SIIM and from IMAS to IMAS, which ultimately may lead to discrepant area
ratio predictions on computation time. This is the case of SURF (and optimal Affine-
SURF) whose implementation uses several fine and clever optimizations. Nonetheless,
the optimal Affine-SIFT yields more matches for a lower computation time.

In Table 1.4 the reader will notice that Affine-ORB has less matches than ORB itself,
which might seem contradictory. This happens when post-processing the matches, more
specifically, when applying the second filter. The multiple-to-one/one-to-multiple filter,
initially proposed in [MY09,YM11], is meant to filter out undesired aberrant matches but,
unfortunately, many good ones get also eliminated. In spite of this handicap, Affine-ORB
is able to catch more matches with higher transition tilts.
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Table 1.3 Matching methods performance over query and target images from Figure
1.15. The proposed matching methods in this chapter appear in bold. Computations
were performed on an Intel(R) Core(TM) i5-4210U CPU 1.70GHz with 2 cores.
M - Matches.
ar - area ratio.

M ar ar2 Keypoints Matching Filters
(seconds) (seconds) (seconds)

SIFT 0 1 1 0.69 0.70 0.18
ASIFT 1013 13.7 189.6 12.46 138.59 3.05

(Optimal) Affine-SIFT 795 7.06 49.8 6.04 29.61 1.39
RootSIFT 0 1 1 0.72 0.71 0.18

Affine-RootSIFT 658 6.9 47.6 5.05 20.70 1.44
SURF 0 1 1 1.01 0.79 0.19

(Optimal) Affine-SURF 471 14.82 219,6 12.53 35.24 1.40
BRISK 0 1 1 1.75 0.27 0.18

Affine-BRISK 421 8.42 70,89 18.95 8.68 2.06
BRIEF 0 1 1 0.05 0.01 0.19

Affine-BRIEF 0 14.82 219,6 4.20 2.18 6.08
ORB 0 1 1 0.05 0.02 0.17

Affine-ORB 0 14.82 219,6 4.34 5.13 3.25
AKAZE 0 1 1 0.42 0.13 0.21

Affine-AKAZE 194 8.42 70,89 5.00 6.23 3.74
LATCH 0 1 1 0.11 0.02 0.00

Affine-LATCH 37 14.82 219,6 4.52 2.16 0.17
FREAK 0 1 1 0.34 0.15 0.18

Affine-FREAK 145 7.06 49.8 4.37 2.38 1.94

Table 1.4 Matching methods performance over query and target images from Figure
1.16. The proposed IMAS methods proposed here appear in bold. Computations were
performed on an Intel(R) Core(TM) i5-4210U CPU 1.70GHz with 2 cores.
M - Matches.
ar - area ratio.

M ar ar2 Keypoints Matching Filters
(seconds) (seconds) (seconds)

SIFT 102 1 1 0.23 0.01 0.09
ASIFT 317 13.7 189.6 5.43 1.68 0.47

(Optimal) Affine-SIFT 292 7.06 49.8 2.71 0.38 0.30
RootSIFT 110 1 1 0.25 0.01 0.09

Affine-RootSIFT 219 6.9 47.6 2.23 0.28 0.24
SURF 110 1 1 0.24 0.03 0.14

(Optimal) Affine-SURF 663 14.82 219,6 3.68 1.19 0.73
BRISK 29 1 1 1.57 0.00 0.04

Affine-BRISK 49 8.42 70,89 17.57 0.06 0.08
BRIEF 0 1 1 0.03 0.00 0.00

Affine-BRIEF 7 14.82 219,6 2.06 0.09 0.03
ORB 102 1 1 0.02 0.01 0.8

Affine-ORB 90 14.82 219,6 2.12 0.31 0.40
AKAZE 20 1 1 0.16 0.00 0.03

Affine-AKAZE 51 8.42 70,89 2.31 0.06 0.09
LATCH 54 1 1 0.07 0.01 0.04

Affine-LATCH 101 14.82 219,6 1.72 0.12 0.10
FREAK 124 1 1 0.14 0.01 0.10

Affine-FREAK 182 7.06 49.8 2.54 0.11 0.31
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(a) Optimal Affine-SIFT (r = 1.7)
Γ1 = {[TtRφ] | t ≤ 3.41}
Γ′ = {[TtRφ] | t ≤ 5.8}

(b) ASIFT (r = 1.8)
Γ1 = {[TtRφ] | t ≤ 3.05}
Γ′ = {[TtRφ] | t ≤ 5.5}

(c) MEDIUM configuration for DoG-
SIFT (r = 1.8)
Γ1 = {[TtRφ] | t ≤ 5}
Γ′ = {[TtRφ] | t ≤ 9}

(d) Optimal Affine-SURF (r = 1.4)
Γ1 = {[TtRφ] | t ≤ 3.57}
Γ′ = {[TtRφ] | t ≤ 5}

(e) FAIR-SURF - simulated tilts (r =
1.5)
Γ1 = {[TtRφ] | t ≤ 3.77}
Γ′ =

{
[TtRφ] | t ≤ 4

√
2
}

(f) FAIR-SURF - fixed tilts (r = 1.5)
Γ1 = {[TtRφ] | t ≤ 3.77}
Γ′ =

{
[TtRφ] | t ≤ 4

√
2
}

Figure 1.13: Extreme test results.
Black dot - [Id].
Coloured dots stand for

[
A−1
t,φ

]
and belong to a fixed log 1.1 uniform discretization of the annulus{

[TtRφ] | 2 ≤ t ≤ 4
√

2
}
. The angle φ implicitly fixes

[
B−1
φ

]
= [TΛRφ] where Λ = arg maxt [TtRφ] ∈ Γ′.

Blue/Red dots - Success/Failure of ORSA Homography in identifying the underlying affine map.
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(a) Proposed covering for ASIFT in [MY09,YM11].
This is a log 1.8-covering of {[TtRφ] | t ≤ 5.5} with
41 affine simulations representing an area ratio of
13.77.

(b) Proposed covering for FAIR-SURF
in [PLYP12], called fixed tilts. This is a
log 1.5-covering of {[TtRφ] | t ≤ 1.7} with 23 affine
simulations representing an area ratio of 11.42.

(c) Proposed covering for FAIR-SURF
in [PLYP12], called simulated tilts. This is
a log 1.5-covering of {[TtRφ] | t ≤ 1.65} with 41
affine simulations representing an area ratio of
13.77.

(d) Proposed covering in [MMP15], called
MEDIUM configuration for DoG-SIFT. This is a
log 1.8-covering of {[TtRφ] | t ≤ 1.8} with 45 affine
simulations representing an area ratio of 9.

(e) Proposed covering in [MMP15], called HARD
configuration for DoG-SIFT. This is a log 1.8-
covering of {[TtRφ] | t ≤ 9.6} with 61 affine simu-
lations representing an area ratio of 13.

(f) Proposed covering in [MMP15], called HARD
Configuration for SURF-SURF. This is a log 1.5-
covering of {[TtRφ] | t ≤ 1.5} with 112 affine simu-
lations representing an area ratio of 21.28.

Figure 1.14: Examples of coverings found in the literature for maximum tilt tolerances as in Figure 1.11.
Gray areas - Uncovered.
Blue areas - Covered by at least two disks.
White areas - Covered by only one disk.

69



(a) 800× 640 (b) 800× 640

Figure 1.15: Graffiti. Both images generate a large number of keypoints for most methods.

(a) 600× 450 (b) 600× 450

Figure 1.16: Adam. Both images generate a small number of keypoints for most methods.
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2 Fast affine invariant image matching

2.1 Introduction
We saw that the best established image comparison method is SIFT [Low04]. This
method was shown in [MY08] to perform recognition invariant to image rotations, trans-
lations, and camera zoom-outs. SIFT has inspired numerous variations over the past 15
years [KS04, BTV06, AZ12]. As in Chapter 1, we refer to these methods as Scale In-
variant Matching Methods (SIIM). Several attempts have also been made to create local
image descriptors invariant to affine transformations [MCUP04,MSCG03,MTS+05]. Yet,
it was shown in [MY08] that none of these approaches is truly invariant to local affine
transformations, due to the fact that optical blur and affine transformations do not com-
mute. As a result, these methods cannot handle angle viewpoint differences larger than
60◦ for planar objects [MY09,MMP15], and lose quickly efficiency for angles larger than
45◦ [Kar16].

A more pragmatic approach, proposed a few years ago with the ASIFT Algorithm [MY08]
and adopted by several authors ever since [PLYP12,MMP15], consists in applying a pre-
determined set of affine transformations to each compared image, in order to simulate the
transformations induced by the viewpoint changes. Instead of comparing two images, the
resulting algorithm therefore compares all the pairs of simulated images. As in Chapter 1,
we refer to these simulation algorithms as IMAS, for Image Matching by Affine Simula-
tion. In favorable cases, IMAS can capture changes of point of view up to an impressive
88◦.

Figure 2.1: IMAS algorithms start by applying a finite set of optical affine simulations to u and v, followed by
pairwise comparisons.
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The first IMAS method provided with a mathematical proof of affine invariance is
ASIFT [MY09, YM11]. As its name indicates, ASIFT is an affine invariant extension
of SIFT, that actually operates on SIFT. It can operate on any Scale Invariant Image
Matching (SIIM) method like SURF [BTV06] as well, provided its descriptor shows some
robustness to angle viewpoint changes like SIFT descriptors do. Unlike MSER [MCUP04],
LLD [MSCG03], Harris-Affine and Hessian-Affine [MTS+05], which attempt at normaliz-
ing all of the six affine parameters, ASIFT only simulates the two camera axis angles, and
then applies SIFT which simulates the scale and normalizes the rotation and the transla-
tion. Similarly, FAIR-SURF [PLYP12] is an IMAS method replacing SIFT by SURF in
ASIFT. MODS [MMP15] is another IMAS using heuristics to test fewer affine transforms
and also combining different SIIMs. Other IMAS approaches do not involve local descrip-
tors: FAsT-Match [KRTA13] delivers affine invariance by assuming that the template (a
patch in the query image) can be recovered inside the target image by a unique affine
map. The six affine parameters are simulated instead of the three involved in ASIFT.

Our goal is in this chapter is to provide a generic IMAS method that cumulates three
new improvements, all aimed at acceleration and robustness:

• it minimizes the number of camera axis angles to be simulated;

• it defines local hyper-descriptors grouping descriptors at the same location to accel-
erate matching;

• it resolves the problem of Lowe’s matching thresholds that inhibits matching in
presence of multiple similar objects in the same image.

In IMAS methods, the viewpoint change between different views of the same planar scene
is measured by the so-called relative transition tilts [MY09, YM11]. Transition tilts to
be simulated to match two images can be much larger than absolute tilts. We describe
here our optimal solution to the key question of IMAS methods: how to choose the list
of tilts applied to both images to test these large transition tilts before comparison? In
Chapter 1 we treated this question by finding optimal coverings of the space of affine tilts.
In Section 2.2 we recall these results and give implementation details to construct nearly
optimal coverings. Section 2.3 gives the construction of hyper-descriptors. In Section 2.4
we describe the two structural and computational improvements of the method. One
is the replacement of Lowe’s acceptance criterion by an a contrario criterion, and the
other one is the elimination of useless “flat descriptors”. Section 2.5 contains a short
experimental assessment.

2.2 Image Matching by Affine Simulation

In this section, we will recall and present in a more practical way some definitions and
results formally introduced in Chapter 1. The notion of transition tilt appearing in
Definition 1.3 is helpful for measuring the affine distortion from a fixed affine viewpoint
to surrounding affine viewpoints. Transition tilts do not depend on the class representative
of A or B, so they can be defined directly on the quotient GL+ (2) / ∼. Proposition 1.5
gives an adequate measuring tool. As argued in Chapter 1 and in [Kar16], transition tilt
tolerances (determining visible viewpoints) are SIIM dependent. Most SIIMs are able to
identify viewpoint changes under 45◦ for image sizes around 700× 550.

Let us now recall disks formulas in the space of tilts with respect to the metric d in
Proposition 1.5.
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Notation 2.1. Let S ∈ Ω and r > 0. We denote either by B (S, r) or by BrS, the disk in
the space of tilts centered at S and with radius r.

Theorem (Theorem 1.1 from Chapter 1). Given an element of the space of tilts in
canonical form [TtR (φ1)], the disk B ([TtR (φ1)] , r) in the space of tilts corresponds to
the following set {

[TsR (φ2)] |G (t, s, φ1, φ2) ≤ e2r + 1
2er

}
,

where

G (t, s, φ1, φ2) =
(
t
s + s

t

2

)
cos2 (φ1 − φ2) +

( 1
st + st

2

)
sin2 (φ1 − φ2) .

Figures 1.4 and 1.3 from Chapter 1 show, in a perspective view and in polar coordinates
respectively, four disks in the space of tilts centered at four reference tilts. The radius
of these disks corresponds to a maximal change of angle view of 45◦ with respect to the
disk’s center. The larger the tilt, the smaller the disk with that radius, which means that
we need more and more disks to cover the high tilt regions. Notice that all disks appear
duplicated by symmetry. Indeed, a perspective visualization of Ω is impossible in R3: Ω
is the quotient of the half sphere by a central symmetry.

As a consequence, affine simulation is now a reliable way of extending the initial
visibility range of a SIIM. The idea is to place affine simulations in a way that they
render all elements in region γ ⊂ Ω perfectly visible for at least one of them. When that
happens we call that set of affine simulations a covering of the region in question.

Definition 2.1. We call S ⊂ Ω an α◦-covering of a region Γ ⊂ Ω if and only if

Γ ⊂
⋃
S∈S
B
(
S, log 1

cos (α◦)

)
.

Remark 2.1. In Definition 2.1, S ⊂ Ω actually corresponds to the centers of the balls
constituting the covering. For our scopes it will be a finite set, that determines the set of
affine transformations used to simulate affine viewpoints in IMAS algorithms, i.e.

{i (S) |S ∈ S}.

The region Γ ⊂ Ω of Definition 2.1 usually denotes a circular region representing all
viewpoints within a certain angle θ. The following definition gives a name to these sets.

Definition 2.2. The set Γ ⊂ Ω is called a γ◦-region if and only if

Γ =
{

[TtRφ] | t ≤ 1
cos (γ◦)

}
.

Several α◦-coverings of γ◦-regions have been proposed in [MY09, YM11, PLYP12,
MMP15] and in Chapter 1 for SIFT and SURF; among them those in Figure 2.2. It
is easily seen that they are far from optimality: some of these coverings do not really
cover the region they were meant to, except for ASIFT [MY09,YM11] which instead is
visually redundant. The following section describes the near optimal coverings proposed
in Chapter 1.
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(a) FAIR-SURF fixed tilts [PLYP12], a set of 23 affine simulations with an area ratio
of 11.42. It would represent a 48◦-covering of a 53◦-region. Highly redundant in the
central part, it does not cover the 80◦-region.

(b) MEDIUM DoG-SIFT [MMP15], a set of 45 affine simulations with an area ratio
of 9. It would represent a 56◦-covering of a 56◦-region. Although highly redundant, it
does not cover the 80◦-region.

(c) ASIFT [MY09, YM11], a set of 41 affine simulations with an area ratio of 13.77.
It would represent a 56◦-covering of a 80◦-region. Highly redundant, it does cover the
region it was meant to.

Figure 2.2: Non optimal coverings
Green points - Affine camera simulations

Red lines - Visibility tolerance from each affine simulation
White/Black surfaces - Visible viewpoints regions

Dashed line - Covered regions
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2.2.1 Near Optimal α◦-Coverings

Near optimal coverings in Chapter 1 ensure minimal complexity for IMAS algorithms.
One example of these α◦-coverings is represented in Figure 2.5a.

The optimization problem is to minimize the overall number of descriptor comparisons
while maintaining the same detection efficiency. This minimization is not equivalent to
a minimization of the number of simulated versions being used. As stated in Chapter 1,
the optimization problem should be driven by the area ratio from Definition 1.9. The
area ratio allows to measure the total number of key points from all tilted versions,
including the original one. Therefore, sets S with small area ratios will involve less key
point comparisons. Although this minimization problem is NP hard, the search space
is drastically reduced to those log r-coverings that can be obtained by feasible sets from
Definition 1.10. Feasible sets are composed by groups of concentric equidistant tilts (a
sound isotropy requirement), with the addition of the identity map, needed to avoid image
resolution loss before comparison.

Some conditions have been proposed in Chapter 1 in order to verify that a γ◦ region
is truly covered by a feasible set with a fixed number of concentric equidistant tilts. Let
the intersection of disks boundaries, which are composed at most of two elements for non
identical disks, be denoted by

Σi := ∂Blog r
[Tti ]
∩ ∂Blog r[

TtiRφi

], (2.1)

and their respective closest and farthest elements be denoted by

minΣi := arg min
S∈Σi

d (S, [Id]) , maxΣi := arg max
S∈Σi

d (S, [Id]) .

Then Algorithm 2 summarizes the aforementioned conditions in a function, called Is-
GammaCovered, that is to be called for querying if a feasible set covers a γ◦ region.

Figure 2.3 illustrates the iterative process described in Algorithm 2. One crucial
step in Algorithm 2 is the creation of an ε-dense set of a given annulus. As explained
in Chapter 1, this set is a helping hand to ensure a log (r − ε)-covering up to an error of
ε and so, by dilating back disks radius to r one ensures log r-coverings. Of course, there
exists an infinite number of ε-dense sets. For annulus like

Blog ti+1
[Id] \ Blog ti

[Id]

we propose to build the following set, which is proven to be a ε-dense set by the mere
application of the triangle inequality of the metric d,

Fε := {[TenεtiRkβi ] ∈ Ω|n, k ∈ N+, e
nεti < ti+1, k βε (enεti) < π} , (2.2)

where the function βε, appearing in Definition 2.3, determines the angle step for equal
distances over the same tilt.

Indeed, let z ∈ Blog ti+1
[Id] \ Blog ti

[Id] and its surrounding four points yi ∈ Fε, i ∈ Z/4Z
satisfying d (yi, yi+1) = ε. Four auxiliary points, xi i ∈ Z/4Z, are defined as projections
of z on arcs (see Figure 2.4). In that case, we always have either d (yi, xi) ≤ ε

2 , either
d (yi+1, xi) ≤ ε

2 . This implies that there exists at least one pair (j, k) with k = j or
k = j + 1 for which d (xj , z) ≤ ε

2 and such that

d (yk, z) ≤ d (yk, xj) + d (xj , z) ≤ ε.
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Algorithm 2 IsGammaCovered
input:
The initial α◦ visibility (fixes r = 1

cosα◦ ).
The γ◦ region to cover (fixes tγ = 1

cos γ◦ ).
parameters:
n - Number of concentric equidistant tilts for the feasible set (as in Definition 1.10). This
also fixes the amount of sets Σi, defined in (2.1).
ε - Number of uniformly discretized elements in each dimension with respect to the metric
d of Proposition 1.5.
start:
covered_portion = r . A feasible set always has the disk Blog r

[Id]

if Σ1 = ∅ then
return(false)

foreach i = 1, · · · , n− 1 do
if τ (minΣi) >covered_portion then

return(false)
covered_portion = maxΣi . the annulus Blog τ(maxΣi)

[Id] \ Blog τ(minΣi)
[Id] is already covered

if covered_portion > tγ then
return(true)

if Σi+1 = ∅ then
return(false)

foreach [TtRφ] ∈ Fε do
. Fε is the finite ε-dense set appearing in (2.2).

if [TtRφ] /∈ ⋃i+1
j=i B

log r−εTtjR⌊ φ
φj

⌋
φj

 ∪ B
log r−εTtjR⌈ φ

φj

⌉
φj

 then

return(false) .
[
TtRφ

]
must lie inside one of the four nearest disks (Theorem 1.1 is used)

. at this point the annulus Blog τ(minΣi+1)
[Id] \ Blog τ(maxΣi)

[Id] has been proved to be covered
covered_portion = minΣi+1

if τ (maxΣn) > tγ then
return(true)

else
return(false)
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Figure 2.3: Verifying covering conditions for feasible sets in Algorithm 2. Left : covered annulus determined
by min Σi and max Σi. Right : all elements in Fε must lie inside at least one disk.

Figure 2.4: Proving the ε-density of Fε.

Definition 2.3. We denote by βε, the function defined by

βε :
{

]1,∞] → [0, π[
t 7→ φ (t) ,

where φ (t) is such that
d
(
[Tt] ,

[
TtRφ(t)

])
= ε.

The procedure in the proof of Proposition 1.8 in Chapter 1 can also be applied to find
all kinds of near optimal coverings depending on the initial visibility α◦ and the γ◦-region
to be covered. Algorithm 3 delivers a way of finding near optimal α◦-coverings by fixing
n, the number of concentric equidistant tilts, and then optimizing over 2n dimensions. By
means of the canonical injection in Definition 1.5, a given α◦-covering determines the set
of affine maps to be simulated in Algorithm 5. Some examples of these kind of coverings
can be found in Table 2.1.

Remark 2.2. The global optimization proposed in Algorithm 3 should be followed by some
iterations of a refined search on the neighboring subsets containing the current optimum.

2.2.2 Simulating Digital Tilts

The former sections only dealt with affine geometry and now we shall focus on digital
image recognition. The formalism of the camera blur, presented in Section 1.3 from
Chapter 1, states that there are actually three different notions of tilt. Digital tilts are
the ones used in practice. It all adds up because the simulated tilt yields a blur permitting
S1-sampling.
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Algorithm 3 Finding near optimal coverings
input:
The initial α◦ visibility and the γ◦ region to cover.
parameters:
n - Number of concentric equidistant tilts (as in Definition 1.10).
κ - Number of uniformly discretized elements in each dimension with respect to the metric
d of Proposition 1.5.
inner definitions:
]t1, t2]κ =

{ t2
enεκ |n ∈ N, t1 < t2

enεκ ≤ t2
}
, ]0, β]tκ = {nβεκ (t) |n ∈ N, 0 < nβεκ (t) ≤ β}

where εκ is such that |]t1, t2]κ| =
∣∣∣]0, β]tκ

∣∣∣ = κ, and βr2 (ti) appears in Definition 2.3.
start:
r = log

(
1

cos(α◦)

)
. α◦ equivalent transition tilt

ar =∞ . current minimal area ratio
foreach (t1, t2, · · · , tn) ∈

]
r, r2]

κ ×
]
t1r, t1r

2]
κ × · · · ×

]
tn−1r, tn−1r

2]
κ do

foreach (φ1, φ2, · · · , φn) ∈ ]0, βr2 (t1)]t1κ × ]0, βr2 (t2)]t2κ × · · · × ]0, βr2 (tn)]tnκ do
if
(∑n

i=1 ti
⌊
π
φi

⌋
< ar

)
& IsGammaCovered (γ, t1, · · · , tn, φ1, · · · , φn) then

ar = ∑n
i=1 ti

⌊
π
φi

⌋
(
topt1 , · · · , toptn

)
= (t1, · · · , tn)(

φopt1 , · · · , φoptn

)
= (φ1, · · · , φn)

return S = {toptk , φoptk }k=1,...,n

Table 2.1 Near optimal α◦-coverings of γ◦-regions. As proved in Chapter 1, these
α◦-coverings will ensure for a generic IMAS an extended visibility in column EV for a
near-minimal area ratio in column AR.

α◦ γ◦ EV AR topt
1 φopt

1 topt
2 φopt

2 topt
3 φopt

3
45◦ 80◦ 87◦ 15.889 1.84641 0.459445 2.68973 0.234551 4.58177 0.116774
54◦ 80◦ 87◦ 7.354 2.54902 0.450362 4.71215 0.18624 - -
54◦ 81◦ 88◦ 7.548 2.67673 0.350162 5.65043 0.175859 - -
56◦ 80◦ 87◦ 6.290 2.89419 0.396183 6.33474 0.198091 - -
56◦ 83◦ 88◦ 7.221 2.89419 0.397562 6.07477 0.150497 - -
56◦ 84◦ 89◦ 9.014 2.79309 0.461217 4.61946 0.24717 9.65081 0.123523
58◦ 82◦ 88◦ 5.971 3.01682 0.450814 6.03598 0.200202 - -
58◦ 84◦ 89◦ 7.979 3.02483 0.448874 5.09033 0.261983 10.4035 0.131014
60◦ 84◦ 89◦ 6.126 3.2948 0.396543 7.78261 0.156965 - -

For the sake of clearness in this chapter, we denote by Tt the operator Txt appearing in
Definition 1.8. Therefore, digital tilts involving blur in the x direction and transforming
a digital image into another digital image, can be rewritten as

u→S1TtIu.

Our goal is to define rigorously affine invariant recognition for digital images. With
that in mind, we set once and for all how affine simulations are to be computed. Algo-
rithm 4 digitally simulates tilts in any direction, i.e simulates affine viewpoints from any
place of the sphere.
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(a) 56◦-covering with a set of 28 affine simulations that renders viewpoints visible in
a 82◦-region.

(b) 45◦-covering with a set of 43 affine simulations that renders viewpoints visible in
an 82◦-region.

Figure 2.5: Near optimal coverings
as in Chapter 1

Green points - Affine camera simulations
Red lines - Visibility tolerance from each affine simulation

White/Black surfaces - Visible viewpoints regions
Dashed line - Covered regions

Algorithm 4 Generating digital tilts in any direction (u S1TtRφIu)
input: the digital image u and parameters (t, φ)
start:
u = Rotate (u, φ) . with bilinear interpolation

. Rotate will frame the rotated version of u in a minimal rectangular image
u = GaussianBlur1D

(
u, σ = 0.8

√
t2 − 1

)
. Gaussian blur in the x-direction

u = Subsample (u, t) . Subsamples the image along the x-direction by a factor of t
return u

2.2.3 From SIIM to IMAS

We have seen in the previous sections how to compute a near optimal discrete set of affine
transformations in order to cover a given region with a visibility α. The core idea of the
IMAS approach, described in Algorithm 5 and illustrated by Figure 2.1, is to apply this
optimal set of transformations to images before comparing them with a SIIM method.
We showed in Proposition 1.7 of Chapter 1 that this algorithm offers an affine-invariant
version of the associated SIIM method. Indeed, the optimal covering ensures that there is
at least one pair of simulated images whose transition tilt is visible for the SIIM. Table 2.1
gives some examples of ensured visibility, depending on the assumed initial visibility α◦
of the SIIM and the γ◦-region to be covered.

Choosing the right α-covering is fundamental. It depends on the SIIM’s transition tilt
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Algorithm 5 Formal IMAS (Image Matching by Affine Simulation)
input: query and target images: u and v.
parameters:
a routine SIIM-Detector, two sets of optimal coverings S1 = {t1k, φ1

k}k=1,...,n1 and
S2 = {t2k, φ2

k}k=1,...,n2 , provided by Algorithm 3
. ζ (D,u, t, φ) is a simple routine that filters out those descriptors in D which after back projection with(

TtRφ
)−1

are not fully inside the domain of u
start:
foreach k = 1, . . . , n1 do

Du
k = SIIM-Detector

(
S1Tt1

k
Rφ1

k
u
)

. Descriptors on each simulated image from u

Du
k = ζ

(
Du
k ,u, t1k, φ1

k

)
foreach k = 1, . . . , n2 do

Dv
k = SIIM-Detector

(
S1Tt2

k
Rφ2

k
v
)

. Descriptors on each simulated image from v

Dv
k = ζ

(
Dv
k,v, t2k, φ2

k

)
foreach (k1, k2) ∈ {1, . . . , n1} × {1, . . . , n2} do

Mk1,k2 = SIIM-Matcher
(
Du
k1
, Dv

k2

)
. Set of matches between u and v

return M = ⋃
(k1,k2)∈{1,...,n1}×{1,...,n2}Mk1,k2

tolerance (with respect to a given image size) and the wanted extended visibility. Clearly,
the parameter α should be less than the initial visibility (determined by the transition
tilt tolerance) of the SIIM.

2.3 Hyper-Descriptors in IMAS

IMAS algorithms implementations have to deal with various types of spurious or redun-
dant matches that do not appear in the corresponding SIIM approaches. In this section, we
describe the reasons behind the occurrence of these aberrant matches. Since false matches
make it hard in practice to identify the underlying image transformation, we propose a
simple idea to eliminate most of them without significantly reducing the number of good
matches. To do this, we rely on the notion of hyper-descriptors. A hyper-descriptor is a
group of several local descriptors of the different simulated images whose corresponding
keypoints are close when back-projected in the original image plane.

2.3.1 Identifying Aberrant Matches

We identify in the following paragraphs three kinds of spurious or aberrant matches
inherently produced by IMAS algorithms.

First, these approaches naturally favor repetitive matches, since the same keypoints
can be matched in several pairs of simulated images. These matches are often good but
provide redundant information and should be considered as a single match.

Second, IMAS algorithms are prone to yield what we call multiple-to-one matches,
where several keypoints from the query image match one and the same keypoint from
the target image. These matches appear frequently in IMAS algorithms when they use
Lowe’s second nearest neighbor acceptance criterion1. Since simulated target images with

1In Lowe’s acceptance criterion, the ratio between the distance to the nearest neighbor and the distance
to the second nearest neighbor is thresholded to decide if a match is accepted or rejected.
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high absolute tilts are smaller and contain fewer keypoints, the number of second nearest
neighbors they provide is also smaller for these images than for lower absolute tilts. In
consequence, keypoints in these images are more likely to match those in the query image
and have a tendency to be involved in multiple-to-one matches. These matches can be
considered as false matches.

Third, IMAS algorithms have a strong tendency to give one-to-multiple matches,
where a single keypoint from the query image matches multiple keypoints from the target
image. Such matches, which can also be taken as indications of false matches, are naturally
eliminated from SIIM approaches by Lowe’s acceptance criterion. The multiplicity of
keypoints comparisons for a given structure in IMAS algorithms favors the apparition of
such one-to-multiple matches.

In order to handle all the above spurious matches generated by Algorithm 5, a post-
processing routine was proposed in [MY09,YM11] and adopted by all subsequent IMAS
approaches. This post-processing is usually composed of three successive filters designed
to remove repetitive matches, multiple-to-one matches and one-to-multiple matches. Such
a post-processing is described in Algorithm 6 and can be applied after Algorithm 5 to
identify the underlying transformation between the two images. Unfortunately, many
good matches also get eliminated by this hack. For example, if only one false match
comes to meet one end of a true match, then both matches get eliminated. Conversely,
truly repetitive objects create various multiple-to-one / one-to-multiple matches that will
always get discarded by this post-processing, and should not.

To avoid the loss of such correct matches, while eliminating the spurious and aberrant
matches described above, we introduce in the next section the notion of hyper-descriptor.

2.3.2 Hyper-Descriptors Matching

Definition 2.4. Let u be an image and {u1, . . . ,un} the optimal set of affine transformed
versions of u obtained with an IMAS algorithm. We call ρ-hyper-descriptor of u a group
of SIIM descriptors of this set of images, whose keypoints, once reprojected in u, are all
contained in a ball of radius ρ. The corresponding group of keypoints is called ρ-hyper-
keypoint.

In practice, we choose the radius ρ between 3 and 6 pixels, and we keep this parameter
fixed. In the following, for the sake of simplicity, we will assume that ρ is given and
speak directly about hyper-descriptors. Figure 2.6 shows an exemple of hyper-descriptor
composed of three SIIM descriptors extracted from three different affine simulations of
the same image u. This example illustrates an ideal case in which the center of three
SIIM descriptors coincide. In practice the keypoints are not detected at exactly the
same location. This ideal case would appear if no numerical errors were involved when
simulating tilts and obtaining descriptors around an infinitely accurate corresponding
keypoint.

Now that we have defined hyper-descriptors, Algorithm 8 describes a greedy approach
to extract them from an image u. First, a SIIM detector (SIFT or SURF for instance) is
applied to all affine simulated versions of u (the set of affine transformations is provided
as a parameter of the algorithm). Then, each detected SIIM descriptor gets assigned to
an existing hyper-descriptor or a new one is created. When assigned to an existing group,
the center of the hyper-keypoint needs to be recomputed and the hyper-descriptor can
be merged with a neighboring group. Each of the above computations can be done with
an O (1) complexity, implying that the descriptor extraction parts of Algorithm 5 and
Algorithm 7 have about the same complexity.
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Algorithm 6 Post-Processing of Algorithm 5
input:
M - List of output Matches of Algorithm 5.
parameters:
ρ1, ρ2, ρ3 - Distance thresholds
GeometricFilter - An algorithm detecting a geometric consensus among a list of
matches (e.g. RANSAC, ORSA Homography [MMM12], ORSA Fundamental [MMM16]
or USAC [RCP+13]).
output:
Filtered list of Matches
. a match m is composed by m.kq and m.kt which are respectively the associated query key-point and target

key-point.
. The spatial distance between any two key-points is denoted by Λ(k1, k2) =

∣∣∣( k1.x− k2.x
k1.y − k2.y

)∣∣∣
. unique filter

Mu = ∅
start:
foreach m ∈M do

flag-unique = true
foreach mu ∈Mu do

if Λ (m.kq,mu.kq) ≤ ρ1 and Λ (m.kt,mu.kt) ≤ ρ1 then
flag-unique = false

if flag-unique == true then
Mu = Mu ∪m

M = Mu

. multiple2one filter
Mm = ∅
foreach m ∈M do

flag-multiple2one = false
foreach mm ∈M \ {m} do

if Λ (m.kq,mm.kq) ≥ ρ3 and Λ (m.kt,mm.kt) ≤ ρ2 then
flag-multiple2one = true

if flag-multiple2one == false then
Mm = Mm ∪m

M = Mm

. one2multiple filter
Mm = ∅
foreach m ∈M do

flag-one2multiple = false
foreach mm ∈M \ {m} do

if Λ (m.kq,mm.kq) ≤ ρ2 and Λ (m.kt,mm.kt) ≥ ρ3 then
flag-one2multiple = true

if flag-one2multiple == false then
Mm = Mm ∪m

M = Mm

. Filtering matches agreeing with geometric consensus
M = GeometricFilter (M)
return M

82



Figure 2.6: A ρ-hyper-descriptor d = {ω1, ω2, ω3} from the ground image u. Green points denote keypoints
associated to d and to each ωi. ω1 (red square cuboid) describes the top patch, obtained from S1T2u; ω2
(green square cuboid) describes the middle patch, obtained from S1T4Rπ

4
u; ω3 (blue square cuboid) describes

the bottom patch, obtained from S1T6R 3π
2

u.

Algorithm 7 IMAS (with hyper-descriptors)
input: query and target images: u and v.
start:
D1 = IMAS-Detector (u) . as in Algorithm 8
D2 = IMAS-Detector (v) . as in Algorithm 8
M = IMAS-Matcher (D1, D2) . as in Algorithm 9
return M

The distance between hyper-descriptors is defined as the minimal distance between
the descriptors they are composed of.

Definition 2.5. Let
d1 = {α1, · · · , αn1}
d2 = {β1, · · · , βn2}

be two hyper-descriptors where αi and βj are denoting SIIM descriptors. Let also δ be a
distance for SIIM descriptors. We call distance between d1 and d2 the positive number

∆ (d1, d2) = min 1 ≤ i ≤ n1
1 ≤ j ≤ n2

δ (αi, βj) .

Remark 2.3. Usually δ (α, β) is either ‖α− β‖L1 , ‖α− β‖L2 or the Hamming distance2.

We can now derive an IMAS Matcher algorithm between hyper-descriptors (see Algo-
rithm 9). We use here a straightforward generalization of Lowe’s criteria to the previous
distance. If two hyper-descriptors (d1, d2) define a match, then the left and right positions
of a match are refined to

arg min
(α,β)∈d1×d2

δ (α, β) .

2The Hamming distance is mostly used with binary descriptors.
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Algorithm 8 IMAS-Detector
input: image u
parameters:
a routine SIIM-Detector, one set of optimal coverings S = {tk, φk}k=1,...,n, provided
by Algorithm 3

. The spatial distance between any two descriptors is denoted by Λ(d1, d2) =
∣∣∣( d1.x− d2.x

d1.y − d2.y

)∣∣∣
start:
D = ∅ . Storage of hyper-descriptors
foreach k = 1, . . . , n do

foreach s ∈ SIIM-Detector (S1TtkRφku) do
if (TtkRφk)−1 (s) is fully inside the domain of u then

if it exists d ∈ arg minb∈D Λ (b, s) such that Λ (d, s) ≤ ρ then
d = d

⋃
{s} . Add the descriptor s to the ρ-hyper-descriptor d

d.x =
∑

s∈d s.x

|d| , d.y =
∑

s∈d s.y

|d|
foreach d1 ∈ D such that Λ (d1, d) ≤ ρ do

d = d
⋃
d1

d.x =
∑

s∈d s.x

|d| , d.y =
∑

s∈d s.y

|d|

else
D = D

⋃
{{s}} . Create a new ρ-hyper-descriptor from s

return D

Algorithm 9 IMAS-Matcher
input: two sets of hyper-descriptors D1, D2.
parameters: the match ratio λ ∈ ]0, 1[.
start:
M = ∅ . Storage of Matches
foreach d ∈ D1 do

a ∈ arg minc∈D2 ∆ (d, c) . ∆ (x, y) = min(α,β)∈x×y δ (α, β)
b ∈ arg minc∈D2\a ∆ (d, c)
if ∆(d,a)

∆(d,b) ≤ λ then
M = M

⋃ arg min(ζ,η)∈d×a δ (ζ, η)

return M

In order to get similar performances, the parameter match ratio in Algorithm 9 should
be greater than its homologous in the SIIM-Matcher of Algorithm 5. Indeed, the second
nearest neighbour applied on each simulated target image is less restrictive than just one
application of it on all simulated target images at the same time.

In practice, for SIFT based descriptors, the match ratio (λ) of Algorithm 9 is set to
0.8. This configuration seems to correspond to a match ratio of 0.6 for the SIIM-Matcher
of Algorithm 5.

Note that hyper-descriptors are not associated with a given affine transformation but
rather group descriptors from several simulated versions of u. Comparing all the hyper-
descriptors of two images u and v is therefore faster than comparing the descriptors of
all their simulated versions. Indeed, when computing the distance between an hyper-
descriptor of u and an hyper-descriptor of v, the computation can be stopped as soon as
this distance exceeds the second smallest distance already calculated for this point. This

84



step saves much more time with hyper-descriptors than with conventional descriptors.
The use of hyper-descriptors allows to completely remove the classical filters used

in standard IMAS algorithms to avoid problematic matches. Indeed, all post-processing
filters that were usually applied in standard IMAS algorithms are now pointless:

1. Filtering repetitive matches (the unique filter step of Algorithm 6) is no longer useful.
Algorithm 8 considers groups of close descriptors as one single hyper-descriptor
holding all the information. A match between two hyper-descriptors is considered
as a single match.

2. Filtering one-to-multiple matches is now naturally included by the fact that the
IMAS-Matcher of Algorithm 9 generalizes Lowe’s criterion [Low04] to hyper-
descriptors.

3. Multiple-to-one matches are not forbidden with hyper-descriptors but do not appear
any more in practice.

Algorithms 8 and 9 finally give birth to Algorithm 7, an IMAS algorithm based on
hyper-descriptors. As simple as it is, this algorithm increases radically the quality of
matches. No post-processing is needed in order to extract the underlying meaningful
transformation. Thus, any parameter estimation approach like RANSAC [FB81], LO-
RANSAC [CMK03], ORSA [MMM12,MMM16] or USAC [RCP+13], can be applied right
after Algorithm 7. We then propose that any IMAS based on Algorithm 5 should evolve
into Algorithm 7.

2.4 Two Structural and Computational Improvements
We describe in this section two computational tricks. The first one slightly modifies
Lowe’s acceptance criterion in order to enable multiple matches for each hyper-descriptor.
The second one is purely used for speed-up considerations, and consists in filtering flat
descriptors in the early stages of the whole matching algorithm.

2.4.1 A Contrario Matching Revisited

In Lowe’s acceptance criterion, the ratio between the distance to the nearest neighbor
and the distance to the second nearest neighbor is thresholded to decide if a match is
accepted or rejected. The second nearest neighbor is taken in the target image. This has
several drawbacks. First, it introduces a bias for small target images, which contain less
descriptors and therefore pass the threshold more easily. A second structural bias is that
this threshold also eliminates matches with repeated regions in the target images. One
way of allowing one-to-multiple matches that are truly present in the target image is to
create an a contrario model from an independent base of keypoints. We therefore propose
to take a third image as background model, as it was first proposed in [CLM+08]. Instead
of selecting the second nearest descriptors among those of the target image, Algorithm 10
uses the nearest hyper-keypoint among those of this third image.

The idea behind Algorithm 10 is consistent with Lowe’s justification. It evaluates on
the a contrario image how likely it is that a descriptor matches so well just by chance.

By equipping Algorithm 7 with the IMAS-Matcher of Algorithm 10 we allow repeti-
tions in an image to be recognized. In this way, more reliable information is passed on.
For example, keypoints lying on repetitive windows in a building will not be removed,
they will rather match with each other and add up when the meaningful transformation
is queried while post-processing.
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Algorithm 10 IMAS-Acontrario-Matcher
input: three sets of ρ-hyper-descriptors D1, D2, Da.
parameters: the match ratio λ ∈ ]0, 1[.
start:
M = ∅ . Storage of Matches
foreach d ∈ D1 do

a ∈ arg minc∈D2 ∆ (d, c) . ∆ (x, y) = min(α,β)∈x×y δ (α, β)
b ∈ arg minc∈Da ∆ (d, c)
if ∆(d,a)

∆(d,b) ≤ λ then
M = M

⋃ arg min(ζ,η)∈d×a δ (ζ, η)

return M

2.4.2 Filtering Flat Descriptors for Faster Computations

In order to speed-up the matching part of the algorithm, we can identify and eliminate
unidirectional descriptors in the early stages of the algorithm. Flat descriptors are more
likely to match each other and create too many false matches. These flat descriptors are
identified with two internal filters in SIIM:

1. On-edge keypoints are considered as unstable. To detect an edge response, the ratio
of smallest to largest principal curvatures of the DOG function (eigenvalues of the
Hessian) is to be below a threshold. In our case, we set the threshold to 0.08 for
octave scales less than 1 and to 0.06 otherwise.

2. Strongly biased descriptors towards a particular direction can also be eliminated by
the means of the structure tensor. The eigenvalues of the structure tensor effectively
summarize the predominant directions of the gradient around the keypoint. In our
case, the ratio between the smallest and largest eigenvalues is set to be less than
0.06.

As argued in [Low04], there is no need to compute the eigenvalues themselves. Let λ1
and λ2, be the eigenvalues of a the 2× 2 matrix Q. Then, α = λ1

λ2
must satisfy:

(Tr Q)2

Det Q = (λ1 + λ2)2

λ1λ2
= (α+ 1)2

α
. (2.3)

The function f (α) := (α+1)2

α is an increasing function of α. Therefore, thresholding the
eigenvalue ratio of Q is equivalent to thresholding the ratio between the trace and the
determinant of Q.

This filter is nonetheless optional and does not change significantly the final result.
However, it often reduces the total computing time.

2.5 Numerical Results
Our IMAS method can be tested as an IPOL demo for two of the most popular state-
of-the-art SIIMs, namely SIFT and SURF3. The IMAS versions of SIFT and SURF are
now ensured to have minimal complexity thanks to the near optimal coverings described
in Section 2.2.

3We use the SURF version developed in [OR15] which improves its former version in transition tilt
tolerance.
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Several versions of SIFT can also be tested in our IPOL demo. HalfSIFT [KSS07]
and RootSIFT [AZ12] have been successfully applied in Computer Vision. They yield
small modifications of SIFT descriptors but improve the quality of the results. By only
taking the square root of a SIFT descriptor after a normalization, RootSIFT is known to
outperform SIFT in terms of transition tilt tolerance, see Chapter 1. Unfortunately, most
SIIMs fail in the case of non monotone intensity variations. HalfSIFT attempts to handle
this by generating mod π-oriented descriptors. Indeed, this property makes HalfSIFT
robust to contrast inversions. It improves the comparison of day/night images of the
same objects, or images of the same objects taken in different wavelengths. Finally, a
third descriptor, called HalfRootSIFT, cumulates the effects of RootSIFT and HalfSIFT.
It is also available in the demo and improves over HalfSIFT.

2.5.1 Using Optimal Coverings

We first illustrate the gain obtained by using our near optimal coverings (see Chapter 1)
instead of the classical coverings proposed in [MY09, PLYP12]. We refer the reader to
Chapter 1 for a more rigorous approach. Table 2.2 shows a brief comparison between
classical and optimal coverings for two SIIMs: SIFT + L1 norm and Root-SIFT + L2
norm.

Table 2.2 Matching methods performance over query and target images from Figure 2.7.
Computations were performed on an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz with
4 cores.
M - Matches.
ar - area ratio.

M ar ar2 Keypoints Matching Filters
(seconds) (seconds) (seconds)

ASIFT + L1 801 13.7 189.6 6 36 0
Optimal ASIFT + L1 401 8.9 79.2 3 14 0
ARoot-SIFT + L2 821 13.7 189.6 6 10 1

Optimal ARoot-SIFT + L2 503 7.34 53.8 3 3 0

Figure 2.7: Graffiti.

Retrieved homographies in Table 2.2 were visually the same for all fours methods.
The mean homogeneous homography matrix Hmean and its standard deviation are shown
in (2.4). As those statistics are difficult to interpret, we then compute in (2.5) the max-
imal distance of mapped points for all four homographies hi with respect to the mean
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homography hmean. Equation (2.5) also indicates that the time saved in computations
when using optimal coverings does not affect the accuracy of the retrieved homographies.

Hmean =

 0.4356 −0.6739 455.6987
0.4460 1.0201 −51.2587
0.0005 −0.0001 1.0000

 , std =

 0.0011 0.0052 0.9886
0.0016 0.0061 0.3213
0.0000 0.0000 0

 (2.4)

max
v∈ query image domain

max
i∈1,··· ,4

‖hmean (v)− hi (v)‖L2 = 3.2994. (2.5)

2.5.2 Using Hyper-Descriptors

Using hyper-descriptors, introduced in Section 2.3, usually yields more quality matches
than using standard descriptors. Descriptors that once were eliminated by the multiple-
to-one / one-to-multiple filter are now kept without causing a burst of false matches.
This means that no post-processing is needed after Algorithm 7. In order to identify
the underlying meaningful transformations, we rely on four versions of the RANSAC
Algorithm [FB81]: ORSA Homography [MMM12], ORSA Fundamental [MMM16] and
USAC (Homography and Fundamental) [RCP+13].

We first highlight the need of all filters in the case of usual descriptors in Algorithm 5
and the advantage of Algorithm 7. Table 2.3 gives detailed information on how filters
perform when applied sequentially from left to right. Optimal Affine RootSIFT was
selected to perform all comparisons in this section.

It is usually required to remove repetitive matches when using RANSAC. Surprisingly,
Table 2.3 (rows 3 and 4) shows an example in which applying the unique filter results
at the end in a smaller quantity of true matches than not applying it. In practice, it is
usually not the case and repetitive matches might produce a degenerate case for RANSAC,
yielding at the end an inconsistent transformation. Table 2.3 (rows 1 and 2) shows that
the application of multiple-to-one and one-to-multiple filters can be a more crucial step.

The last row of Table 2.3 shows that Algorithm 7 is already giving a clean set of
matches and that most of the post-processing (Algorithm 6) is now pointless, except
for the geometric filter. Figure 2.9 shows the output matches from Algorithm 5 and
Algorithm 7 corresponding respectively to the second and last rows of Table 2.3. Figure 2.9
visually shows the improvement in terms of quality of Algorithm 7 over Algorithm 5.

Table 2.3 The first and second columns represent an IMAS algorithm and its output.
From the third to the fifth columns one reads the sequence of filters appearing in Algo-
rithm 6 applied (or not applied) to the output of the IMAS algorithm in question (in all
cases configured for Optimal Affine-RootSIFT) which was run on the images from Fig-
ure 2.8. The final number of matches is coloured in blue if they are in accordance with
the underlying homography; red on the contrary.

IMAS Output Unique Multiple-to-one and ORSA Homography
Algorithm Matches Filter one-to-multiple Filters Filter [MMM12]
Algorithm 5 10986 - - 6
Algorithm 5 10986 8864 - 0
Algorithm 5 10986 - 122 42
Algorithm 5 10986 8864 117 38
Algorithm 7 309 - - 98
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Figure 2.8: Adam.

(a) Algorithm 5 followed only by the unique filter of Algorithm 6, corresponding to the
second row of Table 2.3. Too many multiple-to-one and one-to-multiple matches make it
impossible for ORSA to determine the underlying homography.

(b) The raw output of Algorithm 7, corresponding to the last row of Table 2.3.

Figure 2.9: Analyzing Algorithms 5 and 7

2.5.3 Using the A Contrario Version of Lowe’s Ratio Criterion

The a contrario matching in IMAS often incurs in a larger quantity of valid matches
being accepted. However, the whole process relies on the hypothesis that the a contrario
keypoints database represents an acceptable background model. This means that we
should pay attention to the choice of the a contrario image. Usually, it is desired for
this image to contain a wide variety of descriptors; natural images containing vegetation
and water seem to go along with this property. Figure 2.10 has been selected for our
experiments.
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Figure 2.10: Selected a contrario image for our demo.

The interest of this a contrario version of Lowe’s acceptance criterion lies in two
properties:

1. First, it has a tendency to increase the number of matches, without increasing the
number of false matches. This is illustrated in the following by a panorama stitching
experiment.

2. Second, it authorizes multiple matches per descriptor, hence the detection of struc-
ture even if it is repeated multiple times in the target images. This is illustrated in
the following by the detection of repeated structures.

Panorama stitching Panorama stitching is the process of combining two or more
images with overlapping regions from different viewpoints to produce a single panorama.
If the homography relating two images is perfectly known, then each point in one image
can be located with respect to the other image’s coordinates.

ORSA Homography [MMM12] can be applied to assess if a homography explains the
output matches of Algorithm 7. If it exists, that homography contains all the information
needed for retrieving the query image around the target one. Figure 2.11 shows 474
matches in accordance with the homography retrieved by ORSA [MMM12] applied right
after Algorithm 7. Figure 2.12 shows a panorama stitching using this homography.

A slightly improved version of the above panorama stitching is obtained by introduc-
ing the a contrario matcher of Algorithm 10. The a contrario keypoints database was
extracted from the a contrario image in Figure 2.10 by applying Algorithm 8. Resulting
in 521 matches explained by the retrieved homography.

Detection of repeated structures As explained in Section 2.4.1, true repeated de-
scriptors will annihilate each other if Algorithm 9 is applied. Figure 2.14 shows an example
where most descriptors in the target image find a repeated copy somewhere in this very
image. Only 19 matches were found in this scenario!

Figure 2.15 highlights the full potential of the a contrario matcher of Algorithm 10.
This optional a contrario matcher is indeed well adapted when many repetitions are
involved in the target image. Obviously its success depends on the choice of the a contrario
image. On the other hand, this dependence is proved to be weak in practice (see Table 2.4).
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Figure 2.11: 474 matches among the output of Algorithm 7 were explained by ORSA Homography [MMM12].

Figure 2.12: Panorama stitching on Graffiti using the retrieved homography found by ORSA [MMM12].
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Figure 2.13: Panorama stitching on Graffiti with a contrario Matching. In this case, 521 matches among the
output of Algorithm 7 with a contrario Matcher were explained by an homography retrieved by ORSA [MMM12].

Table 2.4 Weak dependence on the a contrario image. The a contrario version of
Algorithm 7 was applied on the images from Figure 2.15 with three different a contrario
images shown in this table. The resulting output matches are varying around the 222
found matches in Figure 2.15, visually depending on the number of hyper-descriptors.

A contrario image Size Number of Hyper-Descriptors Found Matches

640 × 480 1181 227

512 × 512 2601 212

668 × 498 2891 198
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Figure 2.14: A total of 19 matches were found by Algorithm 7 with the matcher of Algorithm 9.
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Figure 2.15: A total of 222 matches were found by Algorithm 7 (with the a contrario matcher of Algorithm 10).
Comparing these results to those of Figure 2.14 shows the interest of the a-contrario matcher.
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3 Affine invariant image comparison under
repetitive structures

3.1 Introduction

Everyday images are often composed of repeated objects, e.g. roof tiles, windows on
buildings or chairs in a classroom. Humans not only identify these repetitions but also
extract meaningful information from them. However, most of the state-of-the-art image
matching algorithms still either fail to handle repetitions or were conceived not to treat
them at all in order to be distinctive in practical applications [DMPC10].

The classic approach to image matching consists in three steps: detection, description
and matching. First, key-points are detected in the compared images. Second, regions
around these points are described and encoded in local invariant descriptors. Finally,
all these descriptors are compared and possibly matched. Using local descriptors yields
robustness to context changes. Both the detection and description steps are usually
designed to ensure some invariance to various geometrical or radiometric changes. A
large amount of research focused on using histogram representations, e.g. SIFT [Low04,
ROD14], ASIFT [MY09], Shape Contexts [BMP02], Self-Similarity descriptors [SI07], etc.
We refer the reader to [MS04,MTS+05,MP05] and Chapter 1 for in-depth comparative
studies on image descriptors.

Although 3D viewpoint invariance seems quite utopian, its approximated version,
affine invariance, has been widely studied in the literature [Lin93,Lin13b,MY09]. Chap-
ter 1 also studies this subject, where the superiority of SIFT based descriptors for the
latter invariance have been shown. On the other hand, Image Matching by Affine Simu-
lation (IMAS) have been proven to be a reliable way to capture changes of point of view
up to an impressive 88◦, see [MY09,PLYP12,MMP15].

In order to be distinctive, most IMAS algorithms rely on the second-closest neighbor
acceptance criterion proposed by D. Lowe in [Low04]. This criterion directly implies
that the affine invariance property of these algorithms is strongly affected by repeated
structures on the target image. To counteract these issues, Cao et al. [CLM+08] proposed
two approaches to handle repetitions: the first is to compute the “second-closest neighbor”
on an unrelated third image (where the repeated structure would not be present); the
second is to add an a-contrario [DMM08] validation step, independent of the descriptor,
which first selects a set of points around the key-points and then evaluates the agreement
of gradient orientation on these points. Rabin et al. [RDG09] proposed an a-contrario
validation for SIFT descriptor matches; the method requires learning the distribution
of the descriptor space and uses the earth mover distance to quantify the descriptor
similarity. Still a different a-contrario framework for match validation was described
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Figure 3.1: Three image patches and their corresponding orientation fields used as descriptors. The first two
are similar while the third one is different.

in [GvGP15]; in this case it is based on comparing the gradient orientations in a patch
and was suggested to use a local field of gradient orientations as a key-point descriptor.

However, none of these a-contrario methods is affine invariant. Here we follow the
suggestion of [GvGP15], enriched by the IMAS approach, to build an a-contrario affine
invariant key-point descriptor. Also we propose two variants of descriptor distances and
the corresponding a-contrario models.

This chapter is organized as follows. Section 3.2 introduces the key-point descriptor
based on a local field of image gradient orientation. The two a-contrario matchers for
our descriptor are introduced in Sect. 3.3. Then, the IMAS techniques are explained in
Sect. 3.4. Our experiments on images including repetitive structures, different viewpoint
angles and noise are presented in Sect. 3.5.

3.2 The gradient angle field descriptor
The first step of the method is the key-point extraction. Each key-point comes with a
position, scale and orientation. Then, a descriptor is associated to each key-point. A
s × s patch is extracted from the image centered at the position and orientation of the
key-point. The sampling step is proportional to the key-point scale. Up to this point this
is similar to the SIFT descriptor [Low04,ROD14]. But while the SIFT descriptor consists
in a set of quantized histograms of the image gradient orientation, here we will follow
the suggestion of [GvGP15] and use the actual values of patch gradient orientations as
a descriptor. The descriptor of a key-point a will be then α = {αij}, where αij are the
angles of the gradient orientation at position i, j in the extracted patch of size s× s = n.
Figure 3.1 illustrates the idea. In all our experiments we used s = 20 (n = 400) and a
sampling step of 1.5 relative to the key-point scale.

3.3 A contrario match validation
The proposed validation procedure is based on the a contrario theory [DMM08], which
relies on the non-accidentalness principle [WT83,Low85]; informally, this principle states
that there should be no detection in noise. In the words of Lowe, “we need to determine
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the probability that each relation in the image could have arisen by accident, P (a).
Naturally, the smaller that this value is, the more likely the relation is to have a causal
interpretation” [Low85, p. 39]. In our context, we need to assess the existence of a causal
relation between two descriptors.

Given a pair of descriptors α and β, a distance function d(α, β) will be defined, together
with a stochastic model H0 for random descriptors used to evaluate accidentalness. We
denote by DH0 a random variable (r.v.) corresponding to the distance between two
random descriptors drawn from H0. To assess the accidentalness of a match (α, β), we
need to evaluate the probability

P[DH0 ≤ d(α, β)]

of observing underH0 a distanceDH0 smaller or equal than d(α, β). When this probability
is small enough, there exists evidence to reject the null hypothesis and declare the match
meaningful. However, one needs to consider that usually multiple pairs are tested. If
100 tests are performed, for example, it would not be surprising to observe an event that
appears with probability 0.01 under random conditions. Thus, the number of tests NT

needs to be included as a correction term, as it is done in the statistical multiple hypothesis
testing framework [GGQY07]. Following the a contrario methodology [DMM08], we define
the Number of False Alarms (NFA) of a match as:

NFA(α, β) = NT · P
[
DH0 ≤ d(α, β)

]
. (3.1)

Pairs with NFA ≤ ε, for a predefined ε value, are accepted as valid matches. One can
show [DMM08, P1̆2] that under H0, the expected number of pairs with NFA ≤ ε is
bounded by ε. As a result, ε corresponds to the mean number of false detections per
random image pair. In most practical applications the value ε = 1 is suitable and we will
set it once and for all.

An appropriate (unstructured) null hypothesis H0 for random descriptors is that the
gradient orientation angles are independent and isotropic. In other words, in a descriptor
∆ ∈ H0, {∆ij} is a family of independent random variables, uniformly distributed over
[0, 2π).

We will consider two distances, which will lead to two validation methods. The first
one, denoted dQ, is defined as the sum of quantized orientation errors:

dQ(α, β) =
∑
ij

1{ |Angle(αij,βij)|
π

>ρ

}, (3.2)

for a fixed orientation precision ρ ∈ (0, 1) (we use ρ = 0.3). Given that the size of
the descriptor is n, the value dQ(α, β) ∈ {0, 1, . . . , n}, with zero corresponding to a good
match and n to the worst difference. This distance is similar to the one used in [CLM+08,
sec.11.3]. The associated r.v. DQ

H0
corresponds to the sum of n independent Bernoulli

random variables. Thus,

P[DQ
H0
≤ d] =

d∑
k=0

(
n

k

)
(1− ρ)kρn−k (3.3)

is related to the tail of a Binomial distribution. We will denote AC-Q the method that
uses the distance dQ.

The second distance, denoted dW , corresponds to a weighted sum of normalized ori-
entation errors:

dW (α, β) =
∑
ij

wij
|Angle(αij , βij)|

π
. (3.4)
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Now dW (α, β) is a real value between zero and ∑ij wij . A perfect match has dW (α, β) =
0 while the worst difference is dW (α, β) = ∑

ij wij . This is similar to the distance
in [GvGP15] with the addition of the weights wij , which are used to impose a Gaus-
sian window,

wij = exp
(
− (i− s/2)2 + (j − s/2)2

2σ2

)
,

giving more relevance to the central points and requiring a more complex probability term
than in [GvGP15]. The r.v. DW

H0
corresponds to the weighted sum of n independent and

uniformly distributed random variables in [0, 1]. Using the vector index k, we have

P[DW
H0 ≤ d] = P[

∑
k

wkek ≤ d]

where the normalized errors ek are U [0, 1]. The possible values of (e1, . . . , en) can be
seen as the points in a n-hypercube and the probability term is given by the volume of
the intersection of the hypercube and the half-hyperspace {(e1, . . . , en) : ∑k wkek ≤ d}.
There is a closed but complex formula for this volume [MM06]. For our purposes, however,
it is enough to approximate it by the upper-bound given by the volume of the simplex
{(e1, . . . , en) : ek ≥ 0, ∑k wkek ≤ d}; thus

P[DW
H0 ≤ d] ≤ 1

n!
dn

Πkwk
. (3.5)

We will denote AC-W the method that uses the distance dW .
Finally, we need to specify the number of tests. Potentially, we may try to match any

pixel of image I1 of size X1×Y1 with any pixel of image I2 of size X2×Y2. We must also
consider about

√
X1Y1 different patch orientations in I1 and

√
X2Y2 in I2. To account for

multiple scales, we consider log2
(

max(X1, Y1)
)
scales in I1 and log2

(
max(X2, Y2)

)
scales

in I2. As we will see, we perform several affine simulations leading to an extra factor κ
per image (i.e. the area ratio from Chapter 1). All-in-all, the number of tests writes

NT = (κX1Y1)
3
2 · log2

(
max(X1, Y1)

)
·

(κX2Y2)
3
2 · log2

(
max(X2, Y2)

)
.

(3.6)

3.4 Affine invariance
As it will be shown in the following section, our methods are not initially affine invariant.
Intuitively, the idea is to simulate a set of views from the initial images that will help
to cover the affine space and then pairwise match those simulated images. The set of
simulated views shall depend on concrete measurements of our methods’ tolerance to
viewpoint changes.

Most local descriptors and their corresponding matching methods are similarity-invariant.
Unfortunately, slanted camera viewpoints (measured by t in Equation 1.1) will deterio-
rate the performance of almost any state-of-the-art matching method. To compensate this
degradation at a minimum cost of complexity, we follow the ideas developed in Chapter 1
to compute optimal sets of affine simulations for each of our methods depending on the
viewpoint tolerances, which we shall estimate in the next section. Under these conditions,
Proposition 1.7 in Chapter 1 ensures that the constructed IMAS method is affine-invariant
in practice. Indeed, there is at least one pair of simulated images whose viewpoint angle
is not greater than the viewpoint tolerance of the matching method in question.
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3.5 Experiments
The main objective of our two matchers is to allow repetitions to be captured. On the
other hand, state-of-the-art descriptors are robust against noise, and Lowe’s second-closest
neighbor criterion [Low04] is well known to render SIFT distinctive enough to be practical.
All these properties are met for our methods even in the presence of viewpoint changes.
A simple methodology is proposed to assess this claim.

The following procedure allows us to generate any number of test images u (query)
and v (target) with the corresponding ground truth. Figure 3.2 shows an example. Let
us consider three different and sufficiently distinct images, u0, v0, and w0. The test pair
is generated randomly in four steps:

1. A N ×N patch is extracted from a random position in w0; a repetitive pattern P
is composed by repeating the patch into a M ×M mosaic.

2. The pattern P is pasted into image u0 at a random position, producing image u1;
similarly, the same pattern P is pasted in a random position of v0 to produce image
v1.

3. A random affine transform A is selected and used to optically simulate a distortion,
v2 = Av1.

4. Finally, Gaussian noise is added to produce the final images, u = u1 + nu and
v = v2 + nv.

Forcing A ∈ GL+
∗ (2) in step 3 will incur in a change of point of view in v with respect to

u; the viewpoint angle can be selected.
This framework was used to compare systematically our methods to SIFT, RootSIFT

and their affine invariant versions. Lowe’s criterion was applied for two match ratios
(0.6 and 0.8). For each method and image pair, the total number of true matches and
the corresponding ratio of true matches were computed. A match is considered as true
if both constituting key-points lie inside the pattern P at the same position, modulo
the repeated patch size. The displayed values are means after repeating the process
for different generated image pairs. As the key-point extraction part is identical for all
compared methods, the figures reflect only the performance of the descriptors and their
matchers.

The frontal performance test of Table 3.1 confirms that our descriptors do handle
repetitions and noise while still preserving a good ratio of true matches. Figures 3.3-3.4

(a) Query image. (b) Target image. A = T2Rπ/4.

Figure 3.2: A generated image pair with repetitive structures.
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Table 3.1 Frontal performance test (i.e. A is a similarity). Mean values over 100
iterations.

Matching method True matches Ratio of true matches
SIFT L1 0.8 74 0.6577
SIFT L1 0.6 15 0.8054
RootSIFT 0.8 135 0.5383
RootSIFT 0.6 49 0.7812

AC-W 691 0.8679
AC-Q (ρ = 0.3) 1881 0.6261

Table 3.2 Viewpoint tolerances (i.e. tilt tolerances from Chapter 1) obtained
from the oblique performance test of Figure 3.4 with the convention that the
ratio of true matches ≥ 0.5 and the total number of true matches ≥ 10.

Matching method Maximal viewpoint tolerance
SIFT L1 0.8 48◦
SIFT L1 0.6 34◦
RootSIFT 0.8 40◦
RootSIFT 0.6 54◦

AC-W 58◦
AC-Q (ρ = 0.3) 54◦

illustrates the benefits of our methods for varying viewpoint angle. Notice, however, the
drastic fall in number and in ratio of true matches for all methods. Table 3.2 provides
the estimated maximal viewpoint tolerances from the statistics presented in Figure 3.4;
this brings to light a degradation in viewpoint tolerances (due to repetitive structures)
for SIFT and RootSIFT with respect to results presented in Chapter 1 (respectively, 56◦
and 60◦).

The theory of IMAS algorithms presented in Chapter 1 leads to optimal sets of affine
simulations for each method, depending on viewpoint tolerances in Table 3.2. Figure 3.5
provides a geometrical representation of the optimal set of simulations for AC-W. Table 3.3
show the results for the affine invariant version of the methods in viewpoint angles form
60◦ to 80◦. AC-W gets the overall best results; AC-Q produces significantly more good
matches at the cost of a lower ratio of true matches.

Figures 3.6-3.7 show the benefits of the presented matchers: Affine AC-W and Affine
AC-Q. Most matches from both methods are correct.
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82 false matches 80 true matches

(a) RootSIFT 0.8.

46 false matches 98 true matches

(b) AC-W
37 false matches 226 true matches

(c) AC-Q

Figure 3.3: Performance of SIIM methods on a generated image pair for the oblique test.

(a) Total number of true matches. (b) Ratio of true matches.

Figure 3.4: Oblique performance test. Each point represents the resulting mean over 100 iterations.
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Figure 3.5: Optimal set of affine simulations for a method with viewpoint tolerances of 58◦. Just 27 are
enough to obtain an IMAS extension to 80◦. Affine camera simulations (green); viewpoint tolerance from each
simulation (red); visible viewpoints (black); maximal viewpoint tolerance for the IMAS method (dashed line).

Table 3.3 Hard oblique performance test on affine invariant methods. The viewpoint
angles are random and uniformly distributed between 60◦ and 80◦. Mean values over 200
iterations.

Matching method True matches Ratio of true matches
Affine SIFT L1 0.8 33 0.4095
Affine SIFT L1 0.6 5 0.6463
Affine RootSIFT 0.8 48 0.2462
Affine RootSIFT 0.6 12 0.4934

Affine AC-W 195 0.7564
Affine AC-Q (ρ = 0.3) 913 0.2268
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Figure 3.6: A total of 233 matches were found by Affine AC-W.
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Figure 3.7: A total of 1059 matches were found by Affine AC-Q.
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4 Conclusion

Image matching by affine simulations (IMAS) is acknowledged as one of the best method-
ologies to match images of the same scene regardless of the viewpoint change. Its time
complexity is one of the main drawbacks that has been widely criticized in the literature.
This drawback is mostly due to long time computations in the matching step. Indeed,
the feature extraction complexity behaves linear on the number of keypoints; whereas the
brute force matching complexity of these keypoints augments quadratically.

The mathematical derivations in Chapter 1 imply that IMAS based methods really
are affine-invariant provided the base SIIM satisfies: scale+rotation invariance, sufficient
distinctiveness, and an acceptable viewpoint tolerance measured by its transition tilt. We
have proved that, as summarized in Figure 1.14, all former IMAS methods are over-
simulating optical tilts. The procedure in the proof of Proposition 1.8 shows the way to
generate optimal sets of simulations and we use it to present seven near optimal logr-
coverings (r ∈ [1.4, · · · , 2.0]), some of them appearing in Figure 1.9. This led us to
measure the tilt tolerance of several classic SIIMs to finally pair them with one of these
seven optimal coverings.

We found for example that the optimal IMAS extension of SIFT needs twice less de-
scriptors and therefore is four times faster than ASIFT [MY09,YM11]. This improvement
applies to all state of the art IMAS, that can be accelerated by a factor of four. Another
consequence is that the set of affine descriptors associated with an image can be halved.

Three concepts to improve affine invariant image matching have been presented in
Chapter 2. First, in Section 2.2, we present in detail all the algorithms needed in order
to optimize the set of simulations for generic IMAS algorithms depending on the SIIM
and the targeted viewpoint tolerance. In Section 2.3 a more robust framework for IMAS
algorithms was presented based on generalizations of standard keypoints and the second
closest neighbor criteria introduced by Lowe [Low04]. Finally, the a contrario matching of
Section 2.4.1 is an optional way of keeping true repetitive matches in images. However, the
success of the a contrario matcher relies strongly on the assumption that our a contrario
hyper-descriptors are able to capture the density of the space of natural hyper-descriptors.

For a fixed SIFT configuration, the final Optimal ASIFT from Chapter 2 differs from
ASIFT [MY09,YM11] in:

1. The set of affine simulations. ASIFT generates highly redundant affine distortions
whereas the final Optimal ASIFT applies a near optimal covering from Chapter 1.

2. The structure. ASIFT applies the SIFT method among all possible combinations
of simulated query and target images; whereas the final Optimal ASIFT compares
in a single stage both sets of hyper-descriptors coming from the query and target
images.
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Table 4.1 Image matching performances on two viewpoint datasets. After matching
each image pair, RANSAC-USAC [RCP+13] is run 100 times to measure its probability of
success in retrieving corresponding ground truth homographies. Legend: N - the number
of simulated affine maps on query and target; S - the number of successes (bounded by
100× number ); the number of correctly matched image pairs; inl. - the average number of
correct inliers; AvE - the average pixel error; R - the ratio of inliers/total. The numbers
of image pairs in a dataset are boxed; ET - the average elapsed time in seconds. Hardware
settings: (CPU) Intel(R) Xeon(R) W-2145 3.70GHz.

EVD dataset
[MMP15]

OxAff dataset
[MTS+05]

Matching method N S 15 inl. AvE R ET S 40 inl. AvE R ET
ASIFT [YM11] 41 750 9 129 4.9 0.42 7.07 4000 40 5697 1.9 0.98 13.53

Affine AC 25 300 3 70 4.0 0.95 7.19 3900 39 2723 2.7 0.92 27.97
Optimal Affine-SURF 25 221 3 74 3.8 0.37 6.92 3997 40 2283 2.6 0.84 7.88

Affine AC-W 25 300 3 45 4.0 0.98 13.46 3900 39 2698 2.7 0.92 42.44
Affine AC-Q 25 200 2 170 4.0 0.37 4.99 3900 39 2855 3.1 0.67 10.06

Optimal-Affine-RootSIFT 25 730 9 192 6.2 0.28 2.21 4000 40 2796 2.7 0.88 3.54

Optimal-Affine-RootSIFT
revisited

25 498 5 291 6.1 0.34 2.82 4000 40 3191 2.8 0.79 4.62

AC 1 - - - - - 0.98 3400 34 775 1.6 0.99 1.77
AC-W 1 - - - - - 1.28 3400 34 774 1.6 0.99 2.40
AC-Q 1 - - - - - 1.20 3552 36 777 1.9 0.89 1.43
SURF 1 - - - - - 0.73 3898 39 809 2.1 0.79 0.61

RootSIFT 1 - - - - - 1.20 3900 39 1119 2.1 0.81 1.12

3. Repetitive, but still significant, SIFT descriptors. The final Optimal ASIFT method
has the possibility of using the a-contrario matching revisited of Subsection 2.4.1
in order to match repetitive structures; ASIFT only uses the classic second nearest
neighbour criteria which discards any repeated descriptor.

4. Removal of flat descriptors. The final Optimal ASIFT method uses the tensor
structure to remove keypoints that will incur in one-dimensional descriptions (see
Subsection 2.4.2) whereas ASIFT does not. This traduces in faster detection and
matching steps.

In fact, all IMAS methods stemming from Chapter 2 will also benefit from these four
improvements.

In Chapter 3 we described two SIIM methods for image comparison based on a new
descriptor and two a-contrario matchers. These a-contrario matchers provide yet another
way of replacing Lowe’s classic second nearest neighbour criterion. They are different from
the a-contrario matching revisited of Subsection 2.4.1. The presented SIIM methods were
tested in the presence of repetitive structures, noise and strong viewpoint differences, see
Figure 3.3. Both methods have an excellent tolerance to viewpoint angle, comparable to
the one provided by RootSIFT [Low04]. IMAS versions of them were created accordingly
as proposed in Chapter 1-2. In our experiments the proposed IMAS methods produce
better results than state-of-the-art methods in the presence of repetitive structures, strong
viewpoints and noise. Future work will concentrate on combining our two SIIM methods
in an attempt to get the best of both, a large number of true matches (provided by AC-Q)
while keeping a high ratio against false ones (provided by AC-W).

As usual in image matching, each query descriptor is proposed to be matched with its
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most similar target descriptor and later validated by the second nearest neighbor or other
thresholding criteria. Instead, AC-W, AC-Q and Optimal Affine-RootSIFT revisited can
match several (or none) target descriptors to each query descriptor without losing distinc-
tiveness. However, these methods allowing to match repetitive structures are held back
by the fact that classic geometric model estimators cannot cope with multiple matches
between repetitive structures. Indeed, Figure 4.1 shows the result of applying RANSAC
USAC [RCP+13] to those matches in Figure 3.7. Nevertheless, we combine these meth-
ods with RANSAC USAC [RCP+13] and show an experiment in Table 4.1 conducted
on two well known datasets presenting strong viewpoint changes. All datasets include
groundtruth homographies that were used to verify accuracy. First, local features were
detected and matched, then RANSAC USAC [RCP+13] was applied and we declared a
success if at least 80% of inliers (in consensus with the estimated homography) were in
consensus with the groundtruth homography. In one hand, this experiment highlights the
importance of affine simulation to improve the affine invariance of the presented descrip-
tors. On the other hand, it shows a drop in performance of RANSAC USAC [RCP+13]
if combined with matchers intended for capturing repetitive structures.

As it will be seen in Chapter 8, a band-aid solution to the above problem is provided
by RANSACaffine from Chapter 6. Indeed, RANSACaffine looks for geometry inconsisten-
cies to discard false matches between truly similar features. However, a more thorough
analysis should take place to completely solve the aforementioned problem. Analyzing
autosimilarities in images before matching them might be the key to the success. Indeed,
the information on the emplacement of repeated objects in both query and target images
might be valuable when matching them. This will be the focus of future work.
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Figure 4.1: 29 matches, among those proposed by Affine AC-Q, were selected by RANSAC USAC [RCP+13] to
be in consensus with the most predominant homography. Unfortunately, this predominant homography among
Affine AC-Q matches is not providing any geometric information on the scene.
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Part II

Learning the affine world
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5 AID: an Affine Invariant Descriptor

5.1 Introduction

The classic approach to image matching consists in three steps: detection, description and
matching [Low04]. First, keypoints are detected in both images to be compared. Second,
regions around these points are described by local descriptors. Finally, all these descriptors
are compared and possibly matched. Both the detection and description steps are usually
designed to ensure some invariance to various geometric or radiometric changes. A benefit
of local descriptors is that viewpoint deformations are well approximated by affine maps.

In Chapter 1, RootSIFT [AZ12] was reported to be the robustest descriptor to affine
viewpoint changes (up to 60◦). To overcome this limitation, several simulation-based
solutions have been proposed: ASIFT [YM11], FAIR-SURF [PLYP12], MODS [MMP15],
Affine-AC-W in Chapter 3. Some optimal versions have been proposed in Chapter 2,
including Optimal Affine-RootSIFT, which was proven to be the best choice.

On the other hand, local descriptors, which once were manually-designed, are cur-
rently being learned from data, with the promise of a better performance. Mimicking the
classic process of image matching, they learn a similarity measure between image patches.
In [ZK15], three similarity score architectures were introduced (CNN + a decision net-
work). For stereo matching, two architectures based on CNNs were proposed in [ZL16],
one of them computing the similarity score with the cosine proximity operator.

CNN-based geometric matching between images has also been tested for the case of
affine and homography transformations [RAS18,DMR16]. In [RAS18], the pool4 layer of
the VGG-16 network [SZ14] was used for acquiring features from images and correlation
maps fed to a regression network that outputs the best affine transform fitting the query
into the target image. In a direct approach, the authors of [DMR16] trained a network to
estimate the homography relating the query to the target image. Both [RAS18,DMR16]
were trained on synthetically generated images, however neither of them took into account
the blur caused by camera zoom-out or tilt.

In this chapter we combine manually-designed and learned methods in order to obtain
a fast affine invariant image matching algorithm, capable of capturing strong viewpoint
changes. The proposed method is based on the first stages of SIFT [Low04, ROD14],
which ensure invariance to similarity transformations (translations, rotations and zooms)
up to small perturbations (see [MY11] for a mathematical proof). At this point the SIFT
descriptor is replaced by a neural network (Figure 5.3) that takes a 60×60 patch as input
and produces a 6272-element vector descriptor. The network is trained on a dataset
containing pairs of patches related by affine transformations, aiming at producing similar
descriptor vectors for affine pairs and dissimilar vectors otherwise [ZL16].

A simple way of measuring similarity between vector descriptors is through the cosine
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Figure 5.1: Top: matches by Optimal Affine-RootSIFT (48). Bottom: matches by the proposed SIFT-AID
method (295).

proximity operator, i.e. cos (x,y) := 〈x,y〉
‖x‖‖y‖ . Therefore, we train the network to cluster

similar descriptors with respect to angle. Finally, only the sign of each vector component
is kept, leading to a binary descriptor. This allows to save memory and accelerate the
matching process, while keeping the same level of performance and discriminative power.
Figure 5.1 presents an example of the proposed method compared to the Optimal Affine-
RootSIFT method.

5.2 Affine viewpoint simulation
A digital image u obtained by any camera at infinity can be written as u = S1G1Au0
where S1 is the image sampling operator (on a unitary grid), A a linear map, u0 a
continuous image and Gδ denotes the convolution by a Gaussian kernel broad enough
to ensure no aliasing by δ-sampling. Unfortunately, G1 and A do not commute when A
involves a tilt or a zoom. As a consequence, a simple warping A(u0) of the frontal image
u0 := S1G1u0 is not a correct optical affine simulation of u. As stated in Chapter 1, the
correct way of simulating a tilt t in the x-direction is:

u→ S1T
x
t Gx√

t2−1Iu,

where I is the Shannon-Whittaker interpolator and the superscript x indicates the oper-
ator takes place only in the x-direction. We denote Txt := T xt Gx√

t2−1I . See Algorithm 4
for computing digital tilts in any direction.

It is clear that there is loss of information due to the blur; indeed, the operator Txt
is not invertible. Which means that, depending on the image u, there might not be any
optical transformation A satisfying A(u1) = u2 or u1 = A(u2). Consider, for example,
u1 = Txt u and u2 = Tytu.
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max (0,m+ λn − λp)
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Pa Pp Pa Pn

Figure 5.2: Diagram of the siamese network for training D.

Figure 5.3: The proposed descritor is computed using a CNN that produces a feature vector of dimension 6272.

With that in mind, we design a data generation scheme that, given an image u and
a pair of random affine transformations A1 and A2, simulates affine views u1 = A1(u)
and u2 = A2(u). Both A1,A2 with maximal viewpoint angles up to 75◦ with respect to
u. Instances of u are provided accordingly from three independent MS-COCO [LMB+14]
datasets for training, validation and test. Patch pairs seeing the same scene from u1 and
u2 are said to belong to the same class and will be used to train the descriptor network.

5.3 Descriptors and matching criteria

Inspired on [ZL16], our descriptor network D is trained to produce similar descriptor
vectors for patch pairs of the same class, and dissimilar vectors for patch pairs of different
class. The network architecture is adapted from [DMR16], see Figure 5.3. It consists
of 4 blocks of two convolutional layers each followed by batch normalization and ReLU
activations. Between each block a max-pooling layer is introduced. A 2D Spatial Dropout
with a probability 0.5 is applied after the last convolutional layer.

Here, dropout is not used to avoid over-fitting but to encourage the descriptor network
to use all the dimensions of the feature vector. In addition, it does facilitate the learning
process: the validation loss has proved to be much more stable than without dropout.

The affine approximation holds locally, which suggests the use of small patch sizes; on
the other hand, small patches entail less information, leading to insufficient descriptions.
As a compromise, we set the patch size to 60×60, which provides a good balance between
locality and enough viewpoint information.
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Figure 5.4: Density plots from each BigAID dimension (6272), computed over 5 · 104 BigAID descriptions of
random patches from the test dataset.

RootSIFT
L2 Norm

BigAID
Cosine Proximity

AID
Sign Alignments

Figure 5.5: Positive and negative density estimation on measurements. For that, 6 · 105 random intra and
extra class pairs were used. The vertical line depicts the threshold minimizing both error probabilities: false
negatives and false positives.

5.3.1 Training with hinge loss

During training, the descriptor network is immersed into a siamese network, represented
in Figure 5.2. The siamese network consists of two identical sub-networks joined at the
top by a virtual layer that computes the hinge loss between their two outputs:

λp = cos(D(Pa),D(Pp)),
λn = cos(D(Pa),D(Pn)),

where patches Pa, Pp belong to the same class whereas Pn does not. While training, we
extract Pn from a random image, different from the one used by Pa, Pp. We also simulate
random contrast changes on all input patches. The hinge loss, i.e.

L (λp, λn) := max (0,m+ λn − λp) ,

is used with parameter m set to 0.2 in our experiments.
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(a) adam (b) arc

(c) notredame

(d) coke (e) graffiti

Figure 5.6: Viewpoint challenge dataset.

5.3.2 Binary descriptor and matching

When training is complete, the descriptor network is plugged out from the siamese net-
work and expected to produce descriptors that capture affine invariant properties from
input patches. We call this description BigAID (6272 floats). Figure 5.4 shows density
estimations on each BigAID dimension. Notice the involvement of all the dimensions in
the description and the symmetry of all densities around zero. With this in mind, we
propose a new affine invariant descriptor, that we call AID (6272 bits), which only keeps
the sign information from the BigAID. Two AID descriptors x and y are consequently
matched via the sign alignment measure, i.e.∑

i

1sign(xi)=sign(yi).

Intra- and extra-class measure density estimations are shown in Figure 5.5 for Root-
SIFT (128 floats = 4096 bits) and our descriptors, suggesting that for the BigAID and
AID descriptors, a simple thresholding of their respective measures is sufficient to single
out classes.

5.4 Experiments
Up until now, the descriptor network D has only seen optically simulated input patches.
Figure 5.6 provides a realistic viewpoint challenge dataset in the form of 5 pairs of images.
Given a fixed set of SIFT keypoints from these images, the proposed methods are com-
pared against RootSIFT in the section Test I of Table 5.1. The number of homography-
consistent matches found by ORSA [MMM12] (an a-contrario validated RANSAC) shows
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Table 5.1 Viewpoint performance test. RS, A-RS, BigAID and AID denote Homography
consistent Matches found by ORSA for RootSIFT, Optimal Affine-RootSIFT, BigAID and
AID. The Second-Nearest-Neighbor ratio in RootSIFT and Optimal Affine-RootSIFT was
set to 0.8. The thresholds for BigAID and AID were 0.4 and 4000, respectively. The star
(*) indicates on oracle keypoints.

Test I: Using SIFT keypoints

# keypoints per image Without viewpoint
simulations

query target RS BigAID AID
coke 5443 5670 115 1316 1409

notredame 2285 1235 14 282 295
arc 1384 1387 40 445 420

graffiti 1661 3117 0 182 172
adam 269 192 30 67 69

Test II: Using Optimal Affine-RootSIFT keypoints

# keypoints per image With viewpoint
simulations

Without viewpoint
simulations

query target A-RS BigAID* AID*
coke 28609 31965 1395 5298 5346

notredame 11739 6444 48 590 731
arc 5719 4759 244 579 600

graffiti 14290 15225 613 502 516
adam 3647 2364 484 496 520

Table 5.2 Time performance for Optimal Affine-RootSIFT, SIFT-BigAID and SIFT-
AID. Elapsed time (in seconds) in building descriptors (ET-D) and matching them (ET-
M); The star (*) denotes GPU time.

Optimal Affine-RootSIFT
L2 norm

SIFT-BigAID
Cos. Prox.

SIFT-AID
Sign Align.

ET-D ET-M ET-D* ET-M ET-D* ET-M
coke 4.500 14.440 9.876 35.512 9.838 0.777

notredame 1.930 1.120 3.272 3.287 3.177 0.138
arc 1.520 0.380 2.581 2.236 2.465 0.107
graf 2.790 3.800 4.441 5.960 4.369 0.186
adam 1.210 0.130 0.601 0.088 0.525 0.030
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the superiority of the AID descriptors with respect to RootSIFT. AID is more compact
and has a similar performance to BigAID. For these reasons, we prefer the AID descriptor
and we call SIFT-AID the matching method resulting from its combination with SIFT
keypoints.

The A-RS column (Test II) in Table 5.1 shows the number of homography consistent
matches for Optimal Affine-RootSIFT. Notice how SIFT-AID has comparable perfor-
mances without using viewpoint simulations. But in some cases, it yields less matches, as
for the adam pair. Why? As stated in Chapter 2, Optimal Affine-RootSIFT has about
7 times more keypoints than SIFT. Some of those keypoints come exclusively from simu-
lated versions of the input images, i.e., they do not belong to the Gaussian pyramid of the
original input images. To further test AID descriptors, we define an oracle yielding precise
keypoints in the original Gaussian pyramid best approximating each keypoint from the
first stages of Optimal Affine-RootSIFT. Keypoints provided by this oracle are the best
possible choices that could have been found by the first stages of SIFT. Table 5.1 (Test II)
also shows the number of homography consistent matches for oracle + AID descriptors.
This experiment reveals that both AID and BigAID would have been sufficient to identify
almost all Optimal Affine-RootSIFT matches, provided that proper keypoints had been
correctly spotted by the first stages of SIFT. In the case of the graffiti pair, most of the
missing matches for AID descriptors involve viewpoint angles close to 75◦, the maximal
viewpoint angle present in the training dataset.

Table 5.2 shows the time consumed by SIFT-AID and Optimal Affine-RootSIFT (as in
Chapter 2) in building descriptors and matching them1. Overall, the SIFT-AID method
can achieve results in less time than Optimal Affine-RootSIFT.

Finally, the simple classification process established in this chapter enables AID to
be used for repetitive structures. Figure 5.7 shows raw matches from AID, validating its
capacity to deal with repeated objects while staying distinctive.

1Hardware settings: (CPU) Intel(R) Core(TM) i7-6700HQ 2.60GHz; (GPU) NVIDIA Corporation
GM204GLM [Quadro M5000M].
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Figure 5.7: A total of 142 tentative matches were found by AID.
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6 Robust estimation of local affine maps

6.1 Introduction

The problem of constructing affine invariant image descriptors by using an affine Gaus-
sian scale space, which is equivalent to simulating affine distortions followed by the heat
equation, has a long history starting with [Iij71,Blo92, Lin93, LG94]. The idea of affine
shape adaptation was used as a basis for the work on affine invariant interest points
and affine invariant matching in [LG94, Bau00, MS02, MS04, TVO99, TV04, TV00], in-
cluding the Harris-Affine and Hessian-Affine region detectors [MS02,MS04]. Finally, the
detectors MSER (Maximally Stable Extremal Region) [MCUP04] and LLD (Level Line
Descriptor) [MSCG03,MSC+06,CLM+08] both rely on image level lines. Yet, the affine
invariance of these descriptors in images acquired with real cameras is limited by the
fact that optical blur and affine transforms do not commute, as shown in [MY09]. To
overcome this limitation, the authors of [MY09] proposed to optically simulate affine
transformations. This idea was also exploited in [PLYP12, MMP15], in Chapters 2-3
and more recently by the SIFT-AID method from Chapter 5, which combines SIFT key-
points with a CNN-based patch descriptor trained to capture affine invariance. Another
recent possibility to obtain affine invariance is by learning affine-covariant region repre-
sentations [MRM18], where a patch is normalized before description. The latter method
together with the HardNet [MMRM17] descriptor was reported to be the state of the art
in image matching under strong viewpoint changes for all detectors.

Image matching usually refers to estimating a global homographic transform be-
tween two images. An established approach [HZ03] consists in computing local image
matches, which are then aggregated using the RANSAC (RANdom SAmple Consensus)
algorithm [FB81] to estimate a homography. The same procedure is also used for funda-
mental matrix estimation.

Recently, CNN-based image matching approaches have been proposed for directly
estimating global affine and homographic transformations [RAS18,DMR16]. In [RAS18],
the pool4 layer of the VGG-16 network [SZ14] was used for acquiring features from images
and correlation maps fed to a regression network that outputs the best affine transform
that fits the query to the target image. In a direct approach, the authors of [DMR16]
trained a network to estimate the homography relating the query to the target image.
Both [RAS18, DMR16] were trained on synthetically generated images, but neither of
them took into account the blur caused by camera zoom-out or tilt.

The objective of this work is to improve image matching by refining two stages of its
pipeline. The improvement of homography estimation can be accomplished, on the one
hand, by increasing the number of keypoint correspondences as well as their accuracy,
and on the other hand by improving the RANSAC aggregation step. The contributions
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of this chapter, detailed below, address all these issues:

1. We propose a LOCal Affine Transform Estimator (locate) based on a neural net-
work which estimates both the direct and inverse affine maps relating two patches,
leading to a more accurate local geometry estimation.

2. To increase the number of correspondences we use the local affine information pro-
vided by locate to guide the discovery of new candidates.

3. We introduce a reformulation of the consensus set (inliers) in RANSAC, incorpo-
rating the richer information provided by locate, leading to an increase in the
probability of success.

A prevalent element in this chapter is the locate method, which yields a first-order
approximation of the local geometry relating pairs of image patches, i.e, local affine maps
or tangent planes, see Figure 6.1. The network architecture of locate is a variation from
the one in [DMR16] that provides a two-way estimation, which leads to an increase in
robustness relative to the former network. Another difference with respect to [DMR16]
is the use of affine simulated patches to train the networks. This simulation incorporates
a realistic optical model that takes into account the blur caused by camera tilt and
zoom [MY09]. This procedure allows to easily generate an arbitrarily large training set.

The affine information was already been used [FH15, FMH17] to predict location
and pose from affine detectors like MSER [MCUP04], Harris-Affine [MS02] or Hessian-
Affine [MS04]. We propose to complement the SIFT detector with a guided match-
ing [HZ03] step that increases the number of correct matches by sampling new keypoints
surrounding the initial ones. locate’s accuracy in location, orientation and scale (i.e.
rotation and position in the Gaussian pyramid) results in a drastic increase in the number
of correspondences.

When estimating homographies from sets of correspondences with RANSAC, the use of
first-order approximations allows to increase the performance in homography estimation.
This has already been proposed in [RB16] by composing normalized affine maps provided
by the Hessian Laplace detector. This detector can be replaced with Affnet [MRM18]
since it has been shown to produce more accurate affine maps. The locate method
can be used as well for the same purpose. In addition, we propose a modification in the
RANSAC consensus step. Instead of defining inliers only by location agreement, we also
consider the agreement in tilt, rotations and scale of the local affine maps. We will show
how these modifications improve homography estimation from a set of SIFT-like matches.

The rest of this chapter is organized as follows. Section 6.2 summarizes a formal
methodology for simulating local viewpoint changes induced by real cameras, as required
for training our network. The locate method is introduced in Section 6.3. Section 6.4
and Section 6.5 present the proposed guided matching and our modified RANSAC step,
respectively. The use of the proposed methods is illustrated with experiments in Sec-
tion 6.6.

6.2 Affine Maps and Homographies

As stated in Chapter 1, a digital image u obtained by any camera at infinity is modeled
as u = S1G1Au, where S1 is the image sampling operator (on a unitary grid), A is an
affine map, u is a continuous image and Gδ denotes the convolution by a Gaussian kernel
broad enough to ensure no aliasing by δ-sampling. This model takes into account the
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Figure 6.1: Some correspondences together with local affine maps estimated by the proposed locate network.
Patches on the target are warped versions of their corresponding query patch.

blur incurred when tilting or zooming a view. Notice that G1 and A generally do not
commute.

Proposition 1.1 from Chapter 1 claims that every A ∈ GL+
∗ (2) is uniquely decomposed

as in Equation 1.1,
A = λR1(ψ)TtR2(φ),

where R1, R2 are rotations and Tt =
[
t 0
0 1

]
with t > 1, λ > 0, φ ∈ [0, π) and ψ ∈

[0, 2π). Furthermore, the above decomposition comes with a geometric interpretation (see
Figure 1.1) where the longitude φ and latitude θ = arccos 1

t characterize the camera’s
viewpoint angles (or tilt), ψ parameterizes the camera roll and λ corresponds to the
camera zoom. The so-called optical affine maps involving a tilt t in the z-direction and
zoom λ are formally simulated by:

u 7→ S1AGz√
t2−1G

√
λ2−1Iu,

where I is the Shannon-Whittaker interpolator and the superscript z indicates that the
operator takes place only in the z-direction. We denote by

A := S1AGz√
t2−1G

√
λ2−1I .

The operator A is not always invertible and therefore its application might incur a loss
of information. We refer to Chapter 5 for an example where no optical transformation A is
found between two views. With this in mind, we adopt the same data generation scheme
proposed for training the affine invariant descriptors in Chapter 5. That is, given an
image u and a pair of optical affine maps A1 and A2, we simulate affine views u1 = A1(u)
and u2 = A2(u). Our simulations involve maximal viewpoint angles of 75◦ with respect
to u. As in Chapter 5, the MS-COCO [LMB+14] dataset will provide instances of u in
training and validation. Patch pairs seeing the same scene from u1 and u2 are said to
belong to the same class and will be used to train the networks.

6.2.1 Local affine approximation of homographies

Let H = (hij)i,j=1,...,3 be the 3 × 3 matrix associated to the homography η (·). Let x be
the homogeneous coordinates vector associated to the image point x = (x1, x2) around
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which we want to determine the local affine map. We denote by

y = (y1, y2) =
((Hx)1

(Hx)3
,
(Hx)2
(Hx)3

)
= η (x)

the image of x by the homography η.
The first order Taylor approximation of η at x leads to

η (x+ z) = v + L (x+ z) + o (‖z‖) . (6.1)

More specifically, if x = (0, 0), we know that

yi (z1, z2) = (hi1z1 + hi2z2 + hi3)
(

1
h33
− h31

h2
33
z1 +−h32

h2
33
z2 + o (‖z‖)

)
, i = 1, 2.

Then, by polynomial identification in the Taylor formula

v + L (z) = 1
h33

(
h13
h23

)
+
[

1
h33

(
h11 h12
h21 h22

)
− 1

h2
33

(
h13
h23

)(
h31 h32

)]( z1
z2

)
,

where
1
h33

(
h13
h23

)
=

(
y1
y2

)
.

If x 6= (0, 0), a simple change of variables z → z + x would lead us back to the case
x = (0, 0). Notice that the resulting homography,

η̃ (z) = η (z + x) ,

has an associated matrix determined by columns,

Hη̃ =

 H

 1
0
0

 H

 0
1
0

 H

 x1
x2
1


 .

This brief computation shows that the vector v and the matrix L are determined
through the following system of equations:

L =


h11−y1h31

h31x1+h32x2+h33
h12−y1h32

h31x1+h32x2+h33

h21−y2h31
h31x1+h32x2+h33

h22−y2h32
h31x1+h32x2+h33

 , (6.2)

v =
[
y1
y2

]
− Lx. (6.3)

This derivation allows us to compute the exact local affine approximation for a given
homography. This will be useful for Section 6.5.1-6.5.2 and to assess the accuracy of our
method when using annotated datasets.
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Figure 6.2: The proposed locate network architecture. The last two layers are fully connected.

6.3 The Local Affine Transform Estimator

In this section we present the LOCal Affine Transform Estimator (locate) network
whose architecture is adopted from [DMR16]. Unfortunately, the network as it is used
in [DMR16] often incurs in wrong geometry estimates in the presence of strong blur
or tilt, even when trained for this task. To address this issue, locate estimates the
affine transform that maps query to target and target to query. As it will be shown in
Section 6.6, the simultaneous estimation of both, the direct and inverse maps, significantly
improves the network performance.

The locate architecture, shown in Figure 6.2, consists of 4 blocks of two convolu-
tional layers each followed by batch normalization and ReLU activations. The first block
receives as input two patches in the form of a two channel image. Between each block a
max-pooling layer is introduced. A 2D spatial dropout with a probability 0.5 is applied
after the last convolutional layer followed by 2 fully connected layers. The last layer
outputs a vector of dimension 16, corresponding to the coordinates of eight points, the
four transformed patch corners in both directions. We also tested a network trained to
directly estimate the six parameters of local affine maps (translation plus the parameters
in Equation 1.1) but we observed that this choice led to worse performances.

As argued in Chapter 5, the affine approximation holds locally, which suggests the use
of small patch sizes; on the other hand, small patches contain less information, leading to
insufficient geometry anchors. As a compromise, we set the patch size to 60× 60, which
provides a good balance between locality and sufficient viewpoint information.

6.3.1 Training

The locate network, as well as the network in [DMR16], were trained with data gener-
ated as described in Section 6.2; more specifically with pairs of patches belonging to the
same class and involving small differences in translation, rotation and zoom, but possi-
bly large tilts. The resulting networks will lead to an affine approximation of the exact
transformation relating two observations. Both networks are trained from scratch until
reaching a plateau for the loss in training and validation. While training we also simulate
contrast changes on all input patches.

Let A1, A2 denote two random affine maps and A1, A2 their respective optical simu-
lations. We assume A1 and A2 involve small perturbations in terms of similarity trans-
formations. Let P1 and P2 be two square 60 × 60-patches simulated from a randomly
chosen initial patch P by A1 and A2, respectively. Let X = [x1, x2, x3, x4], where xi are
the 2D coordinates of the four corners of a patch following a fixed order. We also define
4- and 8-point ground truth parameterizations respectively for the network [DMR16] and
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the locate network,

X4 := A1A
−1
2 (X) ,

X8 :=
[
A1A

−1
2 (X) , A2A

−1
1 (X)

]
,

(6.4)

where [·, ·] denotes the concatenation of both vectors. Let N k be one of the presented
networks with k-point parameterization. Then the loss is defined as sum of the Euclidean
norm between corresponding points:

k∑
i=1
‖N k (P1, P2)i −X

k
i ‖L2 , (6.5)

where the sub-index i denotes the i-th element of the vector.

6.3.2 From patches in the Gaussian pyramid to local affine maps

The training process described above allows the networks to be easily coupled with match-
ing methods based on the SIFT [Low04] detector. Indeed, a SIFT-like patch is simply
the square crop at the origin of some similarity transformation (translation, rotation and
zoom) of the original image; additionally, patches corresponding to matched keypoints
should suffer small similarity deformations but possibly strong tilts.

Consider two 60 × 60-patches, Pq and Pt, coming from the Gaussian pyramid of the
query and target images, respectively. Let cq and ct be their centers expressed in image
coordinates. Let also Aq be the affine map that converts from the query image domain
to patch coordinates; likewise At converts from target to patch coordinates. Note that
the affinities Aq and At are pure similarities, combining just the translation, rotation
and zoom corresponding to the location, orientation and scale associated to SIFT-like
keypoints. Finally, in order to locally approximate the transformation between query and
target images (centered at cq and ct), we only need the affine map relating Pq and Pt.

When fully trained, the presented networks are expected to predict the movements of
patch corners. Let

(
xqi ↔ xti

)
i=1,...,k be a set of correspondences produced by one of the

networks N k, where xqi and xti denote query and target patch-coordinates, respectively,
and k-point determines the point parameterization. Due to imprecisions in the prediction,
these k correspondences are not necessarily related by an affinity. Then, the affine map
A is estimated from the correspondences predicted by the network N k as the solution of
the linear least squares problem

min
A

k∑
i=1

∥∥∥Axqi − xti∥∥∥2

L2
. (6.6)

Finally, around cq, the local affine map transforming the query into the target (in image
coordinates) is

Aq→t = A−1
t AAq. (6.7)

We call locate the method returning Aq→t from the locate network. Figure 6.3 vi-
sually shows estimated affine maps by the network [DMR16] (4 points) and locate, as
well as their respective incurred geometric errors. Four random patch pairs from the val-
idation dataset (synthetic data) reveal the Achilles heel of network [DMR16]: zoom and
translation. This visualization already justifies the use of the inverse information in the
locate method.
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Query patch Target patch Ground truth
Network in
[DMR16]
(4 points)

locate

Figure 6.3: Four pairs of patches selected at random from the validation dataset and used as query and target
input patches (columns 1-2). The three last columns show the drift error depicted by intense blue or intense
green colors. Light blue means no error. Blue and green channels correspond to the target patch and a warped
version of the corresponding query patch (the red line delimits its borders); the red channel is filled with zeros.
3rd column: groundtruth; 4th column: network in [DMR16] (4 points); 5th column: locate network. Input
patches are shown without contrast difference for clear visualization.

6.4 Refinement and Guided Matching

In this section, we present an iterative procedure that applies locate to refine a set
of existing matches, and then retrieves new ones by propagating the estimated local
geometry. Think of the initial set of matches as correspondences resulting from a matching
method, that includes both inliers and outliers. Each query and target keypoints have
an associated location, orientation and scale (i.e. rotation and position in the Gaussian
pyramid). The precise affine approximations between query and target obtained from
locate, allows to refine the matching by reducing the error in these three similarity
parameters.

Furthermore, using the full affine transformations associated to the refined matches,
allows to infer new match candidates by propagating the local geometry. The idea of
propagating the local geometry from a set of matches was already proposed in the litera-
ture [FH15,FMH17]. In these cases the location and pose are derived from affine detectors
like MSER [MCUP04], Harris-Affine [MS02] or Hessian-Affine [MS04]. Despite the fact
that SIFT keypoints are more robust to similarities (see [RODM15]) than the previously
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mentioned ones, no SIFT-like affine guided matching procedure was proposed yet. The
reason for this is that the first method allowing to infer affine maps between SIFT-like
patches is Affnet, which was very recently proposed. As we will see in Section 6.6, lo-
cate reaches higher accuracy than Affnet. Therefore, in this chapter we introduce guided
matching based on the locate method.

The procedure is as follows. For each query keypoint from a refined match, four new
keypoints are generated at the NE, NW, SE, SW corners of the query patch domain; see
the four colored keypoints (red, green, light blue and blue) of Figure 6.4a. These points are
then mapped into the target image domain (see Figure 6.4d) with rotations and positions
in the target Gaussian pyramid inferred from the affine decomposition in Equation 1.1.
These four pairs of points will represent new tentative matches, and each tentative match
is validated by computing a similarity score between corresponding patches. For this task,
we use the BigAID descriptor presented in Chapter 5 and the cosine proximity to measure
the similarity.

This process can be iterated until some criteria is satisfied (e.g., a fixed number of
iterations, the number of matches is stable, etc). In this chapter, we fix the number of
iterations to 4. Each keypoint information is refined only once. To avoid redundancy, new
matches falling nearby existing matches are removed (a threshold of 4 pixels was used).
Therefore, any valid match proposal will cover new areas connecting the query and target
images.

6.5 Robust Homography Estimation
The standard RANSAC algorithm computes the parameters fitting a mathematical model
from observed data in the presence of outliers. Numerous improvements have been pro-
posed in the literature for RANSAC, see [MMM12,MMM16,RCP+13,RFM+17], but the
core idea remains the same.

In the case of homography estimation, the classic RANSAC algorithm returns the
homography ηj computed in iteration j having the largest consensus of inliers among all
iterations. The j-iteration can be described in two steps:

1. (Fitting) Randomly select s matches (xi ↔ yi)i=1,...,s from the set of all matches
(MT ) and compute the homography ηj that yields the best fit.

2. (Consensus) Count the number of matches from MT that are within a distance
threshold of κ (i.e. counting inliers).

Notice that steps 1-2 only take into account point coordinates. From now on, we call
this method RANSAC. With eight degrees of freedom for a homography matrix and each
match defining two equations, this implies s = 4. The following subsections support the
claim that incorporating the local affine information can further improve the performance
of the RANSAC algorithm.

6.5.1 Homography fitting from local affine maps

From Section 6.2.1 we know how to locally approximate a homography by an affine map.
Conversely, the problem of determining a homography from a set of affine maps at different
locations was addressed in [BH16,RB16]. Let x ↔ y be a match and L = (lij)i,j=1,2 the
linear map in Equation 6.1. Then the unknown homography η must satisfy

E6×9 · ~h = ~0, (6.8)
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(a) Fixed query keypoints in the
query patch.

(b) Inferred target keypoints by
the locate network in the target
patch.

(c) Fixed query keypoints in the query image domain.

(d) Inferred target keypoints by the locate method.

Figure 6.4: Four tentative matches around a match between the yellow keypoints.
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λ− λGT ψ − ψGT t− tGT φ− φGT x− xGT y − yGT

Figure 6.5: Affine error prediction in terms of the affine decomposition of Equation 1.1 (namely zoom λ, camera
rotation ψ, tilt t, tilt direction φ, and translation x, y), for the proposed locate method, the network [DMR16]
(4 points), the Affnet method [MRM18] and the identity map method. The used dataset from Chapter 5
contains 3352 patch pairs with corresponding groundtruth. The sub-index GT means groundtruth, conversely,
no sub-index stands for estimated parameters.

where E6×9 is the matrix
1 −y1 − l11x1 −l11x2 −l11

1 −l12x1 −y1 − l12x2 −l12
1 −y2 − l21x1 −l21x2 −l21

1 −l22x1 −y2 − l22x2 −l22
x1 x2 1 −y1x1 −y1x2 −y1

x1 x2 1 −y2x1 −y2x2 −y2

 , (6.9)

and ~h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]T is a vectorized version of the matrix H
associated to η. The first four rows of E6×9 are determined by Equation 6.2 and the last
two are the classic equations derived from rewriting η (x) = y in terms of Hx = y.

Clearly, two matches with their corresponding local affine maps can over-determine
the homography matrix. Indeed, putting everything together provides with 12 equations[

E1
E2

]
12×9

· ~h = ~0,

where Ei denotes the matrix E appearing in Equation 6.8 for each match. To avoid the
solution ~h = ~0 we look for a unitary vector ~h minimizing∥∥∥∥∥

[
E1
E2

]
· ~h
∥∥∥∥∥ ,

see [HZ03] for more details.
We call RANSAC2pts a RANSAC version in which the classic homography fitting of

step 1 is replaced by the homography fitting of this section together with the locate
estimator. Note that RANSAC2pts only needs two samples at each iteration (s = 2).

6.5.2 Affine consensus for RANSAC homography

When matching two image patches, the transformation that relates them may not be
consistent with the global transformation of the scene. This can be due to the presence
of symmetric objects or even to failures in the matching process. For instance, suppose
that two patches centered at the same scene location but with incoherent rotations are
identified by a matching method. The symmetry issue is easy to address as usually we
should have encountered as many keypoints as degrees of symmetry around the center;

128



(a) Initial correct matches
from SIFT-AID.

(b) Homography consistent matches
after guiding with locate.

Figure 6.6: Guided matching for the adam pair, EVD [MMP15].

so at least two rotations will correspond. However, aberrant matches are not treated by
the matching method nor by RANSAC. This problem can be circumvented by imposing
consistency between the local affine maps and the proposed RANSAC model.

To impose local geometry consistency, most existing works [ZD06,MMP15] propose
to measure the incurred error in mapping keypoints of a match x↔ y, e.g. ‖y−A(x)‖+
‖x − A−1(y)‖. Unlike them we propose to enforce geometry consistency directly on the
transformations parameters given by Equation 1.1. In other words, we use the affine
information to redefine the consensus set of a model.

Inliers are now defined as follows. Let AE and AH be, respectively, the estimated
affine map by the locate method and the testing affine map computed from the testing
homography (using Equation 6.2). Let also [λE , ψE , tE , φE ] and [λH , ψH , tH , φH ] be,
respectively, the affine parameters of AE and AH . We define the α-vector between AE
and AH as:

α (AE , AH) =
[
max

(
λE
λH
, λHλE

)
, ∠ (ψE , ψH) ,max

(
tE
tH

tH
tE

)
, ∠ (φE , φH)

]
, (6.10)

where ∠(·, ·) denotes the angular difference. To test consistency between AE and AH
we add to the classic threshold on the Euclidean distance, four more thresholds on the
α-vector. A perfect match would result in an α-vector equal to [1, 0, 1, 0]. If we assume
independence on each dimension, the resulting probability of a match passing all thresh-
olds is the multiplication of individual probabilities. With this in mind, we claim that
rough thresholds are enough to obtain good performances and that there is no need to
optimize them. Thus, we propose to further refine inliers by accepting only those matches
also satisfying

α (AE , AH) <
[
2, π4 , 2,

π

8

]
, (6.11)

where the above logical operation is true if and only if it holds true for each dimension.
We call RANSACaffine the version of RANSAC2pts that includes the affine consensus

presented in this section.

6.6 Experiments

To the best of our knowledge, the most suitable and effective means of estimating affine
maps connecting two patches are: Affnet [MRM18], the network [DMR16], and now the
locate method. The procedure described in Subsection 6.3.2 works for both networks:
[DMR16] and locate. On the other hand, Affnet was conceived to predict normalizing
ellipse shapes for single patches based on a 3-variable parametrization. The connection
provided by two Affnet-normalizing affine maps for the query and target patches is richer
than each normalizing transformation. Indeed, for different choices of A1 = T1R1 and
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Table 6.1 Guided matching and refinement performances on three viewpoint datasets
with seed correspondences from two affine invariant matching methods: SIFT-AID from
Chapter 5 and SIFT-Affnet [MRM18]-HardNet [MMRM17] (SIFT-Affnet). After refine-
ment and guiding on each image pair, RANSAC-USAC [RCP+13] is run 100 times to
measure its probability of success in retrieving corresponding ground truth homographies.
Legend: S - the number of successes (bounded by 100× number ); the number of correctly
matched image pairs; inl. - the average number of correct inliers; AvE - the average pixel
error; R - the ratio of inliers/total. The numbers of image pairs in a dataset are boxed.

SIFT-AID dataset
from Chapter 5

EVD dataset
[MMP15]

OxAff Viewpoint dataset
[MTS+05]

M
at
ch
in
g

m
et
ho

d Guiding
affine map S 5 inl. AvE R S 15 inl. AvE R S 10 inl. AvE R

SI
F
T
-A

ID

None 500 5 508 6.2 0.24 100 1 162 6.2 0.11 1000 10 1840 4.1 0.43
Identity 487 5 114 6.3 0.33 100 1 19 6.9 0.46 1000 10 1546 4.6 0.62
locate 500 5 1438 5.2 0.44 200 2 862 3.8 0.49 1000 10 7198 2.7 0.71
4 points 500 5 1166 5.1 0.41 200 2 548 4.1 0.46 1000 10 6725 2.8 0.70
Affnet 487 5 328 7.0 0.31 103 2 142 6.7 0.50 1000 10 2223 5.4 0.57

SI
F
T
-A

ff
ne
t None 400 4 99 3.8 0.79 235 3 13 7.9 0.64 1000 10 1185 2.1 0.96

Identity 300 3 32 4.2 0.71 0 0 0 - - 895 9 1336 3.5 0.94
locate 400 4 620 4.7 0.72 200 2 151 5.6 0.98 1000 10 6871 2.5 0.96
4 points 400 4 448 4.6 0.73 101 2 169 3.1 0.94 1000 10 6164 2.7 0.94
Affnet 400 4 78 5.8 0.69 100 1 28 5.6 0.86 1000 10 1724 4.8 0.88

A2 = T2R2 one would need the four parameters (zoom, camera rotation, tilt and tilt
direction) in Equation 1.1 in order to express A2A

−1
1 . However, Affnet does not estimate

translations. We claim that the locate method out-performs the other two state-of-the-
art methods in terms of precision.

Please note that the networks were trained exclusively with simulated patches, let us
now try on real patches. The passage from affine cameras to real cameras is a big gap
to fill by both [DMR16] and locate networks. We expect them to generalize the affine
world to all sorts of geometry as long as the Taylor approximation holds.

6.6.1 Does precision really matter?

As a first evaluation of the precision in a realistic environment we used the viewpoint
dataset from Chapter 5, consisting of five pairs of images with their groundtruth ho-
mographies and 3352 true matches. Notice that Equations 6.2-6.3 allow us to compute
groundtruth local affine maps around each match. Figure 6.5 shows the accuracy of
Affnet [MRM18], the 4 points network [DMR16] and locate, represented by error den-
sity functions with respect to the affine decomposition appearing in Equation 1.1. Ideally,
we expect a Dirac delta function centered at 0 for a perfect method. This is approxi-
mately true for the locate method. The experiment also illustrates the failure of the
network [DMR16] in predicting zoom and translation (as shown in Figure 6.3). Note in
Figure 6.5 that translations from the Affnet [MRM18] method do not quite match those
from the Identity method; this difference can be explained by the connecting mapping
itself, see Figure 6.7, as

A1→2 (x) = A2
(
A−1

1 x−A−1
1 c

)
+ c
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Table 6.2 Homography estimation performances for RANSAC, RANSAC2pts and
RANSACaffine for three matching methods: RootSIFT [AZ12], SIFT-AID from Chap-
ter 5, and SIFT-Affnet [MRM18]-HardNet [MMRM17] (SIFT-Affnet). Each RANSAC
ran for 1000 internal iterations. To measure probability of success, all RANSACs were
run 100 times on resulting matches from each pair of images. Legend: S - the number of
successes (bounded by 100× number ); the number of correctly matched image pairs; inl.
- the average number of correct inliers; AvE - the average pixel error. The numbers of
image pairs in a dataset are boxed.

EF dataset
[ZR11]

EVD dataset
[MMP15]

OxAff dataset
[MTS+05]

SymB dataset
[HS12]

Match
ing

metho
d Homography

Estimator S 33 inl. AvE S 15 inl. AvE S 40 inl. AvE S 46 inl. AvE

Roo
tSIF

T RANSAC 2403 26 51 3.2 0 0 0 - 3806 39 580 1.2 2693 31 102 2.8
RANSAC2pts 2633 28 46 3.7 0 0 0 - 3893 39 566 1.2 3219 34 84 3.3
RANSACaffine 2805 30 28 3.4 0 0 0 - 3899 39 404 1.1 3297 36 54 3.4

SIFT
-AID

RANSAC 879 23 78 6.6 82 1 40 7.8 3600 39 1477 4.8 1014 19 450 6.8
RANSAC2pts 1829 27 84 6.1 99 1 72 6.3 3917 40 1459 4.5 1867 30 327 6.5
RANSACaffine 1996 30 39 5.8 166 5 37 8.2 3939 40 852 4.0 2341 38 138 6.6

SIFT
-Aff

net
RANSAC 2475 25 47 3.7 200 2 16 8.0 4000 40 805 2.3 2999 31 108 3.5

RANSAC2pts 2707 28 43 3.6 300 3 10 7.6 4000 40 805 2.3 3268 34 99 3.4
RANSACaffine 2826 29 29 3.5 200 2 12 7.4 4000 40 562 2.2 3285 36 65 3.5

Figure 6.7: Passage from Affnet affine maps (A1, A2) to the connecting mapping A1→2. The center of the
normalize patch (on top) corresponds to the origin in normalized coordinates.

is different from A2A
−1
1 x, where c denotes the center of patch domain and Ai are the

estimated affine maps by Affnet. locate, with the only addition of tracking points
movements associated to the inverse affine map, obtains better result than [DMR16].
As expected, both [DMR16] and locate perform better than Affnet [MRM18]. Indeed,
Affnet analyzes one patch at a time, whereas [DMR16] and locate have access to both
patches simultaneously. However, in practice, using Affnet involves less computations.

The following experiment shows that the precision improvement of locate indeed
results in better guided image matching performance. Table 6.1 shows that locate has
the overall best performance of all methods. locate usually boost the number of inliers
as well as the ratio of inliers while always being the lowest or close to lowest average pixel
error. By construction, this boost in inliers means that new areas are connected between
the image pairs, see Figure 6.6 for an example. Moreover, the probability of success of
RANSAC USAC [RCP+13] is not diminished with respect to the matching method itself,
this is observed in the “None” rows of Table 6.1. We remark the capacity of our guided
matching method to expand true matches while keeping the number of false matches low.

6.6.2 Can RANSACaffine improve homography estimation?

In the previous paragraphs we established the precision of the local affine maps pro-
vided by the locate method. We now focus on the evaluation of the three variants of
RANSAC. In order to highlight the benefits of local geometry in estimating homographies,
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we drop all the improvements in RANSAC USAC [RCP+13] and head back to the base
RANSAC. But notice that most improvements proposed in RANSAC USAC [RCP+13]
can also be applied to RANSAC2pts and RANSACaffine. The following experiment was
conducted on four well known datasets for homography estimation. All datasets include
groundtruth homographies that were used to verify accuracy. First, local features were de-
tected and matched, then each homography estimation method (RANSAC, RANSAC2pts
and RANSACaffine) was applied and we declared a success if at least 80% of inliers (in
consensus with the estimated homography) were in consensus with the groundtruth ho-
mography. The two steps of RANSAC (fitting and consensus) are iterated a 1000 times
for each of the three variants. Therefore, the processing time spent in applying locate
could be compensated later on by decreasing the number of internal iterations. For equal
settings, rows ‘None’ in Table 6.1 and rows ‘RANSAC’ in Table 6.2 do not correspond; this
is because RANSAC USAC [RCP+13] was used in the former while baseline RANSAC in
the latter.
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7 CNN-assisted coverings in the Space of
Tilts

7.1 Introduction

In Chapter 1, RootSIFT [AZ12] was reported to be the robustest descriptor to affine
viewpoint changes (up to 60◦). To overcome this limitation, several Image Matching by
Affine Simulation (IMAS) solutions have been proposed: ASIFT [YM11], FAIR-SURF
[PLYP12], MODS [MMP15], Affine-AC-W in Chapter 3. Some optimal versions have
been proposed in Chapter 2, including Optimal Affine-RootSIFT, which was proven to
be the best choice in terms of performance. The downside of simulation-based methods
is the added computations.

The recent advances in deep-learning have also contributed to the development of
local descriptors. Mimicking the classic process of image matching, they learn a similarity
measure between image patches [ZK15,ZL16]. In particular, affine invariance is currently
being learned from data as in [MRM18] and Chapter 5. The SIFT-AID method from
Chapter 5 combines SIFT keypoints with a CNN-based patch descriptor trained to capture
affine invariance up to 75◦. The Affnet method [MRM18], conceived to predict normalizing
ellipse shapes for single patches based on a 3-variable parametrization, was used with
HardNet [MMRM17] (a CNN-based SIIM method) to create affine invariant descriptions;
its authors called this method HesAffNet. The information provided by Affnet [MRM18]
can be obtained quickly but comes with a cost in precision, see Chapter 6 for more details.
Still, this information concentrates in the Space of Tilts even if Affnet [MRM18] was not
trained for this task. If the Affnet [MRM18] information is consistent, or at least a portion
of it, then Figure 7.1 implies that Optimal Affine-RootSIFT is simulating and analysing
a great number of optical views that are not needed. Figure 7.2 shows kernel density
estimations in the Space of Tilts (formally introduced in Chapter 1) for query and target
images in the ‘cat’ pair from the EVD [MMP15] dataset. Notice the concentration around
orthogonal directions in the Space of Tilts of affine maps provided by Affnet [MRM18]
from query and target images. Just by looking at those densities one can already infer
that the common object to both images was seen from camera positions that differ by
90◦.

As usual in matching methods involving normalization, each patch in HessAffnet [MRM18]
is normalized to a single and possibly unprecise and/or even erroneous representation.
Instead, in this chapter we propose not to rely on the precision nor on the existence
of a single affine normalizing map. We prefer to compute a finite set of possible nor-
malizing representations for each patch based on all the affine information extracted by
Affnet [MRM18]. In practice, Affnet [MRM18] predictions will be used to select conve-
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(a) ‘cafe’ target image from the EVD [MMP15] dataset.

(b) The Optimal Affine-RootSIFT log 1.7-covering in the Space of Tilts.
Affnet [MRM18] is applied to each patch extracted around keypoints from
Figure 7.1a. These keypoints are provided by Hessian-Affine [MS04]. Cen-
ters of disks show: the number of Affnet normalizing affine maps with dis-
tances smaller than log 1.7 (top); and their corresponding percentage (bot-
tom).

Figure 7.1: Affnet [MRM18] affine maps in the Space of Tilts.
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(a) Common object to query (left) and target (right) images.

(b) Kernel density estimations of query (left) and target (right) Affnet [MRM18] affine maps.

Figure 7.2: Kernel density estimations in the Space of Tilts of affine maps extracted by Affnet [MRM18] for
both images in the ‘cat’ pair from the EVD [MMP15] dataset.

nient affine transformations to be tested in IMAS methods. This leads to a substantial
boost in IMAS speed without sacrificing performance.

The rest of this chapter is organized as follows. Section 7.2 summarizes a formal
methodology for handling local viewpoint changes induced by real cameras. Two adaptive
coverings based on Affnet [MRM18] are introduced in Section 7.3. They will make way for
adaptive IMAS methods. The performance of the proposed methods is illustrated with
experiments in Section 7.4.

7.2 Affine maps and the space of tilts
The Space of Tilts, denoted by Ω and formally introduced in Chapter 1, is a quotient
space where each class represents a set of affine maps with equal tilt and tilt direction
(parameters τ and φ from Equation 1.1) and includes all possible camera spins and zooms
(parameters ψ and λ from Equation 1.1). This space focuses on the last part TτR2 of
the decomposition (1.1) because it is the one that is imperfectly dealt with by most SIIM
methods. Image descriptors like those proposed in the SIFT method are invariant to
similarities (translations, rotations and zooms), which in terms of the camera position
interpretation (see Figure 1.1) correspond to a fronto-parallel motion of the camera, a
spin of the camera and to an optical zoom.

We say that two classes [A] and [B] in the Space of Tilts are equal if and only if
Tτ(A)Rφ(A) = Tτ(B)Rφ(B), where each side in this equation represents the last part of the
decomposition of Equation 1.1 for A and B. As demonstrated in Proposition 1.5 from
Chapter 1, the function

d :
{ Ω × Ω → R+

([A] , [B]) 7→ log
(
τ
(
BA−1) ) ,

is a metric acting on the Space of Tilts that measures the affine distortion from a fixed
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Figure 7.3: Sketch of an ideal normalization procedure. f, g two normalizing affine maps.

affine viewpoint to surrounding affine viewpoints. These distortions affect the performance
of all SIIM methods (see Chapter 1) but most of them are able to successfully identify
affine viewpoint distortions under log 1.7 for image sizes around 700× 550.

In the context of image matching by affine simulation (IMAS), one crucial question
to answer is: What is the best set of affine transforms to apply to each image to gain
full practical affine invariance? For example, green points in Figure 7.4a represent the
affine maps to be simulated on query and target images in the case of Optimal Affine-
RootSIFT. Disks represent the set of affine maps distorted by no more than log 1.7 (in
terms of the distance from Proposition 1.5) from the center. Notice in Figure 7.4a that
a whole zone of classes with distortions up to log 4

√
2 is covered by the union of disks.

This means that any distortion in that zone is reduced to less than log 1.7 from at least
one of the centers. This idea of reduction is the key to the success in IMAS methods, as
it ensures that any strong deformation between images can be reasonably reverted so as
the matching method in question is able to cope with it.

7.3 Adaptive coverings

The Affnet method [MRM18] is trained to predict affine-covariant region representations,
where a patch is normalized before description, see Figure 7.3. The advantage of this
approach is that the normalization can be obtained quickly, but at the expense of precision,
see Chapter 6. On the other hand, methods like ASIFT [YM11] optically simulate affine
distortions to both query and target images in order to match them. The set of simulations
presented in Optimal Affine-RootSIFT from Chapter 2 correspond to an optimal log 1.7-
covering (denoted by S1.7) appearing in Figure 7.4a. When Optimal Affine-RootSIFT
is applied, it has been observed that most matches come from a small subset of all the
affine simulations. This motivates the use of Affnet [MRM18] in order to determine an
appropriate set of affine simulations to be used by IMAS methods. We call this general
procedure the Adaptive IMAS method. As in the case of IMAS methods in Chapter 1,
to mathematically ensure that Adaptive IMAS works one needs to:

1. Dilate query and target density estimations in the Space of Tilts by a factor of
√
r,

where r is the radius corresponding to the maximal viewpoint tolerance of the SIIM
method (we assume r = 1.7 for RootSIFT);

2. Find two sets of affine maps covering both dilated regions in step 1.

We assume that the dilation in step 1 is already taking place thanks to the already
jittered information provided by Affnet [MRM18]. However, density estimations like
those in Figure 7.2b are time consuming and would dramatically slow down the matching
process. Instead, we propose to quickly analyze the affine information and then determine
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(a) Optimal Affine-RootSIFT from Chapter 2. Execution time 10.14s?. Corresponding to 25 query and
target affine simulations.

(b) Adaptive-ARootSIFT. Execution time 2.49s?. Corresponding to 5 query and 4 target affine simula-
tions.

(c) Greedy-ARootSIFT. Execution time 1.28s?. Corresponding to 2 query and 2 target affine simulations.

Figure 7.4: Proposed affine simulations for the ‘cat’ image pair from the EVD [MMP15] dataset. ? OpenMP
parallelization was deactivated to truly measure complexity.

two reasonable sets of affine maps (for query and target) to be simulated by an IMAS
method. We now present two methodologies for building meaningful small sets of optical
affine simulations for IMAS methods.

7.3.1 Fixed tilts selection

Here we want to determine a small (if not the smallest) subset of S1.7 whose elements
will be used to generate the simulations for the adaptive IMAS methods. This set should
be such that the performance of the resulting adaptive IMAS methods is comparable to
simulating the entire set S1.7. Algorithm 11 receives as input the information extracted
by Affnet [MRM18] from a set of patches. Then, indirectly, each of these patches will
vote for a transform in S1.7 and return the set of affine maps to be simulated by an IMAS
method. We call Adaptive-ARootSIFT the adaptive IMAS method whose simulations are
selected by Algorithm 11 and RootSIFT is used to describe patches.
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Table 7.1 Image matching performances on three viewpoint datasets. After matching
each image pair, RANSAC-USAC [RCP+13] is run 100 times to measure its probability of
success in retrieving corresponding ground truth homographies. Legend: S - the number
of successes (bounded by 100× number ); the number of correctly matched image pairs;
inl. - the average number of correct inliers; The numbers of image pairs in a dataset
are boxed; Nq, Nt - the average number of simulated affine maps on query and target;
ET - the average elapsed time in seconds. Hardware settings: (CPU) Intel i7-6700HQ
2.60GHz; (GPU) NVidia Quadro M5000M. OpenMP parallelization with 8 threads. ?
Uses GPU.

SIFT-AID dataset
from Chapter 5

EVD dataset
[MMP15]

OxAff dataset
[MTS+05]

Matching method S 5 inl. Nq Nt ET S 15 inl. Nq Nt ET S 40 inl. Nq Nt ET
SIFT-AID ? 500 5 476 1.0 1.0 4.48 100 1 159 1.0 1.0 4.32 3794 38 1539 1.0 1.0 7.96

RootSIFT [AZ12] 400 4 243 1.0 1.0 1.27 - - - - - - 3900 39 1119 1.0 1.0 1.56
HesAffNet [MRM18] ? 491 5 241 1.0 1.0 1.05 228 4 50 1.0 1.0 1.45 4000 40 576 1.0 1.0 1.20

ASIFT [YM11] 400 4 551 41.0 41.0 33.04 751 9 129 41.0 41.0 25.54 4000 40 5697 41.0 41.0 48.68
Optimal Affine-RootSIFT 500 5 685 25.0 25.0 5.66 768 9 186 25.0 25.0 4.96 4000 40 2794 25.0 25.0 8.12
Adaptive-ARootSIFT ? 500 5 382 5.8 5.6 2.07 664 8 115 6.5 6.3 2.66 4000 40 1711 5.4 5.0 2.67
Greedy-ARootSIFT ? 438 5 315 2.6 2.4 1.82 419 5 117 3.1 3.1 2.36 4000 40 1099 2.5 2.1 2.28

7.3.2 Greedy selection

We can also determine the set of simulations in a greedy iterative way until some criterion
is satisfied. Algorithm 12 presents the formal procedure. Notice that S in Equation 7.2 is
the current affine map in Ã with more close neighbors than any other. We call Greedy-
ARootSIFT the adaptive IMAS method whose simulations are selected by Algorithm 12
and RootSIFT is used to describe patches.

Figure 7.4b-7.4c illustrates the selected simulations by Adaptive-ARootSIFT and
Greedy-ARootSIFT for the cat image pair in the EVD [MMP15] dataset. Notice that,
when no OpenMP parallelization is used, both proposed methods run respectively 4 and
7 times faster than the Optimal Affine-RootSIFT method presented in Chapter2. As it
will be seen in our experiments, Optimal Affine-RootSIFT is still the state of the art in
viewpoint performance.

7.4 Experiments

We now focus on the evaluation of the adaptive IMAS methods. Figures 7.5-7.6 visual-
ize the application of the proposed methods (followed by RANSAC-USAC [RCP+13]) on
two pair of images. Table 7.1 shows performances on three known datasets for homog-
raphy estimation in the presence of viewpoint changes. All datasets include groundtruth
homographies that were used to verify accuracy. First, correspondences from a match-
ing method are obtained, then RANSAC-USAC [RCP+13] is applied and we declared a
success if at least 80% of inliers (in consensus with the estimated homography) were in
consensus with the groundtruth homography. RANSAC-USAC [RCP+13] was run 100
times to measure the probability of success in retrieving the corresponding ground truth
homographies. Six metrics are reported: the number of successes; the number of correctly
matched image pairs; the average number of correct inliers; the average number of affine
simulations for query and target; and the average elapsed time in seconds. A perfect
method would achieve the maximum number of successes in retrieving the groundtruth
homography while being as fast as possible; where this maximum number of successes
equals the number of images in the dataset times a hundred. A large number of matches
is not an indicator of a method’s good performance but can be used as tiebreaker measure
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Algorithm 11 Fixed Tilts Selection
input:
A - Set of normalizing affine maps provided by Affnet [MRM18] from all patches of an
image.
parameters:
r - Tilt radius (default to 1.7).
Sr - Set of optimal affine simulations (default to S1.7).
α - Cover threshold (default to 0.01).
start:
SFT = ∅. . initialization
foreach S ∈ Sr do

p =
∑
A∈A 1d([A],[S])≤log r

|A|
. (7.1)

if p ≥ α then
SFT = SFT

⋃
{S}.

return SFT

Algorithm 12 Greedy Selection
input:
A - Set of normalizing affine maps provided by Affnet [MRM18] from all patches of an
image.
parameters:
r - Tilt radius (default to 1.7).
α - Cover threshold (default to 0.05).
start:
Ã = A, SG = ∅. . initialization
while |Ã| ≥ α|A| do

S = arg max
S∈Ã

∑
A∈Ã

1d([A],[S])≤log r. (7.2)

SG = SG
⋃
{S}.

Ã = Ã \ { [A] ∈ Ω | d ([A], [S]) ≤ log r }.
return SG
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(a) Optimal Affine-RootSIFT results for the ‘adam’ image pair.

(b) Results of Algorithm 11 for query and target images from the ‘adam’ image pair.

(c) Adaptive-ARootSIFT results for the ‘adam’ image pair.

(d) Results of Algorithm 12 for query and target images from the ‘adam’ image pair.

(e) Greedy-ARootSIFT results for the ‘adam’ image pair.

Figure 7.5: Proposed affine simulations for the ‘adam’ image pair from the EVD [MMP15] dataset.
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(a) Optimal Affine-RootSIFT results for the ‘notredame’ image pair.

(b) Results of Algorithm 11 for query and target images from the ‘notredame’ image pair.

(c) Adaptive-ARootSIFT results for the ‘notredame’ image pair.

(d) Results of Algorithm 12 for query and target images from the ‘notredame’ image pair.

(e) Greedy-ARootSIFT results for the ‘notredame’ image pair.

Figure 7.6: Proposed affine simulations for the ‘notredame’ image pair from the Chapter 5 dataset.
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if two methods are equally good in identifying geometric models.
As was been pointed out in Chapter 5, IMAS methods benefit from lots of keypoints

that come exclusively from simulated versions of the input images. Indeed, SIIM detectors
themselves are not affine invariant. Therefore, the more affine simulations in an IMAS
method, the larger amount of matches it will possibly recognize. Notice in Table 7.1, for
the OxAff dataset [MTS+05], that Optimal Affine-RootSIFT from Chapter 2 has far fewer
matches on average than ASIFT [YM11]. However, as previously stated, the number of
matches might be misleading about the method’s true performance. Table 7.1 points out
that Optimal Affine-RootSIFT from Chapter 2 performs better than ASIFT [YM11] in
two datasets; indeed, the former method has more successes in retrieving groundtruth
homographies (i.e. larger probability of success) with even one more identified pairs of
images in the SIFT-AID dataset from Chapter 5. With this in mind, we can declare
Optimal Affine-RootSIFT to be state of the art in viewpoint invariant image matching.
On the other hand, execution times of Optimal Affine-RootSIFT from Chapter 2 are
higher than non-simulating methods but still considerably faster than ASIFT [YM11].

Table 7.1 shows that adaptive IMAS methods provide a good compromise between per-
formance and speed. Adaptive-ARootSIFT attains the same level of performance of Op-
timal Affine-RootSIFT (best in all three datasets) in successfully identifying groundtruth
homographies while reducing by half the average computing time with best case scenario
reduced by four. Even if not as fast as Affnet [MRM18], Adaptive-ARootSIFT provides
a remarkable boost in successes and identified image pairs with respect to the former
method, highlighted in the EVD [MMP15] dataset. HessAffnet [MRM18] was forced
to detect 2000 keypoints and, as in [MRM18], incorporates the HardNet [MMRM17]
descriptor. The average number of simulations in Greedy-ARootSIFT has halved with
respect to Adaptive-ARootSIFT. This last fact is not quite perceived in execution times
of Table 7.1 due to parallelism but is best appreciated in Figure 7.4 where parallelism was
deactivated.
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8 Conclusion

In Chapter 5 we proposed a CNN image patch descriptor capturing affine invariance
without the necessity of using viewpoint simulations nor affine normalisation. In our
experiment, that uses pairs of images from Figure 5.6, the SIFT-AID method attains a
performance comparable to Optimal Affine-RootSIFT. Yet, AID was trained with a very
simplistic data generation scheme in order to be invariant to contrast and affine viewpoint
changes. Even more, pairs of AID descriptors are classified based on a Bayes predictor
whose deciding threshold was fixed for synthetic data; whereas RootSIFT uses the well
established second nearest neighbor criterion. Lowe’s criterion has been proved to enhance
distinctiveness, but the Bayes predictor is compatible with repetitive structures.

An ideal matching method returns a big set of matches with the highest ratio of true
positives. AID’s distinctiveness have been assessed by Figure 5.5 and Table 5.1. Unfor-
tunately, most of the missing matches of the SIFT-AID method in Table 5.1 are due to
SIFT’s keypoint detection step failures; more work is needed to improve this step. Indeed,
provided that proper keypoints had been correctly spotted in the first stages of the SIFT
detector, AID would have been sufficient to identify almost all Affine-RootSIFT matches.
Figure 8.1 shows missed and retrieved matches from AID measurements with respect to
all correctly identified matches from Optimal Affine-RootSIFT. AID matches are plotted
with respect to zoom and viewpoint angle differences between patches. Both quantities
are computed from local approximating affine maps (first order Taylor approximations)
of ground truth homographies. Notice that most of the missing matches between AID
descriptors involve viewpoint angles close to 75 degrees, the maximal viewpoint angle
present when training the BigAID network. Most failures coming from the graffiti pair.

If improved, the still evolving ideas described in Chapter 5 could lead to more robust
AID descriptions. Some key thoughts to enhance AID related matching methods are:

• A more realistic data generation scheme for retraining AID. For example, in order
to improve distinctiveness, we can select the negative patch from the anchor image
itself. Random noise with random standard deviation could also be added to all
three patches before feeding them to the hinge loss. Simulating real occlusions is
another important feature for intra-class patch generation.

• Optimal patch-size. An input patch-size attaining a good trade-off between locality
and description is desired.

• Network architecture. Optimize the descriptor network architecture to improve per-
formance and speed.

• A geometric model estimator robust to multiple-to-multiple matches. A model fit-
ting procedure capable of dealing with multiple matches caused by, for example,
repetitive structures.
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Figure 8.1: AID classification on oracle SIFT keypoints corresponding to true Optimal Affine-RootSIFT matches.
Each of these SIFT keypoints is replacing an IMAS-like keypoint so as similarity deformations around true
Optimal Affine-RootSIFT matches are minimal. Notice that IMAS keypoints also reduce tilt deformations,
whereas SIFT keypoints do not. All pair of images from Figure 5.6 were used.

• Improved affine viewpoint invariance. Further extend the viewpoint robustness of
AID by combining it with affine simulations techniques similar to those in Chapter 1
and/or affine patch normalization like Affnet [MRM18].

Some of these ideas we have already started to explore. First, RANSACaffine from Chap-
ter 6 is used in Table 8.1 to impose geometry consistency when estimating an homography
from AID matches; avoiding in this way, the need of Lowe’s second nearest neighbor cri-
terion. Second, we improve still more AID’s affine invariant descriptions by combining
it in Table 8.1 with the Hessian-Affine [MS04] detector plus the Affnet [MRM18] affine
patch normalizator. Third, a new data generation procedure is proposed in Figure 8.2 to
generate more realistic ROC curves. Finally, the dimension of the AID descriptor can be
further reduced, as seen in Figure 8.3.

Table 7.1 shows a rather poor performance of the SIFT-AID method. We want to mea-
sure the extent to which it is AID’s fault and the gap to improve. Figure 8.2 shows ROC
curves for four state-of-the-art descriptions: AID, Affnet [MRM18]+Hardnet [MMRM17],
Hardnet [MMRM17] and RootSIFT [AZ12]. AID has the best score among descriptors,
only beaten by Affnet [MRM18]+Hardnet [MMRM17]. In order to measure the state
of the art descriptions’ performances we test them within a unique detector, so as all
of those methods receive the same set of patches to describe. We choose the Hessian-
Affine [MS04] detector and keep the best 500 keypoints for each image. Table 8.1 shows
similar performances between AID equipped with RANSACaffine from Chapter 6 and
HesAffnet [MRM18]; the later method appearing in Table 8.1 as HessAffnetHardnet +
USAC. The combination of AID and Affnet [MRM18] results in an improvement over
AID when RANSAC-USAC [RCP+13] is used; however, their performance look similar
when followed by RANSACaffine. This proves that AID does provide state-of-the-art affine
invariant descriptions while allowing repetitive structures to be matched. The main draw-
back of AID is its slow keypoint descriptions step. We point out that the Affnet [MRM18]
network receives as input 32× 32 patches whereas the BigAID descriptor receives 60× 60
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Figure 8.2: ROC curves and their corresponding AUC for AID, Affnet [MRM18]+Hardnet [MMRM17], Hard-
net [MMRM17] and RootSIFT [AZ12]. 60000 pair of generated patches were used; half intra-class (positives),
half extra-class (negatives). The triple patch generation of Chapter 5 was enriched by two main additions:
first, the negative patch belongs to the anchor image; second, random noise with random standard deviation
is added to all three patches.

Figure 8.3: The AID21 descriptor shares 21× 128 dimensions (depicted in blue) out of 49× 128 from the AID
descriptor. The AID descriptor corresponds to the whole structure in blue and green. All dimensions in green
are describing patch zones near the borders, whereas all those in blue correspond to patch zone’s descriptions
around the center.
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(a) BigAID with cosine proximity. (b) AID with sign alignments.

(c) BigAID21 with cosine proximity. (d) AID21 with sign alignments.

Figure 8.4: Positive and negative density estimation on measurements. For that, 3 · 105 random intra and
extra class pairs were used. The vertical line depicts the threshold minimizing both error probabilities: false
negatives and false positives.

patches. Even more, the BigAID network doubles the number of layers and filters with
respect to Hardnet and Affnet networks. Clearly, the BigAID network is oversized and
needs to be optimized for faster descriptions. On the other hand, the matching of AID
descriptors is already done fast. AID descriptions can be further reduced into AID21 de-
scriptions, resulting in the fastest brute force matching step from all methods described
in this thesis. The AID21 descriptor accounts for a reduction from 6272 bits (196 floats)
to 2688 bits (84 floats), whereas SIFT descriptions need 128 floats. This passage from
AID to AID21 is done without sacrificing distinctiveness nor performance (see Figure 8.4
and Table 8.1), which highlights over-descriptions from the BigAID network. All this
suggests that a shrinkage of the BigAID network is indeed highly possible. Even more,
the AID21 descriptor seems to require less help from Affnet [MRM18] than AID, for both
RANSACaffine and RANSAC-USAC [RCP+13]. This improvement, observed in Table 8.1,
might be due to the more local descriptions provided by AID21.

Chapter 6 proposes a CNN based method to locally estimate affine maps between im-
ages. These local affine maps provide us with tangent planes of the global transformation
from the query image to the target image. Under reasonable assumptions, tangent planes
can determine the global transformation. Figure 8.5 proves that even a simple local affine
reconstruction with locate already provides a fair enough reconstruction. Blurry details
in the reconstructed image were expected even for a perfect method. Indeed, there exist
two main reasons for that:

1. The reconstruction is done with first order approximations. Therefore, there is
always an approximation error that causes blur when overlapping patches are aver-
aged.

2. Some query patches belong to higher order scales in the Gaussian pyramid. They
are already blurry by definition.

Our experiments from Chapter 6 show that the locate method provides accurate
first-order approximations of local geometry. This information proved to be valuable for
two applications:

• Guided matching of SIFT keypoints with precise locations, orientations and scales.
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(a) Initial correspondences.

(b) locate affine reconstruction of target from query.

Figure 8.5: locate’s local to global reconstruction. First, some correspondences are provided by some
matching method, as in Figure 8.5a. Then we compute local approximating affine maps with locate around
each of these correspondences and use them to transform query patches into the target image plane, see
Figure 8.5b. Each pixel intensity is averaged with the information of all patches enclosing it.
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Table 8.1 Image matching performances on three viewpoint datasets. After matching
each image pair, a RANSAC is run 100 times to measure its probability of success in re-
trieving corresponding ground truth homographies. Legend: S - the number of successes
(bounded by 100× number ); the number of correctly matched image pairs; inl. - the av-
erage number of correct inliers; AvE - the average pixel error; R - the ratio of inliers/total.
The numbers of image pairs in a dataset are boxed. RANSAC and RANSACaffine are
both from Chapter 6 and used with 10000 internal iterations; * and ** mean the usage of
local affine maps provided by the HessAff detector and the Affnet normaliser, respectively.
USAC stands for RANSAC-USAC [RCP+13] with standard settings.

SIFT-AID dataset
from Chapter 5

EVD dataset
[MMP15]

OxAff Viewpoint
dataset [MTS+05]

Matching method
(+ RANSAC version)

S 5 inl. AvE R S 15 inl. AvE R S 10 inl. AvE R

HessAffAID
(RANSACaffine

∗) 414 5 97 5.8 0.21 195 3 18 8.5 0.04 991 10 116 3.6 0.25

HessAffnetAID
(RANSACaffine

∗∗) 422 5 101 6.0 0.22 200 2 23 6.3 0.05 1000 10 112 3.8 0.24

HessAffAID
(USAC) 357 4 119 5.5 0.25 100 1 44 6.0 0.09 800 8 146 2.7 0.32

HessAffnetAID
(USAC) 300 3 136 4.3 0.30 102 2 52 7.1 0.11 803 9 143 2.9 0.31

HessAffAID21
(RANSACaffine

∗) 466 5 82 6.0 0.18 197 2 17 7.3 0.04 999 10 110 3.8 0.24

HessAffnetAID21
(RANSACaffine

∗∗) 430 5 89 6.1 0.20 198 2 16 7.0 0.03 998 10 106 3.7 0.23

HessAffAID21
(USAC) 350 4 111 5.4 0.24 25 1 37 6.3 0.08 795 8 141 2.7 0.31

HessAffnetAID21
(USAC) 300 3 126 4.1 0.28 99 1 46 7.5 0.10 800 8 136 2.7 0.30

HessAffnetHardnet
(USAC) 446 5 78 4.0 0.62 200 2 13 4.1 0.49 1000 10 109 2.5 0.84

HessAffnetHardnet
(RANSAC) 400 4 87 4.0 0.67 200 2 14 4.4 0.52 1000 10 110 2.6 0.85

• Homography estimation, for which we presented a RANSAC version that systemat-
ically improved results in four well known datasets [ZR11,MMP15,MTS+05,HS12].

The proposed method is generic and its applications to stereo matching without any
global geometry assumption will be explored in future work. Training locate to handle
occlusions is crucial for real-life applications, and will also be the focus of future work.

In Chapter 7 we show that Image matching by affine simulation (IMAS) methods are
still the state of the art in matching images involving strong viewpoint differences. Even
when compared to recent advances incorporating neural networks like [MRM18] or SIFT-
AID from Chapter 5, IMAS methods do perform better. We observe that the information
provided by AffNet [MRM18] is valuable in determining convenient simulations to be used
in IMAS methods. The resulting adaptive IMAS methods yield a substantial acceleration
with respect to classic IMAS methods without sacrificing performance. Also, Equation 7.1
provides a natural order to simulations appearing in Optimal Affine-RootSIFT which will
be used in future work to create IMAS methods that gradually incorporate simulations
on demand and stop as soon as a significant geometric model (i.g., homography) has been
identified.
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A Proof of Theorem 1.1

In this chapter we provide the proof of Theorem 1.1. For the sake of clearness, we state
again Theorem 1.1.

Theorem. Given an element of the space of tilts in canonical form [TtR (φ1)], the disk
B ([TtR (φ1)] , r) in the space of tilts centered at this element and with radius r corresponds
to the following set {

[TsR (φ2)] |G (t, s, φ1, φ2) ≤ e2r + 1
2er

}
where

G (t, s, φ1, φ2) =
(
t
s + s

t

2

)
cos2 (φ1 − φ2) +

( 1
st + st

2

)
sin2 (φ1 − φ2) .

Proof. By proposition 1.4 we know that

τ
(
BA−1

)
= τ

(
i ([B]) i ([A])−1

)
where i is the injection in Definition 1.5. Thus, without loss of generality, we focus in
computing the absolute tilt of

C = TtR2Q
−1
2 T−1

s

= TtR (φ)T−1
s

where R (φ) = R2Q
−1
2 . Proposition 1.2 states that the ratio between the singular values

of C can be used to compute its absolute tilt.

Trace and determinant

First, we start by computing the trace and determinant of

C?C = T−1
s R (φ)−1 TtTtR (φ)T−1

s ,

which are clearly

det (C?C) = t2

s2

and

Tr (C?C) =
(
t2

s2 + 1
)

cos2 φ+
( 1
s2 + t2

)
sin2 φ.
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The eigenvalues of C?C

Let H =
(
a c
c b

)
= C?C and λ+, λ− being the biggest and smallest eigenvalues of C?C

respectively. It is well known that

Tr (H) = λ+ + λ−

det (H) = λ+λ−

and even more that both Tr and det also appear in the characteristic polynomial

|C?C − λId| = λ2 − λ (a+ b) +
(
ab− c2

)
= λ2 − λTrH + detH.

On the other hand, the eigenvalues of a symmetric positive definite matrix are in R, which
implies that

√
(TrH)2 − 4 detH ≥ 0, and so one can write

λ− =
Tr (H)−

√
(TrH)2 − 4 detH

2 ,

λ+ =
Tr (H) +

√
(TrH)2 − 4 detH

2 .

Now, after some computations, the ratio between the biggest and smallest eigenvalues is

λ+
λ−

=

(
TrH

2 +
√

(TrH)2−4 detH
2

)2

detH

= s2

t2

g
2 +

√
g2 − 4 t2

s2

2

2

(A.1)

where g denotes the function

g (t, s, φ) := Tr (C?C)

=
(
t2

s2 + 1
)

cos2 φ+
( 1
s2 + t2

)
sin2 φ.

Computing τ (C)

Proposition 1.2 tells that the absolute tilt of C is

τ (C) =
√
λ+
λ−

= s

t

g
2 +

√
g2 − 4 t2

s2

2


= s

t

g

2 +
√(

s

t

g

2

)2
− 1

= G (s, t, φ) +
√

(G (s, t, φ))2 − 1

where

G (s, t, φ) = s

t

g (s, t, φ)
2 .
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Disks in the space of tilts

Let A := [TtR2] ∈ Ω be fixed and let us find conditions on B := [TsQ2] ∈ Ω to satisfy

B ∈ B (A, log r)

which are clearly

d (A,B) = log τ
(
i (A) i (B)−1

)
≤ log r

m

τ
(
i (A) i (B)−1

)
≤ r

where i is the injection in Definition 1.5. Thus, just by applying the above to C :=
i (A) i (B)−1 we obtained

G (s, t, φ) +
√

(G (s, t, φ))2 − 1 = τ
(
AB−1

)
≤ r

where R (φ) = R2Q
−1
2 . So √

G2 − 1 ≤ r −G
m

G2 − 1 ≤ r2 − 2rG+G2

m

G ≤ r2 + 1
2r .
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Résumé: La mise en correspondance
d’images, qui consiste à décider si plusieurs im-
ages représentent ou non des objets communs
ou similaires, est un problème reconnu comme
difficile, notamment en raison des changements
de point de vue entre les images. Les défor-
mations apparentes des objets causées par les
changements de position de la caméra peuvent
être approximées localement par des trans-

formations affines. Cette propriété a motivé
la recherche de descripteurs locaux invariants
affines depuis une quinzaine d’années. Mal-
heureusement, les descripteurs existants ne per-
mettent pas de traiter des différences de point de
vue d’angle supérieures à 45 degrés, et échouent
complètement au-delà de 60 degrés. Dans cette
thèse, nous abordons plusieurs stratégies pour
résoudre cette limitation, et nous montrons
qu’elles se complètent.
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Abstract: Image comparison, which consists
in deciding whether or not several images rep-
resent some common or similar objects, is a
problem recognized as difficult, especially be-
cause of the viewpoint changes between images.
The apparent deformations of objects caused by
changes of the camera position can be locally
approximated by affine maps. This has moti-

vated the quest for affine invariant local descrip-
tors in the last 15 years. Unfortunately, exist-
ing descriptors cannot handle angle viewpoint
differences larger than 45 degrees, and fail com-
pletely beyond 60 degrees. In this thesis, we
address several strategies to resolve this limita-
tion, and we show at the end that they complete
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