A. P. Abbott, T. J. Bell, S. Handa, and B. Stoddart, Cationic functionalisation of cellulose using a choline based ionic liquid analogue, Green Chemistry, vol.8, pp.784-786, 2006.

N. Buchtová and T. Budtova, Cellulose aero-, cryo-and xerogels: towards understanding of morphology control, Cellulose, vol.23, pp.2585-2595, 2016.

T. Budtova, Cellulose II aerogels: a review, Cellulose, vol.26, pp.81-121, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02419114

A. Bueno, I. Selmer, and S. P-r, First Evidence of Solvent Spillage under Subcritical Conditions in Aerogel Production, Industrial & Engineering Chemistry Research, vol.57, pp.8698-8707, 2018.

C. Buesch, S. W. Smith, and P. Eschbach, The Microstructure of Cellulose Nanocrystal Aerogels as Revealed by Transmission Electron Microscope Tomography, Biomacromolecules, vol.17, pp.2956-2962, 2016.

J. Cai, S. Kimura, and M. Wada, Cellulose Aerogels from Aqueous Alkali Hydroxide-Urea Solution. ChemSusChem, vol.1, pp.149-154, 2008.

R. Cai, M. Hu, and Y. Zhang, Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii, LWT, vol.106, pp.50-56, 2019.

E. Caldeira, E. Piskin, and L. Granadeiro, Biofunctionalization of cellulosic fibres with L-cysteine: Assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiella pneumoniae, J Biotechnol, vol.168, pp.426-435, 2013.

S. Camarero-espinosa, B. Rothen-rutishauser, J. Foster, E. Weder, and C. , Articular cartilage: from formation to tissue engineering, Biomaterials Science, vol.4, pp.734-767, 2016.

S. Camy, S. Montanari, and A. Rattaz, Oxidation of cellulose in pressurized carbon dioxide, The Journal of Supercritical Fluids, vol.51, pp.188-196, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00499383

Y. Cao, P. Zavaterri, and J. Youngblood, The influence of cellulose nanocrystal additions on the performance of cement paste, Cement and Concrete Composites, vol.56, pp.73-83, 2015.

Z. Cao, X. Luo, and H. Zhang, A facile and green strategy for the preparation of porous chitosancoated cellulose composite membranes for potential applications as wound dressing, Cellulose, vol.23, pp.1349-1361, 2016.

I. Capron and B. Cathala, Surfactant-Free High Internal Phase Emulsions Stabilized by Cellulose Nanocrystals, Biomacromolecules, vol.14, pp.291-296, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652680

A. W. Carpenter, C. De-lannoy, and M. R. Wiesner, Cellulose Nanomaterials in Water Treatment Technologies. Environmental Science & Technology, vol.49, pp.5277-5287, 2015.

N. T. Cervin, C. Aulin, P. T. Larsson, and L. Wågberg, Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids, Cellulose, vol.19, pp.401-410, 2012.

M. Champeau, J. Thomassin, T. Tassaing, and C. Jérôme, Drug loading of polymer implants by supercritical CO 2 assisted impregnation: A review, Journal of Controlled Release, vol.209, pp.248-259, 2015.

G. Chantereau, N. Brown, and M. Dourges, Silylation of bacterial cellulose to design membranes with intrinsic anti-bacterial properties, Carbohydrate Polymers, vol.220, pp.71-78, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02134754

G. Chauve, C. Fraschini, and B. Jean, Separation of Cellulose Nanocrystals, Materials and Energy. WORLD SCIENTIFIC, pp.73-87, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01017610

P. R. Chawla, I. B. Bajaj, S. A. Survase, and R. S. Singhal, Microbial Cellulose: Fermentative Production and Applications, p.19, 2009.

L. Chen, C. Lai, and R. Marchewka, Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications, Nanoscale, vol.8, pp.13288-13296, 2016.

Y. Chen, M. Niu, S. Yuan, and H. Teng, Durable antimicrobial finishing of cellulose with QSA silicone by supercritical adsorption, Applied Surface Science, vol.264, pp.171-175, 2013.

Y. Chen, Q. Zhang, Y. Ma, and Q. Han, Surface-oriented fluorinated pyridinium silicone with enhanced antibacterial activity on cotton via supercritical impregnation, Cellulose, vol.25, pp.1499-1511, 2018.

F. Cheng, C. Liu, and X. Wei, Preparation and Characterization of 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-Oxidized Cellulose Nanocrystal/Alginate Biodegradable Composite Dressing for Hemostasis Applications, ACS Sustainable Chemistry & Engineering, vol.5, pp.3819-3828, 2017.

Q. Cheng, D. Ye, C. Chang, and L. Zhang, Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation, Journal of Membrane Science, vol.525, pp.1-8, 2017.

C. Chindawong and D. Johannsmann, An anisotropic ink based on crystalline nanocellulose: Potential applications in security printing, Journal of Applied Polymer Science, vol.131, 2014.

Y. C. Ching, A. Ershad, . Md, and L. C. Abdullah, Rheological properties of cellulose nanocrystalembedded polymer composites: a review, Cellulose, vol.23, pp.1011-1030, 2016.

G. Chu, D. Qu, E. Zussman, and Y. Xu, Ice-Assisted Assembly of Liquid Crystalline Cellulose Nanocrystals for Preparing Anisotropic Aerogels with Ordered Structures, Chemistry of Materials, vol.29, pp.3980-3988, 2017.

D. Ciftci, A. Ubeyitogullari, and R. R. Huerta, Lupin hull cellulose nanofiber aerogel preparation by supercritical CO 2 and freeze drying, The Journal of Supercritical Fluids, vol.127, pp.137-145, 2017.

, CNRS (2017) Risques biologiques. Les cahiers de prévention 88

V. P. Costa, M. Braga, and C. Duarte, Anti-glaucoma drug-loaded contact lenses prepared using supercritical solvent impregnation, 2010.

J. C. Courtenay, C. Deneke, and E. M. Lanzoni, Modulating cell response on cellulose surfaces; tunable attachment and scaffold mechanics, Cellulose, vol.25, pp.925-940, 2018.

A. G. Cunha, J. Mougel, and B. Cathala, Preparation of Double Pickering Emulsions Stabilized by Chemically Tailored Nanocelluloses, Langmuir, vol.30, pp.9327-9335, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639640

C. V. Da-silva, V. J. Pereira, and G. Costa, Supercritical solvent impregnation/deposition of spilanthol-enriched extracts into a commercial collagen/cellulose-based wound dressing, The Journal of Supercritical Fluids, vol.133, pp.503-511, 2018.

G. Dabiri, E. Damstetter, and T. Phillips, Choosing a Wound Dressing Based on Common Wound Characteristics, Adv Wound Care, vol.5, pp.32-41, 2016.

D. C. Daltrey, B. Rhodes, and J. G. Chattwood, Investigation into the microbial flora of healing and nonhealing decubitus ulcers, Journal of Clinical Pathology, vol.34, pp.701-705, 1981.

N. J. Davis and S. L. Flitsch, Selective oxidation of monosaccharide derivatives to uronic acids, Tetrahedron Letters, vol.34, pp.1181-1184, 1993.

K. J. De-france, T. Hoare, and E. D. Cranston, Review of Hydrogels and Aerogels Containing Nanocellulose, Chemistry of Materials, 2017.

J. Desmaisons, E. Boutonnet, and M. Rueff, A new quality index for benchmarking of different cellulose nanofibrils, Carbohydrate Polymers, vol.174, pp.318-329, 2017.

I. J. Dias, E. Trajano, and R. D. Castro, Antifungal activity of linalool in cases of Candida spp. isolated from individuals with oral candidiasis, Brazilian Journal of Biology, vol.78, pp.368-374, 2017.

I. Díez, P. Eronen, and M. Österberg, Functionalization of Nanofibrillated Cellulose with Silver Nanoclusters: Fluorescence and Antibacterial Activity, Macromolecular Bioscience, vol.11, pp.1185-1191, 2011.

K. Dimic-misic, P. Gane, and J. Paltakari, Micro-and Nanofibrillated Cellulose as a Rheology Modifier Additive in CMC-Containing Pigment-Coating Formulations, Industrial & Engineering Chemistry Research, vol.52, pp.16066-16083, 2013.

S. Dong, H. J. Cho, Y. W. Lee, and M. Roman, Synthesis and Cellular Uptake of Folic Acid-Conjugated Cellulose Nanocrystals for Cancer Targeting, Biomacromolecules, vol.15, pp.1560-1567, 2014.

A. E. Donius, A. Liu, L. A. Berglund, and U. Wegst, Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting, Journal of the Mechanical Behavior of Biomedical Materials, vol.37, pp.88-99, 2014.

O. M. Dragostin, S. K. Samal, and M. Dash, New antimicrobial chitosan derivatives for wound dressing applications, Carbohydr Polym, vol.141, pp.28-40, 2016.

A. G. Dumanli, H. M. Van-der-kooij, and G. Kamita, Digital Color in Cellulose Nanocrystal Films, ACS Applied Materials & Interfaces, vol.6, pp.12302-12306, 2014.

C. A. Fleck and R. Simman, Modern Collagen Wound Dressings: Function and Purpose, J Am Col Certif Wound Spec, vol.2, pp.50-54, 2011.

E. J. Foster, R. J. Moon, and U. P. Agarwal, Current characterization methods for cellulose nanomaterials, Chem Soc Rev, vol.47, pp.2609-2679, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350540

S. Fujisawa, Y. Okita, and H. Fukuzumi, Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups, Carbohydrate Polymers, vol.84, pp.579-583, 2011.

H. Fukuzumi, T. Saito, and T. Iwata, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.10, pp.162-165, 2009.

M. Fumagalli, D. Ouhab, S. M. Boisseau, and L. Heux, Versatile Gas-Phase Reactions for Surface to Bulk Esterification of Cellulose Microfibrils Aerogels, Biomacromolecules, vol.14, pp.3246-3255, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903477

M. Fumagalli, F. Sanchez, M. Boisseau, S. Heux, and L. , Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents, Soft Matter, vol.9, pp.11309-11317, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01066778

M. Fumagalli, F. Sanchez, S. Molina-boisseau, and L. Heux, Surface-restricted modification of nanocellulose aerogels in gas-phase esterification by di-functional fatty acid reagents, Cellulose, vol.22, pp.1451-1457, 2015.

F. Furno, K. S. Morley, and B. Wong, Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?, J Antimicrob Chemother, vol.54, pp.1019-1024, 2004.

A. Gandini and M. N. Belgacem, 1 -Modifying cellulose fiber surfaces in the manufacture of natural fiber composites. In: Zafeiropoulos NE (ed) Interface Engineering of Natural Fibre Composites for Maximum Performance, pp.3-42, 2011.

C. A. García-gonzález, M. Alnaief, and I. Smirnova, Polysaccharide-based aerogels-Promising biodegradable carriers for drug delivery systems, Carbohydrate Polymers, vol.86, pp.1425-1438, 2011.

C. A. García-gonzález, J. Barros, and A. Rey-rico, Antimicrobial Properties and Osteogenicity of Vancomycin-Loaded Synthetic Scaffolds Obtained by Supercritical Foaming, ACS Appl Mater Interfaces, vol.10, pp.3349-3360, 2018.

B. Geng, H. Wang, and S. Wu, Surface-Tailored Nanocellulose Aerogels with Thiol-Functional Moieties for Highly Efficient and Selective Removal of Hg(II) Ions from Water, ACS Sustainable Chemistry & Engineering, vol.5, pp.11715-11726, 2017.

J. George and S. Sabapathi, Cellulose nanocrystals: synthesis, functional properties, and applications, Science and Applications, vol.45, 2015.

I. Gibas and H. Janik, SYNTHETIC POLYMER HYDROGELS FOR BIOMEDICAL APPLICATIONS, 2010.

Y. Habibi, Key advances in the chemical modification of nanocelluloses, Chem Soc Rev, vol.43, pp.1519-1542, 2014.

Y. Habibi, H. Chanzy, and M. R. Vignon, TEMPO-mediated surface oxidation of cellulose whiskers, Cellulose, vol.13, pp.679-687, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305786

Y. Habibi and A. Dufresne, Highly Filled Bionanocomposites from Functionalized Polysaccharide Nanocrystals, Biomacromolecules, vol.9, pp.1974-1980, 2008.

Y. Habibi, A. Goffin, and N. Schiltz, Bionanocomposites based on poly(?-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization, J Mater Chem, vol.18, pp.5002-5010, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00448904

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, vol.110, pp.3479-3500, 2010.

E. Haimer, M. Wendland, and K. Schlufter, Loading of Bacterial Cellulose Aerogels with Bioactive Compounds by Antisolvent Precipitation with Supercritical Carbon Dioxide, Macromolecular Symposia, vol.294, pp.64-74, 2010.

Y. Han, X. Zhang, X. Wu, and C. Lu, Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures, ACS Sustainable Chemistry & Engineering, vol.3, pp.1853-1859, 2015.

S. Harrisson, G. L. Drisko, and E. Malmström, Hybrid Rigid/Soft and Biologic/Synthetic Materials: Polymers Grafted onto, Cellulose Microcrystals. Biomacromolecules, vol.12, pp.1214-1223, 2011.

M. Hasani, E. D. Cranston, G. Westman, and D. G. Gray, Cationic surface functionalization of cellulose nanocrystals, Soft Matter, vol.4, pp.2238-2244, 2008.

A. Hassanpour, S. Asghari, M. Lakouraj, M. Mohseni, and M. , Preparation and characterization of contact active antibacterial surface based on chemically modified nanofibrillated cellulose by phenanthridinium silane salt, International Journal of Biological Macromolecules, vol.115, pp.528-539, 2018.

D. L. Hawksworth and R. Lücking, Fungal Diversity Revisited: 2.2 to 3.8 Million Species, Microbiol Spectr, vol.5, 2017.

L. Heath and W. Thielemans, Cellulose nanowhisker aerogels. Green Chemistry, vol.12, p.1448, 2010.

W. A. Hendrix, Progress in Supercritical Co2Dyeing, Journal of Industrial Textiles, vol.31, pp.43-56, 2001.

M. Henriksson, L. A. Berglund, and P. Isaksson, Cellulose Nanopaper Structures of High Toughness, Biomacromolecules, vol.9, pp.1579-1585, 2008.

M. Henriksson, G. Henriksson, L. A. Berglund, and T. Lindström, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, European Polymer Journal, vol.43, pp.3434-3441, 2007.

V. Herdegen, A. Felix, and R. Haseneder, Sterilization of Medical Products from Collagen by Means of Supercritical CO 2, Chemical Engineering & Technology, vol.37, pp.1891-1895, 2014.

F. Hoeng, A. Denneulin, and J. Bras, Use of nanocellulose in printed electronics: a review, Nanoscale, vol.8, pp.13131-13154, 2016.

S. Hoepfner, L. Ratke, and B. Milow, Synthesis and characterisation of nanofibrillar cellulose aerogels, Cellulose, vol.15, pp.121-129, 2008.

J. Huang, C. Li, G. Gray, and D. , Functionalization of cellulose nanocrystal films via "thiol-ene" click reaction, RSC Advances, vol.4, pp.6965-6969, 2014.

M. A. Hubbe, A. Ferrer, and P. Tyagi, Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review, vol.12, 2017.

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.3, pp.71-85, 2011.

J. Jaxel, L. Fontaine, and T. Krenke, Bio-inspired conformational lipophilization of wood for scCO2-assisted colouring with disperse dyes, The Journal of Supercritical Fluids, vol.147, pp.116-125, 2019.

M. G. Jeschke, G. Sandmann, T. Schubert, and D. Klein, Effect of oxidized regenerated cellulose/collagen matrix on dermal and epidermal healing and growth factors in an acute wound, Wound Repair and Regeneration, vol.13, pp.324-331, 2005.

F. Jiang and Y. Hsieh, Assembling and Redispersibility of Rice Straw Nanocellulose: Effect of tert -Butanol, ACS Applied Materials & Interfaces, vol.6, 2014.

C. Jiménez-saelices, B. Seantier, B. Cathala, and Y. Grohens, Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties, Carbohydrate Polymers, vol.157, pp.105-113, 2017.

C. Jiménez-saelices, B. Seantier, B. Cathala, and Y. Grohens, Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels, Journal of Sol-Gel Science and Technology, vol.84, pp.475-485, 2017.

H. Jin, Y. Nishiyama, M. Wada, and S. Kuga, Nanofibrillar cellulose aerogels, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.240, pp.63-67, 2004.

L. Johansson, T. Tammelin, M. Campbell, and J. , Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose, Soft Matter, vol.7, pp.10917-10924, 2011.

, Cellulose nanofibres by sonocatalysed-TEMPO-oxidation, vol.18, pp.414-427, 2011.

S. Saini, M. N. Belgacem, and J. Bras, Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity, Materials Science and Engineering: C, vol.75, pp.760-768, 2017.

S. Saini, M. N. Belgacem, M. Salon, and J. Bras, Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane, Cellulose, vol.23, pp.795-810, 2016.

S. Saini, N. Belgacem, and J. Mendes, Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release, ACS Applied Materials & Interfaces, vol.7, pp.18076-18085, 2015.

T. Saito, M. Hirota, and N. Tamura, Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions, Biomacromolecules, vol.10, pp.1992-1996, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439999

T. Saito and A. Isogai, TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions, Biomacromolecules, vol.5, pp.1983-1989, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00305562

T. Saito, Y. Nishiyama, and J. Putaux, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, pp.1687-1691, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305809

M. Salajková, L. A. Berglund, and Q. Zhou, Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts, Journal of Materials Chemistry, vol.22, 2012.

R. Sankar, S. Elango, and K. K. Vadodaria, Preparation of nanospheres from oxidised cellulose nanofibrils via polyelectrolyte complexation, International Journal of Nanoparticles, vol.9, pp.28-40, 2016.

D. Sanli and C. Erkey, Silylation from supercritical carbon dioxide: a powerful technique for modification of surfaces, J Mater Sci, vol.50, pp.7159-7181, 2015.

L. M. Sanz-moral, M. Rueda, R. Mato, and Á. Martín, View cell investigation of silica aerogels during supercritical drying: Analysis of size variation and mass transfer mechanisms, The Journal of Supercritical Fluids, vol.92, pp.24-30, 2014.

I. M. Saxena and R. M. Brown, Cellulose Biosynthesis: Current Views and Evolving Concepts, Ann Bot, vol.96, pp.9-21, 2005.

G. W. Scherer, Stress and strain during supercritical drying, J Sol-Gel Sci Technol, vol.90, pp.8-19, 2019.

F. Scognamiglio, M. Blanchy, and M. Borgogna, Effects of supercritical carbon dioxide sterilization on polysaccharidic membranes for surgical applications, Carbohydrate Polymers, vol.173, pp.482-488, 2017.

H. Sehaqui, A. Liu, Q. Zhou, and L. A. Berglund, Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures, Biomacromolecules, vol.11, pp.2195-2198, 2010.

H. Sehaqui, M. Salajková, Q. Zhou, and L. A. Berglund, Mechanical performance tailoring of tough ultrahigh porosity foams prepared from cellulose I nanofiber suspensions, Soft Matter, vol.6, p.1824, 2010.

H. Sehaqui, Q. Zhou, and L. A. Berglund, High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC), Composites Science and Technology, vol.71, pp.1593-1599, 2011.

H. Sehaqui, Q. Zhou, O. Ikkala, and L. A. Berglund, Strong and Tough Cellulose Nanopaper with High Specific Surface Area and Porosity, Biomacromolecules, vol.12, pp.3638-3644, 2011.

C. B. Shah and M. Ma, Hibbitt DA Efficacy and Mode of Action of a New PHMB Impregnated Polyurethane Foam Dressing

J. Shojaeiarani, D. S. Bajwa, and K. Hartman, Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites, Cellulose, vol.26, pp.2349-2362, 2019.

D. Singh, T. Kumar, V. K. Gupt, and P. Chaturvedi, Antimicrobial activity of some promising plant oils, molecules and formulations, Indian J Exp Biol, vol.50, pp.714-717, 2012.

M. Singh, A. Kaushik, and D. Ahuja, Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters, Carbohydrate Polymers, vol.150, pp.48-56, 2016.

R. Singla, S. Soni, and P. M. Kulurkar, In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing, Carbohydrate Polymers, vol.155, pp.152-162, 2017.

G. Siqueira, J. Bras, and A. Dufresne, New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate, Langmuir, vol.26, pp.402-411, 2010.

G. Siqueira, S. Tapin-lingua, and J. Bras, Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose, vol.17, pp.1147-1158, 2010.

I. Siró and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, vol.17, pp.459-494, 2010.

J. A. Sirviö and M. Visanko, Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification, Journal of Materials Chemistry A, vol.5, pp.21828-21835, 2017.

P. Skehan, R. Storeng, and D. Scudiero, New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening, J Natl Cancer Inst, vol.82, pp.1107-1112, 1990.

R. Abitbol, T. Rivkin, A. Cao, and Y. , Nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology, vol.39, pp.76-88, 2016.

M. F. Ashby, The properties of foams and lattices, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.364, pp.15-30, 2006.

R. Bardet and J. Bras, Cellulose Nanofibers and Their Use in Paper Industry, Handbook of Green Materials, pp.207-232, 2013.

A. J. Benítez and A. Walther, Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space, Journal of Materials Chemistry A, vol.5, pp.16003-16024, 2017.

T. Benselfelt, M. Nordenström, S. B. Lindström, and L. Wågberg, Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions-Suitable Substrates for Biointerfaces, Advanced Materials Interfaces, vol.6, p.1900333, 2019.

I. Besbes, S. Alila, and S. Boufi, Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content, Carbohydrate Polymers, vol.84, pp.975-983, 2011.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, pp.309-319, 1938.

N. Buchtová and T. Budtova, Cellulose aero-, cryo-and xerogels: towards understanding of morphology control, Cellulose, vol.23, pp.2585-2595, 2016.

T. Budtova, Cellulose II aerogels: a review, Cellulose, vol.26, pp.81-121, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02419114

C. Buesch, S. W. Smith, and P. Eschbach, The Microstructure of Cellulose Nanocrystal Aerogels as Revealed by Transmission Electron Microscope Tomography, Biomacromolecules, vol.17, pp.2956-2962, 2016.

N. T. Cervin, C. Aulin, P. T. Larsson, and L. Wågberg, Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids, Cellulose, vol.19, pp.401-410, 2012.

G. Chauve, C. Fraschini, and B. Jean, Separation of Cellulose Nanocrystals, Materials and Energy. WORLD SCIENTIFIC, pp.73-87, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01017610

A. I. Chen, M. L. Balter, and M. I. Chen, Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties, Med Phys, vol.43, pp.3117-3131, 2016.

Y. Chen, L. Zhou, and L. Chen, Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport, Cellulose, vol.26, pp.6653-6667, 2019.

F. Cherhal, F. Cousin, and I. Capron, Influence of Charge Density and Ionic Strength on the Aggregation Process of Cellulose Nanocrystals in Aqueous Suspension, as Revealed by Small-Angle Neutron Scattering, Langmuir, vol.31, pp.5596-5602, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02637859

D. Ciftci, A. Ubeyitogullari, and R. R. Huerta, Lupin hull cellulose nanofiber aerogel preparation by supercritical CO 2 and freeze drying, The Journal of Supercritical Fluids, vol.127, pp.137-145, 2017.

K. J. De-france, T. Hoare, and E. D. Cranston, Review of Hydrogels and Aerogels Containing Nanocellulose, Chemistry of Materials, 2017.

J. Desmaisons, E. Boutonnet, and M. Rueff, A new quality index for benchmarking of different cellulose nanofibrils, Carbohydrate Polymers, vol.174, pp.318-329, 2017.

A. Dufresne, S. ;-berlin-elazzouzi-hafraoui, Y. Nishiyama, and J. Putaux, The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose, Biomacromolecules, vol.9, pp.57-65, 2008.

S. Elazzouzi-hafraoui, J. Putaux, and L. Heux, Self-assembling and Chiral Nematic Properties of Organophilic Cellulose Nanocrystals, The Journal of Physical Chemistry B, vol.113, pp.11069-11075, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439997

E. J. Foster, R. J. Moon, and U. P. Agarwal, Current characterization methods for cellulose nanomaterials, Chem Soc Rev, vol.47, pp.2609-2679, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350540

B. Frka-petesic, G. Kamita, G. Guidetti, and S. Vignolini, Angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying, Phys Rev Materials, vol.3, p.45601, 2019.

H. Fukuzumi, T. Saito, and A. Isogai, Influence of TEMPO-oxidized cellulose nanofibril length on film properties, Carbohydrate Polymers, vol.93, pp.172-177, 2013.

H. Fukuzumi, T. Saito, and T. Iwata, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.10, pp.162-165, 2009.

M. Fumagalli, F. Sanchez, S. M. Boisseau, and L. Heux, Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents, Soft Matter, vol.9, p.11309, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01066778

M. Fumagalli, F. Sanchez, M. Boisseau, S. Heux, and L. , Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents, Soft Matter, vol.9, pp.11309-11317, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01066778

C. A. García-gonzález, C. Mc, and M. Alnaief, Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties, The Journal of Supercritical Fluids, vol.66, pp.297-306, 2012.

M. D. Gawryla, O. Van-den-berg, C. Weder, and D. A. Schiraldi, Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub, Journal of Materials Chemistry, vol.19, p.2118, 2009.

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 1999.

P. Gupta, B. Singh, A. K. Agrawal, and P. K. Maji, Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application, Materials & Design, vol.158, pp.224-236, 2018.

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, vol.110, pp.3479-3500, 2010.

Y. Han, X. Zhang, X. Wu, and C. Lu, Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures, ACS Sustainable Chemistry & Engineering, vol.3, pp.1853-1859, 2015.

L. Heath and W. Thielemans, Cellulose nanowhisker aerogels. Green Chemistry, vol.12, p.1448, 2010.

M. Henriksson, L. A. Berglund, and P. Isaksson, Cellulose Nanopaper Structures of High Toughness, Biomacromolecules, vol.9, pp.1579-1585, 2008.

F. Hoeng, A. Denneulin, and J. Bras, Use of nanocellulose in printed electronics: a review, Nanoscale, vol.8, pp.13131-13154, 2016.

S. Hoepfner, L. Ratke, and B. Milow, Synthesis and characterisation of nanofibrillar cellulose aerogels, Cellulose, vol.15, pp.121-129, 2008.

H. Holback, Y. Yeo, and K. Park, 1 -Hydrogel swelling behavior and its biomedical applications, pp.3-24, 2011.

O. Ishida, D. Kim, and S. Kuga, Microfibrillar carbon from native cellulose, Cellulose, vol.11, pp.475-480, 2004.

B. Jean, F. Dubreuil, L. Heux, and F. Cousin, Structural Details of Cellulose Nanocrystals/Polyelectrolytes Multilayers Probed by Neutron Reflectivity and AFM, Langmuir, vol.24, pp.3452-3458, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303863

F. Jiang and Y. Hsieh, Amphiphilic superabsorbent cellulose nanofibril aerogels, J Mater Chem A, vol.2, pp.6337-6342, 2014.

C. Jiménez-saelices, B. Seantier, B. Cathala, and Y. Grohens, Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties, Carbohydrate Polymers, vol.157, pp.105-113, 2017.

F. Liebner, E. Haimer, and M. Wendland, Aerogels from Unaltered Bacterial Cellulose: Application of scCO2 Drying for the Preparation of Shaped, Ultra-Lightweight Cellulosic Aerogels, Macromolecular Bioscience, vol.10, pp.349-352, 2010.

W. Lin, C. Lien, and H. Yeh, Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications, Carbohydrate Polymers, vol.94, pp.603-611, 2013.

C. Martin and B. Jean, Nanocellulose/polymer multilayered thin films: tunable architectures towards tailored physical properties, Nordic Pulp & Paper Research Journal, vol.29, pp.19-30, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01017999

F. Martoïa, T. Cochereau, and P. Dumont, Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties, Materials & Design, vol.104, pp.376-391, 2016.

P. I. Morgado, A. Aguiar-ricardo, and I. J. Correia, Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship, Journal of Membrane Science, vol.490, pp.139-151, 2015.

S. Mueller, J. Sapkota, and A. Nicharat, Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels, Journal of Applied Polymer Science, vol.132, 2015.

P. Munier, K. Gordeyeva, L. Bergström, and A. B. Fall, Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks, Biomacromolecules, vol.17, pp.1875-1881, 2016.

A. Naderi, T. Lindström, and J. Sundström, Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose?, Cellulose, vol.22, pp.1147-1157, 2015.

O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances, Industrial Crops and Products, vol.93, pp.2-25, 2016.

B. N. Nguyen, E. Cudjoe, and A. Douglas, Polyimide Cellulose Nanocrystal Composite Aerogels, Macromolecules, vol.49, pp.1692-1703, 2016.

G. Nyström, A. Marais, and E. Karabulut, Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries, Nature Communications, vol.6, 2015.

O. Carlsson, D. Nyström, G. Zhou, and Q. , Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties, Journal of Materials Chemistry, vol.22, pp.19014-19024, 2012.

D. A. Osorio, B. Seifried, and P. Moquin, Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing, Journal of Materials Science, vol.53, pp.9842-9860, 2018.

M. Pääkkö, M. Ankerfors, and H. Kosonen, Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Biomacromolecules, vol.8, pp.1934-1941, 2007.

M. Pääkkö, J. Vapaavuori, and R. Silvennoinen, Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, vol.4, p.2492, 2008.

M. Parit, B. Aksoy, and Z. Jiang, Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers, Cellulose, vol.25, pp.2915-2924, 2018.

Y. Peng, D. J. Gardner, and Y. Han, Drying cellulose nanofibrils: in search of a suitable method, Cellulose, vol.19, pp.91-102, 2012.

S. F. Plappert, J. Nedelec, and H. Rennhofer, Strain Hardening and Pore Size Harmonization by Uniaxial Densification: A Facile Approach toward Superinsulating Aerogels from Nematic Nanofibrillated 2,3-Dicarboxyl Cellulose, Chem Mater, vol.29, pp.6630-6641, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01994748

P. Podsiadlo, L. Sui, and Y. Elkasabi, Layer-by-Layer Assembled Films of Cellulose Nanowires with Antireflective Properties, Langmuir, vol.23, pp.7901-7906, 2007.

P. I. Ravikovitch and A. V. Neimark, Characterization of Micro-and Mesoporosity in SBA-15 Materials from Adsorption Data by the NLDFT Method, The Journal of Physical Chemistry B, vol.105, pp.6817-6823, 2001.

J. Revol, H. Bradford, and J. Giasson, Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, International Journal of Biological Macromolecules, vol.14, p.80008, 1992.

J. Revol, H. Bradford, and J. Giasson, Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, International Journal of Biological Macromolecules, vol.14, p.80008, 1992.

M. Robitzer, F. D. Renzo, and F. Quignard, Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels, Microporous and Mesoporous Materials, vol.140, pp.9-16, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00547222

C. Rudaz, R. Courson, and L. Bonnet, Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel, Biomacromolecules, vol.15, pp.2188-2195, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01022581

I. A. Sacui, R. C. Nieuwendaal, and D. J. Burnett, Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, Mechanical, and Oxidative Methods, ACS Applied Materials & Interfaces, vol.6, pp.6127-6138, 2014.

T. Saito and A. Isogai, TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions, Biomacromolecules, vol.5, pp.1983-1989, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00305562

T. Saito, Y. Nishiyama, and J. Putaux, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, pp.1687-1691, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305809

K. Sakai, Y. Kobayashi, T. Saito, and A. Isogai, Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose, Scientific Reports, vol.6, 2016.

L. M. Sanz-moral, M. Rueda, R. Mato, and Á. Martín, View cell investigation of silica aerogels during supercritical drying: Analysis of size variation and mass transfer mechanisms, The Journal of Supercritical Fluids, vol.92, pp.24-30, 2014.

G. W. Scherer, Theory of Drying, Journal of the American Ceramic Society, vol.73, pp.3-14, 1990.

H. Sehaqui, Q. Zhou, and L. A. Berglund, High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC), Composites Science and Technology, vol.71, pp.1593-1599, 2011.

H. Sehaqui, Q. Zhou, O. Ikkala, and L. A. Berglund, Strong and Tough Cellulose Nanopaper with High Specific Surface Area and Porosity, Biomacromolecules, vol.12, pp.3638-3644, 2011.

J. Stergar and U. Maver, Review of aerogel-based materials in biomedical applications, Journal of Sol-Gel Science and Technology, vol.77, pp.738-752, 2016.

J. Ø. Torstensen, M. Liu, and S. Jin, Swelling and Free-Volume Characteristics of TEMPO-Oxidized Cellulose Nanofibril Films, Biomacromolecules, vol.19, pp.1016-1025, 2018.

D. Trache, M. H. Hussin, M. Haafiz, and V. K. Thakur, Recent progress in cellulose nanocrystals: sources and production, Nanoscale, vol.9, pp.1763-1786, 2017.

A. Tran, W. Y. Hamad, and M. J. Maclachlan, Fabrication of Cellulose Nanocrystal Films through Differential Evaporation for Patterned Coatings, ACS Applied Nano Materials, vol.1, pp.3098-3104, 2018.

A. Tripathi, B. L. Tardy, and S. A. Khan, Expanding the upper limits of robustness of cellulose nanocrystal aerogels: outstanding mechanical performance and associated pore compression response of chiral-nematic architectures, Journal of Materials Chemistry A, 2019.

Q. Wang, Q. Yao, and J. Liu, Processing nanocellulose to bulk materials: a review, 2019.

H. Wei, K. Rodriguez, S. Renneckar, J. Vikesland, and P. , Environmental science and engineering applications of nanocellulose-based nanocomposites, Environmental Science: Nano, vol.1, pp.302-316, 2014.

S. Xiao, R. Gao, and Y. Lu, Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles, Carbohydrate Polymers, vol.119, pp.202-209, 2015.

X. Yang and E. D. Cranston, Chemically Cross-Linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties, Chemistry of Materials, vol.26, pp.6016-6025, 2014.

X. Zhang, Y. Yu, Z. Jiang, and H. Wang, The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel, J Wood Sci, vol.61, pp.595-601, 2015.

S. Zhao, W. J. Malfait, and N. Guerrero-alburquerque, Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications, Angewandte Chemie International Edition, vol.57, pp.7580-7608, 2018.

Y. Zhao and J. Li, Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species, Cellulose, vol.21, pp.3427-3441, 2014.

Y. Zhao, Y. Zhang, M. E. Lindström, and J. Li, Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans, Carbohydrate Polymers, vol.117, pp.286-296, 2015.

S. Zhou, P. Liu, and M. Wang, Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation, ACS Sustainable Chemistry & Engineering, vol.4, pp.6409-6416, 2016.

G. Zu, J. Shen, and L. Zou, Nanocellulose-derived highly porous carbon aerogels for supercapacitors, Carbon, vol.99, pp.203-211, 2016.

R. Abitbol, T. Rivkin, A. Cao, and Y. , Nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology, vol.39, pp.76-88, 2016.

R. Aeschbach, J. Löliger, and B. C. Scott, Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol, Food and Chemical Toxicology, vol.32, pp.31-36, 1994.

D. Altiok, E. Altiok, and F. Tihminlioglu, Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications, J Mater Sci: Mater Med, vol.21, pp.2227-2236, 2010.

N. Alvarado, J. Romero, and A. Torres, Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material, Journal of Food Engineering, vol.217, pp.1-10, 2018.

M. Araújo, R. Viveiros, and A. Philippart, Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer, Materials Science and Engineering: C, vol.77, pp.342-351, 2017.

B. A. Ashu-arrah, J. D. Glennon, and K. Albert, Synthesis and characterisation of bonded mercaptopropyl silica intermediate stationary phases prepared using multifunctional alkoxysilanes in supercritical carbon dioxide as a reaction solvent, Journal of Chromatography A, vol.1222, pp.38-45, 2012.

J. A. Ataide, N. M. Carvalho, . De, and A. Rebelo-m-de, Bacterial Nanocellulose Loaded with Bromelain: Assessment of Antimicrobial, Antioxidant and Physical-Chemical Properties. Scientific Reports, vol.7, p.18031, 2017.

L. Bacakova, J. Pajorova, and M. Bacakova, Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing, Nanomaterials, vol.9, p.164, 2019.

S. Barrientos, O. Stojadinovic, and M. S. Golinko, PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing, Wound Repair and Regeneration, vol.16, pp.585-601, 2008.

A. A. Barros, C. Oliveira, and R. L. Reis, Ketoprofen-eluting biodegradable ureteral stents by CO2 impregnation: In vitro study, International Journal of Pharmaceutics, vol.495, pp.651-659, 2015.

A. Basu, K. Heitz, and M. Strømme, Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications, Carbohydrate Polymers, vol.181, pp.345-350, 2018.

A. W. Bauer, W. Kirby, J. C. Sherris, and M. Turck, Antibiotic Susceptibility Testing by a Standardized Single Disk Method, American Journal of Clinical Pathology, vol.45, pp.493-496, 1966.

A. J. Benítez and A. Walther, Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space, Journal of Materials Chemistry A, vol.5, pp.16003-16024, 2017.

J. Bhandari, H. Mishra, and P. K. Mishra, Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery, Int J Nanomedicine, vol.12, pp.2021-2031, 2017.

A. Bouledjouidja, Y. Masmoudi, and M. Sergent, Drug loading of foldable commercial intraocular lenses using supercritical impregnation, International Journal of Pharmaceutics, vol.500, pp.85-99, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01266557

M. Braga, M. Pato, and M. H. Gil, Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives, 2008.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, pp.309-319, 1938.

M. F. Costa, A. O. Durço, and T. K. Rabelo, Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on wound healing: a systematic review, Journal of Pharmacy and Pharmacology, vol.71, pp.141-155, 2019.

V. P. Costa, M. Braga, and C. Duarte, Anti-glaucoma drug-loaded contact lenses prepared using supercritical solvent impregnation, 2010.

C. V. Da-silva, V. J. Pereira, and G. Costa, Supercritical solvent impregnation/deposition of spilanthol-enriched extracts into a commercial collagen/cellulose-based wound dressing, The Journal of Supercritical Fluids, vol.133, pp.503-511, 2018.

K. J. De-france, T. Hoare, and E. D. Cranston, Review of Hydrogels and Aerogels Containing Nanocellulose, Chemistry of Materials, 2017.

M. De-lima-fontes, A. B. Meneguin, and A. Tercjak, Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties, Carbohydrate Polymers, vol.179, pp.126-134, 2018.

Z. J. Dijkstra, A. R. Doornbos, and H. Weyten, Formation of carbamic acid in organic solvents and in supercritical carbon dioxide, The Journal of Supercritical Fluids, vol.41, pp.109-114, 2007.

A. M. D?ami?, B. J. Nikoli?, and A. A. Giweli, Libyan Thymus capitatus essential oil: antioxidant, antimicrobial, cytotoxic and colon pathogen adhesion-inhibition properties, Journal of Applied Microbiology, vol.119, pp.389-399, 2015.

M. A. Fanovich, J. Ivanovic, and I. Zizovic, Functionalization of polycaprolactone/hydroxyapatite scaffolds with Usnea lethariiformis extract by using supercritical CO 2, Materials Science and Engineering: C, vol.58, pp.204-212, 2016.

E. J. Foster, R. J. Moon, and U. P. Agarwal, Current characterization methods for cellulose nanomaterials, Chem Soc Rev, vol.47, pp.2609-2679, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350540

F. Furno, K. S. Morley, and B. Wong, Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?, J Antimicrob Chemother, vol.54, pp.1019-1024, 2004.

C. A. García-gonzález, J. Barros, and A. Rey-rico, Antimicrobial Properties and Osteogenicity of Vancomycin-Loaded Synthetic Scaffolds Obtained by Supercritical Foaming, ACS Appl Mater Interfaces, vol.10, pp.3349-3360, 2018.

S. García-salinas, H. Elizondo-castillo, and M. Arruebo, Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils, Molecules, vol.23, 2018.

S. Gupta, F. Martoïa, L. Orgéas, and P. Dumont, Ice-Templated Porous Nanocellulose-Based Materials: Current Progress and Opportunities for Materials Engineering, Applied Sciences, vol.8, p.2463, 2018.

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, vol.110, pp.3479-3500, 2010.

R. Hamoud, S. Zimmermann, J. Reichling, and M. Wink, Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli, Phytomedicine, vol.21, pp.443-447, 2014.

K. Hua, D. O. Carlsson, and E. Ålander, Translational study between structure and biological response of nanocellulose from wood and green algae, RSC Adv, vol.4, pp.2892-2903, 2014.

P. Imsanguan, A. Roaysubtawee, and R. Borirak, Extraction of ?-tocopherol and ?-oryzanol from rice bran, LWT -Food Science and Technology, vol.41, pp.1417-1424, 2008.

S. Jiji, S. Udhayakumar, and C. Rose, Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair, International Journal of Biological Macromolecules, vol.122, pp.452-460, 2019.

V. Jones, J. E. Grey, and K. G. Harding, BMJ, vol.332, pp.777-780, 2006.

M. Jorfi and E. J. Foster, Recent advances in nanocellulose for biomedical applications, Journal of Applied Polymer Science, vol.132, 2015.

K. Kerrola, Literature review: Isolation of essential oils and flavor compounds by dense carbon dioxide, Food Reviews International, vol.11, pp.547-573, 1995.

A. Khalid, R. Khan, and M. Ul-islam, Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds, Carbohydrate Polymers, vol.164, pp.214-221, 2017.

K. Dubey, N. Tiwari, T. N. Mandin, and D. , Antifungal properties of Ocimum gratissimum essential oil (ethyl cinnamate chemotype), Fitoterapia, vol.71, pp.206-215, 2000.

D. Klemm, E. D. Cranston, and D. Fischer, Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state, Materials Today, vol.21, pp.720-748, 2018.

R. Kolakovic, T. Laaksonen, and L. Peltonen, Spray-dried nanofibrillar cellulose microparticles for sustained drug release, International Journal of Pharmaceutics, vol.430, pp.47-55, 2012.

R. Kolakovic, L. Peltonen, and A. Laukkanen, Nanofibrillar cellulose films for controlled drug delivery, European Journal of Pharmaceutics and Biopharmaceutics, vol.82, pp.308-315, 2012.

. Lambert-r-j.-w, . Skandamis-p-n, . Coote-p-j, and . Nychas-g-j-e, A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol, Journal of Applied Microbiology, vol.91, pp.453-462, 2001.

N. Lavoine and L. Bergström, Nanocellulose-based foams and aerogels: processing, properties, and applications, Journal of Materials Chemistry A, vol.5, pp.16105-16117, 2017.

S. Lombardo, P. Chen, and P. A. Larsson, Toward Improved Understanding of the Interactions between Poorly Soluble Drugs and Cellulose Nanofibers, Langmuir, vol.34, pp.5464-5473, 2018.

C. S. Mathela, K. K. Singh, and V. K. Gupta, SYNTHESIS AND IN VITRO ANTIBACTERIAL ACTIVITY OF THYMOL AND CARVACROL DERIVATIVES. Polish parmaceutical society, vol.67, pp.375-380, 2010.

S. Milovanovic, D. Markovic, and A. Mrakovic, Supercritical CO2 -assisted production of PLA and PLGA foams for controlled thymol release, Materials Science and Engineering: C, vol.99, pp.394-404, 2019.

S. Milovanovic, M. Stamenic, and D. Markovic, Solubility of thymol in supercritical carbon dioxide and its impregnation on cotton gauze, The Journal of Supercritical Fluids, vol.84, pp.173-181, 2013.

S. Milovanovic, M. Stamenic, and D. Markovic, Supercritical impregnation of cellulose acetate with thymol, The Journal of Supercritical Fluids, vol.97, pp.107-115, 2015.

M. F. Nagoor-meeran, H. Javed, A. Taee, and H. , Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development, Front Pharmacol, vol.8, 2017.

M. Naseri-nosar and Z. M. Ziora, Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites, Carbohydrate Polymers, vol.189, pp.379-398, 2018.

N. Ayu, A. A. Khokhlov, and E. E. Levin, Electrochemically active dispersed tungsten oxides obtained from tungsten hexacarbonyl in supercritical carbon dioxide, J Mater Sci, vol.54, pp.9426-9441, 2019.

M. Parit, B. Aksoy, and Z. Jiang, Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers, Cellulose, vol.25, pp.2915-2924, 2018.

J. Y. Park, C. Park, and S. Han, Effects of pH on Nanofibrillation of TEMPO-Oxidized Paper Mulberry Bast Fibers, Polymers (Basel), vol.11, 2019.

M. Pérez-recalde, R. Arias, I. E. Hermida, and É. B. , Could essential oils enhance biopolymers performance for wound healing? A systematic review, Phytomedicine, vol.38, pp.57-65, 2018.

T. P. Pivetta, S. Simões, and M. M. Araújo, Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties, Colloids and Surfaces B: Biointerfaces, vol.164, pp.281-290, 2018.

R. Poonguzhali, K. Basha, S. , S. Kumari, and V. , Synthesis of alginate/nanocellulose bionanocomposite for in vitro delivery of ampicillin, Polym Bull, vol.75, pp.4165-4173, 2018.

A. Rashad, K. Mustafa, E. B. Heggset, and K. Syverud, Cytocompatibility of Wood-Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry, Biomacromolecules, vol.18, pp.1238-1248, 2017.

K. R. Riella, R. R. Marinho, and J. S. Santos, Anti-inflammatory and cicatrizing activities of thymol, a monoterpene of the essential oil from Lippia gracilis, in rodents, Journal of Ethnopharmacology, vol.143, pp.656-663, 2012.

J. Rull, G. Nonglaton, and G. Costa, Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide, Applied Surface Science, vol.354, pp.285-297, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01274073

R. Jalil, M. E. Baschini, M. Sapag, and K. , Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite, Applied Clay Science, vol.114, pp.69-76, 2015.

J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomaterialia, vol.4, pp.707-716, 2008.

T. G. Sahana and P. D. Rekha, Biopolymers: Applications in wound healing and skin tissue engineering, Molecular Biology Reports, vol.45, pp.2857-2867, 2018.

K. Sakai, Y. Kobayashi, T. Saito, and A. Isogai, Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose, Scientific Reports, vol.6, 2016.

K. Shi, L. Feng, L. He, and H. Li, Solubility Determination and Correlation of Gatifloxacin, Enrofloxacin, and Ciprofloxacin in Supercritical CO 2, J Chem Eng Data, vol.62, pp.4235-4243, 2017.

J. Siepmann and N. A. Peppas, Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC), Advanced Drug Delivery Reviews, vol.64, pp.163-174, 2012.

D. Simões, S. P. Miguel, and M. P. Ribeiro, Recent advances on antimicrobial wound dressing: A review, European Journal of Pharmaceutics and Biopharmaceutics, vol.127, pp.130-141, 2018.

S. L. Steffensen, M. H. Vestergaard, and M. Groenning, Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices, Eur J Pharm Biopharm, vol.94, pp.305-311, 2015.

T. R. Stumpf, R. Pértile, C. R. Rambo, and L. M. Porto, Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes, Materials Science and Engineering: C, vol.33, pp.4739-4745, 2013.

I. Terzi?, J. Ivanovi?, and I. ?i?ovi?, A novel chitosan gels: Supercritical CO2 drying and impregnation with thymol, Polymer Engineering & Science, vol.58, pp.2192-2199, 2018.

A. Turki, A. El-oudiani, S. Msahli, and F. Sakli, Investigation of OH bond energy for chemically treated alfa fibers, Carbohydrate Polymers, vol.186, pp.226-235, 2018.

H. Valo, S. Arola, and P. Laaksonen, Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels, European Journal of Pharmaceutical Sciences, vol.50, pp.69-77, 2013.

C. Wolf, J. Maninger, and K. Lederer, Stabilisation of crosslinked ultra-high molecular weight polyethylene (UHMW-PE)-acetabular components with ?-tocopherol, J Mater Sci: Mater Med, vol.17, pp.1323-1331, 2006.

L. Xu, X. Zhan, and Z. Zeng, Recent advances on supercritical fluid extraction of essential oils, African Journal of Pharmacy and Pharmacology, vol.5, pp.1196-1211, 2011.

I. Zizovic, L. Senerovic, and I. Moric, Utilization of supercritical carbon dioxide in fabrication of cellulose acetate films with anti-biofilm effects against Pseudomonas aeruginosa and Staphylococcus aureus, The Journal of Supercritical Fluids, vol.140, pp.11-20, 2018.

, Tryptic soy broth, Mueller-Hinton broth prepared from powder, tryptic soy agar contact plates containing neutralizing agents Tween®, lecithin, histidine, thiosulphate and Mueller-Hinton agar petri plate (90 mm in diameter), pharmacopoeia diluent (NaCl peptone broth at pH 7) and pharmacopoeia diluent with neutralizing agents (Tween®, lecithin, histidine, thiosulphate) were purchased from VWR Chemicals. epidermidis ATCC 14990 and Escherichia coli ATCC 25922, product line KWIK-STIK and KWIK-STIK Plus, at 95 % purity from Gelest), tertbutyl alcohol (?99.0 %

M. Abdelmouleh, S. Boufi, and M. N. Belgacem, Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites, Journal of Applied Polymer Science, vol.98, pp.974-984, 2005.

T. Abitbol, A. Rivkin, and Y. Cao, Nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology, vol.39, pp.76-88, 2016.

D. C. Aduba, S. An, and G. S. Selders, Fabrication, characterization, and in vitro evaluation of silvercontaining arabinoxylan foams as antimicrobial wound dressing, J Biomed Mater Res Part A, vol.104, pp.2456-2465, 2016.

L. Alexandrescu, K. Syverud, A. Gatti, and G. Chinga-carrasco, Cytotoxicity tests of cellulose nanofibrilbased structures, Cellulose, vol.20, pp.1765-1775, 2013.

M. Arkoun, F. Daigle, M. Heuzey, and A. Ajji, Mechanism of Action of Electrospun Chitosan-Based Nanofibers against Meat Spoilage and Pathogenic Bacteria, Molecules, vol.22, p.585, 2017.

R. Bardet and J. Bras, Cellulose Nanofibers and Their Use in Paper Industry, Handbook of Green Materials, pp.207-232, 2013.

S. Boufi, I. González, and M. Delgado-aguilar, Nanofibrillated cellulose as an additive in papermaking process: A review, Carbohydrate Polymers, vol.154, pp.151-166, 2016.

E. Caldeira, E. Piskin, and L. Granadeiro, Biofunctionalization of cellulosic fibres with L-cysteine: Assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiella pneumoniae, J Biotechnol, vol.168, pp.426-435, 2013.

R. Cassano, S. Trombino, and T. Ferrarelli, Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties, Cellulose, vol.20, pp.547-557, 2013.

G. Chantereau, N. Brown, and M. Dourges, Silylation of bacterial cellulose to design membranes with intrinsic anti-bacterial properties, Carbohydrate Polymers, vol.220, pp.71-78, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02134754

Z. J. Dijkstra, A. R. Doornbos, and H. Weyten, Formation of carbamic acid in organic solvents and in supercritical carbon dioxide, The Journal of Supercritical Fluids, vol.41, pp.109-114, 2007.

C. Domingo, E. Loste, and J. Fraile, Grafting of trialkoxysilane on the surface of nanoparticles by conventional wet alcoholic and supercritical carbon dioxide deposition methods, The Journal of Supercritical Fluids, vol.37, pp.72-86, 2006.

Y. Duan, S. C. Jana, B. Lama, and M. P. Espe, Hydrophobic silica aerogels by silylation, Journal of Non-Crystalline Solids, vol.437, pp.26-33, 2016.

S. Eyley and W. Thielemans, Surface modification of cellulose nanocrystals, Nanoscale, vol.6, pp.7764-7779, 2014.

S. Fernandes, P. Sadocco, and A. Aonso-varona, Bioinspired Antimicrobial and Biocompatible Bacterial Cellulose Membranes Obtained by Surface Functionalization with Aminoalkyl Groups, ACS Appl Mater Interfaces, vol.5, pp.3290-3297, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01559952

E. J. Foster, R. J. Moon, and U. P. Agarwal, Current characterization methods for cellulose nanomaterials, Chem Soc Rev, vol.47, pp.2609-2679, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350540

H. Fu, L. Coelho, and M. A. Matthews, Diffusion coefficients of model contaminants in dense CO2, The Journal of Supercritical Fluids, vol.18, pp.141-155, 2000.

K. Gordeyeva, H. Voisin, and N. Hedin, Lightweight foams of amine-rich organosilica and cellulose nanofibrils by foaming and controlled condensation of aminosilane, Materials Chemistry Frontiers, vol.2, pp.2220-2229, 2018.

R. C. Goy, S. Morais, and O. Assis, Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth, Revista Brasileira de Farmacognosia, vol.26, pp.122-127, 2016.

Y. Habibi, Key advances in the chemical modification of nanocelluloses, Chem Soc Rev, vol.43, pp.1519-1542, 2014.

A. Hassanpour, S. Asghari, M. Lakouraj, and M. , Synthesis, characterization and antibacterial evaluation of nanofibrillated cellulose grafted by a novel quinolinium silane salt, RSC Advances, vol.7, pp.23907-23916, 2017.

W. He, Y. Zhang, and J. Li, A Novel Surface Structure Consisting of Contact-active Antibacterial Upperlayer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes, Scientific Reports, vol.6, p.32140, 2016.

F. Hoeng, A. Denneulin, and J. Bras, Use of nanocellulose in printed electronics: a review, Nanoscale, vol.8, pp.13131-13154, 2016.

M. Jorfi and E. J. Foster, Recent advances in nanocellulose for biomedical applications, Journal of Applied Polymer Science, vol.132, 2015.

J. J. Kabara, A. J. Conley, and J. P. Truant, Relationship of Chemical Structure and Antimicrobial Activity of Alkyl Amides and Amines, vol.2, pp.492-498, 1972.

C. H. Kim, J. W. Choi, H. J. Chun, and K. S. Choi, Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity, Polymer Bulletin, vol.38, pp.387-393, 1997.

W. Li, J. Zhou, and Y. Xu, Study of the in vitro cytotoxicity testing of medical devices, Biomed Rep, vol.3, pp.617-620, 2015.

N. Lin and A. Dufresne, Nanocellulose in biomedicine: Current status and future prospect, European Polymer Journal, vol.59, pp.302-325, 2014.

K. Littunen, J. Snoei-de-castro, and A. Samoylenko, Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties, European Polymer Journal, vol.75, pp.116-124, 2016.

E. Loste, J. Fraile, and M. A. Fanovich, Anhydrous Supercritical Carbon Dioxide Method for the Controlled Silanization of Inorganic Nanoparticles, Advanced Materials, vol.16, pp.739-744, 2004.

B. Mccool and C. P. Tripp, Inaccessible Hydroxyl Groups on Silica Are Accessible in Supercritical CO 2, The Journal of Physical Chemistry B, vol.109, pp.8914-8919, 2005.

F. Mentink-vigier, I. Marin-montesinos, and A. P. Jagtap, Computationally Assisted Design of Polarizing Agents for Dynamic Nuclear Polarization Enhanced NMR: The AsymPol Family, J Am Chem Soc, vol.140, pp.11013-11019, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02043262

K. Missoum, M. Belgacem, and J. Bras, Nanofibrillated Cellulose Surface Modification: A Review. Materials, vol.6, pp.1745-1766, 2013.

J. H. Mueller and J. Hinton, A Protein-Free Medium for Primary Isolation of the Gonococcus and Meningococcus, Proceedings of the Society for Experimental Biology and Medicine, vol.48, pp.330-333, 1941.

O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances, Industrial Crops and Products, vol.93, pp.2-25, 2016.

C. G. Otoni, J. Figueiredo, and L. B. Capeletti, Tailoring the Antimicrobial Response of Cationic Nanocellulose-Based Foams through Cryo-Templating, ACS Applied Bio Materials, vol.2, pp.1975-1986, 2019.

E. Pinho, L. Magalhães, M. Henriques, and R. Oliveira, Antimicrobial activity assessment of textiles: standard methods comparison, Annals of Microbiology, vol.61, pp.493-498, 2011.

A. Rashad, S. Suliman, and M. Mustafa, Inflammatory responses and tissue reactions to wood-Based nanocellulose scaffolds, Materials Science and Engineering: C, vol.97, pp.208-221, 2019.

C. Reverdy, N. Belgacem, and M. S. Moghaddam, One-step superhydrophobic coating using hydrophobized cellulose nanofibrils, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.544, pp.152-158, 2018.

F. Rol, M. N. Belgacem, A. Gandini, and J. Bras, Recent advances in surface-modified cellulose nanofibrils, Progress in Polymer Science, vol.88, pp.241-264, 2019.

J. Rull, G. Nonglaton, and G. Costa, Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide, Applied Surface Science, vol.354, pp.285-297, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01274073

S. Saini, M. N. Belgacem, and J. Bras, Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity, Materials Science and Engineering: C, vol.75, pp.760-768, 2017.

S. Saini, M. N. Belgacem, M. Salon, and J. Bras, Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane, Cellulose, vol.23, pp.795-810, 2016.

S. Saini, N. Belgacem, and J. Mendes, Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release, ACS Applied Materials & Interfaces, vol.7, pp.18076-18085, 2015.

S. Saini, C. Sillard, N. Belgacem, M. Bras, and J. , Nisin anchored cellulose nanofibers for long term antimicrobial active food packaging, RSC Adv, vol.6, pp.12422-12430, 2016.

D. Sanli and C. Erkey, Silylation from supercritical carbon dioxide: a powerful technique for modification of surfaces, J Mater Sci, vol.50, pp.7159-7181, 2015.

Z. Shi, G. O. Phillips, and G. Yang, Nanocellulose electroconductive composites, Nanoscale, vol.5, p.3194, 2013.

Y. Yin, J. Ma, and X. Tian, Cellulose nanocrystals functionalized with amino-silane and epoxypoly(ethylene glycol) for reinforcement and flexibilization of poly(lactic acid): material preparation and compatibility mechanism, Cellulose, vol.25, pp.6447-6463, 2018.

J. Zhou, X. Lu, Y. Wang, and J. Shi, Molecular dynamics investigation on the infinite dilute diffusion coefficients of organic compounds in supercritical carbon dioxide, Fluid Phase Equilibria, vol.172, pp.279-291, 2000.

M. Zhu, M. Z. Lerum, and W. Chen, How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica, Langmuir, vol.28, pp.416-423, 2012.

T. Abitbol, A. Rivkin, and Y. Cao, Nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology, vol.39, pp.76-88, 2016.

L. Bedian, A. M. Villalba-rodríguez, and G. Hernández-vargas, Bio-based materials with novel characteristics for tissue engineering applications -A review, International Journal of Biological Macromolecules, vol.98, pp.837-846, 2017.

A. Gaspar-pintiliescu, A. Stanciuc, and O. Craciunescu, Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review, International Journal of Biological Macromolecules, vol.138, pp.854-865, 2019.

Y. Habibi, Key advances in the chemical modification of nanocelluloses, Chem Soc Rev, vol.43, pp.1519-1542, 2014.

M. Jorfi and E. J. Foster, Recent advances in nanocellulose for biomedical applications, Journal of Applied Polymer Science, vol.132, 2015.

D. Klemm, E. D. Cranston, and D. Fischer, Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state, Materials Today, vol.21, pp.720-748, 2018.

N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Microfibrillated cellulose -Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers, vol.90, pp.735-764, 2012.

F. Rol, M. N. Belgacem, A. Gandini, and J. Bras, Recent advances in surface-modified cellulose nanofibrils, Progress in Polymer Science, vol.88, pp.241-264, 2019.

T. G. Sahana and P. D. Rekha, Biopolymers: Applications in wound healing and skin tissue engineering, Molecular Biology Reports, vol.45, pp.2857-2867, 2018.