. Chu, , 2008.

. Thomas, , 2009.

. Vayre, , 2012.

. Arisoy, , vol.84, 2011.

Y. , , vol.36, 2015.

. Jiang, , 2017.

. Vogiatzis, , 2012.

. Pradel, , 2014.

. Leary, , 2014.

R. Rodrigue and . Kranz, , vol.101, 2010.

. Salonitis, , 2016.

. Ariadi, , vol.104, 2012.

. Walton, , vol.108, 2003.

. Barclift, , vol.116, 2016.

. Ainsi, une méthode d'optimisation est présentée par, p.99

A. Combinée, Ces approches fournissent des solutions de conception grâce aux principes de FA, objectifs de conception, capacités de processus de fabrication et optimisation structurelle, Certaines études ont combiné des approches fonctionnelles et fabricabilité, vol.78

, Depuis plusieurs années, de grands efforts ont été consacrés à l'étude des paramètres de FA comme l'optimisation du chemin d'outil

, Selon ces études, les paramètres importants sont l'orientation de la pièce à fabriquer, l'épaisseur des couches, les motifs de remplissage et la densité, la température de l'enceinte de fabrication

, Cette classification

G. Sohlenius, Concurrent engineering, CIRP Annals-Manufacturing Technology, vol.41, pp.645-655, 1992.

Y. Huang, Additive manufacturing: current state, future potential, gaps and needs, and recommendations, Journal of Manufacturing Science and Engineering, vol.137, p.14001, 2015.

A. Skander, L. Roucoules, and J. S. Klein-meyer, Design and manufacturing interface modelling for manufacturing processes selection and knowledge synthesis in design, The International Journal of Advanced Manufacturing Technology, vol.37, pp.172-174, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00940085

J. Elgueder, Product-process interface for effective product design and manufacturing in a DFM approach, 3rd International Congress Design and Modelling of Mechanical Systems, p.8, 2009.

W. Gao, The status, challenges, and future of additive manufacturing in engineering, Computer-Aided Design, vol.69, pp.29-31, 2015.

S. Mellor, L. Hao, and D. Zhang, Additive manufacturing: A framework for implementation, International Journal of Production Economics, vol.149, pp.194-201, 2014.

C. M. Eastman, Design for X: concurrent engineering imperatives, vol.12, p.10, 2012.

X. G. Ming, Collaborative process planning and manufacturing in product lifecycle management, Computers in Industry, vol.59, p.11, 2008.

F. Danesi, P4LM: A methodology for product lifecycle management, Computers in industry 59, vol.2, p.11, 2008.

K. Vadoudi, N. Troussier, and T. W. Zhu, Toward sustainable manufacturing through PLM, GIS and LCA interaction, Engineering, Technology and Innovation (ICE), 2014 International ICE Conference on, p.11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02271554

K. Rouibah and K. R. Caskey, Change management in concurrent engineering from a parameter perspective, Computers in industry, vol.50, p.12, 2003.

A. Skander, Méthode et modèle DFM pour le choix des procédés et l'intégration des contraintes de fabrication vers l'émergence de la solution produit, vol.17, p.48

W. Beitz and G. Pahl, Engineering design: a systematic approach, MRS BULLETIN, p.13, 1996.

S. Tichkiewitch, De la CFAO à la conception intégrée, Revue internationale de CFAO et d'infographie 9, vol.5, p.14, 1994.

R. D. Coyne, M. A. Rosenman, and A. D. Radford, Knowledge based design systems, p.14, 1990.

U. Dombrowski, S. Schmidt, and K. Schmidtchen, Analysis and integration of design for X approaches in lean design as basis for a lifecycle optimized product design, Procedia CIRP, vol.15, p.15, 2014.

U. Dombrowski and S. Schmidt, Integration of design for X approaches in the concept of lean design to enable a holistic product design, IEEE, p.16, 2013.

R. Holt and C. Barnes, Design for X": an agenda for decision-based DFX research, vol.21, p.16, 2010.

G. Pahl and W. Beitz, Engineering design: a systematic approach, p.17, 2013.

D. Effa, O. Nespoli, and S. Lambert, Using the Case Method to Facilitate Learning of Design for Manufacturing and Cost, Proceedings of the Canadian Engineering Education Association, p.17, 2015.

D. M. Anderson, Design for manufacturability & concurrent engineering: How to design for low cost, design in high quality, design for lean manufacture, and design quickly for fast production, p.17, 2004.

S. K. Gupta, Automated manufacturability analysis: a survey, Research in Engineering Design, vol.9, p.17, 1997.

S. A. Shukor and D. Axinte, Manufacturability analysis system: issues and future trends, International Journal of Production Research, vol.47, p.17, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00513001

A. Venkatachalam, J. M. Mellichamp, and D. M. Miller, A knowledge-based approach to design for manufacturability, Journal of Intelligent Manufacturing, vol.4, p.17, 1993.

X. Xie, Design for manufacture and assembly, Retrieved in February, vol.18, p.2013, 2003.

G. Boothroyd, Product design for manufacture and assembly, Computer-Aided Design, vol.26, pp.505-520, 1994.

J. Corbett, Design for manufacture: strategies, principles, and techniques, vol.18, 1991.

D. T. Koenig, Manufacturing Engineering: Principles for Optimization: Principles for Optimization, p.19, 1994.

S. Arimoto, Development of machining-producibility evaluation method (MEM), CIRP Annals-Manufacturing Technology, vol.42, p.19, 1993.

L. Roucoules and A. Skander, Manufacturing process selection and integration in product design, Methods and Tools for Co-operative and Integrated Design, pp.71-82, 2004.

J. Elgueder, DFM Synthesis Approach Based on Product-Process Interface Modelling: Application to the Peen Forming Process, Global Product Development, pp.265-277, 2011.

J. S. Gero and U. Kannengiesser, The situated function-behaviour-structure framework, Design studies, vol.25, pp.20-22, 2004.

E. Asadollahi-yazdi, J. Gardan, and P. Lafon, Integrated Design for Additive Manufacturing Based on Skin-Skeleton Approach, Procedia CIRP, vol.60, pp.217-222, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02278931

E. Asadollahi-yazdi, J. Gardan, and P. Lafon, Toward integrated design of additive manufacturing through a process development model and multi-objective optimization, The International Journal of Advanced Manufacturing Technology, pp.1-20, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02283316

A. Standard, F2792. 2012. standard terminology for additive manufacturing technologies, ASTM F2792-10e1, p.24, 2012.

S. Yang and Y. F. Zhao, Additive manufacturing-enabled design theory and methodology: a critical review, The International Journal of Advanced Manufacturing Technology, vol.80, p.176, 2015.

J. Gardan, Additive manufacturing technologies: state of the art and trends, In: International Journal of Production Research, vol.54, p.183, 0195.
URL : https://hal.archives-ouvertes.fr/hal-02276028

J. W. Halloran, Photopolymerization of powder suspensions for shaping ceramics, Journal of the European Ceramic Society, vol.31, p.26, 2011.

K. V. Wong and A. Hernandez, A review of additive manufacturing, ISRN Mechanical Engineering, vol.37, pp.41-44, 2012.

R. Noorani, Rapid prototyping: principles and applications, vol.102, 2006.

J. D. Hiller and H. Lipson, STL 2.0: a proposal for a universal multi-material Additive Manufacturing File format, Proceedings of the Solid Freeform Fabrication Symposium. 1. 2009, pp.26-28

Y. Chen, C. Ng, and Y. Wang, Generation of an STL file from 3D measurement data with user-controlled data reduction, The international journal of advanced manufacturing technology, vol.15, p.26, 1999.

I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies, vol.238, p.29, 2010.

S. A. , Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today, vol.30, p.29, 2017.

C. Cozmei and F. Caloian, Additive manufacturing flickering at the beginning of existence, Procedia Economics and Finance, vol.3, pp.29-31, 2012.

M. K. Thompson, A. Stolfi, and M. Mischkot, Process chain modeling and selection in an additive manufacturing context, CIRP Journal of Manufacturing Science and Technology, vol.12, p.177, 2016.

S. Ahn, Anisotropic material properties of fused deposition modeling ABS, Rapid prototyping journal, vol.8, p.33, 2002.

D. Ahn, Representation of surface roughness in fused deposition modeling, Journal of Materials Processing Technology, vol.209, pp.5593-5600, 2009.

E. Vahabli and S. Rahmati, Hybrid estimation of surface roughness distribution in FDM parts using analytical modeling and empirical investigation, The International Journal of Advanced Manufacturing Technology, vol.5, p.188, 0201.

E. Yasa, J. Kruth, and J. Deckers, Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting, CIRP Annals-Manufacturing Technology, vol.60, issue.1, p.33, 2011.

M. Baumers, The cost of additive manufacturing: machine productivity, economies of scale and technology-push, Technological forecasting and social change, vol.102, pp.193-201, 2016.

D. Thomas, The development of design rules for selective laser melting, vol.177, p.176, 2009.

V. Srivastava, A Reviev on Advances in Rapid Prototype 3D Printing of Multi-Functional Applications, Science and Technology, vol.7, issue.1, p.34, 2017.

E. Asadollahi-yazdi, J. Gardan, and P. Lafon, Integrated Design in Additive Manufacturing Based on Design for Manufacturing, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol.10, pp.1137-1144, 2016.

N. Guo and M. C. Leu, Additive manufacturing: technology, applications and research needs, Frontiers of Mechanical Engineering, vol.8, issue.3, p.37, 2013.

D. Ibrahim, Dimensional error of selective laser sintering, three-dimensional printing and PolyJet TM models in the reproduction of mandibular anatomy, In: Journal of Cranio-Maxillofacial Surgery, vol.37, p.38, 2009.

J. Hänninen, DMLS moves from rapid tooling to rapid manufacturing, Metal Powder Report, vol.56, p.39, 2001.

E. Pessard, Complex cast parts with rapid tooling: rapid manufacturing point of view, The International Journal of Advanced Manufacturing Technology, vol.39, p.39, 2008.

D. Dean, Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds: This paper highlights the main issues regarding the application of Continuous Digital Light Processing (cDLP) for the production of highly accurate PPF scaffolds with layers as thin as 60 µm for bone tissue engineering, Virtual and physical prototyping, vol.7, p.40, 2012.

R. Singh, V. Singh, and M. S. Saini, Experimental investigations for statistically controlled rapid moulding solution of plastics using polyjet printing, Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition (IMECE2010), p.42, 2010.

J. Moon, Fabrication of functionally graded reaction infiltrated SiC-Si composite by three-dimensional printing (3DP TM ) process, Materials Science and Engineering: A, vol.298, issue.1, p.43, 2001.

J. Gardan and L. Roucoules, Characterization of beech wood pulp towards sustainable rapid prototyping, IDMME-Virtual Concept, vol.3, p.43, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00958172

J. W. Priest, C. Smith, and P. Dubois, Liquid metal jetting for printing metal parts, Solid Freeform Fabrication Proceedings, p.44, 1997.

B. K. Paul and V. Voorakarnam, Effect of layer thickness and orientation angle on surface roughness in laminated object manufacturing, Journal of manufacturing processes, vol.3, p.44, 2001.

B. Bhushan and M. Caspers, An overview of additive manufacturing (3D printing) for microfabrication, Microsystem Technologies, vol.23, p.45, 2017.

Y. Houtmann, B. Delebecque, and C. Barlier, Adaptive local slicing in stratoconception by using critical points, Advances in Production Engineering, vol.4, p.44, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00161668

D. W. Rosen, Research supporting principles for design for additive manufacturing: This paper provides a comprehensive review on current design principles and strategies for AM, Virtual and Physical Prototyping, vol.9, pp.47-49, 2014.

F. Laverne, DFAM in the design process: A proposal of classification to foster early design stages, p.47, 2014.

M. Kumke, H. Watschke, and T. Vietor, A new methodological framework for design for additive manufacturing, Virtual and Physical Prototyping, vol.11, p.63, 2016.

D. W. Rosen, Computer-aided design for additive manufacturing of cellular structures, Computer-Aided Design and Applications, vol.4, p.61, 2007.

M. J. Burton, Design for rapid manufacture: developing an appropriate knowledge transfer tool for industrial designers, vol.177, p.176, 2005.

G. , A proposal of manufacturing execution system integration in design for additive manufacturing, IFIP International Conference on Product Lifecycle Management, p.177, 2015.

S. Yim, A retrieval method (DFM framework) for automated retrieval of design for additive manufacturing problems, p.177, 2007.

D. W. Rosen, Design for additive manufacturing: a method to explore unexplored regions of the design space, Eighteenth Annual Solid Freeform Fabrication Symposium, vol.177, pp.402-415, 2007.

L. Barnard, Designing for laser sintering, Journal for New Generation Sciences, vol.6, issue.2, p.51, 2008.

R. Ponche, A new global approach to design for additive manufacturing: A method to obtain a design that meets specifications while optimizing a given additive manufacturing process is presented in this paper, Virtual and Physical Prototyping, vol.7, pp.93-105, 2012.

C. Chu, G. Graf, and D. W. Rosen, Design for additive manufacturing of cellular structures, Computer-Aided Design and Applications, vol.5, p.176, 2008.

K. Salonitis and S. A. Zarban, Redesign optimization for manufacturing using additive layer techniques, Procedia CIRP, vol.36, p.61, 2015.

R. Ponche, A novel methodology of design for Additive Manufacturing applied to Additive Laser Manufacturing process, Robotics and Computer-Integrated Manufacturing, vol.30, pp.389-398, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010106

B. Vayre, F. Vignat, and F. Villeneuve, Designing for additive manufacturing, Procedia CIrP, vol.3, pp.632-637, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00733693

O. Kerbrat, P. Mognol, and J. Hascoët, A new DFM approach to combine machining and additive manufacturing, Computers in Industry, vol.62, pp.684-692, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00600891

U. K. Uz-zaman, Integrated product-process design to suggest appropriate manufacturing technology: a review, The International Journal of Advanced Manufacturing Technology, vol.91, issue.1-4, p.177, 2017.

Y. Zhang, Evaluating the design for additive manufacturing: a process planning perspective, Procedia CIRP, vol.21, p.61, 2014.

E. B. Arisoy, Design and Topology Optimization of Lattice Structures Using Deformable Implicit Surfaces for Additive Manufacturing, ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol.177, pp.4-05, 2015.

Z. Doubrovski, J. C. Verlinden, and J. M. Geraedts, Optimal design for additive manufacturing: opportunities and challenges, ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol.177, pp.635-646, 2011.

U. K. Uz-zaman, Integrated product-process design: Material and manufacturing process selection for additive manufacturing using multi-criteria decision making, Robotics and Computer-Integrated Manufacturing, vol.51, p.177, 2018.

Y. Tang, J. Hascoet, and Y. F. Zhao, Integration of topological and functional optimization in design for additive manufacturing, ASME 2014 12th Biennial Conference on Engineering Systems, 2014.

C. C. Seepersad, A designer's guide for dimensioning and tolerancing SLS Parts, Solid Freeform Fabrication Symposium, vol.177, pp.921-931, 2012.

S. Hällgren, L. Pejryd, and J. Ekengren, Re) Design for Additive Manufacturing, Procedia CIRP, vol.50, pp.246-251, 2016.

L. Jiang, Parametric Topology Optimization Toward Rational Design and Efficient Prefabrication for Additive Manufacturing, ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing, vol.177, pp.4-05, 2017.

C. C. Seepersad, Challenges and opportunities in design for additive manufacturing, 3D Printing and Additive Manufacturing, vol.1, p.176, 2014.

C. Klahn, B. Leutenecker, and M. Meboldt, Design for Additive Manufacturing-Supporting the substitution of components in series products, Procedia CIRP, vol.21, p.61, 2014.

P. Vogiatzis, Computational Design and Additive Manufacturing of Conformal Metasurfaces by Combining Topology Optimization With Riemann Mapping Theorem, ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol.177, pp.2-03, 2017.

A. Wegner and G. Witt, Design rules for laser sintering, Journal of Plastics Technology, vol.8, p.176, 2012.

C. Klahn, B. Leutenecker, and M. Meboldt, Design strategies for the process of additive manufacturing, Procedia CIRP, vol.36, p.61, 2015.

P. , Investigation of design for additive manufacturing in professional design practice, vol.52, p.176, 2017.

G. A. Adam and D. Zimmer, Design for Additive Manufacturing-Element transitions and aggregated structures, CIRP Journal of Manufacturing Science and Technology, vol.7, issue.1, p.176, 2014.

T. Primo, Additive manufacturing integration with topology optimization methodology for innovative product design, The International Journal of Advanced Manufacturing Technology, vol.52, p.61, 2017.

M. Leary, Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures, Materials & Design, vol.63, p.62, 2014.

N. Boyard, A design methodology for parts using additive manufacturing, 6th international conference on advanced research in virtual and rapid prototyping, vol.177, pp.399-404, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01197463

H. Rodrigue and M. Rivette, An assembly-level design for additive manufacturing methodology, IDMME-Virtual Concept. 2010 (cit. on pp. 48, vol.50
URL : https://hal.archives-ouvertes.fr/hal-01099485

J. Kranz, D. Herzog, and C. Emmelmann, Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4, S14001 (cit. on pp. 48, vol.27, p.176, 2015.

K. Salonitis, Design for additive manufacturing based on the axiomatic design method, The International Journal of Advanced Manufacturing Technology, vol.87, p.63, 2016.

Y. Ariadi, Combining additive manufacturing with computer aided consumer design, vol.177, p.176, 2012.

S. Bin-maidin, I. Campbell, and E. Pei, Development of a design feature database to support design for additive manufacturing, Assembly Automation, vol.32, p.176, 2012.

C. Emmelmann, Laser additive manufacturing and bionics: redefining lightweight design, Physics Procedia, vol.12, p.61, 2011.

D. Walton and H. Moztarzadeh, Design and Development of an Additive Manufactured Component by Topology Optimisation, Procedia CIRP 60, vol.177, pp.205-210, 2017.

H. Ko, S. K. Moon, and J. Hwang, Design for additive manufacturing in customized products, International Journal of Precision Engineering and Manufacturing, vol.16, pp.2369-2375, 2015.

R. Hague, S. Mansour, and N. Saleh, Design opportunities with rapid manufacturing, Assembly Automation, vol.23, p.177, 2003.

W. Tao and M. C. Leu, Design of lattice structure for additive manufacturing, Flexible Automation (ISFA), International Symposium on. IEEE. 2016, vol.177, p.176

E. Atzeni and A. Salmi, Economics of additive manufacturing for end-usable metal parts, The International Journal of Advanced Manufacturing Technology, vol.62, p.176, 2012.

R. Hague, *. , S. Mansour, and N. Saleh, Material and design considerations for rapid manufacturing, International Journal of Production Research, vol.42, p.177, 2004.

A. Boschetto and L. Bottini, Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling, In: Robotics and Computer-Integrated Manufacturing, vol.37, pp.103-114, 2016.

V. Dhokia, W. P. Essink, and J. M. Flynn, A generative multi-agent design methodology for additively manufactured parts inspired by termite nest building, CIRP Annals, vol.66, pp.153-156, 2017.

M. Barclift, CAD-Integrated Cost Estimation and Build Orientation Optimization to Support Design for Metal Additive Manufacturing, vol.177, p.176, 2017.

Y. Zhang, R. K. Gupta, and A. Bernard, Two-dimensional placement optimization for multi-parts production in additive manufacturing, Robotics and Computer-Integrated Manufacturing, vol.38, pp.102-117, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02381241

Y. Zhang and A. Bernard, Grouping parts for multiple parts production in Additive Manufacturing, Procedia CIRP, vol.17, pp.308-313, 2014.

W. Essink, Hybrid ants: A new approach for geometry creation for additive and hybrid manufacturing, Procedia CIRP, vol.60, pp.199-204, 2017.

T. H. Vo, La démarche de conception pour la fabrication additive: choix des modes de représentation dans la phase d'analyse, vol.63, p.48, 2017.

N. Gardan, A. Schneider, and J. Gardan, Material and process characterization for coupling topological optimization to additive manufacturing, Computer-Aided Design and Applications, vol.13, pp.39-49, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02279252

L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties, p.49, 1999.

M. Scheffler and P. Colombo, Cellular ceramics: structure, manufacturing, properties and applications, p.49, 2006.

D. M. Watts and R. J. Hague, Exploiting the design freedom of RM, p.50, 2006.

S. Maidin, Design for Rapid Manufacturing-Capturing Designers Knowledge, Proceedings of the 4th International Conference on Advanced Research in Virtual and Rapid Prototyping, p.51, 2009.

J. W. Booth, The design for additive manufacturing worksheet, Journal of Mechanical Design, vol.139, p.52, 2017.

A. Boschetto, V. Giordano, and F. Veniali, Modelling micro geometrical profiles in fused deposition process, The International Journal of Advanced Manufacturing Technology, vol.61, pp.945-956, 2012.

A. Boschetto and L. Bottini, Accuracy prediction in fused deposition modeling, The international journal of advanced manufacturing technology 73, pp.913-928, 2014.

H. Diab, Modélisation et optimisation de structures flottantes pour l'aide à la décision d'aménagement portuaire, p.53, 2016.

S. S. Rao and S. S. Rao, Engineering optimization: theory and practice, vol.55, p.54, 2009.

S. Huband, A review of multiobjective test problems and a scalable test problem toolkit, IEEE Transactions on Evolutionary Computation, vol.10, issue.5, p.57, 2006.

V. Barichard, Approches hybrides pour les problèmes multiobjectifs, Mémoire de Thèse, Université d'Angers, vol.162, p.57, 2003.

K. Deb, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, vol.6, p.57, 2002.

A. Forrester and A. Keane, Engineering design via surrogate modelling: a practical guide, p.58, 2008.

T. W. Simpson, Metamodels for computer-based engineering design: survey and recommendations, In: Engineering with computers, vol.17, p.58, 2001.

A. Mosavi, Multiobjective Optimization of Spline Curves Using Mode Frontier, Proceedings of International modeFRONTIER Users' Meeting, vol.93, p.59, 2010.

D. C. Montgomery, Design and Analysis of Experiments, p.59, 2001.

Y. Zhang and A. Bernard, Using AM feature and Multi-attribute decision making to orientate part in Additive Manufacturing, High value manufacturing: Advanced research in virtual and rapid prototyping. Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, p.63, 2013.

Y. Zhang, Feature based building orientation optimization for additive manufacturing, Rapid Prototyping Journal, vol.22, p.63, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02381236

Y. Zhang, A facet cluster-based method for alternative build orientation generation in Additive Manufacturing, p.63, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02395729

Y. Zhang, Build orientation determination for multi-material deposition additive manufacturing with continuous fibers, Procedia CIRP, vol.50, p.63, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02395758

L. T. Blessing and A. Chakrabarti, DRM: A Design Reseach Methodology, p.63, 2009.

H. Xiaomao, Y. Chunsheng, and H. Yongjun, Tool path planning based on endpoint build-in optimization in rapid prototyping, Proceedings of the Institution of Mechanical Engineers, vol.225, p.64, 2011.

Y. Jin, Optimization of tool-path generation for material extrusion-based additive manufacturing technology, Additive Manufacturing, vol.1, p.64, 2014.

J. Wu, Infill Optimization for Additive Manufacturing-Approaching Bone-like Porous Structures, IEEE Transactions on Visualization and Computer Graphics, vol.177, p.64, 2017.

K. Thrimurthulu, P. M. Pandey, and N. V. Reddy, Optimum part deposition orientation in fused deposition modeling, International Journal of Machine Tools and Manufacture, vol.44, p.64, 2004.

L. Galantucci, Analysis of dimensional performance for a 3D open-source printer based on fused deposition modeling technique, Procedia CIRP, vol.28, pp.82-87, 2015.

M. Kaveh, Optimization of the printing parameters affecting dimensional accuracy and internal cavity for HIPS material used in fused deposition modeling processes, Journal of materials processing technology, vol.226, pp.280-286, 2015.

Y. Zhang and A. Bernard, Generic build time estimation model for parts produced by SLS, High value manufacturing: Advanced research in virtual and rapid prototyping. Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, vol.177, p.64, 2013.

L. Baich, G. Manogharan, and H. Marie, Study of infill print design on production cost-time of 3D printed ABS parts, International Journal of Rapid Manufacturing, vol.5, issue.3-4, p.64, 2015.

J. T. Belter and A. M. Dollar, Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique, PloS one, vol.10, p.64, 2015.

A. Pan, Effect of FDM Process on Adhesive Strength of Polylactic Acid (PLA) Filament, In: Key Engineering Materials, vol.667, p.64, 2016.

J. S. Gero and U. Kannengiesser, The function-behaviour-structure ontology of design". In: An anthology of theories and models of design, pp.263-283, 2014.

M. Ceccarelli, How to use 3D printing for feasibility check of mechanism design, Advances in Robot Design and Intelligent Control, pp.307-315, 2016.

M. S. Hossain, Improved mechanical properties of fused deposition modelingmanufactured parts through build parameter modifications, Journal of Manufacturing Science and Engineering, vol.136, p.81, 2014.

P. Cain, Selecting the optimal shell and infill parameters for FDM 3D Printing, p.81, 2018.

J. C. Riddick, Fractographic analysis of tensile failure of acrylonitrile-butadienestyrene fabricated by fused deposition modeling, Additive Manufacturing, vol.11, pp.49-59, 2016.

D. P. Cole, Interfacial mechanical behavior of 3D printed ABS, Journal of Applied Polymer Science, vol.133, 2016.

O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, Experimental investigations of process parameters influence on rheological behavior and dynamic mechanical properties of FDM manufactured parts, Materials and Manufacturing Processes, vol.31, p.84, 2016.

Y. Zhang, Fast adaptive modeling method for build time estimation in Additive Manufacturing, CIRP Journal of Manufacturing Science and Technology, vol.10, p.84, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02396265

Z. Zhu, V. Dhokia, and S. T. Newman, A new algorithm for build time estimation for fused filament fabrication technologies, Proceedings of the Institution of Mechanical Engineers, vol.230, p.84, 2016.

G. P. Kumar and S. P. Regalla, Optimization of support material and build time in fused deposition modeling (FDM), In: Applied Mechanics and Materials, vol.110, p.84, 2012.

G. Pyka, Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures, In: Materials, vol.6, p.85, 2013.

A. Standard, B46. 1 (2002) Surface Texture, Surface Roughness, Waviness and Lay, vol.188, p.85, 2002.

H. S. Byun and K. H. Lee, Determination of optimal build direction in rapid prototyping with variable slicing, The International Journal of Advanced Manufacturing Technology, vol.28, p.307, 2006.

S. O. Onuh and Y. Y. Yusuf, Rapid prototyping technology: applications and benefits for rapid product development, Journal of intelligent manufacturing, vol.10, p.85, 1999.

G. Navangul, R. Paul, and S. Anand, Error minimization in layered manufacturing parts by stereolithography file modification using a vertex translation algorithm, Journal of Manufacturing Science and Engineering, vol.135, p.85, 2013.

P. Pandey, N. V. Reddy, and S. Dhande, Real time adaptive slicing for fused deposition modelling, International Journal of Machine Tools and Manufacture, vol.43, p.85, 2003.

W. Wu, Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS, In: Materials, vol.8, issue.9, pp.5834-5846, 2015.

M. Bourne, Introduction to Vectors Vectors in 3-D Space, p.89, 2018.

J. Cantrell, Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts, Advancement of Optical Methods in Experimental Mechanics, vol.3, pp.89-105, 0203.

D. Croccolo, M. D. Agostinis, and G. Olmi, Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30, Computational Materials Science, vol.79, pp.506-518, 2013.

V. B. Nidagundi, R. Keshavamurthy, and C. Prakash, Studies on parametric optimization for fused deposition modelling process, Materials Today: Proceedings, vol.2, pp.1691-1699, 2015.

N. Amenta, S. Choi, and R. K. Kolluri, The power crust, Proceedings of the sixth ACM symposium on Solid modeling and applications, pp.96-98, 0193.

L. Novakova-marcincinova, Application of fused deposition modeling technology in 3D printing rapid prototyping area, Manuf. and Ind. Eng, vol.11, pp.35-37, 2012.

O. Dandgaval and P. Bichkar, Rapid prototyping technology-study of fused deposition modeling technique, International Journal of Mechanical and Production Engineering, vol.4, p.103, 2016.

R. V. Rao, Advanced modeling and optimization of manufacturing processes: international research and development, p.113, 2010.

S. Direct, Design for additive manufacturability: FDM basics. 2015 (cit, p.113

K. Herrmann, 3D printing of MRI compatible components: Why every MRI research group should have a low-budget 3D printer, Medical engineering & physics, vol.36, p.114, 2014.

M. Fernandez-vicente, Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing, 3D Printing and Additive Manufacturing, vol.3, p.114, 2016.

M. Domingo-espin, Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts, Materials & Design, vol.83, p.114, 2015.

A. Boschetto, V. Giordano, and F. Veniali, 3D roughness profile model in fused deposition modelling, Rapid Prototyping Journal, vol.19, pp.240-252, 2013.

P. M. Pandey, N. V. Reddy, and S. G. Dhande, Improvement of surface finish by staircase machining in fused deposition modeling, Journal of materials processing technology, vol.132, p.121, 0201.

U. Yaman, Shrinkage compensation of holes via shrinkage of interior structure in FDM process, The International Journal of Advanced Manufacturing Technology, p.124, 2017.

A. Boschetto and L. Bottini, Triangular mesh offset aiming to enhance Fused Deposition Modeling accuracy, International journal of advanced manufacturing technology, vol.80, p.127, 2015.

M. Taufik and P. K. Jain, A study of build edge profile for prediction of surface roughness in fused deposition modeling, Journal of Manufacturing Science and Engineering, vol.138, p.127, 2016.

A. Decicco, A Major Qualifying Project Report Submitted to the Faculty of the of the WORCESTER POLYTECHNIC INSTITUTE, vol.202, 2013.

A. , of Testing and Materials. Standard Test Method for Tensile Properties of Plastics. ASTM. 2003 (cit, p.128

A. Q. Ala'aldin-alafaghani and M. A. Ablat, Design Consideration for Additive Manufacturing: Fused Deposition Modelling, p.176, 2017.

R. Ranjan, R. Samant, and S. Anand, Integration of Design for Manufacturing Methods With Topology Optimization in Additive Manufacturing, Journal of Manufacturing Science and Engineering, vol.139, p.176, 2017.

A. Panesar, Design framework for multifunctional additive manufacturing: coupled optimization strategy for structures with embedded functional systems, Additive Manufacturing, p.177, 2017.

X. Guo, Self-supporting structure design in additive manufacturing through explicit topology optimization, Computer Methods in Applied Mechanics and Engineering, p.177, 2017.

, Discover the ultimate design optimization, p.241, 2018.

, Adds User Profiles to Improve CAE Optimization Workflows, p.241, 2016.

?. Asadollahi-yazdi, E. Gardan, J. Lafon, and P. , Toward integrated design of additive manufacturing through a process development model and multi-objective optimization, The International Journal of Advanced Manufacturing Technology, vol.96, issue.9, pp.4145-4164, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02283316

?. Asadollahi-yazdi, E. Gardan, J. Lafon, and P. , Bi-objective optimization applied to Design For Additive Manufacturing

?. Asadollahi-yazdi, E. Gardan, J. Lafon, and P. , Surface Roughness of Fused Deposition Modelling

?. Asadollahi-yazdi, E. Gardan, J. Lafon, and P. , Integrated Design in Additive Manufacturing Based on Design for Manufacturing. World Academy of Science, Engineering and Technology, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol.10, issue.6, pp.1144-1151, 2016.

?. Asadollahi-yazdi, E. Gardan, J. Lafon, and P. , Integrated design for additive manufacturing based on skin-skeleton approach, Procedia CIRP, vol.60, pp.217-222, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02278931

?. Asadollahi-yazdi, E. Gardan, J. Lafon, and P. , Multi-objective optimization of Additive Manufacturing process, IFAC Symposium on Information Control Problems in Manufacturing, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02279465