. Group-of-personalities, European aeronautics: a vision for 2020, European Commission, 2001.

, Flightpath 2050: Europe's vison for aviation, European Commission, Tech. Rep, 2011.

A. C. Long, Introduction," in Design and Manufacture of Textile Composites, ser, pp.xiii-xvi, 2005.

J. Kim and M. Sham, Impact and delamination failure of woven-fabric composites, Composites Science and Technology, vol.60, issue.5, pp.745-761, 2000.

J. Aucher, Etude comparative du comportement composites à matrice thermoplastique ou thermodurcissable, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00557897

W. Albouy, De la contribution de la visco-élasto-plasticité au comportement en fatigue de composites à matrice thermoplastique et thermodurcissable, 2013.

B. Vieille, Prediction of the notched strength of woven-ply PolyPhenylene Sulfide thermoplastic composites at a constant high temperature by a physically-based model, Composite Structures, vol.153, pp.529-537, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01954212

W. Albouy and B. Vieille, Determination of the damage threshold in woven-ply thermoplastic laminates at T>Tg: Acoustic emission and microscopic damage analysis, Composites Part B: Engineering, vol.64, pp.138-146, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132994

D. Bouscarrat, M. Levesque, and B. Vieille, Influence of time-dependent phenomena on translaminar fracture of woven-ply C/PPS laminates above the glass transition temperature, Composites Part B: Engineering, p.107561, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02350464

J. Berthelot, Matériaux composites: comportement mécanique et analyse des structures, 2005.

F. C. Campbell, Structural Composite Materials, 2010.

C. Sauder, J. Lamon, and R. Pailler, Thermomechanical properties of carbon fibres at high temperatures (up to 2000c, Composites Science and Technology, vol.62, issue.4, pp.499-504, 2002.

P. Combette and I. Ernoult, Physique des polymères: Propriétés mécaniques. Hermann, 2005.

R. A. Schapery, On the characterization of nonlinear viscoelastic materials, Polymer Engineering & Science, vol.9, issue.4, pp.295-310, 1969.

J. Lemaitre, Mécanique des matériaux solides, 2009.

I. M. Daniel, J. Luo, and P. M. Schubel, Three-dimensional characterization of textile composites, Composites Part B: Engineering, vol.39, issue.1, pp.13-19, 2008.

T. Osada, A. Nakai, and H. Hamada, Initial fracture behavior of satin woven fabric composites, Composite Structures, vol.61, issue.4, pp.333-339, 2003.

S. D. Pandita, Tensile fatigue behaviour of glass plain-weave fabric composites in on-and off-axis directions, Composites Part A: Applied Science and Manufacturing, vol.32, issue.10, pp.1533-1539, 2001.

J. Montesano, Elevated temperature off-axis fatigue behavior of an eight-harness satin woven carbon-fiber/bismaleimide laminate, Composites Part A: Applied Science and Manufacturing, vol.43, issue.9, pp.1454-1466, 2012.

J. Bassery, Prise en compte du vieillissement et de la fatigue dans le dimensionnement de structures en matériaux composites, 2011.

P. Carnevale, Fibre-matrix interfaces in thermoplastic composites: A meso-level approach, Aerospace Engineering: Aerospace Structures and Materials, 2014.

J. Yang, The effect of off-axis angles on the mesoscale deformation response and failure behavior of an orthotropic textile carbon-epoxy composite, Composite Structures, vol.206, pp.952-959, 2018.

B. Vieille and L. Taleb, About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: Notched and unnotched laminates, Composites Science and Technology, vol.71, issue.7, pp.998-1007, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00743445

M. Kawai and T. Taniguchi, Off-axis fatigue behavior of plain weave carbon/epoxy fabric laminates at room and high temperatures and its mechanical modeling, Composites Part A: Applied Science and Manufacturing, vol.37, issue.2, pp.243-256, 2006.

A. Gupta and J. Raghavan, Creep of plain weave polymer matrix composites under on-axis and off-axis loading, Composites Part A: Applied Science and Manufacturing, vol.41, issue.9, pp.1289-1300, 2010.

J. Montesano, Z. Fawaz, and H. Bougherara, Non-destructive assessment of the fatigue strength and damage progression of satin woven fiber reinforced polymer matrix composites, Composites Part B: Engineering, vol.71, pp.122-130, 2015.

M. A. Rui-miranda-guedes, Comparison of Creep Behavior of UD and Woven CFRP in Bending, Mechanics of Composite Materials and Structures, vol.8, issue.2, pp.119-134, 2001.

A. Gupta and J. Raghavan, Parametric study of the effect of microstructure on creep of plain weave composites, Composites Part A: Applied Science and Manufacturing, vol.42, issue.5, pp.511-520, 2011.

T. Matsuda, Elastic-viscoplastic behavior of plain-woven GFRP laminates: Homogenization using a reduced domain of analysis, Composite Structures, vol.79, issue.4, pp.493-500, 2007.

T. Fujii, S. Amijima, and K. Okubo, Microscopic fatigue processes in a plain-weave glass-fibre composite, Composites Science and Technology, vol.49, issue.4, pp.327-333, 1993.

F. Gao, Damage accumulation in woven-fabric CFRP laminates under tensile loading: Part 1. Observations of damage accumulation, Composites Science and Technology, vol.59, issue.1, pp.123-136, 1999.

W. Albouy, B. Vieille, and L. Taleb, Experimental and numerical investigations on the time-dependent behavior of woven-ply PPS thermoplastic laminates at temperatures higher than glass transition temperature, Composites Part A: Applied Science and Manufacturing, vol.49, pp.165-178, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02133009

A. Doitrand, Endommagement à l'échelle mésoscopique et son influence sur la tenue mécanique des matériaux composites tissés, 2016.

S. V. Lomov, Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test, Composites Science and Technology, vol.68, issue.12, pp.2340-2349, 2008.

A. E. Mourid, Mechanical Behavior of a Triaxially Braided Textile Composite at High Temperature, Dép. de génie mécanique, 2014.

S. Daggumati, Local damage in a 5-harness satin weave composite under static tension: Part I -Experimental analysis, Composites Science and Technology, vol.70, issue.13, pp.1926-1933, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00681634

S. G. Ivanov, Damage development in woven carbon fibre thermoplastic laminates with PPS and PEEK matrices: A comparative study, Journal of Composite Materials, vol.51, issue.5, pp.637-647, 2016.

L. Li, S. V. Lomov, and X. Yan, Correlation of acoustic emission with optically observed damage in a glass/epoxy woven laminate under tensile loading, Composite Structures, vol.123, pp.45-53, 2015.

T. Lisle, Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermography, Composites Part A: Applied Science and Manufacturing, vol.53, pp.75-87, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00858882

, Damage of woven composite under translaminar cracking tests using infrared thermography, Composite Structures, vol.161, pp.275-286, 2017.

M. Naderi, A. Kahirdeh, and M. M. Khonsari, Dissipated thermal energy and damage evolution of Glass/Epoxy using infrared thermography and acoustic emission, Composites Part B: Engineering, vol.43, issue.3, pp.1613-1620, 2012.

B. Vieille and W. Albouy, Fatigue damage accumulation in notched woven-ply thermoplastic and thermoset laminates at high-temperature: Influence of matrix ductility and fatigue life prediction, International Journal of Fatigue, vol.80, pp.1-9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02132981

B. Vieille, High-temperature fatigue behaviour of notched quasi-isotropic thermoplastic and thermoset laminates: Influence of matrix ductility on damage mechanisms and stress distribution, Composite Structures, vol.153, pp.311-320, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01954217

B. Yu, 2d and 3d imaging of fatigue failure mechanisms of 3d woven composites, Composites Part A: Applied Science and Manufacturing, vol.77, pp.37-49, 2015.

R. Böhm, A quantitative comparison of the capabilities of in situ computed tomography and conventional computed tomography for damage analysis of composites, Composites Science and Technology, vol.110, pp.62-68, 2015.

M. G. Sause, Situ Monitoring of Fiber-Reinforced Composites: Theory, Basic Concepts, Methods, and Applications, ser. Springer Series in Materials Science, 2016.

S. Huguet, Application de classificateurs aux données d'émission acoustique : identification de la signature acoustique des mécanismes d'endommagement dans les composites à matrice polymère, 2002.

G. N. Morscher, Modal acoustic emission of damage accumulation in a woven SiC/SiC composite, Composites Science and Technology, vol.59, issue.5, pp.687-697, 1999.

M. Kharrat, Influence of damage accumulation under fatigue loading on the AE-based health assessment of composite materials: Wave distortion and AE-features evolution as a function of damage level, Composites Part A: Applied Science and Manufacturing, vol.109, pp.615-627, 2018.

, AEwin Software : Installation, Operation and User's Reference Manual, MISTRAS Group Inc, 2011.

M. Moevus, Mécanismes d'endommagement, émission acoustique et durées de vie en fatigue statique du composite SiCf/[Si-B-C] aux températures intermédiaires, 2007.

E. Maillet, Damage monitoring and identification in SiC/SiC minicomposites using combined acousto-ultrasonics and acoustic emission, Composites Part A: Applied Science and Manufacturing, vol.57, pp.8-15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01695460

, Real-time evaluation of energy attenuation: A novel approach to acoustic emission analysis for damage monitoring of ceramic matrix composites, Journal of the European Ceramic Society, vol.34, issue.7, pp.1673-1679, 2014.

S. Barré and M. L. Benzeggagh, On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene, Composites Science and Technology, vol.52, issue.3, pp.369-376, 1994.

S. Huguet, Use of acoustic emission to identify damage modes in glass fibre reinforced polyester, Composites Science and Technology, vol.62, pp.1433-1444, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00475466

D. Scida, Z. Aboura, and M. L. Benzeggagh, The effect of ageing on the damage events in woven-fibre composite materials under different loading conditions, Composites Science and Technology, vol.62, issue.4, pp.551-557, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02126063

P. J. De-groot, P. A. Wijnen, and R. B. Janssen, Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites, Composites Science and Technology, vol.55, issue.4, pp.405-412, 1995.

N. Godin, Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers, NDT & E International, vol.37, issue.4, pp.253-264, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00474933

R. Gutkin, On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses, Mechanical Systems and Signal Processing, vol.25, issue.4, pp.1393-1407, 2011.

S. Mechraoui, A. Laksimi, and S. Benmedakhene, Reliability of damage mechanism localisation by acoustic emission on glass/epoxy composite material plate, Composite Structures, vol.94, issue.5, pp.1483-1494, 2012.

L. Li, Cluster analysis of acoustic emission signals for 2d and 3d woven glass/epoxy composites, Composite Structures, vol.116, pp.286-299, 2014.

V. Carvelli, A. D'ettorre, and S. V. Lomov, Acoustic emission and damage mode correlation in textile reinforced PPS composites, Composite Structures, vol.163, pp.399-409, 2017.

N. Godin, P. Reynaud, and G. Fantozzi, Challenges and limitations in the identification of acoustic emission signature of damage mechanisms in composites materials, Applied Sciences (Switzerland), vol.8, issue.8, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01916330

S. V. Lomov, A comparative study of tensile properties of non-crimp 3d orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results, Composites Part A: Applied Science and Manufacturing, vol.40, issue.8, pp.1134-1143, 2009.

M. Karayaka and P. Kurath, Deformation and Failure Behavior of Woven Composite Laminates, Journal of Engineering Materials and Technology, vol.116, issue.2, pp.222-232, 1994.

M. Selezneva, Microscale experimental investigation of failure mechanisms in off-axis woven laminates at elevated temperatures, Composites Part A: Applied Science and Manufacturing, vol.42, issue.11, pp.1756-1763, 2011.

E. Ahci and R. Talreja, Characterization of viscoelasticity and damage in high temperature polymer matrix composites, Composites Science and Technology, vol.66, issue.14, pp.2506-2519, 2006.

L. J. Hart-smith, Application of the strain invariant failure theory (SIFT) to metals and fiber-polymer composites, Philosophical Magazine, vol.90, pp.4263-4331, 2010.

R. T. Bocchieri and R. A. Schapery, Time-Dependent Deformation and Damage Growth in a Rubber-Toughened Fiber Composite, Mechanics of Time-Dependent Materials, vol.8, issue.2, pp.137-167, 2004.

J. Raghavan and M. Meshii, Time-dependent damage in carbon fibre-reinforced polymer composites, Composites Part A: Applied Science and Manufacturing, vol.27, issue.12, pp.1223-1227, 1996.

A. Asadi and J. Raghavan, Model for prediction of simultaneous time-dependent damage evolution in multiple plies of multidirectional polymer composite laminates and its influence on creep, Composites Part B: Engineering, vol.79, pp.359-373, 2015.

R. H. Moore and D. A. Dillard, Time-dependent matrix cracking in crossply laminates, Composites Science and Technology, vol.39, issue.1, pp.1-12, 1990.

K. Ogi and Y. Takao, Evolution of Transverse Cracking in CF/Epoxy Cross-Ply Laminates under Creep Loading, Journal of Reinforced Plastics and Composites, vol.18, issue.13, pp.1220-1230, 1999.

A. Birur, A. Gupta, and J. Raghavan, Creep Rupture of Multidirectional Polymer Composite Laminates -Influence of Time-Dependent Damage, Journal of Engineering Materials and Technology, vol.128, issue.4, pp.611-617, 2006.

A. Birur, Time-dependent damage evolution in multidirectional polymer matrix composite laminates, 2008.

M. C. Lafarie-frenot, D. Gamby, and T. H. Nguyen, Experimental and numerical analysis of loading rate and temperature effects on matrix cracking in CFRP laminates, Proceedings of the Institution of Mechanical Engineers, vol.218, pp.47-53, 2004.

,

T. H. Nguyen and D. Gamby, Effects of nonlinear viscoelastic behaviour and loading rate on transverse cracking in CFRP laminates, Composites Science and Technology, vol.67, issue.3-4, pp.438-452, 2007.

R. T. Bocchieri, R. A. Schapery, and M. R. Gorman, Time-dependent Microcracking Detected in a Rubber-toughened Carbon-epoxy Composite by the Modal Acoustic Emission Method, Journal of Composite Materials, vol.37, issue.5, pp.421-451, 2003.

A. Gupta, Creep of plain weave polymer matrix composites, 2009.

Y. Lou and R. Schapery, Viscoelastic Characterization of a Nonlinear Fiber-Reinforced Plastic, Journal of Composite Materials, vol.5, issue.2, pp.208-234, 1971.

S. P. Zaoutsos and G. C. Papanicolaou, On the influence of preloading in the nonlinear viscoelastic-viscoplastic response of carbon-epoxy composites, Composites Science and Technology, vol.70, issue.6, pp.922-929, 2010.

T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 2005.

H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, 2000.

J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, vol.35, issue.2, pp.379-386, 1968.

N. E. Dowling and J. A. Begley, Fatigue Crack Growth During Gross Plasticity and the J-Integral, Mechanics of Crack Growth, 1976.

J. A. Begley and J. D. Landes, The J Integral as a Fracture Criterion, Fracture Toughness: Part II, 1972.

D. Landes and J. A. Begley, The Effect of Specimen Geometry on J ic, Fracture Toughness: Part II, 1972.

J. Rice, P. Paris, and J. Merkle, Some Further Results of J-Integral Analysis and Estimates, 1973.

J. D. Sumpter and C. E. Turner, Method for Laboratory Determination of Jc, Cracks and Fracture, 1976.

N. E. Dowling, Geometry Effects and the J-Integral Approach to Elastic-Plastic Fatigue Crack Growth, Cracks and Fracture, 1976.

M. J. Laffan, Translaminar fracture toughness testing of composites: A review, Polymer Testing, vol.31, issue.3, pp.481-489, 2012.

H. Zabala, Loading rate dependency on mode I interlaminar fracture toughness of unidirectional and woven carbon fibre epoxy composites, Composite Structures, vol.121, pp.75-82, 2015.

S. Mall, G. E. Law, and M. Katouzian, Loading Rate Effect on Interlaminar Fracture Toughness of a Thermoplastic Composite, Journal of Composite Materials, 1987.

S. T. Pinho, P. Robinson, and L. Iannucci, Developing a four point bend specimen to measure the mode I intralaminar fracture toughness of unidirectional laminated composites, Composites Science and Technology, vol.69, issue.7, pp.1303-1309, 2009.

, E1922-04, Test Method for Translaminar Fracture Toughness of Laminated and Pultruded Polymer Matrix Composite Materials, ASTM, 2015.

M. Rokbi, On experimental investigation of failure process of woven-fabric composites, Composites Science and Technology, vol.71, issue.11, pp.1375-1384, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00611071

M. Chabchoub, Investigations on the mode I translaminar failure and determination of fracture toughness in woven-ply carbon fibers thermoplastic composites at high temperatures, Applied Acoustics, vol.128, pp.55-63, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01766064

B. Vieille, A fracture mechanics approach using Acoustic Emission Technique to investigate damage evolution in woven-ply thermoplastic structures at temperatures higher than glass transition temperature, Composites Part B: Engineering, vol.116, pp.340-351, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765916

B. Vieille, M. Chabchoub, and C. Gautrelet, Influence of matrix ductility and toughness on strain energy release rate and failure behavior of woven-ply reinforced thermoplastic structures at high temperature, Composites Part B: Engineering, vol.132, pp.125-140, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02061479

R. R. Souza, Translaminar fracture toughness and fatigue crack growth characterization of carbon-epoxy plain weave laminates, Polymer Composites, vol.0, issue.0, 2019.

M. Chabchoub, Determination of J-R curves by load separation criterion in highly ductile TP-based composites under high temperature conditions, Composite Structures, vol.182, pp.391-401, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765986

R. Böhm and W. Hufenbach, Experimentally based strategy for damage analysis of textile-reinforced composites under static loading, Composites Science and Technology, vol.70, issue.9, pp.1330-1337, 2010.

, T300 Data Sheet, Torayca

, Designing with Forton -Polyphenylene Sulfide, Ticona, Tech. Rep, 2006.

. Tencate, Cetex PPS technical data sheet, 2014.

W. Albouy, B. Vieille, and L. Taleb, Influence of matrix ductility on the high-temperature fatigue behavior of off-axis woven-ply thermoplastic and thermoset laminates, International Journal of Fatigue, vol.63, pp.85-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02133005

, Influence of matrix ductility on the high-temperature fatigue behaviour of quasi-isotropic woven-ply thermoplastic and thermoset laminates, Composites Part A: Applied Science and Manufacturing, vol.107, pp.22-36, 2014.

B. Gross and J. Srawley, Stress-Intensity Factors for a Single-Edge-Notch Tension Speciment by Boundary Collocation of a Stress Function, 1964.

W. Brown and J. Srawley, Plane Strain Crack Toughness Testing of High Strength Metallic Materials," in Plane Strain Crack Toughness Testing of High Strength Metallic Materials, 1966.

J. F. Maire and J. L. Chaboche, A new formulation of continuum damage mechanics (CDM) for composite materials, Aerospace Science and Technology, vol.1, issue.4, pp.247-257, 1997.

B. Vieille, Evolution of the strain energy release rate during ductile or brittle failure in woven-ply reinforced thermoplastic laminates under high temperature conditions, Polymer Composites, vol.40, issue.1, pp.121-131, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01766030

K. G. Dassios, Crack Growth Monitoring in Ceramic Matrix Composites by Combined Infrared Thermography and Acoustic Emission, Journal of the American Ceramic Society, vol.97, issue.1, pp.251-257, 2014.

M. Saeedifar, Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission, Composites Part B: Engineering, vol.85, pp.113-122, 2016.

E. Ernault, Influence of the Rigid Amorphous Fraction on the thermo-mechanical behavior of Carbon/PPS composites, Comptes Rendus des JNC 21, p.11, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02420710

P. Zuo, Thermal aging effects on overall mechanical behavior of short glass fiber-reinforced polyphenylene sulfide composites, Polymer Engineering & Science, vol.59, issue.4, pp.765-772, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02165240