L. Sherwood, Human Physiology: From Cells to Systems. Cengage Learning, 2015.

P. Rajendran, T. Rengarajan, J. Thangavel, Y. Nishigaki, D. Sakthisekaran et al., The Vascular Endothelium and Human Diseases, Int J Biol Sci, vol.9, pp.1057-1069, 2013.

J. M. Tarbell and L. M. Cancel, The glycocalyx and its significance in human medicine, Journal of Internal Medicine, vol.280, pp.97-113, 2016.

Y. Zeng, E. E. Ebong, B. M. Fu, and J. M. Tarbell, The Structural Stability of the Endothelial Glycocalyx after Enzymatic Removal of Glycosaminoglycans, PLoS One, vol.7, 2012.

B. M. Fu and J. M. Tarbell, Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.5, pp.381-390, 2013.

Y. Zeng, X. F. Zhang, B. M. Fu, and J. M. Tarbell, The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction, Molecular, Cellular, and Tissue Engineering of the Vascular System Advances in Experimental Medicine and Biology, pp.1-27

S. Sarrazin, W. C. Lamanna, and J. D. Esko, Heparan Sulfate Proteoglycans, Cold Spring Harb Perspect Biol, vol.3, p.4952, 2011.

J. H. Luft, Fine structures of capillary and endocapillary layer as revealed by ruthenium red, Fed Proc, vol.25, pp.1773-1783, 1966.

J. Rostgaard and K. Qvortrup, Electron Microscopic Demonstrations of Filamentous Molecular Sieve Plugs in Capillary Fenestrae, Microvascular Research, vol.53, pp.1-13, 1997.

B. Van-den, M. Bernard, V. Hans, S. Jos, and A. E. , The Endothelial Glycocalyx Protects Against Myocardial Edema, Circulation Research, vol.92, pp.592-594, 2003.

E. Eno, E. , M. Frank, P. Spray-david, C. John et al., Imaging the Endothelial Glycocalyx In Vitro by Rapid Freezing/Freeze Substitution Transmission Electron Microscopy, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, pp.1908-1915, 2011.

K. B. Betteridge, K. P. Arkill, C. R. Neal, S. J. Harper, R. R. Foster et al., Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function, The Journal of Physiology, vol.595, pp.5015-5035, 2017.

J. A. Zullo, J. Fan, T. T. Azar, Y. W. Zeng, M. Chen et al., Exocytosis of Endothelial Lysosome-Related Organelles Hair-Triggers a Patchy Loss of Glycocalyx at the Onset of Sepsis, The American Journal of Pathology, vol.186, pp.248-258, 2016.

J. W. Song, J. Zullo, M. Lipphardt, M. Dragovich, F. X. Zhang et al., Endothelial glycocalyx-the battleground for complications of sepsis and kidney injury, Nephrol Dial Transplant, vol.33, pp.203-211, 2018.

Y. Zeng and J. M. Tarbell, The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress, PLOS ONE, vol.9, p.86249, 2014.

T. Arisaka, M. Mitsumata, M. Kawasumi, T. Tohjima, S. Hirose et al., Effects of Shear Stress on Glycosaminoglycan Synthesis in Vascular Endothelial Cellsa, Annals of the New York Academy of Sciences, vol.748, pp.543-554, 1994.

R. Franke, M. Gräfe, H. Schnittler, D. Seiffge, C. Mittermayer et al., Induction of human vascular endothelial stress fibres by fluid shear stress, Nature, vol.307, pp.648-649, 1984.

M. J. Levesque and R. M. Nerem, The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress, J Biomech Eng, vol.107, pp.341-347, 1985.

M. M. Thi, J. M. Tarbell, S. Weinbaum, and D. C. Spray, The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: A "bumpercar" model, Proc Natl Acad Sci U S A, vol.101, pp.16483-16488, 2004.

E. E. Ebong, S. V. Lopez-quintero, V. Rizzo, D. C. Spray, and J. M. Tarbell, Shearinduced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1, Int Bio, vol.6, pp.338-347, 2014.

Y. Zeng and J. Liu, Role of glypican-1 in endothelial NOS activation under various steady shear stress magnitudes, Experimental Cell Research, vol.348, pp.184-189, 2016.

W. Yen, B. Cai, J. Yang, L. Zhang, M. Zeng et al., Endothelial Surface Glycocalyx Can Regulate Flow-Induced Nitric Oxide Production in Microvessels In Vivo, PLOS ONE, vol.10, p.117133, 2015.

A. Bartosch, R. Mathews, and J. M. Tarbell, Endothelial Glycocalyx-Mediated Nitric Oxide Production in Response to Selective AFM Pulling, Biophysical Journal, vol.113, pp.101-108, 2017.

A. M. Malek and S. Izumo, Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress, Journal of Cell Science, vol.109, pp.713-726, 1996.

S. Noria, F. Xu, S. Mccue, M. Jones, A. I. Gotlieb et al., Assembly and Reorientation of Stress Fibers Drives Morphological Changes to Endothelial Cells Exposed to Shear Stress, The American Journal of Pathology, vol.164, issue.10, pp.63209-63218, 2004.

M. M. Thi, J. M. Tarbell, S. Weinbaum, and D. C. Spray, The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: A "bumpercar" model, Proc Natl Acad Sci U S A, vol.101, pp.16483-16488, 2004.

D. E. Conway, M. T. Breckenridge, E. Hinde, E. Gratton, C. S. Chen et al., Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1, Curr Biol, vol.23, pp.1024-1030, 2013.

M. Mohamadzadeh, H. Degrendele, H. Arizpe, P. Estess, and M. Siegelman, Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion, J Clin Invest, vol.101, pp.97-108, 1998.

, Livre:Poiseuille -Recherches sur les causes du mouvement du sang dans les vaisseaux capillaires, 1835.djvu -Wikisource. Available at, 2019.

N. Callens, C. Minetti, G. Coupier, M. Mader, F. Dubois et al., Hydrodynamic lift of vesicles under shear flow in microgravity, EPL, vol.83, p.24002, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01261878

B. Saintyves, J. T. Salez, T. Mahadevan, and L. , Self-sustained lift and low friction via soft lubrication, vol.113, pp.5847-5849, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01577375

J. Urzay, L. Smith, S. G. Glover, and B. J. , The elastohydrodynamic force on a sphere near a soft wall, Physics of Fluids, vol.19, p.103106, 2007.

H. S. Davies, D. Débarre, N. El-amri, C. Verdier, R. P. Richter et al., Elastohydrodynamic Lift at a Soft Wall, Phys Rev Lett, vol.120, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01652253

M. A. Wu, D. Tsvirkun, L. Bureau, I. Boccon-gibod, M. Inglebert et al., Paroxysmal Permeability Disorders: Development of a Microfluidic Device to Assess Endothelial Barrier Function, Front Med, vol.6, p.89, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02392439

M. Y. Radeva and J. Waschke, Mind the gap: mechanisms regulating the endothelial barrier, Acta Physiologica, vol.222, p.12860, 2018.

L. Bravi, E. Dejana, and M. G. Lampugnani, VE-cadherin at a glance, Cell Tissue Res, vol.355, pp.515-522, 2014.

D. Mehta and A. B. Malik, Signaling Mechanisms Regulating Endothelial Permeability, Physiological Reviews, vol.86, pp.279-367, 2006.

M. H. Wu, E. Ustinova, and H. J. Granger, Integrin binding to fibronectin and vitronectin maintains the barrier function of isolated porcine coronary venules, The Journal of Physiology, vol.532, pp.785-791, 2001.

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson et al., Nanoscale architecture of integrin-based cell adhesions, Nature, vol.468, pp.580-584, 2010.

R. Montesano, In vitro rapid organization of endothelial cells into capillarylike networks is promoted by collagen matrices, The Journal of Cell Biology, vol.97, pp.1648-1652, 1983.

X. Wang, T. Phan, D. T. Sobrino, A. , C. George et al., Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels, Lab on a Chip, vol.16, pp.282-290, 2016.

J. Shao, L. Wu, J. Wu, Y. Zheng, H. Zhao et al., A microfluidic chip for permeability assays of endothelial monolayer, Biomed Microdevices, vol.12, pp.81-88, 2010.

I. K. Zervantonakis, S. K. Hughes-alford, J. L. Charest, J. S. Condeelis, F. B. Gertler et al., Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function, vol.109, pp.13515-13520, 2012.

M. Sato, N. Sasaki, M. Ato, S. Hirakawa, K. Sato et al., Microcirculation-ona-Chip: A Microfluidic Platform for Assaying Blood-and Lymphatic-Vessel Permeability, PLOS ONE, vol.10, p.137301, 2015.

D. R. Myers, Y. Sakurai, R. Tran, B. Ahn, E. T. Hardy et al., Endothelialized Microfluidics for Studying Microvascular Interactions in Hematologic Diseases, Journal of Visualized Experiments, 2012.

D. Tsvirkun, A. Grichine, A. Duperray, C. Misbah, and L. Bureau, Microvasculature on a chip: study of the Endothelial Surface Layer and the flow structure of Red Blood Cells, Sci Rep, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01498626

A. Guerasimova, L. Nyársik, I. Girnus, M. Steinfath, W. Wruck et al., Ireland Colorimetric Assay to Quantify Macromolecule Diffusion across Endothelial Monolayers

W. Yen, B. Cai, J. Yang, L. Zhang, M. Zeng et al., Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo, PLoS ONE, vol.10, p.117133, 2015.

C. Daniel, J. Matthias, P. Oliver, R. Markus, W. Ulrich et al., Becker Bernhard F. The Glycocalyx of the Human Umbilical Vein Endothelial Cell, Circulation Research, vol.104, pp.1313-1317, 2009.

P. Daniel, R. , D. Edward, and R. , The Hydrodynamically Relevant Endothelial Cell Glycocalyx Observed In Vivo Is Absent In Vitro, Circulation Research, vol.102, pp.770-776, 2008.

A. L. Barker, O. Konopatskaya, C. R. Neal, J. V. Macpherson, J. L. Whatmore et al., Observation and characterisation of the glycocalyx of viable human endothelial cells using confocal laser scanning microscopy, Phys Chem Chem Phys, vol.6, pp.1006-1011, 2004.

Z. Shi, H. Wang, and J. M. Tarbell, Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen, PLoS ONE, vol.6, 2011.

R. Rezakhaniha, A. Agianniotis, J. Schrauwen, A. Griffa, D. Sage et al., Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy, Biomech Model Mechanobiol, vol.11, pp.461-473, 2012.

H. A. Hadi and J. A. Suwaidi, Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag, vol.3, pp.853-876, 2007.

S. D. Funk, A. Yurdagul, and A. W. Orr, Hyperglycemia and Endothelial Dysfunction in Atherosclerosis: Lessons from Type 1 Diabetes, Int J Vasc Med, 2012.

A. D. Van-der-meer, A. A. Poot, J. Feijen, and I. Vermes, Analyzing shear stressinduced alignment of actin filaments in endothelial cells with a microfluidic assay, Biomicrofluidics, vol.4, p.11103, 2010.

T. Milovanova, S. Chatterjee, B. J. Hawkins, N. Hong, E. M. Sorokina et al., Caveolae are an essential component of the pathway for endothelial cell signaling associated with abrupt reduction of shear stress, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1783, pp.1866-1875, 2008.

A. B. Fisher, S. Chien, A. I. Barakat, and R. M. Nerem, Endothelial cellular response to altered shear stress, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.281, pp.529-533, 2001.

Y. Manevich, A. Al-mehdi, V. Muzykantov, and A. B. Fisher, Oxidative burst and NO generation as initial response to ischemia in flow-adapted endothelial cells, American Journal of Physiology-Heart and Circulatory Physiology, vol.280, pp.2126-2135, 2001.

J. R. Leemreis, A. Versteilen, P. Sipkema, A. Groeneveld, and R. Musters, Digital image analysis of cytoskeletal F-actin disintegration in renal microvascular endothelium following ischemia/reperfusion, Cytometry Part A, vol.69, pp.973-978, 2006.

R. I. Dmitriev and D. B. Papkovsky, Optical probes and techniques for O2 measurement in live cells and tissue, Cellular and Molecular Life Sciences, vol.69, pp.2025-2039, 2012.

Y. Zhao and H. W. Davis, Hydrogen peroxide-induced cytoskeletal rearrangement in cultured pulmonary endothelial cells, Journal of Cellular Physiology, vol.174, pp.370-379, 1998.

T. Hikita, F. Mirzapourshafiyi, P. Barbacena, M. Riddell, A. Pasha et al., PAR-3 controls endothelial planar polarity and vascular inflammation under laminar flow, EMBO reports, vol.19, p.45253, 2018.

S. Mccue, D. Dajnowiec, F. Xu, M. Zhang, M. R. Jackson et al., Shear Stress Regulates Forward and Reverse Planar Cell Polarity of Vascular Endothelium In Vivo and In Vitro, Circulation Research, vol.98, pp.939-946, 2006.

C. G. Schalkwijk and C. Stehouwer, Vascular complications in diabetes mellitus: the role of endothelial dysfunction, Clin Sci, vol.109, pp.143-159, 2005.

E. Guy, S. De-zeeuw-pauline, C. Michael, and . Peter, Endothelial Cell Metabolism in Normal and Diseased Vasculature, Circulation Research, vol.116, pp.1231-1244, 2015.

L. Piconi, L. Quagliaro, R. Assaloni, R. D. Ros, A. Maier et al., Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction, Diabetes/Metabolism Research and Reviews, vol.22, pp.198-203, 2006.

A. Singh, R. D. Ramnath, R. R. Foster, E. C. Wylie, V. Fridén et al., Reactive Oxygen Species Modulate the Barrier Function of the Human Glomerular Endothelial Glycocalyx, PLOS ONE, vol.8, p.55852, 2013.

J. Maier, F. Cialdai, M. Monici, and L. Morbidelli, The Impact of Microgravity and Hypergravity on Endothelial Cells, BioMed Research International, vol.2015, pp.1-13, 2015.