, an electric dipole, the driving current is supplied externally in the circuit. For optical antennas, the oscillations are generated by the incident EM field

, Interface along the x ? y plane between a metal and a dielectric

, Scanning electron micrographs of different optical antenna designs. (a) Hertzian dimmer antenna, 2012.

, (c) Bowtie antenna and (d) Yagi-Uda antenna. SEM image courtesy of Xiao Yu, PhD student at the ICB lab

, Black dots correspond to experimental data. The red and blue lines correspond to fits to the Drude and Drude-Lorentz models

, The red dashed squares point to its interband transitions (b)

, (a) one-photon absorption, (b) direct two-photon resonance mediated by a virtual state, (c) resonant sequential two-photon absorption, (d) relaxed sequential absorption. Adapted with permission from, vol.120, 1994.

, A femtosecond laser pulse generates surface plasmons in the particle which exponentially decay into hot electrons and holes within ? 10 fs. (c) Coulomb electron-electron interactions lead to the decay of the most energetic electrons in a few tenths of femtoseconds and eventually relax back to ambient temperature in the picosecond scale thanks to the coupling with phonons. Shaded areas represent the initial Fermi-Dirac distribution of electronic states, points indicate the occupancies of different energy levels, Schematic representation of the hot electron generation in gold nanostructures. (a) A gold nanostructure is initially in thermal equilibrium at T = T 0 . (b)

, 73 3.6.1 (a) SEM micrograph of a 5 µm × 150 nm AuNW electrically contacted at the distal end. Another electrode is separated 50 nm from the nanowire to apply a potential difference across the gap. (b) Schematic of the electrical connection at distal-end region of the nanowire. (c) Excitation laser filtered optical image showing the generated N-PL throughout the AuNW. The dashed squared area is zoomed in and showed at the bottom of the image. The circle indicates the monitored area, PL spectra of the 7.0 µm studied AuNW (a) at different positions along the nanowire and (b

, 3 (a) N-PL emission spectra at the distal end of a 5.0 µm long AuNW under the action of a 14 V bias and without any bias applied. The acquisition time is fixed at t acq = 0.2 s. Wide field optical images of the filtered nonlinear emission of the same nanowire under (b) 0 V and (c) 14 V bias applied, vol.6

, High resolution transmission electron microscope (HRTEM) image showing the crystallinity of the synthesized silver nanowires. Image provided by the group of G.V.P. Kumar in IISER Pune, India. The inset represents the corresponding fast Fourier Transform. SEM images of (b) a typical nanowire and its two terminations (c,d). The AgNW diameter is around 530 nm, p.80

, Leakage radiation (LR) is emitted under the phase-match angle range represented by ?. An oil-immersion objective collects the leakage radiation. The transversal polarization is indicated by the blue arrows. The zoomed area corresponds to the dashed square, p.82

, Arrows point to the straight lines resulting from the excitation of two leaky modes. (c) Profiles at the edges of the nanowire for the dashed area indicated in (a). (d) Cross section of the Fourier plane shown in (b) at k y /k 0 = 0 for the multiple leaky modes excitation showed in (a), a) Wide-field image of the relative intensity distribution of the leaky mode in a 12.6 µm long AgNW. A bright-field image of the same nanowire is shown at the left. (b

. .. Photoresist, Recipes for spin coating the two PMMA layers needed for e-beam lithography. . 30 2.3.2 Recipes for spin coating the AZ nLOF, p.31, 2070.

, Azimuthal wavevector spread angles for the Fourier plane images shown in fig

S. ?-adrian-agreda and . Viarbitskaya, Gérard Colas des Francs, and Alexandre Bouhelier. Electrical Command of the Nonlinear Photoluminescence in Plasmonic Antennas. Preparing for submission

D. K. ?-adrian-agreda, J. Sharma, S. Barthes, ;. G. Viarbitskaya, A. Kumar et al., Wavevector analysis of the Nonlinear Photoluminescence in Gold Nanowires

R. J. ?-romain-hernandez, A. Martins, M. Agreda, J. Petit, A. Weeber et al., Delocalized Hot Electron Generation with Propagative Surface Plasmon Polaritons, ACS Photonics, vol.6, issue.6, 2019.

D. K. ?-adrian-agreda, S. Sharma, R. Viarbitskaya, B. Hernandez, O. Cluzel et al., Spatial Distribution of the Nonlinear Photoluminescence in Au Nanowires, Gérard Colas des Francs, vol.6, 2019.

, ? Electrical Control of Broadband Light Emission in Gold Nanostructures Flashtalks of ICB, 2018.

, ? Electrical Command of the Nonlinear Photo-luminescence of Plasmonic Gap Antennas Surface Plasmon Photonics 8 SPP8 2017

, ? Electrical Command of the Linear and Nonlinear responses of Plasmonic Gap Antennas Journeés de l'Ecole Doctorale Carnot-Pasteur, 2017.

, ? Electrical Command of the Nonlinear Photoluminescence of Plasmonic Gap Antennas Summer School on Plasmonics 4 SSOP4 2017

S. K. Yuri, Nonlinear optics: The next decade, Optics Express, vol.16, issue.26, pp.22126-22128, 2008.

L. Novotny and N. Van-hulst, Antennas for light, Nature Photonics, vol.5, pp.83-90, 2011.

A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao et al., Olson. Surface second-harmonic generation from metal island films and microlithographic structures, Physical Review B, vol.24, issue.2, p.849, 1981.

D. Ricard, P. Roussignol, and C. Flytzanis, Surface-mediated enhancement of optical phase conjugation in metal colloids, Optics Letters, vol.10, issue.10, pp.511-513, 1985.

F. Hache, D. Ricard, and C. Flytzanis, Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects, Journal of the Optical Society of America B, vol.3, issue.12, pp.1647-1655, 1986.

G. T. Boyd, T. Rasing, J. R. Leite, and Y. R. Shen, Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical secondharmonic generation, Physical Review B, vol.30, issue.2, p.519, 1984.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Physical Review B, vol.33, pp.7923-7936, 1986.

M. R. Beversluis, A. Bouhelier, and L. Novotny, Continuum generation from single gold nanostructures through near-field mediated intraband transitions, Physical Review B, vol.68, p.115433, 2003.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films, Physical Review Letters, vol.115, p.67403, 2015.

L. Roloff, P. Klemm, I. Gronwald, R. Huber, J. M. Lupton et al., Light emission from gold nanoparticles under ultrafast near-infrared excitation: Thermal radiation, inelastic light scattering, or multiphoton luminescence?, Nano Letters, vol.17, issue.12, pp.7914-7919, 2017.

N. Jiang, X. Zhuo, and J. Wang, Active plasmonics: principles, structures, and applications, Chemical reviews, vol.118, issue.6, pp.3054-3099, 2017.

P. Chen and A. Alù, Optical nanoantenna arrays loaded with nonlinear materials, Physical Review B, vol.82, p.235405, 2010.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches, Nano Letters, vol.10, issue.5, pp.1741-1746, 2010.

F. Zhou, Y. Liu, Z. Li, and Y. Xia, Analytical model for optical bistability in nonlinear metal nano-antennae involving kerr materials, Optics express, vol.18, issue.13, pp.13337-13344, 2010.

M. Kauranen and A. V. Zayats, Nonlinear plasmonics, Nature photonics, vol.6, issue.11, p.737, 2012.

J. Butet, P. Brevet, and O. J. Martin, Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications, ACS Nano, vol.9, issue.11, pp.10545-10562, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02308169

M. Lippitz, M. A. Van-dijk, and M. Orrit, Third-harmonic generation from single gold nanoparticles, Nano Letters, vol.5, issue.4, pp.799-802, 2005.

J. Renger, R. Quidant, N. Van-hulst, and L. Novotny, Surface-enhanced nonlinear fourwave mixing, Physical Review Letters, vol.104, p.46803, 2010.

A. Mooradian, Photoluminescence of metals, Physical Review Letters, vol.22, pp.185-187, 1969.

C. K. Chen, A. R. De-castro, and Y. R. Shen, Surface-enhanced second-harmonic generation, Physical Review Letters, vol.46, pp.145-148, 1981.

V. Knittel, M. P. Fischer, T. De-roo, S. Mecking, A. Leitenstorfer et al., Nonlinear photoluminescence spectrum of single gold nanostructures, ACS Nano, vol.9, issue.1, pp.894-900, 2015.

P. Biagioni, D. Brida, J. Huang, J. Kern, L. Duo et al., Dynamics of four-photon photoluminescence in gold nanoantennas, Nano Letters, vol.12, issue.6, pp.2941-2947, 2012.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida et al., Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration, Physical Review B, vol.80, p.45411, 2009.

X. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan et al., Excitation nature of two-photon photoluminescence of gold nanorods and coupled gold nanoparticles studied by two-pulse emission modulation spectroscopy, The Journal of Physical Chemistry Letters, vol.4, issue.10, pp.1634-1638, 2013.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, The optical kerr effect in small metal particles and metal colloids: The case of gold, Applied Physics A, vol.47, issue.4, pp.347-357, 1988.

B. Palpant, Third-Order Nonlinear Optical Response of Metal Nanoparticles, pp.461-508, 2006.

R. W. Boyd, Z. Shi, and I. Leon, The third-order nonlinear optical susceptibility of gold, Optics Communications, vol.326, pp.74-79, 2014.

M. Conforti and G. D. Valle, Derivation of third-order nonlinear susceptibility of thin metal films as a delayed optical response, Physical Review B, vol.85, issue.24, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02395032

R. Coso and J. Solis, Relation between nonlinear refractive index and third-order susceptibility in absorbing media, Journal of the Optical Society of America B, vol.21, issue.3, pp.640-644, 2004.

J. Mertens, M. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, How Light Is Emitted by Plasmonic Metals, Nano Letters, vol.17, issue.4, pp.2568-2574, 2017.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, vol.424, pp.824-830, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00472360

L. Novotny and B. Hecht, Principles of Nano-Optics. Principles of Nano-optics, 2012.

R. W. Boyd, Nonlinear optics, 2008.

M. Agio and A. Alù, Optical Antennas, 2013.

P. Bharadwaj, R. Beams, and L. Novotny, Nanoscale spectroscopy with optical antennas, Chemical Science, vol.2, pp.136-140, 2011.

G. V. Kumar, Plasmonic nano-architectures for surface enhanced raman scattering: a review, Journal of Nanophotonics, vol.6, pp.6-6, 2012.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao et al., Biosensing with plasmonic nanosensors, Nature Materials, vol.7, issue.6, pp.442-453, 2008.

P. Offermans, M. C. Schaafsma, S. R. Rodriguez, Y. Zhang, M. Crego-calama et al., Universal scaling of the figure of merit of plasmonic sensors, ACS Nano, vol.5, issue.6, pp.5151-5157, 2011.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-gagnon et al., Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna, Nature Photonics, vol.2, issue.4, pp.226-229, 2008.

R. F. Oulton, V. Sorger, T. Zentgraf, R. Ma, C. Gladden et al., Plasmon lasers at deep subwavelength scale, Nature, vol.61, pp.629-632, 2009.

A. H. Schokker and A. F. Koenderink, Lasing at the band edges of plasmonic lattices, Physical Review B, vol.90, p.155452, 2014.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, Surface plasmon enhanced silicon solar cells, Journal of Applied Physics, vol.101, issue.9, 2007.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Physical Review Letters, vol.97, p.17402, 2006.

P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Physical Review Letters, vol.96, p.113002, 2006.

H. Gersen, M. F. García-parajó, L. Novotny, J. A. Veerman, L. Kuipers et al., Influencing the angular emission of a single molecule, Physical Review Letters, vol.85, pp.5312-5315, 2000.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. Skovgaard, and J. M. Hvam, Waveguiding in surface plasmon polariton band gap structures, Physical Review Letters, vol.86, pp.3008-3011, 2001.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Plasmonic nanostructure design for efficient light coupling into solar cells, Nano Letters, vol.8, issue.12, pp.4391-4397, 2008.

C. Rockstuhl, S. Fahr, and F. Lederer, Absorption enhancement in solar cells by localized plasmon polaritons, Journal of Applied Physics, vol.104, issue.12, p.123102, 2008.

P. Bharadwaj, B. Deutsch, and L. Novotny, Optical antennas, Advances in Optics and Photonics, vol.1, issue.3, pp.438-483, 2009.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design. Antenna Theory and Design, 2012.

E. H. Synge, A suggested method for extending microscopic resolution into the ultramicroscopic region. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.6, issue.35, pp.356-362, 1928.

J. Wessel, Surface-enhanced optical microscopy, Journal of the Optical Society of America B, vol.2, pp.1538-1541, 1985.

U. Ch, D. W. Fischer, and . Pohl, Observation of single-particle plasmons by near-field optical microscopy, Physical Review Letters, vol.62, pp.458-461, 1989.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Optical antenna: Towards a unity efficiency near-field optical probe, Applied Physics Letters, vol.70, issue.11, pp.1354-1356, 1997.

T. J. Cui, D. Smith, and R. Liu, Metamaterials, Theory, Design, and Applications, 2010.

Y. Li, Optical properties of plasmonic materials, International Society for Optics and Photonics, pp.1-41, 2017.

S. G. Rodrigo, F. J. García-vidal, and L. Martín-moreno, Influence of material properties on extraordinary optical transmission through hole arrays, Physical Review B, vol.77, issue.7, p.75401, 2008.

S. Enoch and N. Bonod, Plasmonics: from basics to advanced topics, 2012.

S. A. Maier, Plasmonics: Fundamentals and Applications, 2007.

J. D. Jackson, Classical electrodynamics, 1999.

S. A. Maier, P. G. Kik, and H. A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides, Physical Review B, vol.67, issue.20, p.205402, 2003.

P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures, Physical Review B, vol.63, p.125417, 2001.

R. Hernandez, R. Martins, A. Agreda, M. Petit, J. Weeber et al., Delocalized hot electron generation with propagative surface plasmon polaritons, ACS Photonics, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02358619

A. Agreda, D. K. Sharma, S. Viarbitskaya, R. Hernandez, B. Cluzel et al., Spatial distribution of the nonlinear photoluminescence in au nanowires, ACS Photonics, vol.6, issue.5, pp.1240-1247, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02355567

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers et al., Silver nanowires as surface plasmon resonators, Physical Review Letters, vol.95, p.257403, 2005.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Channel plasmonpolariton guiding by subwavelength metal grooves, Physical Review Letters, vol.95, issue.4, p.46802, 2005.

F. López-tejeira, S. G. Rodrigo, L. Martín-moreno, F. J. García-vidal, E. Devaux et al., Efficient unidirectional nanoslit couplers for surface plasmons, Nature Physics, vol.3, issue.5, p.324, 2007.

V. Giannini, A. I. Fernández-domínguez, S. C. Heck, and S. A. Maier, Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters, Chemical Reviews, vol.111, issue.6, pp.3888-3912, 2011.

P. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Annalen der Physik, vol.330, pp.377-624, 1908.

R. Gans, über die form ultramikroskopischer goldteilchen, Annalen der Physik, vol.342, pp.881-900, 1912.

K. Yee, Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, pp.302-307, 1966.

V. Myroshnychenko, J. Rodríguez-fernández, I. Pastoriza-santos, A. M. Funston, C. Novo et al., Modelling the optical response of gold nanoparticles, Chemical Society Reviews, vol.37, pp.1792-1805, 2008.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, Optical antennas: Resonators for local field enhancement, Journal of Applied Physics, vol.94, issue.7, pp.4632-4642, 2003.

G. W. Bryant, F. J. García-de-abajo, and J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas, Nano Letters, vol.8, issue.2, pp.631-636, 2008.

M. Liu, P. Guyot-sionnest, T. Lee, and S. K. Gray, Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations, Physical Review B, vol.76, p.235428, 2007.

P. Zijlstra and M. Orrit, Single metal nanoparticles: optical detection, spectroscopy and applications, Reports on Progress in Physics, vol.74, issue.10, p.106401, 2011.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas, Physical Review Letters, vol.94, p.17402, 2005.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Gapdependent optical coupling of single "bowtie" nanoantennas resonant in the visible, Nano Letters, vol.4, issue.5, pp.957-961, 2004.

F. Wen, J. Ye, N. Liu, P. Van-dorpe, P. Nordlander et al., Plasmon transmutation: Inducing new modes in nanoclusters by adding dielectric nanoparticles, Nano Letters, vol.12, issue.9, pp.5020-5026, 2012.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. Van-hulst, and R. Quidant, Spectroscopic mode mapping of resonant plasmon nanoantennas, Physical Review Letters, vol.101, issue.11, p.116805, 2008.

K. Guo, A. Antoncecchi, X. Zheng, M. Sallam, E. A. Soliman et al., Dendritic optical antennas: scattering properties and fluorescence enhancement, Scientific Reports, vol.7, issue.1, p.6223, 2017.

L. Novotny, From near-field optics to optical antennas, Physics Today, vol.64, issue.7, p.47, 2011.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, Photodetection with active optical antennas, Science, vol.332, issue.6030, pp.702-704, 2011.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, Si nano-photodiode with a surface plasmon antenna, Japanese Journal of Applied Physics, vol.44, issue.12, pp.364-366, 2005.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip, Physical Review Letters, vol.93, issue.20, 2004.

M. F. Garcia-parajo, Optical antennas focus in on biology, Nature Photonics, vol.2, issue.4, pp.201-203, 2008.

S. Nie, Probing single molecules and single nanoparticles by surface-enhanced raman scattering, Science, vol.275, issue.5303, pp.1102-1106, 1997.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García-de-abajo et al., Nano-optical trapping of rayleigh particles andescherichia colibacteria with resonant optical antennas, Nano Letters, vol.9, issue.10, pp.3387-3391, 2009.

S. Lal, S. E. Clare, and N. J. Halas, Nanoshell-enabled photothermal cancer therapy: Impending clinical impact, Accounts of Chemical Research, vol.41, issue.12, pp.1842-1851, 2008.

A. Alù and N. Engheta, Wireless at the nanoscale: Optical interconnects using matched nanoantennas, Physical Review Letters, vol.104, issue.21, 2010.

A. Dasgupta, M. Mennemanteuil, M. Buret, N. Cazier, and G. , Colas-des Francs, and A. Bouhelier. Optical wireless link between a nanoscale antenna and a transducing rectenna, Nature Communications, vol.9, issue.1, 2018.

A. Emboras, C. Hoessbacher, C. Haffner, W. Heni, U. Koch et al., Electrically controlled plasmonic switches and modulators, IEEE Journal of Selected Topics in Quantum Electronics, vol.21, issue.4, pp.276-283, 2014.

D. Gall, Electron mean free path in elemental metals, Journal of Applied Physics, vol.119, issue.8, p.85101, 2016.

P. B. Johnson and R. W. Christy, Optical constants of the noble metals, Physical Review B, vol.6, pp.4370-4379, 1972.

R. E. Hummel, Electronic properties of materials, 2011.

J. Leuthold, C. Koos, and W. Freude, Nonlinear silicon photonics, Nature Photonics, vol.4, issue.8, pp.535-544, 2010.

J. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, Siliconbased plasmonics for on-chip photonics, IEEE Journal of Selected Topics in Quantum Electronics, vol.16, issue.1, pp.295-306, 2010.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of optical harmonics, Physical Review Letters, vol.7, pp.118-119, 1961.

T. H. Maiman, Stimulated optical radiation in ruby, Nature, vol.187, issue.4736, pp.493-494, 1960.

X. Younan and G. M. Whitesides, Soft lithography, Annu Rev Mater Sci, vol.28, pp.153-184, 1998.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz et al., Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics, Optics Letters, vol.28, issue.5, pp.301-303, 2003.

J. Henzie, M. H. Lee, and T. W. Odom, Multiscale patterning of plasmonic metamaterials, Nature nanotechnology, vol.2, issue.9, p.549, 2007.

B. Kobrin, E. S. Barnard, M. L. Brongersma, M. K. Kwak, and L. J. Guo, Rolling mask nanolithography: the pathway to large area and low cost nanofabrication, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, vol.8249, 2012.

W. A. Murray and W. L. , Barnes. Plasmonic materials. Advanced materials, vol.19, issue.22, pp.3771-3782, 2007.

V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater et al., Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors, Applied physics letters, vol.95, issue.18, p.183503, 2009.

S. Kawata, H. Sun, T. Tanaka, and K. Takada, Finer features for functional microdevices, Nature, vol.412, issue.6848, p.697, 2001.

J. Fischer and M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit, Laser & Photonics Reviews, vol.7, issue.1, pp.22-44, 2013.

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, Laser fabrication of 2d and 3d metal nanoparticle structures and arrays, Optics express, vol.18, issue.20, pp.21198-21203, 2010.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Near-field second-harmonic generation induced by local field enhancement, Physical Review Letters, vol.90, p.13903, 2003.

G. Lu, L. Hou, T. Zhang, J. Liu, H. Shen et al., Plasmonic sensing via photoluminescence of individual gold nanorod, The Journal of Physical Chemistry C, vol.116, issue.48, pp.25509-25516, 2012.

K. Lin, J. Yi, J. Zhong, S. Hu, B. Liu et al., Plasmonic photoluminescence for recovering native chemical information from surface-enhanced raman scattering, Nature communications, vol.8, p.14891, 2017.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang et al., High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy, ACS nano, vol.4, issue.1, pp.113-120, 2009.

Y. Fang, W. Chang, B. Willingham, P. Swanglap, S. Dominguez-medina et al., Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio, ACS Nano, vol.6, issue.8, pp.7177-7184, 2012.

H. Hu, H. Duan, J. K. Yang, and Z. X. Shen, Plasmon-modulated photoluminescence of individual gold nanostructures, ACS Nano, vol.6, issue.11, pp.10147-10155, 2012.

Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung et al., Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers, ACS Nano, vol.12, issue.2, pp.976-985, 2018.

Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu et al., Anti-stokes emission from hot carriers in gold nanorods, Nano Letters, vol.19, issue.2, pp.1067-1073, 2019.

J. T. Hugall and J. J. Baumberg, Demonstrating photoluminescence from au is electronic inelastic light scattering of a plasmonic metal: The origin of sers backgrounds, Nano Letters, vol.15, issue.4, pp.2600-2604, 2015.

J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, Resonant secondary light emission from plasmonic au nanostructures at high electron temperatures created by pulsed-laser excitation, Proceedings of the National Academy of Sciences, vol.111, issue.3, pp.906-911, 2014.

B. Neupane, L. Zhao, and G. Wang, Up-conversion luminescence of gold nanospheres when excited at nonsurface plasmon resonance wavelength by a continuous wave laser, Nano Letters, vol.13, issue.9, pp.4087-4092, 2013.

M. E. Orczyk, J. Swiatkiewicz, G. Huang, and P. N. Prasad, Study of resonant thirdorder nonlinear optical susceptibilities by the phase-tuned optically heterodyned kerr gate technique, The Journal of Physical Chemistry, vol.98, issue.30, pp.7307-7312, 1994.

P. Mühlschlegel, H. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, Resonant optical antennas, Science, vol.308, issue.5728, pp.1607-1609, 2005.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch et al., Efficient nonlinear light emission of single gold optical antennas driven by few-cycle nearinfrared pulses, Physical Review Letters, vol.103, p.257404, 2009.

N. Pfullmann, C. Waltermann, M. Kova?ev, V. Knittel, R. Bratschitsch et al., Nano-antenna-assisted harmonic generation, Applied Physics B, vol.113, issue.1, pp.75-79, 2013.

M. Danckwerts and L. Novotny, Optical frequency mixing at coupled gold nanoparticles, Physical Review Letters, vol.98, p.26104, 2007.

V. Knittel, M. P. Fischer, M. Vennekel, T. Rybka, A. Leitenstorfer et al., Dispersion of the nonlinear susceptibility in gold nanoantennas, Physical Review B, vol.96, issue.12, 2017.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut et al., Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance, Physical Review Letters, vol.107, p.57402, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00676400

R. H. Groeneveld, R. Sprik, and A. Lagendijk, Femtosecond spectroscopy of electronelectron and electron-phonon energy relaxation in ag and au, Physical Review B, vol.51, pp.11433-11445, 1995.

E. Carpene, Ultrafast laser irradiation of metals: Beyond the two-temperature model, Physical Review B, vol.74, p.24301, 2006.

Y. Guillet, M. Rashidi-huyeh, and B. Palpant, Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles, Physical Review B, vol.79, issue.4, p.45410, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00354767

J. R. Saavedra, A. Asenjo-garcia, and F. J. García-de-abajo, Hot-electron dynamics and thermalization in small metallic nanoparticles, ACS Photonics, vol.3, issue.9, pp.1637-1646, 2016.

N. , D. Fatti, and F. Vallée, Ultrafast optical nonlinear properties of metal nanoparticles, Applied Physics B: Lasers and Optics, vol.73, issue.4, pp.383-390, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01550688

C. Voisin, N. Fatti, D. Christofilos, and F. Vallée, Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles, The Journal of Physical Chemistry B, vol.105, issue.12, pp.2264-2280, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01550656

M. Nisoli, S. Stagira, S. Silvestri, A. Stella, P. Tognini et al., Ultrafast electronic dynamics in solid and liquid gallium nanoparticles, Physical Review Letters, vol.78, pp.3575-3578, 1997.

Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, and A. Nakamura, Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium, Physical Review B, vol.63, p.104302, 2001.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu et al., Nonlinear optical response from arrays of au bowtie nanoantennas, Nano Letters, vol.11, issue.1, pp.61-65, 2011.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer et al., Surface plasmon characteristics of tunable photoluminescence in single gold nanorods, Physical Review Letters, vol.95, issue.26, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02453338

O. Demichel, M. Petit, S. Viarbitskaya, R. Méjard, F. De-fornel et al., Dynamics, efficiency, and energy distribution of nonlinear plasmon-assisted generation of hot carriers, ACS Photonics, vol.3, issue.5, pp.791-795, 2016.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, Bulletin of the American Physical Society, vol.27, 1982.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles, Nano Letters, vol.5, issue.6, pp.1139-1142, 2005.

M. Rashidi-huyeh and B. Palpant, Thermal response of nanocomposite materials under pulsed laser excitation, Journal of applied physics, vol.96, issue.8, pp.4475-4482, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00018244

B. Y. Mueller and B. Rethfeld, Relaxation dynamics in laser-excited metals under nonequilibrium conditions, Physical Review B, vol.87, issue.3, p.35139, 2013.

M. Perner, P. Bost, U. Lemmer, G. Von-plessen, J. Feldmann et al., Optically induced damping of the surface plasmon resonance in gold colloids, Physical Review Letters, vol.78, pp.2192-2195, 1997.

R. Méjard, A. Verdy, M. Petit, A. Bouhelier, B. Cluzel et al., Energy-resolved hot-carrier relaxation dynamics in monocrystalline plasmonic nanoantennas, ACS Photonics, vol.3, issue.8, pp.1482-1488, 2016.

J. Lambe and S. L. Mccarthy, Light emission from inelastic electron tunneling, Physical Review Letters, vol.37, pp.923-925, 1976.

M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M. Mennemanteuil et al., Colas-des Francs, and A. Bouhelier. Spontaneous hotelectron light emission from electron-fed optical antennas, Nano Letters, vol.15, issue.9, pp.5811-5818, 2015.

P. Tomchuk and R. Fedorovich, Soviet Physics Solid State, pp.276-278, 1966.

E. Gamaly, Femtosecond Laser-Matter Interaction : theory, experiments and applications, 2011.

K. Joulain, R. Carminati, J. Mulet, and J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface, Physical Review B, vol.68, p.245405, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00000605

A. V. Shchegrov, K. Joulain, R. Carminati, and J. Greffet, Near-field spectral effects due to electromagnetic surface excitations, Physical Review Letters, vol.85, pp.1548-1551, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01624761

M. V. Klein, Equivalence of resonance raman scattering in solids with absorption followed by luminescence, Physical Review B, vol.8, pp.919-921, 1973.

J. R. Solin and H. Merkelo, Resonant scattering or absorption followed by emission, Physical Review B, vol.12, pp.624-629, 1975.

X. Xie and D. G. Cahill, Thermometry of plasmonic nanostructures by anti-stokes electronic raman scattering, Applied Physics Letters, vol.109, issue.18, p.183104, 2016.

M. L. Brongersma and V. M. Shalaev, The case for plasmonics, Science, vol.328, issue.5977, pp.440-441, 2010.

E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, vol.311, pp.189-193, 2006.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Surface-plasmon circuitry, Physics Today, vol.61, issue.5, pp.44-50, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00350856

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev et al., Demonstration of a spaser-based nanolaser, Nature, vol.460, pp.1110-1168, 2009.

J. Seidel, S. Grafström, and L. Eng, Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution, Physical Review Letters, vol.94, issue.17, p.177401, 2005.

J. Grandidier, G. S. Massenot, A. Bouhelier, L. Markey, J. Weeber et al., Gain-assisted propagation in a plasmonic waveguide at telecom wavelength, Nano Letters, vol.9, issue.8, pp.2935-2939, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00472376

Y. Wu, C. Zhang, N. M. Estakhri, Y. Zhao, J. Kim et al., Intrinsic optical properties and enhanced plasmonic response of epitaxial silver, Advanced Materials, vol.26, issue.35, pp.6106-6110, 2014.

V. Kalathingal, P. Dawson, and J. Mitra, Scanning tunneling microscope light emission: Effect of the strong dc field on junction plasmons, Physical Review B, vol.94, issue.3, p.35443, 2016.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola et al., Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality, Nature nanotechnology, vol.6, issue.2, p.107, 2011.

Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li et al., ph-controlled reversible assembly and disassembly of gold nanorods, Small, vol.4, issue.9, pp.1287-1292, 2008.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, A nonvolatile plasmonic switch employing photochromic molecules, Nano Letters, vol.8, issue.5, pp.1506-1510, 2008.

J. Gosciniak and S. I. Bozhevolnyi, Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides, Scientific reports, vol.3, p.1803, 2013.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas-des-francs et al., Tuning of an optical dimer nanoantenna by electrically controlling its load impedance, Nano Letters, vol.9, issue.11, pp.3914-3921, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00472363

Y. R. Leroux, J. C. Lacroix, K. Chane-ching, C. Fave, N. Félidj et al., Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices, Journal of the American Chemical Society, vol.127, issue.46, pp.16022-16023, 2005.

D. Martín-becerra, J. B. González-díaz, V. V. Temnov, A. Cebollada, G. Armelles et al., Enhancement of the magnetic modulation of surface plasmon polaritons in au/co/au films, Applied Physics Letters, vol.97, issue.18, p.183114, 2010.

K. F. Macdonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Ultrafast active plasmonics, Nature Photonics, vol.3, issue.1, p.55, 2009.

A. V. Krasavin, K. F. Macdonald, N. I. Zheludev, and A. V. Zayats, High-contrast modulation of light with light by control of surface plasmon polariton wave coupling, Applied physics letters, vol.85, issue.16, pp.3369-3371, 2004.

J. Gosciniak, S. I. Bozhevolnyi, T. Andersen, V. S. Volkov, J. Kjelstrup-hansen et al., Thermo-optic control of dielectric-loaded plasmonic waveguide components, Optics express, vol.18, issue.2, pp.1207-1216, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00472374

A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, Optical modulation processes in thin films based on thermal effects of surface plasmons, Applied Physics Letters, vol.86, issue.15, p.154101, 2005.

A. Krasavin and N. I. Zheludev, Active plasmonics: Controlling signals in au/ga waveguide using nanoscale structural transformations, Applied Physics Letters, vol.84, issue.8, pp.1416-1418, 2004.

G. Soavi, G. Wang, H. Rostami, D. G. Purdie, D. De-fazio et al., electrically tunable third-harmonic generation in graphene, Nature nanotechnology, vol.13, issue.7, p.583, 2018.

J. Dionne, K. Diest, L. A. Sweatlock, and H. Atwater, Plasmostor: a metal-oxidesi field effect plasmonic modulator, Nano Letters, vol.9, issue.2, pp.897-902, 2009.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. Lezec, K. Bhattacharya et al., Electrooptic modulation in thin film barium titanate plasmonic interferometers, Nano Letters, vol.8, issue.11, pp.4048-4052, 2008.

R. Sukanya, S. Lachèze, J. Renger, A. Bouhelier, R. Espiau-de-lamaestre et al., Performance of electro-optical plasmonic ring resonators at telecom wavelengths, Optics Express, vol.20, issue.3, pp.2354-2362, 2012.

A. Agrawal, C. Susut, G. Stafford, U. Bertocci, B. Mcmorran et al., An integrated electrochromic nanoplasmonic optical switch, Nano Letters, vol.11, issue.7, pp.2774-2778, 2011.

W. Cai, A. P. Vasudev, and M. L. Brongersma, Electrically controlled nonlinear generation of light with plasmonics, Science, vol.333, issue.6050, pp.1720-1723, 2011.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich et al., Surface plasmon polariton absorption modulator, Optics Express, vol.19, issue.9, pp.8855-8869

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal, Nano Letters, vol.8, issue.1, pp.281-286, 2008.

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, Control of optical transmission through metals perforated with subwavelength hole arrays, Optics Letters, vol.24, issue.4, pp.256-258, 1999.

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, Millivolt modulation of plasmonic metasurface optical response via ionic conductance, Advanced Materials, vol.29, issue.31, p.1701044, 2017.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-ferrer, D. S. Ghosh et al., Tunable plasmons in ultrathin metal films, Nature Photonics, vol.13, issue.5, p.328, 2019.

Y. C. Jun, K. C. Huang, and M. L. Brongersma, Plasmonic beaming and active control over fluorescent emission, Nature communications, vol.2, p.283, 2011.

I. Berline, C. Royal, L. Douillard, F. Charra, and C. Fiorini-debuisschert, Stm induced second harmonic generation: towards near-field nonlinear optical microscopy, page 69880M. International Society for Optics and Photonics, vol.6988, 2008.

C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J. Nunzi, Study of orientation induced molecular rectification in polymer films, Optical Materials, vol.9, issue.1-4, pp.316-322, 1998.

K. Becker, J. M. Lupton, J. Müller, A. L. Rogach, D. V. Talapin et al., Electrical control of förster energy transfer. Nature Materials, vol.5, issue.10, p.777, 2006.

S. Park, S. Link, W. L. Miller, A. Gesquiere, and P. F. Barbara, Effect of electric field on the photoluminescence intensity of single cdse nanocrystals, Chemical Physics, vol.341, issue.1-3, pp.169-174, 2007.

L. D. Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo et al., Double active control of the plasmonic resonance of a gold nanoparticle array, Nanoscale, vol.4, issue.24, pp.7619-7623, 2012.

A. A. Watt, J. A. Bettiol, E. J. Van-kan, M. B. Teo, and . Breese, Ion beam lithography and nanofabrication: a review, International Journal of Nanoscience, vol.4, issue.03, pp.269-286, 2005.

R. Gauderon, P. B. Lukins, and C. J. Sheppard, Effect of a confocal pinhole in two-photon microscopy, Microscopy research and technique, vol.47, issue.3, pp.210-214, 1999.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard et al., Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms, Nature Materials, vol.12, issue.5, p.426, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01798016

N. D. Lang and W. Kohn, Theory of metal surfaces: induced surface charge and image potential, Physical Review B, vol.7, issue.8, p.3541, 1973.

C. T. Black and J. J. Welser, Electric-field penetration into metals: consequences for high-dielectric-constant capacitors, IEEE Transactions on Electron Devices, vol.46, issue.4, pp.776-780, 1999.

R. R. Kumal, T. E. Karam, and L. H. Haber, Determination of the surface charge density of colloidal gold nanoparticles using second harmonic generation, The Journal of Physical Chemistry C, vol.119, issue.28, pp.16200-16207, 2015.

J. B. Khurgin, How to deal with the loss in plasmonics and metamaterials, Nature nanotechnology, vol.10, issue.1, 2015.

J. B. Khurgin, Hot carriers generated by plasmons: where are they generated and where do they go from there? Faraday Discussion, pp.1-24, 2019.

C. López-bastidas, J. A. Maytorena, and A. Liebsch, Hot-electron dynamics at noble metal surfaces, Physical Review B, vol.65, issue.3, p.35417, 2001.

C. López-bastidas, Thermalization time of noble metal nanoparticles: effects of the electron density profile, The European Physical Journal B, vol.85, issue.2, p.79, 2012.

V. T. Binh and N. Garcia, Atomic metallic ion emission, field surface melting and scanning tunneling microscopy tips, Journal de Physique I, vol.1, issue.5, pp.605-612, 1991.
URL : https://hal.archives-ouvertes.fr/jpa-00246354

L. De-knoop, M. J. Kuisma, J. Löfgren, K. Lodewijks, M. Thuvander et al., Electric-field-controlled reversible order-disorder switching of a metal tip surface, Physical Review Materials, vol.2, issue.8, p.85006, 2018.

A. V. Lugovskoy and I. Bray, Ultrafast electron dynamics in metals under laser irradiation, Physical Review B, vol.60, issue.5, p.3279, 1999.

A. P. Kanavin, I. V. Smetanin, V. A. Isakov, Y. V. Afanasiev, B. N. Chichkov et al., Heat transport in metals irradiated by ultrashort laser pulses, Physical Review B, vol.57, pp.14698-14703, 1998.

M. Z. Herrera, J. Aizpurua, A. K. Kazansky, and A. G. Borisov, Plasmon response and electron dynamics in charged metallic nanoparticles, Langmuir, vol.32, issue.11, pp.2829-2840, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02313923

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Femtosecond studies of nonequilibrium electronic processes in metals, Physical Review Letters, vol.58, issue.16, p.1680, 1987.

M. B. Agranat, S. I. Ashitkov, A. V. Ovchinnikov, D. S. Sitnikov, A. A. Yurkevich et al., Thermal emission of hot electrons in a metal, JETP letters, vol.101, issue.9, pp.598-602, 2015.

J. G. Mihaychuk, J. Bloch, Y. Liu, and H. M. Van-driel, Time-dependent secondharmonic generation from the si-sio 2 interface induced by charge transfer, Optics Letters, vol.20, issue.20, pp.2063-2065, 1995.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, Second harmonic generating (shg) nanoprobes for in vivo imaging, Proceedings of the National Academy of Sciences, vol.107, issue.33, pp.14535-14540, 2010.

Y. Maneglia, Analyse en profondeur des défauts de l'interface Si-SiO2 par la technique du pompage de charges, 1998.

M. J. Smith, B. T. Kuhlmey, C. M. De-sterke, C. Wolff, M. Lapine et al., Electrostriction enhancement in metamaterials, Physical Review B, vol.91, issue.21, p.214102, 2015.

C. Lumdee, B. Yun, and P. G. Kik, Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances, Nanoscale, vol.7, pp.4250-4255, 2015.

L. De-knoop, F. Houdellier, C. Gatel, A. Masseboeuf, M. Monthioux et al., Determining the work function of a carbon-cone cold-field emitter by in situ electron holography, Micron, vol.63, pp.2-8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01430588

R. C. Miller, Optical second harmonic generation in piezoelectric crystals, Applied Physics Letters, vol.5, issue.1, pp.17-19, 1964.

C. Matranga and P. Guyot-sionnest, Absolute intensity measurements of the optical second-harmonic response of metals from 0.9 to 2.5 ev, The Journal of Chemical Physics, vol.115, issue.20, pp.9503-9512, 2001.

C. Garrett and F. Robinson, Miller's phenomenological rule for computing nonlinear susceptibilities, IEEE Journal of Quantum Electronics, vol.2, issue.8, pp.328-329, 1966.

B. Metzger, T. Schumacher, M. Hentschel, M. Lippitz, and H. Giessen, Third harmonic mechanism in complex plasmonic fano structures, ACS photonics, vol.1, issue.6, pp.471-476, 2014.

M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas, Nano Letters, vol.12, issue.7, pp.3778-3782, 2012.

K. O'brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante et al., Predicting nonlinear properties of metamaterials from the linear response, Nature Materials, vol.14, issue.4, p.379, 2015.

J. Butet and O. J. Martin, Evaluation of the nonlinear response of plasmonic metasurfaces: Miller's rule, nonlinear effective susceptibility method, and full-wave computation, Journal of the Optical Society of America B, vol.33, issue.2, pp.8-15, 2016.

M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H. Eisler, Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties, Nanotechnology, vol.20, issue.42, p.425203, 2009.

S. Viarbitskaya, O. Demichel, B. Cluzel, and G. , Colas des Francs, and A. Bouhelier. Delocalization of nonlinear optical responses in plasmonic nanoantennas, Physical Review Letters, vol.115, 2015.

A. De-hoogh, A. Opheij, M. Wulf, N. Rotenberg, and L. Kuipers, Harmonics generation by surface plasmon polaritons on single nanowires, ACS Photonics, vol.3, issue.8, pp.1446-1452, 2016.

U. Kumar, S. Viarbitskaya, A. Cuche, C. Girard, S. Bolisetty et al., Colas des Francs, A. Bouhelier, and E. Dujardin. Designing plasmonic eigenstates for optical signal transmission in planar channel devices, ACS Photonics, vol.5, issue.6, pp.2328-2335, 2018.

D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nature Photonics, vol.4, pp.83-91, 2010.

S. Lal, S. Link, and N. J. Halas, Nano-optics from sensing to waveguiding, Nature Photonics, vol.1, pp.641-648, 2007.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin et al., Colas des Francs. Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires, ACS Nano, vol.5, issue.7, pp.5874-5880, 2011.

P. Johns, G. Beane, K. Yu, and G. V. Hartland, Dynamics of surface plasmon polaritons in metal nanowires, The Journal of Physical Chemistry C, vol.121, issue.10, pp.5445-5459, 2017.

N. Coca-lópez, N. F. Hartmann, T. Mancabelli, J. Kraus, S. Günther et al., Remote excitation and detection of surface-enhanced raman scattering from graphene, Nanoscale, vol.10, pp.10498-10504, 2018.

A. Dasgupta, D. Singh, and G. V. Kumar, Dual-path remote-excitation surface enhanced raman microscopy with plasmonic nanowire dimer, Applied Physics Letters, vol.103, issue.15, p.151114, 2013.

A. Prymaczek, M. Cwierzona, J. Grzelak, D. Kowalska, M. Nyk et al., Remote activation and detection of up-converted luminescence via surface plasmon polaritons propagating in a silver nanowire, Nanoscale, vol.10, issue.26, pp.12841-12847, 2018.

C. Hubert, L. Billot, P. Adam, R. Bachelot, P. Royer et al., Role of surface plasmon in second harmonic generation from gold nanorods, Applied physics letters, vol.90, issue.18, p.181105, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00376467

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner et al., Plasmon dispersion relation of au and ag nanowires, Physical Review B, vol.68, p.155427, 2003.

T. Shegai, V. D. Miljkovic, K. Bao, H. Xu, P. Nordlander et al., Unidirectional broadband light emission from supported plasmonic nanowires, Nano Letters, vol.11, issue.2, pp.706-711, 2011.

Y. Peng and K. Kempa, Controlling light propagation with nanowires, Applied Physics Letters, vol.100, issue.17, p.171903, 2012.

H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li et al., Plasmon waveguiding in nanowires, Chemical reviews, vol.118, issue.6, pp.2882-2926, 2018.

E. Kretschmann, Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen, Zeitschrift fuür Physik A Hadrons and nuclei, vol.241, issue.4, pp.313-324, 1971.

A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift fuür Physik A Hadrons and nuclei, vol.216, issue.4, pp.398-410, 1968.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, Surface plasmon mediated interference phenomena in low-q silver nanowire cavities, Nano Letters, vol.8, issue.1, pp.31-35, 2008.

T. Shegai, Y. Huang, H. Xu, and M. Käll, Coloring fluorescence emission with silver nanowires, Applied Physics Letters, vol.96, issue.10, p.103114, 2010.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner et al., Plasmonic coupling of bow tie antennas with ag nanowire, Nano Letters, vol.11, issue.4, pp.1676-1680, 2011.

J. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. Goudonnet, Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, Physical Review B, vol.60, issue.12, p.9061, 1999.

D. Singh, M. Raghuwanshi, and G. V. Kumar, Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control, Applied Physics Letters, vol.101, issue.11, p.111111, 2012.

M. W. Knight, N. Grady, R. Bardhan, F. Hao, P. Nordlander et al., Nanoparticle-mediated coupling of light into a nanowire, Nano Letters, vol.7, issue.8, pp.2346-2350, 2007.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne et al., Observation of plasmon propagation, redirection, and fan-out in silver nanowires, Nano Letters, vol.6, issue.8, pp.1822-1826, 2006.

R. M. Dickson and L. A. Lyon, Unidirectional plasmon propagation in metallic nanowires, The Journal of Physical Chemistry B, vol.104, issue.26, pp.6095-6098, 2000.

M. Song, J. Dellinger, O. Demichel, M. Buret, G. D. Zhang et al., Selective excitation of surface plasmon modes propagating in ag nanowires, Optics express, vol.25, issue.8, pp.9138-9149, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01712118

P. Venugopalan, X. Lu, Q. Zhang, and M. Gu, Polarization-sensitive characterization of the propagating plasmonic modes in silver nanowire waveguide on a glass substrate with a scanning near-field optical microscope, Optics Express, vol.21, pp.15247-15252, 2013.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander et al., Correlation between incident and emission polarization in nanowire surface plasmon waveguides, Nano Letters, vol.10, issue.5, pp.1831-1835, 2010.

A. B. and G. P. , Surface plasmon rainbow jet, Optics Letters, vol.30, p.884, 2005.

J. R. Lombardi and R. L. Birke, A unified view of surface-enhanced raman scattering, Accounts of Chemical Research, vol.42, issue.6, pp.734-742, 2009.

R. Chikkaraddy, D. Singh, and G. V. Kumar, Plasmon assisted light propagation and raman scattering hot-spot in end-to-end coupled silver nanowire pairs, Appl. Phys. Lett, vol.100, issue.4, p.43108, 2012.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, vol.111, 1988.

P. Geisler, E. Krauss, G. Razinskas, and B. Hecht, Transmission of plasmons through a nanowire, ACS Photonics, vol.4, issue.7, pp.1615-1620, 2017.

B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev et al., Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires, ACS Nano, vol.6, issue.1, pp.472-482, 2012.

Y. Huang, Y. Fang, and M. Sun, Remote excitation of surface-enhanced raman scattering on single au nanowire with quasi-spherical termini, The Journal of Physical Chemistry C, vol.115, pp.3558-3561, 2011.

A. Bouhelier and G. P. Wiederrecht, Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy, Physical Review B, vol.71, 2005.

T. H. Taminiau, F. D. Stefani, and N. F. Van-hulst, Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub-and super-radiant modes, Nano Letters, vol.11, issue.3, pp.1020-1024, 2011.

E. Verhagen, M. Spasenovi?, A. Polman, and L. K. Kuipers, Nanowire plasmon excitation by adiabatic mode transformation, Physical Review Letters, vol.102, p.203904, 2009.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam et al., Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals, Nano Letters, vol.5, issue.11, pp.2262-2267, 2005.

D. Piatkowski, N. Hartmann, T. Macabelli, M. Nyk, S. Mackowski et al., Silver nanowires as receiving-radiating nanoantennas in plasmon-enhanced up-conversion processes, Nanoscale, vol.7, issue.4, pp.1479-1484, 2015.

D. K. Sharma, S. K. Chaubey, A. B. Vasista, J. J. Karumancheril, R. P. Tripathi et al., Directional second-harmonic generation controlled by sub-wavelength facets of an organic mesowire, Applied optics, vol.57, issue.21, pp.5914-5922, 2018.

A. B. Vasista, D. K. Sharma, and G. V. Kumar, Fourier plane optical microscopy and spectroscopy, digital Encyclopedia of Applied Physics, pp.1-14, 2018.

L. Dai, I. Gregor, I. Der-hocht, T. Ruckstuhl, and J. Enderlein, Measuring large numerical apertures by imaging the angular distribution of radiation of fluorescing molecules, Optics express, vol.13, issue.23, pp.9409-9414, 2005.

H. , Ausbreitung elektromagnetischer wellenüber einem ebenen leiter, Annalen der Physik, vol.365, issue.21, pp.481-500, 1919.

N. Hartmann, Coupling of emitters to surface plasmons investigated by back focal plane microscopy, 2013.

N. C. López, Confocal and antenna-enhanced microscopy and spectroscopy of graphene, 2018.

N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, and A. Hartschuh, Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging, ACS Nano, vol.7, issue.11, pp.10257-10262, 2013.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-francs, J. Weeber et al., Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides, Physical Review B, vol.87, 2013.

Z. Wang, H. Wei, D. Pan, and H. Xu, Controlling the radiation direction of propagating surface plasmons on silver nanowires, Laser & Photonics Reviews, vol.4, pp.596-601, 2014.

N. Moll, R. Harbers, R. F. Mahrt, and G. Bona, Integrated all-optical switch in a cross-waveguide geometry, Applied physics letters, vol.88, issue.17, p.171104, 2006.

Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander et al., Branched silver nanowires as controllable plasmon routers, Nano Letters, vol.10, issue.5, pp.1950-1954, 2010.

Y. Zhang, Y. Zhang, and B. Li, Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals, Optics Express, vol.15, issue.15, pp.9287-9292, 2007.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang et al., Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits, Nano Letters, vol.9, issue.12, pp.4515-4519, 2009.

S. Lal, J. Hafner, N. J. Halas, S. Link, and P. Nordlander, Noble metal nanowires: from plasmon waveguides to passive and active devices, Accounts of Chemical Research, vol.45, issue.11, pp.1887-1895, 2012.

U. Kumar, Plasmon logic gates designed by modal engineering of 2-dimensional crystalline metal cavities, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01963241

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, Cascaded logic gates in nanophotonic plasmon networks, Nature communications, vol.2, p.387, 2011.

F. Dell'ova, Nanofabrication et caractérisation optique de cavités plasmoniques modales, 2019.

X. Xiong, C. Zou, X. Ren, A. Liu, Y. Ye et al., Silver nanowires for photonics applications, Laser & Photonics Reviews, vol.7, issue.6, pp.901-919, 2013.

I. Yoon, T. Kang, W. Choi, J. Kim, Y. Yoo et al., Single nanowire on a film as an efficient sers-active platform, Journal of the American Chemical Society, vol.131, issue.2, pp.758-762, 2008.

Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, Uniform silver nanowires synthesis by reducing agno3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone), Chemistry of Materials, vol.14, issue.11, pp.4736-4745, 2002.

S. Nauert, A. Paul, Y. -r.-zhen, D. Solis, L. Vigderman et al., Influence of cross sectional geometry on surface plasmon polariton propagation in gold nanowires, ACS nano, vol.8, issue.1, pp.572-580, 2013.

H. Yang, M. Qiu, and Q. Li, Identification and control of multiple leaky plasmon modes in silver nanowires, Laser & Photonics Reviews, vol.10, issue.2, pp.278-286, 2016.

D. Solis, W. Chang, B. P. Khanal, K. Bao, P. Nordlander et al., Bleach-imaged plasmon propagation (blipp) in single gold nanowires, Nano Letters, vol.10, issue.9, pp.3482-3485, 2010.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher et al., Leakage radiation microscopy of surface plasmon polaritons, Materials science and engineering: B, vol.149, issue.3, pp.220-229, 2008.

A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant et al., Surface plasmon leakage radiation microscopy at the diffraction limit, Optics express, vol.19, issue.25, pp.25749-25762, 2011.

D. Zhang, X. Yuan, and A. Bouhelier, Direct image of surface-plasmon-coupled emission by leakage radiation microscopy, Applied optics, vol.49, issue.5, pp.875-879, 2010.

L. Zhu, D. Zhang, R. Wang, X. Wen, P. Wang et al., Lakowicz. Out-of-focal plane imaging by leakage radiation microscopy, Journal of Optics, vol.19, issue.9, p.95004, 2017.

D. Zhang, Y. Xiang, J. Chen, J. Cheng, L. Zhu et al., Extending the propagation distance of a silver nanowire plasmonic waveguide with a dielectric multilayer substrate, Nano Letters, vol.18, issue.2, pp.1152-1158, 2018.

M. Song, Surface plasmon propagation in silver nanowires, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01798013

S. Zhang and H. Xu, Optimizing substrate-mediated plasmon coupling toward highperformance plasmonic nanowire waveguides, Acs Nano, vol.6, issue.9, pp.8128-8135, 2012.

Z. Jia, H. Wei, D. Pan, and H. Xu, Direction-resolved radiation from polarizationcontrolled surface plasmon modes on silver nanowire antennas, Nanoscale, vol.8, issue.48, pp.20118-20124, 2016.

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey et al., Colas des Francs, E. Dujardin, and A. Bouhelier. Evaluating plasmonic transport in current-carrying silver nanowires, Journal of Visualized Experiments, issue.82, p.51048, 2013.