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On peut donc dire que la notion de topos, dérivé naturel du point
de vue faisceautique en Topologie, constitue a son tour un élargissement
substantiel de la notion d’espace topologique, englobant un grand nom-
bre de situations qui autrefois n’étaient pas considérées comme relevant
de l'intuition topologique. Le trait caractéristique de telles situations est
qu’on y dispose d'une notion de «localisation », notion qui est formalisée
précisément par la notion de site et, en derniére analyse, par celle de topos
(via le topos associé au site). Comme le terme de « topos » lui-méme est
censé précisément le suggérer, il semble raisonnable et 1égitime aux au-
teurs du présent Séminaire de considérer que 1'objet de la Topologie est
I’étude des topos (et non des seuls espaces topologiques).

—A. GROTHENDIECK AND J.-L. VERDIER, SGA 4






Topology of Statistical Systems: A Cohomological Approach to Information
Theory

Abstract

This thesis extends in several directions the cohomological study of informa-
tion theory pioneered by Baudot and Bennequin. We introduce a topos-theoretical
notion of statistical space and then study several cohomological invariants. Infor-
mation functions and related objects appear as distinguished cohomology classes;
the corresponding cocycle equations encode recursive properties of these functions.
Information has thus topological meaning and topology serves as a unifying frame-
work.

Part I discusses the geometrical foundations of the theory. Information struc-
tures are introduced as categories that encode the relations of refinement between
different statistical observables. We study products and coproducts of information
structures, as well as their representation by measurable functions or hermitian oper-
ators. Every information structure gives rise to a ringed site; we discuss in detail the
definition of information cohomology using the homological tools developed by Artin,
Grothendieck, Verdier and their collaborators.

PartII studies the cohomology of discrete random variables. Information functions—
Shannon entropy, Tsallis a-entropy, Kullback-Leibler divergence—appear as 1-cocycles
for appropriate modules of probabilistic coefficients (functions of probability laws).
In the combinatorial case (functions of histograms), the only 0-cocycle is the exponen-
tial function, and the 1-cocycles are generalized multinomial coefficients (Fontené-
Ward). There is an asymptotic relation between the combinatorial and probabilistic
cocycles.

Part I1I studies in detail the g-multinomial coefficients, showing that their growth
rate is connected to Tsallis 2-entropy (quadratic entropy). When g is a prime power,
these g-multinomial coefficients count flags of finite vector spaces with prescribed
length and dimensions. We obtain a combinatorial explanation for the nonadditivity
of the quadratic entropy and a frequentist justification for the maximum entropy
principle with Tsallis statistics. We introduce a discrete-time stochastic process as-
sociated to the g-binomial probability distribution that generates finite vector spaces
(flags of length 2). The concentration of measure on certain typical subspaces allows
us to extend Shannon'’s theory to this setting.

Part IV discusses the generalization of information cohomology to continuous
random variables. We study the functoriality properties of conditioning (seen as
disintegration) and its compatibility with marginalization. The cohomological com-
putations are restricted to the real valued, gaussian case. When coordinates are fixed,
the 1-cocycles are the differential entropy as well as generalized moments. When
computations are done in a coordinate-free manner, with the so-called grassmannian
categories, we recover as the only degree-one cohomology classes the entropy and the
dimension. This constitutes a novel algebraic characterization of differential entropy.

Keywords: information cohomology, topos theory, information theory, entropy,
multinomial coefficients, type theory, sheaves, nonextensive statistics



Topologie des systemes statistiques : une approche cohomologique a la théorie
de I'information

Résumé

Cette these étend dans plusieurs directions I'étude cohomologique de la théorie de
I'information initiée par Baudot et Bennequin. On introduit une notion d’espace
statistique basée sur les topos, puis on étudie plusieurs invariants cohomologiques.
Les fonctions d’information et quelques objets associés apparaissent comme des
classes de cohomologie distinguées ; les équations de cocycle correspondantes codent
les propriétés récursives de ces fonctions. L'information a donc une signification
topologique et la topologie sert de cadre unificateur.

La premiére partie traite des fondements géométriques de la théorie. Les struc-
tures d’information sont présentées sous forme de catégories qui codent les relations
de raffinement entre différents observables statistiques. On étudie les produits et co-
produits des structures d’information, ainsi que leur représentation par des fonctions
mesurables ou des opérateurs hermitiens. Chaque structure d’information donne
lieu a un site annelé ; la cohomologie de I'information est introduite avec les outils
homologiques développés par Artin, Grothendieck, Verdier et leurs collaborateurs.

La deuxiéme partie étudie la cohomologie des variables aléatoires discrétes. Les
fonctions d’information — I'entropie de Shannon, I’a-entropie de Tsallis, et la diver-
gence de Kullback-Leibler — apparaissent sous la forme de 1-cocycles pour certains
modules de coefficients probabilistes (fonctions de lois de probabilité). Dans le cas
combinatoire (fonctions des histogrammes), le seul 0-cocycle est la fonction exponen-
tielle, et les 1-cocycles sont des coefficients multinomiaux généralisés (Fontené-Ward).
Il existe une relation asymptotique entre les cocycles combinatoires et probabilistes.

La troisieme partie étudie en détail les coefficients g-multinomiaux, en montrant
que leur taux de croissance est lié a la 2-entropie de Tsallis (entropie quadratique).
Lorsque g est une puissance premiére, ces coefficients g-multinomiaux comptent les
drapeaux d’espaces vectoriels finis de longueur et de dimensions prescrites. On
obtient une explication combinatoire de la non-additivité de 'entropie quadratique
et une justification fréquentiste du principe de maximisation d’entropie quadratique.
On introduit un processus stochastique a temps discret associé a la distribution de
probabilité g-binomial qui génere des espaces vectoriels finis (drapeaux de longueur
2). La concentration de la mesure sur certains sous-espaces typiques permet d’étendre
la théorie de Shannon a ce cadre.

La quatriéme partie traite de la généralisation de la cohomologie de I'information
aux variables aléatoires continues. On étudie les propriétés de fonctorialité du con-
ditionnement (vu comme désintégration) et sa compatibilité avec la marginalisation.
Les calculs cohomologiques sont limités aux variables réelles gaussiennes. Lorsque
les coordonnées sont fixées, les 1-cocycles sont 1’entropie différentielle ainsi que les
moments généralisés. Les catégories grassmanniennes permettent de traiter les cal-
culs canoniquement et retrouver comme seuls classes de cohomologie de degré 1
I'entropie et la dimension. Ceci constitue une nouvelle caractérisation algébrique de
I'entropie différentielle.

Mots-clés: cohomologie de I'information, théorie des topos, théorie del’information,
entropie, coefficients multinomiaux, théorie des types, faisceaux, statistique nonex-
tensive
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Introduction

0.1 Axiomatic characterizations of entropy

In his seminal paper on the mathematical foundations of communication [78], Claude
Shannon proposed the following axiomatic characterization for a ‘measure of choice”:

Suppose we have a set of possible events whose probabilities of oc-
currence are p1,p2, -+ ,Pn. These probabilities are known but that is all
we know concerning which event will occur. Can we find a measure of
how much “choice” is involved in the selection of the event or of how
uncertain we are of the outcome?

If there is such measure, say H(p1,p2, - ,pn), it is reasonable to
require of it the following properties:

1. H should be continuous in the p;.

2. If all the p; are equal, p; = %, then H should be a monotonic increas-
ing function of n. Whith equally likely events there is more choice,
or uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original
H should be the weighted sum of the individual values of H. The
meaning of this is illustrated [in Figure[I]. At the left we have three
possibilities each with probabilities %, 5. The final results have the
same probabilities as before. We require, in this special case, that

11, 1.2

111 1
H(Ef 3’ 6) = H(EI E) + EH(gz 5)

The coefficient 3 is because this second choice only occurs half the
time.

Then he proved:
Theorem 0.1 (Shannon). The only H satisfying the assumptions above is of the form
n
H(p1, ..., pw) = =K ) | pilogpi, (0.1)
i=1
where K is a positive constant.

The function H is called entropy, sometimes preceded by the names of Shannon
or Gibbs.
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1/2

1/2
1/2
1/3
B 2/3 *1/3
1/2

1/6
/ 1/3 >e1/6

Figure 1: Decomposition of a choice from three possibilities. Figure 6 in [78].

These and analogous axioms have been taken traditionally as intuitive, natural
or expected properties of information itself or other related concepts. However,
several questions could (and should) be raised: What does “natural” mean in this
context? Which “intuitions” are we talking about? What is our mental picture of
information or even probabilities? These questions are rather philosophical, but
they can be clarified answering first a mathematical one: What is the specific role
that these axioms play in information theory? Maybe the situation is similar to
axiomatizations of geometry: Euclid’s fifth postulate makes sense and seems quite
natural, but meaningful theories can be built without it.

Information theory and statistical mechanics make use of several generalizations
of entropy that do not satisfy the third axiom. For example, in 1967 Jan Havrda and
FrantiSek Charvét [38] introduced the structural a-entropy: for a > 0, a # 1, it is

given by the formula
> ipi- 1), 02)
i=1

where K,, is some constant chosen in such a way that S, — S1 := Hwhena — 1[22].
It was characterized as the only function satisfying certain axioms, including one
analogous to axiom 3 above where the probabilities in front of each H were raised to
the power a, cf. (0.11). These a-entropies were popularized in physics by Constantino
Tsallis [87,[88]], that uses them as a foundation for nonextensive statistical mechanics.
As a consequence, the most common name for S, is Tsallis a-entropy.

It is important to elucidate the relation between these axiomatic characterizations
of information functions and their applications in information theory and statistical
mechanics, that usually involve combinatorial or probabilistic reasoning. Shannon
says:

Sa(plr ceey Pn) = Ka

[Theorem [0.1]], and the assumptions required for its proof, are in no way
necessary for the present theory. It is given chiefly to lend a certain
plausibility to some of our later definitions. The real justification of this
definitions, however, will reside in their implications.

We could be tempted to dismiss completely the axiomatic approach, which is not so
far from Kolmogorov’s position [52, p. 42]:

The deduction of limiting theorems of the type indicated above has been
carried out in many remarkable papers [...] We feel that much must still
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be done in this direction. [...] Since by its original nature “information”
is not a scalar magnitude, we feel that the axiomatic study allowing
to characterize [the mutual information] I(&, ) uniquely (or uniquely
characterize the entropy H(&)) by means of simple formal properties have
in this respect a lesser importance. Here we believe that the situation is
similar to the one related to the fact that of all the methods for obtaining a
foundation of the normal distribution law for errors proposed by Gauss,
today we favour the methods based on limiting theorems for sum of large
numbers of small summands. Other methods (for example, the method
based on the arithmetical mean) only explains why no other distribution
law of errors can be as pleasant and convenient as the normal one, but does
not answer the question why the normal distribution law so often appears
in real problems. Exactly in the same way, the beautiful properties of the
expressions H(&) and I(&, n) cannot explain why they suffice in many
problems for finding a complete solution (at least from the asymptotical
point of view).

In any case, the algebraic properties of entropy and the normal law are remark-
able enough to be mentioned, and there is more to them than beauty. For example,
Linnik [59] gave a (complicated) information-theoretic proof of the Central Limit The-
orem (later improved and clarified, see [9]), so the limiting properties of the normal
distribution are not independent from the fact that it maximizes the entropy when
the mean and variance are fixed. In turn, this information-maximization property
is a bridge to establish connections between the remarkable algebraic properties of
entropy on the one hand and of normal distributions on the other.

It seems to us that the connections between the different points of view on
entropy—algebraic, probabilistic, combinatorial, dynamical—are still poorly under-
stood. This constitutes a first motivation to introduce the categorical framework of
Section[0.5)as a formalism general enough to integrate different theories.

0.2 Functional equations

Let us come back to Shannon’s axiomatization: it refers to a set of possible events,
but those events do not appear in the notation. It would be more precise to introduce
a random variable (or “random object” or “experiment”) X, that can take values in a
finite set Ex. A probability law isa function P : Ex — [0, 1] suchthat ), cp, P(x) = 1
Then the Shannon entropy associated to the random variable X and the law P ig?

S1[X](P) = -K Z P(x)log P(x). (0.3)

x€Ex

1Strictly speaking, the probability law is a measure p on the algebra of subsets of Ex such that
/Ex dp =1 and P is its density with respect to the counting measure, but here we are identifying both
things, as is customary. The distinction becomes important in Section

2We reserve the character H for (co)homology, so we follow other texts in statistical mechanics (e.g.
Tsallis” book [88]) denoting the entropy by S.
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Entropy already appears in this form in Shannon’s paper, just after the axiomatiza-
tion. Similarly, the a-entropy is

Sa[X](P) =Ka

Z P(x)* — 1) . (0.4)

x€Ex

Consider now two random variables X and Y, valued in sets Ex and Ey, re-
spectively. The joint measurement, represented as a vector (X,Y), is also a ran-
dom variable (joint variable), whose possible values belong to certain subset Exy
of Ex X Ey. Suppose that a law P on Exy is given; following Shannon, it can be
represented by a tree as in Fig. [2}(a). The probability of observing X = x is com-
puted as the sum of all the outputs of (X, Y) that contain x in the first component:
X.P(x) :=P(X =x) = 2(x,y)eExy P(x, y). This defines a probability X.P on Ex, usu-
ally called “marginal distribution”. Instead of measuring directly (X, Y) one could
measure first X, which constitutes a first random “choice”, and then update the prob-
abilities on Exy taking into account this first result: probability represents uncertain
knowledge about the “true value” of (X, Y), that is updated each time a measurement
is performed. Only the pairs in {(xo, y)},cy are compatible with X = x¢; therefore,
the conditional probability law P|x—y, : Ex — [0, 1], that represents the uncertainty
after obtaining the result X = xo, is defined by

P(x,y)

Plx= X, = { X.P(xo) .
b=, ¥) {O otherwise

if x = xg (0.5)

This iterated choice/measurement can in turn be represented as a tree, e.g. Fig. 2}(b).
According to Shannon’s third axiom, the “chain rule”

SIX, VIP) = $1XIXP) + 3 XP()SIYI(Y.Plx=1) (0.6)

XEEX

must hold. Similarly, if the measurement of Y is performed first, we obtain another
tree, Fig. [2H(c), that entails the equation

SIX VIP) = $iYILP) + 3 YoP(y)SIXI(X.Ply=y) (07)
yeEy

It turns out that and (0.7), taken as a system of functional equations with
measurable unknowns S1[X], S1[Y], and 51[(X, Y)], imply that each of these functions
must be the corresponding Shannon entropy defined by (0.3). This is true even for
the situation pictured in Fig. [2} that is evidently the simplest possible choice that can
be broken down in two different ways (see Proposition 3.10).

Tverberg [89] was the first to deduce a simple functional equation from the third
axiom, nowadays called “fundamental equation of information theory”:

f@+1-0f (725) = f) + - p)f (1 . y), 08)

where f : [0,1] — R is an unknown function, and x, y € [0,1] are such that x +
y € [0,1]. The only symmetric, measurable solutions of this equation are the real
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Poo
Poo + po1
p01 po1
° Poot+po1 po1
po1tpi1
po1 +p1

P11

P11

po1tp11
(a) (b) (c)

Figure 2: Different goupings when Ex = Ey = {0,1} and Exy = {(0,0),(0,1),(1,1)}. We
denote by p;; the probability of the point (i, j) € Exy. In (b) and (c), the probabilities to the
left are the marginals X.P and Y.P, respectively, and those to the right are the conditional

laws on the appropriate subset of Exy.

multiples of s1(x) := —xIn(x) + (1 — x)In(x) [57]. Daroczy [25] proposed a similar
equation solved by the a-entropy s,(x) := x* + (1 — x)* - 1.

The situation is already quite striking, because Shannon’s characterization asks
for an infinite number of conditions—certain equations for any set of events and
any possible grouping of them—along with strong regularity of the functions H (an
infinite family indexed by 1), and actually just one set, two different groupings, and
measurability of the unknowns are enough to reach the same conclusion. Maybe
this would only be a nice mathematical curiosity, if these chain-rule-like functional
equations did not accept a much deeper interpretation. Let us defineff| for any
probabilistic functional P — f(P), a new functional X. f given by

(XA)P) = D XP(X)F(YoPlx=s): (0.9)
x€Ex
in order to rewrite as
0=X.51[Y] - S1[(X, Y)] + S1[X]. (0.10)

The notation is meant to suggest an action of random variables on probabilistic
functionals, and in fact the equality Z.(X.f) = (Z, X).f holds. There is an strong
resemblance between (0.10) and a cocycle equation in group cohomology. Baudot
and Bennequin [10] formalized this analogy: it is possible to use the general con-
structions of homological algebra to recover the equations as cocycle conditions
in an adapted cohomology theory that they called information cohomology. Since the
entropy is the their only solution, the argument constitutes an alternative character-
ization of entropy. This description is not axiomatic, but algebro-geometrical: it has a

3For a detailed historical introduction and a comprehensive treatment of the subject, up to 1975, see
the book by Aczél and Daréczy [3].
*More precise definitions are given in Section
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meaning in the context of topos theory, developed by Artin, Grothendieck, Verdier
and their collaborators [4,5] as a tool for algebraic geometry
The a-entropy satisfies a deformed chain rule,

Sal(X, Y)I(P) = S X](X.P) + Z (X P(x))*Sa YI(YePx=x). (0.11)
x€eEx
As an extension of Baudot and Bennequin’s results, we prove that S,[:] is the only
family of measurable real-valued functions that satisfy these deformed functional
equations for generic pairs of random variables and probabilities, up to a multiplica-
tive constant K (Proposition[3.13). This is in turn connected to Daroczy’s fundamental
equation cf. Chapter 5
If the random variables X, Y represent the possibles states of two systems (e.g.
physical systems or random sources of messages) that are supposed to be indepen-
dent in the usual probabilistic sense, P(x, y) = X.P(x)Y.P(y), then

S1[(X, V)](P) = S1[X](X.P) + S1[Y](Y.P). (0.12)

This property of Shannon entropy is called additivity. Under the same assumptions,
Tsallis entropy is nonadditiveff|when K = 1,

Sal(X, V)](P) = Su[ XI(XuP) + Sa[Y](YaP) — (@ — 1)Sa[X](X.P)Sa[Y](Y.P). (0.13)

As we already said, this property is problematic from the point of view of heuristic
justifications for information functions, that assume as “intuitive” that the amount
of information given by two independent events should be computed as the sum of
the amounts of information given by each one separately.

0.3 Entropy in combinatorics

Before introducing the cohomological formalism, it is important to provide evidence
of the mathematical and practical relevance of these generalized entropies. As Kol-
mogorov and Shannon said, entropy is justified mainly by the its implications and
its relation to certain limiting theorems.

One of the most fundamental results in this direction relates Shannon entropy S1
to the growth of multinomial coefficients. More precisely: given a probability law

(pl, ...,ps)

n pin, ..., psn

S
lim l ln( " ) == ZP:’ Inp; =: S1(p1, ..., ps)- (0.14)
i=1

5Cathelineau [16] was the first to find a cohomological interpretation for the fundamental equation
(0-8): an analogue of itis involved in the computation of the homology of SL; over a field of characteristic
zero, with coefficients in the adjoint action; however, this result was not explicitly connected to Shannon
entropy or information theory. The first published work in this direction is a note by Kontsevich
(reproduced as an appendix in [27]), that introduces Hp(x) = Zi: % as “a residue modulo p” of
entropy, being the only continuous map f : Z/pZ — Z/pZ that verifies f(x) = f(1 - x) and an equation
equivalent to (0.8). He proves that a related function defines a cohomology class in H?(F, F), for
F =R or Z/pZ. Several works connected to motives or polylogarithms have emphasized the role of the
fundamental equation, for instance [12}/17}127,28].

¢Originally, this was called nonextensivity, which explains the name ‘nonextensive statistical me-
chanics’.

"The reader can either assume that each p; is rational and the limit is taken over the n that verify
pin € Z, or that the multinomial coefficients are defined for complex arguments using the I'-function.
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This is a first indication of the relevance of entropy in communication theory: it
approximates the counting of words of length 1, made of s different symbols, each
appearing with probability p;. In statistical mechanics, it counts the number of
“configurations” of n particles, when s energy levels are available and p; is the
proportion of particles with energy E;, fori € {1, ...,s}.

The multinomial coefficients have an interesting g-analog. Given an indetermi-
nate g, define the g-integers {[n];},en by [1]; := (9" —1)/(q — 1) and the g-factorials
by [n],! := [n]y[n —1]; - - - [1];. The g-multinomial coefficients are

[n]q!

n
[k1,...,kSL T Tkt Thslg! (0.15)

where ki, ..., ks, n € N satisfy Zle ki = n. When g is a prime power, the coefficients
in (0.15) counts the number of flags of vector spaces V1 Cc Vo, € ... C V,, = FZ; such
that dim V; = Z§=1 ki (here F,; denotes the finite field of order g); we refer to the
sequence (ki, ..., ks) as the type of the flag. In particular, the g-binomial coefficient
[7] g [k, o , counts vector subspaces of dimension k in Fj.

In Section [6.2) we study in detail the asymptotic behavior of the g-multinomial
coefficients. In particular, we obtain the following limit.

Proposition 0.2. Given a probability law (p1, ..., ps),

n

limilo [
& pin, ..., psn

Tl}’lz

} =1- Z p? =: Sy(p1, .., ps)- (0.16)
q i=1

The function Sy is Tsallis 2-entropy, also known as quadratic entropy.

There is a connection between these combinatorial results and the algebraic char-
acterizations of entropy. To see this, remark first that the multinomial coefficients
satisfy some multiplicative identities, that can be interpreted as a recursive enumer-

ation. For instance,
n _ n k1 + kz
(kl, ko, ka) - (k1 + kz)( k1 ) 017)

means that the number of words of length n composed of three different symbols, say
{a1, a2, a3}, and such that a; appears k; times equals the number of words of length n
composed of two different symbols, say {a12, a3}, such that a1, appears k; + k; times
multiplied by the number of ways of replacing the symbols a1, with ki symbols a1 and
k, symbols a; (which reduces to count certain sub-words of length kq + k2). In the
same spirit, if P = (po, p1), Q = (g0, q1) are two probability laws on {0, 1}, then

ngonaonin) = ool e ) 029
poqon, poqin, pigon, pigin pon | \poqon | \p1gon) '

Applying % In(-) to both sides and taking the limit # — oo, we recover the additive

relation (0.12):

S1(poqo, Poq1, P190, P191) = S1(po, p1) + S1(qo, 91)- (0.19)
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Equation (0.18) remains valid for the g-multinomial coefficients, but in this case one
should apply lim,, % log, (-) to both sides to obtain

24, " ] _ 2 [”}
2 080 poqon, poqin, piqon, piqin|, n2 8 port],

2 2 pon 2 pin
1 1 2
TP (g B [Poqo" P 7 %8 | pgon 020

which in the limit gives

S2(poqo, Poq1, P190, P1q1) = S2(po, p1) + P3S2(q0, 41) + (1 — po)*Sa(qo, q1)
= Sa2(po, p1) + S2(q0, 91) — S2(po, p1)S2(q0, 91).  (0.21)

Thus, asymptotically, the number of flags Voo € Vo1 € Vip € Vi1 = Fg of type
(pogon, poqin, p1qon, p1q1h) can be computed in terms of the number of flags Wy C
Wi =Fj of type (pon, pin) and those flags Wy ¢ W) = F’ of type (qom, g1m)—where
m can take the values pon or pyn—through this nonadditive formula. This example
is discussed in Chapter [6] followed by combinatorial justification of a maximum
2-entropy principle.

More generally, for any sequence D = {D;};>1 such that D; = 1, define [n]p! as
D;D;_1--- D1 and the corresponding Fontené-Ward multinomial coefficients by

n — [1]p!
{kl,...,ks}D " Tklp!- - [ksIp! (0.22)

In Section we prove that, for every a > 0, there is a generalized multinomial
coefficient asymptotically related to the corresponding a-entropy.

Proposition 0.3. If D, = q”ﬁfl‘l, for any q > 0, then

n In

The Fontené-Ward multinomial coefficients clearly satisfy the same multiplicative
relations as the usual multinomial coefficients, so their logarithms (properly normal-
ized) are connected in the limit # — oo to the deformed chain rule (0.11), as we
already showed for the particular cases D,, = n (linked to @ = 1, Shannon entropy)
and D, = q;%ll (linked to @ = 2, quadratic entropy). Even more, these generalized
coefficients are also the solution of certain functional equations, that corresponds to
a cocycle condition in a combinatorial version of information cohomology.

Our motivation to study the g-multinomial coefficients was to understand better
the generalized information functions of degree «. Tsallis used them as the founda-
tion of nonextensive statistical mechanics, a generalization of Boltzmann-Gibbs sta-
tistical mechanics that was expected to describe well some systems with long-range
correlations. It is not completely clear which kind of systems follow these “gen-
eralized statistics”[f] There is extensive empirical evidence about the pertinence of

8Tsallis says: “...the entropy to be used for thermostatistical purposes would be not universal but
would depend on the system or, more precisely, on the nonadditive universality class to which the
system belongs” [88), p. xii].
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the predictions made by nonextensive statistical mechanics [88]. However, very few
papers address the microscopical foundations of the theory (for instance, [37,44,73]).
The considerations above prove that S, can be understood as counting microstates
given by flags, still following Boltzmann intuitions [79]. We are not aware of any
physical situation where flags are a natural representation for the microstates. How-
ever, we were able to come up with a version of information theory where messages
correspond to vector spaces (flags of length 2) and to extend Shannon’s asymptotic
insights to this setting. This makes plausible an eventual application of these results
in statistical mechanicsf]

0.4 A g-deformation of Shannon’s theory

We explain here how the combinatorial ideas introduced in the previous section,
combined with a new probabilistic construction, can be used to build a generaliza-
tion of Shannon’s theory where messages are vector spaces. Formula (0.16) already
suggests that the quadratic entropy plays an essential role in it. Most results sum-
marized here and in the following section were published as [92].

The asymptotic expansion of the multinomial coefficients is of great im-
portance in Shannon’s theory. Consider a random source that emits at time n € N
a symbol Z, in Sz = {z1, ..., 25}, each Z, being an independent realization of a Sz-
valued random variable Z with law P. A message (at time 1) corresponds to a random
sequence (Z1, ..., Z,) taking values in S with law P®"(zq,...,2y) := P(z1)---P(zy).
The type of a sequence z € S’ is the probability distribution on Sz given by the
relative frequency of appearance of each symbol in it; for example, when Sz = {0, 1},
the type of a sequence with k ones is (1 — %)60 + %61. By the law of large numbers,
a “typical sequence” is expected to have type P, and therefore its probability P®"(z)
is approximately [],cs, P(z)"" (?) = exp{-n51[Z](P)}. The cardinality of the set of
sequences of type P is (P(zl)n,.]?.,P(zs)n) ~ exp{nS1[Z](P)}. This implies, according to
Shannon, that “it is possible for most purposes to treat the long sequences as though
there were just 2H" of them, each with a probability 2-Hnv 78| p. 397]. This result
is known nowadays as the asymptotic equipartition property (AEP), and can be stated
more precisely as follows:

Theorem 0.4 (AEP, [20, Th. 3.1.2]). Given ¢ > 0and 6 > 0, it is possible to find no € N
and sets {An}nsny, An C S, such that, for every n > ny,

1. P?(AS) < €, and

2. foreveryz € Ay,

% In(P®" (z)) — $1[Z](P)| < 6. (0.24)

The size of Ay, is optimal: if s(n, €) denotes the minimal cardinality of a set B, C S', that
accumulates probability 1 — ¢,

s(n,e) =min{ |B,||B, Cc S, and P((Z1,...,Z,) € By) 21— ¢},

then . .
lim - In|A,| =lim - Ins(n, €) = S1[{Z](P). (0.25)
n n

°Cf. Jaynes’ emblematic article on the connection between information theory and statistical me-
chanics [42].



24 A g-deformation of Shannon’s theory

The set A, can be defined to contain all the sequences whose type Q is close to
P, in the sense that }’,.s, |Q(z) — P(z)| is upper-bounded by a small quantity; this is
known as strong typicality (see [23, Def. 2.8]).

Similar conclusions can be drawn for a system of n independent physical particles,
the state of each one being represented by a random variable Z;; in this case, the vector
(Z1,...,Zy) is called a configuration. The set A, can be thought as an approximation to
the effective phase space (“reasonable probable” configurations) and the entropy as
a measure of its size, see [43, Sec. V]. In both cases—messages and configurations—
the underlying probabilistic model is a process (Z1, ..., Z,) linked to the multinomial
distribution, and the AEP is a result on measure concentration around the expected
type.

We propose a new type of statistical model, such that a message at time n (or a
configuration of n particles) is represented by a flag of vector spaces V1 C V, C ... C
Vs = Fj. In the simplest case (s = 2) a message is just a vector space V in Fy. While
the type of a sequence is determined by the number of appearances of each symbol,
the type of a flag is determined by its dimensions or equivalently by the numbers
(k1, ..., ks) associated to it; by abuse of language, we refer to (ki, ..., ks) as the type.
The cardinality of the set of flags V1 C ... C Vi C Fg that have type (k1, ..., ks) is

rrrrr

To build a correlative of Shannon’s theory of communication, it is fundamental
to have a probabilistic model for the source. In our case, this means a random process
{Fi}ien that produces at time n a flag F, that would correspond to a generalized
message. We can define such process if we restrict our attention to the binomial case
(s = 2). This is the content of Chapter /| summarized in the next paragraph.

Let O be a positive real number, and let {X;};>1 be a collection of independent
random variables that satisfy X; ~ Ber(0g'~1/(1+04'~1)), for each i. We fix a sequence
of linear embeddings F; < F; < ..., and identify F;~" with its image in F}. The
n-dilations of a subspace w of Pg‘l are defined as

Dily(w) :={v c Fj | dimv —dimw =1,w Cvandv ¢ Fg_l }. (0.26)

We then define a stochastic process {V;}i>o such that each V; is a vector subspace of
IF;, as follows: Vj = 0 and, at step 1, the dimension of V,,_1 increases by 1 if and only
if X,, = 1; in this case, V), is picked at random (uniformly) between all the n-dilations
of Vy,-1. When X,, = 0, one sets V,, = V,,_1. We prove that, for any subspace v C Fg
of dimension k

quk(k—l)/Z
P(Vn = 7)) = W (027)
7 n
This implies that
n quk(k—l)/Z
P(dimV, =k) = —_—, 0.28
( ) [k]q (_6; q)n ( )

which appears in the literature as g-binomial distribution [48]].

For the multinomial process, the probability P®" concentrates on types close to
P i.e. appearances close to the expected value nP(z), for each z € Sz. In the case of
V., the probability also concentrates on a restricted number of dimensions (types).

10We use the g-Pochhammer symbols (a; 9),, := ]_[?:_01(1 - aqi), with (a;9)o = 1.
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Table 1: Correspondence between Shannon’s information theory in the case of memoryless
Bernoulli sources and our g-deformed version for vector spaces. The number g is supposed
to be a primer power; £ € [0,1] and 6 > 0 are parameters.

Concept Shannon case g-case
Message at time n Word w € {0,1)" Vector sub:pace
(n-message) v C
Type Number of ones Dimension
Number of " -
n-messages of type K k
k q
Probability of an Ok gk(k=1)/2
n-message of type & - gk —_—
k (=0;q)n

In fact, it is possible to prove an analog of the asymptotic equipartition partition
property in this setting. Its statement requires the introduction of a left-continuous
function A : [0, 1) — N that depends on the asymptotic behavior of the Grassmannian
process (see Section [7.4), whose discontinuity points have Lebesgue measure zero.

Theorem 0.5 (Generalized AEP). Let {V},}nen be a Grassmannian process, 6 € (0,1) an
arbitrary number, and € > 0 such that p. := 1 — ¢ is a continuity point of A. Define A, =
UZH:O Gr(n—k, n) as the smallest set of the form \ J;_, Gr(n—k, n) such that P (V,, € A;) < e.
Then, there exists ng € N such that, for every n > ny,

1. A, = Ufg’;) Gr(n -k, n);

2. forany v € Ay, such that dimv =k,

log, (P(V, =0)™")

n

- gSz(k/n) <6 (0.29)

The size of A, is optimal, up to the first order in the exponential: let s(n, &) denote
min{ |B,|| B, € Gr(n) and P(V, € B,) >1— ¢}, then

o1 1 _.n _
hlgn - logq |A,| = hlgn - logq s(n,e) = h£n ESZ(A(pE)/n) = A(pe). (0.30)

The set A, correspond to the “typical subspaces”, in analogy with the typical
sequences introduced above. We then deduce an optimal compression rate for Grass-
mannian sources (Section [8.3)); the definition of an optimal coding scheme remains
an open problem, whose solution is probably connected to Schubert calculus[!]

The arguments used in this section can be taken as a reproducible scheme towards
the generalization of conventional (“additive”) information theory and statistical me-
chanics. They do not only require a combinatorial interpretation of a generalized

1QOther interesting questions concern (1) the extension of the Grassmannian process in order to
generate flags of arbitrary length; (2) the possible relations between this g-deformation of Shannon
theory and subspace codes, where messages are coded as vector spaces, and (3) the transmission of
subspaces over noisy channels.
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multinomial coefficient, but also the introduction of a stochastic process that gener-
ates the objects that are counted by them. For the moment we do not know how to
define a process that generates arbitrary flags, nor are aware of other combinatorial
interpretations apart of those already mentioned.

0.5 Information structures

We turn now to the promised categorical formalization leading to information co-
homology. The departing point is the introduction of information structures, which
encode the relations between different random variables and their possible results.
The content of Part|l, summarized here and in the following section, can be found
in [91]].

Traditionally, random variables are defined as measurable functions X : (Q, §) —
(R", B(R)), where (Q, §) corresponds to certain sample space. This space has some
technical importance, but its arbitrary nature must not be forgotten. For example,
suppose that we want to study the tossing of a die. As we know in advance that there
are six possible outcomes, we could choose Q) = {1, 2, 3,4, 5, 6}, but we could equally
well define Q) = [1,7) with the algebra of sets generated by {[j,j+1):j =1,...,6}
and associate each interval [}, j + 1) with the result “observe j dots”. This example is
discussed by Doob [26], who adds

[The natural objection that the model is] needlessly complicated, is easily
refuted. Infact, 'needlessly complicated’ models cannotbe excluded, even
in practical studies. How a model is setup depends on what parameters
are taken as basic. [...] If, however, the die is thought as a cube to be tossed
into the air and let fall, the position of the cube in the space is determined
by six parameters, and the most natural () might well be considered to be
the twelve dimensional space of initial positions and velocities.

Random variables, also called “observables”, are introduced to model measure-
ments subject to unavoidable variability. In general, we know the possible outcomes
of our experiments, already constrained by the limitations of our measuring devices
(including our own perceptors). Like Gromov in [34], we want to approach mea-
surements from a categorical point of view, describing directly the relations between
them A sample space (Q, ) just serves as a model that allow us to treat observables
as concrete measurable functions To suppose that such space exists reflects in fact a

12Apart from the articles by Baudot and Bennequin [10], and Gromov [34], we have been at least
indirectly influenced by other works that apply categorical ideas to probability, statistics or information
theory. One of the most important is Censov’s book [90], that introduces the categorical language
to study the equivariance of optimal statistical decision rules (for inference) from a geometrical point
of view; he calls this “geometrical statistics”. An extension of these results is the subject of a recent
monograph by Ay et al. [7]. Categories also play an important role in Holevo’s book on probabilistic
and statistical aspects of quantum theory [40], where they are used to formalize the notion of “measure-
ment.” Baez and Fritz derived in [8]] a new characterization of relative entropy studying an appropriate
category of finite probability spaces. See also their related work with Leinster [58]. With respect to those
works, the main novelty of this thesis resides in its topos-geometric approach and the computation of
cohomological invariants related to information theory. A related cohomology theory was introduced
by Abramsky and his collaborators [1]] in order to detect contextuality and paradoxes; this problem is
detailed below.

1BSuch classical model does not always exists. For example, when observables do not commute,
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belief in reality, a unified underlying structure that accounts for all our observations/"|
The probabilistic properties of the observables should not depend on the particular
model that has been chosen. As Terence Tao [84] says, “sample [probability] spaces
(and their attendant structures) will be used to model probabilistic concepts, rather
than to actually be the concepts themselves.”

In Doob’s example, there is a variable X taking six possible values
Ex :={0J,0,,6, &), 6},

and this variable can be implemented as a category of partitions for multiple sets Q.
We can represent the situation by a diagram

Ex — {+}. (0.31)

The set {+} represents the output of constant random variable, corresponding to “cer-
tainty.” Given two variables X and Y, a measurable map myx : (Ex, €x) — (Ey, Cy)
between their possible outcomes says that the event of observing Y in specified mea-
surable set By is compatible only with the event {X € 7~ !(By)}. As a consequence,
the determination of X = x implies that Y = myx(y); more generally, any probability
on (Ex, Bx) induces a unique probability on (Ey, %y) For example, we could add
a phase space (S, ©) of initial positions and velocities, and relate through a map 7 ev-
ery output of the die with the initial conditions leading to it according to Newtonian
mechanics, which gives the diagram

(5,8) —— (Ex,2%) — {*} (0.32)

where 2Ex denotes the atomic g-algebra. Normally, such map 7 is surjective, but the
system could be constrained in such a way that some outputs are not attainable from
any feasible initial conditions.

In practice, the position P and the velocity V are measured by different devices,
valued in certain sets (Ep, ) and (Ey,B), and the phase space (S, S) corresponds
to certain subset of the product (Ep X Ey,B ® B) given by the possible values of
the joint measurement, denoted here P A V. We should also take into account the
joint measurement of X and P, denoted X A V, as well as X A V; the measurement
X AP AV isequivalent to P AV under the hypothesis that initial conditions determine

the underlying space E is defined as a Hilbert space and observable values appear as the spectrum of
hermitian operators on E.

14This is not an exaggeration: we shall see that some information structures are noncontextual (Section
and therefore violate generalized Bell inequalities |2 Prop. III.1] (our noncontextual structures are
the possibilistically noncontextual structures there). In this sense, some information structures are
incompatible with hidden-variable models.

®Mathematically, we study probabilities according to Kolmogorov’s axiomatization [53]]. Epistemo-
logically, we regard them as a quantification of uncertain knowledge adapted to the rules of plausible
reasoning, a viewpoint elaborated by Jaynes in [41]; his Appendix A discusses the compatibility between
these two perspectives. By no means we limit ourselves to frequentist scenarios.
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the output of X. At the level of variables, we have the dependencies
XAP — P
ANV X 1

XAV — V

P (0.33)

where 1 is again certainty, and an arrow A — B means that the value taken by B can
be deduced from the value taken by A; in this sense, A is more refined. We have
analogous relations at the level of values,

(Ex X Ep,2Ex @ ) —— (Ep,B)

(5, ©) (Ex,2EX) — {#} (0.34)

T~ 7

(EXxEv,ZEX ®%) -—> (Ev,%)

where ® is the product of o-algebras, and the arrows represent measurable maps.
Let S be the free category generated by the diagram ; the diagram can be
seen as the image of S under an appropriate functor &'

We introduce now a general definition in this sense.

Definition 0.6. An information structure is a pair (S, &), where S (‘the variables’) is a
small category such that
1. S has a terminal object, denoted 1;
2. S is a skeletal partially ordered set (poset)[¥|
3. for objects X,Y,Z € Ob S, if Z — X and Z — Y, then the categorical product
X AY exists{"]
and & is a conservative™®["’| covariant functor (‘the values’) from S into the category
Meas of measurable spaces, X — &'(X) = (E(X), B(X)), that satisfies
4. E(1) = {+}, with the trivial o-algebra B(1) = {0,E(1)};
5. forevery X € Ob S and any x € E(X), the o-algebra B(X) contains the singleton
{x}t
6. forevery diagram X «—— X AY —— Y the measurable map E(XAY) <
E(X) X E(Y),z — (x(2), y(2)) := (11.(z), 0.(z)) is an injection.

These information structures generalize those introduced by Baudot and Ben-
nequin in [10]: the objects of the latter were partitions of some set Q2. The new

16Being a poset means that, for any objects A and B, Hom(A, B) has at most one element. The poset
is skeletal if it has no isomorphisms different from the identities: if A # B and A — B, then B /> A.

7This could be called “conditional meet semi-lattice”.

18Given a functor .# : S — Sets, we denote its value at X € Ob S by .#(X) or .Zx.

Conservative means that, if &(f) is an isomorphism, then f is an isomorphism. Since S is skeletal,
this condition implies that, for every arrow m : X — Y such that X # Y, the measurable map
M. := & (1) : E(X) — E(Y) is not a bijection.
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ones are sufficiently general to provide a common ground for classical and quantum
information; the general algebraic constructions of Chapter [2| are valid for all the
known versions of information cohomology. Besides, the morphisms between them
are defined more naturally.

Definition 0.7. Given two structures (S, &), (S’, "), a morphism ¢ = (o, ¢¥) :
(S,8) — (S, &) between them is a functor ¢p9 : S — S’ and a natural transfor-
mation ¢¥ : & = & o ¢y, such that

1 (1) = 1;

2. if X AY exists, then ¢o(X AY) = po(X) A Po(Y);

3. for each X € Ob S, the component qb?( : 8(X) = &'(¢po(X)) is measurable.
Given ¢ : (S,&) — (S8, &) and ¢ : (S§7,&7) — (8”,&”), their composition ¢ o ¢ is
defined as (g o o, P* o P* : & = & 0 g 0 Po).

Propositionestablishes that this category has finite products and coproducts.

Given an information structure (S, &), one can define a presheaf (contravariant
functor) of monoids that maps X € ObS to the the set /x :={Y € ObS|X — Y}
equipped with the product (Y,Z) — YZ := Y A Z, where A denotes the meet
(categorical product) in S; an arrow X — Y is mapped to the inclusion .y — #x.
The associated presheaf of induced algebras is X — @7k := R[.#x]. Probabilities are
alsoa functorIT: S — Sets, that associates to each X € Ob S the set IT(X) of measures
on &(X) such that fEx dp = 1. Each arrow f : X — Y induces a measurable map
E(f): X)) = E(Y), and II(f) : II(X) — II(Y) is defined to be the push-forward of
measures: for every B € By,

(II(f)(p)(B) = p(&(f)(B)). (0.35)

This operation is called marginalization. We write f. or Y. instead of I'l(f) (normally
the source of the arrow is clear from context); of course, this is compatible with the
notations of Section [0.21

If I is any set, let A(I) be the category of its finite subsets, with arrows A — B
indicating that B C A. Fpr us, a simplicial subcomplex of A(I) is a full subcategory
K such that, for any given object of K ("a cell’), all its subsets are also objects of K
("faces’). Associate to each vertex {i} of K a measurable set (E;, B;), and to every other
A € ObK the measurable set &(A) := (Ea, B(Ea)), where E4 = [];cq Ei and B(E,)
is the corresponding Borel o-algebra, that is also the product ¢-algebra )., Bi
(see Section [0.1). This defines a functor & if we associate to every arrow in K
the corresponding canonical projector. The pair (K, &) is a simplicial information
structure 2]

The simplicial structures are flexible enough to cover graphical models [67], [63|
Ch. 9]: the Ising model and its generalizations, Markov fields, Bayesian networks...
In these examples there is a set of random variables {X;};c; and a distinguished
collection € of subsets that represent some sort of local interactions; we define K as
the smallest simplicial subcomplex of A(I) that contains €. The local information can
come as a subfunctor 2 of I'l that associates to each variable (X, ..., X;, ) represented
by {i1,...,im} € ObK a set of possible probability laws (joint distributions). In fact,
the functor & itself can be seen as a representation of admissible local configurations.

2]t is worth noting that abelian (co)presheaves on simplicial structures are cellular (co)sheaves in the
sense of [24].



30 Topoi and cohomology

Remark that in the simplicial case & and IT can be extended easily to the whole
category A(I), that should be thought as a larger geometrical space that contains
K. The so-called marginal problem asks when a section s of IT on K, i.e. an element
s € T(K,IT)[Y can be extended to a section § of IT on A(I) that coincides with s
over each A € ObK; this extension 5 is meant to represent a joint state of all the
X; compatible with the known local interactions. (This problem is analog to that of
extensions of holomorphic functions in complex analysis.) It is well known that such
extension does not always exist: this correspond to frustration in physics [62,67], to
contextuality in quantum mechanics, and paradoxes in logic [1}2,30].

Section [1.4] studies the conditions under which the variables of an information
structure can be represented as measurable functions on a unique sample space
(Q, ¥), supposing that the nerve of S has finite dimension and each space Ex in the
image of & is finite; such representation is a classical model. A necessary condition is
the existence of a global section s(x) of E compatible with any given value x € Ex
assigned to any variable X. We determine in which case the collections of compatible
measurements, elements of limg E, constitute themselves a classical model.

0.6 Topoi and cohomology

In modern treatments of algebraic geometry, category theory and related subjects, the
appropriate notion of “space” is a topos. The initial motivation comes from topology:
from the category Sh(T') of sheaves on a topological space T, one can recover its lattice
of open sets, provided that each point is determined by its open neighborhoods [65,
Sec. 1.2]. Sheaves are particular Sets-valued functors on the category of open sets
of T, such that a global section is uniquely determined by compatible local data
prescribed on any covering of T. Grothendieck and his collaborators realized that
this still makes sense if the category of open sets is replaced by any other category;
actually, he introduced a notion of topology (site) on an arbitrary category, which
is defined in terms of its arrows. The category of sheaves thus obtained is called a
(Grothendieck) topos. The motivation behind is captured in the following quotation
from the SGA 4 [4, IV 0.4], the book that introduced the theory:

So we can say that the notion of topos, a natural derivative of the sheafy
point of view in Topology, constitutes a substantial enlargement of the
notion of topological space, encompassing a large number of situations
thatin the past were not considered to depend on the topological intuition.
The characteristic feature of such situations is that there is a notion of
“localization”, which is formalized precisely by the notion of site and,
in the final analysis, by that of topos (via the topos associated with the
site). As the term “topos” itself is meant to suggest, it seems reasonable
and legitimate to the authors of this Seminar to consider that the object
of Topology is the study of topos (and not only topological spaces).

Lawvere and his collaborators introduced a more general notion of topos: these are

2A section s € T(K, IT) is an element of the set Hom(g gets)(*, I1), where [K, Sets] is the category of
Sets-valued functors on K and * is the functor that associates to each X € Ob K a singleton. Then s is a
collection of probabilities, that are mutually compatible under marginalizations. This also appears in
the literature as pseudo-marginals [94] and many other names.
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categories that behave like the category of sets with respect to certain operations;
they also formalize generalized logical theories. We refer the reader to [15,55,61,/65].

The category of presheaves on a given category can be seen as a topos for the
trivial topology (fopologie grossiére). For us the main examples are the presheaf topoi
on S or S for a given information structure (S, &'); we shall see that in these topoi the
relevant notion of localization is always linked to marginalizations (also called coarse-
graining in the physics literature). The advantage of the topological viewpoint for the
study of information structures is that new geometrical intuitions become available,
as well as very general algebro-geometrical tools. We did not explore the connections
to logic, but this undoubtedly constitutes a very interesting problem.

It should also be noted that in modern geometry spaces are studied though their
(co)homology, that to some extent encodes their “shape”. Bennequin and Baudot [10]
introduced a cohomological formalism connected to information functions, called
information cohomology. The definition utilizes the general algebraic machinery of
topos theory, as we now explain.

Recall from the previous section that to any structure (S, &) we can associate a
presheaf of algebras 7. An .&/-module is a functor .# from S° to the category of
abelian groups such that, for each X € Ob S, the group .#(X) has the structure of an
a/x-module; the action by o7 is supposed to respect functoriality. These presheaves
and the natural transformations between them form an abelian category denoted
Mod(«)[? which entails the possibility of defining cohomological functors. The
right derived functor of Hom(—, #') (where # is a fixed sheaf of «/-modules) is
Ext*(—, #); it is a cohomological functor (exact 6-functor, see Section 2.1.3): for an
exact sequence 0 — 7’ — ¥ — ¥ — 0 of sheaves, it induces a long exact sequence

0 - Hom(¥’',#) - Hom(¥, #') —
Hom(¥”, W) — Ext(V', #) — Ext' (¥, #) — ... (0.36)

as singular or cellular cohomology do in basic topology.
The information cohomology of S with coefficients in the .«/-module .7 is

H*(S, 7) := Ext*(Rg, %), (0.37)

where Rg is the sheaf that associates to every X € Ob S the set R with trivial @/x
action (i.e. forallY € s and allr € R, Y.r = 7).

Recurring to another algebraic construction, called the (relative) bar resolution
[60, Ch. IX], we can give a more computable description of this cohomology, that
serves as an alternative definition explicitly connected to information measures as
explained below.

The bar construction gives a sequence of projective «7/-modules

o1 2 J3

0 Rs «—— %, B> (0.38)

i

that is a resolution, meaning that ker ¢ = im d; and, for every n > 1, ker d,, = im dy11.
Moreover, for each X € Ob S, n € N, the module %, (X) is freely generated over .27

2In [35], Grothendieck defined abelian categories and derived functors as a general ground for
homological algebra. Essentially, an abelian category has an appropriate notion of kernel and cokernel,
and it allows the introduction of homological algebra mimicking the case of modules.
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by the symbols [Xj]...| X, ]; in the case of Hy(X), simply by a symbol [ ]. Proposition
proves that, due to the conditional existence of products in the definition of S,
these {%;}; are projective objects in the category Mod(</) |

Given any «/-module .#, we obtain a sequence

0 — Hom(Rs, F) — Hom (%, F) % Hom (%, 7) 2 Homy (%, F) > ..,
(0.39)
that is no longer a resolution, but 6% = 0 holds. Define C"(.#) := Hom (%, .¥); an
element ¢ € C"(.%) is uniquely determined by its image on the generators [ X1]|...| X, ],
that we denote ¢[X1]...|X,,]- Themap 6, : C"(F) — C"*1(F) s given by the formula

Sn[Xi -1 Xns1] = X1.0[Xal o[ Xsr] + D (=1 G[Xa || Xi K. X
k=1

+ (=" ¢[X1]...|X,]  (0.40)

The cohomology of the differential complex (C”, §) measures the difference be-
tween ker 9,, and im 0,,_1; it is defined as

HYC*(%),6) :=kers®? and H"(C*(Z),0):=ker 5" /im 6"} (0.41)

when n > 1. It can be proved that there is a unique J-functorial identification of
H*(S,.#) with H*(C*(%), 0) and in this sense both constructions are regarded as
equivalent, cf. Section[2.1.3]

The elements of ker 6° are called 0-cocycles; they satisfy, for every X € ObS and
Y € .F X,

0= Y.pxl1-dx]. (0.42)

The elements of im 6" are 1-coboundaries and those of ker 6! are 1-cocycles. The
latter are characterized by

0= Y.ox[Z] - ox[YZ] + dx[Z], (0.43)

forany X € ObSand Y, Z € .x. Thereader should compare these cocycle conditions
with the recurrence formulae in Section [0.2and [0.3} this is clarified below.

0.7 Cohomology of discrete variables

This section summarizes the results in Part[[]of this thesis. Itis supposed everywhere
that the nerve of S has finite dimension and that each set Ex, for X € ObS, is
finite. We obtain cohomological results for two different modules of coefficients,
the first corresponding to probabilistic functionals and the second to combinatorial
ones. We determine completely H® and H!. The computation of higher cohomology
groups remains an open problem because the functional equations involved are very
complicated.
The probabilistic case appeared initially in [91].

2The general construction only gives a sequence of relatively projective objects, as explained in Section

B3
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0.7.1 Probabilistic cohomology

Let 2 denote any subfunctor of IT (the functor of probability measures) stable under
conditioning. We represent every probability law by its density P with respect to the
counting measure. Let .Z(X) be the additive abelian group of measurabld?| real-
valued functions on 2(X) and, for any arrow 7 : X — Y, let #(n) : Z(Y) = Z(X)
be precomposition with marginalization: .% (7)(¢) = ¢ o m.. We obtain in this way a
contravariant functor .# on S.

Foreach Y € .k, ¢ € #(X) and P € 2(X), define

(Y.)P) = " (YP(y)*$(Pxly=y)- (0.44)

y€Ey

By convention, a summand is simply 0 if Y.P(y) = P(Y = y) = 0. This turns each
Z(X) into an @/x-module and this action is functorial, in such a way that .# becomes
an &/-module .%, (there is a family, one for each a > 0).

We call probabilistic the information cohomology with coefficients in some .7,.
Using the bar-resolution description introduced in the last section, we can determine
the following facts.

A 0-cochain is a collection {(l)x[]}Xeobs that is local: for any X, ¢x[](P) = ¢1[](1),
so ¢x[] equals a constant K € R. The boundary of ¢ is (6¢)[Y] = Y.¢p[] — ¢[] which
evaluated on a probability P € 2(X) reads

ifa=1

OHIYIP) = - (Y.P(y)*K K = {KSQ[Y] (Y.P) ofherwise”

yEEy

In other words: every cochain is a 0-cocycle if @ = 1. There are no O-cocycles if a # 1,
but Tsallis entropy appears as 1-coboundary, multiplied by a global constant K.

The 1-cochains are characterized by collections of functionals {gb [X]: 2(X) — R} XeOb S
which takes into account joint locality: ¢y[X] = ¢x[X] =: ¢[X]. The 1-cocycles ad-
ditionally satisfy

0=X.¢[Y]-[XY]+ ¢[X] (0.45)

as functions on 2(XY), where marginalizations are implicit. As explained in Section
this equation and its analogue with X and Y permuted imply that ¢[-] = KxySa[-],
for a constant Kxy € R. This holds as long as 2xy contains enough probabilities;
a precise sufficient condition is stated in the definition of nondegeneracy for the
product of two variables (Definition [3.12).

The number of free constants is determined in Theorem the main result of
Chapter 3| For a simplicial structure (K, &), it says that

HY(S, (1) = RP® and  HY(S, Z,(11) = RFE®-T whena #1,  (0.46)

where B(K) is the number of connected components of (the geometric realization
of) K. On each component the entropy S, appears as the unique generator of Z!. We
conjecture that higher cohomology groups are linked to the higher Betti numbers.

2In all the cases we consider, the measures have the structure of a topological space, that becomes a

measurable space with the corresponding Borel o-algebra. For a discrete variable X, I1(X) = AExI=1 ¢
RIExI,
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0.7.2 Combinatorial cohomology

Let ¥ : S — Sets be the functor that associates to each X € Ob S the set ¢ (X) of
counting functions: v : Ex — N such that ||v]| := X,cp, v(x) > 0. Given 1 : X — Y,
the arrow 7, := ¢(n) : €(X) — €(Y) is given by the corresponding marginalization
W*V(y) = ern*](y) v(x).

Let G(X) be the multiplicative abelian group of measurable (0, co)-valued func-
tions on ¢ (X). Every arrow 7t : X — Y induces a map G(mnt) : G(Y) — G(X) given by
precomposition with marginalizations, G(m)(¢) = ¢ o 7.

For each Y € .%%, ¢ € G(X) and v € ¥(X), define

Yo Px) = [ ¢@h=y). (047)
v(ly/i];;to

As in the probabilistic case, this turns G into an «/-module. The computation of
H*(S, G) gives the following results. The 0-cochains correspond again to collections
{‘PX[]}XeObS and locality implies that, for any X, ¢x[1(v) = ¢1[l(mix.v) =: p(||v]]).

The 0-cocycle condition is 1 = (6¢)[Y] = (Y.¢[])(¢[])~}; evaluated on a counting
function v € €(Y) it reads

e(lvl) = p(v)p(v2) - @(vs), (0.48)

and evidently the only solutions are @(x) = exp(kx), for k € R. The 1-cochains
are characterized by collections of functionals {(p[X] E(X) > R}X copss and they
define a 1-cocycle if, for every admissible product XY,

PIXY] = (X.0[Y])$[X] (0.49)

as functions on ¢’ (XY), marginalizations being implicit. In virtue of Proposition
the solutions to these equations are of the form

livillp!
HZEEZ [V(Z)]D!

where [0]p! = 1 and [n]p! = D;;D;—1--- D1Dy, for any sequence {D;};>1 such that
D71 = 1. These are the Fontené-Ward multinomial coefficients introduced in Section
Remark that serves as a general statement of the recursive formulae
satisfied by the multinomial coefficients and their generalizations; particular cases
are and (0.18).

The asymptotic relation between the usual multinomials and S1, on the one hand,
and the g-multinomials and S, on the other, become particular cases of a general
correspondence principle (Proposition [4.11).

o[2](v) = (0.50)

Proposition 0.8. Let g be a combinatorial n-cocycle. Suppose that, for every X, ..., X, €
Ob S such that X; --- X,, € Ob S, there exists a measurable function

fIXa X ] T Xy -+, X)) = R

with the following property: for every sequence of counting functions {v,}u>1 C €x,.-x,
such that
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1. ||vy]| = oo, and
2. forevery z € Ex,..x,, vu(2)/||Vn|l = p(z) as n — oo
the asymptotic formula

gIXal. 1 Xul(v) = exp(llvall® fIXal...|Xn](p) + o(llvall®))

holds. Then f is a n-cocycle of type a, i.e. f € Z"(S, Fn(I1)).

0.8 Differential entropy and relative entropy

According to Shannon [78], the analogue of for R"-valued random variables
with densities is

HXI ) == [ feoinfwd. 051)

where we have highlighted the dependence on a variable X, the Lebesgue measure
AnonEx =R", and the density f with respect to this measure. This function is called
differential entropy. Shannon points to some apparent differences with the discrete
case:

In the discrete case the entropy measures in an absolute way the random-
ness of the chance variable. In the continuous case the measurement is
relative to the coordinate system. If we change the coordinates the entropy
will in general change [...] the new entropy is the old entropy less the
expected logarithm of the Jacobian. In the continuous case the entropy
can be considered a measure of randomness relative to an assumed standard,
namely the coordinate system chosen with each small volume element
dxi---dx, given equal weight. [...]

The entropy of a continuous distribution can be negative. The scale of
measurements sets an arbitrary zero corresponding to a uniform distri-
bution over a unit volume. A distribution which is more confined than
this has less entropy and will be negative.

Kolmogorov [52, p. 16] even says that “It is well known that [the differential entropy]
does not have a straightforward meaningful interpretation and is even noninvariant
with respect to transformations of coordinates in the space x1, .., x;,” but in fact
such meaningful interpretation exists and its related to asymptotic concentration of
measure.

We prove in Chapter [12| the following version of the Asymptotic Equipartition
Property. We do not claim originality here (it is proved as [20, Thm. 8.2.2]). Let
(Ex, B, u) be a o-finite measure space and {X;};ew a collection of iid (Ex, B)-valued
random variables, each following a law p with density f := dp/dA with respect to
tt. The (relative) entropy is defined by/|

d
Su(p) = E, (— In ﬁ) =- / £()In f(x) du(). 0.52)
supp

2This generalizes the entropy already treated in an article by Csiszar [21]], that discusses its approx-
imation by means of discretizations of the variable X.
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Theorem 0.9 (Asymptotic Equipartition Property). Suppose that S, (p) is finite. For
every 6 > 0and n € N, set

Then,
1. for every € > 0, there exists ng € N such that, for all n > ny,

P(a)) > 1-e

2. foreveryn € N,
ue"(43") < exp{n(Sy(p) +0));

3. for every € > 0, there exists ng € N such that, for all n > ny,

(AL 2 (1 - &) exp{n(Su(p) - 6)}.

When Ex is a countable set (possibly infinite), and p the counting measure, a
probability law p on Ex is always absolutely continuous with respect to p, and
its density is a function p : Ex — [0,1] such that },cr, p(x) = 1, that is usually
taken as the definition of a probability law in the discrete Case Then S,(p) is the
familiar expression — ., p(x)logp(x) and the previous theorem corresponds to
Proposition[0.4} Note that it is also possible to consider any multiple of the counting
measure, v = ay, for @ > 0. In this case, the probability density dp/dv sums o™
and S,(p) = Su(p) + In(a). Hence, the “absolute character” of the discrete entropy is
illusory, it also depends on the reference measure.

If Ex = R", p is some Lebesgue measure, and p a probability law such that
p < u, then the derivative dp/du € L}(R") corresponds to the elementary notion
of density, and the quantity S, (p) is the differential entropy introduced by Shannon.
As Shannon already explained, a coordinate transformation changes the reference
measure. The expected value of the Jacobian gives the necessary factor to correct the
volume estimates. For example, if T is an invertible linear transformation,

y®”(TAg")) ~ exp(nS,(p))(det T)" ~ (det T)”‘u®”(Ag")). (0.54)

For any Ex, if u is a probability law, the expression S,(p) equals —Dkr(pl|u),
where Dk is the Kullback-Leibler divergence.

In the same vein, Section[12.2]explains how the divergence of entropy to —co when
p approaches a singular measure is necessary for the consistence of this theorem.

0.9 Cohomology of continuous variables

Let (K, &) be a simplicial information structure as defined in Section each set
S € ObK can be viewed as a random variable Xs. Suppose moreover that each space
(Ei, B;) is second-countable, in such a way that each B(E,) equals (X)._, B;, and
the choice of a o-finite reference measure p; for each {i} € ObK induces a product

2% Also because p(x) = p({x}), which does not make sense in the continuous case.
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measure [ = (X)ieA pi on (Ea, B(Ea)) for any other A € ObK. This example is
general enough to cover the discrete systems already treated (when each E; is a finite
set and y; is the counting measure), and also new examples: Euclidean spaces with
their Lebesgue measure, and more generally products of locally compact Hausdorff
topological groups endowed with a Haar measure.

We consider measures p € I1(S) that are absolutely continuous with respect to
the corresponding us, with density f,. This gives the well known formulae for
marginalizations under 7mr,s : Es — Et by partial integration of the densities,

fo = frarsp = /E fs(xr, xs\7) dpts\r(xs\7)-
S\T

However, conditioning introduces several complications, since p| Xxr=t is a law on Eg
supported on the hyperplane { Xt = t}:

fo
Jeo foe O dpsir(x)

Plxr=t = psnT ® O1=¢, (0.55)

This forces the consideration of a larger class of measures closed under conditioning,
which requires a careful study of disintegration carried out in Section

We introduce a functor 2 that associates to each S € Ob K the set of probability
measures absolutely continuous with respect to a given reference measure,

2(8)={(u,p) | p €TIS), u = ps ® 6574 for some
S’, §"disjoint such that S = S"US”,and p < u}, (0.56)

and then sets .7, (S) of measurable nonnegative functions ¢ : 2(S) — R. For every
T € Ssand ¢ € .7,(S), set

(T.@) (s ® dsr=s, p) = / P(us\T ® O/=r ® Osr=sr, py) dT.p(t), (0.57)
Er

where p; is the conditional measure, supported on {T = t}; it has a density with
respect to the reference measure pg\r ® 01/ ® Ogr=s.

This equation defines an action of the corresponding monoid .#x on the set .7, (S).
To treat signed functions, additional conditions must be imposed to guarantee the
convergence of the integral. For instance, this can be accomplished restricting 2(S)
to gaussian laws Z2gauss(S) and using the preferred basis of each Eg to parametrize
these probabilities by their mean and variance (m, X). Define .ZGauss(S) as the ad-
ditive abelian group of measurable functions ¢ : ZGauss(S) — R that grow at most
polynomially in the variable m; this implies that the integral in (0.57) converges and
determines a functorial action of .%s and &% on FGauss(S).

In Chapter[10]we compute the information cohomology of these simplicial struc-
tures, restricting to modules .#(S) under the action (0.57), for instance FGauss(S).
We can prove in general that 0-cochains must be constants and they all satisfy the
0-cocycle equation. We then find an alternative characterization of 1-cochains, as
collections ® = {(f)S}SEQbK such that each (ps is a real-valued function of the prob-
abilities p on Eg absolutely continuos with respect to the measure s, subject to a
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simplified 1-cocycle condition. The general properties of disintegrations imply that
$¢°(p) =E, (— In %) defines a 1-cocycle.

The case FGauss(S) is explicit enough to characterize all the 1-cocycles. First we
determine the 1-cocyles that depend only on the variance X.

Proposition 0.10. Suppose that K is connected and all its vertices belongs to a 1-cell. A
collection of C? functz’onCD = {¢° : PD(S) — R}ses defines a 1-cocycle if and only if
there exist real constants a and {k;}ic1 such that, for every S € S,

¢°(Z) = aln(|Z]) + ) ki. (0.58)

i€S

It is well known that the differential entropy of a gaussian law p on Es with mean
m and covariance L is

hs(p) _ 4 (logb(Zne)) 1

> + > log, (1Z]), (0.59)

which is a particular case of (0.58).

The characterization of general 1-cocycles is much more involved and requires
several results from distribution theory. We prove that they also include the moments
and their generalizations. We say that ¢(m, o) is a generalized moment function (gmf)
associated to the family ¢ = {g. : R — C}.50 of locally integrable functions if
¢:(x) exp(—ax?) is integrable for every a > 0, and if

2
M) dx (0.60)

V27(o — ¢) Rgs P 2(0—¢)
whenever 0 > ¢. We write ¢(g) to highlight the dependency on the family g. Usual

moments of a univariate normal of parameters (1, ¢) are an example: gi (m) :=

Z—nl2
My(m,e) = V;T_ngz e dz and @(m,o) = gr(m,c). Remark that My is a
constant.

(P(m/ G) =

Theorem 0.11 (Structure theorem of 1-cocycles, simplicial case). Suppose that every
0-cell of K belongs to a 1-cell. If ¢S is a 1-cocycle, then there exist generalized moment
functions {@(f')}ic1, and a constant a € R such that

¢°(m,T) = " d(mi, 0l f) + aIn(|Z)), (0.61)

ieS

Hence we obtain an infinite number of 1-cocycles. This can be explained by
the very particular role played by the coordinate axes used to define the simplicial
information structure. Since this basis was introduced just for convenience, the result
motivates the introduction of more general examples of information structures that
we call grassmanian categories.

A Grassmannian information structure is defined by a poset S of subspaces of
a vector space E, ordered by inclusion, that is supposed to contain E and be closed

¥The positive definite matrices PD(S) € M|g|(R) are supposed to have the standard differential
structure.
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under conditional intersection i.e. if V,WW € Ob S and there exists Z € Ob S such
that Z c Vand Z c W, then V N W is also an object of S. We also introduce a
functor & : S — VectSpaces that associates to each vector subspace V the quotient
space Ey := E/V and to every arrow V — W (i.e. V C W) the canonical projection
"V . Ey — Ew. The pair (S, &) is an information structure (each vector space is
supposed to come with its Borel o-algebra).

To every V € Ob S we can associate the set .y := {W € ObS |V — W }, thatisa
monoid for the intersection (W, W) — W N W’. Asbefore, let <7, denote its induced
real algebra; an arrow V' — W gives an inclusion <y < 4/, i.e. a presheaf. The
pair (S, &7) is a ringed site.

We introduce a precosheaf that associates to every V € Ob S the set .#y of affine
subspaces of Ey or more generally a subset .4y C .#y that represent supports of
probability laws; the corresponding morphisms A4 (V") : A4y — Ay are induced
by projections. In view of conditioning, we suppose that .4 is closed under pro-
jections, and also that it contains the fibers of the projections and every nonempty
intersection of its elements. We also introduce a functor .# that combines these sup-
ports with a possible choice of Lebesgue measure: .2y contains pairs (A, 14) with
A € v and A4 Lebesgue measure on A; this has the structure of a principal bundle
for the group (R7, X), that acts on the measures by multiplication.

Section [11.2|studies the moments of Gaussian laws in a basis-free manner, which
differs from standard presentations. A Gaussian law p is a probability law supported
on an affine space A(p), absolutely continuous with respect to a Lebesgue measure A;
the density G(p, A) is such that —D% In G(p, 1) is anon degenerate symmetric positive
bilinear form B. The covariance X if defined to be the inverse of B; it is proved to be
independent of the choice of A. The mean is defined as usual, M(p) = E, (X).

Additional choices are needed to introduce the trace and the determinant. A
choice of Lebesgue measure induces a determinant det,. The trace requires an
isomorphism between the tangent space of A, denoted T(A), and its dual. This
implies that the moment of order two of a gaussian law on Ey depends on the choice
of a metric on this space.

We introduce a sheaf .# such that .7y are the measurable functions on the proba-
bility laws &y supported on some space of .41/, that grow at most polynomially in the
mean M(p). The action introduced in the simplicial case is generalized straightfor-
wardly to this setting. Proposition[11.24]establishes p — dim A(p) defines a cocycle
for this module of coefficients; this is implied by the rank theorem.

For every V € Ob S, the differential entropy Sy is a function of a probability p and

a reference measure A on its support given by the formula Sy (p, 1) = — / log g—g dp.
It does not belong to .#v, since it depends on the choice of reference measure A: in
fact, S(p, CA) = S(p, A)+log C. To formalize this variation in a functorial way, remark
that the choice of an euclidean metric on E induces identifications E/V = V+ and
inclusions of every affine subspace A C Ey in E, hence a choice of Lebesgue measure
AQ(A) on every support that we call a metric trivialization of . We introduce the
vector space 2" of functions of a probability p on Ey and a metric trivialization Ag
of %y such that

Vp € Zv,VQ, Q" euclidean metrics on E,
¢(P: /\Q’) = fP(P/ /\Q) + lnD(T(A(P))/ Q/ Q/)/ (062)
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where D is a “discriminant” function that satisfies

D(B;Q,Q")D(B;Q’, Q") = D(B;Q, Q")

for any triple of metrics Q, Q’, Q” and any vector space B C Ey. Forany (: V — W
in S and ¢ € Zy, the equation (W.¢)(p, Ag) = </A(Ly,p) o(plw=w, Ag) dt.p(w) defines a
natural action of .y on Zy.

The collection of function {Sy }ycops determines a 1-cochain in information co-
homology with coefficients in 2", that in fact is a 1-cocycle because it obeys the
continuous version of the chain rule. In sufficiently non-degenerate situations the
dimension and the entropy are the only 1-cocycles.

Theorem 0.12. The cohomology H'(S, 2°) over a sufficiently rich grassmannian information
structure is the space of functions

Dy (p) = —aS(p) + b dim(A(p)), (0.63)
where a and b are arbitrary real constants.

For gaussian probabilities, the fact that differential entropy is a 1-cocycle is equiv-
alent Schur’s determinantal formula

det(C D

A B
) = det(A) det(D — BA™!C); (0.64)
this recurrence relation is thus comparable to the chain rule for entropy or the
multiplicative relations for multinomials, discussed in Sections and
The moments, in turn, appear as certain locally invariant natural transformations.
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Chapter 1

Information structures

1.1 Random variables and probabilities

This first section contains some definitions and notations coming from elementary
probability theory. For the sake of completeness, we also recall the definition of
information structure given in [10], although we work with a generalization, introduced
in Section some context and elementary definitions; it also fixes some notations.
It can be skipped by a reader already familiarized with probability theory.

An algebra of sets § over a set () is a collection of subsets of Q such that:

1. @ and Q are in §;

2. & is closed complementation: if A € §, then A°:=Q\ A €;

3. § is closed under finite unions: given any A, B € ¥, onehas AU B € .
It is called a o-algebra if it is also closed under countable unions, and the pair (Q, )
is then called a measurable space. When the algebra is finite, its elements are all the
possible unions of its minimal sets (in the sense of inclusion), called atoms; the atoms
are said to generate the algebra. Given any collection € of subsets of (2, the o-algebra
generated by €—denoted by ¢(€)—is the smallest o-algebra that contains €.

Let Q) be a set representing the collection of all possible ‘elementary events’
of a given experience. For us, a random variable is a function X on Q taking
values in a measurable space (Ex, €x), that corresponds to the possible outputs
of a measurement; in applications, the codomain is usually (R", B(R")) or a finite
set E with the o-algebra ‘B(E) of all its subsets Random variables are also called
observables.

Every random variable X defines a o-algebra of subsets of Q, given by X~1(€x).
This is usually called the algebra induced by X, we shall denote it 0(X). When
a(Y) c 0(X), we say that o(Y) is coarser than ¢(X), or even that Y is coarser than X;
alternatively, 0(X) is finer than (Y or refines o(Y).

In Part[ll, we suppose that each random variable takes a finite number of different
values, Ex = {x1, ..., x,}; to emphasize this we talk sometimes about finite random
variables. Accordingly, we set (Ex, B(Ex)) as codomain of X, and we drop ‘B(Ex)
from the notation. Continuous variables reappear in Part

1Tt is common to fix a o-algebra & over Q and define a random variable as a function X : (Q2, &) —
(Ex, €) that is §/€E-measurable, i.e. for all S € €, X~1(S) € §. Here, we take a different point of view:
an arbitrary function X to a measurable space defines a o-algebra ¢(X) on Q.
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When the variables are finite, the subsets { w € Q| X(w) = x} € Q, for x € Ex,
are the atoms of 0(X), and they form a partition of the space Q] Conversely, to any
finite partition {Qy,...,Q,} of Q, one can associate a random variable Z?:l aixa;,
where xq, denotes the indicator function and the numbers {ay,...,a,} C R (or any
ring) are all different. Two such random variables can differ in the values they take,
but both are equally good to “discriminate” between elementary outcomes. Two
random variables are equivalent for us if they define the same partition of Q). The
terms random variable” and "partition” will be used interchangeably throughout Part
Iand II.

We define now a category Obsin (Q2) of finite observables, whose objects are all the
finite partitions of (). There is an arrow between two objects X and Y, given by a
surjection m : X — Y, whenever Y is a refinement of X (this means, o(Y) C 0(X));
each subset B € Y equals Ujcq-1(3)A. In this case, X discriminates better between
elementary outcomes. The category Obsgn((2) has a terminal element: the trivial
partition 1 := {Q}. When Q is finite, it also has an initial element: the partition
by points, that we denote by 0. The categorical product X X Y of two partitions X
and Y is the coarsest partition that refines both. This product is commutative and
associative. Moreover, given any element X, we have XX = X (idempotency), 0X = 0
and 1X = X.

Definition 1.1. A classical, concrete and finite information structurd’| S is a full
subcategory of Obsgin(Q) that satisfies the following properties:

1. The partition 1isin Ob S.

2. forevery X,Y,ZinObS,if X —» Y and X — Z, then YZ belongs to S

A big family of examples can be obtained as follows: let Q) be a set and = =
{Si : Q — E;|1 <i < n} an arbitrary collection of finite variables. Any subset
I :={iy,..., ik} of [n] = {1, ..., n} defines a new partition by means of the product
already described, S; := S;, ---S;;; by convention, Sy := 1. Let W(X) be the full
subcategory Obsgn(Q2) with objects {S; | I € [n]}. Since W(L) contains all the
products by construction, it is an information structure. Algebraically, W(X) has the
structure of a commutative idempotent monoid, with identity 1.

Suppose now that Q = [[;¢[,) Ei, where |Ej| > 2 for all i, and S; : Q — E; is
the i-th canonical projection (i = 1,...,n). Under these assumptions, S; # Sj, as
partitions, whenever I # |, and S; — S implies that | C I| In consequence, there
is an injection ¢ : A([n]) — Ob(W(X)), I — Sj, where A([n]) denotes the abstract
simplex of dimension n — 1 (see Appendix [B). Let K be a simplicial subcomplex
of A([n]); by t, it determines a full subcategory of W(Z), to which we add Sy as a
terminal object, constructing this way a new category S(K), that is an information

?In the sequel, { w € Q| X(w) = x } is simply written {X = x}.

3We simplify the name to ‘concrete structures.’

4It would be simpler to take S cartesian. But we already know that, in quantum mechanics, some
joint measurements are incompatible. We would like to describe the classical and quantum cases with
the same axioms; in the classical case, this just adds flexibility.

SProof: for any I C [n],

a(81) = {571(4) | A e (X €}
i€l

and every set Sl_l(A) has the form [;¢[,) F; with F; = E; whenever i ¢ I. If ] ¢ I, say j* € ]\ I, then in
general S]-*(Sl_l(A)), with A € ®je] €;, will differ from E;, proving that Sj_l(A) is not in o (Sy).
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Figure 1.1: Identification of A([3]) as the nontrivial part of W(S1, Sz, S3). We have depicted
also the barycentric subdivision, that has one point for each variable.

structure too. In fact, the diagram
S J < S I S L,

means that | and L are faces of I (for this, we need |E;| > 2; see Remarkbellow);
therefore, ] U L is also a face of I, that belongs to K by the simplicial condition;
J UL € K implies that S;ur = S§7S1. € Ob(S(K)).

Example 1.2. Take Q = {0, 1}3, and consider the projections S; : Q — {0, 1} such that
(x1, x2, x3) ¥ x;, for i € {1,2,3}. Taking all the possible joint variables, we obtain the
monoid depicted in Figure However, if we forbid the maximal face $15,53, we
obtain a new information structure, which is not a monoid. This could be linked to
physical constraints related to measurements.

Remark 1.3. Bennequin and Baudot [10] define the structures S(K) for any collection
of finite variables X := {S; : Q — E;|1 < i < n }. However, these structures do not
satisfy in general the axiom (2)) above: for instance, let Q2 be {0, 1}%; X;, the projection
on the i-th component (i = 1,2), and X3 = {{(0,0)},{(0,0)}}. Define K as the
simplicial subcomplex of A([3]) with maximal faces {{1,2}, {3}}. The product X;X»
is the atomic partition, that refines all the others, while some products (like X;X3)
are not in S(K).

A probability law on general measurable space (€2, &) is a function P : § — [0, 1]
such that:

1. P(Q) =1.

2. Given a collection of pair-wise disjoint sets {A; }ien C &,

Ja
i

This property is called o-additivity.
When § is finite, we denote by I1(¥) the set of all possible laws on (Q, ¥). If &
has N atoms, say {a1, ..., an}, then the probability laws on (€, §) can be identified

P

= ZP(AZ-). (1.1)
i=1
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with functions p defined on the atoms, such that Zﬁl p(a;) = 1. In this sense, I1(¥) is
a simplex embedded in RN as such, can be considered a measurable space in itself
(this is important in Section . For convenience, we identify each vertex 6; of I'(%)
with the corresponding atom a;, such that 6;(2;) = 1. The measure 6; is called the
Dirac (0-)measure on a;. More generally, we shall consider a simplicial subcomplex
of Il(%F), denoted by Z5.

Classically, the law of a random variable X : (Q,§,P) — (Ex, €) is the image
measure X[P] = Po X~! : € — [0,1]. Since a law is completely determined by
the restriction of P to o(X), the set I1(0(X)) contains all possible laws for X. Given
n : X — Y in Obsgn(Q), define the application 7. : I1(0(X)) — II(o(Y)) that
associates to any law P on (Q, (X)) a new law m.P on (Q, o(Y)) given by

7.P(By) = P(By), for all By € 6(Y) C o(X). (1.2)

This is called marginalization by Y. We write Y, instead of 7. when 7 is clear from
the context. Explicitely, for each y € Y,

nP(y)= > P (1.3)

xen1(y)

Proposition 1.4. Let X, Y be variables on 3, m : X — Y. If 2x is a simplicial subcomplex
of Il(0(X)), then 1.2x is a simplicial subcomplex of I1(c(Y)).

Proof. Remark that 7. maps the convex combination P = }, g, A(x)0, to the convex

combination 7.P = 2}, cy (erﬂq(y) )\(x)) 0y. Let 0 be a simplex of Zx, with vertices

{6x,,...,0x,}. Each x; refines the corresponding atom 7t(x;) € Y; clearly, m.(0y,) =
On(x)- Let {y1,...,ym} be the set of images of {x1,...,xx} under n. The map m.
sends convex combinations of {6y, ..., 0x,} to convex combinations of {6,,..., 0y, },
and hence the simplex ¢ = [0y, ..., 0x,] to the simplex [6,, ..., 0y, ]. Given a face p
with vertices V' C {6, ..., 0y, }, there is a corresponding face o’ of o with vertices
L (V)N{6 x1s---s Ox, }, thatisnecessarily in 2x by the definition of simplicial complex,
and m.(0”) = p, showing that p is in 7. 2x. o

Given an information structure S, a probability functor 2 : S — Sets is a rule
that assigns to each variable X € Ob S a simplicial subcomplex of I'l(¢(X)), denoted
simply 2x, and to each arrow of refinement 7 : X — Y, the simplicial mapping
2(n) : Zx — 2y given by the marginalization P +— m.P.

Proposition [1.4| shows that we can obtain examples in a standard way: given a
measurable space (Q, ¥) with & finite, and a family of measurable functions on it
(forming an information structure), fix initially a subcomplex 25 of I'l() and, for
each variable X, define 2x := X.Z5 C [1(0(X)).

Another fundamental operation is conditioning. Let X : (Q,&) — Ex be a
random variable, P a law of I1() and P(X = x) # 0 for certain x € Ex. Then, it is
possible to define a new probability law P|x—yx on (Q, &), called conditional law and
given by

Plx=x(B) = P(B|X = x) := P(BP?;)E :)x})

Proposition 1.5. With the previous notation, if P belongs to a simplicial subcomplex 2 of
I1(F) and P(X = x) > 0O, the law P|x=y also belongs to 2.

(1.4)
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Proof. Suppose that the minimal face o that contains P has vertices V = {04, ..., 04, }
(maybe just one): this means that P(a) > 0 for all 2 € V and P(a’) = 0 for all other
atom a’. The set V' := {g atom of & | P(a N {X = x}) > 0} is contained in V, because
P(an{X = x}) < P(a). The minimal face that contains P|x-, is that of vertices V’,
which is a face of ¢, and therefore contained in 2. O

A probability family 2 and an information structure S are mutually adapted, if
the conditioning of any law in 2 by an element of S belongs to 2. In particular,
simplicial families are adapted: if X is any variable coarser than Y and 2y is simplicial
complex, Proposition (applied to § = o(Y) and 2 = Zy) implies that P|x=
belongs to 2y (when it is well defined).

1.2 Category of information structures

We introduce here the general notion of statistical space motivated in the Introduc-
tion. It is flexible enough to cover all the situations where information cohomology
has been studied: discrete and continuous classical random variables as well as finite
dimensional quantum systems.

Definition 1.6. An information structure is a pair (S, &), where S (‘the variables’) is
a small category such that
1. S has a terminal object, denoted 1;
2. S is a skeletal partially ordered set (poset)[
3. for objects X,Y,Z € Ob S, if Z — X and Z — Y, then the categorical product
X A Y existsf]
and & : X — (Ex, Bx) is a conservative?®|®’| covariant functor (‘the possible values’)
from S into the category Meas of measurable spaces, that satisfies
4. E1 = {+}, with the trivial o-algebra By = {0, E1};
5. for every X € ObS and any x € Ex, the g-algebra Bx contains the singleton
{x};
6. for every diagram X «X XAY —I5 Y the measurable map Exny —
Ex X Ey,z = (x(2), y(2)) := (11.(z), 0.(z)) is an injection.

To simplify notation, we usually write 7. or even 7 instead of &(m).

Even if the axiom (3)) in Definition [1.6|is the obvious analogue of the conditional
existence of products imposed in Section only (6) allows us to recover the good
properties of the product of partitions. See the proof of Proposition

The structure (S, &) is said to be bounded if the nerve of S has finite dimen-
sion. Unbounded structures appear, for instance, in the study of Markov chains, as
projective systems of measurable spaces, see [71, Ch. 8].

The structure is said to be finite if all the sets Ex are finite. In this case, Ex
corresponds to the atoms of By, and the algebra can be omitted from the description,

¢Being a poset means that, for any objects A and B, Hom(A, B) has at most one element. The poset
is skeletal if it has no isomorphisms different from the identities: if A # B and A — B, then B /> A.

"This could be called “conditional meet semi-lattice”.

8Given a functor .# : S — Sets, we denote its value at X € Ob S by .#(X) or .Zx.

Conservative means that, if &(f) is an isomorphism, then f is an isomorphism. Since S is skeletal,
this condition implies that, for every arrow m : X — Y such that X # Y, the measurable map
M. := & (1) : E(X) — E(Y) is not a bijection.
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and we denote the structure by (S,E). For example, probabilities on Bx are in
bijective correspondence with maps p : Ex — [0, 1] such that )}, r, p(x) =1, etc.

All concrete information structures S, as defined in Section are examples of
finite generalized information structures, taking E to be the identity functor. In the
general case, we still call X € Ob S a partition (also: variable, observable) and the
elements in Ex (denoted also E(X)) are interpreted as the elements of this partition (or
the possible values of the variable). In general, we can transfer to general information
structures all the notations and notions from the previous section. For example, the
set-theoretical notation {X = x} simply means “the element x contained in Ex” and
{X = x,Y = y} should be interpreted as the element z of Ex,y mapped to x by
Ex,y — Ex and to y by Ex,y — Ey (if such z does not exist, write {X = x,Y = y} =
0); the uniqueness of z is guaranteed by axiom (6). As before, we write XY := X A Y
and refer to this as the product of observables.

In the concrete case, for each f : X — Y in S, the map map &(f) is a strict
surjection, but we do not suppose this in general. Sums over the empty set equal
zero, and products over the empty set equal one; with this conventions, expressions
like X e (p)1(y) 4(x) give the expected results.

The definitions and propositions in this section are also valid for infinite struc-
tures, but a more detailed study of these is postponed to Part[[V}

The definition of W(X) introduced in Section [1.1|is more natural in this context.
Let I be a finite set, and A(I) be the category of subsets of I, with arrows I — |
whenever | C I. Set S = A(I). Let & = (E;, B;) be arbitrary measurable sets such
that |E;| > 2, and associate to I = A;¢;{i} the product measurable space [];c; &;; the
maps &(mnt) : £(I) — &(]), for each 7 : I — ], are the canonical projectors. There is
no need to consider all the abstract simplicial complex A(I), S could be a simplicial
subcomplex K of A(I), and & the restriction of the functor just defined; we obtain in
this way a simplicial information structure S(K).

Information structures form a category.

Definition 1.7. Given two structures (S, &), (S’, '), a morphism ¢ = (¢o, ¢¥) :
(S,8) — (S, &) between them is a functor ¢p9 : S — S’ and a natural transfor-
mation ¢* : & = & o ¢, such that
1. (1) = 1;
2. if X A'Y exists, then ¢po(X AY) = ¢o(X) A po(Y);
3. for each X € Ob S, the component qb*;( 1 &(X) = &'(¢po(X)) is a measurable
map.

Given¢ : (S,&) = (S',&")and ¢ : (', &’) — (8", &”), their composition ¢ o ¢ is
defined as (¢g o ¢, I,D# o q,‘)# 1 & = & o1Pg o o) (it is easy to verify that ¢ o ¢ is also
a morphism). If there is no risk of ambiguity, we write ¢ instead of ¢y.

We denote by InfoStr the category of information structures and its morphisms
in the sense just defined.

Note that, if X A Y exists, then ¢o(X A Y) — ¢po(X) and ¢po(X AY) — ¢po(X), and
thus the product ¢o(X) A ¢o(Y) exists too, in virtue of Definition [1.6}-(3).

This simple definition of a morphism between information structures and the cor-
responding construction of products and coproducts is one of the main motivations
for this generalized setting.

Proposition 1.8. The category InfoStr has finite products and coproducts.
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Proof.
Products: Given information structures (S1, &1) and (S», &), we introduce first the
ordinary categorical product S = S;XS;: its objects are all the pairs (X1, X») with X; €
ObS; (i = 1,2); there is an arrow (711, 13) : (X1, Xp) — (Y1, Y2) whenever 7; : X; —
Y;inS; (i =1,2). Let & : S — Sets be a functor X — &(X) = (E(X), B(X)) defined
by E({(X1, X2)) = E1(X1) X E2(X2) and B((X1, X2)) = B(X1) ® B(X2), the product o-
algebra (see [19, Sec. 5.1]). The projections are simply given by &({r1, m2)) = &1(m1) X
&3(m2), which comes from the product in Sets. The pair (S, &) is an information
structure:

e S is a small category, with terminal object (1s,, 1s,);

e Sis a skeletal poset: for (X1, Xa) # (Y1, Y2),

Hom((Xl,X2>, <Y1, Yz)) 0o Xi1—>Yiand Xo - Vs
C)Yl 7L>X101'Y27L>X2

The last equivalence, because both arrows cannot be identities. Therefore,
Hom((Y1, Y2), (X1, X2)) = 0;

e Given(Xq, X5), (Y1, Y2)and (Z1, Z;) suchthat (X1, X) — (Y1, Ys)and (X1, X») —

(Z1,7Z5), then Y; il X; i Z; in S; (i = 1,2). By the conditional exis-
tence of productsin S;, Y; A Z; exists (i = 1,2) and evidently (Y1 A Z1, Y2 A Z3)
is the infimum of (Y1, Y») and (Z1,Z,) in S,

(Y1,Y2) A{Z1,Z2) = Y1 ANZ1,Y2 A Z>).

e E((1s,,1s,)) = {(+,*)}, with trivial algebra;

e Fori =1,2and any x; € E(X;), the singleton {x;} is an element of B(X;); so the
product {x1} X {x2} = {(x1, x2)} belongs to B({X1, X»)).

e The argument above gives the following diagram in S:

(11, 1y, (nzy,mz,

) )
<Y1/ YZ) — <Y1 A Zl/ YZ A ZZ> <le ZZ>/

where Y; & YiNZ; L Z; isthediagram of the productin§; (i = 1, 2).
Given (]/1/ yZ) € E(<Y1/ Y2>) and (er ZZ) € E(<le ZZ>)/

(mtyy, Tv,)s (Y1, y2) N (Tizy, z,) o (21, 22)
= {ry, (1) X Ty, (y2)} N iz, (z1) X 1z, (z0) )
= {ny,7 (1) Nz, Mz} x s (v2) Nz, (z2))

Thus [(1ty,, 70y,), (11, y2) N (z,, Tz,)s (21, 22))] < 1
For each i € {1,2}, we define functors 7ts; : (S,&) — (S;, &) such that 7ig,
maps each (Xj, X») to X;, and each morphism (fi, f) to f;. At the level of &, let
ng 1 81(X1) X £3(X2) — &i(Xi) be the canonical projection. These formulae define
mérphisms of information structures. We claim that S, with the projections

(S1,81) = (S,8) —25 (S, &),
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is the product of (S1, &1) and (Sz, &) in InfoStr, written (S1, &1) X (Sz, &>), unique up

to unique isomorphism. In fact, given (S1,41) «— (R, .#) —— (S2, &), define
(fi, f2) : (R, F) > (S,&) as

(fi, f220 R—S
R = (fi(R), f2(R))

for any object or morphism R; given an variable X € R, the map qb?(  F(X) -
E((f1(X), f2(X))) = &1(f1(X)) x &(f2(X)) is the product fg( X f2§( of the maps fz-#;( :
F(X) = &i(fi(X)). Evidently, rts, o (f1, f2) = fifori =1, 2.
Coproducts: Given information structures (S1, &1) and (S, &2), define a category S
such that ObS = ObS; LOb S, /15, ~ 1s, and A — B in S if and only if A — B in
S1 or in S;. Define a functor & : S — Sets such that £(X) = &;(X) if X € Ob S;. The
pair (S, &) is an information structure: axioms (2), () and (6) in Definition [1.6]are
verified locally in S or S,.

Injections ¢; : S; — S are defined in the obvious way: (;(A) = A for A € Ob S; or
A € Hom(S;); the corresponding maps Ll‘?( are identities. If

(81, 6) — R, F) «—— (52, 5) ,
define

<f1/f2>0 :S—R

A fi(A) if Ae€ObSqsorAeHom(Sy)
f2(A) otherwise ’

and, if X € ObS;, set (f1, f2>§< = ffg( By construction, (fi, f2) o t; = fi. Therefore,
(S, &) is the coproduct of (S1, 61) and (S2, &) in InfoStr, denoted (S1, &1) [1(S2, &3),
which is unique up to unique isomorphism. |

Remark 1.9. If (S1, &1) and (S, &2) are bounded structures, their product and co-
product are bounded too. In fact, if the dimension of Nerve(S;) is N; (i = 1,2),
then the dimension of Nerve(S; X S;) is N1 + N and that of Nerve(S; [[ S2) equals
max (N1, Np). Similarly, if both are finite, their product and coproduct is finite too.

Remark 1.10. If each measurable space (E(X), B(X)) appearing in S; and S, verifies
that E(X) is second countable topological space and B(X) is its Borel o-algebra, then
each algebra B(X;) ® B(X2) on E(X;) X E(X2) equals the Borel o-algebra on this
space [93, Prop. 9.1].

Example 1.11.
(1,1)

/ \
= (1,0) (0,1)
/

N

X

S — M
S — M

(0,0)
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and

1 1 1

0 0 0 0
1.3 Probabilities on finite structures

We introduce now probabilities on finite information structures. Continuous random
variables are treated in Part

Let S be a finite information structure and I'T : S — Sets a functor that associates
to each X € Ob S the set

(X):={p:Ex = [0,1]] . p(x)=1}, (15)

xe€Ex

of probability laws for X, and to each arrow 7t : X — Y the natural marginalization

VP e 9x, Yy e By T(MP)y)= >, P(x). (1.6)

xen Hy)

More generally, a probability functor 2 on an information structure (S, E) is a functor
2 : S — Sets such that, for every X € Ob S, the set 2x is a subcomplex of I1(X) and
each arrow 7 : X — Y is sent to 2(n) = I1(n)| gy, written simply 7. or even Y, to
simplify the notation.

We adopt the probabilistic notation, in the following sense: if X,Y € ObS,
nyx : X = Y in S, Px € Zx, and for y € E(y), the notation Px(Y = y) means
P(T(yx:l(y)) = nyx.P(y); similarly, if Y X x X, 7 s a diagram in S, the
notation Px(Y = y,Z = z) = Px({Y = y} N{Z = z}) means Px(nyx; ' (y) Nrizx:'(2)),
which equals Px({myx, mzx); H(w(y, z))) for the unique w(y, z) sent to (y, z) by the
injection in Definition [I.6}(6).

Given an arrow 7izx : X — Z and a law P € T1(X), the conditional law P|z_, is
defined by
P(xn{Z=2z})) Plnn;i(z)

P(Z=z)  P(Z=2)
We say that the functor 2 is adapted if it is stable by conditioning: for every arrow
X — Zin S, every law P € 2x, and every z € Ez, P|z—, € Zx.

Conditioning commutes with marginalizations: given arrows myx : X — Y and
TtzYy Y —>Z ’

Plz=z(x) :=

(1.7)

P({x} n ;% (2)) ~ ern;%((y) P({x} N 1;}(2))

X Pl = D)

=) P(Z = z) B P(Z = z)
xemy 5 (Y

_ P(ny5(y) Ny (755 (2))) B nfXP(y N ny,(2))
- P(Z = z)  nYXp(Z =z)

= (1% P)lz=:(y)-

Let 2, be a probability functor on (S;, E;) (i = 1,2). We define:
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1. 21 X 2, :S1 xSy — Sets as a functor that associates to each object (X1, X») €
Ob S1 X S, the set of laws:

XD ((X1, X2)) = { P : E1(X1)XE(X2) — [0,1]|3P1 € 21(X1), 3Pz € 22(X2)
such that P(x1, x2) = P1(x1)Pa(x2) }. (1.8)
If two pairs (P1, P2), and (P}, P}) correspond to the same law P : E1(Xj) X
E(X2) — [0,1], we can marginalize one of the components under the arrow
n1 : X1 — 1g, to conclude that P, = PJ; analogously, P; = P{. Therefore,
what we call 21 X 2,((X1, X»)) is in bijection with the usual product of sets
21(X1) X 25(X5); we write P = (Pq, Py).

(m1,m2)

For each morphism (X1, X2) — (Y1, Y2) the induced map

2({m1,m2))
21X D((X1,X2)) T = 21X 2((Y1, Y2))

(see Equation (1.6)) is compatible with marginalizations: for every (yi, y2) €
E((Y1,Y2)),

[2((m1, ))(P1, Py, y2) < >, (P1, Py)(x1, x2)

(x1,%2)€(m1, 1) (y1,¥2)

= D Pix) D Pax)

x1€m(y1) x2€m27 (12)

= [2(m)(PD)](x1)[2(72)(P2)](x2).

We summarize this with the formula
2((m1, 12))(P1, P2) = (2(m11)(P1), 2(12)(P2)). (1.9)

2. 211125 :S11]S2 — Sets, a functor that coincides with 21 on the S and with
2, on Ss.

Example 1.12. Let X : (3 — Ex be a finite random variable; it defines a concrete
structure S given by X — 1. Let 2x be collection of probability laws on X. The
product 8" := S X ... X S (n times) represents n independent trials, not necessarily
identically distributed. In fact, an element P € 2%" is a probability law P : Ef, —
[0, 1] which can be factored as P1P; - - - P,;, where each P; € 2x.

1.4 Classical models of finite structures

In this section, we formalize the relation between finite information structures and
usual probability spaces. A finite information structure (S, E) is said to be quasi-
concrete if for each nonidentity arrow f : X — Y in S, the map &(f) is a strict
surjection. Concrete information structures are quasi-concrete, but the converse is
not always true, as explained in this section.

Recall that Obsgin (€2) denotes the poset of finite partitions of a set (3, ordered by
the relation of refinement, with arrows implementing the corresponding surjections
(see Section [L.T).
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Definition 1.13. A classical model of a quasi-concrete information structure (S, E) is
a triple (€2, po, p#), where Q) is a set, pg : S — Obsgin(Q) is a functor, and p# :E— po
is a natural transformation such that:

1. po is injective on objects;

2. For each X € Ob S, the component p?% : E(X) — po(X) is a bijection;

3. If X AY exists, po(X AY) = po(X) X po(Y).
We also refers to (€, p) as a representation of (S, E).

If (), po, p#) is a classical model of S, each observable X in S can be associated (not
uniquely) to a function X on Q, in such a way that p(X) is the partition induced by X.
Under this representation as functions, all observables commute. It is also possible
to introduce quantum models, which respect the noncommutativity of quantum
observables, see Section|1.5

A concrete information structure, as defined in Section can be seen as a
classical model of an underlying generalized information structure. We now show
that, in certain cases, limg E provides a model for a structure (S, E). In general, if we
begin with a concrete structure S C Obsg,(2) and forget Q) to obtain a generalized
structure (OS, E = id), the set limg E is different from Q. See Example

When po(8S) is an information structure, (po, p¥) is a morphism in InfoStr, but the
following example shows that this is not always the case.

Example 1.14. Let S be the simplicial subcomplex of A([3]) with maximal faces {1, 2}
and {3}; suppose Eissuch thatE; = E; = E3 = {0,1}, E{1 5y = E1XEz,and E{1 5y — E;,
i = 1,2 are the canonical projections. The pair (S, E) is a finite information structure,
that can be represented on Q = {0, 1}*> mapping X; to the partition induced by the
projection pr; : {0,1}> — {0,1}, when i = 1,2, and X3 to {{(0,0)},{(0,0)}¢}. As
we established in Remark po(S) is not a concrete information structure. This
illustrates the difference between concrete and generalized structures.

Given a structure (S, E), the limit of E corresponds to

lisr;n E := Homg gets)(*, E), (1.10)

where [S, Sets] is the category of functors from S to sets and * is the functor that
associates to each object a one-point set; equivalently

lignE = {(SZ)ZeObS € l_[ E(Z)|E(7Iyx)(§x) =sy forall myx : X — Y} , (1.11)
ZeObS

where sz denotes ¢(x) for any ¢ € Homyg sets(*, E). The requirements imposed
on (sz)zeops in are referred hereafter as ‘compatibility conditions’. We de-
note the restriction of each projection mrx) : [1zecops E(Z) — E(X) to limg E by
the same symbol. We interpret the limit as all possible combinations of compatible
measurements.

Proposition 1.15. Ifa quasi-concrete structure (S, E) has a classical model (Q, po, p*), then,
irrespective of the choice of x € E(X), with X € Ob S, there exists an element s(x) € limg E
such that 1tg(x)(s(x)) = x.
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Proof. Use the bijection p’;( : E(X) — po(X), to identify x € E(X) with certain subset
ph(x) of Q. Take any w € p#(x) and then define s(x)z as the part z € Ez such that
w € pé (z). This section has the desired property. O

Remark 1.16. We could have introduced this necessary condition for representability
in the definition of information structure, but there are two good reasons to avoid this.
First, it is completely irrelevant for the cohomological computations. Second, and
more importantly: information structures are sufficiently flexible to model contextual
situations, that arise when data is locally consistent, but globally inconsistent. This
happens in different domains, notably in quantum mechanics and in database theory.
In the terminology of [1, Sec. 3], a structure is said to be logically contextual at a value
x € Ex if x belongs to no compatible family of measurements (there is no section
s(x) € limg E such that mg(x)(s(x)) = x), and strongly contextual if E does not accept
any global section, i.e. limg E = 0.

Definition 1.17. An (arbitrary) information structure is noncontextual if, for all X €
Ob S and all x € E(X), there exists an element s(x) € limg E such that rg(x)(s(x)) = x.

Proposition 1.18. The product and the coproduct of two noncontextual structures is non-
contextual.

Proof. Let S1 and S, be noncontextual structures. We use the notations in the proof

of Proposition
Products: Consider a point (x1, x2) € E({X1, X2)). There exist sections

s'(xi) = (s (xi))zeovs, € imEi ¢ | | E(2),
ZeOb S;

such 7, (x,)(s(x;)) = x; (for i = 1,2). Note that the vector

s(x1,x2) := (s5,(x1), 55 (X2))(z,,2,)e0b s € 1_[ E({Z1,Z2))
(Z1,Z2)eOb S
satisfies all the compatibility conditions and is therefore in limg E. By definition,
TE((X,, X)) (8(x1, X2)) = (x1, X2).

Coproducts: given X € Sy, x € E(X), there exists s'(x) = (sz(x))zeobs, €
limg, E; satistying nE(X)(sl(x)) = x, and similarly for E; we can build a new vector
(sz(x))zeobs € Ob Sy LIOb S, such that sz = s/, if Z € Ob S;; luckily, for 1 there is no
choice. O

Define pp : S — limg E as follows: associate to X € Ob S the collection po(X) :=
{ﬂg(lx)(x)}er(x), which is a partition of limg E, and none of the parts is 0 as long as
S is noncontextual; ﬁ’;( maps x € E(X) to ng(lx)(x). Given tyx : X — Y, there is a
corresponding arrow p(X) — p(Y) in Obsgin(Q), which is equivalent to p(Y) € p(X).
The existence of such arrow is ensured by the equality

nE(ly)(y) = U ng(lx)(x). (1.12)
x€E(nyx) 1 (y)

It is proved as follows: if x € E(rtyx)~(y) and s € ng(lx)(x), then

TE(y)(s) = E(myx)(mte(x)(s)) = E(myx)(x) = v,
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which means Uer(nyx)‘l(y)”E(lx)(x) C ng(ly)(y); to prove the other inclusion, take
s = (Sz)zeopbs € ng(ly)(y) and note that sx must satisfy—by definition—the compat-
ibility condition E(mtyx)(sx) = sy = y, thus sx € E(T(yx)_l(y) and s itself belong to
Use () () T ) (%)-

Proposition 1.19. Let (S, E) be a quasi-concrete, noncontextual information structure.

1. The pair (limg E, po, p*) is a classical model of (S, E) if, and only if, for every pair of
variables X, Y such that X A'Y does not exist, p(X) # p(Y).
2. If (S, E) has a model (Q3, p, p*), then (limg E, po, ﬁ#) is also a model (maybe the same).

Proof. CLaM([T} The “only if” part is straightforward from the definitions of classical
model (injectivity of pp). We simply prove sufficiency.

Many properties of models are always verified by (limg E, §). The noncontex-
tuality implies that each 7, E(X )(x) # (; we obtain in this way the desired bijection

E(X) = p(X). To prove property (@) in Definition[1.13] take a diagram X « XAY — Y,
and an arbitrary partition W of limg E that refines §(X) and p(Y). We have to show
that W also refines p(X A Y). If W refines p(X), each w € W (w is a subset of
limg E) is mapped to certain x,, by mgx); analogously, mgy)(w) = {yw}. This
means that mgxay)(w) = {zw}, where zy is the only point of E(X A Y) that satis-
fies E(mtx(xav))(Zw) = Xw, E(Ttx(xAY))(Zw) = Yw, which means that w C 7t

Thus, W refines p(X A Y).

To prove the property (1| in Definition consider to variables X, Y such that

X # Y. If their infimum exists, X «<~ X A Y — Y in S, then p(X) # p(Y); we prove it
by contradiction. Each point in E(X A Y) is indexed by a pair (x, y) € E(X) X E(Y);
a point w € E(mxay) Nz, y) C limg E goes to x under 7g(x) and to y under mg(y).
If ﬁ(Y) = ﬁ(Y) there is a bijection y : E(X) — E(Y),x — y(x) in such a way that
E(X)(x) E(Y)(y(x)) Therefore, the points of X A Y would be indexed by (x, y(x)),

E(X/\Y)(ZW)

with x € X, in contradiction with 7tx(x,y) being a strict surjection. If moreover we
suppose that for each pair of variables such that X A Y does not exist p(X) # p(Y),
then p is injective on objects.

CramM 2t Here, we denote {X = x} the image of x € E(X) under the bijection
1.1 l

E(X) — p(X) given by property (2) in Definition[1.13} Each element @ € Q defines a
section s(w) = (s(w)x)xeobs € limg E, such that s(w)x = x iff w € {X = x}. Itis clear
that several w could give the same section. Suppose now that 5(X) = p(Y),x —
y(x). If w € {X = x} c Q, then s(w) € 7 X)(x) E(ly)(y(x)). We conclude
that w € {Y = y(x)}, and therefore p(X) and p(Y) are the same partition, only with
different labels. For p is injective on objects, X = Y. Use the first part to conclude. O

Example 1.20. Let Q = {1,2,3,4}. Define the partitions X; = {{i},Q \ {i}}, for
i=1,..,4 and S as let S be the concrete information structure that includes only
the partitions X1, X», X3, X1X5, and X>X3. The corresponding general information
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structure has as variables the free category OS generated by the graph

X1X> X2X3
and the corresponding functor E can be represented by the diagram

{xp234)

T

{x{l},x{2,3,4}} {x{z},x{1,3,4}} {x{s},x{1,2,4}}

{xpay, x0), X34} {xpy, X3y, X141}

Each arrow corresponds to a surjection of finite sets, that sends x; to x; when I C J.
These are just the surjections of partitions in the original S. In this case, limg E C
{#} X E(X1) X E(X3) x E(X3) x E(X1X2) X E(X2X3) corresponds to the set

1%115 = {(x(1,2,3,4) X{1}, X{1,3,4) - X(3}, X (1}, X(3}), (X(1,2,3,4) - X {1} X{1,3,4} ¥{1,2,4}» X{1}, X{1,4})/

(X(1,2,3,4), X234}, (2}, X{1,2,4}, X (2}, X(2}), ({1,234}, X{2,3,4}, X{1,3,4}, X (3}, X (3,4}, X(3})/
(¥(1,2,3,4}, X{2,3,4} X{1,3,4} X{1,2,4} X{(3,4}, X{1,4))}-

The difference between Q) and limg E is explained by the presence of
(X11,2,3,4}, X{1}, X{1,3,4}, X3}, X{1}, X{3});

this measurement (where X; = x{1y, X3 = x(3}) is impossible in the concrete structure
S C Obsin(Q2), but the observables in (OS, E) cannot distinguish between the points
1 and 3, a sort of nonseparability. In fact, if we also include X; X3 at the beginning,
we obtain Q = limg E.

Example 1.21. Consider the information structure given by

{+}

T

{x100,01}, X{10,11} } {x{00,10y, X{01,11} }

[

{x100y, X120}, X101, X113} {x{00y, X103, X101, X(1,11}

where we suppose again that x; — x; when I C . Such structure cannot be modeled
by its inverse limit, since the two minimal variables induce the same partition.

We study now the models associated to products and coproducts of structures
that already accept a model.
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Let Q1 and Q) be sets. Given collections A = {A;}; of subsets of O; and B = {B;};
of subsets of (2, denote by A x B the collection { A; X Bj|A; € Wand B; € B} of
subsets of Q1 X (. If A and B are partitions, then A x B is a partition too.

Let (Q;, p?, pf) be a model of (S;,E;), for i = 1,2. Associate to each variable
(X1, X2) € Ob Sq X S; the partition of (g x (), given by

pY((X1, X2)) = p(X1) X pY(X2). (1.13)

The map px E({X1,X2)) = px({X1,X2)), where E({X1, X2)) = E(X1) X E(Xy), is

(x1,x2) = p¥(x1) X ph(x2).
Analogously, for each X # 1in Ob S1 [[ Sy, let us define the partition of (1 X ()
given by

20 () - {pg(X)x{Qz} if X € Ob S, .14

{n}xpY(X) ifXe€ObS,

The map pyj is x = pl(x) X {Qp} or x —> {Q1} % pg(x) accordingly. By convention,
Pl = {1 x Qa}.

Proposition 1.22. Let (C;, p;) be a classical model of (S;, E;), for i = 1,2. Then
1. (1 Xy, px) is a classical model of (S1, E1) X (S2, E2);
2. (1 Xy, pyy) is a classical model of (S1, E1) [1(S2, E2).

It depends on the following lemma.

Lemma1.23. 1. IfU = {A;}; and W = {A;.}]- are finite partitions of a set (3, then
oA, W) =c({A;iN A;.}i,j), and {A; N A;.}i,]- are the atoms of o(A, A’).
2. If A ={A;};, W = {A;.}j are two finite partitions of (1 and B = {B;};, B' = {Bw}m
two finite partitions of (, then (A X B)(WA' x B') = AW’ x BB, where juxtaposition
of partitions denotes their product in Obsgn(C), as introduced in Section

Proof. 1. On one hand, note that each set A; ﬁA;. is contained in o (A, A’), therefore
o({AinN A;.}i,j) C o(A, W). On the other, each generator A; € A of (A, A’) can
be written as

Ai=A;NQ= Am(UA') U(A NAY),

and similarly for the generators A;. € W, which implies that o(%, A’') c o({A; N
A;.}i,]-). The reader can verify that {A; N A;.}i,]' are atoms.
2. The previous result can be read as AW = {A; N A;.}i,j. The set-theoretical
identity
(AiXBl)ﬂ(A'XB/)—(A ﬁA)X(BlﬂB ), (1.15)

implies that the atoms of (A x B)(A’ x B’) and AW’ x BB’ coincide.
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Proof of Proposition Most verifications are almost immediate from the defini-
tions. We simply prove that pg((Xl, X)) A (Y1, Y2)) = p&((Xl, Xz))pg((Yl, Y>)). Note
that

po((X1, X2) A (Y1, Y2)) = pA({X1 A Y1, X2 A Y2))
= pU(X1 A Y1) X pY(X2 A Y)
= pY(X1)pY(Y1) X p3(X2)p5(Y2)
= (p3(X1) X p3(X2))(pY(Y1) X p3(Y2))
= p%({X1, X2))p2((Y1, Y2))

The first equality comes from the construction of S; X Sy; the second, from the
definition of p}; the third, from the fact that p? and pJ are models; the fourth
equality is just a consequence of Lemma and the fifth is just a rewriting of the
previous one. O

The partitions of €21 X Q) in the image of p(ﬁ are also in the image of p%. This

is consistent with the existence of a morphism of structures ¢ : (S1, E1) [1(S2, E2) —
(S1,E1) X (S2, E2), with ¢ given at the level of objects by the injection

151)(52 lf X = ]'Sl LIS2
X - 1(X,1s,) ifXe€ObS; , (1.16)
(1s,,X) if X €ObS,

and the corresponding components ¢% being the obvious bijections: E1(X) —
E1(X) X {*} when X € Ob S; or Ex(X) — {*} X E2(X) when X € ObS,. The model
(Qq X Qy, pg, pf() on (S1,E1) X (S, Ey) restricts then to a model (QQ; X Qj, pg o ¢o)
on (S1, E1) [[(S2, E2), that coincides with (Q1 X Q, p(])_[). This is clearly a particular
example of a more general procedure to restrict models, valid for any morphism of
structures ¢ = (¢o, ¢*) such that ¢ is injective on objects and each ¢% is a bijection;
therefore, it makes sense to call these morphims embeddings.

1.5 Quantum probability and quantum models

Let V be a finite dimensional Hilbert space: a complex vector space with a positive
definite hermitian form (-, -). In the quantum setting, random variables are general-
ized by endomorphisms of V (operators). An operator H is called hermitian if for all
u, v € V,onehas (u, Hv) = (Hu,v). A quantum observable is a Hermitian operator:
the result of a quantum experiment is supposed to be an eigenvalue of such operator,
that is always a real number.

A fundamental result of linear algebra, the Spectral Theorem [36| Sec. 79], says that
each hermitian operator Z can be decomposed as weighted sum of positive hermitian
projectors Z = 25‘(:1 z;jV; where z1, ..., zk are the (pairwise distinct) real eigenvalues
of Z. Each V; is the projector on the eigenspace spanned by the eigenvectors of
zj; the dimension of this subspace equals the multiplicity of z; as eigenvalue. As
hermitian projectors, they satisfy the equation V].2 = V;and Vj* = V. They are also
mutually orthogonal (V;V} = 0 for integers j, k), and their sum equals the identity,
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2i<j<k Vj = Idy. This decomposition of Z is not necessarily compatible with the
preferred basis of V (that diagonalizes its hermitian product).

In analogy to the classical case, we consider as equivalent two hermitian operators
that define the same orthogonal decomposition {V;}; of V by means of the Spectral
Theorem, ignoring the particular eigenvalues. For us, observable and orthogonal
decomposition (sometimes just ‘decomposition’, for brevity) are then interchangeable
terms. In what follows, we denote by V4 both the subspace of V and the orthogonal
projector on it. A decomposition {V,}ea is said to refine {Vé }pes if each Vé can be

expressed as sum of subspaces {V, } e Ags for certain Ag C A. In that case we say also
that {V,}aea divides {Vﬁ/}ﬁeg, and we write {V,}pea — {V[g }pep. With this arrows,

direct sums decompositions form a category called Orth(V).

Definition 1.24. A quantum model of an information structure S is a triple (V, po, p*),
where V is a finite dimensional Hilbert space and p : S — Orth(V) is a functor, and
p*: E = py is a natural transformation such that:

1. po is injective on objects;

2. for each X € Ob S, the component p% : E(X) — po(X) is a bijection;

3. if X AY exists, p(X AY) = p(X) x p(Y).

A quantum model gives rise to a quantum information structure as defined in [10].
All the cohomological computations in this thesis concern classical probabilities, but
the general constructions in Chapter[2only depend on the abstract structure and are
equally valid in the quantum case.
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Chapter 2

Topoi and cohomology

We shall use the information structure and its associated functors to construct a
Grothendieck topos, where cohomology can be defined. Section explains the
basic notions related to this approach, abelian categories and derived functors, in
order to give a general definition of cohomology. Section [2.2| introduces the main
definition of the thesis, information cohomology, while the rest of the chapter develops
tools to compute it.

2.1 Preliminaries on homological algebra

In what follows, we denote sometimes the monomorphisms by »» and epimorphisms
by —-. Some important definitions of category theory can be found in Appendix[Al

Nothing in this section is original, and it can be skipped by any reader already
familiarized with homological algebra.

Abelian categories and J-functors where defined by GROTHEDIECK in [35]. For
more details about the history of these concepts see Mac LANE [60, p. 257]. Sections
[2.1.1)2.1.2]and [2.1.3|are based on the translations of TAMME [83]. The case of sheaves
on topological spaces is developed in [61, Ch. II]. Section[2.1.4)is based on [81].

2.1.1 Additive categories

We first examine categories in which suitable pairs of morphisms can be added.
An additive category C is a class of objects A, B, C... (denoted Ob C) together
with
1. A familly of disjoint abelian groups Hom(A, B), one for each pair of objects.
We write a : A — B for @ € Hom(A, B) and call @ a morphism of C.
2. To each triple of objects A, B and C, a homomorphism

Hom(B, C) ® Hom(A, B) —» Hom(A, C)

of abelian groups, called composition. The image of f ® a under composition
is written fa, and called its composite.
3. To each object A a morphism 14 : A — A, called the identity of A.
These data are subject to the following four axioms:
o Associativity: If a : A — B, :B — Cand y: C — D, then

y(Ba) = (yp)a. 2.1)
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o Identities: If « : A — B, then
aly = a =1pa. (2.2)

o Zero Object: There is an object 0’ such that Hom(0’, 0’) is the zero group.
e Finite Direct Sums: To each pair of objects A1, A, there exists an object B and
four morphisms forming a diagram

T U
Al _><—1 B — A, (2.3)
1 L2

with w101 = 14,, M2t = 14, and 11711 + 1272 = 15.

The diagram determines B up to equivalence.
This definition is very similar to the standard one of category, but assuming also
the existence of zero objects and direct sums/products, and the possibility to add
morphisms; composition is required to be bilinear in both arguments.

A functor F : C — C’ between additives categories is called additive if, given any
A, Be ObCand «, € Hom(A, B), the equality F(a + p) = F(a) + F(B) holds; there
is an analogous definition for multi-functors. As in the standard case of modules,
Hom(—, —) is an additive bifunctor from C to the category of abelian groups. It is
contravariant in the first component and covariant in the second.

Let C be an additive category and a : A — B a morphism in C. Recall that, by
definition, a morphism u is a monomorphism (or injective) if the induced application
p. : Hom(C,A) — Hom(C, B), given by v + puv, is injective for all C € ObC.
Therefore, p is a monomorphism if and only if there is no morphism & # 0, such that
pé& = 0. We call generalized kernel of a any monomorphism ¢ : A” — A such that

any ¢ : C — A satisfying a& = 0 can be factorized as C — A’ 5 A This morphism is
defined up to equivalence (see Section ; hence, between the generalized kernels
(if there is any), there is exactly one subobject of A: we call it kernel of @ and denote
itby ker a. A cokernel of a can be defined dually; it is a quotient of B (if it exists). We
call image of a (im ) the kernel of its cokernel; it is a subobject of B. The coimage
of @ (coim «)is the cokernel of its kernel; it is a quotient of A. If @ admits an image
and a coimage, then there exists a unique morphism & : coim @ — im a such that «
equals the composition A — coima — ima — B, where the extreme morphisms
are canonic (see [35]).

2.1.2 Abelian categories

An abelian category is an additive category with the following two properties:
(AB1) Each morphism in C has a kernel and a cokernel.
(AB2) For each morphism «a in C the canonical morphism & : coim(a) — im(a) is an
isomorphism.
As a consequence, in an abelian category each bijective morphism is an isomorphism.
The most basic example of an abelian category is Ab, the category of abelian groups;
here all this notions reduce to the classical ones.

1For foundational reasons, it is convenient to add as axiom that for each object A in the category,
the subobjects of A form a set, in opposition to a proper class. The same is supposed for equivalence
classes of n-fold extensions from A to C, see [60, p. 253].
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By definition, a sequence A 5B £> C of morphisms in an abelian category is

exact if ker(f) = im(a). A sequence 0 — A 5B i C — 0 is called short exact if «
is a monomorphism, f is an epimorphism and ker(f) = im(a); it can be also denoted
A B —»C.

Under these axioms, each morphism « fits into a commutative diagram

kera > A —» coima —— ima

\ I
B (2.4)

l

coker o

where the row and the column are short exact sequences (the dots designate unnamed
objects). Here, “ker a” stands for an equivalence class of morphisms, and similarly
with the other arrows. Therefore, @ admits an standard factorization « = Ao, where ¢
isan epimorphism and A a monomorphism; this factorization is uniquely determined
up to equivalences.

A covariant functor F : C — C’ between abelian categories is called left exact
(resp. right exact) if for each exact sequence 0 - A” - A — A” — 0in C,
the sequence 0 — F(A’) — F(A) — F(A”) (resp. the sequence F(A’) — F(A) —
F(A”) — 0) is exact in C’. The notion extend to contravariant functors: for example,
if the result of applying Gis 0 — G(A”) — G(A) — G(A’), then G is called left exact.

Proposition 2.1 (cf. [35]). If the sequence A > B - C in C is exact, then the sequence
0 —» Hom(X, A) —» Hom(X, B) —» Hom(X, C) (2.5)
of abelian groups is exact, for each X € Ob C.

In the context of abelian categories, I is called a injective object if all diagrams of
the form
A>—— B

!

I

admit an extension
—— B

A e
[

An abelian category C is said to have enough injectives if for each object A € ObC
there exists a monomorphism from A into an injective object of C.

Proposition 2.2 (cf. [60] or [95]]). If C is an abelian category and I € Ob C, the following
statements are equivalent:

1. 1 is an injective object;

2. the left exact functor Hom(—, I) is exact.
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Analogously, an object P is called projective is each diagram of the form

™ — T

can be extended to
P

'
7
7
7 J«
k/

A —>» B

There is a correspondent notion of enough projectives.

2.1.3 Derived functors

Let Cbe an abelian category and C’ an additive category. A covariant d-functor from
Cto C'is a system T = (T?);»0 of covariant additive functors T? : C — C’ together
with a connecting morphism @ : T'(A”) — T*1(A’) defined for each i > 0 and each
short exact sequence 0 - A’ - A — A” — 0, satisfying the following properties:

1. Given a commutative diagram with exact rows

0 A’ A A" — 0
L]
0 B’ B B” 0

in C, the diagram
Ti(Au) J 5 Ti+1(A/)

! |

Ti(B//) d ; Ti+1(B/)

is commutative for all i > 0.
2. Given an exact sequence 0 - A” - A — A” — 01in C, the long sequence

0— T%A") - TY%A) - TY(A”) - THA) - THA) — ... (2.6)

is a complex in C’ (the compositions of two arrows gives 0).

In case C’ is abelian too, the d-functor T is called exact if for every exact sequence
0> A - A — A” - 0in C, the long sequence is exact. The exact 0-
functors are called cohomological functors. The reason is clear if one compares
the definition above with the classic Eilenberg-Steenrod axioms for cohomology
of topological spaces. The main computational features of both theories are the
presence of connecting morphisms and long exact sequences.

Given two d-functors T, T’ : C — C’, a morphism from T to T’ is a system
f = (f")is0 of functorial morphisms (natural transformations) f' : T! — T " which
commute naturally with d. This means that, for any exact sequence0 - A" - A —
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A” — 0in C, the following diagram is commutative:

Ti(Au) J ; Tz'+1 (A/)
fi(A//)l lfiﬂ(A/)
T/i(Au) dJ T/i+1 (A/)

A d-functor T = (T?);s0 from C to C’ is called universal if each natural transformation
£9: T% — T'° has one and only one extension to a morphism f : T — T’.

By the very definition, given a left exact and additive covariant functor F : C — C,
there is a unique universal d-functor from C to C’ extending F; it is called the right
derived functor of F and denoted by (R'F);»o.

Theorem 2.3. Let C be an abelian category with enough injectives, and let C’ be an abelian
category. Then for each left exact additive covariant functor F : C — C’ the right derived
functor (R'F); exists.

Proof. For the proof, see [83, p. 11]. We just sketch here the main points. As C has
enough injective objects, each object A € Ob Chas an injective resolution. This means
that there is a exact sequence

I'A): 0A-I"sI' 52— ..

where each I’ is an injective object of C. This resolution I is functorial.
We can apply the functor F to this injective resolution of A, and define

RF(A) = ker(F(I°) — F(I))
ker(F(I') — F(I'1))
im(F([i-1) — F(I')) ’

R'F(A) = fori>1

One shows that R’ is independent of the injective resolution, and functorial on C. It
has also the required properties of d-functors. As F is left exact, R°F = F. O

Remark that Hom(A, —) is an additive covariant functor, and left exact in virtue
of The corresponding right derived functor is called Ext"(A,—). This is the
cohomological functor of our interest.

The theorem above has an analogous version for projective resolutions.

Theorem 2.4. Let C be an abelian category with enough projectives, and let C’ be an abelian
category. Then for each left exact additive contravariant functor F : C — C’ the right derived
functor (R'F);xo exists.

2.1.4 Sheaves of modules

We have a general setting for homological algebra, given by abelian categories and
cohomological functors. In this section, we develop an important example of abelian
category: sheaves of modules. We shall see later that our information-theoretical
constructions are naturally related to them.

Let C be a category. A presheaf of sets is any contravariant functor .# from C
to Sets, the category of sets. A morphism of presheaves ¢ : .# — ¥ is a natural
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transformation of functors. Presheaves of sets and their morphisms form a new
category, denoted by PSh(C). By definition, we say the ¢ is injective (resp. surjective)
if for every X € Ob C, the map ¢(X) : .Z#(X) — ¥(X) is injective (resp. surjective).

Proposition 2.5. The injective morphisms defined above are exactly the monomorphisms of
PSh(C). The surjective morphisms are exactly the epimorphisms of PSh(C).

It is possible to define a topology on a category, obtaining a site. Presheaves that
are ‘well-behaved” for this topology are called sheaves. Moreover, every category
admits a trivial topology, such that every presheaf is a sheaf. As we shall use the
trivial topology over our information structure S, the general definitions of site and
sheaf will not play a special role in the theory, and we omit them. For details,
see [32, Ch. 0]. If C is a site, we can consider the full subcategory of PSh(C), whose
objects are the sheaves; this category is denoted by Sh(C).

Abelian presheaves are presheaves that take values in abelian groups. They
form an abelian category (for a proof, see [60, Ch. 9, Prop. 3.1]). A morphism
of abelian presheaves ¢ : .7 — ¥ is a natural transformation between . and ¥
that induces a homomorphism of abelian groups ¢(X) : #(X) — ¥4(X) on every
X € ObC. Given a morphism ¢ : .# — ¥, the kernel of ¢ is the abelian presheaf
X — ker{¢p : F(X)>¥9(X)} and its cokernel is X — coker{¢ : F(X)—=¥Y(X)}.
One has coim = im, because it holds over each X € ObC. Moreover, a sequence
of presheaves %1 — %, — %3 is exact if F#1(X) = Z2(X) — F3(X) is exact
as a sequence of groups over every X € ObC. Given a site C, the category of
abelian sheaves (denoted by Ab(C)) is the full subcategory of PAb(C) of those abelian
presheaves whose underlying presheaves of sets are sheaves.

If C is a site and & is a sheaf of rings on C, the pair (C, 0) is called a ringed
site and 0O, the structure ring. The pair (Sh(C), ©) is called a ringed topos. There
exist appropriate notions of morphisms between ringed sites or ringed topos, cf. [81}
Modules on sites, Secs. 6, 7].

Given a ringed site (C, ), a sheaf of 0-modules is given by an abelian sheaf .7
together with a map of presheaves of sets ' x.% — %, such that for every X € ObC,
the map 0(X) X .Z#(X) — % (X) defined a structure of ¢(X)-module on the abelian
group .7 (X). Amorphism ¢ : .# — ¢ between sheaves of &-modules is a morphism
of abelian presheaves ¢ : .7 — ¢ such that

OXF —— F

o

OXY —— &

The set of ¢-module morphisms from .# to ¢ is denoted by Hom(.#,%). Sheaves
of -modules and its morphisms form the category Mod(&). We quote a important
result in the context of our work.

Proposition 2.6. Let (Sh(C), &) be a ringed topos. The category Mod(CO) is abelian.
Moreover, it has enough injective objects.

Proof. For the first assertion, see [81, Ch. 18, Lem. 4.1]. For the second, [81, Ch.19, Lem. 5.1].
O
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This result is due to Grothendieck [35]. Gabriel proves in [31] that there is a
minimal injective object containing a given object, called its injective envelope.

Finally, given a (trivial) ringed site (C, ¢) and E in PSh(C), it is possible to define
a presheaf of 0-modules, denoted by ¢'[E], that associates to each X € Ob C the free
0(X)-module on generators E(X). There is an adjunction

Mormoed(e)(OlE], #) = Morpsh(c)(E, O.F) (2.7)

where O denotes the forgetful functor.

2.2 Information cohomology

Let S be the poset of variables of an information structure (S, &). We view it as a site
with the trivial topology (called topologie grossiére or chaotique in [4, 11.1.1.4]), such that
every presheaf is a sheaf. Foreach X € ObS, set.x := {Y € ObS | X — Y}, with the
monoid structure given by the product of observables in S: (Z,Y) — ZY == Z A Y.
Let o/x := R[.x] be the corresponding monoid algebra. The contravariant functor
X + gfx is a sheaf of rings; we denote it by .. The pair (S, /) is a ringed site.

For a fixed object 4 of Mod(«), the covariant functor Hom(¥, —) is always addi-
tive and left exact. As Mod(</) has enough injective objects, it is possible to define
the right derived functors associated to any left exact additive covariant functor. In
the case of Hom(A, —), the associated right derived functors are called Ext"(¥¢, —),
forn > 0.

Let Rg(X) be the @/x-module defined by the trivial action of </x on the abelian
group (R, +) (for s € #x and r € R, take s - ¥ = r). The presheaf that associates to
each X € Ob S the module Rg(X), and to each arrow the identity map is denoted Rsg.

Definition 2.7. The information cohomology associated to the poset of variables S,
with coefficients in the &/-module .%, is

H*(S, ) := Ext*(Rg, 7). (2.8)

The definition of information cohomology is formally analogous to that of group
cohomology . In this case, one begins with a multiplicative group G and constructs
the free abelian group Z[G], whose elements are finite sums }; m¢g, with ¢ € G and
mg € Z. The product of G induces a product between two such elements, and makes
Z[G] a ring, called the integral group ring of G. The category of Z[G]-modules
is abelian and has enough injective objects. The cohomology groups of G with
coefficients in a Z[G]-module A are defined by

H™(G, A) = Ext"(Z, A), (2.9)

where Z is the trivial module.

Finally, we make some observations concerning the computation of cohomology.
Let C be an abelian category with enough injectives, like Mod(</), and suppose that
we are interested in computing the groups {Ext"(A, B)},>o for certain fixed objects
A and B. In addition, we assume that A has a projective resolution 0 <= A « Py «
Py « .... Then, Theorem 4.6.10 in [74] implies that, for all n > 0,

(R"Homc(A, -))(B) = (R" Homc¢(—, B))(A). (2.10)
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We denote (R"” Homc¢(—, B))(A) by Ext"(A, B). They are given by the formulas:

Ext’(A, B) = ker(Hom(Py, B) — Hom(Py, B)), (2.11)
ker(Hom(P;, B) — Hom(P;;1, B))

Ext'(A, B) = ,
Ext'( ) im(Hom(P;_1, B) —» Hom(P;, B))

fori > 1. (2.12)

2.3 Relative homological algebra

2.3.1 General results

In this subsection, we summarize some results from [60, Ch. IX]. The purpose is
to find the analogous of a free resolution of modules, but in the general context of
abelian categories. Capital Latin letters A, B, C... denote objects and Greek letters
a, ... morphisms.

A relative abelian category is a pair of abelian categories A and M and a convari-
ant functor O : A — M which is additive, exact and faithful (we write O(X) = Xg, for
objects and morphisms). Additivity implies that (A ® B)g = Ag ® Bg; by exactness,
O carries exact sequences into exact sequences; as O is faithful, ag = 0 implies a = 0,
therefore Ag = O entail A = 0.

Example 2.8. The simple example to have in mind are R-modules and S-modules,
when S is a subring of R with the same unity (write: : S — R for the injection). In this
case, every R-module A can be seen as an S-module , A by restriction of scalars: denote
by A the underlying abelian group and by A : R — End(A) the action of R over A4,
then define the action A’ : S — End(A) by A’ = A o 1. Every R-module morphism
a : A — Bis also a S-module morphism ,a : /A — ,B. Therefore, DA := ;A and
Oa := ,«a defines a functor from the category A of left R-modules to the category M
of left S-modules that forgets part of the structure. This functor is exact, additive and
faithful.

A short exact sequence x||o in A is relatively split (O-split) if xg||log splits in M,
this means that og has a right inverse k or, equivalently, x5 has a left inverse t. We
obtain a direct sum diagram in M,

t O
As—B —»k C. (2.13)

This class of short exact sequences is also called O-allowable, or simply allowable
(see [60, Ch. IX, Sec. 4]). A monomorphism y is called allowable if x||o is O-split for
some o; this is the case if and only if x||(coker x) is O-split. Dually, an epimorphism
is called allowable if (kero)||o is O-split. Therefore, the class of allowable short
exact sequences is determined by the allowable monomorphisms or the allowable
epimorphisms.

The following conditions on a morphism « are equivalent:

1. im a is an allowable monomorphism and coim « is an allowable epimorphism;

2. ker avis an allowable monomorphism and coker a is an allowable epimorphism;
A morphism is called allowable when it satisfies any of these conditions (see [60,
p- 264]).
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A relative projective object P is any object of A such that, for every allowable
epimorphism ¢ : B — C, each morphism ¢ : P — C of A can be factored through o
as ¢ =o¢’ forsome ¢’ : P — A.

In order to construct enough relative projectives, we consider the following def-
inition. A resolvent pair is a relative abelian category O : A — M together with
a covariant functor F : M — A left adjoint to O. This means that there exist a
isomorphism ¢,

@ : Homa(FM, A) — Hompm(M, DA), (2.14)

natural in both arguments. We can think of O as a forgetful functor, and F as the
corresponding “free” functor.

Proposition 2.9. Let O : A — M be a relative abelian category. The following conditions
are equivalent:
1. there exists a covariant functor F : M — A left adjoint to O;
2. there exist a covariant functor F : M — A, and a natural transformation e : 1yg — OF
(where 1w is the identity functor), such that every u : M — Agin M has a factorization
u = agep, with a : F(M) — A unique.

Proof. Suppose (1)); taking A = FM in (2.14), define ey as ¢(1rpm). Now, for arbitrary
A € ObA, take a := ¢~!(u); the naturality of ¢ implies u = agep. The implication
@= (1) follows immediately taking ¢ ~!(u) := a. More details can be found in [60,
p. 266]. 0

Example 2.10 (continuation of 2.8). Take F(M) = R®s M and eys = 1 ® m € F(M).
Given a map of S-modules u : M — Ap, define a : FM — A by a(1 ® m) = u(m).

The following proposition exploits the properties of the allowable morphisms that
we are studying (O-split), and give us “free” objects, as suggested by the notation
above.

A complex € : X — A over A (in A) is a sequence of A-objects and A-morphisms
Xy > X1 > o> X1 > Xo 5 A — 0, such that the composite of any two
succesive morphisms is zero. This complex is called:

1. aresolution of C, if the sequence is exact;

2. relatively free if each X, has the form F(M,) for certain M, in M (we write e,
instead of ey, : M, — X5,);
3. allowable if all its morphisms are allowable.

Each object C of A has a canonical relatively free resolution. Writing FC for FOC,

and F" for its n-fold iteration, construct the objects

B,(C) =EF""'C, neN, (2.15)
Define M-morphisms s, between the corresponding objects
0C — OBy(C) — OB;1(C) — OB,y(C) —2 ... (2.16)

as s_1 := e(0C) and s, := e(OB,(C)) (here e is the natural transformation in Proposi-

tion[2.9).
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Proposition 2.11 ( [60, p. 268]). There are unique A-morphisms
€:Bo(C) = C, dn41:Bpa(C) = By(C) forn €N,

which make B(C) := {B,,(C)},, a relatively free allowable resolution of C with s as contracting
homotopy in M. This resolution, with its contracting homotopy, is a covariant functor of C.

Proof. We simply quote here the construction of ¢ and d,,. They form the following
diagram (solid arrows belong to A, and dashed arrows belong to M):

€ 2 2 d
0«—2C _E? Bo(C) ? B1(C) ? B,(C) % (2.17)

By Proposition 2.9} 15c factors through a unique ¢ : By(C) — C; the formula 1g¢c =
epec shows that ¢ is allowable (note that ¢ is an epimorphism). Boundary operators
are defined by recursion so that s will be a contracting homotopy. Given ¢, the
morphism 1pp, — s_1&p factors uniquely as di5so, for some d; : B1(C) — By(C).
Similarly, 15, —S#-19ug : OB, (C) — OB, (C) determines d,,+1 given d,,, as the unique
A-morphism such that d,+1551 = 1o, — Sn-19n0-

d
|:|Bn+1'__13_) DBn

54 / (2.18)

1a,

OB,
O

The resolution B(C) is called the (unnormalized) bar resolution. A relative Ext
bifunctor may be defined by

Ext(C, A) := H"(Homa(B(C), A)). (2.19)

A “relative” version of the comparison theorem (see [60, Ch. IX, Th. 6.2]) shows that
one can use any other allowable and relatively projective resolution ¢ : X — C to
compute Ext]; as

Ext5(C, A) = H"(Homa (X, A)). (2.20)

Note that Homa (X, A) stands for all the A-morphisms, not just the allowable ones.
It is clear that Ext%(C, A) = Ext’(C, A), but in general the groups Ext7(C, A) depend
on O.

2.3.2 Example: Presheaves of modules

We develop now the particular case relevant to our theory. Let S be a category, and
X, : S°P — Rings presheaves, such that Jx is a subring of #x with the same
unity, for every X € ObT. Take A = Mod(%), the category of presheaves of Z-
modules, and M = Mod(.7), the category of presheaves of .7-modules. A relative
abelian category is obtained when O : A — M is the forgetful functor over each X,
as defined in Example The functor F : M — A sends a presheaf & to the new
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presheaf X — Zx ® 7, #xf{ and each morphism of .7-presheaves (abbreviated to
Z-morphism) f : M — N to the Z-morphism defined by

VX € ObS,Vm € M(X), Ff(X)1®m)=1® f(m), forX €S. (2.21)

The natural transformation e mentioned in Propositioncorresponds to a collection
of 7-morphisms e» : & — OF(Z), one for each presheaf & of .7-modules; given
X in S, we define e»(X)(m) = 1 ® m for each m € M(X).

Fix now a presheaf ¢ in Mod(#). We denote by X a generic element in Ob S.
Then, By%(X) := FO¥(X) = Zx ®g (0% (X)); this Zx-module is formed by finite
Zx-linear combinations of tensors 1 ® ¢, with ¢ € ¥. Generally, an element of
B, ¢ (X) = Zx ® OB,_1%(X), for n > 1, is a finite #Zx-linear combination of tensors
1@ ®n®..or, ®c. The ring #x acts on B,%(X) by multiplication on the first
factor of the tensor product; to highlight this fact, people usually write r[r1|r|...|r,|c]
instead of r ® 11 ® 12 ® ... ® 1, ® c. This notation explains the name “bar resolution”
adopted above. The definition of e implies that

s%,:0%(X) > 0By¢(X), c—1®c=]c], (2.22)
and

sX 0B, € (X) = OB, €(X), rlrilral...lrulc] = [rlrilral...|ralc]  forn € N.
(2.23)
These equalities determine s,, since these functions are .7x-linear.
Now ¢ is the unique Z-morphism such that 1p¢ = egey; this is clearly the case if
¢X([c]) = c. Similarly, d; is the unique %Z-morphism from B1% to By% that satisfies

Od1geo = d1gso =1 — Si<1€|j (2.24)

Since B1%(X) is generated as a Zx-module by the elements [7|c], and sé( (rlc]) = [r|c],
the equation (2.24) defines di completely. Just remark that e(r[c]) = re([c]) = re(1®
¢) = rc and s1(rc) = [rc]. We conclude that

di([r|c]) = r[c] = [rc]. (2.25)
It can be proved by recursion that (cf. [60, p. 281])

n-1

dlril...|rulc] = rilral...|rulc] + Z(—l)k[71|~--|fkfk+1|~--|Tn|C] +(=1)"[r1]...|rn-1lrnc].
= (2.26)

In virtue of Proposition we obtain in this way a free allowable resolution of .

2This is a left Z-module with action defined by r(r’ ® p) = (r+’) ® g. For iterated tensor products,
this definition is not canonical; for example, when considering Zx ® Zx ® &x, the element (sr)®1' ® g
does not equal r ® (st') ® g (for s € .7), unless 7 is in the center of #Z. As in this work we only use
commutative rings and algebras, these differences do not pose any problem.

30f course, one has to prove that e is in fact a natural transformation and satisfies the properties
required by Proposition This proof is rather trivial but complicated to write, and we omit it.
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2.4 Nonhomogeneous bar resolution

In this section, we introduce a projective resolution of the sheaf of .27-modules Rg: a
long right exact sequence

1 2 J3

0 Rs «—— %

0 )

(2.27)

that will allow us to compute the information cohomology.

Remember that < is the algebra over R generated by the monoid .x. Let #,(X)
be the free .«7x module generated by the symbols [X;]...| X, ], where {Xj, ..., X} C
Zx. Remark that %y(X) is the free module on one generator [ ].

We introduce now @/x-module morphisms ex : %p(X) — Rs(X), from Hy(X)
to the trivial o/x-module Rg(X), given by the equation £([]) = 1, and boundary
morphisms d : %,(X) — %,-1(X), given by

n-1
A[Xal..|Xu]) = Xa[Xal...|Xn] + Z(—l)k[X1|---|Xka+1|---|Xn] +(=1)"[X1]...| Xn-1]-

k=1
(2.28)

These morphisms are natural in X.
Proposition 2.12. The complex (2.27) is a resolution of the sheaf Rsg.

Proof. The construction corresponds to the relatively projective bar resolution [60,
Ch. IX], more especifically to the example developed at the end of Appendix
setting # and .7 there equal to . and Rg, respectively. The resolution %, introduced
above is B,%, for ¢ = Rgs. The notation can be simplified, because ¢ (X) is generated
by 1 as an «/x-module (and also as a vector space over R). Therefore, By’ is generated
over «/x by the symbol [1], written simply as []. In general, B,%(X) is generated
over @/x by the symbols [X1]...| X} |1], or simply [X1]...|X},] if we omit the 1. O

Thus far we have a resolution with relatively free objects, that in general need not
be projective. However, the special properties of S allow us to improve the result.

Proposition 2.13. For each n > 0, the sheaf %, is a projective object in Mod (7).

Proof. Let 7 be the presheaf of sets defined by .7(X) = { [X1]...|Xx] | X; € Sk }, for
X € ObS. We have %, = @[ .7].

Consider an epimorphism ¢ : .# -» .4 and a morphism ¢ : &#[7] — A,
both in Mod(</). By the adjunction Homea(w)(#/[7],%) = Hompsns)(F,%),
¢ determines a unique morphism & : .7 — .4 in PSh(S). To show that %, is
projective, it suffices to show that there exists &’ : .# — .# such that & = 0, since
by the adjunction this determines a morphism of .«Z-modules.

To define &’, one has to determine the image of every symbol [Xi]|...|X,], each
time it appears in a set .7 (X). Remark that

[Xi]...|Xu] € T(X) & (V)X - Xi) & X — X3 --- X, =TT X

The last equivalence is true due to the definition of S. Therefore, the symbol
[X1]...|Xu] just appears in the sets 7 (X) where X — TI'_ X;; the full subcate-
gory of S determined by these objects X has a terminal object, IT , X; itself. To
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solve the lifting problem, it is enough to pick m € aﬁ£ . (E([X1]--.|Xn])), and define
=11
€ X‘([X1|...|Xn]) := m. This choice gives, by funtoriality, a well defined value
=11
Ex([X1]...|Xn]) = A (7)(m) over each X such that 7 : X — IT", X; in S. O

The existence of this projective resolution just depends on the definition of an
abstract information structure (Definition [1.6). It appears in the computation of
classical and quantum information cohomology: the difference between this cases
lies in the coefficients.

2.5 Description of cocycles

We have built a projective resolution of Rg in Mod(«). For every .«7-module
Z, the information cohomology H*(S, .#) can be computed as Ext"(Rs, .%), defined
in formulas and i.e. we deal with the cohomology of the differential
complex {C"(S, #), 6}, where

C"(S,.7) := Homy(%u(Rs), #)}nz0

and 6 is given by bellow. A morphism f in C*(S, .%#) is called n-cochain. More
explicitly, an n-cochain f consists of a collection of morphisms fx € Hom g (%4, (X), #x)
that satisfies the following conditions:
1. f is a natural transformation (a functor of presheaves): given  : X — Y, the
diagram

Bu(Y) L 7y

I ly(n)

B,(X) L5 7y
commutes. We refer to this property as (joint) locality, for reasons that become
evident in the following chapters.
2. f is compatible with the action of «/: for every X € Ob S, the diagram

x X Bp(X) — HBn(X)

llex lfx

%XXQX —_ ffx

commutes. This means that fx is equivariant; in particular, fx(Y[Z]) = Y. fx[Z]
whenever Y € .%%.
Since %,(X) is a free module, fx is determined by the values on the generators
[X1]...] Xy ]. Just to simplify notation, we write fx[X1]...|X,,] instead of fx([X1]...|Xx]).
The coboundary of f € C"(S,.%) is the (n + 1)-cochain 6 f = fd : " — Z.
More explicitly,

Of[ Xl | Xns1] = Xa. f[Xo]. - | Xpps1 ] + Z(_l)kf[xl|---|Xka+1|-~-|Xn]
=1

+(=D)" X)Xl (2.29)
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As customary, a cochain f € C'(S,.7) is called an n-cocycle when 6f = 0; the
submodule of all n-cocycles is denoted by Z"(S,.#). The image under 6 of C"!
is another submodule of C"(S,.%), denoted 5§C"~1(S, .%); its elements are called -
coboundaries. By definition, 5C~(S,.#) = (0), the trivial module. Since 6% = 0,
5C" 1 is a submodule of Z". With this notation, H*(S, .#) = Z"(S, %)/6C"*"\(S, %),
for every n > 0.
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Information cohomology of
discrete random variables






Chapter 3

Probabilistic information
cohomology

In this chapter, all information structures are supposed to be finite; they are denoted
(S, E). We compute the information cohomology when the coefficients are functionals
of probability laws; Shannon entropy and Tsallis a-entropies appear as 1-cocycles.

3.1 Functional module

Let (S, E) be an information structure, and 2 an adapted probability functor. Infor-
mation theory uses some functions defined on each set 2x to measure the amount
of information associated to the variable X. For example, given a variable X and a
probability P € Zx, the Gibbs-Shannon entropy

S1[X](P) = - Z P(x)log P(x) 3.1)

x€Ex

was proposed by Shannon [78] as a measure of uncertainty. Other example is given
by the structural a-entropy, defined as

Su[X1(P) = (Z P(x)" - 1), (3:2)

x€Ex

fora>0,a#1.

In view of these considerations, let us introduce, for each X € Ob S, the real
vector space .7 (Zx) of measurable functions on 2x; we call it functional space. For
each arrow 7 : X — Y in S, there is a morphism 7" : #(Z2y) — % (Zx) defined by

' f(Px) = f(m.Px).

Therefore, .%#(2) is a contravariant functor from S to the category of real vector
spaces.

Whenever 2 is adapted to S, the functional space .%#(Z2x) admits an action of
the monoid .x (parameterized by a > 0): for Y € .k, and f € .#(Zx), the new
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function Y. f is given by

Y.HP) = D (LPx)* f(Pxly=y). (33)

yEEy
Y.Px(y)#0

By Proposition there is a morphism of monoids .#x — End(.#(Z2x)), given
by Equation (3.3), that extends by linearity to a morphism of rings A (X) : ox —
End(#(Z2x)). This means that, for each a > 0, .#(2x) has the structure of a ./x-
module, denoted .%,(Z2x).

Proposition 3.1. Given any X € Ob S, observables Y and Z in /%, and f € . (2x):
(ZY).f = Z.(Y.f).

Proof. The universal property of products gives the commutative diagram:

X
(4% pz
/ LPN
Y ———YZ ——— Z
For P € 2y,
ZOHP) = Y P(Z=2)* > (Plr=a(Y = 9)* f(Plz=2)lv=y)
Z*ZPE(E)Z;eo mpéif(yy)qao
= ) 2, PUY=yni{Z=z)"f(Plz=s)lv=y)

ZEEZ yEEy
Z.P(2)#0 Y,P|z=,(y)#0

The equality P(Z = z)P|z=-(Y = y) = P{Y = y} N {Z = z}) simply corresponds to

the definition of conditional probabilities. The pairs (y, z) that appear in the sum

are such that P({Y = y} N {Z = z}) # 0, so P(Y = y) and P(Z = z) are different from

zero; in this case, the equality

Plz—-Bn{Y=y}) PBN{Y=y}n{Z=2z})
Plz=(Y = y) P{Y =y} n{Z =2z}

holds for every B C X. By (6)), the nonempty sets {Y = y} N {Z =z} = py 1 (y) N

pz:1(z) C Ex are the preimage by (py, pz), of a unique element w(y,z) € E(YZ);
moreover, for every element w € E(YZ) we find such set. Remark that

PHY =y} n{Z = z}) = P(pv; () N pz;'(2)) = P(py, pz). w(y, 2)).
Therefore,

ZOHP) = Y PUY =x} 0 {Z = 2})* f(Plz=z x=x) = (ZY).f(P).

w(y,z)€Eyz
YZ.P(w)#0

(P|Z:z)|Y=y(B) =

= Plz—; x=x(B)

O

1As a/x is a R-algebra, it comes with an inclusion fx : R — @, r = rlg. The composite Ay (X)o fx
gives an action of R over .7 (Z2y), that coincides with the usual multiplication of functions by scalars.
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The next proposition shows that this action is compatible with the morphisms
between functional modules. Hence, the sheaf .%,(2) belongs to Mod(</), and can
be used as coefficients in information cohomology.

Proposition 3.2. Given nyx : X — Y and mzy : Y — Z, the action of Z makes the
following diagram commute

F(2y) —2> F(2y)

lnyx lnyx

F(2x) 2 F(2x)

Proof. We must prove that, for all fy € .#(Z2y), P € Zx, the equality (Z. fy)(nf Xp) =
Z.(fy o nY*)(P). On one hand,

Z Py = Y w P fr(FP) =), (34)
z€Ey
nZY nYXP(z)#0

and on the other,

Z(from™)P)= > mEPE)f(rX(Plz=). (35)
n?iifzz);&o

The two expressions coincide since marginalizations are functorial, nZYpYX = g2X,

and commute with conditioning (cf. Section|[1.3). O

3.2 Functoriality

In this and the following sections we study information cohomology with coeffients
in .7,(2). This cohomology and its generalizations in Part[[V]are called probabilistic
information cohomology.

Let ¢ : (S,E) — (S’,E’) be a morphism between finite information structures,
and let 2 be a probability functor on S and 2’, a probability functor on §’. Given a

X € ObS and alaw P € Zy, define a law mx(P) on E;)(X) by the equation

Vx' € Egrxy,  (mx(P))(x') = Z P(x). (3.6)
regh " (v)

We suppose that, for all X € ObS and all P € 2y, the law mx(P) belongs to sz(x)‘

Then m, : 2 — 2’0 ¢ is anatural transformation. In fact, for every arrow t: X — Y
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and y’ € Eg(y),

(@ @mxP)) = > (mx(P)(E)
X' €E (p(m)"1(y’)

PINDINEL

YEE(G(m) Y vegt ()

Z P(x)

x€(E(@(m)od%) 1 (y")

Z P(x)

x€(¢foE(m)H(y)

>y ew

yeo! ™ (y) *EEm W)
= my(2()(P))

The forth equality comes from the naturality of ¢, as stated in Deﬁnition

We construct now a functor between cohomology groups.

Proposition 3.3. Let ¢ : (S, E) — (S’, E’) be a morphism of information structures; let 2

(resp. 2') be an adapted probability functor on S (resp. S’). Suppose that
1. forall X € Ob'S, the map ¢% is a bijection, and
2. forall X € Ob S and all P € 2x, the law mx(P) belongs to Q:p(x)'
Then, there exist a cochain map

Pe : (C*(Fa(2),0) = (C*(Fu(2),0),

given by the formula

(PuIv[Xal- | Xul(P) := fo)[p(XD)I...|(Xn)](my (P)).

The chain map induces a morphism of graded vector spaces in cohomology
¢, H*(S', Z,(2')) — H*(S, #,(2)).
Proof. First, we prove that ¢" f is jointly local. For f is jointly local,

Ffor[@(XD)I...|p(Xin)](my (P))

only depends on

(@(X1) -+ P(Xp))emny(P) = (¢(Xy - - - Xip))srny (P).

(3.7)

(3.8)

(3.9)

Let m : ¥ — X;i---X, be the corresponding refinement. Since m, is a natural

transformation, my,...x, © 2(n) = 2'(¢(m)) o my; this means that

(P(X7 - X))y (P) = mx..x, (2(1)(P)) = mx,..x, (X1 - Xp)«P). (3.10)

We conclude that ¢* f depends only on (X - - - X;).P and its therefore a cocycle.
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We show now that ¢* commutes with 6. For simplicity, we write the formulas for
n = 2; the argument works in general. Note that

(@ (0 N))y[X1]X2] = 6 for) [P (X1)|Pp(X2)] (3.11)
= O(X1)- fon)[P(X2)] = fon [P (XD)P(X2)] + fom[P(X1)]. (3.12)
By deﬁnition, f¢(y)[¢(xl)] = gi)*fy[Xﬂ and similarly fmy)[@i)(Xﬂ@b(Xz)] = (P*fy[X1X2],

since Pp(X1)P(X2) = ¢(X1Xz). The remaining term (p(X1).fo(Y))[P(X2)](my(P))
equals

{(@(mt1). 0 my)(P)}(x1) fon) [@(X2)I((1my (P))lp(x1)=x;) (3.13)

X1 €E/(P(X1))

where 711 : Y — Xj. We write ¢(71). instead of 2’(¢(m1)) and 711, instead of 2(m1).
Set x1 = qb’;(l_l(xi). The naturality of m, implies that

{(¢(m1). 0 my)(P)}(x7) = {(mx, o m)(P)}(x7) = Z m.P(x) = m.P(x1). (3.14)

xegh T ()
Finally, for every y’ € ¢(Y),
my(P){y'} N {p(X1) = x1})
my(P)(¢(X1) = x7)

~ Lot ™ (ot (o 0=x})

Lot (prxn=ry @)
B Zze(b#;’l({y/}) P({Z} N {Xl = xl})
- P(X = x1)
my (P|x=x,)-

(my (P)lg(xy)=x; (') =
P(z)

The first equality comes from the definition of conditioning and the second from that
of my. The third is a consequence of

oE T {p(X1) = X)) = {z € Y[ p(m) 0 h(z) = x|}
:{ZEY|¢§(]on(z)zxi}z{zeYln(z)le}.

that depends on qbil being a bijection. Therefore,

T PX)((my (P)lgxyy=x;) = fon[@(X)l(my (Plx=x,)) = (" )y [X2](Plx,=x,),

hence (¢(X1). fpr)[P(X2)](my(P)) = (X1.¢" fy)(P). In consequence, 6 commutes
with ¢*, as we wanted to prove. O

Corollary 3.4. If ¢ : S — S is an isomorphism of information structures, and 2'(¢p(X)) =
mx(2x) for every X € ObS, then ¢* : H*(S', #,(2’)) — H*(S, %#,(2)) is an isomor-
phism too.
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Proof. Let ¢ : " — S be the inverse of ¢. It is clear from the definitions that ¢¢ and
Yo. Moreover, for every X € Ob S, we have I,DZ) x) © qb’;( = idx, and similarly for ¢(X);

this implies that ¢, and gbz) (x) are bijections. Proposition|3.3|ensures the existence of
¢*: H*(S', Fa(2')) — H*(S, #4(2)) and " : H*(S, Fu(2)) — H*(S', F4(2')); and
Y* o ¢* =id, ¢* o ¢* = id by formula (3.8). O

We also recover from Proposition 3.3|two functorial properties for concrete infor-
mation structures stated in [[10].

Proposition 3.5. Consider concrete information structures S, S’ associated to a measurable
spaces (Q, B) and (Y, V'), respectively. Let 2 (resp. 2’) be a probability functor defined
on S (resp. S’). Let 0 : (QQ, B) — (), B’) be a surjective measurable function, such that
1. for all X € ObS, there exists ¢(X) € ObS’ such that ¢ descends to a bijection
ox 1 Q/X 5 Q' /p(X)F
2. for every X € Ob S and P € 2y, the marginalization ox.P is in ,@:P(X);
Then, there exists a natural morphism of graded vector spaces

"t H*(S', 7,(2')) — H*(S, #.(2)), (3.15)
defined at the level of cochains by
(@ Fy[Xal- |1 Xa](P) = fon[@(XD)]..|p(Xn)](D.P), (3.16)

where X; = X; o ¢, for each index i.

Proof. The correspondence X — ¢(X) defines a functor from ¢ : S — §’; in fact, if
m: X — Y, there is a corresponding surjection 7. : /X — Q/Y and oy o 7. 0 03! :
Q' /p(X) — O /p(Y) is also a surjection, that gives a morphism ¢(X) — ¢(Y) in S’.
We take as ¢% : X — ¢(X) the bijection of partitions induced by ox (recall that, for
concrete structures, the functor of values is the identity). The condition (2) implies
that m, : 2 — 2’o¢ isanatural transformation. Proposition3.3entails the existence
of " =:0". |

Proposition 3.6. Consider concrete information structures S, S” associated to a measurable
spaces (Q, B) and (Y, V'), respectively. Let 2 (resp. 2’) be a probability functor defined
on S (resp. S’). Let n: (QQ, B) — (€Y, B’) be a measurable function, such that
1. for all X’ € ObS’, there exists p(X’) € ObS such that n descends to a bijection
nx - QfH(X') = Q/X;
2. forall X’ € ObS’ and P’ € 25, there exists P € Ly xr) with P’ = nx P.

Then, there exists a natural morphism of graded vector spaces

. H'(S, Za(2)) » H"(S', Za(2)), (3.17)
defined at the level of cochains by
(0 Iv[X3 [ AXG1(P7) = fon[@(XDI-[p(X3)I(P), (3.18)

where P" = ny P.

Proof. The correspondence X’ +— ¢(X’) defines a functor ¢y : 8" — S (see the proof
of Proposition 3.5). We take as ¢% : X’ — ¢(X’) the bijection induced by 7.
Assumption (2) implies that m, : 2" — 2 o ¢ is a natural transformation and we can
use Proposition 3.3]to conclude. O

2Every partition X defines an equivalence relation and (/X denotes the corresponding quotient.
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3.3 Determination of H'

Each 0-cochain f[] = f corresponds to a collection of functions fx(Px) € Z#,(2x),
for each X € Ob S, that satisfy fy(Y.Px) = fx(Px) for any arrow X — Y in S. As we
assume that 1 € Ob S, this means that f is constant. Given an arrow X — Y, and a
0-cochain f such that fx(P) = K,

(O)x[YI(P) = Y.fx(P) = fx(P) = > P(Y = y)* f(Ply=y) - f(P)

y€Ey

:K(Z P(Y—y)“—l)—O.

yEEy

This means that Z°(S, .71(2)) = C%(S, .Z#1(2)) = Rand Z°(S, .#,(2)) = (0) when a #
1 (aslong as some 2y contains a nonatomic probability). Equivalently, H)(S, 71 (2)) =
R, and H(S, .#,(2)) = (0) when a # 1.

3.4 Local structure of 1-cocycles

Now we turn to C!(S, #,(2)). The 1-cochains are families {fx[Y] | X € ObS}
such that for all Z — X — Y, the equality fx[Y](X.Pz) = fz[Y](Pz) holds. This
means that it is sufficient to know fy[Y](Y.P) to recover fx[Y](P), for any X — Y;
in this sense, we usually omit the subindex and just write f[Y]. The computation
above implies that 6C%(S,.#1(2)) = (0). On the other hand, 6C°(S, #,(2)) = R
when a # 1, and 1-coboundaries are multiples of the section of .%,(£2) given by
X = Su[X]; we write 6C%(S, . Z,(2)) =R - S,.

By equation and commutativity of the product, every 1-cycle (6 f = 0) must
satisfy the following symmetric relation:

FIXY] = fIY]+Y.FIX] = fIX]+ X f[Y]. (3.19)

Proposition 3.7. Let f be a 1-cocycle. Then
1. f[1]1=0
2. Forevery X € Ob S and x € Ex, the equality f[X](6x) = 0 holds.

Proof. Statement (1)) is a particular case of (2); we prove the later. From f[XX] =
fIX] + X.f[X], we conclude that X.f[X] = X cgyipa)z0 P(X)* f[X](P|x=x) = 0. For
P = 04, one obtains f[X](6x) = 0. O

Example 3.8. We compute now H'(S, #,(I1)), taking S equal to 0 — 1, and E(0) =
{a,b}. Proposition Proposition implies that f[0](1,0) = f[0](0,1) = 0, as a
consequence of f[0] = f[0] +0.£[0]. All the other relations derived from the cocycle
condition become tautological. Therefore, 1-cocycles are in correspondence
with measurable functions f on arguments (p,, pp) such that f(1,0) = f(0,1) = 0.
We conclude that H(S, .#,(2)) has infinite dimension. For a more general condition
under which dim H' diverges, see Proposition m

The functions S,[X] introduced in and are local, since they only depend
on X.P. The following proposition establishes that they correspond to a 1-cocycles.
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Proposition 3.9. Let (S, E) be an information structure, 2 an adapted probability functor,
X an element of Ob S, and Y, Z € Ob S two variables refined by X. Then, for all a > 0O, the
section Sy of Fo(2) satisfy the relation

(Sa)x[YZ] = (Sa)x[Y] + (Y.Sa)x[Z]. (3.20)
This means that S, belongs to ZX(S, Fa(2)).

Proof. Let P be a probability in 2x. We further simplify the notation, writing P(y)
instead of P(Y = y) = Y.P(y), and P(z|y) in place of P(Z = z|Y = y). We label the
points in E(YZ) by their image under the injection ¢ : E(YZ) — E(Y) X E(Z), writing
w(y,z) € E(YZ).

1. Case a = 1: by definition

~&[YZ)(P)= ). P(y,z)logP(y,z)
w(y,z)eE(YZ)

and in fact we can extend this to a sum over the whole set E(X) X E(Y), setting
P(y,z) = Owhenever (y, z) ¢ im ¢ (recall the convention 0log 0 = 0). We rewrite
the previous expression using the conditional probabilities

=SilYZI(P)= ) > P(zly)P(y)(log P(y) +log P(]y))

z€Ez yeEy
= > P(y)logP(y) > Pily)+ > P(y) D P(zly)logP(zly).
y€Ey zeEy y€Ey zeEy

This gives the result, because 3’,cr, P(z|y) = 1, and },cp, P(z|y)log P(z|y) =
S1[Z](Ply=y). Cf. [49].
2. Case a # 1: The result is a consequence of 6> = 0, but can be proved by a direct

computation.
(1-a)(S[Y]+ X.S[Y]) = (Z P(y)* - 1) + ) Py (Z P(z]y)* - 1)
y€Ey y€Ey z€Ez
= > > PGly)Py)* -1
yeY zeZ
= (1 - a)S[XY].

The last equality comes from P(z|y)P(y) = P(z, y), and the fact that we can
restrict the sum to E(YZ), neglecting terms that vanish.
O

We shall see that any nontrivial 1-cocycle of type « is locally a multiple of S,; we
still have to formalize this notion of locality. Proposition present the solution
to a functional equation that comes from the cocycle condition. Then, Proposition
determine the local form of a cocycle. Finally, Theorem determine H'!
under appropriate nondegeneracy hypotheses on the information structure S and
the probability functor 2.



Probabilistic information cohomology 85

For convenience, we introduce the functions

s1(p) := —plogp — (1 - p)log(1 - p); (3.21)
1

sa(p) := m(p"‘ +(1-p)¥*-1) (fora #1), (3.22)

both defined for p € [0, 1].

Theorem 3.10 (Generalized FEITH). Let fi, f> : A2 = R be two unknown measurable
functions satisfying

1. f(0,1) = f;(1,0)=0fori =1,2.

2. forall (po, p1,p2) € A%,

= T2 ) = A=) 623)

Po p2
1- p1 ! 1- p1
Then, fi = f, and there exists A € R such that fi(p) = Asq(p).

=(1-p1)*f ( ) — fo(1 = p2, p2).

Proof. The restriction to pg = 0 (with p1 = x,p2 = 1 — x) implies fo(x,1 - x) =
fi(1 = x,x). We eliminate f, in (3.23) and set u(x) := fi(x,1 — x). Setting p1 = x,
p2 = y and pp = 1 — x — y, we obtain the functional equation

- X 1

u(l—-x)+ (1 —-x)%u (%) =u(y)+ (1 -y)u (Pf—;y) . (3.24)

This functional equation is related to the so-called “fundamental equation of informa-
tion theory”, which first appeared in the work of Tverberg [89]]. In [47], Kannappan
and Ng show that every measurable solution of with @ = 1 has the form
u(x) = Asi(x), with A € R. Analogously, we show in Chapter [5 that the general
solution in the case a # 1is u(x) = As,(x), with A € R; this is directly connected to a
generalization of the fundamental equation introduced by Daréczy in [25]. O

Example 3.11. Let S be the free category generated by
/ 1 \
X1 X2

X1Xz

(3.25)

and E be the functor defined at the level of objects by E(X1) = {x{1}, x{0,2}}, E(X2) =
{x23, x00,1y}, and E(X1X2) = {xq1}, X2}, X3, }; for each arrow 7 : X — Y, the map
1. : E(X) — E(Y) sends x; — xj iff I C J. The pair (S, E) is an information structure
(in fact, it comes from a concrete one). Consider f € Z!(.#,(I1)): the cocyle condition
means that, as functions on IT(X; X>),

fIXaXo] = X1 f[Xo] + f[X1] and  f[X1Xz] = Xo.f[Xa] + f[X2]. (3.26)
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Write f[Xi1] = f1 and f[X2] = f». Clearly, the determination of f; and f, such
that X1.f» + fi = Xo.f1 + fo fix f completely. In terms of a probability (po, p1, p2)
in T1(X1X>2) this equation is exactly (3.23). We conclude that every cocycle is a
multiple of the corresponding a-entropy: there exists a unique constant A € R such
that f[Z](P) = AS,[Z](P), for every variable Z € ObS and every probability law
P € I1(X1X,). This establishes that Z!(S, .#,(I1)) = R. Hence H'(S, .#(IT)) = R,
and H(S, #,(IT)) = (0). The hypotheses are minimal: on one hand, if we remove
X1 or X, Proposition shows that dim H! = oo; on the other, if 2x,x, does
not contain the interior of A, the cocycle equations accept an infinite number of
solutions, because one cannot obtain (3.23).

We want to extend this result to more general triples (S, E, 2). The strategy is to
reduce the problem to the equations in Proposition as we did in the previous
example: first, considering a product XY with good properties, and then deducing
some functional equations for f[X]and f[Y]. This is carried out in Propositionm
that you canread directly if you suppose that Exy = ExXEy and 2 = Il. Weintroduce
now the notion of nondegenerate product, that states precisely what is needed for the
proof. The condition should be thought as some kind of “transversality” between
X and Y. If many events {X = x,Y = y} are impossible, then the product XY
degenerates.

Remarks on notation: to avoid confusion with subindexes, we denote the (i, j)
component of a matrix M by M[i, j]. Recall that each set 2y is a simplicial subcom-
plex of I1(X). For each S C Ex, we denote [S] the face of I1(X) generated by the Dirac
laws { 6y | x € S }, which implies that 2x N[S] is the set of probabilities in 2x whose
support is contained in S.

Definition 3.12. Given two partitions X and Y, such that |[Ex| = k and |Ey| = [, we
call its product XY nondegenerate if there exist enumerations {x1, ..., xx} of Ex and
{v1,..., y1} of Ey, and a North-East (NE) lattice pat (yi)i, on 72 going from (1,1)
to (k, ) such that

1. For each y; = (a, b), the simplicial complex

Qxyﬂ[fl{(xi,yj)IaSiSa+1andij$b+l}]

has at least one 2-dimensional cell. Here  denotes the injection Exy < ExXEy.
2. Ify; =(a,b)and y;41 —yi = (1,0), we ask that for every law p in 2x N[{ x;|a <
i < k }] there exists a law f in the intersection of 2xy and

[ (G, yps)YO{ (i, o) La+1 < i <k DIVLT ({(xa, yu)}OL (xi, ypan) [a+1 < i < k)]
such that p = X.p.

Analogously, if y;11—y; = (0, 1), weask thateverylaw pin 2yN[{ y; | b < i < [ }]
there exists a law 7 in the intersection of Zxy with

[ ({(Xas1, yo) PO{ (a, y) 1041 < j < THIVLC (X, y6) PO (a1, ) [ b+1 < j < K D)

such that p = Y.p.

3A North-East (NE) lattice path on 7% is a sequence of points ()/,-);11 C 72 such that Yisl — Vi €
{(1,0),(0,1)} forevery i € {1,...,m — 1}.
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Remark that the product of a variable X with itself is always degenerate, because
it only accepts nontrivial probabilities for pairs (x, x) € E5.

Proposition 3.13. Let (S, E) be a finite information structure, 2 an adapted probability
functor, and X, Y two different variables in Ob S such that XY € Ob S. Let f be a 1-cocycle
of type a, i.e. an element of ZX(S, #,(2)). If XY is nondegenerate, there exists A € R such
that

FIXI= ASo[X],  fIY]=ASa[Y], fIXY] = ASa[XY].

Proof. As f is a 1-cocycle, it satisfies the two equations derived from (2.29)

Y.f[X] = fIXY] - f[Y], (3.27)
X.fIY] = fIXY] - f[X]. (3.28)

and therefore the symmetric equation

X.fIY1- fIY] = Y.FIX] - FIX]. (3.29)

(stu...)
p q r ...

if P(s) = p, P(t) = q, P(u) = r, etc. and the probabilities of the unwritten parts are
zero.

Fix enumerations (x1, ..., xx) and (y1, ..., y1) that satisfy the definition of nonde-
generate product, and let {y;}", be the corresponding NE path. Write y; = (a, b). If
vir1 — Vi = (1,0), we shall show that the following recursive formula holds:

For a law P, we write

Xg .. Xk _ _ a Xa+1 X
f[X]([Ja uk)_(l pa) f[X](HaH/(l_Ha) uk/(l—ya))

Xq Xa+1
+f[X]( 1, ) (3.30)

Analogously, if yis1 — i = (0,1),

Yo oo Y1\ _ " Yo+ y
fm(vz vf)‘“‘vb) fm(vbﬂ/fll—vc) vl/(ll—m)
+f[Y]( z: 1y_b+vlb ) (3.31)

Suppose that y;y1 — i = (1,0). Let

_ Xg ... Xk
P= Pa - Mk
be a probability in Zx N [{x;|a < i < k}]. We know it has a preimage § un-

der marginalization X. as in Definition @): for such law, knowledge of X im-
plies knowledge of Y with certainty, therefore X.f[Y](f) = 0; by equation (3.28),
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FIXY1(p) = FIXI(X.P) = fIX](p). Equation (B27) reads

a xa+1 . e xk
1— pa)*fIX =
= 10 T st
Y Yo Yb+1
X — flY]eorx , (3.32
T B VO L PRl PICES
where 7 is the identity or the transposition of the arguments. In any case, setting
Par1 =1 — g and pg42 = ... = ux = 0, we conclude that
Xq Xa+1 Yp Yv+1
X = flY]or1 , 3.33
N il B GEE] Rl 639)
which combined with (3.32) implies (3.30). The identity (3.31) can be obtained
analogously.

We proceed to the determination of

6a(2) = FIX] ( ’;“ f“_”z ) and  y(z) = f[Y] ( yzb 1%_“2 ) . forze0,1].
Let b1, by, b3 be the three elements of Exy C Ex X Ey such that [6,, 0p,, 0p,] is the
2-cell given by Deﬁnition when y; = (a, b). For any u = (uo, ux, ty) € AZ, set
P(b;) := py, where b; is the component that differ from the others on the y-coordinate
(in such a way that Y.u is (uy,1 — py)). Similarly, set P(b;) := ux, where b; is the
component that differ from the others on the x-coordinate. With this assignment,
the equation (3.29) gives:

U ATV o Yo Yb+1 Yo Yo o Y1
(=" fl] “(uo/(l—ux) #y/(l—#x)) fIY] “(1-uy by )

Xq Xa+1 _ o X Xa41
po/(M—py)  py/(1—py) ) fIX] T( 12 iy ) (3.34)

where o, T are the identity or the transposition of both nontrivial arguments. In
any case, this leads to the functional equation in Proposition which imply that
0a(z) = Pp(z) = Asa(z) for certain A € R (the solution is symmetric in the arguments).

When considering y;.1, one finds the functions ¢, and {41, or the functions ¢,.+1
and v, since the difference y;11 — y; is either (0,1) or (1,0). This ensures that the
constant A that appears for each y; is always the same.

Repeat the process above with every y; (1 < i < m). The collection of equa-
tions obtained in this way, together with the functions already determined

fIX] ( Yo Xatl ), 1 < a < k —1, entails that

= (1-puy)*f[X] o (

z 1-z

k-1 i “ .

i+
f[X](yl,...,yk):/\Z 1—Zyj Sa| 77— |- (3.35)

SetT;:=1- ;:1 ;. A direct computation shows that, when a = 1,
k-1 tinn k

1-Tj)s Z—*) = > pilogui, 3.36
;( )1((1_T1_) ;# g (3.36)
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and when a # 1,

k-1 . k
> -1 s ((1H—Z+;z-)) S -t (3.37)

i=0 i=1
Therefore, for any a > 0, we have f[X] = A5,[X]. Analogously, f[Y] = AS,[Y]. O

3.5 Determination of H'!

In this section, we shall specify conditions on (S, E, Q) that allows us to determine
HY(S, Za(2)).

We call a variable Z reducible if there exist X, Y € ObS\ {1, Z} such that Z = XY,
and irreducible otherwise.

We denote by min(S) the set of minimal objects in S: these are the Y € Ob S such
that AX € ObS with X — Y.

Theorem 3.14. Let (S, E) be a bounded, finite information structure, and 2 an adapted
probability functor. Denote by S* the full subcategory of S generated by Ob S \ {1}. Suppose
that every minimal object can be factored as a nondegenerate product. Then,

HY(S, A(2)= |] R-s§ (3.38)
[Cleno(S*)
and, when a # 1,
HY(S, Z,(2)) = ( ]—[ R- sg) /RS, (3.39)
[Clemo(s)

In the formulae above, C represents a connected component of S*, and

5C[x] = {Sa[X] if X €ObC
if X ¢ ObC

Proof. Let f be an element of Z1(S, %#,(2)). If every M € min(S) can be factorized
as a nondegenerate product, Proposition implies that f[M] = Ay S,[M], where
A is a constant that depends a priorion M. If M — Z in S,

flZ] = fIM] = Z.fIM] = AmSaM] = Z.(AmSalM]) = AmSalZ]. (3.40)

If Z is refined by two variables M, N € min(S), we can apply the previous formula
twice to conclude that f[Z] = ApmSa[Z] = ANSa[Z], and therefore Ay = An.

Let M, N be two elements of min(S). If they belong to the same connected
component of S*, there is a zig-zag diagram in S* of the form

M—>Xi M —> XM — - Mg > Xy <N

for certain k € N, where M; € min(S) for all i. The repeated application of the
argument in the previous paragraph implies that Ayt = Apr, = -+ An.

On the other hand, if C and C’ are different components of S*, there is no cocycle
equation that relates f[X] and f[Y], for any variables X € ObCand Y € ObC’. In
fact, such a cocycle equation only is possible if there is a third nontrivial variable Z
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such that X, Y € .#7, and therefore [X], [Y] appear as generators of %#(Z); but this
would mean that X «— Z — Y in S*.

The previous argument proves that Z!(S, .7,(2)) = [Teenys) R+ Slc, and we saw
in Section 3.4 that 5C°(S, .#1(2)) = (0) and 6C%(S, Z,(2)) = R - S,. O

As a byproduct of the previous proof, we also obtain the following proposition.

Proposition 3.15. Let {(S;, Ei, Zi)}ie1 be a collection of triples that satisfy separately the
hypotheses stated in Theorem Then,

71 (]_[ S, 9(]_[ Q)) ~ ]_[ ZY(Si, 7(2))).

i€l i€l i€l
Proof. The category (L];_; S)* is the disjoint union of the categories S}, fori € I. O

The cases uncovered by Theorem 3.14]can be classified in two families:
1. There is an irreducible minimal object;
2. All minimal objects are reducible, but some of them cannot be written as
nondegenerate products.
In the latter case, all kinds of behaviours are possible, as the examples at the end this
section show.
In the Example we proved that H'(S, .#,(2)) has infinite dimension when
S = Obsin({0, 1}); in this case, there is only one nontrivial variable and it is obviously
irreducible. Now we proceed to the generalization of this result.

Proposition 3.16. Let (S, E) be an information structure and 2 an adapted probability
functor. Let M € min(S) be an irreducible minimal object, X1, ..., Xy, all the variables
coarser than M and suppose that

M->X{—...—oX,—1,

in S. Moreover, suppose that there exists k € {1, ..., n} such that, for some x € E(Xy), the set
24 = {Plx=x | P € 2p } contains at least one nonatomic law Then, dim H'(S, %,(2)) =
0.

Proof. Let k be the smallest k that satisfies the stated hypothesis. Set f[X;] = 0 for
i =k,...,n. We shall show that f[M] can be chosen arbitrarily.
The cocycle equations are

0= X f[M] - fIX;M] + f[Xil, i=1,..,n.

Fori < k, the term X;. f[M] vanishes becagse all conditioned laws P|x,—, give 0-laws.
This implies that f[X;] = f[M]. For i = k, we obtain f[M] = X;.f[M]. Given this
one, the others equations become redundant, since

Xj. fIM] = X;.(Xg. f[M]) = (X;Xp). f[M] = Xg. f[M],  for j > k.
LetP € 2yand P = (X;)-P € 2x,. The equation f[M] = X;. f[M] reads

FIMIP) = > P(x) FIMI(Plx;=).

xeXy

4The law P € 2, is atomic if P = 6, for some m € M.



Probabilistic information cohomology 91

If P|x,=x = Om for some m € M (atomic law), then f[M](P|x,=x) = 0; otherwise, no
condition determines f[M](P|x.=x). This means that, for each set 2}, that contains
nonatomic laws, we can introduce an arbitrary function. O

We illustrate the proof with an example. Consider QO = {0, 1, 2} and the concrete
structure S given by

M = {{0},{1},{2}} — X1 = {{0,1}, {2}} = 1a

In this case, there is an infinite family of cocycles given by f[X;] =0, f[1] = 0 and

Po p1 Po p1
M](po, p1,p2) = (po+ M , 0] = (po+ , /
fIM](po, p1,p2) = (po+p1) fIM] Py —— ) (Po pl)g(Po+P1 po+p1)

where g : Al — R is an arbitrary measurable function such that ¢(1,0) = g(0,1) = 0.

To close this section, we make some remarks about case of reducible minimal
objects that cannot be written as nondegenerate products. If the product is degener-
ate, multiple constants can appear or the dimension of H'(S, .%,(2)) can explode to
infinity, as the following examples show.

Example 3.17. Consider the information structure (S, E) given by the poset S repre-

sented by
1
) / \ )
\ /
XY

and the assignment E(X) = {x1,x2,x3,x4}, E(Y) = {y1, 2, y3, ya}, and E(XY) =
E(X)XE(Y); the arrows are mapped to the terminal maps and the canonical projectors.
Recall the notation [S] introduced before Definition Let

Dxy =TIXY) N ([{x1, x2} X {y1, y2}1 U [{x3, x4} X {y3, ya} ). (3.41)

Therefore, we just need to determine

X1 X2 X3 X4 n Y2 Y3 Ya
f[X](p 1_p),f[X](p 1_p),fm(p 1_p)andf[Y](p 1_p),

for arbitrary p € [0, 1]. Proposition allows us to conclude that

X1 X2 ) nooy2 | _
fIX] ( p 1-p ) = A1sa(p),  fIY] ( ) 1-p ) = M1sa(p). (3.42)
We can use this proposition a second time to show that
X3 X4 ) Ys  Yys | _
fIX] ( p 1-p ) = Aasa(p),  fLY] ( ) 1=y ) = A2s4(p). (3.43)

However, from Equations (3.27) and (3.28) is impossible to find a relation between
A1 and A> when P € 2xy. We conclude that Z1(.%,(2)) = R2.
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Example 3.18. Let (S, E) be the information structure defined in the previous example
and

Dxy = II(XY) N ([{x1, x2} X {y1, y2}] U [{(x3, y3), (x4, y4)}])- (3.44)

As before, we conclude that

X1 X

f[X]( ; 1_2p )= A1sa(p), f[Y]( ? 1y_2p ): A1sa(p). (3.45)

Equations (3.27) and (3.28) imply that

f[xn(("?’;g%) (’{4’_y;)): f[x](’;j 13{3}?): fm(ﬁ 1y_4p). (3.46)

and these are the only relations between these functions. Any measurable g :
A! — R such that ¢(0,1) = ¢(1,0) = 0 solves these equations. This means that
dim Z1(F,(2)) = .

3.6 Functorial extensions of algebras

The cocycle equation has a meaning in the context of extensions of algebras. We
introduce first some general definitions and results from [95]; what is said there for
algebras remains valid with presheaves of algebras.

Let A be a presheaf of R-algebras on S. An extension of A is an epimorphism
o : T — A. The extension is called singular (or square zero) if ker(cx)? = 0 for all
X € Ob S (in this case, ker(ox) can be regarded as a Ax-bimodule). It is called cleft if
there exists a morphism ¢ : A — I', ¢px morphism of algebras, such that 0 o ¢ = 14.
Given a A-bimodule M, a singular extension of A by M is a short exact sequence

0 M—5T 254 0 (3.47)

where & is a morphism of I'-bimodules (M is I'-bimodule by y.m = o(y).m, etc.). Two
extensions are called congruent if there is an algebra morphism y : I — I” making

commute.

A particular singular cleft extension of A by M is given by the semidirect sum,
defined to be the presheaf of vector spaces M ® A with product defined by (111, A1) e
(ma, Ap) = (m1Az + Ayma, A1 Az); with E(m) = (m,0) and o(m, A) = A. The following
Proposition is a well known result.

Proposition 3.19. Any singular cleft extension is congruent to M = A.



Probabilistic information cohomology 93

In our case, A = & and M = %, := F,(2), turned into a presheaf of <&/ — </~
bimodules with trivial right action: this means that each variable acts as the identity
endomorphism. If I' is a singular cleft extension of & by .%,, it is isomorphic to
Fa > /. What are the possible morphisms ¢ : &/ — %, > &/ that implement this
splitting? Set ¢(X) = (d[X], X); since ¢x is a morphism of algebras,

(d[Y],Y) e (d[X], X) = (d[YX], YX) & (d[Y] + Y.d[X], YX) = (d[YX], YX).

Thus d must be a 1-cocycle (also called derivation in this context). In this chapter, we
have proved that in general there is no choice, one must take the entropy. Therefore,
we can say that the entropy is the unique derivation that transforms a multiplica-
tive operation on partitions into an additive operation on functions, introducing an
appropriate ‘twist’.

Note that the definition of .#, guarantees that d[X](P) depends only on X.P.
This turns out to be the appropriate notion of locality and justifies the introduction
of presheaves.

The extensions that are singular and R-split (instead of cleft) are classified by
H?(S, #,): the morphism ¢x : «/x — I'x gives a natural vector space decomposition
I'x ~ o/x ® 7,(X), with product given by (X, f)e(Y, g) = (XY, f+X.g+a(X,Y)). The
function a : &/ ®g &/ — Ris called the factor set of the extension and the associativity
of the product in I entails that a is a 2-cocycle.

3.7 Product structures and divergence

We prove in this section that the Kullback-Leibler (KL) divergence and the cross-
entropy are cocycles for an adapted module of coefficients. Both quantities measure
the relation between two probability laws; the KL divergence gives a nonsymmetric
notion of distance. The proof is elementary and sheds some light on the meaning of
these cocycle equations from the probabilistic viewpoint.

Let (X,Y) be a joint random variable taking values in a set Exy C Ex X Ey,
with certain probability law P = {P(x, y)}(x,y)cExy,- Suppose n measurements of this
variable are performed, obtaining in this way a realization z = (z1,...,z,4) € E%;

XY’
define then the empirical distribution Q by the formula
, E = dy="»b
V(a,b) € Exy, Qa,b)= 0YE XY“; sandy =0}l 54
The probability of the realization z is (cf. [23] § 2])
P®(z) = ]—[ P(x, )Ry (3.49)
(x,y)€Exy
=exp|n > Q(x,y)logP(x,y) (3.50)
(X/y)EEXY
3 P(x,y)
=exp|n Z Q(x,y)log o, ) +n Z Q(x,y)logQ(x,y)| (3.51)

(x,y)eExy (x,y)eExy
= exp(-n{D[XY](Q[|P) + H[XY](Q)}) (3.52)
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where we have used the definition of the Kullback-Leibler (KL) divergence

Py(x)
VP, P, € TI(X), D[X](P1]|P,) := —X;X Pi(x)In Pj ol (3.53)
Whenever Q(x) := X.Q(x) # 0, we have the conditional probability
_Q(x,y)
Qylx) = 00) (3.54)

The case Q(x) = 0 is not relevant for our computation for it forces Q(x, y) to vanish
for any y and the corresponding factor in is P(x, )2 ¥" = 1ie. it does not
contribute to the product, that can be restricted to Q(x, y) # 0, and similarly the
sums.

Writing P(y|x)p(x) instead of P(x, y), we also have that

PPz) =[] (Plylo)P(x) 2=y (3.55)
(x,y)€Exy
Qlx,y)#0
=[] p@e=r [ Pty (3.56)
(x,y)eExy (x,y)eExy
Qlx,y)#0 Q(x,y)#0
= I_I P(x)R)n 1_[ P(y|x)QMQM)n (3.57)
x€Ex (x,y)eExy
Q(x)#0 Q(x,y)#0

= exp (n > Q(x)lnP(x)) [] exp(nQ(x) > QI InP(ylx)|. (358)

x€Ex x€Ex YyEEY

Q(x)#0

For convenience, let us introduce the cross-information

CIX]|(Q:P)=- Z Q(x)InP(x). (3.59)

xeEx

Note that D[X](Q[IP) = C[X](Q : P) - H[X](Q) and C[X](Q : Q) = H[X](Q).
A comparison of the exponents in equations and shows that

CIXY](Q: P) = C[X](X.Q : X.P) + Z QM)CIY1(Qlx=x : Plx=x)- (3.60)

yGEy

This is the 1-cocycle condition of information cohomology with coefficients in the
following bivariate module (called “product structure” in [10, Sec. 5]): for each X
in ObS, let & (2)(X) be the vector space of measurable functions f : 2x X 2x — R,
for a given functor of probabilities 2, and define the action of x on .7 @(X) by the
formula:

VY € 7, Vf € ZO(X),VP,Q € Qx, (Y.A)QP)= > QW)f(Qly=y, Ply=y)-
EEy
’ (3.61)
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This gives a functorial action of monoids; the proof is just a modification of those
in Section Therefore .# 2 has the structure of «7-module, that we denote 9’1(2).
Then l) is the cocycle condition. By its frequentist nature, the proof above only
works for rational Q, but must be valid everywhere by continuity.

In the particular case P = Q, this shows that H is a 1-cocycle. By additivity, the
KL is a cocycle too. Cf. The proof of Proposition 4 in [10].

The KL divergence also accepts an a-deformation. It can be formulated very
naturally by introducing first the a-logarithm:

(3.62)

Remark that In, — In; = In when a — 1. Shannon entropy S1[X](P) equals
Ep (- In P(X)), whereas Tsallis a-entropy S,[X](P)is Ep (- In, P(X)). The a-logarithm
satisfies [88, p. 38]

Vx,y >0, In(xy)=In(x)+In(y) - (a —1)In(x)In(y). (3.63)

The natural definition for the generalized KL divergence is, for all « > 0,

DXIQIP) = . Qwin, (2] G564
x€Ex

the case @ = 1 recovers (3.53).
Writing P(y|x)P(x) instead of P(x, y) (the same for Q) and using we obtain

Do[XY](QIIP)
- Z Q(x,y)lna(w)

WSk P(y[x)P(x)
_ Q(x) Q(ylx) Q(x) Q(y|x)
= . y)ze;sxy Q(x,y) (lna (P(x)) +1n, (P(ylx)) —(a=1)In, (P(x) ) In, (P(y|x) ))
Q) [{Qw)\*" Q(ylx)

= D,[X](X.Q||X.P) + Qx,y) (lna ( ) - (( ) - 1) In, ( ))

(x,y)ze;sxy P(ylx) P(x) P(yl|x)
a-1
= Do X](X.QI|X.P) + Z Q(x) (%((;C)) ) D[ Y1(Y+Qly=y|Y.Ply=y)

x€Ex

Since D, [X] belongs to .7 @)(X), the vector space of functions introduced above,
and satisfies the preceding equation, we conclude that it is also a cocycle for an
o/-module 9‘0((2) such that the variables act as follows: for all X € ObS, Y € %%,
feZ(X)and (P,Q) € 22,

a-1
(%) f(QlY:y/P|Y=y)

= > QW)*P()"* f(Qly=y, Ply=y). (3.65)

yEEy

(Y.1)QP) = ), Qy)

yEEy
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The case @ = 1 recovers the action (3.61)).

Here we should take into account that P and Q are in fact densities of measures
p and 7, respectively. Let v denote the counting measure on Ex. In terms of these
measures, the action (3.65)) is

a d 1-a
(Y-f)(f,p)=/E f(Q|Y=er|Y=y)(%) (d—i) dv (3.66)

When p = v, we recover the action (3.3). This is clarified in Chapter[12} the KL diver-
gence is in fact a particular case of relative entropy, and the usual Shannon entropy
is the relative entropy with respect to the counting measure. The relative entropy
has a general interpretation from the point of view of the asymptotic equipartition
property: the reference measure gives the appropriate notion of volume. In this
section the reference measure was P, because we were interested in the probabilities
of realizations z according to this law.



Chapter 4

Combinatorial information
cohomology

4.1 Counting functions

Let (S, E) be a finite information structure, and ¢ : S — Sets a functor that associates
to each object X the set

%X:{V:EX—HNH Zv(x)>0}, (4.1)

x€Ex

and to each arrow f : X — Y, associated to a surjection E(f) = myx : Ex — Ey, the
map ¢(f) : €(X) — €(Y) that verifies (€(f)(v))(y) = Zxén;ﬁ((y) v(x). To simplify
notation, we shall write Y.v instead of €(f)(v), whenever X is clear from context.
The elements of ¢ are called counting functions. For vx € €, we define its support
as { x € Ex | vx(x) # 0}, and its magnitude as the quantity ||v|| := X ,cx v(x).

For any subset A of X, we define

v(x) ifxeA
= . 4.2
vla®) {O otherwise (42)

When |[|v|a]| > 0, we call v|4 the restricted counting given A C X. Given an arrow
f : X =Y, the notation v|y-, stands for vln;;(y). Remark that vy = 0 and ||1/|y:y|| =
Y.v(y).

Consider now the multiplicative abelian group ¢x, whose elements are R, -valued
measurable functions defined on ¢x. By R} we mean {x € R|x > 0}. (The multi-
plicative notation is convenient, because multinomial coefficients appear directly as
cocycles.) The group ¥x becomes a real vector space if we define (r.f)(v) := (f(v))",
for each f € ¥x and each r € R. [| For each Y € .x and each g € ¥, set[]

Y= [ s@h=y): (43)
Yo

In principle this is a right action, but this is immaterial because R is commutative.
2In the probabilistic case, the sum (Y. f)(P) = 3, yeEy Y.P(y)f(P |y:y) can be restricted to those y € Ey
such that Y.P(y) # 0.
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Finally, define (aY).g :=a.(Y.g) = Y.(a.g). As a consequence of the following propo-
sition, these formulae give an homomorphism px : @/x — End(¥x), that turns ¥x
into an @#/x-module.

Proposition 4.1. Given variables Y,Z € ./x and f € %%,

ZY.f = Z.(Y.f). (4.4)
Proof.
zfHw) = || Hvlz=) (45)
Zaee0
= [T Il f@lz=h=y. (4.6)
z€Ey y€Ey

Z:v(2)£0 Y,v|z=2(y)#0

From the definition of conditioning, we deduce that (v|z=:)ly=y = Vl{z=z}n{y=y} =
V|a(y,z), where we have set A(y, z) := n;&(y) N Tc;((z).

Set W equal to ZY := Z A'Y, the meet in the poset S. Since in S we have the
commutative diagram

X

I

Y W VA

we obtain the following commutative diagram of sets

E(X)
Tty X Twx TizX
TU1 L T2
E(X) x E(Y)

where the upper triangle is explained by the functoriality of E and the lower one
by the universal property of products in Sets; ¢ is an injection by definition of an
information structure.

This implies that A(y,z) = n;&(y) N n%&(z) = n;\}XL‘l(nl‘l(y) N n;l(x)). If
(y,2) ¢ im(, A(y, z) is empty, s0 V|a(y,z) = 0, as well as ||V|A(y,z)|| = Y.v|z=2(y) = 0.
Therefore, the productin canbe restricted to pairs (y, z) € im 1, and the condition
Y.v|z=:(y) = ||V|A(ylz)|| # 0 translates into W,v(:™(y, z)) = ||V|A(ylz)|| # 0. Since there
is a bijection YZ = im 1, upon relabeling we obtain the desired equality. O

To any arrow 7 : X — Y, we associate the map ¥(n) : % — ¥x such that
G(n)(f) = fo¥(n). Then¥ : S — Sets is a contravariant functor. In fact, it is a
presheaf of «7-modules: Proposition[3.2/has an obvious analogue in this setting.
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4.2 Description of cocycles

Following the considerations in Section [2.5(and the notations introduced there), we
study the differential complex (C"(¥), 6), with C*(¥) := Hom (%,,¥), of combina-
torial n-cochains. These cochains are jointly local and equivariant.

The coboundary of f € C"(¥) is the (n + 1)-cochain 0 f : %41 — ¥ defined on
the generators of %11 by

Of [Xal. | Xnsa] =

X1 fXa || XD [ [FIX o XX |1 X DY | £ X @)
k=1

An n-cocycle is an element f in C"(S,%¥) that verifies 6f = 1; the submodule of
all n-cocycles is denoted by Z"(¢). The image under 6 of C"~! forms another
submodule of C"(¥), denoted 5C"~1(¥); its elements are called n-coboundaries. By
definition, 6C~1(¢) = 0. The corresponding combinatorial information cohomology
corresponds to

H"(Rs,¥) = Z(4)/6C" " 1(9), (4.8)

for every n > 0.

4.3 Computation of H"

The 0-cochains are given by a collection of functions { fx}xeobs (the image of the
section [] under f). Joint locality implies that, for every X € ObS, fx(v) = fi(l.vx) =
f1(llvx|l). Hence, 0-cochains are in one-to-one correspondence with measurable real-
valued functions of the magnitude, f =f1:N* > R,.

A 0-cocycle f must verify, for each Y coarser than X, (6 f)x[Y] = (Y. fx)(fx) ! =1,
which taking into account the previous remarks reads

favxy =[] Fvi=lD- (49)

yey
Yav(y)#0

Whenever |Y| > 2, this means in particular that

flx+y) = f(0)f(y) (4.10)

for every x,y € N. Setting a := f(1) > 0, one easily concludes by recurrence that

f(n) = a™ = exp(nln(a)). The function f(x) = exp(kx), for arbitrary k € R, is a

general solution of (4.9), because |lvx| = X yev ||V|y:y||. We have proved the
Y.v(y)#0

following proposition.

Proposition 4.2. Let Exp € Hom,/(*,%) be the section defined by
Expy : €x — R}, v = exp(||v]]). (4.11)

Then,
H°(S,%) = (Exp)x. (4.12)
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44 Computation of H'

For any 1-cochain f, we set f[Z] := fz[Z] = fx[Z], the last equality being valid for
any X such that X — Z, by joint locality.
In order to compute the 1-cocycle, we prove first an auxiliary result.

Lemma 4.3. Let f € Z1(¥). For every X € ObS, if v € €x verifies v = v|x=y for some
x € Ex, then f[X](v) =1.

In particular, f[1] = 1.
Proof. The cocycle condition implies f[XX] = (X.f[X]) f[X], that reads

[] fxievhk) =1. 4.13)
vx(iif()
O

The following result will be essential for the characterization of all the 1-cocycles.

It is the combinatorial analogue of Proposition Consequently, (4.14) and (4.16)
should be seen as combinatorial generalizations of the fundamental functional equa-
tion of information theory.

Theorem 4.4 (Combinatorial FEITH). Let f1, f» : N'\ {(0,0)} — Ry be two unknown
functions. The functions fi, f satisfy the conditions

1. fori e {1,2}, forevery n e N*, f(n,0) = f(0,n) = 1.

2. for every vo, vi,v2 € N such that vo + vi + v # 0,

filvo +v2,v1) fa(vo, v2) = fa(vo + v, v2) fi(vo, v1). (4.14)
if, and only if, there exists a sequence of numbers D = {D;}i>1 C Ry, such that D1 =1, and

[v1 + v2]p!
[vilp![valp!”

f(v,v2) = (4.15)

where [n]p! = D, Dy,—1 - - - D1 whenever n > 0, and [0]p! = 1.

Proof. Setting vy = 0, we conclude first that fi(vo,v1) = fa(v1, v2). Define f(x,y) :=
fi(x, y); it satisfies the equation

fvo+vi,va)  f(vi,vo+v2)

f(VOI VZ) B f(vllv())

for any vg, v1,v2 € N such that vo + v1 + vo # 0. In particular, if vo = t > 0, and

V1 =12=5>0,
f(t+s,s) B f(t,s)
fls,t+58)  fs, )

(4.16)

(4.17)

Thus, for any n > 1,

f(?’l,l) — f(i’l—l,l) ==f(1/1) -1
f(l, 71) f(l,Tl _1) f(l, 1)

(4.18)
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Let Dy 11 be the common value of f(n,1) and f(1,n). From Equation (4.16), setting
vop =n,v1 =1,and v2 = k, we can obtain a recurrence formula for f(n + 1, k):

f(n+1,k) = ””‘“ f( k). (4.19)

By repeated application of this recurrence, we conclude that

Dpik-1 Dk+1
n, k n+k n+ .
f( ) n Dn—l

f(O k). (4.20)

Remark that D; = f(0,1) = 1, and f(0,k) = 1 (Lemma [£.3). Therefore, f can be

rewritten as
[vi +v2]p!

[vilp![v2]p!
This formula still make sense when v{ = 0 or v, = 0. Conversely, for any sequence
D = {D;}i>1, with D; = 1, the assignment f; = f, = f satisfies (4.16), and thus
represents the most general solution. O

f(Vl, Vz) = (4.21)

The quotients

{V1+V2} — [V1+V2]D! (4.22)
p |

Vi, V2 vi]p![v2]p!

were studied in detail by H. G. Gould [33], who called them Fontené-Ward binomial
coefficients. To our knowledge, three particular cases appear in the literature under
their own name:

1. D, = n gives the usual binomial coefficients: {?;J;}D = (1"02).

n
-1 . . . . N .
2. D, = qul gives the g-binomial coefficients, also known as Gaussian binomial

V1 +V2} [1/1 +12

S L vz] For more details, see Section[6.1

V1+V2}

coefficients: {

are called Fibono-

3. When D is the Fibonacci sequence, the expressions { b

mial coefficients.
Already Fontené [29] noted that {Z} p = {k,:—k} b verifies the additive recurrence

formula
n n—=1 _[n—=1| Dn—D,
{k}D { k }D - {k_l}D Dy ' (429

with boundary conditions {’S} D= {Z} p = 1forn > 0. Conversely, this recurrence

formula implies that {’,:} , must be given by the expression in (4.22), so also the
multiplicative relations (4.16)).

Example 4.5. Let (S, E) be an information structure defined as follows: the poset S

is represented by
/ 1 \
X1 X

X1Xo
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and E is the functor defined at the level of objects by E(X1) = {x{1}, x{0.2}}, E(X2) =
{xp2y, xg0,11}, and E(X1X2) = {x{1}, X{2}, X3 }; for each arrow 7 : X — Y, the map
7. : E(X) = E(Y) sends x; — xjiff C J.

For this structure, the cocycle condition give the equations

fIX1X2](vo, vi,v2) = fI[Xo](vo + vi, v2) f[X1](vo, v1) f[X1](v2, 0), (4.24)
fIX2X1](vo, v1,v2) = f[X1](vo + v2, v1) f[X2](vo, v2) f[X2](v1, 0). (4.25)

Since X = X1X2 = XzXl,
fIXal(vo + vi, v2) f[X1](vo, v1) = f[X1](vo + v2, v1) f[X2](vo, v2) (4.26)

where we have taken into account that f[X;](v2,0) = f[X2](v1,0) = 0. This is exactly
Equation (4.14), and the condition (1)) in the statement is also met, therefore

FIXil(vo, v1) = fX2](vo, v1) = {VO " ”1} (4.27)
D

Vo, V1

for some sequence D. From (4.24), we conclude that

fIX](vo,v1,v2) = { (4.28)

vo+ vy + V2} . [V() +v1+ VZ]D!
vo,vi,v2 Jp  [volp!lvilp![valp!

Definition 4.6. Given any sequence D = {D;};>1 verifying D; = 1 (called admissible
sequence), the corresponding Fontené-Ward multinomial coefficient is the 1-cochain
given by

LIvil]o!
[Trery[v(x)Ip!

To characterize the cocycles associated to general products XY, we introduce a
definition of nondegeneracy analogous to Definition[3.12]

Vv e €(X), Wp[X](v)= (4.29)

Definition 4.7. Given two partitions X and Y, such that |[Ex| = k and |Ey| = [, we
call its product XY nondegenerate if there exist enumerations {x1, ..., xx} of Ex and
{y1, ..., y1} of Ey, and a North-East (NE) lattice pat (yi)i, on 72 going from (1,1)
to (k, 1) such that

1. For each y; = (a, b), the set

(v, y)la<i<a+landb<j<b+1}

contains at least three different elements. Here  denotes the injection Exy <
Ex X Ey.

2. If yi = (a,b) and y;11 — yi = (1,0), we ask that for every counting function
v € €x such that suppv C {x;|a < i < k}, there exists a counting function
7 € €xy whose support is contained in

G )Y UL G yp) la+1 < i < kDU {(ra, yo)} UL (30, yoe) [a+1 <0 < kD)

and such that v = X.7.

3A North-East (NE) lattice path on 7% is a sequence of points ()/,-);11 C 72 such that Yisl — Vi €
{(1,0),(0,1)} forevery i € {1,...,m — 1}.
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Analogously, if yi+1 — yi = (0,1), we ask that every counting function v € ¢y
such that suppv C {y;|b < i <1}, there exists a counting function 7 € €xy
whose support is contained in

(s, yp) YU (o, y) 10+1 < < THULT ({(xa, y0) U] (as1, ) [ b+1 < j < k)

and such that v = Y, 7.

Proposition 4.8. Let (S, E) be an information structure and X, Y two different variables in
Ob S such that XY € ObSS. Let f be a combinatorial 1-cocycle i.e. an element of Z*(S,¥).
If XY is nondegenerate, there exists an admissible sequence D, such that

fIX]1=Wp[X], f[Y]=Wp[Y], fIXY]=Wp[XY].

Proof. Very similar to the proof of Proposition As f is a 1-cocycle, it satisfies
the two equations derived from (4.7)

Y fIXIfIY] = fIXY], (4.30)
X fIYIf[X] = fIXY]. (4.31)

and therefore the symmetric equation
(X fIYDSIY] = (Y fIXD fIX]. (4.32)

For any counting function v, we write

( s tou ... )

p g r ...

ifv(s) =p, v(t) = q, v(u) = r, etc. and the images of the unwritten parts are zero.
Fix an order (xi,...,xx) and (y1,..., 1) that satisfies the definition of nonde-

generate product, and let {y;}", be the corresponding path. If y; = (a,b) and
vir1 — Vi = (1,0), we are going to show that the following recursive formula holds:

Xa oo Xk | _ Xg+1 ... Xk Xg Xa+1
sl e ) e

Analogously, if y; = (a,b) and y;41 —y: = (0,1),

fm(yb y1)=fm(y*’“ yl)fm(yb Yos1 ) (434)

Vp ... V] Vorl ... Vi vy VIl = v
Suppose that y; = (a,b) and ;41 — y; = (1,0). Let
_ Xg .. Xk
H _( Ha oo Mk )

be a counting function in ¥x. By Definition above, we know that u has a
preimage under marginalization fi, whose support is such that (X.f[Y])(i1) = 1, cf.
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Lemma [4.3] Thus @31) becomes f[XY](fi) = f[X](X.f1) = f[X](u). Equation (#30)
then reads

e g e (gt )= ) e

where 7 is the identity or the transposition of the nontrivial arguments of u. In any

case, setting g4+1 = ||y|| — tg and Ug42 = ... = pr = 0, we conclude that
Ya Xa+1 Yo Yb+1
X = flY , 4.36
(g it )= mee (gt ) e

which combined with (4.35) implies (4.33). The identity (4.34) can be obtained
analogously.
To determine

Xq
ni

¢ﬂ(n1/ nZ) = f[X] ( x:l;—l ) and ¢b(n1,n2) = f[Y] ( Yo Yo+1 ) )

ni np

for (n1,n2) € N?, consider the three different elements by, by, b3 in Exy € Ex X Ey
given by the property [I|of a nondegenerate product. The symmetric equation
evaluated on v1 06y, + 1205, +v30p, € N gives the equation that appears in Proposition
which implies that ¢,(n1,1n2) = Yp(ny1,n2) = {';1;;22} b for certain admissible
sequence D (the eventual permutations of the arguments in the unknowns become
irrelevant, because the solution is symmetric).

When considering y;+1, one finds the functions ¢, and 1;.1, or the functions
¢q+1 and Yy, since two consecutive matrices ;41 — y; is either (1,0) or (0,1). This
ensures that the admissible sequence D that appears for each y; is always the same,
as proved in Lemma The recurrence relations and then imply the

desired result. O

Lemma 4.9. Let D, D’ be two admissible sequences. If for all nq,ny € N2

{m + nz} _ {m + nz} 4.37)
niy, M2 )p ni,n2 ) p
then D = D’.
Proof. Just remark that

(b o
so we have [n]p! = [n]p/! for all n € N, which clearly implies the result. O

As in the continuous case, the number of admissible sequences that appear in
the computation of the 1-cocycles Z1(S,¥) depends on the number of connected
components of %, that is S deprived of its final element: only the minimal elements
are important, and when they refine a common variable (different from 1) they must
share the admissible sequence D, as a consequence of Lemma Cf. the proof of
Theorem
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On the other hand, a choice of 0-cochain ¢ = g1[] : N* — R’ induces globally a
Fontené-Ward coefficient 6¢ for a unique admissible sequence D,. Explicitly,

(gD Myery vamo &(vIl)
o8I ==y = v

The coboundary 0g is clearly trivial when g is the exponential function. In virtue of
the previous theorem, the expression (4.39), being a cocycle, must be a Fontené-Ward
coefficient, which gives the existence of D,.

Therefore, Z! and 6C° are both infinite dimensional. If S* is connected, the
quotient is trivial; otherwise it is infinite: |7o(S*)| — 1 admissible sequences remain
arbitrary.

(4.39)

4.5 Asymptotic relation with probabilistic information
cohomology

Proposition 4.10. Let g be a combinatorial 1-cocycle. Suppose that, for every X € Ob S,
there exists a measurable function f[X] : II(X) — R with the following property: for every
sequence of counting functions {vy, }n>1 C €x such that

1. ||vull = oo, and

2. forevery x € Ex, vu(x)/||[vall = p(x) as n — oo
the asymptotic formula

§IX1(vn) = exp(llvall® f[X](p) + o(llvall*)
holds. Then f is a probabilistic 1-cocycle of type a, i.e. f € ZX(S, Fo(IT)).

Proof. We must show that, whenever it makes sense,

fIXY](Pxy) = (X.f[YD(Pxy) + f[X](X.Pxy).

Xyl
XY

every z € Exy, vy, (2)/ ||v;1(y|| — Pxy(z). A sequence like this always exists: just
consider a rational approximation of the values of Pxy with common denominator.
Since g is a 1-cocycle, g[XY] = (X.g[Y])g[X]. Evaluate it at v%,,, take the loga-

XY’
rithm and divide by ||v

Let {v§, }n>1 be a sequence of counting functions such that ||v | — o0 and, for

o, .
§Y|| in order to obtain

Ing[XY](vyy) Z lng[Y](v;“(ylxzx)+1ng[X](V§Y)

[ N ¥ N ¥
Xt (X)#0
Recall that, for any counting function v, ||v|x=x|| = X.v(x). Hence,
InglY](Wxylx=x) _ IngIYI(vyylx=y) Xv, (x))* (441)
(e ey b=l Il
Plug this in and take the limit as 7 goes to infinity to conclude. O

The proof applies almost unchanged to 0-cocycles and general n-cocycles.
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Proposition 4.11. Let g be a combinatorial n-cocycle. Suppose that, for every X1, ..., X, €
ODb S such that X; - -- X,, € Ob S, there exists a measurable function

fIXa X TI(Xy -+, X)) = R

with the following property: for every sequence of counting functions {v,}n>1 C €x,.-x,
such that

1. ||vu|| = oo, and

2. for every z € Ex,..x,, Vn(2)/||[Vall = p(z) as n — oo
the asymptotic formula

gIXal- Xl (va) = exp(llvull fF1Xal.-. 1 Xn](p) + o(llvall®))
holds. Then f is a n-cocycle of type o, i.e. f € Z"(S, Fo(I1)).

We discuss now some important examples:

1. The exponential Expk : v — exp(k |[v|]) is the a combinatorial 0-cocycle, and it
corresponds to the constant k seen as a probabilistic 0-cocycle.

2. It is well known that

(pln n psn) = exp(nSi(p1, .., ps) + 0(n)) (4.42)

This can be easily proved by using Stirling’s approximation, for instance. This
asymptotic formula partly explains the relevance of entropy in Shannon’s com-
munication theory: it gives an asymptotic counting of typical sequences for
memoryless sources. This is the content of the Asymptotic Equipartition Prop-
erty (Proposition [0.4).

3. Whereas the previous examples are not really surprising, Proposition[4.10[hints
at new objects that are connected to the generalized a-entropies and have gone
unnoticed until now. For example, the g-multinomial coefficients are connected
asymptotically to the 2-entropy (quadratic entropy),

n In
[mn p n] B eXP(”2Tq52(P1z ., Ps) + 0(n?)) (4.43)
s Pstt] g

These coefficients have a well-known combinatorial interpretation: when g is
a prime power and ki, ..., ks are integers such that );}_; k; = 1, the coefficient
[k1 " ks]q counts the number of flags of vector spaces Vi C Vo C ... C V), = IF"g

such that dimV; = Z;zl ki (here F, denotes the finite field of order g). In
particular, the g-binomial coefficient [Z] g = [k/:_k] ] counts vector subspaces of
dimension k in Ff.
In Part we push this parallel between S; and S, much further: we introduce
a probabilistic model that generates vector spaces and study its concentration
properties, to obtain a generalization of the Asymptotic Equipartition Property
that involves the quadratic entropy (Theorem 8.2).

It is quite natural to ask if, for any @ > 0, there exists a sequence D* = {D{'}i>1

and K € R such that

n
{pm p n} = exp(n®KSa(p1, ..., ps) + 0(n%)), (4.44)
T

and the answer turns out to be yes.
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Proposition 4.12. Consider any e € R%, \ {1}. If DY = exp{K(n*~! = 1)}, forany K € R,
then

{ " } =exp {n“ESa(pl,...,ps)+o(n“)}.
Da a

pin, ..., psn

Proof. Remark that [n]p! := exp{K(X ;%1 —n)}.
Suppose first that @ > 1. In this case, x > x*~! is strictly increasing and

n o n n+1 + 1 1
/ x Ty =< Yol < / wilge = D 1 (4.45)
0 R 1 a a

Hence, if K > 0,

exp {K (%a - n)} < [n]p! < exp {K ((n D _1_ n)} (4.46)

a a

This directly implies that
(]! (n+1)* 1 o (1
TEETCAT R I a " ; a "

< exp{ n (1 - Z—g) + o(n“))} , (4.47)
i=1

>exp{K %—n—i(@—m))}
> exp {g (n"‘ (1 - ZS: Z—Z) + o(n"‘))}. (4.48)

i=1

RI=

as well as

[n]p!

[n1]p!- - [ns]p!

If K < 0, the inequalities (4.46), (4.47) and (4.48) must be reversed, but the result is the
same. Similarly, when 0 < a < 1 the argument remains valid making the necessary
modifications: all inequalities are reversed, since x > x%~! is strictly decreasing. O

It is not known if these or similar coefficients related to S,, for a € R: \ {1,2},
have a combinatorial or statistical interpretation.
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Chapter 5

A functional equation for
generalized entropies related to the
modular group

Fix a > 0. We are interested in the measurable solutions of

u(1 = x) +(1 = x)% (%) = u(y) + (1 - y)°u (1:—7) (5.1)

for all x, y € [0, 1) such that x + y € [0, 1], subject to the boundary condition u(0) =
u(l) =0.

In this chapter, we show that the only measurable solutions to are multiples
of the corresponding entropy s,. This rests on two preliminary results.

Proposition 5.1 (Regularity). Any measurable solution of is infinitely differentiable
on (0,1).

Proposition 5.2 (Symmetry). Any solution of satisfies u(x) = u(l — x) for all
xeQnlo,1].

The first is proved analytically, by means of standard techniques in the field
of functional equations, and the second by a geometrical argument, relating the
equation to the action of the modular group on the projective line.

The propositions above imply that any measurable solution of must satisfy
u(x) = u(l —x) forall x € [0,1] and therefore

u(x)+(1—x)au(1fx)=u(y)+(1—y)au(1fy), (5.2)

with #(1) = u(0) = 0. By continuity, u attains a finite value on %, say K. For a =1,
Kannappan and Ng [47] showed that u(x) = Ksi(x). For a # 1, Dar6czy [25] proved
thatl]

21_5_ S (1= ) - 1), (53)

In fact, he does the case K = 1, but the argument works in general.

u(x) =
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Proof of Proposition[5.1, Lemma 3 in [47] implies that u is locally bounded on (0, 1)
and hence locally integrable. Their proof is for « = 1, but the argument applies to
the general case with almost no modification, just replacing

y I-x-y
1_x)—(1—y)u( 1-y )

where x, y are such that u(1 - x) < N, u (%) <Nandu (1zf;y) <N, by

|u@n=uu—xyu1—mu( <3N,

lu(y)| = < 3N,

u(l—x)+(1—x)“u(1¥x)—(1—y)“u(1_1f—;y)

that is evidently valid too.
To prove the differentiability, we also follow the method of [47]. Let us fix an
arbitrary yo € (0, 1); then, it is possible to chose s, t € (0,1), s < t, such that

l1-y-s 1-y—t
1-y " 1-y

€(0,1),

for all y in certain neighborhood of yy. We integrate (5.1) with respect to x, between
s and £, to obtain

1-y—t

1-s % -y
(s —tu(y) = /1—t u(x)dx + yl*® / g dz + (1 - y)* [_y_s u(z)dz. (5.4)

¥

I-s 1-y

The continuity of the RHS of as a function of y at yo, implies that u is continuous
at yo and therefore on (0, 1). The continuity of u in the RHS of implies that u is
differentiable at 1. Aniterated application of this argument shows that u is infinitely
differentiable on (0, 1). |

Proof of Proposition[p.2} We take 1 —x =1-y =z € [4,1] in (5.J), to obtain
u(z) —u(l-z) =2z [u(Z —z Y —uz7! - 1)] .

If we define h(z) := u(z) — u(1 - z), the previous equation reads
Vz € B, 1] , h(z)=z%h(@2-2z7Y), (5.5)

and the definition directly implies that
Vz€[0,1], h(z)=-h(1-2z). (5.6)

The boundary conditions are #(0) = k(1) = 0. From (5.5), we deduce that h(1/2) =
h(0)/2* = 0. Using to modify the right hand side of (5.5), we obtain

Vx € [%,1] . h(x) = —x%h(x"1 -1). (5.7)

In principle £ is just defined on [0, 1], but we extend it imposing periodicity:
Vx €] —o00,00[, h(x+1)=h(x) (5.8)

We establish now several results about this extended function.
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Lemma 5.3.
Vx eR, h(x)=-h(1-x).

Proof. We write x = [x] + {x}, where {x} := x — [x]. Then,

he) 2 h({x) L -h(1 - (x}) B =h(1 = {x} - [x]) = -h(1 - x),

Lemma 5.4.
Vx €[1,2], h(x)=x%h2-x71). (5.9)

Proof. For h is periodic, (5.9) is equivalent to Vx € [1,2], h(x = 1) = x*h(1 - x71), and
the change of variables u = x — 1 gives

u
— o

Vue[0,1], h(u)=(u+1)%h (u - 1) . (5.10)

Note that1 - ;5 = ﬁ € [1/2,1] whenever u € [0, 1]. Therefore,

h ( u ) (Lemﬂa —h 1 1 ¢ h(u)

u+1 B u+1)  \u+1 ’
This establishes (5.10). O

Lemma 5.5.

Vx €[2,00[, h(x)=x%h2-x7"). (5.11)

Proof. If x € [2,00[, then1 -1 € [1,1] and we can apply equation to obtain

T S P RS

We prove (5.11) by recurrence. The case x € [1,2] corresponds to Lemma
Suppose it is valid on [n — 1, n], for certain n > 2; for x € [n,n + 1],

) Bhix-1) " -2 - x-1DHE - 1)1 - (x -1
x*h(1—x71) = x*h(1 - x71).

Lemma 5.6.

Vx € [0, %] . h(x) = —x%h(x71 =1). (5.13)
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Proof. The previous lemma and periodicity imply that h(x — 1) = x*h(1 — x7?) for all
x> 2,i.e.

1
> = h1-——]. .
Yu>1, h(u) (u+1)h(1 u+1) (5.14)
Then, foru > 1,
1 (Lem B3 1 em (1 ¢
o) ) 2 (e

Wesety = (u+1)"! € (0, 3]. Equation (5.15) reads

1 _
Yy e (0, E] , h(y)=-y*h(y ' -1). (5.16)
Since h(0) = 0, the lemma is proved. O
Lemma 5.7.
Vx € [o, %] , h(x) =x%h(2-x7h). (5.17)

Proof. By Lemmal5.3 it (2 - x7!) = —h(x~! - 1). Thus,

Vx € [0,%] , h(x)—x“h (%—1) =x% (2— 1)

Lemma 5.8.
Vx €] —0,0], h(x)=-x%hQ2-x71).
Proof. On the one hand, periodicity implies that /i(x) = h(x + 1) tzF3 —h(l - (x+

1)) = —=h(-=x). On the other, for x < 0, the previous lemmas imply that h(-x) =
(=x)*h(2 = (=x)71) = |x|*h(2 = (=x)7!). Therefore,

_ _ o 1\ wemBd | 0 1 N 1
h(x) = =h(-x) = —|x| h(2+;) =2 x| h(l—(2+;)) = x| h(2—;) (5.18)

O
All these results can be summarized as follows:
Proposition 5.9. The function h, extended periodically to R, satisfies the equations
2x -1
VxeR, h(x)= |x|“h( xx ) (5.19)

VxeR, h(x)=—|x|*h (1 ; x) : (5.20)
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Equation (5.20) is deduced from (5.19) using (5.6).
The group G = SLy(Z)/{+I} is called the modular group; it is the image of SL,(Z)

in PGLy(R). We keep using the matrix notation for the images in this quotient. We
make G act on P1(R) as follows: an element g = (ch Z) € Gactingon [x : y] € PY(R)

(homogeneous coordinates) gives

glx:y]l=lax +by:cx +dy].

Let S and T be the elements of G defined by the matrices

5:((1) _01) and T:((l) }) (5.21)

The group G is generated by S and T [77, Ch. VII, Th. 2]; in fact, one can prove that
(S,T;S?,(ST)%) is a presentation of G.

The transformations x % and x +— 1%" in Equations (5.19) and (5.20) are
homographies of the real projective line P!(R), that we denote respectively « and .

They correspond to elements

2 -1 -1 1
<) s () -
in G, that satisfy
» (2 -1 4 (-1 1
B* = (_1 1 BA™" = 0 1) (5.23)

This last matrix corresponds to x — 1 — x.

Lemma 5.10. The matrices A and B? generate G.

Proof. Let
P=sT'T"= (_01 1) :
One has
PAP7! = ((1) _11) (5.24)
and
PB?p~! = (i’ ‘01). (5.25)

Therefore, PAP~! = T ' and S = T3PB2p~1. Inverting these relations, we obtain
T =PA™'P7Y; S=PA3B2p~L. (5.26)
Let X be an arbitrary element of G. Since Y = PXP~! € G and G is generated by S

and T, the element Y is a word in S and T. In consequence, X is a word in P~!SP
and P~ITP, which in turn are words A and B2. The Lemma is proved.
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One can find explicit formulas for S and T in terms of A and B2. Since P = S71T71,
we deduce that PSP~ = S71T-1STS and PTP~! = S™I1T-ITTS = S1TS. Hence, in

virtue of (5.26),
S =P ls7iT-lsTsp
= (P 's7ip) Pt ip) (P iSP)(PITP)(P~ISP)

= B2AB2A%B7?
and
T =p7's7'TSp
= (P~'Ss7'P)(P~ITP)(P~!SP)
= B%A"1B72

O

To finish our proof of Proposition[5.2} we remark that the orbit of 0 by the action of
G on P1(R) is QU{oo}, where QU{oo} has been identified with {[p : ] € P'(R) | p,q €
Z} c P1(R). This is a consequence of Bezout’s identity: for every point [p : q] € P}(R)
representing a reduced fraction Z—’ # 0 (p,q € Z\ {0} and coprime), there are two

integers x, y such that xg — yp = 1. Therefore

r_[X P
$ (y q)
is an element of G and g’[0: 1] = [p : q]. The case g = 0 is covered by
0 1
(_1 0) [0:1]=[1:0].
The extended equations (5.19) and (5.20) are such that /1(x) = 0 implies h(ax) =0,
h(Bx) = 0, h(a~'x) = 0 and h(B~'x) = 0. Since the orbit in R of 0 by the group of

homographies generated by A and B2 (i.e. G itself) contains the whole set of rational
numbers Q and /(0) = 0, we conclude that h =0 on [0,1] N Q. O
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Chapter 6

The g-multinomial coefficients

This chapter introduces the combinatorial objects and results used later in Chapters|[7]
and (8| In Section we define the g-multinomial coefficients, that are associated to
the enumeration of flags of finite vector spaces. Section [6.2| studies their asymptotic
behavior and establishes the connection with the quadratic entropy. Sections(6.3|and
are mutually independent and not essential to understand the rest of the paper:
the former uses the asymptotic results to obtain a combinatorial explanation for the
nonadditivity of Tsallis 2-entropy, and the later discuss a combinatorial justification
of the maximum entropy principle with Tsallis entropy.

6.1 Definition

Let g be an indeterminate. The g-integers {[n];},ecn are defined by [n]; := (" -
1)/(q — 1) and the g-factorials by [n],! := [n]y[n —1];---[1];. The g-multinomial
coefficients are

n :
[kl,...,ksL T Tl ksl (6.1)

defined for (1, ky, ..., ks) € N°*! such that Yo ki =mn.
Throughout this paper, we shall assume that g is a fixed prime power. For such
g, the g-binomial coefficient [Z]q = [k,::—k]q counts the number of k-dimensional

subspaces in F” More generally, given a set of integers k1, ..., ks such that Zle ki =mn,

the g- multmomlal coefficient [k ]q equals the number of flags V1 c V, C --- C

Vi1 C Vs = Fq of vector spaces such that dim V; = 25:1 ki, see [68,/69]. We will say
that these flags are of type (ki, ..., ks).

It is possible to introduce a function I'; as the normalized solution of a functional
equation that guaranties that [n],! = I';(n + 1), see [6]. When g > 1 and x > 0, this
function is given by the formula [64]:

T(x) = (77547 g (g - D Z (q—l,q—l) 6.2)

(@759 )eq® g - D
BT R (©3)




118 Definition

where we have used the Pochhammer symbol

n-1
(a;x), := 1_[(1 —ax"), (a;x)g = 1. (6.4)
k=0

The equivalent expressions for the I';-function come from the identity

(fxx.;:))m =) EZZ;”x” (g1 < 1), (6.5)
7 [Se] n:O 4 n

known as g-binomial theorem [45, p. 30].

Recall [50, p. 92] that an infinite product [ ]2, u; is said to be convergent if

1. there exists iy such that u; # 0 forall i > ip;

2. limy o0 Ujg41 - * - Uig+n €Xists and is different from zero.
An infinite product in the form [](1 + ¢;) is said to be absolutely convergent when
[1(1+ |c;|) converges. One can show that absolute convergence implies convergence.
Moreover, when the terms y; > 0, the product [[;(1 + ;) is convergent if and only
if the series },; y; converges. The convergence of )};1/q’ gives then the following
result, that is used without further comment throughout the thesis.

Lemma 6.1. Foreverya € C, the product (a; g~")eo converges. Moreover,ifa ¢ {q'|i >0},
then (a; ™) e # 0.

The I'; function gives an alternative expression for the g-multinomial coefficients

n 3 [y(n+1)
|:k1, ,kSL T Ty(ki+ 1)+ Tplks +1)° (6.6)

which in turn extends its definition to complex arguments.
We close this subsection with a remark on the unimodality of the g-binomial
coefficients.

Lemma 6.2. For every n € N,
o 12l < [, << Ll
* [Lnr;ZJ]q = [[ny/IZ]]q’

° [rn7z1]q > [n7i1]q > [:]q

Proof. Consider the quotient

[kil]q _ [Tl _k]q
[Z]q S [k+1],

Q(n, k) := 6.7)

Then, Q(n, k) > 1iff g% > g**1iff k < 21, with equality just in the case k = £ —
n/2] (when n is odd).

N|=
oo
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6.2 Asymptotic behavior

The quadratic entropy S; of a probability law (u1, ..., ;) is defined by[Y]

S
Salpr, -, ps) =1- Y 4l (6.8)
i=1

We also use the notation »(x), for x € [0, 1], as a shortcut for S>(x, 1 — x).

Theorem 6.3. For each n € N, let {ki(n)};_ be a set of positive real numbers such that
Z?:O ki = n (we write k; when n is clear from context). Suppose that, for each i € {1, ...,s},
it is verified that k;(n) — 1; € [0, co] as n — oco. Then,

S
n 1. —1- —(; - 2g,ML ks
|:k1 L :| - (q 1}’7 1)&05 l_l(q (l,+1);q 1)ooqn S2(5sees - )/2‘ (69)
g eeey g q i=1
Recall that f, ~ g, means f,/g, — 1asn — co. By convention, (g=**1; g71),, =
1.

Proof. First, we substitute (6.2) in (the powers of (g — 1) cancel):

(ki+1),
n] gLt p Din@ i e
ki, ..., ks g (g=D); g 1)

Theorem [6.3|is a direct consequence of this equality and the following fact: for any
sequence {t, }, of positive numbers,

lim (g "*Y; g7 = 1 6.11)
n—-oo
if t, — o0, and
lim (q_(tn+l); 0]_1)00 = (l]_(tﬂ); q_l)oo (612)
n—0oo

if t, — t € [0, ).
To establish (6.11) and (6.12), remark first that

](tn +1)

( (t,,+1)’ —1)00_
1 ZWﬂmm

can be written as fN fn(x)v(dx), where v denotes the counting measure and f, : N —
[0, 00) is given by
q—x(t,,+1)

X)= —/———
I = G,

Moreover, |f,(x)| < ¢(x) := ¢7/(q7%; 971y, because t, > 0, and g(x) is integrable,
Jog@w(dx) < (7, 47N ==

vergence theorem,

(6.13)

q —j(tn+1)

lim Z = = lim /N Fu(x)v(dx)

- [ 1im fu ()
N

UIn this part of the thesis, we fix the constant 1 in front of 1 - Y.7_; y%‘
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—x(t+1)

q

TRITN whent, —> t. O

The point-wise limit lim,, f,,(x)is [x = 0] whent, — coand

When f, and g, are positive, f, ~ g, implies that lim, log, f, —log, gu = 0. For
instance, we can deduce that, for any fixed A € N,

o1 n _.n B
hgn - logq [n N AL = hjgn ESQ(A/”) = A, (6.14)

where the last equality comes from a direct computation.
As an immediate application of Theorem [6.3] we obtain the following limit an-
nounced in the Introduction.

Proposition 6.4. For each n € N, let {ki(n)};_, be a set of positive real numbers such that
iz ki = n (we write k; when n is clear from context). Suppose that k;/n — u; € [0,1] as
n — oo, for all i. Then

. 2 n _

Proof. 1f f/g — 1, thenlog, (f/g) — 0. Therefore,

n U ) n? (k1 ks)
lo —lo - =S |—=,...,—]=0(). (616
Multiply this by 2/n2 and use the continuity of S, to conclude. |

6.3 Combinatorial explanation for nonadditivity of Tsallis
2-entropy

Additivity corresponds to the following property of Shannon entropy: if X is an
Ex-valued random variable with law P = {py}regx and Y an Ey-valued variable
with law Q = {gy}yck,, independent of X, then the joint variable (X, Y) has law

P®Q:= {pqu}(x,y)EExXEy and
S1IIX, VP ® Q) = S1[XI(P) + S1[Y1(Q). (6.17)

For simplicity (the arguments work in general), we suppose that X, Y are binary
variables, i.e. Ex = Ey = {0, 1}. Consider the sequences counted by (NOO,Nofj]Nlo,Nll) ;
they are the possible results of N independent trials of the variable (X, Y), under
the assumption that the result (i, j) is obtained N;; times, for each (i, ) € {0,1}*.
We treat the particular case N;; = piq;N, that correspond to the expected number
of appearances of (7,j). The independence between Y and X means that, given
No = Noo+No1 = poN occurrences of X = 0 (resp. Nj := N1g+Ni1 = p1N occurrences
of X = 1) in the sequences of length N counted above, there are goN; occurrences
of Y = 0 and g1N; occurrences of Y = 1 in the corresponding subsequence defined
by the condition X = i, irrespective of the value of i. In this case, the multiplicative

recurrence relation g[XY] = (X.g[Y])g[X] reads

i) = (o) o s 619
Noo, No1, N1o, N11 No/\qoNo/\qoN1 ) )
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o
\

/\ /\

g0 .

Figure 6.1: Decision tree for the recursive reasoning that leads to equations (6.18) and (6.19).

Applymg ¥ In(-) to both sides and taking the limit N — oo, we recover (6.17).

In the g-case, [ counts the number of flags Voo C Vi1 € Vig C V11 =

Noo,Noflelo,Nn] q
Fg of type (Noo, No1, N1o, N11). When N;; = p;q;N, such a flag can be determined by
an iterated choice of subspaces, whose dimensions are chosen independently: pick
first a subspace Vo C Fj of dimension Ng = Noo + No1 = poN (there are (II\\,L )q of

those) and then pick a subspace of dimension qoNy C Vj and another subspace of
dimension goNj in Fg /Vo. This corresponds to the combinatorial identity

OV e A A e 619
Noo, No1, N1o, N11 g Ny g qo0No . qoN1 q' ’

Applying -2 7 log, (=) to both sides and taking the limit N — co, we obtain

Sa(poqo, poqr, p1q0, P141) = Sa(po, p1) + p3Sa(q0, q1) + (1 — po)*S2(qo, q1)
= Sa(po, p1) + S2(q0, 91) — S2(po, p1)S2(q0, 91)-

In both cases, the trees that represent the iterated counting are the same, see Fig.
(and compare this with Figure 6 in Shannon’s paper [78]). The main difference lies in
the exponential growth of the combinatorial quantity of interest and how the corre-
spondent exponents are combined. In the g-case, even if you choose the dimensions
in two independent steps, the exponents do not simply add; in fact, the counting
of sequences is nongeneric in this respect. Remark also that the interpretation of
probabilities as relative frequencies of symbols only make sense for the case of words;
more generally they correspond to ratios or relative proportions.

6.4 Maximum entropy principle

In the simplest models of statistical mechanics, one assumes that the system is com-
posed of n particles, each one in certain state from a finite set S = {s1,..., 5} (in
certain contexts, the elements of S are called spins). A configuration of the system
is a feasible vector x € S§"; when all particles are independent, S" is the sets of all
configurations.

We have in mind a new type of statistical mechanics, where a configuration of the
n particle system is represented by a flag of vector spaces V1 C V, C ... C V), = Fj.

In the classical case of independent particles, the total energy of a configuration
x just depends on its type (k;)1<i<m, Where k; is the number of appearances of the
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symbol s; in x. In fact, the mean (internal) energy is Z:’il %Ei, where E; € R is the

energy associated to the spin s;. Setting E;jy1 = 0, E;=E;j—Ej;;and r; = Z;zl k;, one

can write Y/, ZE; instead of Y/ %Ei.

Now we plan to move beyond independence, so it is convenient to see the energy
as a “global” function that depends on the type of the sequence. We assume now
that the energy associated to a flag of vector spaces V1 C Vo C ... € V), = F just

depends on its type (ki, ..., k) and is of the form

Zm} i, = zm] lig, = Zml (diIZ—Vi)Ei (6.20)

i=1 i=1 i=1

=

=

where r; = Z;’:l k;, as before.
In general, if n > 1, the equations

n

ki
; ~E; = (E) (6.21)
Z ki=n, (6.22)

i=1

where (E) € R is a prescribed mean energy, do not suffice to determine the type
(k1, ..., k) and an additional principle must be introduced to select the “best” es-
timate. As a solution to this inference problem, we propose an extension of the
principle of maximum entropy as stated by Jaynes in [42]. Between all the types that
satisfy and (6.22), we should select the one that corresponds to the greatest
number of configurations of the system. This means that we must maximize

"
kl/kZ/ (Y km q

under the constraints and (6.22). The maximization of W(kj, ..., k) is equiv-
alent to the maximization of 2logq W(ki, ..., km)/n?% as n — oo, the latter quantity
approaches S>(g1, ..., gm), with g; := lim, k;/n. Our maximum 2-entropy principle
says that the best estimate to (g1, ..., gm) corresponds to the solution to the following
problem

W(ki, ..., k) = [ (6.23)

max Sz(gl, cers gm)

m
subject to Z giEj = (E)

i=1
m
Z gi = 1.
i=1

This differs from usual presentations of the maximum entropy principle in the lit-
erature concerning nonextensive statistical mechanics. Usually the constraints are
written in terms of escort distributions derived from (g1, ..., gm); these have proven
useful in several domains, e.g. the analysis of multifractals [11}85]. However, it is
not clear for us how to derive them from combinatorial facts.
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Grassmannian process

When g-is a prime power, the g-binomial coefficients count vector spaces. As ex-
plained in the Introduction, this motivates a generalization of information theory
where messages are vector spaces in correspondence with the usual information the-
ory for memoryless Bernoulli sources. Table|1|outline the correspondence. Sections
and |7.3ljustify the last row of this table: the former describes the g-deformed ver-
sion of the binomial distribution, associated to the g-binomial coefficients; the latter
introduces an original stochastic model for the generation of generalized messages:
a discrete-time stochastic process that gives at time n a vector subspace of Fy, that
we call Grassmannian process. Finally, Section [7.4] establishes some facts about the

asymptotic behavior of this process.

7.1 The g-binomial distribution

Let Z be a random variable that takes the value 1 with probability & € [0,1] and the
value 0 with probability 1 — & (Bernoulli distribution). Its characteristic function is

E(e't?) = &e't + (1 - &). (7.1)

Let W, be a random variable with values in {0, ..., n}, such that k has probability
Bin(k|n, &) := (’Z)ék(l — &)" %, where & € [0,1]. The binomial theorem implies that
Bin(-|n, &) is a probability mass function, corresponding to the so-called binomial
distribution. The theorem also implies that

(E (eitz))" = (Eeit + (1= &))"

_ Zn“ (Z)eitkgk(l _ gy (7.2)
k=0
-F (eitwn) ’

which means that W,, = Z1 + ... + Z,, (in law), where Z1, ..., Z,, are n i.i.d. variables
with the same distribution than Z [26, Ch. I, Sec. 11]. Given a collection {Z;}i>1
of i.i.d. random variables such that Z; ~ Ber(&), the process {W, },>1 defined by
Wi =Zyand W, = W,,_1 + Z,, when n > 1 is an N-valued markovian stochastic
process.
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There is a well known combinatorial interpretation for all this: if one generates
binary sequences of length n by tossing n times a coin that gives 1 with probability
& and 0 with probability 1 — &, any sequence with exactly k ones has probability
EK(1 = &)"* and there are (Z) of them. Therefore, if Y is the sum of the outputs
of all the coins (the number of ones in the generated sequence), the probability of
observing Y = k is () &k(1 - &)"*.

There is also a g-binomial theorem, known as the Gauss binomial formula [45,
Ch. 5]:

n

(x+ Y +yq)-(x+yg" =) [Z] gk xnk. (7.3)
q

k=0

Let us write (x + y)j instead of (x + y)(x +yq) - -~ (x + yq"1): the g-analog of (x + y)".
Then implies that

5) 4k n—k
Bin, (k|n, x, y) := [n] q( )y ad (7.4)

k ] (x+y)y

is a probability mass function for k € {0, ..., n}, with parameters n € N, x > 0 and
y > 0. Moreover, the factorization

n-1

(x+yeth]) n [1’1] eltkykxn kq(g)
l_[ (x +yq)) ; ki, (x+y)g 7.5)

\.

shows that a variable Y, with law Bing(n, x, y) can be written as the sum of n
independent variables Xj, ..., X;;, such that X; takes the value 0 or 1 with probability
x/(x +yg'~1) and ygi~'/(x + yg'~!), respectively.

If we begin with a collection {X;};>1 of independent variables such that X; ~
Ber (qu’ 1) then the process {Y, },>1 defined by Y, = X; + --- X,, is an N-valued
markovian stochastic process. When g — 1, each X; becomes a Bernoulli variable
with parameter y/(x + y) and Y has a Bin(n ) distribution. Equation (7.5) also
implies that

7 x+y
n-1 j n-1
yq X

E(Y) = ;
o X +yq

(7.6)
Provided that x # 0, one can write the mass function of the g-binomial as follows:

) ok
Bin, (k|n, 0) := H 120 7.7)

k q(_Q/'Q)n

where 0 = y/x > 0. We adopt here the classical notation, the g-Pochhammer symbol
(—0;q)n, instead of (1 + 0)j, cf. Section|6.1}!| Strictly speaking, this is the g-binomial
distribution found in the literature [48]. The expectation and the variance of this

1The notation can be misleading, because the terms 1 and 6 do not commute inside (1 + 6);’.
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simplified distribution are respectively

nzi qu n-1 1
E(Y) = - =1 — -, (7.8)
= 1+ 0g/ = 1+ 0g/
n-1 i
0q’
V(Y) = Z — (7.9)
4 (1+09)
Setc,(0) := 27 01 67 ; this sequence is monotonic in 7 and convergent to certain

c(0). We do not include g in the notation, since it is fixed from the beginning.

7.2 Parameter estimation by the maximum likelihood
method

Let us suppose we make n independent trials of a variable Y with distribution
Bin, (1, 0), obtaining results 1, ..., y». The probability of this outcome is

m . (1 —
n Qyzqyt(yl 1)/2
P(y1, ..., ym|0) = [ ] 1 (7.10)
D yl q (_erq)n

This implies that

8logP 0q’
(Z Z T Qq])) (7.11)

By the maximum likelihood method, the best estimate for 0, say 6, should maximize

P and therefore satisfy 2l gp ’ _ = 0; in turn, this equation implies that the empirical
mean 0=0
1Y
= le (7.12)
should coincide with the theoretical mean
n—1 i
0q’
Mon(0) := Z Tr o7 (7.13)
j=0

Proposition 7.1. The map 6 w m ,(0) establishes a bijection between [0, o) and [0, n).

If this correspondence is extended by m,,,(c0) = n—which corresponds to the
case x = 0—the value of 6 is uniquely determined by the equation mq,n(é) =7

Proof. Since

i( 0q’ )_ i 0, (7.14)

d6\1+0g/) " A+og)7

mg,»(0) is strictly increasing. Moreover, m,,,(0) = 0 and limg—, 114,,(0) = 1. |
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7.3 A vector-space-valued stochastic process associated to
the g-binomial distribution

The vector (Z1, ..., Z,) isarandom binary sequence, but its g-deformation (X1, ..., X,),
obtained in the previous section, cannot be identified in an obvious way with a vector
space. This motivates the introduction of an associated stochastic process {V;}ien
such that, for each n € N, V}, is vector subspace of Fg and the law of {X;};cn+ can be
recovered from that of {V;};en.

Let Gr(k, n) be the set of k-dimensional vector subspaces of F; and define the
total n-th Grassmannian by

Gr(n) := U Gr(i, n). (7.15)
i=0

Let (0) = F) < F; < F; < ... = F}l < ... be a sequence of linear embeddings;
note that it induces embeddings at the level of Grassmannians, that will be implicit
in what follows. The (n + 1)-dilationsdilation of w are

Dil,1(w):={veGr(n+1)|w Ccov, v ¢F!, dimv —dimw =1}. (7.16)

Definition 7.2 (Grassmannian process). Define Vj := Fg, the trivial vector space; for
each n > 0, let V,4; be a random variable taking values in Gr(n + 1) with law defined

byp|
P(Vn+1 = Uan =w, Xn+1 = 0) = 610(0)/ (7-17)

[U € Dﬂn+1 (ZU)]

P(Vn+1 — 'Uan =w, Xn+1 = 1) = |D11 1('(,())'
n+

(7.18)

Werefer to {V}, } nen as the Grassmannian process associated to the g-binomial process
{Xitien.

Proposition 7.3. Let v be a subspace of Fy such that dim(v) = k. Then,

0kq

(_9; q)n .
Proof. To shorten notation, we write in this section Px (x) instead of P(X = x), and

Px|y (x|y) instead of P (X = x|Y = y).
Our proof is by recurrence. The case n = 1 is straightforward; for instance,

k(k-1)/2

P(V, =0v)= (7.19)

Py, ({0)) = Pyyjv, (€0)1€0))
= Py v, x; ((0)€0), 0) Px, (0),
=Px, (0)

because (0) it is not a dilation of itself.

2We use Iversen’s convention for the characteristic function: [p] = 1 if p is true, and vanishes
otherwise.
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Suppose the formula is valid up ton > 1. Let v be a subspace of Fg“ of dimension
k. When v is contained in Fg,

PVVI+1 (U) = PV;Hllvn/X;Hl (U|'U, O) PXVHI (O) Pvn (U)
1 Okgk=Di2 gkgkl=1)/2

=1- = .
1+0q" (=6;9), (=0;9)n+1

Ifo¢ Pg,
Py, () = Z PV, Vi X (0lw, 1) Py, (w) Px,,, (1)

weGr(n)
1 (Gk‘lq(kzl)) 0q"

weGr(k-1,n) | Dily1(w)[ | (=0;q9)n | (1+0609")
weV
k-1

qu( 2 )q"

- | Dil,;+1(v N F;)'(_Q}Q)n+1.

The formula dimU + dimV = dim(U + V) + dim(U N V) entails that v N F; has
dimension k — 1. Any w € Gr(k — 1, n) such that w C v must be contained in v N Fy
and have the same dimension, implying that w = v N Fg ; this explain the last equality
above.

Finally, let w be a k — 1 dimensional subspace in F]; to dilate it into a v €

n+1

Gr(k,n + 1) \ Gr(k, n), one must pick a vector x outside F7: there are g"** — q" of

those. However, since w + {x) has g* points and w just g*~!, there are g* — g*~! choices
of x that give the same dilation v. Therefore, the number of different dilations is

g —q" n-(k-1).

el (7.20)

i.e. | Dil,41(v N FZ)| equals q”_(k‘l). O
Corollary 7.4.

P(dim V, = k) = [ZL%;T. (7.21)

Proof. This is a consequence of Proposition and the fact that [Z]q counts the
number of k dimensional subspaces of Fj. O

Proposition 7.5. Let {Y} },en- denote a g-binomial process, Y, ~ Bing(n, 0), and { V), }nen
its associated Grassmannian process. Let v be a subspace of Fy of dimension k = n — d, for
d € [0, n]. Then,

2
—3(d—(3-log, ))+3(3-log, 6)*~"-5>(d/n)

(_9_1; q_l)n

q

P(V, =0)= (7.22)
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Proof. We shall rewrite the various factors in (7.19). In the first place,
n-1 ‘ 1
(=0;0)n = | | 04’0+ =) = 0"q"" V(=097 (7.23)
i=0 0’

Note also that n25;(d/n) = n? — k? — d?, which implies

q(g) _ qkz/Zq—k/Z _ q(nz—nzsz(d/n)—dz)/Zq(d—n)/Z. (7.24)

Finally, 6% = 0"~. Replace all this in (7.19) and simplify to obtain

g~ FHahlog, 0) 2 53 /m)
P(V,=0v)= Co a0, (7.25)
Complete the square in the exponent to conclude. |
7.4 Asymptotics
Let us define a function u : N — (0, o) by
@ q—%(d—(%—logq 0))*+5(3-log, 0)? (@D, g1, 7:26)
e @750 Deo(=07197 Do ’ '

and introduce the notation p([a, b]) := X sefa 5] y(d)
The asymptotic formula in Theorem [6.3] combined with Proposition [7.5] implies
that

P(V, € Gr(n —d,n)) = [n f d] P (vn = Fg-d) — u(d), (7.27)
q

for each fixed d € N.

Proposition 7.6.

Z u(d) =1. (7.28)
d=0

Therefore, there is a well defined function A : [0,1) — N that associates to each
p €[0,1) the smallest d such that ([0, d]) > p; explicitly

(o]

Ap) = ) [p > p([0,K])]. (7.29)

k=0

The sum is finite for every p € [0,1). Note that A is left continuous. This function
plays an important role in the proof of Theorem 8.2}
We prove first a lemma that will be useful in the proof of Proposition

3We denote by [a, b] the “discrete interval” [a,b] N Z.
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Lemma 7.7. For every n € N and every d € [0, n],

(q—(n—d+1); q—l)oo
q—(n+1); q—l)w

Moreover, for every n € N and every d € [0,2+/n],

<1 (7.30)

—(\/ﬁ+1)2 (q (n— d+1),5] )
- q- (n+1)/q—1)0o

where ¢(q) = 2(q7 4 e

Proof. In this proof we use repeatedly the g-binomial theorem (6.5). For any k € N,
g k+) < g=k(n=d+1) wwhich in turn implies (7.30):

gk
(9~ (”“) 70 oo Z 4 (7797

@, g-k(n=d+1)

= Z:(Cl La Dk
1

= (q-(r=+D); g 1)

To prove (7.31), first remark that

1 i —k(n+1)(qkd 1)
(q—(n—d+1)l-q—1) (q (n+1) ;g 1) / 1)k

< (q—l;q—l);’l Z q—k(n+1)qkd
k=1

<@g g e ) g
k=1

Remark that we omit the term corresponding to k = 0, since it vanishes. The first
of these inequalities is implied by the trivial bound x — 1 < x and the fact that
{(g7%; g7 )k} decreases with k; the second, from d < 2+/n. The geometric series
> g K+ equals g~ (VD (1 — g~ (Vi+D*)=1 that is upper-bounded by 2¢~(Vi+17,
because q > 2. Hence, we have

1 1

_ ~(Vn+1)?
(q—(n—d+1); q—l)w (q—(n+1);q—l)0o

<2759 )Y

= c(g)g "

Finally, note that m = 1+ (positive term)> 1, therefore it is also true that

—(Vr+1)?
1 1 - c(q)q

(q—(n—d+1)’- q_l)oo B (q—(n+1); q_l)oo = (q‘("‘d”); q_l)oo (732)

O
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Proof of Proposition To simplify notation, set
=t 2,1l 2
A(d) := 2(d (2 logq 0))” + 2(2 logq 0)-. (7.33)

and B, = (-07%;,¢71);1. Recall from (6.10) that

[ " ] _ gD, g (g g e (7.34)
q

n-—d (q—l; q—l)oo(q—(VH-l); 5]_1)00

This and (7.22) give

1= Zp(vn € Gr(n — d, n))
d=0
A(d)(q—(d+1),. q—l)oo (q—(n—d+1); q—l)oo

q
=B,
;:O (ﬂl—l; q—l)oo (q—(n+1); q_l)oo

n qA(d) (q—(d+1); q—l)oo

< By 1. -1
d=0 @54 e

(7.35)

At the end we have used the inequality (7.30). In turn, (7.35) implies that

Ad) ( ,—(d+1). -1
1. T
(=079 ) < E G Ta) (7.36)
d:0 7 (o]

We shall see that in fact this is an equality, as the proposition claims. Using this time

(7.31), we obtain
[2vn]
1> Z P(V, € Gr(n —d, n))
=0
2 —_— —
(2] g A (@4 o1

> B, 2 (1 - c(q)g VD,

1. -1
(@75 e
which is equivalent to

2yn _ _ _ _
[2v1n] qA(d)(q (d+l),.q Do 3 (-071; 971,
S @ e T 1= c(g)gm (VR

(7.37)

In the limit,
A(d)(q—(d+1); q—l)oo

Z ! (@ Lq0) < (0759 D (7.38)
d=0 ¢ o0

and this finishes the proof. m]




Chapter 8

Generalized information theory

In this chapter, we prove a fundamental result on measure concentration for the
Grassmannian process (Theorem [8.2), that generalizes the asymptotic equipartition
property to this setting. It justifies the definition of “typical subspaces”. Section 8.3
applies this result to source coding.

8.1 Remarks on measure concentration and typicality

The following definition covers the different stochastic models discussed so far. We
use it to clarify the correspondence between Shannon’s information theory for se-
quences and our version for vector subspaces from the probabilistic viewpoint.

Definition 8.1 (Refinement of a law). Let 7 : (A, A) — (B, B) be a measurable map,
and p a probability measure on (B, B). The law has a refinement with respect to
7 (or m-refinement) whenever there exists a probability distribution § on (A, )
such that m.p = p, where m.p denotes the image law (the push-forward of p, its
marginalization).

In applications, p is the law of a (B, B)-valued random variable X and j, the law
of a (A, A)-valued random variable Y. When B c C,

Es(e™Y)) = B, (e/X). 8.1)

There are four fundamental examples:

1. The probability measure Ber(£)*" on {0,1}", that assigns to every sequence
with k ones the probability &R = &)™k, is a refinement of the law Bin(#, &)
with respect to the surjection 71 : {0,1}" — {0,1, ..., n}, (x1, ..., Xn) — 2, Xi.

2. The previous example generalizes to the so-called multinomial distribution. Let
S = {s1,...,sm} be a finite set and u any probability law on S; set p; := u({si}).
The law u®" assigns to a sequence x in S the probability [17, pff(x), where

a;(x) denotes the number of appearances of the symbol s; in the sequence x.

Let T = {(ki,....km) € N"| X7, ki = n}; there is a surjection 71, : " — T

given by x — (a1(x), ..., a;(x)). Denote by v the marginalization of y®" under

" O)TIE, pY. Then u® isa

//// n

this map, given explicitly by v({(k1, ..., kn)}) = (kl
Tr-refinement of v.
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6 1
1+gq"
Bin,(n, 6) under the application 711 introduced above, see (7.5).
4. The probability measure on Gr(n) defined by (7.19), that we denote Grass(n, 0),
is also a refinement of Bin,(n, 0) with respect to the surjection 73 : Gr(n) —
{0,1,...,n},V > dimV.

Let us consider for a moment the binomial case(l} Since W, ~ Bin(n, p), Cheby-

3. The probability measure H?:_ll Ber( ) on {0,1}" is a refinement of the law

shev’s inequality reads P (|Wn —pn| > n%“s) < p(1 — p)/n?¢, which goes to 0 as
long as & > 0. In other words, the measure Bin(n, p) concentrates on the interval
Ine =[np— na+t, np + n%“f]] N [0, n], in the sense that P(W, € I;) —» 0asn — oo,
and therefore the measure Ber(&)*" concentrates on 7} Y(I,,,¢), that can be regarded as
a set of “typical sequences”. Moreover, the different type classes t71(t), for t € I,, ¢,
have cardinality exp{nH;i(p) + o(n)}. An analogous argument shows that the mea-
sure Bin,(n, 6) concentrates on the interval J,, ¢ = [k}, — n*,k}, + n¢] N [0, n] for any
¢ > 0, and hence Grass(n, 0) concentrates on 7 Y(J..&). However, there is a differ-
ence: while Bin(k|n, p) goes to 0 for any value of k, and in fact on needs more than vn
different types k to accumulate asymptotically a prescribed probability p. := 1 — ¢,
the values of Grass(k|n, 0) = P(V,, € Gr(k.n)) tend to the constant value u(d), inde-
pendent of n. In the limit, only a finite number of different types k are necessary
to accumulate probability p., and the corresponding type classes differ in size (even
asymptotically). Theorem [8.2]bellow reflects this particular situation.

8.2 Typical subspaces

We are ready to prove the main result of this part of the thesis, which extends
Theorems 3 and 4 of Shannon’s seminal article [78] to this setting.

Theorem 8.2. Let {Y), }nen- denote a q-binomial process, Y, ~ Bing(n, 0); {Vy}uen its
associated Grassmannian process; and 6 € (0, 1) an arbitrary number. Let € > 0 be such that
pe := 1~ ¢ is a continuity point of A. Define A, = ;" Gr(n — k, n) as the smallest set of
the form | J;L, Gr(n — k, n) such that P(V,, € AS) < €. Then, there exists ng € N such that,
for every n > ny,

1. A, = ﬁi%f) Gr(n — k,n);

2. forany v € A, such that dimv = k,

log (P(V, =v)™"
o8, F (V= ©) )—gsz(k/n) <. (8.2)

n

The size of A, is optimal, up to the first order in the exponential: let s(n,e) denote
min{ |B,|| B, € Gr(n) and P(V,, € B,) > 1— ¢}, then

1 1
11111’1’1; logq |A,| = hin ” logq s(n,¢)
= lim Z52(A(pe) /) (8.3)

= A(pe)~

The set A, correspond to the “typical subspaces”, in analogy with typical se-
quences.
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Proof. To shorten the notation, let us write P, (A) instead of P(V;, € A), and G}
instead of Gr(k, n).
Given any 1 > 0, there exists n(n) € N such that, for every n > n(n) and every

d € [0, Alpe)], ;

Py (GZ_d) —p(d)] < m,

(8.4)

because P, (GZ_d) — u(d) for each d.

Since p. is a continuity point of A, a piece-wise constant function, there exists
& > 0 such that
Al-e-&)=A1-¢e)=A1-¢e+&).

Remark now that, for every n > n(&),

Alpe) Alpe)
}:Pn«ﬁﬂﬂ>-§:yw)—ézl—e, (8.5)
d=0 d=0

because u([0, A(pe)]) = ZA(p u(d) > 1—-¢e+ & This is a direct consequence of
Alpe) = A1 - e +&).
Analogously, for each n > n(<),

Alpe)-1 Alpe)-1 Ape)
2y B (G < )y w35 e
d=0 =0
&
1_6_A@g+1
<1-¢, (8.6)

because u([0, A(pe) —1]) < 1 — ¢ — &: if this is not the case, A(1 — ¢ = &) < A(e) - 1.
The inequalities and imply the part[T|of the theorem whenever n > n(&).

We suppose now that n > n(&). Let v be an element of A,, of dimension k, and
set d = n — k. The formula in Proposition [/.5|can be stated as

long(Vn =0) g(d n)
n

S(Wn) (8.7)

where we have set g(d, n) = %(d - (% - logq 0))% - % % — logq 0)* + logq(—G‘l;q‘l)n.
Since d belongs to the interval [0, A(p,)], independent on n, and (-071 ;q‘l)n -
(=071, g7, there exists ng > n(&) such that, for every n > ng and every d €
[0, A(p¢)], g(d, n)/n < 6, which proves partof the theorem.

For n big enough, A(p:) belongs to the interval [n/2,n]. The inequalities in
Lemma [6.2]imply that

A(ps)
n n n
<A, £ < (A +1 . 8.8
L—A@aL A gOL_kq (Apo) )”—A@JL 59
Therefore,
lim = log, |A,] = lim~1 "o = A (8.9)
L 08 1] =AM T l08, n—A(pg)q_ Pels '



134 Typical subspaces

where the second equality comes from (6.14).

For any ¢, we show now how to build iteratively a set B, of minimal cardinal-
ity such that P, (Bj,) < e: start with B, = 0 and then add vector subspaces of Fj
one-by-one, picking at each time any of the vector subspaces of highest dimension
in BS, until you attain P, (B;) < ¢. Let n — b, be the dimension of the last space
included in B,. It is easy to prove that b, < 2+/n, as a consequence of Cheby-
shev’s inequality (the interval [n — 24/n, n] accumulates probability p. when 7 is
big enough). This construction gives in fact the smallest possible set, because the
function f, : [0,n] - R, x equ<x—1)/2/(—9, q)n is strictly convex and has at-
tains its minimum at xg = % - logq 0; therefore, all the subspaces are included in
B, in decreasing order of probability, and the probability of the last space included
is bounded bellow by 0"~2Vig(=2Vn)(n=2Vu-1/2/(_g g}, which is much bigger that
(-6,9),!, the maximum of f, on [0, x¢], when 7 is big enough.

Two versions of B, only differ in the particular subspaces of dimension n — b,

n

they include, but they coincide on Uzzol G, _- In what follows, B, denotes any of
the possible sets. Remark also that B, C A,; even more, a, = b, (a strict inequality
between the two contradicts the minimality of either B, or a,). It is also true in
general that

Pe < Py (Bn)

an
= ZPH (Bﬂ N GZ—k)
k=0

_

an—
=P, (B.NG_, )+ > Pu(B.NG! ). (8.10)
k=0

We restrict ourselves again to the case in which p, is continuity point of A, in such
a way that A(p:) = a, = b,. Under these hypotheses, we are able to lower-bound

uniformly the term P, (Bn N GZ_ Ay _)) by using (8.10), and deduce from this that |B,|

grows like |A,|, that in turn grows like |G Ap) |, as shown in (8.9). In fact, we have
that

A(pe)-1 Alp)-1
D Ba(BanGr) < D Pa(GL)
k=0 k:O
<l-¢- L, (8.11)
Ape) +1

where we have used again the bound in (8.6). Inequalities (8.10) and (8.11)) imply
that

<

o1 <P (Bn nG" ) . (8.12)

n—A(pe)

When n > ny, the part (2) entails that P, (x) < q"1252(A/'1)/2+”‘S for every x € GZ_A(p WV
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or equivalently P, (x) q”252(A/ m/2-1% < 1. Then,

Bul 2 B, NGy, |
> 3 B, (x)grsera/m/zm
x€B,NG)_ “A(pe)
n253(A(pe)/n)/2-nd
> " Py (BN GIy,)
2 &
S n2S2(A(pe)/m)/2-nd . 8.13
We deduce that ,
o . n
hrr}lmf - logq |B,| > l1yrln ESg(A(ps)/n) - 0. (8.14)

On the other hand, since B,, C A, it is clear that

lim sup % log, |B,| < lirrln % log, |As| (8.15)
! )
= lirfln ESZ(A(PE)/”)-

Since 0 > 0 is arbitrarily small, (8.14) and (8.15) imply that lim,, %logq |B,| exists and
equals A(p,). The theorem is proved. O

Remark 8.3. The definition of A, still makes sense when p, is a discontinuity point of
A. Inthis case, there exists & > Osuchthat A(p)+1 = A(pe+&) and A(pe) = A(p—&).

Inequality (8.5)) can be easily adapted to show that ZA(p Gk Gr(n—k,n) > 1-¢, which
implies that ay, < Alpe) +1; by 8.6), an > A(pe). Of course, part I in the Theorem
still makes sense. We also have that B,, ¢ A, and a, = b,. The problems appear in
the comparison of |B,| and |A,|; it is possible that P, (B, N Gr(n — A(p.), n)) goes to
zero very fast when n — oo, and is not valid any more. However, we can still
adapt the bounds in to prove

1 .. 1

hrrtlmleogq Ayl > hrrhlnleogq | By |
> Tim ~ 1o [ " ]
= W8 [0 - (A - 1),
:A(pé‘)_]-/

because b, = a, > A(p.) and therefore Gr(n — (A(ps) — 1),n) C B,. Analogously,
B, c Ayand a, < A(pe) +11lead to

. 1 . 1

hmnsup - logq |B,| < hmnsup - logq |A]
< li l1 "
=8 [0 - (A + 1),
=A(pe) +1,

where we have used again (8.8).
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Remark 8.4. In the classical case of sequences, all the typical sequences tend to be
equiprobable, in the sense of (0.24). This is not valid for the process V,: a typical
space v € A, of dimension 1 — d satisfy asymptotically the bounds g~"(352(4/1)+9) <
P(V, =v) < g7"35(3/m=0) forany § > 0,and £S,(d/n) = d + O(1/n).

8.3 Coding

Inspired by [23], we define a generalized n-to-k g-ary block code as a pair of mappings
f:Gr(n) - {1,...,q}  and ¢ : {1, ...,q}* — Gr(n). For a given stochastic process
W, such that W, takes values in Gr(n), we define the probability of error of this
code as e(f, ) = P(p(f(Wy,)) # Wy). Small k and small probability of error are
good properties for codes, but there is a trade-off between the two. Let k(#, ¢) be
the smallest k such that there exists a generalized n-to-k g-ary block code (f, ¢) that
satisfies e(f, ¢) < e.

Proposition 8.5. For the Grassmanian process V,, introduced above and for all € > 0 such
that p. = 1 — ¢ is a continuity point of A, one has

k(n,¢)

lirrln = A(pe). (8.16)
Proof. The existence of an n-to-k g-ary block code (f, ¢) such that e(f, ) < € is
equivalent to the existence of a set B, C Gr(n) such that P(V,, € B;,) > 1 - ¢ and
IB.| < g* (let B, be the set of sequences that are reproduced correctly...). As in
the main theorem, let s(1, ¢) denote the minimum cardinality of such a set. The
statement in Proposition is therefore equivalent to lim, %log p s(n, &) = Alpe),
which is already proved. O

In simpler terms, it is always possible to code all the typical subspaces A, =
Ufg(];) Gr(n -k, n) with different code-words if one disposes of q”(A(P ¢)+¢) such words,
for & positive and arbitrarily small, as long as n is big enough. In contrast, it is
asymptotically impossible if one disposes of g"(*#:)=¢") different code-words, for any
& > 0.

8.4 Further remarks

A recent paper [44] proposes the study of “exploding” phase spaces: statistical
systems such that the cardinality of the space of configurations grows faster than k",
the combination of n components that can occupy k states. The total grassmannians

n2
Gr(n) = Gr(n,F;) are an example, since their cardinality grows like g7+ This
can be deduced from the unimodality of the g-binomial coefficients (Lemmal6.2) and
our asymptotic formulae, because

<|Gr(n)| < (n+1)
q

" ] (8.17)
q

[ n
Ln/2] [n/2]



Generalized information theory 137

and therefore

(8.18)

—(2n+1)2/4 —2n)?/4

In fact, the values of lim, . |Gr(2n + 1)|g and lim, . | Gr(2n)|g
depend only on g and can be determined explicitly in terms of the Euler’s generating
function for the partition numbers and the Jacobi theta functions 9, and 93, see [54,
Cor. 3.7]

A link between Tsallis entropy and the size of the effective phase space (the config-
urations whose probability is nonzero) was already suggested by Tsallis in [88, Sec.
3.3.4]. There, H(,_1)/, appears naturally as a extensive quantity when the size of the
effective phase space grows sub-exponentially as NP, for certain p > 0. Nonetheless,
these growth rates are not deduced from a combinatorial model.
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Chapter 9

Simplicial information structures

9.1 Definition and examples

Given a set I := {1,...,n} = [n], the abstract simplex A(I) is the category whose
objects are subsets of I and whose arrows correspond to inclusions: S — Tiff T C S.
Let A and Vv denote respectively the product and coproduct in A(I), and U, N the
usual operations of sets. Given sets S, T € Ob A(I), the product S AT equals SUT
and the coproduct SvTisSNT.

A full subcategory K of A(I) is called a simplicial subcomplex if S € Ob K implies
that T € ObK, for every T such that S — T (this is called a "face’ of S).

Given a collection {E; }ic; of Hausdorff topological spaces, we introduce a functor
& : S — Meas that maps each S € ObK to the measurable space (Es, B(Es)), where
Es := [l;es Ei (remark that Ey = {+}) and Bs = B(Es) denotes the corresponding
Borel o-algebra; the morpisms are canonical projections. An arrow f : S — T in
A(I)—an inclusion of sets T ¢ S—induces a canonical inclusion (7 : ET < Eg and
a canonical projection &(f) := mg : Es — Er in the category of topological spaces
(hence measurable). For example, if S = {iy, ..., ix} then

TS :EI — ES

(X1, ey X)) B (Xiy ooy X ) ©-)

Let Bs denote the Borel o-algebra of Es; this is the o-algebra generated by the open
sets of Es. The projection ms r induces an inclusion f* : Br < Bg that maps b € Br
to the corresponding cylinder ng{lT(b).

The pair (K, &) is a simplicial information structure; it clearly verifies all the
properties stated in Definition[I.6} Sometimes we write X instead of S € Ob K if we
want to emphasize its interpretation as a random variable.

There is an additional property when each space E; is second-countable.

Proposition 9.1. Let S, T be subsets of I. Consider the diagram S <f—s SAT L Y

in A(I). If the spaces {E;}icj are second-countable, then

o(f5(Bs), fr(Br)) = Bsar,

where o(f5(Bs), f1(Br)) denotes the sub-o-algebra of Bsat generated by f5(Bs) U f7.(Br).
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Proof. Each set E; has a countable basis ®;: this means that every open set can be
written as a countable union of open sets in the basis, which in turn implies that
B(E;), by definition generated by the topology of E;, is in fact generated by ®;. More
generally, the rectangles [];cs Gi, with G; € ®;, are a basis of the topology of the
product space Es (this is a general topological fact); these rectangles generate Bs,
because every open set can be written as countable union of rectangles.

We have to show that Bsxr C o(fi(Bs), f7(Br)), the opposite inclusion been
trivial. Since every rectangle [];cs G; is an element of B, the corresponding cylinder
ng/lsUT (ITies Gi) is contained in f(Bs). In fact, these cylinders generate fZ(Bs). The
o-algebra o(f;(Bs), f7(Br)) contains then the intersections

7-‘5,1SUT (l_[ Gi) n n%,lSuT 1—[ Hj 9.2)

i€S jeT

that can be written as rectangles [[;csur Ui, where U; = G;NH;ifie SNT, U; = G;
ifie S\T,and U; = H; if i € T'\ S; itis clear that we can obtain any rectangle in Esur
this way. Hence o(f$(Bs), f7(Br)) contains the generators of Bs,r, therefore whole
o-algebra too. O

In this work, we limit ourselves to the second-countable case. The choice of certain
reference measure [1; on each measurable space (E;, B;) induces a product measure
;s pi on (Es, Bs), for any S. We suppose that each p;, hence every measure
involved, is o-finite (see Proposition [F.6): this is crucial to apply the disintegration
theorems that give regular versions of conditional probabilities and also to prove
functoriality of various constructions by using Fubini’s theorem.

Here are some examples of simplicial information structures:

1. Finite spaces: For each i € I, B; is a finite nontrivial Boolean algebra, each

E; is the set of its atoms (with the discrete topology), and ; is the counting
measure. Each product ® ics Wi, with S € Ob A(I), gives again the counting
measure: this explains why reference measures do not appear explicitly in the
treatment of information cohomology of finite structures.

2. Euclidean spaces: Each E; is the real line; we suppose that some Lebesgue
measure (; has been chosen. Each space Es = (P, ¢ E;i can be identified with
the free vector space generated by S, in such a way that the unit hypercube in
Es has Lebesgue measure [[;c5 Ai([0, 1]).

3. Topological groups: This is a generalization of the previous example: each E;
is a Hausdorff, locally compact topological group and each A; is a chosen (left)
Haar measure.

Given an arbitrary information structure (S, &), one can introduce a covariant
functor A : S — Sets that associates to each X € Ob S the set A(X) of measures
on By; given an arrow f : X — Y in S, the morphism A(f) : A(X) — A(Y)

1Already in the foundational paper by Shannon [78]], there seems to be an important difference
between discrete and continuous sources: the latter are studied by means of differential entropy, that
depends explicitly on a reference measure. Shannon says: “In the discrete case the entropy measures
in an absolute way the randomness of the chance variable. In the continuous case the measurement is
relative to the coordinate system.” (Emphasis by Shannon.) We hope this text will make clear that such
absolute character is illusory: even in the finite case, one could consider any other reference measure;
for example, a multiple of the counting measure, see the remarks after Proposition
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(sometimes f to simplify notation) is given by the pre-composition of each measure
A Bx — [0,1] with the map f* : By — Bx ie. fA = Ao f*; this operation is
called marginalization. Like in Part I and II, we write Y. instead of A(f) if the map
involved is clear from context. Probabilities correspond to a subfunctor IT of A, such
that I1(X) = { A € A(X)| A(Ex) = 1}, itis clear that, for every arrow f : X — Y in S,
fAEy) = A(f*(Ey)) = A(Ex) = 1.

9.2 Probabilities on information structures

9.2.1 Conditional probabilities

Before studying probabilities on information structures, we review some important
facts about conditional probabilities and disintegration of measures.

Kolmogorov’s definition

In this section, we introduce the standard modern definition of conditional proba-
bilities. We mainly follow the original presentation in Kolmogorov’s book [53]]. Let
(E, B, P) be a measurable space. Given an event A € B such that P(A) > 0, define
the conditional probability P4 by

P(ANB)

VB € B, PA(B) = P(A)

(9.3)
Clearly, P4(E) = 1.

Given a partition of A = {A4, ..., A,} of E (an experiment in Kolmogorov’s termi-
nology), one can introduce a random variable Py(B) that associates to each e € A;
the value Px,(B). We call Py(B) the conditional probability of the event B € B after
the experiment A. The function Py(B) is well defined only P-almost surely, but this
is enough to define its integral with respect to P.

The condition

VAeA, P(ANB)= / Py(B)dP (9.4)
A

is satisfied in this finite case and uniquely characterizes the function Py(B). It holds
true even if A is replaced by the o-algebra generated by it. Even better: it also makes
sense when U is an arbitrary sub-c-algebra of B, maybe of infinite cardinality.

Definition 9.2 (Kolmogorov’s definition of conditional probabilities). Let (E, B, P)
be a probability space, U a sub-c-algebra of B, and B an event in B. The conditional
probability of B given A, denoted Py(B), is an A-measurable function that satisfies

(9.4).

It turns out that Py(B) always exists, as a consequence of the Radon-Nikodym
theorem, and its unique up to P-almost sure equivalence [53, Ch. V].

The main problem with this definition is that nothing guarantees that B +—
Py (B)(w) is a probability measure for each w € Q. When this is the case, Py is called
a regular version of the conditional probability [71, Ch. 5].

2 Py(B) is an special case of conditional expectation, Py (B) = E(1p|U). We have chosen to follow
here the original presentation by Kolmogorov, instead of the modern presentations that introduce first
general conditional expectations; they are more economical but less motivated.
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Disintegrations

Under very general topological hypothesis, it is possible to build regular versions
of conditional probabilities called disintegrations. We summarize in this section the
main facts about them as presented in [18].

Let (E,B) and (ET,Br) be measurable spaces, and T : (E,B) — (Er,3r) a
measurable map.

When Er7 is finite and Br is its algebra of subsets 2ET we can associate to any
probability P on (E, B) a collection of maps P; : 8 — R, B — P(7—_4(B), indexed by
t € Et, such that

1. Each P; is a probability on (E, B);

2. P; concentrates on {T = t}, which means that P;(T # t) = 0;

3. Forany B € 3,

P(B) = Z P(T = t)P(B).

teEr

These properties motivate the following generalization.

Definition 9.3. Let A a o-finite measure on (E,®B), and p a o-finite measure on
(ET, Br). The measure A has a disintegration {A; };cg, with respect to T and u, or a
(T, u)-disintegration, if
1. A; is a o-finite measure on B concentrated on {T = t}, which means that
A(T # t) = 0 p-almost surely.
2. for each measurable nonnegative function f : E — R,
(@) t ﬁE fdAis measurable,'

®) fpfad =L (fp f&)dA) du(t).

Disintegrations give regular versions of conditional expectations. Let A be a
probability measure, u = TA, and {A;} the corresponding T-disintegration. Then
the function x € E — fE xB(x)dAr() (Where xp is the characteristic function) is o
measurable and a regular version of the conditional probability A,r)(B). To prove
this, let A be any element in 6(T) C B; it can be written as {T € At} for At € Br; the
last property of the disintegration says that, for any B € B

AXBdA:/EXAmB(x)dA(x)
_ / / Ka(Oxs(x) A (x) dTA(E)
Er JE

Using that x € A if and only if T(x) € Ar, we deduce that

/A)(B dA = /ET XA (t) (/EXB(x)dAt(X)) dTA(t)
- /A ( /E m(x)oum)(x)) dA ().

3 Pollard and Chang [18] uses linear-functional notation for measures. The symbol A;f stands
for /E fdAs. Superscripts next to measures emphasize the variable of integration; for example,

/ET (fE f(x) d)\t(x)) du(t) could be written uf(Af).
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This equality is precisely (9.4), that defines the conditional expectation in Kol-
mogorov’s sense. The fact that each A;(-) is a probability comes from Proposition
9.5 below.

The following theorems are taken from [18].

Proposition 9.4 (Existence of disintegrations). Let A be a o-finite measure on a metric
space E and let T be a measurable map from E into (Et, Br). Let u be a o-finite measure
on Br that dominates the image measure TA. If Br is countably generated and contains
all the singletons {t}, then A has a (T, p)-disintegration. The Ay measures are uniquely
determined up to an almost sure equivalence: if {A}} is another (T, u)-disintegration then
y{teET|/\t¢)\’;}=0.

Proposition 9.5. Let A have a (T, p)-disintegration {A;}, with A and u each o-finite.
1. The image measure T A is absolutely continuous with respect to u, with density AE.
2. The measures { A} are finite for p-almost all t if and only if T A is o-finite.
3. The measures {A} are probabilities for p-almost all t if and only if u = TA.
4. If TA is o-finite then 0 < A+E < oo T A-almost surely, and the measures

Ae(-
AE

~

;\t() =

are probabilities that give a T-disintegration of A.

Proposition 9.6. Let A have a (T, u)-disintegration {A;} and let p be absolutely continuous
with respect to A with finite density r(x), with each A, u and p o-finite.
1. The measure p has a (T, p)-disintegration {p;} where each p; is dominated by the
corresponding A, with density r(x).
The image T p is absolutely continuous with respect to u, with density /E rdAy.
The measures {p;} are finite for u-almost all t if and only if T p is o-finite.
The measures {p;} are probabilities for u-almost all t if and only if u = Tp.
If Tp is o-finite then 0 < Ayr < oo T A-almost surely, and the measures {p;} given by

/f pt = fEfrdAt

Td/\t

ARSI N

are probabilities that give a T-disintegration of p.

Example 9.7 (Product spaces). We suppose that (E, B, 1) is the product of two mea-
sured spaces spaces (Et, Br, 1) and (Es, Bs, v), with u and v both o-finite. Let A be
the image of v under the inclusion s + (t, s). Then Fubini’s theorem implies that A,
is a (T, p)-disintegration of A. (Remark that u # TA. In general, the measure TA is
not even o-finite.) If 7(t, s) is the density of a probability p on (E, B), then p; < A;
with density r(t, s)—the value of t being fixed—and f; is a probability supported on
{T =t} with density
r(t,s)

/Es r(t,s)dv(s).
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9.2.2 Densities under conditioning and marginalization

Let IT : S — Sets be the functor of probabilities introduced at the end of Section
Whenever a probability p € TI(S) (that represents a possible ‘law” of Xs) is
absolutely continuous with respect to the reference measure us, denoted p < pus,
the Radon-Nikodym theorem (Proposition|F.1) guarantees the existence of a function
fo € LY(Es, Bs, us) such that

o) = /A £,(x) dus(x). ©5)

The function f, is known as the probability density function (pdf) of Xs. We sum-
marize the relation between p, us and f, in by p = fous.

Now we describe the marginalization in terms of densities. Given p € I1(S) with
p = fsus,anarrow mr,s : S — T in S, and B € Br, one has

nrsp(B) < p(rh 5(B)) (9.6)
= / fs(x) du(x) 9.7)
n7s(B)
(Fugm)/( fs(xt, xs\7) dus\r(xs\7) | dur(xr), (9.8)
B \JEg

which means that 77 s p has density /ES\T fxs(xT, x5\7) dpg\r(xg\1) with respect to the

reference measure yr. (The use of Fubini’s theorem [F.7]is justified by the positivity
of the densities and the fact that each measure involved is o-finite.)

The description of conditioning is more involved. Consider sets T C S C I, and
the corresponding surjection nrs : Es — Er. The measure ug has a (nir,s, ur)-
disintegration {s }+cg; such that each measure us is the image of ug\r under the
inclusion Eg\r < Eg,s” + (s’,t), that can be identified with the product measure
s\t ® 07=¢. See Example[9.7]in Section m

More generally, we can start with a reference measure ugs ® ds=s» on Eg, for
certain $’ and S” that form a partition of S. Set T’ =S"'NT, T” = S” N T, and denote
by 7/ ® O1r—r(s7) the measure on Er = Eg» X E» concentrated on {T” = riy» gn(s”)} :=

Er X {mr»s0(s")}.

Proposition 9.8. The (1,5, T ® Or=n(s))-disintegration of s ® dsn=s», denoted by
(15 ® b= hrcEy, verifies

(s ® O57=5)t = ps\7 ® O1r=py ® Bsr=sr 9.9)

whenever t = (t', v 5#(s”)) € Ep»XE7» = Et, and this determines it up to ur ® Orr=r(s7)-
almost sure equivalence]

Proof. We prove that the given collection of measures satisfy all the conditions in
Definition The disintegration is almost sure unique according to Proposition

4Usually we omit the subscripts of  if they are clear from context.
SRemark that (g ® 657=s~)t is well-defined only p1/ ® 61v—r(s)-almost surely. Its value on {T” #
1t(s”)} is immaterial. The same remark is relevant for the statement of Proposition
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Remark that the specific value of the disintegration on {T” # m(s”)} is not
well-defined.

The measure g1 ® O7/=" ® 057=~ is o-finite, being a product of o-finite measures
(see Proposition[F.6). The union bound implies its concentration on the correspond-
ing level set:

(st ® O17=p ® Ogm=sn{T # (t', 1(s”)}
= (us\7 ® O1v=p ® Osr=sn)({T" # t'} U{T” # m(s”)})
< usn1T(Esnr)0T=p(T" # t')057257(Esr)
+ usn\1(Esn1)01/=p/(ET7)0 5025 (11(S”) # m(s”)) = 0.

We prove now the disintegration property, that says: for every 8Bs-measurable func-
tion f,

/fdl,[s/ (9] 65”25// = / (/f d(‘US/ [039] 65//:S//)t) d[LlT/ ® 5'1"//:7-[(5//) (9.10)
E Er \JE
According to (9.9), for t € Ep x {mr» 5+(s”)},

[rdws o= [ fer,sdusato, ©9.11)

Esnt

Hence

/ ( / Fd(us ®5su:s~)t) dpir ® S1r—n(en(t)
ET E

-/ ( /G, t',s")duSI\T(z)) dprr @ o7 ()
ET’ X{T[TH’S// (S")} Esl\T

- / / £, t',S")dMSf\T(Z)dHT'(f')) 5o (")
{T[T”,S”(S”)} ET' ES'\T

= [ fw,s")dus(w).

Egs
The first equality is justified by u & 1/—r (s (Er X{7mtr~ 57(s”)}¢) = 0. The second and
the third are a consequence of Fubini’s theorem for positive functions (Proposition
. Recall that, according to the definition of a simplicial information structure,
each y is o-finite, Es» = Eg\r X E1v, and us: = pg\r ® pr. This proves (9.10).
Finally, Proposition [F.8 establishes the measurability of

(t',s") f(z,t',s")dusnr(z).
Esnr

Hence (t/, t(s”)) — [ES/\T f(z,t',s")dugs\r(z) is measurable too, in virtue of Propo-
sition [E.5 |

Proposition 9.9. Let p be a probability on (Es, Bs), absolutely continuous with respect to
ps ® dsr=s» with density f,. Let U, T be subsets of S. Then:
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1. p hasa (nr,s; P17 ® OTr=r(s7))-disintegration {p; }+cg; such that

ﬁ(t',T[(S")) = fplus/\T 024 6Tl:tl 24 65//2511,

2. p has a mr s-disintegration {p;} such that py is a probability measure Tt s p-almost
surely and

fo
Sy fo@ 57 dusnr (x)

p(t’,Tl(S”)) = (US/\T R 5T/:t/ 02 65//2311,

3. Let {pw YweEr,y be a mruu s-disintegration of p. The equality

Pw = (pt(w))u(w)r

where w € Eryy, t(w) := nr,rou(w) and u(w) = myrou(w), holds wryyy ®
d(TuLy =n(sm)-almost surely.
4. Let ¢ be a nonnegative real-valued Br ® By -measurable function. The equality

/ / (p(t,u)du*pt(u)dT*p(t):/ @((w))d(T A U).p(w), (9.12)
Er JEy Eruu

where 1 : Ergy — Er X Ey, w — (H(w), u(w)) holds.

Proof.
CramM (I)): Since p is absolutely continuous with respect to g ® 6g7—s~, with density
fp, Propositions [9.6| and 0.8/ imply that p has a (7t1,s; 17 ® O77=p(sm))-disintegration
{Pt}teer such that each p(y n(sv) is absolutely continuous with respect to usn\t ®
O1/=1» ® dsr=s» with Radon-Nikodym derivative f,.

Cram (2): It is an immediate consequence of Proposition [9.8}-(5).

Cramm @): Set W :=TuUulU, W := WNS, and W := WNS”. Since upw ®
Owr=rym sn(sm)(Ewr X {1twr,57(s”)}°}) = 0, we assume that w = (w’, (s”)) € Ew X
Ewr» = Ew. In virtue of ), pw equals

fpw HS’\W ® 6W’=w’ ® 6W”=7Z(S”) =
fo
Je fo dpsnw ® Swrn(s)

Usnw ® Owr=w ® 6W”:7‘((s”)- (913)

Define t(w) = nr,w(w), t(w) = i w(w), Hw)” = npr wr(w), and similarly u(w),
u(w)’, u(w)”. By functoriality t(w)"” = mtp»,w»(w”) = 1trr s7(s”).

We apply now the result in to the measure pyy), coming from the mrs-
disintegration of p. It is absolutely continuous with respect to the measure pg\v ®
O =t(wy ® Os7=s», with density

fo |
Sy (et @Y, 57) dpasir(x)

forw = (9.14)

Remark that the measure ps\t ® 61/ s7)=(t(wy,s») can be disintegrated according
Proposition Define U” := (T"US”)NU, U’ := U\ U", and iil(w)" := 1 (w). We
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apply again the result of (), mutatis mutandis, to say that the ny s-disintegration of
Pi(w) verifies, for u = u(w) = (i(w)’, Tgn prysn(L(w)', s”)),

(Pr)u(w) < BENT\U @ Or=i(wy ® O(T7,57)=(t(w) 5")-
and corresponding density is

fpt(w) _
i forw QAT © Stpr—agwy ® O(17,57)=(t,57)

o
[ folx, ii(w), t(wY, ) dugsnryu(x) '

(9.15)

Remark now that the disjoint union U’ LI T’ equals (T U U) N S’ = W’, therefore
Ew» = Ey X Er and (ii(w)’, t(w)’) corresponds to the initial w’. The equality

BT\ ® Or=i(wy ® O(17,57)=(t(wy s7) = s\W ® Ow=wr ® Ogr=g,
allow us to rewrite (9.15) and establish that

fo
‘/;5 fp(xl w’, S”) dyS’\W(x)

that is exactly the expression in (9.13).
CLamM (@): Since T.p < 1 ® Orr=n(sm), We can restrict the domain of integration:

//(p(t,u)du*pt(u)dT*p(t):/ (/ o(t, u)dU.pe(u) | dT.p(t).
Er JEu Eprx{mrn gn(s”)} \JEu
(9.16)

(pt(w))u(w) = tsnw ® OW=w ® Ogr—gr

In (2) we obtained an explicit formula for p; appearing in the last integral,
fo
p(t',T[(S”)) = W”S/\T ® 6T/:t/ ® 65//231/,

with K(t/,s”) := /ES,\T folx, t',8”")dusnr(x). The function K(t’,s”) is the density of
T.p (at least on the probability 1 set ET» X {rt(s”)}).
Let us write pgn7 ® d1/=¢/ ® Osr=s» in the form ug ® Hgr=n(pr 57y with S’ = S'\ T

and §” =T’ US”. Then U = S’ N U and U” = §” N U coincide with the sets already
introduced in the proof of (). The measure U.p; is absolutely continuous with
respect to {iy ® Ognep 57y, where T(t',s”) := Ty 7,5/ (t', 8”). Moreover,

u*p[(B)
fe
= d &r 5'//_ ’ on
/n-l(B) K(#,s7) S ® O5=(1r)
fo
= d Sr ®6~// =1tz en (8" d ~/®6~//= ron (fl)
</B.(</Esv\u><E5w\u K(t',s") Hanu @ O5nu=ng s (v,s7) | BT Ur=n(ts")

fp(x/ ﬁ/ ngn\u gu(t,, S”))
- y d 4 X d 7 @ 6 = 7 an 12 .
A' ( Egr K(i’/, S”) Us \W( ) U Qr=n(t's )( )
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We conclude that the density of U.p; w.r.t. fg ® Ogprern(y sv) 1S

fp(x, 1:[, ngff\ulgll(t’, S”))
K(t/, S”)

dpsnw(x). 9.17)

Esnw
The function
g(ilt’) := : folx, i, gy 5n(t',8”)) dpsnw (x),
S\W

correspond to the product of the density of U.p; |in (9.17) | and the density of T.p.
Hence the integral in (9.16) equals

/ ( / (b, @, @), @ 1H) it ® Ogpreryr (i, u)) iz ® 57 (', 1)
Eprx{mrm gn(s”)} EqrXEgn

= / / (p(t, i, T[a//’gu(t,, S"))g(ﬁ’, T(a,,/g,,(t’, S”)|t’) dyl]’ d[JT/ ® 6T”=‘R(S”)(t,/ t”)
ET'X{T(T"/S”(S”)}

EU/

- / / ot o ("), T, T (), ("N, mereu (), mu(87)E) dpagy (&) dpr ()
ET/ I'T

ELI'

where we have used Fubini’s theorem two times, first for the inner integral and then

for the outer one. Recall now that W = (TuU)NS" =T UU’, Ew = Ep X E7 and
pwr = ur ® Ug. Therefore Fubini again allows us to write

/E P (' )ps(s”), g (W), T (") (g (@), e (@), mun(s”) | mr (")) d g (')
_ /E (1(w)) d(T U U).p(w)

where the last equality is justified by the fact that
(g (w"), munr (w’), mur(s") | (w')) = /S\W folx, w’, mw(s”)) dpsnw(x)

is the density of (T U U).p(w) with respect iy ® dyr—r(s7)- O

9.3 Probabilistic functionals

For given S, let I1(S, v) denote the set of probability laws on (Es, Bs) absolutely
continuous with respect to the measure v, and Z(S) the set of simplicial reference
measures,

H(S)={ueAlS)|u=us ®dsr=, for some S’, S”disjoint such that S = S U 5" }.
(9.18)
and finally 2(S) the set of probability measures absolutely continuous with respect
to a given reference measure,

2(8)={(u,p) €e A(S)XILS) |y = us' ® 657=, for some
S’,S"disjoint such that S = S’ US”,and p < pu}. (9.19)
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Equivalently,

28) = | ) {u}x11(S, ) (9.20)
UEA(S)

2 is a functor. An arrow 7nirs : S — T, with the corresponding surjection mrs :
Es — Er, induces a map 2(nr;s) : 2(S) — 2(T) that sends (us ® dsr=s», p) to
(U1 ® O17=n(a), M1,5,p), Wwhere T’ = S'NT, T” = " N T, and n(a) := niyr s (s”). It
is important to remark that, for any A € Br, if (ur ® d7r—r(s7))(A) = 0, then (us ®
) s":s")(ﬂils (A)) = 0 in virtue of the disintegration formula; therefore p(nils (A)=0
as a consequence of the absolute continuity imposed on the definition of 2, and
nr,s,p(A) is also zero. This means that (ur ® O1=t(s), TT,3,p) effectively lies in 2(T).

Let .#,(S) be the set of measurable nonnegative functions ¢ : 2(S) — R. For
every T € s and ¢ € .Z,(S), set

(T.(P)(HS/ ® 55//25//, p) = / QD(‘US’\T ® 6T':t' ® 65//2511, pf) dT*p(t), (9_21)
Er

where t = (t',t”) € Er, T.p is a probability on Er absolutely continuous with
respect to pr @ Opr=n,, ¢ (s7), With density /ES,\T fr(z, v, x")usnr(z), and {p;} is a
nit,s-disintegration of p.

Proposition 9.10. Forany T, U € .%s and ¢ € .Z,(S),
T.(Up)=(Tul).p. (9.22)
Proof. The iterated application of the definition gives
(T.(U.0)) (s ® O57=5, p)
= /E (U.@)(usn\t ® O1/=1» ® O57=s, pt) dT.p(t)
T

=/E (/E P(unTu ® Ogp—z ® O, 5m=(t,57), (Pt)u) dU.pi(u) | AT.p(t)
T u

In virtue of Proposition[9.9-(4), the last integral equals
/E P(snTNU B Opr=ii(wy @ O(T7,57)=(t(wy,s7)r (Ptw))u(w)) AT U U).p(w).
w

But (S’\T)\U = S’\W, ’'UT’ = W/, and (Pt(w))u(w) = pw almost surely (Proposition
9.9), therefore

(T.(U.p))(us ® Osr=s7, p) = / P(ps\w ® dwr=wr ® ds7=s7, p) (T U U).p(w),

Ew

as we wanted to prove. O

In other words: equation (9.21) defines a monoid action of .5 on .Z#..(S).
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9.4 Restriction to Gaussian laws; functional module

We make now the following hypotheses: each E; = R, in such a way that Es = RI®!
taking S itself as the canonical basis. Each reference measure ys is the corresponding
Lebesgue measure on Es, normalized to assign unit measure to the hypercube.
Moreover, let us introduce a sub-sheaf of 2 defined by

DGauss(S) := { (1, p) € A(S) XTI(S) | 4 = ps ® 6g7=, for some
S’, S"disjoint such that S = S"US”, p < u, and p gaussian}. (9.23)

A gaussian (or normal) probability distribution is defined as a probability on Es such
that, for every linear functional f : Es — R, the push-forward f.p is a univariate
normal. Denote by (ej, ..., ex) the base of Es and let (e], ..., e;;) be the dual basis.
Each p is uniquely characterized by a mean vector m € Es, whose components
are m; = /xdel?‘p(x), and a covariance matrix £ = (0ij)1<; j<|s| such that o;; =
f/(x = ui)y — pj)deip(x) de;p(y). See Appendix E . As a consequence we also
denote the elements of 2Gauss(S) by triplets (u, m, L)J9

Given a reference measure ps ® Osv—s», we say that the covariance matrix is
admissible if the eigenvectors associated to nonzero eigenvalues span Es C Eg. If this
is the case, a gaussian law with covariance X is absolutely continuous with respect
to ug, cf. Proposition[D.7

Let.ZGauss(S) be the additive abelian group of measurable functions ¢ : 2Gauss(S) —
R that verify the following polynomial-growth condition:

for every reference measure s ®0s»~, every admissible covariance
matrix X, and every variable T coarser than S, there exist C > 0 and
y > 0 such that (9.24)

lp(usnr ® Or=py ® Ogr=sr,m, L)| < C(L+[[t]| + [lm]])""

Proposition 9.11. Equation (9.21)) defines an action of the monoid .#s on the vector space
FGauss(S): for every T, U € S5 and every ¢ € FGauss(S),

U(T.p) = TU.¢.
It extends linearly to an action of R[.%5], the monoid algebra.

Proof. Decompose ¢ into its positive and negative part, in such a way that ¢ =
" —¢~,and |@| = |p*| + |p~|. The functions ¢* and ¢~ belong to .%,(S) and verify
the condition (9.24).

Consider T € ./s. The random variable T corresponds to certain components
of the variable S, and its marginal law T.p is absolutely continuous with respect to
U1 ® O1r—r(sm). If p = Nig|(m, X), then T.p = Nir|(mt, L1), where m, Lt are specified
in Proposition Moreover, T = T’ LI T” translates into ET = E1» X E7», which in
turn induces splittings mt = (m7/, mr~) and

Z _ Z‘T’ ZT/,T/I
T \epp Zpo |

¢It is characteristic of this simplicial case that every space Eg has a preferred basis, such that, for
every T € %5, Et is naturally included in Eg and corresponds the span of the basis elements T. In a
nonsimplicial case, there could exist S € K and collections {Uy, ..., Uy} € %5 and {T1, ..., T} € S5
such that Es = P .;, Euy; = @1§j§m Et;, and Ey, N Er, = {0} for every i, j.
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’

Since T” = m(s”) almost surely, the covariance matrices X1~ and Zg/ 1 = X,
vanish. The matrix X7/ is positive definite, because the law of T’ is absolutely
continuous with respect to i (see Proposition [D.7). We have,

dT.p 1 1
(t',t")= —————exp (——(t’ —mp) LN —mr)|. (9.25)
AT ® Srr=n(sn) (det(2mx))? 2 r
Consider now the action as defined in (9.21).
(T.p)(us ® Ogr=g», m, L) = / (us\T ® 0= ® dgr=sr, 11(t), L) dT.p(t),
Er

Proposition|D.6|states that

and ~
5 _ (ZS\T - ZS\ngZTZTfS\T 8) ' (9.27)

Since ¢ and ¢~ satisfy (9.24), the expressions ¢* (g1 ® o= ® dgr=s», 1i(t), L)
grow slower than certain polynomial in t" when ||t/|| — oo (remark that is
linearin t = (#', ")), and therefore their integrals against the density converge.
In this case,

T.o=T.p"-T.@".

Proposition ensures that, for any pair of variables T, U € .%s, U.(T.p*) = UT.¢p™*.
Thus, U.(T.¢) = TU.p* - TU.¢p~ = TU.¢. |



154 Restriction to Gaussian laws; functional module




Chapter 10

Probabilistic information
cohomology on simplicial
structures

Given any information structure (S, &), the set .%s := {T|S — T} is a monoid
with product (T, U) = TU U =: T AU. Given S — T there is a natural inclusion
ST — .Zs. Therefore X +— % is a presheaf of monoids, and X — ok := R[.x]is a
presheaf of algebras.

The category of .&7-modules, Mod(</), is abelian and has enough injectives.
Information cohomology is H*(S, &) := Ext*(S, &), as defined in Section and we
use the bar-resolution in order to characterize the cocycles as in Section 2.5

In this chapter, we study information cohomology on a simplicial structure (K, &).
We take as coefficients a module .#, such that each .7 (S) correspond to measurable
real-valued functionals defined on a subset of 2(S) stable by conditioning and such
that, for every ¢ € .#(S)and Y € .75, the integrals Y.¢* and Y.¢ ™ are finite, in which
case Y. is well defined and the monoid .#s acts on .#(S). An example is the module
FGauss introduced in Section 9.4

10.1 Computation of H°
A 0-cocycle is a collection of functions @s[] : 2(S) — R such that

s, p) = @o(d0, 60) € R, (10.1)

thus they correspond to real constants.
A 0-coboundary ¢ must satisfy 0 = (0¢)s[T]. Supposing that ¢s[] = C, one has

(0@)s[T](us ® dsr=s, p)

= (T.p)s[l(ps ® 0sr=s7, p) — @sll(ps ® dsr=s7, p)

= /E Psl1(psnT ® 01r=p ® dsr=gr, pr) AT.p(t) — @s[l(pts ® Osr=s7, p)
T

=C-C=0

We conclude that H)(K, .%) = R.
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10.2 General properties of 1-cocycles

Remark first that 5C° = {0}, so we only need to compute cocycles:
HYK,.Z) =ker(6 : C! = C?). (10.2)

Recall that C! = Hom,/(%,.#) and a 1-cochain (ONS Cl corresponds to a collection
of morphisms @s € Hom(%1(S), % (S)) that verifies two conditions:

1. Equivariance: @s(T[U]) = T.([U]).

2. Joint locality: whenever S — T,

Ps[T](us ® 0sr=s7, p) = Pr[T(U1 ® O7r=1(57), Tep)

We write ¢[T] instead of @7[T], and even of ¢g[T] if S is clear from context (its
evaluation is related to ¢[T] by joint locality).
A 1-cochain ¢ is a 1-cocycle if additionally it verifies, for every S € ObK and
every T, U € .75,
0= T.ps[U] - ps[TU] + s[T] (103)

as functionals in .% (S). This and the commutativity of the product give the symmetric
equation

T.pslU] + @s[T] = U.gs[T] + gs[U]. (104)
The general properties of disintegrations of measures imply that entropy is a 1-

cocycle, cf. Proposition|11.35

Proposition 10.1. If ¢ is a 1-cocycle, then:
1. Forevery S € ObK, ¢[S](0s,65) = 0.
2. For every S € Ob K, and any decomposition S = S’ U S”,
PslSl(ps ® Osr=s, p) = @[S'I(us, Sip).
Proof.
Cram (I): Setting S = T = U in (10.3) and evaluating it on (55, d5), we obtain
0 = (S.9)s[S1(6s, 6s) = ps[S](0s, Os)-

Cramm @): Set T = §’ and U = S” in (10.3), and evaluate the expression on
(4s' ® 657, p). The conditional term vanishes, because

(S/-(P[S”])S(IJS’ ® 55”25”1 P) = ./I;: (P[S”]((S(s’,s”)/ 6(s',s”)) dS:P(S/)
SI

The claim becomes a consequence of joint locality, which implies that
Ps[S') (s ® ds7=s, p) = @[S'I(us', Sip)-
O

Proposition[10.1}(2) implies that we only need to characterize each functional ¢[S]
evaluated on the corresponding nondegenerate laws (us, p). This simplifies greatly
the computation of cocycles, as expressed in the following proposition. (Recall that
I1(S, us) are the measures on (Es, B(Es)) absolutely continuous with respect to ps.)
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Proposition 10.2. Let ¢ be a 1-cochain and ® = {cpS}SGObK a collection of measurable
functionals ¢° : TI(S, ps) — R. The following conditions are equivalent:
1. @ isa 1-cocycle, and
Ps[S)(us, ) = 6°(). (10.5)

2. Forevery S € ObK, every U C S, and every p € I1(S, us),

)= [ oMU\ Wep) dlpl) + 9UWp). (109
Besides, for every S € ObKand U C S,

@s[Ul(us ® dsr=sr,-) = ¢U7 (U N S')(). (10.7)

From now on, we use the collection ® = {¢°}scopk that verifies ps[U](us ®
Ssr=sr,-) = UM ((UNS").(-)) as a simplified description of a 1-cochain; such cochain
is a 1-cocycle if and only if it satisfies the cocycle equation (10.6).

Proof. First, let us prove that (I)=(@): Since ¢ is a 1-cocycle, for every S € ObK,
every U C S, and (usr ® dsr=s7, p) € 2(S),

ps[U](ps ® 0s7=s7, p) = pulUl(puns' ® ds7nu=n(s7), Usp) (10.8)
= puns'[U NS )(puns, (U N S').p) (10.9)
= " (U NS )p), (10.10)

where (10.8) corresponds to joint locality, and comes from Proposition
along with the functoriality of marginalizations. The last equality takes into
account. This establishes (10.7).

Consider now an arrow S — U in K. The cocycle condition (10.3) implies in
particular that

PslSl(us, p) = /E @sIS\ Ul(us\u ® du=u, pu) dU.p(u) + @s[Ul(us, p).  (10.11)

Because of ([[0.7),
@s[S\ Ul(us\u ® Su=u, pu) = ¢ (S \ U)epu). (10.12)

Joint locality also entails that
ps[Ul(us, p) = pulU](pu, U.p) = $Y (U.p). (10.13)

The equalities (10.12) and (10.13) show that (10.11)) corresponds exactly to (10.6).
Now we prove 2)=(T): That ¢ is a 1-cocycle means that, for any S € ObK and
T,Ue %,

QOS[T U u]([l,lS/ ® 65//2511, ‘0) 2

: Ps[TI(pus\u ® dw,s7)=(u,s7y, Pu) Ap(u) + @s[U](uur ® dur=n(s7y, Usp), (10.14)
u

where U’ =S’ NnU and U” = S” N U as usual.
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Consider each term separately. The identity (10.7) says that

Qs[W(is ® d5r=sr, p) = VW' (W!p), (10.15)

where we have written again W instead of TU U, and W’ := W NS = T"u U’.
Similarly,

@s[T1 s ® O(usm)=(u,s7), Pu) = @7 W (T \ U )upu), (10.16)
because TN (S"\U) =(TNS)\(S"nU) =T\ U’ Finally,

@s[Ul(uur ® Suren(sry, Uep) = o (Up). (10.17)

Replace (10.15), (10.16) and (10.17) in (10.14) to obtain the equivalent form

o7 (T U L)) = /E o7\ (T \ Wepu) dU.pw) + ¢ (Uep),  (1018)

which corresponds precisely to the identity (10.6) if one takes into account the fun-
toriality of marginalizations (¢ (U.p) = ¢ (U(T' U U’).p), etc.). |

Remark 10.3. If each @r[T] is just a function of the probabilities on (Et, Br), then

S.ulTI(p) = /E PrIT1(6 ) dULp(w),

whenever T ¢ U c S. If ¢7[T](p) is the differential entropy when p < ur, the
quantity @7[T](67(.)) is expected to diverge to —co under any sensible definition (cf.
Section[I2.2). In general, divergences are immediately introduced with conditioning
if one does not update the pertinent reference measure. The sheaf .% allows us to
keep track of this. The relevance of the reference measure was already remarked
by Shannon (see the Introduction) and later by Csiszar, who defined the generalized

entropy as
dp
S,u(p) = _/log (d_y) dp/

when A is an arbitrary reference measure and p a probability such that u < A. This
is further developed in Chapter

10.3 Computation of H': Gaussian case

In this case each reference measure g is the Lebesgue measure on Eg = RIS! and
each functional ¢° is defined on the set of nondegenerate |S|-variate normal (gaus-
sian) laws on Es. Since Es comes with a basis, S itself, these laws are in bijective
correspondence with pairs (m,X) € Es x PD(S)/!| that correspond to the mean and
covariance, respectively From now on, we write gbs(m, ).

1PD(S) denotes the positive definite matrices in Mg|(R).

2More precisely, a basis establishes a bijection B : Eg X PD(S) S MGauss(S, ts) and precomposition
with B defined the functional (1)5'3 = qbs o B : Eg x PD(S) — R, that we also denote by (1)5 since the
basis is fixed. In a nonsimplicial case, different bases should be taken into account in such a way that,
for every G € GL(Eg), cj)s' (m,2) = ¢5'GB(Gm, GTLG).
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Consider a nondegenerate gaussian law p with mean m and covariance X. Fol-
lowing the conventions in Section @ the splitting of the variable, S = S; U S; (i.e
Xs = (Xs,, Xs,) € Es, X Es,) induces an splitting of the parameters: m = (my, my),

and
Y11 L2
Y= .
(221 Zzz)

According to Proposition the marginal law U.p is a |U|-variate normal distri-
bution with mean 77 and covariance 21, and (S \ U).py, is a |S \ U|-variate normal
with mean

in(x1) := my + ;T (x1 — my),

and covariance
S -1
Yoo = Yoo — Xpp Xy X2

Since X is supposed to be positive deﬁnite 11 and X are positive definite too,
hence invertible.

The functionals in @ are subject to the condition (10.6): for any S € K and any
decomposition S = 51 U Sy,

1 try -1
con 5= [ o5 £y SR = G =)
¢ (m, X) /ESI‘? (112(x1), Lo2) e X1

+ ¢ (m1, T11).  (10.19)

where we have followed the conventions in the previous paragraph. As a conse-
quence, they also fulfill the symmetric equation (10.4):

1 try -1
_ . exp (—5(x1 —m)"Z (x1 — my)
: 2 (1i12(x1), L2) =2 s Tl ) dx1 — ¢%2(my, L) =
51 11
. exp (—3(x2 — ma)E) (x2 — my))
¢51 (11(x2), £11) dxa — ¢%1(my, T11).  (10.20)

Es, |27 E0s |

10.3.1 1-cocycles that depend only on the covariance matrix

First, we compute the cocycles that depend only on the covariance matrix, ¢5(m, L) =
¢°(Z). The domain of ¢° are the positive definite matrices in M is|(R), that we denote

PD(S)[f

Proposition 10.4. Suppose that K is connected and all its vertices belongs to a 1-cell. A
collection of C? function ® = {¢° : PD(S) — R}sek satisfies the cocycle condition
(10.19) if and only if there exist real constants a and {k;}ic1 such that, for every S € K,

$5(2) = aln(|X)) +Zk,-. (10.21)
i€S

3The measure p is a |S|-variate normal distribution absolutely continuous with respect to the
Lebesgue measure on RIS|, This is equivalent to X >> 0, as shown in Proposition

4The basis establishes a bijection B : Eg X PD(S) S TGauss(S, tts) and the functional B := ¢S 0B :
Es X PD(S) — R is required to factor through the quotient Eg X PD(S) — PD(S). We use the same
symbol (/)S to denote the factor, since there is no risk of confusion.

SPD(S) c Ms|(R) is supposed to have the standard differential structure.
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Proof. For any i € I, there exists j € I such that S := {i,j} € ObK. Set S; = {i}
and S, = {j}. Let & = [ol! 912] be the covariance matrix of (S1,S;). Under these

021 022

circumstances, (10.20) says that
¢’ (011 — 03,02) — ¢'(011) = ¢/ (022 — 03,011) — O/ (022), (10.22)
where we have written ¢i instead of qb{i}. The derivative with respect to 017 is

2

.. .. .. o

¢ (011 = 03,022) — ¢ (011) = P (022 - oizou)a—;z, (10.23)
11

that can be derived with respect to 02, to obtain

(ﬁi(Oll 012022 ) (]5]‘(022 012011 )

(10.24)
2 2
02 on
Or equivalently,
(011022 — 03, ... (01102 — 0%,)?
¢'(o11 — 01202 )—12 = ¢(on - 012011 )—12. (10.25)
2 011
Setu = 011 — G%z"zz €(0,0),v =09 — 0%2011 € (0, ), to obtain
d'(u)u? = $/(v)v* = constant =: —a, (10.26)

which means that (1) = a/u + b;, and ¢;(u) = aIn(u) + bju + k;, with a, b;, k; € R.
But the functions u — B;u do not solve (10.22) unless both B; vanish, while u +—
aln(u) + k; is a solution. Therefore,

(Pi(a) =a 11’1((7) +k; and ¢f(a) =a 11’1((7) + kj

for arbitrary real constants 4, k;, k;. Since the complex K is connected, 2 must be
common to all vertices. Remark that in this case,

$°(L) = ¢/(IZI/o11) + ¢'(o11) = aIn(|Z]) + Ky + ka. (10.27)
The general form (10.21) is obtained by induction: consider S = S; LI {m},
(s B
s = (C amm)

and denote by Xs /0, the Schur complement of ¢, in Xs. Then

¢°(Zs) = O71 (s /Tmm) + @™ (Gmm) (10.28)
= an(|Zs/Gmnllomml) + D ki +kn (10.29)
i€51
= aIn(|Zs|) + Z ki. (10.30)
ieS

In the last step, we used Schur’s determinantal identity (Proposition [C.T).

It is easy to show that these ¢° just introduced satisfy all the cocycle equations
(T0.19). In fact, by linearity, this can be verified separately for ¢7(m, L) = Y;cs ki and
¢5(m, L) = aln(|Z]). In the case of ¢}, this is immediate. For ¢3, is equivalent
to Schur’s determinantal identity. |
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Remark 10.5. Set d := |S|. Let p be a nondegenerate gaussian law on Eg, with mean
m and covariance X.. According to the traditional definition, the differential entropy
of p (with respect to the Lebesgue measure As on Eg) is

dp
W (p) = —/ 1 (—) d
(P) Es Ogb d/\S p

_ _/ o exp (—3(x — m)TZ 7 (x — m)) q
By O? 212 f

3 (x-m)"Z 1 (x—m)

_ logy(®) ((x = m)™= 7 (x — m)) ¢

1
dx + - log, (|]2nZ
2 U, 2|12 7 o8]

The change of Variableﬂ y = Z72(x — m) gives

Ly -1y —
-/Es (—%(x - m)trz_l(x - m)) 3y |27:n£|1/2 (= m) dx =

2
(—y?) exp(—7%
Es 2 |27—£I|1/2

We conclude that log, (21¢)
h(p)=d (%) + %logb(|2|). (10.31)

This is a particular case of the general form in Proposition where a = (2In(b))!
and k; = log,(2me)/2.

10.3.2 Decomposition of ¢° as a sum; Convolutions

In this and the following sections, we use the theory of distributions, because the
conditional term in the cocycle equations can be written as a convolution and its
analysis is naturally related to the Fourier transform. The main definitions and
results of this theory that are used in this thesis are summarized in Appendix

Remark that ¢! defines a distribution in S’(Es, ), the space of tempered distribu-
tions, through the formula f € S / ¢°1 f; the integral converges in virtue of the
polynomial-growth condition (9.24).

Given a distribution T € S'(R¥), its convolution with an element f € S(R?),
denoted T » f, corresponds to the function x +— (T, 7, f) (the operator 1, is a trans-
lation, 7,f(y) := f(x + y), and f(x) := f(-x)). The following proposition shows
that sometimes the conditional term in the cocycle equations can be written as a
convolution.

Proposition 10.6. 1. The integral
p (—3(x2 — m2)"ES) (x2 — m2))

|27t |

/E ¢ (1 (x2), i11)ex dx; (10.32)

equals E (¢51(m1 -Y1, X1 — Z’n)), where Y1 has a |S1|-variate normal distribution
with mean mq and covariance Z’ll = 2122521221.

®We denote by 271/2 or VE the principal square root of the positive definite matrix X: its eigenvalues
are the positive square roots of the eigenvalues of X.
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2. There expressions
C(S1,52, %) =B (¢ (m1 = Y1, Zn = Tpp)) = ¢%10m, Z0)  (1039)
and
C(S2,S1, %) i= B (¢%(m2 = Yo, S22 = )| = ¢%1(m2, T0)  (10.34)

are independent of m, and C(S1, Sz, L) = C(S2, 51, L).
3. If L1 is surjective, then the matrix ¥\, is positive definite and

B(¢%10m = Y1, T~ 5] = (65, +Gyy)m),  (1035)

where qbil is the map x +— ¢ (x, A), and Gp is x — e‘%xtrB_lx/\/dethB).

Proof.
Cram (I): The integral (10.32) equals E (¢! (11 — 1255, (X — m2), £11)), where X ~
Nis,|(m2, Lp2). According to Proposition

Y1 = L1225 (X — m2) ~ Nig (0, (21225, Z02(Z1225,)") = Nis, (0, 1225, Tog).

The definitions imply that Y11 =291 — Y-
Cram (2): Taking into account part (I), the symmetric equation (10.20) can be
rewritten as

E (¢51(m1 - Y1, %11 — Zil)) — ¢°'(m1, L11) =
E (quZ(mz - Y2, ~ 2'22)) — ¢ (ma, L) (10.36)

with Y7 ~ Ny(0, Z’H) and Y1 ~ Ny(0, 2’22). The expression on the left depends only on
my and X, not on my; similarly, the expression on the right does not depend on m1. We
conclude that both expressions equal certain ”constant” C(S1, Sp, £) = C(S2, 51, X).

CLAIM : Consider x € R" \ {0}. Since X, surjective, its transpose its injective
and Xo1x = Zszx # 0. Then

X (Z1225) To1)x = (Zo1x) 5] (Eo1x) > 0,

because 22_21 is positive definite. This proves that ¥/, is positive definite, which
implies—according to Proposition [D.7/—that Y1 has a density with respect to us,,
that is precisely Gy . Therefore,

’ S
E (cPSl(rm -Y1, X1 - 211)) = /ESl qbzlu_z,u(ml - y1)Gy (y)dy (10.37)
= (93!, _y, *Gry,)m1). (10.38)
i

Remark 10.7. The function C(S1, S, X) is nontrivial. In fact, when ¢* is given by
the differential entropy in (10.31), C(S1, Sz, X) equals the usual mutual information
I1(51, S2).
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Proposition 10.8. Foranyset S € Ob Kand any flag of sets S1 C So C ... C S5 C Sj5; = S
such that |Si| = k, the equality

S|

¢°(m,T) = > ¢'(mi, 0i) + ) C(Sk1, Sk \ Si-1, Lsys,) (10:39)

i€S k=2

holds, where ¢! denotes 1} and L s, is the square block of T corresponding to the indexes
in Sk.

Proof. Since Sy = Sk—1 U (Sk \ Sk-1), the cocycle equation says

quk(mSk’ Z‘Sksk) =B (QbSk_l(mSkq - YS;H/ LSSk — Z‘/Sk_lsk_l)) + ﬂblk (mik/ Gikik)
(10.40)
where we have denoted by ix the element in Sy \ Sx_1. Proposition says that
the expectation above equals ¢>-1(ms, |, Zs, s, ,) + C(Sk-1, {ik}, Zs,s,)- The result
follows by induction on k. m]

The quantity Z}i'z C(Sk-1,Sk \ Sk-1,Ls,s,) turns out to be independent of the
chosen flag and we call it Dy (S, ):

Dy(S, %) := ¢°(m, L) - Z ¢'(m;, o). (10.41)
ieS

Remark 10.9. In the case of differential entropy, C(S1, S2, X) = —I(S1; S2) holds, and
it is known that

H[(S1,S2)] = H[$1|S2] + H[S2] = H[S1] + H[S2] = I(51; S2). (10.42)
This implies that
HI(S1,S2,+++,Sa)l = ) HIST = ) 1((S1-+ Sima); Si), (1043)
i=1 i=1

that is an special case of Proposition Finally, D(S,X) is proportional to
In([Z[/Ties 0ii)-
10.3.3 General cocycles

Provided that |S1] < |S2|, the matrix X, is generically surjective and (10.33) has the
form

C(S1,5,,%) = (cp;l_% + Gy; )(m1) = ¢3! (m). (10.44)

Furthermore, Gga Y being a element of S(Es, ), belongs to the space O. of distributions
rapidly decreasing at infinity (convoluters). In virtue of the convolution theorem
(Proposition [E.5)), the Fourier transform turns the last equation into

P51 (&1, Zn1 — T )exp (—2mENT) &) - ¢%(&1,Z11) = C(S1, 52, 2)05y20,  (10.45)

where &1 = m1, and 551 belongs to S'(RY).
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Function Transform
1 8o
80 1
5% (x) (2mi&)®
fx) f(=8) = f(&)
(f *g)(x) f(&)g(&)
f(x)g(x) (F*3)(&)
2rZ|"2 exp (-3x'"E1x) exp (—2n?ETLE)
9% f(x) 2nE)* f(x)
x° f(x) (5)" (&)

Table 10.1: Fourier transforms used in this thesis, following the definition
f(&) = [, f(x)e™™*¢ dx. CE. [76, pp. 231ff], [46, App. 2.

In principle, ¥}, can be any matrix that satisfies 0 < ¥}, < X. In fact, given

Y/, consider the equation £1,X,) £ = X/ . Introducing the appropriate change of

base to express Yo as the identity (X2 > 0), this reduces to iuiﬁrz = Y11, that has as
solutions any square root of X7,. The fact that

Y11 X2
y =
B

is a valid covariance matrix comes precisely from the condition 0 < ¥}, < L.
In this section, we study the solutions of equation (10.45) in O’(Es,). Each

distribution qg can be restricted to the open set QO = Eg, \ {0}, to get the equation
G5 (&1, Ti1 — T} exp (—2m2ENE &) = 651(&1, Zn), (10.46)
whose solutions are described by the following proposition.

Proposition 10.10. Let Q be an open set in R%. For a collection of distributions ¢51(-, ¥) €
D'(Q) indexed by positive definite matrices © € PD(RY), the following conditions are

equivalent:
1. Forany T, X’ € PD(RY) that satisfy 0 < ¥/ < L,

D(E, T - ) exp (—2m2ETLE) = P(E, X). (10.47)
2. There exists a distribution 1:0\(5, 0) € D'(Q) such that
P(E, ) = P(E,0)exp (—2n2ETEE), (10.48)

Proof. 1t is straightforward to verify that (10.48) solves (10.47), for any choice of
P(E,0).
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Let us prove the other implication. Set X’ = (1 — A)%, for any A € (0, 1) to deduce
from (10.47) that

U(E,AT) = P(E, ) exp (2m%(1 - M)ETEE) . (10.49)

The distribution on the right is a well defined element of D’(Q). [| We finish the
proof showing that, when A — 0, (&, AX) tends to

P(E,0) := U(E, D) exp (2n2ETEE) € D'(Q). (10.50)

Define {D\A(E) = gb\(,‘;’, AY), and Q(&) := 2n2ETLE. We must show that, for every test
function f € D(Q), (YA, f) = (o, f) or equivalently

(1, e2(1 — e Q) F)| — 0. (10.51)

The function f belongs to D(K), for certain compact set K ¢ Q. The continuity of
the linear functional 1)1 implies the existence of constants C and m (dependent on K)
such that, for every g € D(K),

pl<C > o8

a:lal<m

, (10.52)

where |[|-|| denotes ||| .~ (k). Therefore,

(@100 =eOPI<C D) [or(fe1 e .

a:|la|<m
The Leibniz rule and the triangular inequality imply that
- l< 3 (5]l

B:B<a
= (1-e"9jo%(fed)| + O(A,

thus

(1,691 = e f) < CU-eQ) Y [9*(feQ)| + O(1Al) (10.53)

alalsm
that tends to zero when A — 0. O

Corollary 10.11. Suppose that i € I is contained in a 1-cell S of K. Then, for every ¢ > 0

and every o such that 0 < € < o,
(x—m)>
otm,a = [ o= )
m,o) = X, &) ——=—"
E; V2m(o =€)

where p;(m; o) is a polynomial in m whose coefficients depend on o.

dx +pi(m; o), (10.54)

’Given u € D’(QQ) and f € C*(Q), the distribution u f € D’(Q) is defined by (uf, g) := (u, fg).
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Proof. Aslong aseachi € I is contained in a 1-cell S of K, we can write S = {i} US>
and equation (10.44) makes sense. Therefore, we apply Proposition|10.10|to conclude
that, on E; \ {0},

$'(E,0) = $'(E,0) exp(—272E2) (10.55)
= (Ei(é, 0) exp(—27‘c2852) exp(—27’c2(a - €)&?) (10.56)
= §'(¢, &) exp(—27%(0 — €)&?). (10.57)

On the whole E;, we must add a distribution supported on {0}: a finite linear
combination of derivatives of 6¢, see Proposition We know that (}Si(é ,€) is an
element of &, therefore we can apply the convolution theorem to conclude.

Remark that p; does not depend on ¢. In fact, one has &(é, 0) = qg"(é, 0) exp(—27'(20<§2)+
pi(&; 0) as elements of D’(R). |

(x—m;)?

exp(_ 2(“‘”) ds to the D
————— tends to the Dirac
V2n(o—¢)

mass 0,, when ¢ — ¢. If we assume that ¢(x, 1) is continuous in (x, A), then the
limit of the integral in (10.54) equals @(m, 0) and therefore p;(m; o) =0

Proposition established that
¢°(m, %) = " ¢'(mj, o) + D(S, T), (10.58)

ieS

Remark 10.12. As an element of D’(R), the function

Therefore, for every ¢ > 0, we can write

exp (-5745)
2(gji—¢)
(m Y) = / (o} (x 5) dx + pi(mi; 0ii) + D(S,X).  (10.59)
; VZT((G ii — € ) ;

The polynomial p;(m;; 0;;) can be written as a linear combination of moments of
p(m, o), with coefficients that depend on o. In turn, the integrals above resemble

moments, which motivates the following definition of generalized moment functions;
Proposition [10.16/shows that they are cocycles.

Definition 10.13. A map ¢ : R X (0,0) — C is said to be a generalized moment
function (gmf) associated to the family ¢ = {g, : R = C}.5 if

1. g.(x)exp(—ax?) is integrable for every a > 0,

2

2. p(m,0) = m /Rg&-(x)exp (—(2’2;@)) dx whenever ¢ > ¢.
Analogously, we define generalized moderate moment function (gmmyf) by replacing
the functions g, by elements of S’(R).

We write ¢(g) or ¢(m, 0|g) to emphasize the dependency on g.

Remark that generalized moment functions can be added to obtain a new one.
Their name is justified by the following example.

Example 10.14. Let h(x) be a measurable function of x € R bounded by Ce4%, for
certain constants A € R, C € R},. For every ¢ > 0, set

1 1 (x-2)?
<(x) = h 27 dz. .
fe(x) \/271_8/R (z)e z (10.60)

Then @(m, o) := f,;(m) is a generalized moment associated to the family { f; }+>o.
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Proof. If h belongs to L!, we can take the Fourier transform:
Fel&) = h(&)e e (10.61)
Therefore, if n > ¢ > 0,
Fo(&) = h(£)e PN = Fu(g)e O (10.62)

which implies the desired set of equations by taking the inverse Fourier transform.

To establish the general case, we multiply & by the characteristic function of the
interval [-N, N, obtaining a function #'N) which belongs to L', and take the limit
when N tends to o, in the formula

1
/(N)(z)e 2 dz
2nn JR
1 (-u)?

1 1 _1=07
— BN -3 3
\2m(n - €) V2me ./R./R (e

which is justified by Fubini’s theorem and Lebesgue’s theorem of dominated conver-
gence. O

(y—x
n-

® du dx, (10.63)

Remark 10.15. With h(x) = exp(x), we obtain a generalized moment that is not a
generalized moderate moment.

An axial cochain is a cochain ® = {¢S }scop s that verifies

$5(m, ) = > p(my, 0ilg"), (10.64)

ieS

where @(m;, 0;|g") is a gmmf associated to a family ¢ ={gi}es0 € S'(R).
The following proposition implies that axial cochains are cocycles.

Proposition 10.16. For any ¢ > 0 and any collection { fiYies in S'(R), the functionals
¥5(m, L) = Nies ' (mi, 0ii), with

Wi(m;, 05) = / fg(x)exp( %) Qn(oi; — €))"/*dx,

defined for T > €I, satisfy the cocycle equation
Yo (m, £) = (S1.9%)(m, L) + > (m1, L11) (10.65)

forany > el.
Proof. Let S = S1 U S, be any partition. Equation (10.65) is equivalent to the identity

e Z)()zesz/ ff(x)eXp( ;( IT)))(Z”(%—E))‘”dx, (10.66)

that can be interpreted as invariance under conditioning.
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According to Proposition m there is a variable Y, ~ Njg, (0, £},) such that

(S1.9*)(m, L) =E (Ebsz(mz - Yo, 00 — 2'22))

= 3B (i mali] - Yalil, Zanli, i1~ ol )

1652

The symbols [i], [i,i] denote components. For the last equality, we have used the
definition of 1) and the linearity of expectations. The marginal Y>[7] has a univariate
normal distribution with mean 0 and variance X),[i, i]. Hence,

(x=ma[i]-ya[i])* (y2li]?
( Toolii]-% /Zz[i,i]—s) exp (_Z’zz[i,i])

S1.0°2)(m, L ! d
(B1.¢7)m, 2) = 2512/ /f( )\/27'((2221 e AEDI R AT
(10.67)

Each double integral is a convolution:
i (Gl i1z fi,i1-e *y> Gz 17 (ma[i])

(where f~(x) = f (x) = f(=x)). Under the Fourier transform, this convolution be-
comes a multiplication

FUE) exp(-272EX(Eaali 1] = Byl ] - €)) exp(-2m?EXEL [, 1)) =
Fi(&) exp(=2m2EX(Eali, i] - €)), (10.68)
which converted back to the original domain gives (5[], Zx[i, i]); the notation

is such that my[i] = m; and Xpy[i,1] = Z[i,i]. So we reach the desired conclusion
taking two times the Fourier transform of (10.67). O

Remark now that taking ¢ = 0, fé(x) = xF and foj = 0 when j # i, we establish
that the usual moments

define 1-cocycles through the formula qbs (m,Z) = My(m;,0i;). Moreover, setting
f(x) = x¥ in Example[10.14}, we conclude that f.(m) := My(m, ) defines a generalized
moment function.

Theorem 10.17 (Structure theorem of 1-cocycles, simplicial case). Suppose that every
0-cell of K belongs to a 1-cell. Every 1-cocycle is the sum of an axial cocycle and a multiple of
the entropy i.e. there exist generalized moderate moment functions {@(g")}ies and a constant
C € R such that ‘
$°(m, %) = " @(mj, 0iilg") + Cln(|Z). (10.69)
i€s
Proof. As we already remarked, the results in Proposition and Corollary [10.11
imply that
¢°(m, L) = Z p(mi, oiil f') + Z pi(mi;oii) + D(S, X), (10.70)

i€S i€eS
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where f = {¢(-, €)}e>0. Proposition|10.16[shows that the axial part is a cocycle, so

CS(m, %) = ) pilmi;0ii) + D(S,T) (10.71)

ieS

too.
Consider now S = {i}. The polynomial p;(m;; 0;;) can be written in the basis
given by the M;(m;, 0;):

ki
pilmi;oi) = ) cl(0iM;(mi, 7). (10.72)
j=0

In principle the coefficients are a function of o;;, but now we use that
CH{i}, {j}1,L)=E (Ci(ﬂ’li -Yi, 0ii — Ugi)) — C'(mi, 0ii) (10.73)

from Proposition which gives

ki ki
C{i}, {j}, ) = Z cl(0ii—0’)B (Mj(m; - Y;, 0ii - Ggi))—z c/(0)M;j(m;, oi) (10.74)
=0 =0

because D vanishes in this case. The expectation E (M;j(m; — Y1, 011 — 0},)) equals
M;(m;, 0i;), because M; is itself an axial cocycle (cf. equation (10.68) in the proof of
Proposition|10.16). Reading the equation

ki

C{i}, {j}. )= Z(C;-(On —019) — C;-(Gn))M]-(mi, ), (10.75)
=0

we conclude that c;(aii —-0}) - c;:(aii) vanishes for every degree j > 0 (the corre-

sponding M;(m;, 0;;) depends on m) and hence cl]. (0ii) must be constant, say cf . Thus
(ps(m, Y) is a sum of an axial cocycle, a linear combination of moments, and a last
term that depends only on the variance; since everything else is a cocycle, the latter
must be a cocycle too, that equals a In(|X]) + ;s b;:

ki
¢°(m, %) = " dpOmi, ol )+ D7 > ciMj(my, 0i0) + Y bi+aln(Z]),  (10.76)

ieS ieS j=1 ieS

The moments themselves are generalized moderate moment functions (and My is
constant), which allows us to merge the first three sums. O

Remark 10.18. These simplicial 1-cocycles give a very particular role to the coordinate
axes used to define the simplicial information structure. This is not so natural, since
this basis was introduced just for convenience. We are forced to consider more
general structures, that are introduced in the next chapter. We shall see that the only
cocycles that survive are multiples of the dimension (obtained above when all the b;
in (10.76) are equal) and the entropy. Cf. Theorem[11.30]
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10.3.4 Axial cochains and the heat equation

We close this section with some remarks about axial cocycles in connection to the
heat equation.

A gmf or gmmf ¢(m,c|g) of m € R and o € R} is not only measurable: it is
infinitely differentiable in (m, 0) by Lebesgue’s dominated convergence theorem.

Lemma 10.19. A gmf (or gmmf) ¢ = @(g) satisfies the heat equation on R X R, :

Ip 1% )

90 (m,o) = 29m2 m,o (10.77)

Proof. By derivation with respect to m under the integral sign, we get

8 -_ X*Tﬂz
b /ge(x)x -3t (10.78)

om V2n(o —¢) o-¢
then
P p 1 1 5 _1Gom?
=- p(m,o)+ —/g (xX)(x —m)“e 27 . (10.79)
dm? \V27(o — €)3 \V27(o — €)° ‘
And by derivation with respect to 0 we get directly the half of this sum. O

Proposition 10.20. Every solution of the heat equation that is a differentiable function of
o > 0 to the space of tempered distributions S’ in m € R, is equal to a generalized moderate
moment function @(f), for a family f = {f.} in S’(R). Moreover, if ¢ is a locally integrable
function of m, then ¢ is also generalized moment function (gmf).

Proof. Taking the Fourier transform in m we obtain
Jd = 2025
55 P(&,0) = —2m7E7p(E, 0). (10.80)

For any ¢ > 0, and any element ﬁ in &, there exists a unique solution ¢(&, o) which
coincides with f, for 0 = ¢, and it is given by

Vo>e, @& 0)=e 098 Fg), (10.81)

The compatibility between different choices of ];: is: for every n, e > 0 such that
n>e>0,

PE, ) = fo(&) = e 2T (&), (10.82)

The first statement follows by taking the inverse Fourier transform to these last two
equations. The second follows from the fact that f.(x) = ¢(x, €). O



Chapter 11

Grassmannian categories

11.1 Grassmannian information structures

11.1.1 Definition

Let E be a vector space over a commutative field K. A grassmannian category S
of E is defined at the level of objects by a subset of the full grassmannian Gr(E) of
vector subspaces of E, which contains E and is closed by conditional intersection,
ie. VW € ObS,3Z € ObS,Z C V,Z C W implies VN W € ObS. Arrows are
inclusions: V. — W if and only if V € W. Such a category is a poset, having a
maximal element and conditional finite products.

For each V € Ob S, we denote by Ey the quotient space E/V. If V C W, we have a
canonical surjection Eyy — Ew. This gives a covariant functor & : S — Meas if each
vector space is equipped with its Borel o-algebra. The image C := &'(S) is a poset
with a final element 1 = {0} = E/E, and restricted products, i.e. if Ez — Ey and
Ez; — Ew, meaning Z C V and Z C W, the arrows Eynw — Ev and Eynw — Ew are
universal factorizations of any pair of arrows to Ey and Ew from a common source.

Proposition 11.1. The pair (S, &) is an information structure.

Proof. Only the property [f] in Definition is not immediate. Consider U,V €
ObS such that W = U AV € ObS, and the corresponding projections /" :
Ew — Ey, W : Ew — Ey; we must prove that ¢ : Ew — (Ey,Ey), [w] —
(" ([w]), VW ([w])) is a injection. An element w € E defines a class [w] € ker ¢ if
andonlyif w -0 € Uand w —0g € V, thusw € UNV and [w] = 0. O

Foreach V € Ob S, the objects W of S that contain V form a commutative monoid
vy for the intersection, whose neutral element is E. We denote by ., the algebra
over K which is generated by this monoid. If V' C V, we have a natural injective
morphism jy+v : @y — <fy. This gives a canonical presheaf of commutative algebras
</ over S. We are interested in the ringed topos (S, <), and the cohomology H¢(K; 7)
of certain «/-modules 7 associated to operations on probability laws supported on
subsets of the vector spaces {Ey }veobs, that defines topological invariants of these
probability laws.

The simplicial information structures studied up to now are examples of grass-
mannian structures. The full grassmannian manifold itself gives an infinite grass-
mannian category; it can be seen as the natural linear analogue of the full simplex in
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Es=Vy=V;

A

Ey=Vy=V} Er =V, =V}

A

E1=Vs=Vi

~

Figure 11.1: Geometrical representation of the categories S; and C; = £(S;) from Example

13

the case of finite probabilities. Other interesting examples consist of subspaces con-
taining (at least) a given subspace: in other terms, a pencil through given projective
subspaces in the projective n-dimensional space P, (K).

Example 11.2. Set E = R? with the standard euclidean structure, and consider the
Grassmannian category S, made by six objects E, Vi, V2, V3 V4, and (0), where the V's
are lines through 0, such that V4, Vi and V, make respectively an angle of /4, t/2
and 31t /4 with V3. Each quotient E; := E/V; can be identified with Vl.l, in such a way
that C; = £(S,) is the same arrangement of lines and the map 7; : E — E;, induced
by (0) — V;in S, is the orthogonal projection on E;. The situation is depicted in

Figure[I1.1]

Remark also that if K is a finite field, S is a concrete category in the sense of
in fact Ey corresponds to the partition of E = Q) into affine spaces parallel to V.

A grassmannian category S over the field R of real numbers or any local field of
characteristic zero, for instance C or Q,, with E finite dimensional, satisfies addition-
ally Proposition 0.1} the o-algebra By associated to each Ey being the Borel algebra
of the vector space Ey, which is Polish (i.e. separable completely metrizable, which
implies second countable).

11.1.2 Measures

In what follows, because we want to study gaussian laws or some related probability
laws, we restrict ourselves to the case where K = R and E has finite dimension.

To study the probability laws supported on affine subspaces of E, we introduce
the pre-cosheaf of affine supports .# over S: for V € Ob S, the set .#y contains all
the affine (nonempty) subspaces in Ey, which corresponds by projection E - Ey to
the affine subspaces of E whose direction (tangent space) is any vector space that
contains V. If V. C W, the linear map 7"V . Ey — Ew sends .#y into 4.

It is useful to restrict this functor to subsets A4y of .#y, for V € Ob S, that are
closed under the projections 7"V : Ey — Ep. In the perspective of conditioning,
we also require that the fibers of the projections belong to .4y, and that each .4y
is closed by nonempty intersection. If all these conditions are satisfied, we say that
the cosheaf .4 is admissible or adapted. This allows us to recover the examples
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treated in Chapters 9] and [I0} where the only supports considered were parallel to
the coordinate axes. The restriction to .4y, in .#y is analog to the restriction to a set
of probabilities Qx more general than the full simplex I1(X), for a variable X in a
finite information structure, cf. Chapter

Definition 11.3. We say that the admissible cosheaf ./ is minimal if for every V €
ObSand A € .#y, the space A is contained in .47 if and only if there exists W € Ob S
such that V € W, and the direction (tangent space) T(A) of A in Ey coincides with
W/ V (Such a W is necessarily unique.)

The minimal supports can be though as those “generated” by the spaces in S.
This hypothesis is verified by the full grassmannian manifold, with .# = .4’; by the
simplicial information structures if each .4y, only contains spaces that are parallel
to those generated by elements of the preferred basis; and the structure (S;, &)
introduced in Example if the only affine supports considered are either the full
space E, any line parallel to some V;, or singletons.

Remark 11.4. Suppose .4 minimal, take A" € .4y, parallel to W’/V, and consider
W € ObS, then the fibers in A of the restriction of the projection ©VV are parallel
to (W N W’)/V; by admissibility these fibers must belong to .47,. This reflects the
information axiom: the inclusions V <= W and V < W’ imply that W N W’ belongs
to S.

We also introduce the set .2 of Lebesgue measures over the pre-cosheaf of sup-
ports: for each V € Ob S, £y denotes the set of pairs (A, A) where A € .#y and A
is a positive Lebesgue measure of support exactly A. Note that the set £ (A) for a
given A € ./y depends only of the tangent vector space T(A), and coincide with the
strictly positive cone A.(T(A)) in the exterior power A"**(T(A)). Forevery V € Ob S
we consider the set .y as a bundle over .#y, the fiber over A C Ey is A(T(A)),
thus this bundle is obtained by pullback from a cone bundle of rank one over the
Grassmann manifold of Ey. This is a principal bundle for the multiplicative group
R’ . Everything can be restricted over a subfunctor .4” of M.

11.1.3 Orthogonal embeddings

Let S be any grassmannian category of E. Choose arbitrarily an euclidean metric
Q on E. For any V € Ob S the orthogonal V+ is a supplementary space of V in E,
then we can identify Ey with the subspace VL of E. Also, when V C W, we have
W+ € V*, then we can identify the quotient W/V = Ey/Ew with the orthogonal
W N V*of Vin W. Therefore, when V C W, the morphism 7"V . Ey — Ew can be
identified with the linear projection from V+ to W+ parallel to W N V+, which is the
orthogonal projection. In this way, every affine subspace A of Ey is identified with
an affine subspace of E.

In summary, given the grassmannian structure (S, &), every euclidean metric on
E gives a lift of C = £(S) into the category of orthogonal projections in E. We name
this lift the embedding of C associated to Q, denote it by Jo, and write Cg its image.

Every such embedding ] induces a metric on every affine subspaces A of Ey, and
consequently a canonical Lebesgue measure Ao(A) on A, thatis A = dxy...dx, in

1A point e € Ey is an affine space associated to the trivial vector space (0) and its tangent space T(e)
is taken here to be the trivial space too.
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orthonormal coordinates. Therefore the bundle . is trivializable, but not canonically
trivial.
Let us fix a metric Q on E, and consider an element A € .#w, we have a short
exact sequence
05> TA)NW/V - A— 7"V(A) - 0; (11.1)

Then, from Proposition [F.9) (Weil’s formula), there exists a strictly positive number
c(A; W/V) such that

Ag = C(A,' W/V)AT(WV(A)'AT(A)QW/V‘ (112)

Changing the metric Q in another metric Q" induces the multiplication of every
measure A4 by a strictly positive number A(A; Q, Q’); we name this function over .#
the discriminant of Q” with respect to Q.

A multiple cQ with ¢ > 0 gives the same embedding /o and the same category
Co.

Definition 11.5. A grassmannian information structure (S, &) is said to be orthogo-
nally closed with respect to the euclidean metric Q on E, if V+ € Cg implies V € Cgp,
or equivalently if V € Ob S implies V+ € Ob S.

Examples of orthogonally closed gassmannian structures:
1. The full Grassmann manifold of E. The simplicial structures of the preceding
chapters, given by a basis of E. We see on this example that, given the category
Cg, the conformal structure of the metric Q is not unique in general.
2. The category C, of Section is also closed with respect to an euclidean
structure. In this example, the conformal structure of Q is unique.
For sufficiently general orthogonal closed categories the unicity of conformal struc-
ture is the rule.

11.2 Gaussian laws

11.2.1 Mean and covariance

Definition 11.6. The pre-cosheaf &7 : § — Sets of gaussian laws over S maps
V € ObS to the set &y of probability measures on (Ey, By) that have a support
A contained in .#y and a gaussian density with respect to a Lebesgue measure on
A. The direct images give a covariant functor over S (affine images of gaussians are
gaussians, see Appendix D).

If we work with restricted supports .4 C .#, we restrict the probability laws
accordingly.

Every element p of &y has a support A(p) in .#y and is absolutely continuous
with respect to every Lebesgue measure A such that (A(p), A) € Zy. We denote by
g(p; A) or ga(p) the density dp/ dA; its integral with respect to A equals 1. The mean
M(p) is the point of A(p) C Ey defined by

M(p):/AXg(p;A)(X)d/\(X). (11.3)
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This equation shows that the mean does not depend on any choice. The gaussian
measure p is defined by its mean M(p) and by a covariance X,, which is the inverse
of the bilinear map —Dg( In g(p; A)(X). Choosing an euclidean metric on A, the
covariance is expressed by a symmetric matrix of rank dim(A), which is positive
definite.

More precisely, there exist a nondegenerate symmetric positive bilinear form B on
T := T(A)—which defines an element element of the symmetric power S?(T*)—such
that, if we choose a point N in A, there exist a constant Cy and a linear form Ly that
verify, for every x € A,

Ing(x) = —%B(x—N,x—N)+LN(x—N)+CN. (11.4)

where g := ¢(p; A). The rule x — d In g, defines a map from A to T*, characterized

by
VX eT, ding(x).X =-B(x—-N,X)+Ly(X). (11.5)

It can be differentiated again in a canonical way to obtain
DdIng.(X,Y)=-B(Y,X) = -B(X,Y), (11.6)

thatis an element of S?(T*). Since B isnondegenerate, themap 8 : T — T*, x — B(x, ")
is invertible and the covariance is the symmetric bilinear form X (on T*) induced by
o =p71:T* — T; we write £ = B~!. The previous considerations show that £ does
not depend on N, which vanishes under differentiation.

Moreover, the covariance does not depend on the choice of reference measure: if
we change the Lebesgue measure A on T(A) (or A) in A’ = CA for C > 0, we change
gin g’ = ¢g/C,thenlng’ =1In g — C, thus d In g is unchanged and we have ¥’ = X.

Nevertheless, the trace and the determinant of X, which appear in many formu-
las of probability theory, do change. They are not invariants of a bilinear form on
T = T(A) but of an endomorphism of T. In fact, the only invariant of a nondegen-
erate symmetric positive bilinear form is the dimension of T, equal to its rank (cf.
Sylvester’s law of inertia).

Every linear isomorphism from T* to T is enough to define Tr(X) and det(X),
which explains why this problem has not arisen up to this point.

A Lebesgue measure is sufficient for defining det(X): the measure A defines a
basis of A™*(T*) then a dual basis of A"**(T), and det,(X) is the matrix of A™?*(X)
in these basis. Changing A in CA, changes the dual basis in A71/C, then det,/(X)
equals C*2 det(X). We will recover that when studying the entropy of gaussian laws.

Remark 11.7. In other terms, ¥ belongs to the symmetric power S*(T), and the
functor A™* gives an element A""* ¥ in S2(A™%*T) which is equal to A"**T ® A™*T.
Taking a basis A1 of A™XT, the determinant det; T is the coordinate of A™**Y in
the basis 17! ® A1 of S2(A™*T), and changing the basis 17! of A™**T into C~*A~!
multiply the coordinate in S?(A™**T) by C2.

The trace is a linear form on End(E) = E* ® E induced by the canonical pairing
E*®E — C,(x*,x) — x*(x) [13] Sec. 11.4.3]. To introduce the trace of a bilinear
form B € T* ® T*, we need an isomorphism between T and T~, that turns B into an
element of T* ® T. Such duality may come from an euclidean metric Q (a positive
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definite symmetric bilinear form): we choose an orthonormal basis, and take the
matrix associated to X in this basis, then Trg(X) is the usual trace of this matrix, that
is the sum of the coefficients along the diagonal; in particular, an appropriate choice
of basis diagonalizes X and the trace then corresponds to sum of the principal values
of X with respect to Q [13, Sec. 11.10.11].

Choosing a Lebesgue measure on the affine subspace A C Ey, the gaussian law
p of support A, mean M € A and covariance ©. € S*(T) is given by

d _
Vx € A, ﬁ(x) = pa(x) = 1 M), (11.7)

vVdet)(2wX)

The data of the mean is equivalent to the data of the linear part Ly in the equation
(IT.5). The nondegeneracy of B or & = B~! implies the existence of a unique point
M, such that, for every x € A,

B(x =N,N -M) = Ln(x = N). (11.8)
This implies
B(x—N,x—N)+Lny(x—-N)+Cy=B(x—-M,x—-M)+Cyp, (11.9)
for the constant Cj; given by
Cot = Cy — %B(N _ M, N = M); (11.10)
The fact that 1
Cum = =3 In(det)(2tY)), (11.11)

follows from the celebrated Gauss formula.

11.2.2 Moments of order two

Definition 11.8. Let N be a point in A(p) and a positive symmetric bilinear form B’
on T(A), the associated moment of order two of p is defined by

Dy(p; B',N) =E,(B’(x = N,x - N))
= /AB’(x - N,x—N)ga(p)(x)dA(x). (11.12)

Remark 11.9. The change of variables Y = x — N identifies A with T(A), without
changing the Lebesgue measure; this gives the following expression for the moment:

y(p; B',N) = /T " B'(Y, Y)gan(p)(Y)dA(Y); (11.13)

where g1 n(p)(Y) = ga(p)(Y + N) is the density of the image probability.

Remark 11.10. For a general probability law which is absolutely continuous with
respect to A4, it could happen that the mean is not defined, but the moment of order
two is always defined if we accept the value +co in R, because the integrand is a
positive function.
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Proposition 11.11. Let Q be an euclidean metric on A, and p the gaussian measure of
support A having the mean M € A and the covariance ¥, then

©a(p; Q, M) = Trg(%). (11.14)

Proof. Letus choose an orthonormal basis with respect to Q such that X is represented
by diagonal matrix; taking the square roots of the diagonal coefficients, we obtain
a diagonal matrix that defines the unique positive square root 2/2. Let A be the
Lebesgue measure associated to Q. Then,

Pa(p; QM) = ———— / Qlx = M, x = M)e 2= 6= MaM da(x). (11.15)

yVdet)(2nX)

If we make the change of variables
Y =27 12(x - M), (11.16)
we get

®2(p;Q, M) = (27) "W/ /T " =2y |26 2IYIE gy, (11.17)

Note d = d(A) and o071, ..., 04 the spectral values of X counted with their multiplicity,
we have
IZV2Y )2 = 01y + ... + 0y (11.18)

Thus, using Fubini’s theorem and the formula for the one dimensional reduced
moment, we get

i=1

Mm

2n)~ 1/2/01‘]/1-26_%%2 dy;
i=1

U

o; = Tro(X);

~
Il
—_

which is the expected result. O

Corollary 11.12. Let Q be an euclidean metric on A, and p the gaussian measure of support
A, of mean M € A and covariance X, and let N be any point in A,

Dy(p;Q,N)=Q(M - N,M — N) + Trg(X). (11.19)
Proof. Let us decompose x — N = x — M + M — N, then

Q(x—-N,x—N)
=Q(x-M,x—M)+Q(M—-N,M~-N)+2Q(x - M,M - N). (11.20)

And the linear term in x—M disappears when we integrate because M is themean. O
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In our grassmannian setting, we dispose of more structure: the support A is
included in a vector space Ey, and the probability law is attached to this space Ey,
thus for every positive symmetric bilinear form By on Ey, we can define the moment
of p € Py, for By, without choosing N:

CDz(P;B):Ep(B(X,X)):/ABV(X,X)gA(X)dAA(X). (11.21)

Corollary 11.13. For any gaussian law p € Py and any euclidean metric Qv on Ey,
©2(p; Q) = [IM(p)I, + Trgy, (Z(p))- (11.22)

Proof. For X € A, we have

Ov(X, X)=Qu(X-M+M,X - M+M) (11.23)
=Qv(X =M, X - M)+2Qv(M, X — M) + Qv(M, M) (11.24)
= Qla(X - M, X = M) + L(X = M) + [M(p)II3; (11.25)

where L is a linear form on T(A). By applying the proposition 6, we get
Ep(Qla(X =M, X — M) = Trg, (Z(p)). (11.26)
By the normalization of any probability law
Ep(IM(p)II) = IM(p);- (11.27)
And by definition of the mean
Ep(L(X = M)) = 0. (11.28)

The corollary follows by addition. m|

Remark 11.14. Between the moments ®(p; Q), for Q defined on Ey, and the moments
Dy(p; Qa, N), where Q|4 is defined on T(A), the link is

D2(p; Q) = D2(p; Qla, N) + 2E,(x = Q(x = N,N)) +E,(x = Q(N,N))  (11.29)
:®2(PIQ|A1N)+2Q(M(P)_N/N)+Q(N1N)/ (1130)

thus

D(p; Qla, N) = @2(p; Q) = 2Q(M(p), N) + Q(N, N). (11.31)

11.3 Gaussian modules

In this section, we characterize the information cohomology when the coefficients
are measurable functionals of gaussians laws.
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11.3.1 Module of moderate functionals

Definition 11.15. The presheaf of moderate functions .# : S — Sets maps V € Ob S

to the set .#y of measurable functions on &y that are of moderate growth (i.e.
bounded by a polynomial) in the mean variable M(p), cf. condition

Note that an element ® € .#y can be seen as a function ®(g, 1) satisfying the
equivariance relation

VC >0, ®(g/C,CA)=d(g,A). (11.32)

Let V C W be a pair of objects of S (interpreted as random variables with values
in Ey and Ew, respectively), and A an element of .#y; the map "V . Ey — Ew
induces an affine projection 7 from A onto B = 'YV (A), the fiber can be identified
with K = T(A) N W/V. Let us choose a Lebesgue measure A on A, a Lebesgue
measure ¢ on B and define the Lebesgue measure v on K by A = u.v, cf. Weil’s
formula (Proposition[F.9). Consider p € 2y, described by A of support A(p) and the
density g; for every y € B = n"VV(A), we define the conditioned measure plw-, by
its support, which is the affine subspace A, := {x € A| n"VV(x) = y } of A, and by its
density with respect to v, corresponding to v, which is defined as

g(p; Mla,

ey 11.33
gV p; )(y) (11:39)

g(plw=y;vy) =

If we replace A by C4A and u by Cppu, the measure v is replaced by (C4/Cg)v, the
density ¢(p; A) changes into g(p; CalA) = g(p; A)/Ca, and the density ¢(m!¥V p; u)(y)
into ¢(VV p; 1)(y)/Cp, hence the new conditional density is

g(plw=y;vy)/Ca
gV p;u)(y)/Ch
Therefore, the probability p|w-, itself is independent of the choices of the Lebesgue

measures on A and B.
Due to the growth condition, the following integral is well defined:

= g(plw=y; (Ca/Cp)vy). (11.34)

WNp) = [ @phi-)drt™ply). (11.35)

Proposition 11.16. Equation (11.35) turns the presheaf % into an o/-module.

Proof. Let p be an element of &y with support A = A(p), and W, W’ two elements of
S containing V' (we denote the corresponding random variables by the same letters).
By definition,

wwo)p) = [

/B, D((plw=y)lw=y) A’V plw=y (y) | AV p(y).  (11.36)

y

2Remark that every element of &y is associated to a support. This must be seen as the appropriate
generalizations of the pairs (A, p) considered in the simplicial case: in that context, there was a preferred
Lebesgue measure on each support.
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The law plw=y is supported on A, := {x € A|n"V(x) = y}, thus (plw=y)lw=y is
supported on Ay v := {x € A | nVV(x)=vy'} = AyNAy. SetU :=WnNWand
let r : Ew X Ew» — Ey be a section of the inclusion ¢ : E;j — Ew X Ew (such that
rot =idg,); aslongas A, , is nonempty, the value of 7(y, y’) is uniquely defined: it
is the only element in ("VY)~1(y) N (r"W'U)~1(y") such that

Ayy =AyNAy =@ ) n @V ) = ) Ny, ). (11.37)

We choose a measure A on A and p on B = n"VV(A), inducing through Weil’s
formula a measure v, on the fiber A, parallel to T(A) N W/V; we have A = u.v,.
Similarly, a choice of Lebesgue measure 1}, on the affine space By, = "'V (A,)induces
a measure 6,,,» on Ay ,» such that vy, = u,.0,,,. Finally, let us choose a Lebesgue
measure {1 on B = n4V(A), such that A = 1.6,/ = [1.0,(y,)-

By definition, the law (p|w=y)|w'=, has density

g(PlW:y} Vy)lAy/y,

g((plw=y)lwr=y; Oy,y) = - - (11.38)
P (Y plw=y; i)y
(o Mla,
Sp— £ e . (11.39)
(Y p; i) () g (Y plw=y; 1) (y")
In virtue of Proposition
: g(p; Mla,
(Y plw=y; ¥, )(y’)=/ g(plw=y; vy)d0y,, =/ ———d0,
S Ay YV A, @Y i (y)
(11.40)
which implies that
gV p; W ()g (Y plw=y; W) (y') = / g(p;A)doy,, (11.41)
AynAy
= g(n"V p; i)(r(y, ) (11.42)
again by Proposition

Recapitulating, we have that (p|w=y)|w'=y has density

8(p; Dluvyiry, g/ (Y p; D)y, y),

which means that it equals pli=r(y, -
Coming back to (11.36), we have

ww.o)p) = [

/B Dplumrty)S T p; By, ¥ ey ()| duly). (11.43)

Y

where we have derived the probability laws w.r.t. the reference measures and
simplified the densities as in (IT.42). By functoriality, B = 7"VY(B) and if we set
By = (="U)~Y(y), its projection under n"V'! is exactly B}, where we have chosen 1}
as measure. Using again Weil’s formula, there exists a measure ¥ on B, such that
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fi = Vy.u, and also a measure ¢ on {r(y, y’)} (i.e. a constant) such that v, = pj.¢.
Thus, we can rewrite the previous integral as

WW-0)p) = [ (plu-n)g (e ps @)y di() (11.44)
= [ plu-y it piw (11.45)
B
Finally, remark that ® = 1 is always invariant under the action, so ¢ = 1. O

The preceding result generalizes Proposition concerning the simplex.

11.3.2 Description of cochains and cocycles

Having this <7/-module .%#, we introduce the information cohomology H*(S, .%) :=
Ext*(R, F). Using the bar resolution B, of R, we obtain the following description of
cochains, cocycles and coboundaries, as explained in Chapter 2|

The zero cochains are elements ¢y of .7y for V describing <7, that are natural,
ie.

Voe 2y ow(mV p)=ov(p), (11.46)

which implies they are constant in virtue of the final element V = E. They are also
cocycles, i.e. invariant of the action of .27.

Since B1(V) is generated by { [W]|V c W }, the 1-cochains ¢ € Hom(B, .%) are
characterized by elements {@y[W]}ycw of #v such that

Vpe Py, YW 2V 2V, euWIrp)=ov[W](p). (11.47)
In particular, if V C W, for any p € &y,

evIWI(p) = pw[WI(r*" p). (11.48)

then the elements @y [V] =: @y determine all the other elements.
The equations for the degree one cocycles are

VV € ObS,YW 2 V,W 2V, @y[WNW]=Weu[W]+ey[W].  (11.49)

From the equations of naturality (11.47), this is equivalent to the smaller set of
equations:

VW W ed WNW =V e, Vpe Py,
ev[V1(p) = Wov[W1(p) + pw[WI(m'V p). (11.50)

11.3.3 Dirac distributions and parallelism

The following results are crucial in all the cohomological computations.

Lemma 11.17. Let @ be a 1-cocycle, then for every V € Ob S and every point a € Ey, we
have
Dy (6,) = 0. (11.51)
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Figure 11.2: Translation of affine supports in Proposition(11.18| Each quotient E/U has been
identified with the corresponding orthogonal complement U-~.

Proof. Write the cocycle equation for W = W’ = V and the law p = 6, on Ey, in order
to get
D(64) = D(04) + D(54). (11.52)

O

Proposition 11.18. Let @ be a 1-cocycle. If for every V € ObS and A € .4y, there exists
W € ObSsuchthat V.Cc Wand T(A)NW/V =0, then

Dy (pa) = Pv((Tw)pa) = Pw(nlV pa) (11.53)

for any law p 4 with support A, where T, denotes the translation by a vector w € W[V, i.e.
Tw(x) =x +w.

In particular, if for any A’ parallel to A (i.e. T(A) = T(A’)) there exists a space
W and a vector w € W/V such that A’ = A + w, the restrictions of ® to the sets of
probability that have supports in A and A” are identified through (T)..

Proof. Apply the cocycle equation with W’ = V. We evaluate it on a probabil-
ity law p4 supported on A and on (T, ).pa supported on A+ w C Ew. Both supports
are projected by 7 := 7"V to the same affine subspace B of Ey. Let M,, be the unique
point of A such that 7(M,) = y for y € B. The situation is depicted in Figure
The 1-cocycle condition becomes

CDV(PA) = Emp (y = (DV((SMy)) + (Dw(T(*pA) = (Dw(T(*pA). (11.54)

and similarly @y ((Ty).pa) = Pw(m(Tw).pa) = Pw(m.pa), because both laws just
differ by a translation of the mean that vanishes on Ey.
O

If the category C is orthogonally closed for a metric Q and if the cosheaf of
supports is minimal, the hypothesis in the previous proposition is always satisfied
(there is a space W’ such that T(A) is W’//V and its orthogonal complement gives the
required W). This happened in the simplicial case.

If S is the full grassmannian structure, Proposition[I1.18limmediately implies that
cocycles are independent of the mean, since there is no preferred way to translate A
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into T(A). On the contrary, in the simplicial case there is a canonical way to identify
the mean of p and its translated version.

If the condition in Proposition[11.18]is not verified, we could directly impose this
invariance by translation of the cochains to develop a cohomology theory that is not
less interesting.

11.3.4 Axial cocycles over S,

In this section, we consider the information structure (S, &) introduced in Example
and depicted in Figure This structure has been embedded in R? with
the usual Euclidean metric. Let (e1, e3) and (ep, e4) denote orthonormal bases with
coordinate axes (E1, E3) and (Ey, Ey), respectively. The change of coordinates between
(x1, x3) and (x2, x4) is given by

X1+ X3 X X3 — X1 X Xp — X4 X Xp + Xy
V2 V2 V2 V2

For the dual coordinates {&;}i=1,.. 4, the formulas are the same, by unitarity. Then
the covariance matrices change accordingly as

X = (11.55)

_ 011 033 _ 011 033 _ 033 —011
0p=—7— 1013, Og@4=—F7— —013, 024= T'

. . (11.56)

Let ® = {¢v € Fy}yeops, be the data characterizing a 1-cochain; each ¢y is
a function from Py = Py (Ay) to R, that can be restricted to the nondegenerate
laws supported on Ey to get qb;g (which is analogous to ¢° is the previous chapter).
We further simplify the notation writing ¢ := ¢y and ¢; := ¢y;; the function ¢
vanishes since the associated space E is a singleton (cf. Lemma (11.17).

We suppose that © defines a 1-cocycle that is axial (see Section with respect to
(E1, E3), which means that ¢ gy = @1 + @3, with @1, @3 generalized moments defined
on Rx]0, co[. We shall see that ¢1 and ¢3 must be the constants and coincide. To do
so, write the cocycle relation ¢ = Vy.¢2 + ¢y, in the case of a Gaussian distribution
with mean M = (my, m3) along Eq, E3 and a covariance matrix X that has principal
axis Ej, E4 with respective coefficients 72, 74:

P(p(M, X)) = /¢2(M2(X4)/22)G4(x4) dxg + Pa(Ga(my, 14)). (11.57)

Due to the choice of &, we have M, = m, and ¥, = 15, therefore
O(M, L) = ¢pa(mz, T2) + Pa(ma, T4). (11.58)

Substituting my = (m3 — m1)/\/§, my = (mq + m3)/\/§, 011 = (12 + 14)/2 and 033 =
(T2 + 74)/2, we obtain

p1(m1, (12 + 14)/2) + @3(m3, (T2 + 74)/2)
= ¢al(m1 + m3) /N2, 12) + pa((ms — m1)/ V2, 4). (11.59)
Lemma 11.19. Let f, g, h be three differentiable functions of a real variable s €]0, oo

satisfying Vs, t > 0, f(s)+ g(t) = h(s + t), then f, g and h are affine functions of the
same slope.
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Proof. When differentiating with respect to s or ¢, we find

f(s)=h(s+1t)=g'(t); (11.60)

therefore, there exists a constant D such that f* = ¢’ = h’ = D, and three constants
A,B,C such that f(s) =Ds + A, g(s) = Ds + B, h(s) = Ds + C. O

Lemma 11.20. The only possible nonzero axial cocycles of (Sz, &) are linear combinations of
constants, of the mean coordinates and of the moment of order two; more precisely, there exist
constants A1, As, B1, B3, and D such that ¢;(m, o) = D(mf +0ii))+ Aim; + B;, fori =1
and 3. The conclusion of the lemma holds also true for q[)g § and ¢Zg , with the same constant
D.

Proof. Let us fix arbitrarily m; and m3, and consider (11.59) as a functional equation
of four functions in 7, 4. From the preceding lemma, we deduce the existence of
four functions C(mq, m3), B(m1, m3), Bo(m1, m3), and Bs(m1, m3) such that

(pl(ml, G) + (p3(m3, O) = ZD(ﬂ’ll, ﬂ’l3)6 + B(ml, m3), (11.61)
¢p8 ((m1 +m3)/NV2, ) = D(my, ms)t + Ba(m1, m3), (11.62)
¢y ((m3 — m1)/V2, 7) = D(m1, m3)t + Ba(m, m3), (11.63)

which in turn implies that

Iy ((my +m3)/V2, 1) _ _ 9,5 ((my — m3)/V2, 1)

3 my, ms) 30

(11.64)

Therefore D is at the same time a function of m1 + m3 and a function of m; — mj3, thus
itis a constant D. Consequently, (11.61) becomes

dp1(my, 0) N dps(ms, o)
do do B

2D. (11.65)

Differentiating with respect to m1 (resp. m3) we obtain the existence of two constants
D1, D3 such that

dp1(my,0)

do B

hence D1+ D3 = 2D by|(11.65 The generalized moment functions ¢1, ¢3 are solutions
of the heat equation (Section|10.3.4), so we also know that

Di, ———5——=Ds, (11.66)

1p10m,0) o 19¢3(m,0) _

R -————— =Ds. 11.67
2 Im? Y2 om? > (11.67)

Therefore ¢1 and @3 are both moments of order two. This gives
pi1(m, o) = Di(m?* + ¢) + Aym + By, (11.68)

@3(m, 0) = D3(m? + o) + Azm + Bs. (11.69)
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Using equation (11.59), we deduce that, for every my, my in R and 72, 74 in R%,

2
My + My (’C1+T2) (1’}12+ﬂ14)
— + + A |——— |+ B
( V2 ) 2 V2

¢y % (m2, 12) + ¢, (ma, 14) = Dy

2
My — My T1 + T2 My — My
+ D3 ( ) +( ) +A3(—)+B3
V2 2 V2
Di+D
= 12 3(m§+mi+’cz+14)+(D1—D3)m2m4

+ (Al al A3) o + (Al _ A3) ms+By+Bs.  (11.70)
V2 V2

in such a way that 3,,12(1);3’ (m3, 1) contains a term (D — D3)my4 that must vanish,
implying that D; = D3 = D. Equation (11.70) also entails the existence of constants
As, A4, By, B4 such that

¢, 5 (ma, 1) = D(m3 + 1)+ Apgmz + By, pa(ma, 1) = D(mj + 1) + Agmy + By. (11.71)
In particular all the moments of degree two have the same coefficient. O

Consequently, for any nondegenerate gaussian law p on E, with mean M of
coordinates (111, m3) and covariance L of coefficients {0/;}; je(1,3) in the basis (e1, e3),
or (my, my) and {aij}l-,]-e{m} in the basis (e3, e4),

(;Dng(p) = D(m% + m% + 011 + 033) +A1m1 +A3ﬂ13 + Bl + Bg

= D(m% + T}’li + 022 + (744) + Aomy + Agmy + By + By. (11.72)

Then
OZ(M) =Aimq + Asmsz = Aomo + Agmy, (11.73)
defines a linear form, and we have
$"S(p) = DWo(M, T) + a(M) + B, (11.74)
with
W,o(M, L) = ||[M|?> + Tr(X) (11.75)
and
ﬁ = Bl + Bg = Bz + B4. (11.76)

Lemma says that each function ¢ or ¢; vanishes on laws supported on
points. Hence it only remains to characterize ¢"3 for degenerate laws supported
on lines contained in E, which is related to their projection on lines that intersect
transversely their support, as stated in Proposition[11.18] The compatibility between
these values is only possible if D and « vanish.

Proposition 11.21. The only nonzero axial cocycles over (Sy, &) correspond to collections of
functions (¢, G1, G2, 3, Pa) from the possibly degenerate gaussian laws on the corresponding
spaces E, E1, E, E3, E4 into R, given by

¢i(p) = Bdim(A), (11.77)

where B is any real constant, and A, is the support of p.
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Proof. A degenerate gaussian supported by the axis E4 is the measure

1 (xg=my)?

e Zm duxg. (11.78)

dp(x2,x4) = 6(x2 =0)®

27‘(044
with 044 > 0. Since both V3 and Vj are transversal to E4 = A(p) (cf. Figure [11.1),
Proposition|11.18|implies that
o(p) = p3(m " p) = (¥ ). (11.79)

First, we compute the term ¢3( /30 p). The map 7173 is the orthogonal projec-
tiorIE — E3 =~ E/V3. We have
3(0) 1 _gomg?

p(x)—\/m_ae 2033 dx3. (11.80)
33

where 3 = m4/V2 under the change of coordinates (TT.55), and 033 is given by
(11.56). We have

033 =011, 044 =2011, 013 = —011. (11.81)

Since we are supposing that the cocycle is axial, (1)'31 § = @3 as determined in the
previous proposition:

d3(r*P p) = D(m? + 033) + Azms + Bs. (11.82)

In turn, the law ny 4<0>p is the gaussian supported on E; with mean my4 and
variance o4 > 0. Proposition|11.20|gives the formula for qbzg , SO

( ) = D(mz + 044) + A4Wl4 + By = ZD(ﬂ’lz + (733) + A4m4 + By, (11.83)
P 4 3

where we use m4 = m3V2.

The second equality in (11.79) reads

2D(m? + 033) + AgmaV2 + By = D(m? + 633) + Azmis + Bs, (11.84)
that is
D(m} + 033) = (A3 — V2A4)ms + B3 — By, (11.85)

which is possible if and only if D = 0, \/§A4 = Az and B4 = Bs.

However, we have by coordinate changes, V2A4 = A3 — Ay, then A1 = 0. In the
same manner, turning the axis we have A3 = 0, and B, = B1. Consequently @ = 0.
And by symmetry with respect to E4, exchanging E1 and E3, we find By = B3 = B, =
B4 = B.

This shows that for every gaussian with linear support parallel to one of the lines
E;, the value of the cocycle is B, from it is 2B for a nondegenerate law with
support E, and 0 for the laws supported by a point. |

In the proposition above the fact that the angles between E1 and E; (resp. between
Ez and Ey) is /4 has no importance, it is only for simplifying the formulas, any other
angle strictly between 0 and 7t/2 works as well.

3The isomorphism between E3, a subspace of E, and the quotient E/V3 is not canonical; it comes,
however, as part of the definition of & (embedded in R?) and the advantage is that we can use the
formulae for gaussians on affine subspaces as presented in Appendix[D]‘
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11.3.5 Entropy

Definition 11.22. If p € &y has its support equal to A C Ey of dimension d, and if
A is chosen in £y = Z7(4), the entropy is defined by

d
Sv(g, 1) =E, (—mﬁ) . (11.86)

Introducing the mean and the covariance, this gives

2 -d/2 B
_ @) 1)Z'l(x - M, x— M)e'%Z H(x=Mx-M) dA(x)

Sv(g,A) = m 2

+ élndetA X+ ganTC. (11.87)

Changing the variable by x — M = VZy shows that the first term to the right is equal
to d/2, thus

1
Sv(g,A) = 5 Indet) X + %111(2716). (11.88)

Definition 11.23. For p € #y, let us denote by d(p) the dimension dim(A(p)) of its
support.

Proposition 11.24. d is a 1-cocycle for the cohomology with coefficients in 7.

Proof. This is a consequence of the rank theorem: for V,W € ObS, W 2> V, we
consider the restriction of the projection m = "V to A(p), it induces a surjective
linear map from T(A) to the tangent of the support B of 7.p, and the kernel of this
map is precisely the tangent space of the support of any one of the conditioned
probabilities p|y(y)=,. The theorem says that

d(p) = En.p(d(plr(x)=y)) + d(1.p). (11.89)
O

By subtracting the multiple 4 In(2me) from S we get the normalized entropy S,
which is a function of det) X, only. A change from A to A’ = CA induces the addition
of log C to Sy(p, A), because detys £ = C2 det, L, as we saw in Section So S is
not a cochain for the coefficients .% introduced in Section[11.3.1} which motivates the
following definition.

Definition 11.25. Let (S, &) be a grassmannian information structure on the vector
space E. Recall that an euclidean metric Q induces an identification of each quotient
E/V with V+, for each V € ObS. Every affine subspace A C E/V embeds into
E and inherits from Q a Lebesgue measure Ao(A), see Section The twisted
functional space 2" is the vector space of real-valued functions ¢ of a probability
measure p on Ey and metric trivialization Ag of %y that verify

Vp € Zv,VQ, Q" euclidean metrics on E,
¢(p, o) = o(p, Ag) + In D(T(4,);Q, Q). (11.90)
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where D(B;Q, Q’) is an R, -valued function, called generalized discriminant, that is
required to satisfy D(B; Q, Q")D(B; Q’, Q”) = D(B; Q, Q") for any triplet of euclidean
metrics Q, Q’, Q” and any vector space B C Ey.

For every morphism ( : V.— W in §, there is a an induced map (" : Zw — Zv
that maps ¢w € Zw to v = ("(¢w) given by

Pv(p, Ag) = dpw(m.p, Ag). (11.91)

We can see that the sheaf .# of moderate probabilistic functionals is included in
%', corresponding to D = 1. The typical generalized discriminant D(A; Q, Q) that
we have in mind is a product of the discriminants A(B; Q, Q’) introduced in Section
or their inverses, where B can range over certain projections of A that are
independent of p, as is the case in formula (11.97).

Remark 11.26 (Sections of principal bundles). The previous definition is also moti-
vated by the following considerations.

For every V € Ob S we have defined the bundle .# of Lebesgue measures on
the supports in .#y, and verified that it is a principal bundle for the multiplicative
group R, over each stratum of the total Grassmannian. For each A € .4y, the fiber is the
positive cone A (T(A)) € A™*(T(A)).

Given a G-principal bundle P, and a left G action 7 : G X F — F on a manifold F,
there is G-bundle with fiber F defined as P X, F := P x F/~, where the relation ~ is
given by

V(p, f)ePXEVgeG, (p,f)~(p.g, (g ™). (11.92)

Let 7, be the action of R} on R given by R} XR — R, (¢, r) = alogc +r. The general
theory of principal bundles (cf. [80, p. 39]) tells that sections of the bundle .#y X,, R
are identified canonically with maps ¢ from the total space .# to R such that

V(B,A) € %,¥C >0, ¢(B,CA)=¢(B,A)—alnC. (11.93)

A section of .2y X, R defines, by precomposition with the function A : 2y — .#y
that associates to each probability p its support A(p), a function ¢ on Py that is
equivariant in the sense of (11.93). Under this point of view, S is associated to 7_1.

Lemma 11.27. The formula (11.35) defines a structure of o/-module on the sheaf of vector
spaces X .

Proof. Lett:V — W be an arrow in S, and ¢ an element of 2. We prove that W.¢
also belongs to 2y . In fact,

(Wo)p, Aoy = /

At

)¢(P|W:w, Ag)di.p(w)
P

= [, @phi=u A) =M D(T(A(pln-u):Q, @) dep(e
t(p
= (W.0)(p, Ag) ~InD(T(A)NW/V;Q, Q).
The proof of W’.(W.¢) = (W'W).¢ given for Propositionremains valid. O

Proposition 11.28. The normalized entropy S is 1-cocycle when the coefficients are 2.
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Proof. This can be proved in a more general setting, using properties of disintegra-
tions, see Proposition However, a direct proof shows an interesting connection
with pure algebra and the beginnings of K-theory.

We have already seen that det) L gives a section of 2: when a metric Q is
changed into Q’, the measure Ao(A) is multiplied by the discriminant A(A; Q, Q') =
A(T(A); Q, Q"); the covariance L remains the same, but its determinant changes by a
factor of A(A;Q, Q')

Only the cocycle equation has to be verified, for a given choice of Q that induces
an embedding Jo. For that we use the formulas in Appendix @ computing the
covariance of the direct image and the conditioned probability of a gaussian law. We
work in the space T(A) and the restriction of the projection 7= = 7"V (that under Jo
becomes the projection on a subspace of T(A)): if

Y11 X
X(p) = 11.94
(o) (221 Zzz) ( )
then
I(m.p) = L1, (11.95)
and for every y € T(B),
Z(plr(x)=y) = T2 — Zo1X71 L1z, (11.96)

which is the Schur’s complement of X1; in X(p). In virtue of Schur’s determinantal
identity (Proposition|C.1),

det(Z(p)) = det(Zos — T1 X L12) det(Tq1) (11.97)
= det(Z(Pln(x):y))Z(n*p)r (11.98)

thus taking the logarithm,
Indet(X(p)) = Indet(Z(p|r(x)=y)) + In Z(7t.p), (11.99)

then integrating over y with m.p, and dividing by 2, we get

S(p) = En.p (§(p|n<x):y)) +S(m.p). (11.100)
which is the wanted identity. O

Definition 11.29. We say that a Grassmannian triple (S, &, /"), made of a grassman-
nian structure (S, &) and a functor ./ of supports, is sufficiently rich if it satisfies the
following conditions:
1. for every V € Ob S and every A € .4y, there exists a basis By 4 = (e1, ..., ;) of
Evy such that
e for some S’ C [n] it holds that T(A) = Es/, and
e for every S C [n], there exists Ws € ObS such that V ¢ Ws and Es =
Ws/V,
where ES = <€i>ies-
2. The sheaf .#" is adapted, and each .4}, contains Ey.
3. Forevery V € Ob S of codimension 2 (in E) is contained in (at least) four spaces
W4, ..., Ws € Ob S of codimension 1.
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An immediate consequence of the axiom [2|is that .44, also contains all the affine
spaces parallel to one of the Ws/V given by axiom [, because they are fibers of the
projection Ey — Ew.

The axiom [3| mean that we can recover a situation analogous to (S, &): Ey is a
plane, each W;/V gives a different line; we identify Ew, = E/W; with W3/V, Ey,
with W4/ V, etc. and "1V with the projection on Ey, parallel to W;.

Taking into account all the results from this chapter and the preceding one, we
get the following result.

Theorem 11.30. Let (S, &, .A") be a sufficiently rich grassmannian triple. The degree one
information cohomology with coefficients in the twisted module % is made of functions

$v(p) = —aS(p) + b dim(A(p)), (11.101)
where a and b are arbitrary real constants.

Proof. Let p be a gaussian law with support A C Ey, and By 4 be the basis given by
axiom [1] in Def. We suppose that T(A) = Eg; we clearly have E = Es @ Esc,
so there is a unique w € Egsc such that A + w = Es. This translation by w gives
a well-defined bijection between the parameters of gaussian laws on A and Es.
Using Proposition we have ¢v(p) = Ppw, (1$ p), where 7t{ is projection on the
subspace Es ~ E/Wsc = Ew,, parallel to Egc; the law 7¥p is nondegenerate. The
determination of {qbs = Pwq }sc[n] restricted to nondegenerate laws was the subject
of Chapter 10} it established that, for all T c [n],

qu(p) = ¢)T(m, Y) =alndet(X) + Z p(m;, aii|gi), (11.102)
ieT

where p is a nondegenerate law on Er with parameters (m,X) expressed in the
basis {e;}ies C By, the factor a is an arbitrary real, and the ¢(g’) are generalized
moments. In particular, this gives the value of ¢, ({ p). In the previous expression,
the determinant is taken with respect to the standard euclidean metric associated to
the basis By 4 (the quadratic form defined by the identity matrix in that basis).

We claim that each ¢(g') is a constant. In fact, suppose S = {i, j} C [n] and ¥° is
an axial cocycle (the axial part of ¢°) i.e. Eg is a plane and ¢° = @; + ¢;. Since there
is an alternative basis to decompose 1w, given by the axiom 3|in Def. we can
reproduce the arguments in Section to establish that ¢; = ¢; = B for certain
B eR. O

11.3.6 Moments
In this section, we show that the moments appear in the theory as natural transfor-
mations invariant under the action of 7.

Covariant module of expectation

Let (S, &) be a grassmannian category on a finite dimensional vector space E over R;
/" a compatible family of supports, and &7 an associated probability functor.

Given a finite dimensional real vector space F, let us denote by .7#(")(F) the space
of locally integrable functions of moderate growth on F. It is usual to put on #")(F)
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the structure of locally convex space, that is defined by the following semi-norms,
associated to any norm x ~ |[[x|[on F,

Vx e FkeN, N i(f)=supllyl*f(y-x) (11.103)
yeF

With these semi-norms, 57 (’”)(F ) is complete, then a Fréchet space, and its dual, the
space of continuous linear forms on .77’ (m)(F), is also a Fréchet space. In what follows,
we denote by J#(F) this dual space.

For each V € ObS, let us consider the vector space jf‘;m) of locally integrable
functions of moderate growth on the vector spaces Ey, and also its dual space
Ay = H(Ey). f V.— W in S, writing 7 the projection 7"V : Ey, — E, we get
a linear continuous map 7* from %”Vi/m) to %ﬁém), thus a linear continuous map 7.
from J#; to Ay. This define a covariant functor 7# from S to the category of Fréchet
vector spaces.

For V € Ob S, denote by 9‘(/"1) the set of measurable maps from &y to 7. For
V,WeS W2OV,Wy e 9"(/'”) and p € Py, the formula

(WW)(p)(f) = /E W(pl—y) drp(y), (11.104)

defines another element of ﬁém). This is an integral of continuous linear forms on

a Fréchet space, that should be interpreted in the sense of Gelfand-Pettis. From
the general properties of disintegrations, we expect again the equality W'.(W.W) =

(WW).W to hold, for any W, W’ € <y, in such a way that 9"(/"1) has the structure of a
<fy-module, that we name the expectation module.

Generalized moderate moment cocycle

For f € ,%”‘;m), and p € Py, let us define

o (p)(f) = /E F(0) dp(x). (11.105)

These integrals are always convergent, because the laws p are gaussians.

Proposition 11.31. The collection of maps p +— (Dg”)(p), for Ve ObS, defines a natural
transformation from & to .

Proof. LetV CW,pe Py, f € %vifm)

(def)

2@ (P)(f) L B (p)(r* f) / Fr(x) dp(x) = / F(y)dmp(y). (11.106)
Ey Ew

Therefore
@0 (p) = o (1.p). (11.107)
O

Proposition 11.32. The component @5;") € 9‘(/"1) is invariant under the action of <y .
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Proof. Let f € jf‘ﬁm): it can also be seen as an element of 77];. By definition of the
action,

(W) (p)(f) = /E o\ (plw=w)(f) d"V p(w). (11.108)

According to the definition of q)(‘;ﬂ), we deduce that

WOV (p)(f) = /E ( /E f(x)dplw:w) drl"V p(w). (11.109)

But the definition of disintegration entails that the integral in (11.109) equals

| fdp() = o (p)(f).
O

The underlying general property of conditional expectation is that for any vecto-
rial random variable and any o-algebra .7,

E(E(X|.7)) = E(X). (11.110)

Remark 11.33. The natural transformation @™ is an element of F =
Homyg meas| (¥, ); this set has the structure of an abelian group with component-
wise addition: if ¢, € F then p € Py — ¢oy(p) + Yv(p) € 4 is an element of F
too. However, there is no natural ring of variables that acts on this abelian group to
turn it into a module.

Ordinary moments

For each integer n € N, consider the symmetric powers S"(Ey), for V € ObS; they
form a covariant functor &, from S to the category of vector spaces. Foreach V € 7,
the space S"(E},) is a subspace of H () and its dual S"(Ev) is a quotient of J#.

Every p € 2y defines by integration a linear function on the space of homo-
geneous polynomials 5" (E},), then an element of S"(Ey), that we name the generic
moment of order n of p, and write ®,(p). The linear form @Y (p) is the restric-
tion to S"(Ej,) of the linear form CDi,m)(p) on Hy, ), Varying V, this gives a natural
transformation from & to &;.

Proposition 11.34. This function @Y, is invariant under the action of <y

Proof. It is an immediate corollary of the Proposition|11.32 |

For n = 0, S°%(Ev) = R, and the integration of a constant C is equal to C.

Forn =1, SYEy) is equal to Ey, and the moment is the mean p — My(p). The
mean vector {My }yeobs gives a natural transformation from the covariant functor
Z to the covariant functor & : V +— Ey. The naturality is equivalent to the equations
of direct images: Mw(m.p) = n(My(p)).
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11.4 Grassmannian probability modules

More generally, given a grassmannian category of E, we can consider collections 2y,
for V € Ob S of probability laws that are absolutely continuous with respect to one
of the Lebesgue measure in .7y, corresponding to an affine subspace A(p) in .#y
(or more generally .4}, C .#y), and we can ask that these collections are stable by
push-forward "V . 2y — 2w when V C V, and also by conditioning p|w=y, i.e.
by the elements of disintegration.

We can introduce the presheaf .#(2), of universally integrable functions, that
maps V € ObS to the set .#(2)y of measurable functions on 2y such that all
the integrals considered for defining the action of </ are convergent. The general
arguments of the main text show that the axioms of «/-module are satisfied.

All that also works with the bundles In.#?, and the following general result
holds:

Proposition 11.35. If for every V € Ob S, every p € Dy, and any A € Ly, the function
In ga(p) is p integrable, then the multiple a$S of the entropy is a cocycle of % .
Proof. Working in T(A), with the restriction of the projection 7 = "V, we choose
Lebesgue measures adapted to the image dy and the kernel dx (cf. Proposition[F.9).
Let g(x, y) be the joined density of (X, Y) with respect to dx dy; we have

8(y) = /g(x, y)dx. (11.111)
Then

[ [ st paray

_ six,y) . glx,y)
‘/ ( s ™)

dx) g(y)dy + / g(y)Ing(y)dx. (11.112)

O

In the same manner as for the gaussian laws, the dimension of the support d(A(p))
isa cocycle of .7 (£2), then we can add any multiple c.d(A) to the entropy S, and obtain
a class of cohomology of degree one of 2" ~*.

In many cases it is also possible to define the mean and the moments, as natural
and invariant transformations.
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Chapter 12

Generalized entropy and
asymptotic concentration of
measure

We state the asymptotic equipartition property for a sequence of independent and
identically distributed random variables in a very general form. This complements
the results in the other chapters showing that, for any o-finite measure p and any
probability law p that is absolutely continuous with respect to , there is notion of
entropy:

d
Su(p) = —/m(%) dp, (12.1)

that is relevant from a probabilistic viewpoint. As n — oo, the iterated law p®”"
concentrates on a typical set, whose p-volume is approximately exp(nS,(p)).

12.1 Asymptotic equipartition property

Let (Ex, B) be a measurable space, supposed to be the range of some random variable
X, and let u be a o-finite measure u on it. In applications, several examples appear:
1. Ex a countable set, B the corresponding atomic c-algebra, and u the counting
measure;
2. Ex thereal line, B the Borel o-algebra, and u the Lebesgue measure;
3. as a generalization of the previous one, Ex a locally compact, Hausdorff topo-
logical group, B its Borel o-algebra, and p some Haar measure.
The reference measure u gives the relevant notion of volume.

Consider now a probability measure p on B, that is taken to be the law of X. By the
Lebesgue decomposition theorem, there exists a unigue decomposition p = p1 + po,
such that p1 is absolutely continuous with respect to u (write p1 < ), and p2 and p
are mutually singular (write po L u). |!| When p> = 0, we say that X is nonsingular;
in this case, the law p has a density f with respect to the reference measure y, that is
defined as the Radon-Nikodym derivative, f = dp/du.

1Concretely, the decomposition is defined as follows: introduce the Radon-Nikodym derivative
f=dp/d(u+p) andset B={x € X|f(x) >1}. Up toa set of (i + p)-measure zero, this do not
depend on the representative of the derivative. Then, p2(A) := p(A N B), and p1(A) := p(A N B°).
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Let {X;}ien be a sequence of independent and identically distributed (iid) Ex-
valued random variables, each one distributed according to a probability law p on
(Ex, B) that is supposed to be non-singular with respect to the reference measure
u, with density f := dp/ dy For each n € N, the joint variable (Xi, ..., X;,) takes
values in (EY, BE" 1€"); by definition of independence, its law is p®” Proposition
shows that u®" is also o-finite. Since p®" < u®", we can apply the Radon-

.....

application of Fubini’s theorem shows that

dp®" . .
d ”z/ dp®" 12.3
~/Bl><---><Bn dP‘@n H B1X--XBy, P ( )
= ]_[ / dp (12.4)
1<i<n ¥ Pi
dp
- / / [1226)dutxn) - dutx),  (125)
B n dtu
which implies that p®” has density
a1, ) = | | £, (12.6)
i=1

Proposition 12.1. Let (Ex, B, u) be a o-finite measure space and {X; : (QQ, &, P) —
(Ex, B, u)}iew a collection of iid random variables, each following a law p with density
f = dp/du with respect to . If the Lebesgue integral

N A
Sulp) = Ep( In dy) = /Supp#f(x)logf(x)dy(x) (12.7)

is finite, then

- %logfxl ,,,,, X, (X1, .0, Xi) = Spu(p), (12.8)
P-almost surely.
Proof. Remark first that

p®"({fxi,..x, = 0}) = / 0du =0,

{fxq,..x, =0}

2In usual presentations of probability theory, first an auxiliary sample space (Q, §, P) is introduced,
then each X; is defined as a measurable function X; : (2, ¥) — (Ex, B), and the law p corresponds to
Po X 1.
1
3Denote by p;, the joint law. Independence implies that, for any collection {By, ..., By} C B,

pu(Byx -+ x By) = [ | p(Bi) = p®"(By x -+ X By). (12.2)
i=1

For the the collection of all rectangles By X --- X B, constitute a m-system for the o-algebra BO we
conclude that p, = p®" on B. See Lemma 1.6 in [96]: “if two probability measures agree on a 7-system,
then they agree on the ¢g-algebra generated by that rt-system.”
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hencelog fx,,.. x,(X1, ..., Xu)is well defined P-a.e. Moreover, log fx,,... x,(X1, ..., Xu) =
Y.y log f(X;), because of (12.6). The variables {—log f(X;)} are iid and real valued,
so the strong law of large numbers [96, Sec. 14.5] states that

_% > log £(Xi) = B, (~log f(X1)),
i=1

P-almost surely. m|

Remark 12.2. The strong law for an iid sequence Y1, Y2, Y3... requires that, for all
k, E(]Yx]) < oo (i.e. the function Y is Lebesgue integrable). In this case, E (Yy) =
E (|log f(Xo)|), and this must be finite in order for S, (p) to be finite.

Proposition 12.3 (Asymptotic Equipartition Property). We use the notation introduced
in Proposition and we suppose that S, (p) is finite. For every 6 > 0, set

Agn) = {(x1, veey Xn) S E;{l

<5 } . (129)

Then,
1. for every & > 0, there exists ng € N such that, for all n > ny,

P(a)) > 1-¢
2. foreveryn €N,
u®"(AL) < exp{n(Su(p) +0)};
3. for every & > 0, there exists nyg € N such that, for all n > ny,

B (AY) 2 (1 - &) exp{n(Su(p) - 6)}.

Proof. Part (1)) is just a consequence of Proposition(12.1} since almost sure convergence
implies convergence in probability.

For the rest, note first that, for every (x1, ..., x,) € A(”),

e_”(SH(P)+5) S f(xll ey xn) S e_”(S,U(P)_é)_

Therefore,

> en - —n(S,(p)+0) ®n
1_/A§1)fx1 ,,,,, x, du _/Ag”)e u du®",

which implies statement (2).
For part (3): take ¢ > 0 and remark that that, if n is big enough,

A
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When Ex is a countable set (possibly infinite), and p the counting measure, a
probability law p on Ex is always absolutely continuous with respect to u, and its
density is a function p : Ex — [0, 1] such that }\,cp, p(x) = 1, that is usually taken
as the definition of a probability law in the discrete case. Then S,(p) corresponds to
the familiar expression — > ¢, p(x)log p(x), that we have denoted S;. This function
was studied by Shannon in [78] for the case |Ex| < oo, where he also stated a
version of the asymptotic equipartition property. The idea behind this theorem
apparently goes back to Boltzmann [79]. It is also possible to consider any multiple
of the of the counting measure, v = ayu, for @« > 0. In this case, the condition
[Ex % dv = [Ex dp = 1 translates into a Y’ ,cg, 3—5 =1, i.e. a probability density that

is normalized to sum a~!.

If Ex = R", u is the corresponding Lebesgue measure, and p a probability law
such that p < y, then the derivative dp/ du € L'(R") corresponds to the elementary
notion of density, and the quantity S,(p) is the continuous entropy that was also
introduced by Shannon in [78] in order to study continuous signals.

For any Ey, if u is a probability law, the expression S,(p) is (the opposite of) the
Kullback-Leibler divergence.

12.2 Certainty and divergence

Proposition makes precise the relation between the entropy S, (p) and certainty.
1. Discrete case: let Ex be a countable setand i be the counting measure. Consider
an Ex-valued variable X with law p = 6,,, for certain xo € Ex. Then, S;(p) = 0

and Agn) = {(xo, ..., x0)}, whose volume is evidently 1, for every n. Therefore,

[u‘g’”(Agn)) = exp(nSy(p)), and the inequalities in Proposition [12.3|are satisfied.

2. Suppose each X; distributes uniformly on B(xo, ¢) C R?, which means that its
density dp/dA is |B(xo, €)| 7 XB(x,,e) (the notation |A| stands for )\?”(A), the
Lebesgue measure). In this case, H),(p) = log(|B(xo, €)|) = log(c4 %), where ¢y
is a constant characteristic of each dimension d, and Hy,(p) — —c0as ¢ — 0
(i.e. as X; concentrates on a single output x¢). Part (2) in Proposition says
that

|Ag”)| < exp(ndloge + Cn), (12.10)

which means that, for fixed 7, the volume goes to zero as ¢ — 0, as intuition
would suggest. Therefore, the divergent entropy is necessary to obtain the good
volume estimates.
3. When each X; takes values in R?, according to a Gaussian law p with mean
;], with v € [0,1]. Whenever r # 1, the
law p is absolutely continuous with respect to the Lebesgue measure A,, and
Hj,(p) = %ln(det(ZneZ)) = In(27) + In(1 — r2). For every n € N,

. , 1
0 and covariance matrix X = [r

|AES")| <exp(nIn(l1-r>)+Cn) -0 asr— 1. (12.11)

The case r = 1 corresponds to a singular p with respect to the Lebesgue
measure on R?: the probability is concentrated on the diagonal A = col(X),
whose Hausdorff dimension equals 1. The relevant reference volume is then a
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Lebesgue measure supported on this affine subspace, that can also be seen as
the corresponding Hausdorff measure.

12.3 Example: Rectifiable subspaces of R"

In [51], Riegler, Hlawatsch, Koliander, and Pichler introduced another family of
examples for the AEP as stated in the previous section. The important technical
point is that the Hausdorff measure associated to a rectifiable set, or a countable
union of such sets, is a o-finite measure.

Set Ex = RY, and denote by A, the corresponding Lebesgue measure. The
diameter of a subset S of R?, is diam(S) = sup{ |x — y||x,y € S }. For any m > 0 and
any A C R", define

H™(A) = lim inf Z A

| (12.12)
0—=0{S;}ies =

diam(S;)\"
[5=)
where a,, is a constant and the infimum taken over all countable coverings {S;}ic1
of A such that each set S; has diameter at most 6. This is an outer measure in R”,
that restricts to a measure H™ on Borel subsets [66], called Hausdorff measure. If
ag = n?2T(d/2 + 1), which is the volume of the ball B(0,1) ¢ R" when m is an
integer, the measure H? coincides with A,.
Let S be a measurable subset of R”, and let m be its Hausdorff dimension:

m = inf{ k| H*(S)=0}.

The set S can be seen as a measurable space with the induced c-algebra A :=
{SNB|B € B(G)} (that is also the Borel o-algebra for the induced topology on S);
the measure H™ restricts to a measure on (S, A), that we denote As (nonstandard
notation): for every A € A, As(A) := H'(A). Remark that Ags = A4. We introduce
now a particular family of subsets S such that A behaves well.

Definition 12.4 (Countably rectifiable sets). An H™ measurable subset S of R4
is called countably m-rectifiable (for m < d) if there exist Lebesgue measurable,

bounded sets Ay C R™ and Lipschitz functions fi : Ay — R?, enumerated by k € N,
such that H™(S \ Uk fr(Ax)) = 0. The set S is called O-rectifiable if it is countable.

If S is countable m-rectifiable, the measure As = H™|s is o-finite [51, Lemma 4]
and we can apply Proposition[12.3]to any probability measure absolutely continuous
with respect to As. Moreover, the measure A$" corresponds to the Hausdorff measure
H™" restricted to S™ [51, Lemma 27]. Reference [51] discusses some particular cases:
distributions on the unit circle, and positive semidefinite rank-one random matrices.
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Appendix A

Category theory

A.1 Notations

Given a category C, we denote by Ob C the class of its objects and Hom(C) the class
of morphisms in C. Given A, B € Ob C, the class of morphisms between A and B is
denoted by Homc(A, B) or simply Hom(A, B) whenever C is clear from context.

A category is called small if the class Ob C and Hom(C) are sets (instead of proper
classes). One can also work with Grothendieck’s universes, in which case Ob C and
Hom(C) are supposed to belong to a fixed universe. In this work, all categories are
small.

A full subcategory D of C is such that Ob D ¢ Ob Cand foreach pairA, B € Ob D,

Homp(A, B) = Homc(A, B).

A.2 Subobjects and quotients

Given two monomorphisms u : B — A and u’ : B” — A, one says that u dominates
u’, written also u > wu’, if it is possible to factor u as u’v, where v : B — B’ (and
this morphism is therefore uniquely determined). This is a preorder on the class
of monomorphisms with codomain A. Two morphisms u and u’ are equivalent if
u > u’ and u’ > u, and in this case the corresponding morphisms b — B’ and
B’ — B are inverses one of each other. Choose then a representative of each class
of monomorphisms with values in A; these representatives are called subobjects
of A. Therefore, a subobject is an object B equipped with a map u : B — A, called
canonical injection. The relation > is an order relation on the equivalence classes. The
consideration of an analogous preorder on the class of epimorphisms with domain
A allow us to define the ordered class of quotients of A.
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Appendix B

Abstract simplicial complexes

In this section, we recall the main definitions concerning abstract (or combinatorial)
simplicial complexes, for the convenience of the reader. Most of them are taken
verbatim from [56].

We define an (abstract) simplicial complex as a collection K of nonempty finite
subsets of a finite set S, subject to the condition: if s € %, then every nonempty
subset of s is in K. A subcomplex K’ of K is collection of subsets of S contained in
K that also satisfies the condition above.

The finite sets that make up K are called abstract simplices. Given an abstract
simplex s € K, its elements are called vertexes and its nonempty subsets are called
faces. We say that K is a finite complex when K is a finite set, and locally finite if
every vertex belong to a finite number of simplices. The dimension of an abstract
simplex s € K is |s| — 1. When the dimensions of the simplices of K are bounded
above, the complex is finite dimensional and its dimension is the smallest upper
bound.

The d-skeleton of K is the subcomplex of K consisting of all the simplices that
have dimension at most 4.

The vertex set of a complex K is

Ko = U s. (B.1)

seK

A simplicial map f : K — L is given by a vertex map fy : Ko — Lo which must
satisfy the property that f(s) := {fo(v1), ..., fo(vi)} € L whenever s = {v1, ..., v} €
K.

Example B.1. The abstract simplex A([n]) is the simplicial complex P([n]): its O-
dimensional simplices are the singletons, the 1-dimensional simplices are the sets of
cardinality two, etc.
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Appendix C

Linear algebra

C.1 Schur complements

For any block matrix

v=(¢ o

such that A and D are square matrices (not necessarily of the same size) and A is
invertible, the Schur complement of A in M is the matrix A := D — BATIC (the
standard notation is M /A). The matrix M /D is defined analogously, provided D is
nonsingular. The determinant of M can be computed with a formula proposed by
Schur in [75, p. 31].

Proposition C.1 (Schur’s determinantal identity, [14, p. 3]). Let

weft

be a block matrix such that A and D are square matrices (not necessarily of the same size). If
A is invertible, then
IM[ = |A||M/A]. (C1)

Similarly, if D is invertible,
IM| = |D|IM/D|. (C2)

Proof. When A is invertible, the identity

A B\ (ldy -A7'B\_ (A 0
(c D)(O Id, )‘(c D—CA—lB) (3)

implies the claim. O
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Appendix D

Multivariate normal distributions

In this section, we follow closely [70, pp. 517ff.]. We also include a more explicit
discussion of the effects of a change of basis.
Let E;, be a vector space of dimension p.

Definition D.1. A E,-valued random variable U is said to have a p-variate nor-
mal distribution if and only if every linear functional of U has a univariate normal
distribution.

We can restate this definition just in terms of the law of U.

Definition D.2. A law p on E,, is gaussian (or normal) if, for every linear functional
L : E, — R, the image measure Lp corresponds to a univariate normal probability
measure.

Remark that these definitions are independent of any basis. If we fix a basis
B = {by, ..., by} and denote by B* = {b7, ..., b},} the dual basis, then we can write
u = (U, ..., U,) and introduce the mean vector

m:=EU):=(EU),... EU,)) (D.1)
and the covariance matrix
D(X) := (Cov(U;, U;))o<i,j<n, (D.2)

that we denote X = (0;j)o<i,j<n- In terms of the law p, the equivalent definitions are
m; = /R x dbip(x) and 0;; = fRfR(x —m;)(y —m;)dbip(x) db;p(y).

If X is a p-dimensional random variable and M is any (g X p) matrix,

E (M"U) = M"E (X) (D.3)
D(MX) = MD(X)M™ (D.4)

Therefore, if C = {c1, ..., ¢x } is another basis and A the change-of-basis matrix (¢; =
Ab;), then the previous identities imply that Am and ALA" are the mean and variance
of U expressed in the basis C.

From now on, we consider that a basis of E, has been fixed and therefore that
each normally distributed vector U (equivalently, each gaussian law p) has a well
defined mean and variance. We write U ~ N,(m, L).
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Proposition D.3 (Structure theorem for normally distributed variables, [70, p. 521]).
U ~ Np(m, Z) with rank X = r if, and only if,

U=m+BG, BB =L

where B is a (p X r) matrix of rank r and G ~ N,(0, 1), that is, the components Gy, ..., G,
are independent and each is distributed as N1(0, 1).

In fact, since X is a real symmetric matrix, it can be diagonalized by an orthogonal
matrix P i.e. £ = PDP’. When X is positive definite (has full rank), B is simply P vVD;
when X is positive semidefinite, one can ignore the null columns of PVD, that
are associated to the null eigenvalues. If By, ..., B, denote the linearly independent
columns of B, then for every T € R?,

TYET = (BYT)? + ... + (BYT)?, (D.5)
which corresponds to Sylvester’s law of inertia.

Corollary D.4. For every A € My 4(R) and b € RP, if X ~ Ny(m, L), then Ax + b ~
N, (Am + b, AZA®).

Proof. That Ax ~ N,(Am,ALA™) can be verified directly from the definition: for
every linear functional represented by T", we have T"AX = (T"A)X, which is a
univariate normal (since X is normal) with mean Am and covariance AXAY. The
structure theorem makes clear that a translation by b just translates the mean. |

Remark D.5. Given a matrix A, a generalized inverse A~ is any matrix that verifies
AA™A = A. Generalized inverses always exists, but in general they are not unique.
However, they are unique when a is invertible and in this case A™ = A™.

Proposition D.6. Let Y bean Ey, -valued random variable with p-variate normal distribution,
Y ~ Np(u,X). Given a decomposition E, = E; X Es, let us introduce the notations
Y = (Y1,Y2) € E;XEs, mj = E(Y;), and ¥;; = Cov Y;Y|, in such a way that m = (my, my),

and
Y11 X2
Y= .
(221 022)

Then,
1. Y1 ~ Nq(thll) and Yo ~ Ng(my, X22). )
2. Y1|Ya = y2 ~ Ny(i1(y2), X11), where 11 (y2) := my + L1225, (y2 — ma), and Xqq :=
Yq1 — XX, o1

e P )

4. If ¥ is positive definite, then Y11 and Yoy too. Hence I = r1

. in the previous
formulae.

Proposition D.7. The law of Y ~ N,(m, L) is absolutely continuous with respect to A, if
and only if X is positive definite.

Proof. We use the representation Y = m + BG introduced above.
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If X is positive definite, all its eigenvalues are strictly positive and the rank of =
is p. Thus B is a p X p orthogonal matrix. Let A C R? be a set of Lebesgue measure
zero. Then B™1(A — m) also has Lebesgue measure zero and

e 2%
P(YeA)=P GeB—l(A—m):/ ——dx =0.
( ) ( ) B-1(A-m) (2m0)4/2

If X is not positive definite, its rank r is strictly less than p. The vector Y belongs
to the affine space m + col(B), which has dimension r and hence p-Lebesgue measure
Zero. O
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Appendix E

Distribution theory

For all the relevant definitions, see [76] or [86].

Let us introduce first the multi-index notation. An n-dimensional multi-index is
a vector a = (a1, ..., @y) € N". They can be added and subtracted component-wise.
We say that a < f if both multi-indices have the same size and a; < g; for every i.
Furthermore, a! := a1!---a,!, and forany v < a,

n
o ._ a;
=110}
Given x € R", x* := x" --- x;,". Given a function f € C*(R"), 9° f := 04, 0a; ** - Oa,, -
The space of distributions 9D’(Q), the dual of smooth functions with compact

support contained in an open set Q of RY, is defined in [76, Ch. 3]. We use the
following characterization of distributions supported on a point.

Proposition E.1 (Distributions supported in a single point, cf. [76, Thm. XXVII]
and [82, Thm. 1.70]). Let Q be an open set in RY, x € Q and u € D'(Q) with
supp u = {xo}. Then there exist m € N and, for every multi-index « that verifies |a| < m,
a constant ¢, € C such that

Vo e DQ), (n,0)= ) cad®p(xo).

la|<m

Definition E.2. The Schwartz space, denoted by S(R?), is defined as the space of
smooth fast-decreasing complex functions over R?. Explicitly,

S(RY) := {p € C°(RY) | Va, p € N? [|x*DF |0 < co}. (E.1)

The space S’(R?) of tempered distributions is the topological dual of S(R9).
The topological space S(RY) is a complete, metrizable, and embeds continuously
in L1(R9). By definition, the Fourier transform ¥ associates to any f € L'(R?) the

function f: (R?)* — C defined by

fley= [ foemiecds, €2

One can prove that #(S) ¢ S. Infact, ¥ : S — § is an isomorphism of topological
vector spaces [86, Thm. 25.1]. Its transpose is also denoted by # and extends the
definition of the Fourier transform to the space of tempered distributions.
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Definition E.3. The space of multiplication operators (cf. [86, Def. 25.3]), denoted
by Om(R?) is defined as the space of all complex smooth functions such that all of
their derivatives of all orders are polynomially bounded. Explicitly,

Om:={f € C°(R")|VaeN'3IC>03INeN
such that Vx € R?, [DYf(x)| < C(1 + |x[)N }. (E.3)

If feOyand @ € S(RY), then foe S(RY).
If T € 8'(RY), its convolution T * ¢ with a function ¢ € S(RY) is defined as the

function x € RY — (T * ¢)(x) := (T, 1xp), where 1,9 (y) = (x + y) et ¢(y) = p(-y),
and this function belongs to Oy, see [86, Thm. 30.2].

Definition E.4. A tempered distribution T € S’(R?) is called a convoluter (cf. [86),
Def. 30.1]) if for all N € N there exists My € N and a finite family of continuous
functions {fa} et jaj<my C C(R?) such that (1 + |x|)N f, € Co(R?) for all @ € N¥
with |a| £ My, and such that

T= > f, (E4)

la|<My
where the derivatives are taken in the distributional sense.

The space of convoluters of tempered distributions over R? is denoted by O’C(Rd).
The Fourier establishes a bijection between Oy and O(..

Proposition E.5 (Convolution theorem, [86, Thm. 30.4]). Let S € &', T € O(. and
a € O (over RY). Then F(S+T) = F(S)F(T) and F(aS) = F(a) * F(S) hold.

Proposition E.6 (Tensor product of pure tensor, [76, p. 268]). If ¢ ® Y, is a pure tensor
in S'(R")®@ S’'(R™) = S'(R" x R™), then

7:((Px ® l;by) = T(qu) ® fﬂ:(l;by)



Appendix F

Measure theory

In this section, we just recall basic facts from measure theory, as stated in [39].

F.1 Radon-Nikodym derivative

Proposition F.1 (Lebesgue-Radon-Nikodym theorem, [39, Sec. 19.36]). Let (E, B, u)
be a o-finite measure space and let v be a complex measure on (E, B) such that v < u. Then
there exists a unique fy € LY(E, B, ) such that

1 [ fdv= [ ffoduforall f € L\E,B,|v]),
2. v(B) = foo du forall B € B, and
3. [vI(B) = [ | fol du for all B € B.

Remark F.2. L!(E, B, u) denotes the normed space of equivalence classes of integrable
functions. In the applications, we always work with a representative of this class,
but the results are independent of this choice.

Definition F.3. The essentially unique function fy appearing in Proposition is

called the Radon-Nikodym derivative of v with respect to u. Usually g—; is used

to denote fy. The relation between 1, v and fy can also be stated with the formula
v = fov.

Proposition F.4 (Chain rule, [39} Sec. 19.40]). Let uo, u1, and uz be o-finite measures on
(E, B) such that uy < py and p1 < po. Then,
1. U2 << Uo, and

dup _ duy  dug
2. A0 = am " dm po-almost everywhere.

F.2 Product spaces

Let (X, M, u) and (Y, %, v) be o-finite measure spaces. Introduce the product o-
algebra M @ N := (M x N), the g-algebra generated by the collection of sets

MxN:={MxN|MeMand N e N} c 2.

The pair (X x Y, M ® ) is a measurable space.
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Proposition F.5 ( [39, Sec. 21.5]). Let (X, M) and (Y, N) be measurable spaces, and let f
be an extended real-valued or complex-valued I ® N-measurable function on X X Y. Then
1. the function x v f(x,y) is M-measurable for all y € Y, and
2. the function y — f(x, y) is N-measurable for all x € X.

The product measure y ® v : M @ N — R is the unique measure that satisfies
p®v(MxN)=u(M)v(N), see [39, Sec. 21.11].

Proposition F.6. Let (X, M, u)and (Y, M, v) be o-finite measure spaces and let (X XY, M ®
N, u ® v) be the product measure space. The measure u ® v is o-finite.

Proof. Let {X;}; C M (respectively, {Y;}; C N) be a countable collection of pairwise
disjoint sets such that U;X; = X and u(X;) < oo for every i (resp. U;Y; = Y and
u(Y;) < oo for every j). Then {X; X Y;}; ; is a collection of pairwise disjoint, I ® N-
measurable sets such that

p® v(X; X Yj) = [,l(Xi)V(Y]') < o0
for every pair (i, j), and
U Xi X Y]‘ =XXY.
ij
O

Proposition F.7 (Fubini’s theorem for positive functions, [39} Sec. 21.12]). Let (X, M, u)
and (Y, N, v) be o-finite measure spaces and let (X XY, M N, u ®v) be the product measure
space. If f is a nonnegative, extended real-valued, M ® N-measurable function on X XY,
then

the function x v~ f(x, y) is M-measurable for each y € Y;

the function y — f(x, y) is W-measurable for each x € X;

the function x — fy f(x, y)dv(y) is M-measurable;

the function y — /X f(x,y)du(x) is N-measurable; and

the following equalities hold

[ swnduere = [ [ @ nduwn
XXY Yy Jx
= [ [ s v dute)
xJy
In virtue of Proposition[F.7-(5), the finiteness of

/X Iyl duev(x, ), /Y /X £ e, )] dux) dv(y) or /X /Y £, )l dv(y) du(x)

for an arbitrary measurable function f implies that the three integrals are finite. This
entails a more refined result for integrable functions

Gk L=

Proposition F.8 (Fubini’s theorem for integrable functions, [39, Sec. 21.13]). Let
(X, M, u) and (Y, M, v) be o-finite measure spaces and let (X X Y, M @ N, u ® v) be the
product measure space. Let f be a complex-valued M ® N-measurable function on X X Y
and suppose that at least one of the three integrals

/X 1F I dusr(r,y), /Y /X F(x, )l dp) dv(y), /X /Y G, )] dv(y) dps(x)

is finite. Then:
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1. the function x v~ f(x,y) isin LY(X, M, u) for v-almost all y € Y;

the function y v f(x,y) is in LY(Y, N, v) for p-almost all x € X;

3. the function x + fY f(x,y)dv(y) is well-defined p-almost surely and belongs to
Ll(XI m, [’l)/

4. the function y +— /X f(x,y)du(x) is well-defined v-almost surely and belongs to
LYY, %, v);

5. the following equalities hold

N

/X Sy dus v y) = /Y /X £, v) du(x) dv(y)

- [ [ s mavty) auen

F.3 Haar measures

Given a group locally compact topological group G, there is a unique left-invariant
positive measure (Haar measure) up to a multiplicative constant [19, Thms. 9.2.2 &
9.2.6]. A particular choice of left Haar measure will be denoted by a Greek letter with
subscript G e.g. Ag.

Proposition F.9 (Weil's formula). Let G be a locally compact group and H a closed normal
subgroup of G. Given Haar measures on two groups among G, H and G/H, there is a Haar
measure on the third one such that, for any integrable function f : G — R,

[rwmee= [ ([ s arnn) aviemn, (E1)

The three measures are said to be in canonical relation, which is written Ag =

/\G JH A H-
For a proof of Proposition see [72] p.87-88 and Theorem 3.4.6.
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coboundary,
cochain
axial,
cocycle,
coimage, [62]
cokernel,
conditional probability
disintegrations, [144]
elementary, @
in finite structures,
Kolmogorov’s definition, [143]
regular version, 143
contextuality, 26] 30} [54]
convolution, 214
coproduct,
counting function, [97]
restricted,

determinant
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gaussian distribution, see normal distri-
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generalized moment function, see moment
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information cohomology, [67]
combinatorial,
probabilistic,



226 INDEX

information structure, 28] 47] probability functor, [46)

bounded, adapted, #7]

concrete, [44] product,

embedding, projective object,

finite, relative,

morphism,

quasi-concrete, [52] 7 .

simplicial, binomial theorem,

factorials,
joint locality, see locality integers, [117]
multinomial coefficient, |11

kernel, quotient, 203
locality, rectifiable set,
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maximum entropy principle, resolution,
minimal, Schwartz space,
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quantum, 59 exact,[63]
moment sheaf, [66} [67]

generalized moderate moment func- o-algebra of sets,
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multi-index,
multinomial coefficient topos, [30} [66]
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noncontextual,

nondegenerate product
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probabilistic,

normal distribution, 209
covariance,
mean, [174} 209

orthogonally closed,

paradox, see contextuality
Pochhammer symbol (a; x),,
polynomial-growth condition, [152]
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