G. Acosta, R. G. Durán, and M. A. Muschietti, Solutions of the divergence operator on John domains, Adv. Math, vol.206, pp.373-401, 2006.

R. A. Adams, Sobolev Spaces, 1975.

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J, vol.44, pp.109-140, 1994.

S. Azouz and S. Guesmia, Asymptotic development of anisotropic singular perturbation problems, Asymptotic Anal, vol.100, issue.3-4, pp.131-152, 2016.

N. S. Bakhvalov and G. P. Panasenko, Nauka, 1984 (in Russian). English translation: Dordrecht etc, 1989.

M. E. Bogovski, Solution of the first value boundary problem for the equation of continuity of an incompressible medium, Soviet. Math. Dokl, vol.20, pp.1094-1098, 1979.

M. E. Bogovski, Solution of some vector analysis problems connected with the operators div and grad, Sibirsoe Otdelenie Matematiki, vol.80, issue.1, pp.5-40, 1980.

W. Borchers and H. Sohr, On the equations rot v = g and div u = f with zero boundary conditions, Hokkaido Math. J, vol.19, pp.67-87, 1990.

J. Bourgain and H. Brezis, On the equation div Y = f and application to control of phases, J. Amer. Math. Soc, vol.16, pp.393-426, 2003.

H. Brezis, Analyse fonctionnelle, Editions Masson, 1983.

A. Ceccaldi, Elliptic problems in long cylinders revisited, Ricerche mat, pp.1-16, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02385583

A. Ceccaldi and S. Mardare, On correctors to elliptic problems in long cylinders, Journal of Elliptic and Parabolic Equations, vol.5, issue.2, pp.473-491, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02385568

M. Chipot, , 2002.

M. Chipot, On some anisotropic singular perturbation problems, Asymptotic Analysis, vol.55, pp.125-144, 2007.

M. Chipot, Asymptotic Issues for Some Partial Differential Equations, 2016.

M. Chipot, On some elliptic problems in unbounded domains, Chinese Annals of Mathematics, Series B, vol.39, issue.3, pp.597-606, 2018.

M. Chipot and S. Guesmia, Correctors for some asymptotic problems, Proceedings of the Steklov Institute of Mathematics, vol.270, pp.263-277, 2010.

M. Chipot and S. Mardare, On correctors for the Stokes problem in cylinders, Proceedings of the conference on nonlinear phenomena with energy dissipation, vol.29, pp.37-52, 2007.

M. Chipot and S. Mardare, Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction, J. Math. Pure et Appliquées, vol.90, pp.133-159, 2008.

M. Chipot and S. Mardare, The Neumann problem in cylinders becoming unbounded in one direction, J. Math. Pures Appl, vol.104, pp.921-941, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02385567

M. Chipot and A. Rougirel, On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions, Discrete Contin. Dyn. Syst. Ser. B, vol.1, issue.3, pp.319-338, 2001.

M. Chipot, P. Roy, and I. Shafrir, Asymptotics of eigenstates of elliptic problems with mixed boundary data on domains tending to infinity, Asympt. Anal, vol.85, pp.199-227, 2013.

M. Chipot and K. Yeressian, Exponential rates of convergence by an iteration technique, C. R. Acad. Sci. Paris, Ser. I, vol.346, pp.21-26, 2008.

P. G. Ciarlet, Plates and Junctions in Elastic Multi-structures, An Asymptotic Analysis, 1990.

P. G. Ciarlet and P. Destuynder, A justification of the two-dimensional plate model, J. Mécanique, vol.18, pp.315-344, 1979.

D. Cioranescu and P. Donato, An Introduction to Homogenization, 1999.

D. Cioranescu, P. Donato, and M. Roque, Introduction to classical and variational partial differential equations, 2013.

D. Cioranescu and J. Saint-jean-paulin, Homogenization of Reticulated Structures, 1999.

D. Cioranescu and J. Paulin, Problèmes de Neumann et de Dirichlet dans des structures réticulées de faibleépaisseur, Comptes Rendus Acad. Sci, vol.303, issue.1, pp.7-12, 1986.

B. Dacorogna, Existence and regularity of solutions of d? = f with Dirichlet boundary conditions, Nonlinear Problems in Mathematical Physics and Related Topics, vol.1, pp.67-82, 2002.

B. Dacorogna, Direct Methods in the Calculus of Variations, 2010.

M. G. Dzhavadov, Asymptotics of solution of boundary value problem for an elliptic equation stated in thin domains, Differential equations, vol.4, pp.1901-1909, 1968.

E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat, vol.7, pp.102-137, 1958.

P. G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol.I, 1994.

G. P. Galdi, R. Rannacher, A. M. Robertson, and S. Turek, Hemodynamical Flow: Modeling, Analysis and Simulation, 2008.

A. Gaudiello, G. Panasenko, and A. Piatnitski, Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure, Communications in Contemporary Mathematics, p.27, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02162810

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 1983.

A. L. Goldenveizer, The approximation of the plate bending theory by the asymptotic analysis of elasticity theory, Pr. Math. Mech, vol.26, issue.4, pp.668-686, 1962.

A. L. Goldenveizer, The approximation of the shell theory by the asymptotic analysis of elasticity theory, Pr. Math. Mech, vol.27, issue.4, pp.593-608, 1963.

A. L. Goldenveizer, The principles of reducing three-dimensional problems of elasticity to two-dimensional problems of the theory of plates and shells, Proceedings, Eleventh International Congress of Theoretical and Applied Mechanics, pp.306-311, 1964.

S. Guesmia, Some convergence results for quasilinear parabolic boundary value problems in cylindrical domains of large size, Nonlinear Anal, vol.70, issue.9, pp.3320-3331, 2009.

S. Guesmia and A. Sengouga, Anisotropic singular perturbations for hyperbolic problems, Appl. Math. Comput, vol.217, issue.22, pp.8983-8996, 2011.

F. John, Planes Waves and Spherical Means, 1981.

L. V. Kapitanskii, Stationary solutions of the Navier-Stokes equations in periodic tubes, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI), vol.115, pp.104-113, 1982.

V. A. Kozlov, V. G. Maz'ya, and A. Movchan, Asymptotic Analysis of Fields in Multi-structures, 1999.

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Flows, Second Edition, 1969.

O. A. Ladyzhenskaya and V. A. Solonnikov, On some problems of vector analysis and generalized formulations of boundary value problems for the Navier-Stokes equations, Zap. Nauchn. Sem. LOMI, vol.59, pp.81-116, 1976.

E. M. Landis, Some problems of the qualitative theory of second order elliptic equations (case of several independent variables), Uspekhi Mat. Nauk, English translation: Russian Mathematical Surveys, vol.18, p.1, 1963.

E. M. Landis and G. P. Panasenko, Theorem of asymptotics of solutions to elliptic equations with coefficients which are periodic with respect to all variables except one, English translation: Soviet Math, vol.235, pp.1140-1143, 1977.

C. Mardare, On the divergence problem in some particular domains, Journal of Elliptic and Parabolic Equations, vol.6, issue.1, pp.257-282, 2020.

V. G. Maz'ya, S. Nazarov, B. Plamenevskij, and . Asymptotic, Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, 2000.

C. Miranda, Partial differential equations of elliptic type, 1970.

C. B. Morrey and . Jr, Multiple Integrals in the Calculus of Variations, 1966.

S. A. Nazarov and K. Pileckas, On the solvability of the Stokes and Navier-Stokes problems in the domains that are layer-like at infinity, J. Math. Fluid Mech, vol.1, issue.1, pp.78-116, 1999.

O. A. Oleinik and G. A. Yosifian, On Saint-Venant's principle in plane elasticity theory, Dokl. Akad. SSR, vol.239, 1978.

O. A. Oleinik and G. A. Yosifian, On the asymptotic behavior at infinity of solutions in linear elasticity, Arch.Rat.Mech.Anal, vol.78, pp.29-53, 1982.

G. P. Panasenko, Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure, Série IIb, vol.326, pp.867-872, 1998.

G. P. Panasenko, Averaging processes in framework structures, English translation: Math.USSR Sbornik, vol.122, pp.220-231, 1983.

G. P. Panasenko, Method of asymptotic partial decomposition of domain, Mathematical Models and Methods in Applied Sciences, vol.8, issue.1, pp.139-156, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02162814

G. P. Panasenko, Partial asymptotic decomposition of domain: Navier-Stokes equation in tube structure, Série IIb, vol.326, pp.893-898, 1998.

G. P. Panasenko, Multi-Scale Modelling for Structures and Composites, vol.398, p.pp, 2005.

G. P. Panasenko, The principle of average operator decomposition for a set of non-linear system of equations in periodic and random skeletal constructions, English translation: Soviet Math. Doklady, vol.263, pp.290-295, 1982.

G. Panasenko and K. Pileckas, Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure.I. The case without boundary layer-in-time Nonlinear Analysis, Series A, Theory, Methods and Applications, vol.122, pp.125-168, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02162809

G. Panasenko and K. Pileckas, Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. II. General case, Nonlinear Analysis, Series A, Theory, Methods and Applications, vol.125, pp.582-607, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02162809

K. Pileckas, On the asymptotic behavior of solutions of a stationary system of Navier-Stokes equations in a domain of layer type, Sb. Math, vol.193, pp.1801-1836, 2002.

K. Pileckas, Existence of solutions with the prescribed flux of the Navier-Stokes system in an infinite cylinder, J. Math. Fluid Mech, vol.8, pp.542-563, 2006.

M. Specovius-neugebauer, Approximation of the Stokes Dirichlet problem in domains with cylindrical outlets, SIAM J. Math. Anal, vol.30, pp.645-677, 1999.

R. Temam, Navier-Stokes equations: theory and numerical analysis, 1984.

Y. Xie, Some convergence results for elliptic problems with periodic data, Recent Advances on Elliptic and Parabolic Issues, Proceedings of the 2004 Swiss-Japanese Seminar, pp.265-282, 2006.