M. Adam, A. S. Potter, and S. S. Potter, Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development, Development, vol.144, pp.3625-3632, 2017.

A. Jord, A. Shihavuddin, A. Servignat-d'aout, R. Faucourt, M. Genovesio et al., Calibrated mitotic oscillator drives motile ciliogenesis, Science, vol.358, pp.803-806, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02425381

S. Bae, Y. Bessho, M. Hojo, and R. Kageyama, The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation, Development, vol.127, pp.2933-2943, 2000.

A. Bauer, S. Chauvet, O. Huber, F. Usseglio, U. Rothba?cher et al., Pontin52 and Reptin52 function as antagonistic regulators of beta-catenin signalling activity, EMBO J, vol.19, pp.6121-6130, 2000.

J. E. Boers, A. W. Ambergen, and F. B. Thunnissen, Number and proliferation of basal and parabasal cells in normal human airway epithelium, Am. J. Respir. Crit. Care. Med, vol.157, 1998.

J. E. Boers, A. W. Ambergen, and F. B. Thunissen, Number and proliferation of Clara cells in normal human airway epithelium, Am. J. Respir. Crit. Care Med, vol.159, pp.1585-1591, 1999.

H. M. Brechbuhl, M. Ghosh, M. K. Smith, R. W. Smith, B. Li et al., ?-catenin dosage is a critical determinant of tracheal basal cell fate determination, Am. J. Pathol, vol.179, pp.367-379, 2011.

G. Chen, T. R. Korfhagen, Y. Xu, J. Kitzmiller, S. E. Wert et al., SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production, J. Clin. Invest, vol.119, pp.2914-2924, 2009.

P. Cheng, V. Kumar, H. Liu, J. Youn, M. Fishman et al., Effects of Notch signaling on regulation of myeloid cell differentiation in cancer, Cancer Res, vol.74, pp.141-152, 2014.

B. Chevalier, A. Adamiok, O. Mercey, D. R. Revinski, L. Zaragosi et al., control apical actin network formation during multiciliogenesis through small GTPase pathways, Nat. Commun, vol.6, pp.8386-8400, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432243

L. Cohn, Mucus in chronic airway diseases: Sorting out the sticky details, J. Clin. Invest, vol.116, pp.306-308, 2006.

B. B. Cole, R. W. Smith, K. M. Jenkins, B. B. Graham, P. R. Reynolds et al., Tracheal basal cells: a facultative progenitor cell pool, Am. J. Pathol, vol.177, pp.362-376, 2010.

S. A. Colopy, D. E. Bjorling, W. A. Mulligan, and W. Bushman, A population of progenitor cells in the basal and intermediate layers of the murine bladder urothelium contributes to urothelial development and regeneration, Dev. Dyn, vol.243, pp.988-998, 2014.

C. Coraux, J. Roux, T. Jolly, and P. Birembaut, Epithelial cellextracellular matrix interactions and stem cells in airway epithelial regeneration, Proc. Am. Thorac. Soc, vol.5, pp.689-694, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00322139

C. Cruciat, Casein kinase 1 and Wnt/?-catenin signaling, Curr. Opin. Cell Biol, vol.31, pp.46-55, 2014.

D. R. Curran and L. Cohn, Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease, Am. J. Respir. Cell Mol. Biol, vol.42, pp.268-275, 2010.

T. A. Dimeo, K. Anderson, P. Phadke, C. Feng, C. M. Perou et al., A Novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelialmesenchymal transition in basal-like breast cancer, Cancer Res, vol.69, pp.5364-5373, 2009.

A. L. Durham, A. Mclaren, B. P. Hayes, G. Caramori, C. L. Clayton et al., Regulation of Wnt4 in chronic obstructive pulmonary disease, FASEB J, vol.27, pp.2367-2381, 2013.

S. Estrach, C. A. Ambler, C. L. Lo-celso, K. Hozumi, and F. M. Watt, Jagged 1 is a ?-catenin target gene required for ectopic hair follicle formation in adult epidermis, Development, vol.133, pp.4427-4438, 2006.

J. Fernandez-martinez, E. M. Vela, M. Tora-ponsioen, O. H. Ocanã, M. A. Nieto et al., Attenuation of Notch signalling by the Downsyndrome-associated kinase DYRK1A, J. Cell Sci, vol.122, pp.1574-1583, 2009.

R. B. Fletcher, D. Das, L. Gadye, K. N. Street, A. Baudhuin et al., Deconstructing olfactory stem cell trajectories at single-cell resolution, Cell Stem Cell, vol.20, 2017.

L. Giovannini-chami, A. Paquet, C. Sanfiorenzo, N. Pons, J. Cazareth et al., , 2018.

, The "one airway, one disease" concept in light of Th2 inflammation, Eur. Respir. J, vol.52, pp.1800437-1800454

B. N. Gomperts, L. J. Kim, S. A. Flaherty, and B. P. Hackett, IL-13 regulates cilia loss and foxj1 expression in human airway epithelium, Am. J. Respir. Cell Mol. Biol, vol.37, pp.339-346, 2007.

D. Gras, P. Chanez, I. Vachier, A. Petit, and A. Bourdin, Bronchial epithelium as a target for innovative treatments in asthma, Pharmacol. Ther, vol.140, pp.290-305, 2013.

A. Guha, M. Vasconcelos, R. Zhao, A. C. Gower, J. Rajagopal et al., Analysis of notch signaling-dependent gene expression in developing airways reveals diversity of Clara cells, PLoS ONE, vol.9, 2014.

L. Haghverdi, A. T. Lun, M. D. Morgan, and J. C. Marioni, Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors, Nat. Biotechnol, vol.36, pp.421-427, 2018.

B. L. Hogan, C. E. Barkauskas, H. A. Chapman, J. A. Epstein, R. Jain et al., Repair and regeneration of the respiratory system: Complexity, plasticity, and mechanisms of lung stem cell function, Cell Stem Cell, vol.15, pp.123-138, 2014.

J. J. Hsieh, .. Zhou, S. Chen, L. Young, D. B. Hayward et al., CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex, Proc. Natl. Acad. Sci. USA, vol.96, pp.23-28, 1999.

D. L. Hudson, A. T. Guy, P. Fry, M. J. O'hare, F. M. Watt et al., Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression, J. Histochem. Cytochem, vol.49, pp.271-278, 2001.

H. Ji, R. J. Goode, F. Vaillant, S. Mathivanan, E. A. Kapp et al., Proteomic profiling of secretome and adherent plasma membranes from distinct mammary epithelial cell subpopulations, Proteomics, vol.11, pp.4029-4039, 2011.

K. G. Jones, J. F. Holland, G. L. Foureman, J. R. Bend, and J. R. Fouts, Xenobiotic metabolism in Clara cells and alveolar type II cells isolated from lungs of rats treated with beta-naphthoflavone, J. Pharmacol. Exp. Ther, vol.225, pp.316-319, 1983.

M. Jumppanen, S. Gruvberger-saal, P. Kauraniemi, M. Tanner, P. Bendahl et al., Basallike phenotype is not associated with patient survival in estrogen-receptornegative breast cancers, Breast Cancer Res, vol.9, p.16, 2007.

D. Karamitros, B. Stoilova, Z. Aboukhalil, F. Hamey, A. Reinisch et al., Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells, Nat. Immunol, vol.19, pp.85-97, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01883092

M. Kessler, K. Hoffmann, V. Brinkmann, O. Thieck, S. Jackisch et al., The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids, Nat. Commun, vol.6, p.8989, 2015.

V. Y. Kiselev, A. Yiu, and M. Hemberg, scmap: projection of single-cell RNAseq data across data sets, Nat. Methods, vol.15, pp.359-362, 2018.

T. Koopmans, K. Kumawat, A. J. Halayko, and R. Gosens, Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction, Sci. Rep, vol.6, p.30676, 2016.

D. N. Kotton and E. E. Morrisey, Lung regeneration: mechanisms, applications and emerging stem cell populations, Nat. Med, vol.20, pp.822-832, 2014.

L. Manno, G. Soldatov, R. Zeisel, A. Braun, E. Hochgerner et al., RNA velocity of single cells, Nature, vol.560, pp.494-498, 2018.

J. Laoukili, E. Perret, T. Willems, A. Minty, E. Parthoens et al., IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells, J. Clin. Invest, vol.108, pp.1817-1824, 2001.

A. T. Lun, D. J. Mccarthy, and J. C. Marioni, A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000 Res, vol.5, p.2122, 2016.

E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar et al., Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell, vol.161, pp.1202-1214, 2015.

D. T. Malleske, D. Hayes, S. W. Lallier, C. L. Hill, and S. D. Reynolds, Regulation of human airway epithelial tissue stem cell differentiation by ?-catenin, P300, and CBP, Stem Cells, vol.36, pp.1905-1916, 2018.

B. Marcet, B. Chevalier, G. Luxardi, C. Coraux, L. E. Zaragosi et al., Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway, Nat. Cell Biol, vol.13, pp.693-699, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00848890

B. Marcet, B. Chevalier, C. Coraux, L. Kodjabachian, and P. Barbry, , 2011.

, MicroRNA-based silencing of Delta/Notch signaling promotes multiple cilia formation, Cell Cycle, vol.10, pp.2858-2864

D. J. Mccarthy, K. R. Campbell, A. T. Lun, and Q. F. Wills, Scater: preprocessing, quality control, normalization and visualization of single-cell RNA-seq data in R, Bioinformatics, vol.33, p.777, 2017.

O. Mercey, A. Popa, A. Cavard, A. Paquet, B. Chevalier et al., Characterizing isomiR variants within the microRNA-34/449 family, FEBS Lett, vol.591, pp.693-705, 2017.

F. Merigo, D. Benati, G. Piacentini, A. Boner, and A. Sbarbati, The ultrastructure of nasal mucosa in children with asthma, Ultrastruct. Pathol, vol.26, pp.293-298, 2002.

D. T. Montoro, A. L. Haber, M. Biton, V. Vinarsky, B. Lin et al., A revised airway epithelial hierarchy includes CFTR-expressing ionocytes, Nature, vol.560, pp.319-324, 2018.

M. Mori, J. E. Mahoney, M. R. Stupnikov, J. R. Paez-cortez, A. D. Szymaniak et al., , 2015.

, Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors, Development, vol.142, pp.258-267

M. Morimoto, Z. Liu, H. Cheng, N. Winters, D. Bader et al., , 2010.

, Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate, J. Cell Sci, vol.123, pp.213-224

H. Mou, V. Vinarsky, P. R. Tata, K. Brazauskas, S. H. Choi et al., Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells, Cell Stem Cell, vol.19, pp.217-231, 2016.

S. M. Nam, Y. N. Kim, J. W. Kim, D. S. Kyeong, S. H. Lee et al., Hairy and Enhancer of Split 6 (Hes6) deficiency in mouse impairs neuroblast differentiation in dentate gyrus without affecting cell proliferation and integration into mature neurons, Cell. Mol. Neurobiol, vol.36, pp.57-67, 2016.

J. Ordovas-montanes, D. F. Dwyer, S. K. Nyquist, K. M. Buchheit, M. Vukovic et al., Allergic inflammatory memory in human respiratory epithelial progenitor cells, Nature, vol.560, pp.649-654, 2018.

B. Pal, Y. Chen, F. Vaillant, P. Jamieson, L. Gordon et al., Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling, Nat. Commun, vol.8, p.1627, 2017.

A. Pardo-saganta, B. M. Law, M. Gonzalez-celeiro, V. Vinarsky, and J. Rajagopal, Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge, Am. J. Respir. Cell Mol. Biol, vol.48, pp.364-373, 2013.

A. Pardo-saganta, B. M. Law, P. R. Tata, J. Villoria, B. Saez et al., Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations, Cell Stem Cell, vol.16, pp.184-197, 2015.

A. Pardo-saganta, P. R. Tata, B. M. Law, B. Saez, R. D. Chow et al., Parent stem cells can serve as niches for their daughter cells, Nature, vol.523, pp.597-601, 2015.

S. B. Plaisier, R. Taschereau, J. A. Wong, and T. G. Graeber, Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures, Nucleic Acids Res, vol.38, pp.169-169, 2010.

M. Plass, J. Solana, F. A. Wolf, S. Ayoub, A. Misios et al., Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics, Science, vol.360, pp.1723-1735, 2018.

L. W. Plasschaert, R. ?ilionis, R. Choo-wing, V. Savova, J. Knehr et al., A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte, Nature, vol.560, pp.377-381, 2018.

X. Qiu, Q. Mao, Y. Tang, L. Wang, R. Chawla et al., Reversed graph embedding resolves complex single-cell trajectories, Nat. Methods, vol.14, pp.979-982, 2017.

E. L. Rawlins, T. Okubo, Y. Xue, D. M. Brass, R. L. Auten et al., The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium, Cell Stem Cell, vol.4, pp.525-534, 2009.

D. R. Revinski, L. Zaragosi, C. Boutin, S. Ruiz-garcia, M. Deprez et al., CDC20B is required for deuterosome-mediated centriole production in multiciliated cells, Nat. Commun, vol.9, pp.4668-4683, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02064869

S. D. Reynolds, P. R. Reynolds, G. S. Pryhuber, J. D. Finder, and B. R. Stripp, Secretoglobins SCGB3A1 and SCGB3A2 define secretory cell subsets in mouse and human airways, Am. J. Respir. Crit. Care Med, vol.166, pp.1498-1509, 2002.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

J. R. Rock, M. W. Onaitis, E. L. Rawlins, Y. Lu, C. P. Clark et al., Basal cells as stem cells of the mouse trachea and human airway epithelium, Proc. Natl. Acad. Sci. USA, vol.106, pp.12771-12775, 2009.

J. R. Rock, X. Gao, Y. Xue, S. H. Randell, Y. Kong et al., Notch-dependent differentiation of adult airway basal stem cells, Cell Stem Cell, vol.8, pp.639-648, 2011.

A. Schmid, J. Sailland, L. Novak, N. Baumlin, N. Fregien et al., Modulation of Wnt signaling is essential for the differentiation of ciliated epithelial cells in human airways, FEBS Lett, vol.591, pp.3493-3506, 2017.

M. Setty, V. Kiseliovas, J. Levine, A. Gayoso, L. Mazutis et al., Characterization of cell fate probabilities in single-cell data with Palantir, Nat. Biotechnol, vol.37, pp.451-460, 2019.

M. K. Smith, P. J. Koch, and S. D. Reynolds, Direct and indirect roles for ?catenin in facultative basal progenitor cell differentiation, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.302, pp.580-594, 2012.

V. H. Teixeira, P. Nadarajan, T. A. Graham, C. P. Pipinikas, J. M. Brown et al., , 2013.

, Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors, vol.2, p.966

J. To?zser, R. Earwood, A. Kato, J. Brown, K. Tanaka et al., TGF-? signaling regulates the differentiation of motile cilia, Cell Rep, vol.11, pp.1000-1007, 2015.

B. Treutlein, D. G. Brownfield, A. R. Wu, N. F. Neff, G. L. Mantalas et al., Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq, Nature, vol.509, pp.371-375, 2014.

P. Tsao, M. Vasconcelos, K. I. Izvolsky, J. Qian, J. Lu et al., Notch signaling controls the balance of ciliated and secretory cell fates in developing airways, Development, vol.136, pp.2297-2307, 2009.

J. Turner, J. Roger, J. Fitau, D. Combe, J. Giddings et al., Goblet cells are derived from a FOXJ1-expressing progenitor in a human airway epithelium, Am. J. Respir. Cell Mol. Biol, vol.44, pp.276-284, 2011.

J. W. Tyner, E. Y. Kim, K. Ide, M. R. Pelletier, W. T. Roswit et al., Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals, J. Clin. Invest, vol.116, pp.309-321, 2006.

D. Van-dijk, R. Sharma, J. Nainys, K. Yim, P. Kathail et al., Recovering gene interactions from single-cell data using data diffusion, Cell, vol.174, pp.716-729, 2018.

F. A. Vieira-braga, G. Kar, M. Berg, O. A. Carpaij, K. Polanski et al., A cellular census of human lungs identifies novel cell states in health and in asthma, Nat. Med, vol.25, pp.1153-1163, 2019.

E. K. Vladar, M. B. Stratton, M. L. Saal, . Salazar-de, G. Simone et al., Cyclin-dependent kinase control of motile ciliogenesis, vol.7, p.36375, 2018.

S. Wang, C. L. Rosenberger, Y. Bao, J. M. Stark, and K. S. Harrod, Clara cell secretory protein modulates lung inflammatory and immune responses to respiratory syncytial virus infection, J. Immunol, vol.171, pp.1051-1060, 2003.

X. Wang, P. Gupta, J. Fairbanks, and D. Hansen, Protein kinase CK2 both promotes robust proliferation and inhibits the proliferative fate in the C. elegans germ line, Dev. Biol, vol.392, pp.26-41, 2014.

B. Wang, J. Zhu, E. Pierson, D. Ramazzotti, and S. Batzoglou, Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning, Nat. Methods, vol.14, pp.414-416, 2017.

J. K. Watson, S. Rulands, A. C. Wilkinson, A. Wuidart, M. Ousset et al., Clonal dynamics reveal two distinct populations of basal cells in slow-turnover airway epithelium, Cell Rep, vol.12, pp.90-101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02379286

J. Weiske and O. Huber, The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-?-catenin-mediated transcription, J. Cell Sci, vol.118, pp.3117-3129, 2005.

F. A. Wolf, P. Angerer, and F. J. Theis, SCANPY: large-scale single-cell gene expression data analysis, Genome Biol, vol.19, pp.15-20, 2018.

L. Yang, J. T. Nichols, C. Yao, J. O. Maniley, E. A. Robey et al., Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1, Mol. Biol. Cell, vol.16, pp.927-942, 2004.

A. C. Zemke, R. M. Teisanu, A. Giangreco, J. A. Drake, B. L. Brockway et al., ?-Catenin is not necessary for maintenance or repair of the bronchiolar epithelium, Am. J. Respir. Cell Mol. Biol, vol.41, pp.535-543, 2009.

B. Agerberth, J. Charo, J. Werr, B. Olsson, F. Idali et al., The human antimicrobial and chemotactic peptides LL-37 and -defensins are expressed by specific lymphocyte and monocyte populations, pp.3086-3093, 2000.

S. Aibar, C. B. González-blas, T. Moerman, V. A. Huynh-thu, H. Imrichova et al., SCENIC: Single-Cell Regulatory Network Inference And Clustering, Nature Methods, vol.14, pp.1-41, 2017.

S. F. Altschup, W. Gish, T. Pennsylvania, and U. Park, Altschul-1990-Basic Local Alignmen.pdf, pp.403-410, 1990.

S. Andrews, F. Krueger, A. Segonds-pichon, L. Biggins, C. Krueger et al., , 2012.

T. S. Andrews and M. Hemberg, Identifying cell populations with scRNASeq, Molecular Aspects of Medicine, vol.59, pp.114-122, 2018.

I. Angelidis, L. M. Simon, I. E. Fernandez, M. Strunz, C. H. Mayr et al., An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics, Nature communications 10, vol.1, p.963, 2019.

M. J. Arguel, K. Lebrigand, A. Paquet, S. R. García, L. E. Zaragosi et al., A cost effective 5, selective single cell transcriptome profiling approach with improved UMI design, Nucleic Acids Research, vol.45, pp.1-11, 2017.

E. Azizi, A. J. Carr, G. Plitas, A. E. Cornish, C. Konopacki et al., Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment, Cell 174.5, vol.174, pp.1293-1308, 2018.

D. Baas, A. Meiniel, C. Benadiba, E. Bonnafe, O. Meiniel et al., A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells, European Journal of Neuroscience, vol.24, pp.1020-1030, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00192833

C. R. Bagnell, Laser capture microdissection, Molecular Diagnostics: For the Clinical Laboratorian, pp.219-224, 2005.

F. Baldwin, Basal cells in human bronchial epithelium, The Anatomical Record, vol.238, pp.360-367, 1994.

P. G. Barlow, P. E. Beaumont, C. Cosseau, A. Mackellar, T. S. Wilkinson et al., The human cathelicidin LL-37 preferentially promotes apoptosis of infected airway epithelium, American Journal of Respiratory Cell and Molecular Biology, vol.43, pp.692-702, 2010.

E. Becht, L. Mcinnes, J. Healy, C. A. Dutertre, I. W. Kwok et al., Dimensionality reduction for visualizing single-cell data using UMAP, Nature Biotechnology, vol.37, pp.38-47, 2019.

V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, vol.10, pp.1-12, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01146070

J. E. Boers, A. W. Ambergen, and F. B. Thunnissen, Number and Proliferation of Basal and Parabasal Cells in Normal Human Airway Epithelium, American Journal of Respiratory and Critical Care Medicine, vol.157, pp.2000-2006, 1998.

H. Boström, K. Willetts, M. Pekny, P. Levéen, P. Lindahl et al., PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis, Cell 85, vol.6, pp.863-873, 1996.

R. C. Boucher, Cystic fibrosis: a disease of vulnerability to airway surface dehydration, Trends in Molecular Medicine 13, vol.6, pp.231-240, 2007.

S. Boyle, M. J. Rodesch, H. A. Halvensleben, J. A. Jeddeloh, and W. A. Bickmore, Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis, Chromosome Research 19, vol.7, pp.901-909, 2011.

V. Braga, A cellular census of healthy lung and asthmatic airway wall identifies novel cell states in health and disease, pp.1-39, 2019.

R. G. Breeze and E. B. Wheeldon, The cells of the pulmonary airways, The American review of respiratory diseases 115, vol.4, pp.705-777, 1977.

J. A. Briggs, C. Weinreb, D. E. Wagner, S. Megason, L. Peshkin et al., The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution, p.5780, 2018.

E. R. Brooks and J. B. Wallingford, Multiciliated Cells". In: Current Biology, vol.24, 2014.

J. D. Buenrostro, B. Wu, U. M. Litzenburger, D. Ruff, L. Michael et al., Single-Cell chromatin accessibility, pp.486-490, 2016.

F. Buettner, N. Pratanwanich, D. J. Mccarthy, J. C. Marioni, and O. Stegle, f-scLVM: Scalable and versatile factor analysis for single-cell RNA-seq, Genome Biology 18.1, pp.1-13, 2017.

A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, Integrating singlecell transcriptomic data across different conditions, technologies, and species, Nature Biotechnology, vol.36, issue.5, pp.411-420, 2018.

M. Büttner, Z. Miao, F. A. Wolf, S. A. Teichmann, and F. J. Theis, A test metric for assessing single-cell RNA-seq batch correction, Nature Methods, vol.16, issue.1, pp.43-49, 2019.

B. Button, L. H. Cai, C. Ehre, M. Kesimer, D. B. Hill et al., A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia, Science 337, vol.6097, pp.937-941, 2012.

R. Cannoodt, W. Saelens, and Y. Saeys, Computational methods for trajectory inference from single-cell transcriptomics, European Journal of Immunology, vol.46, pp.2496-2506, 2016.

J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim et al., The single-cell transcriptional landscape of mammalian organogenesis, Nature 566, vol.7745, pp.496-502, 2019.

J. K. Chan, C. S. Ng, and P. K. Hui, A simple guide to the terminology and application of leucocyte monoclonal antibodies, Histopathology 12.5, pp.461-480, 1988.

J. Chen, L. Rénia, and F. Ginhoux, Constructing cell lineages from single-cell transcriptomes, Molecular Aspects of Medicine, vol.59, pp.95-113, 2018.

C. Ziegenhain, B. Vieth, S. Parekh, B. Reinius, A. Guillaumet-adkins et al., Comparative Analysis of Single-Cell RNA Sequencing Methods: Molecular Cell, Holger Heyn, Ines Hellmann, and Wolfgang Enard7, pp.631-643, 2017.

S. Codeluppi, L. E. Borm, A. Zeisel, G. L. Manno, J. A. Van-lunteren et al., Spatial organization of the somatosensory cortex revealed by osmFISH, Nature Methods, vol.15, pp.932-935, 2018.

M. Cohen, A. Giladi, A. D. Gorki, D. G. Solodkin, M. Zada et al., Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting, Cell 175, vol.4, pp.1031-1044, 2018.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler et al., Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proceedings of the National Academy of Sciences of the United States of America 102, vol.21, pp.7426-7431, 2005.

M. B. Cole, D. Risso, A. Wagner, D. Detomaso, J. Ngai et al., Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq, Cell Systems 8.4, pp.315-328, 2019.

C. Coraux, R. Hajj, P. Lesimple-;-corrigan, A. M. , E. Tunnacliffe et al., Réparation et régénération de l ' épithélium respiratoire, eLife 5.FEBRUARY2016, pp.1-38, 2005.

N. Crosetto, M. Bienko, and A. V. Oudenaarden, Spatially resolved transcriptomics and beyond, pp.57-66, 2015.

R. G. Crystal, S. H. Randell, J. F. Engelhardt, J. Voynow, and M. E. Sunday, Airway Epithelial Cells: Current Concepts and Challenges, Proceedings of the American Thoracic Society 5, vol.7, pp.772-777, 2008.

S. Darmanis, S. A. Sloan, Y. Zhang, M. Enge, C. Caneda et al., A survey of human brain transcriptome diversity at the single cell level, Proceedings of the National Academy of Sciences of the United States of America 112, vol.23, pp.7285-7290, 2015.

D. Dijk, R. Van, J. Sharma, K. Nainys, P. Yim et al., Recovering Gene Interactions from Single-Cell Data Using Data Diffusion, Cell 174.3, pp.716-729, 2018.

M. A. Dillies, A. Rau, J. Aubert, C. Hennequet-antier, M. Jeanmougin et al., A comprehensive evaluation of normalization methods for Illumina highthroughput RNA sequencing data analysis, Briefings in Bioinformatics, vol.14, pp.671-683, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00782486

J. Ding, X. Adiconis, S. K. Simmons, M. S. Kowalczyk, C. C. Hession et al., Systematic comparative analysis of single cell RNA-sequencing methods, 2019.

G. E. Duclos, Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution, pp.1-15, 2018.

I. Dunham, A. Kundaje, S. F. Aldred, P. J. Collins, C. A. Davis et al., A systematic performance evaluation of clustering methods for single-cell RNA-seq data, Nature 489, vol.7414, pp.1-16, 2012.

M. Efremova, M. Vento-tormo, S. A. Teichmann, and R. Vento-tormo, Cell-PhoneDB v2.0: Inferring cell-cell communication from combined expression of multisubunit receptor-ligand complexes, p.680926, 2019.

E. C. Ehman, G. B. Johnson, J. E. Villanueva-meyer, S. Cha, A. P. Leynes et al., Multiclonal invasion in breast tumors identified by topographic single cell sequencing, Cell 172.5, pp.205-217, 2018.

C. L. Eng, M. Lawson, Q. Zhu, R. Dries, N. Koulena et al., Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+, Nature 568.7751, pp.235-239, 2019.

G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis, Single-cell RNA-seq denoising using a deep count autoencoder, Nature Communications, vol.10, pp.1-14, 2019.

M. Esaki, K. Hoshijima, N. Nakamura, K. Munakata, M. Tanaka et al., Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae, pp.116-129, 2009.

M. J. Evans, L. S. Van-winkle, M. V. Fanucchi, and C. G. Plopper, Cellular and molecular characteristics of basal cells in airway epithelium, Experimental Lung Research, vol.27, pp.401-415, 2001.

H. C. Fan, G. K. Fu, and S. P. Fodor, Combinatorial labeling of single cells for gene expression cytometry, 2015.

S. Farnaud and R. W. Evans, Lactoferrin -A multifunctional protein with antimicrobial properties, Molecular Immunology 40, vol.7, pp.152-156, 2003.

A. M. Femino, F. S. Fay, K. Fogarty, and R. H. Singer, Visualization of single RNA transcripts in situ, Science 280, vol.5363, pp.585-590, 1998.

G. Finak, A. Mcdavid, M. Yajima, J. Deng, V. Gersuk et al., MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data, Genome Biology 16.1, pp.1-13, 2015.

A. J. Fischer, K. L. Goss, T. E. Scheetz, C. L. Wohlford-lenane, J. M. Snyder et al., Differential Gene Expression in Human Conducting Airway Surface Epithelia and Submucosal Glands, pp.189-199, 2009.

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, pp.75-174, 2010.

T. J. Franks, T. V. Colby, W. D. Travis, R. M. Tuder, H. Y. Reynolds et al., Resident Cellular Components of the Human Lung: Current Knowledge and Goals for Research on Cell Phenotyping and Function, Proceedings of the American Thoracic Society 5, vol.7, pp.763-766, 2008.

V. D. Gandhi and H. Vliagoftis, Airway epithelium interactions with aeroallergens: Role of secreted cytokines and chemokines in innate immunity, Frontiers in Immunology 6.APR, pp.1-13, 2015.

F. Gauthier, U. Fryksmark, K. Ohlsson, and J. G. Bieth, Kinetics of the inhibition of leukocyte elastase by the bronchial inhibitor, Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular 700, vol.2, pp.90095-90099, 1982.

J. Gehring, J. E. Park, S. Chen, M. Thomson, and L. Pachter, Highly Multiplexed Single-Cell RNA-seq for Defining Cell Population and Transcriptional Spaces, Biorxiv 23.1, pp.79-80, 2018.

F. Gerbe and P. Jay, Intestinal tuft cells: Epithelial sentinels linking luminal cues to the immune system, Mucosal Immunology 9, vol.6, pp.1353-1359, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02459450

C. Gerson, J. Sabater, M. Scuri, A. Torbati, R. Coffey et al., The lactoperoxidase system functions in bacterial clearance of airways, American Journal of Respiratory Cell and Molecular Biology, vol.22, pp.665-671, 2000.

L. Giovannini-chami, A. Paquet, C. Sanfiorenzo, N. Pons, and J. Cazareth, Early View Original article The " one airway , one disease " concept in light of, 2018.

K. C. Goldfarbmuren, N. D. Jackson, S. P. Sajuthi, N. Dyjack, K. S. Li et al., Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium, pp.1-22

D. A. Goodenough, J. A. Goliger, D. L. Paul, ;. Connexins, and C. Intercellular-communication, Annual review biochemistry 65, pp.475-502, 1996.

A. M. Goss, Y. Tian, T. Tsukiyama, E. D. Cohen, D. Zhou et al., Wnt2/2b and -Catenin Signaling Are Necessary and Sufficient to Specify Lung Progenitors in the Foregut, Developmental Cell, vol.17, pp.290-298, 2009.

J. A. Griffiths, A. Scialdone, and J. C. Marioni, Using single-cell genomics to understand developmental processes and cell fate decisions, Molecular systems biology, pp.1-12, 2018.

R. V. Grindberg, J. L. Yee-greenbaum, M. J. Mcconnell, M. Novotny, A. L. O'shaughnessy et al., RNA-sequencing from single nuclei, Proceedings of the National Academy of Sciences of the United States of America 110, vol.49, pp.19802-19807, 2013.

K. Grosselin, A. Durand, J. Marsolier, A. Poitou, E. Marangoni et al., High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer, Nature genetics 51, vol.6, pp.1060-1066, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02434780

D. Grün, A. Lyubimova, L. Kester, K. Wiebrands, O. Basak et al., Single-cell messenger RNA sequencing reveals rare intestinal cell types, Nature 525, vol.7568, pp.251-255, 2015.

S. Gueron, K. Levit-gurevich, N. Liron, and J. J. Blum, Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling, Proceedings of the National Academy of Sciences of the United States of America 94, vol.12, pp.6001-6006, 1997.

H. Guo, P. Zhu, X. Wu, X. Li, L. Wen et al., Single-Cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing, Genome Research 23, vol.12, pp.2126-2135, 2013.

M. Guo, Y. Du, J. J. Gokey, S. Ray, S. M. Bell et al., Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth, Nature Communications, vol.10, 2019.

X. Guo, Y. Zhang, L. Zheng, C. Zheng, J. Song et al., Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing, Nature Medicine, vol.24, pp.978-985, 2018.

A. L. Haber, M. Biton, N. Rogel, R. H. Herbst, C. Smillie et al., A single-cell survey of the small intestinal epithelium, pp.333-339, 2018.

N. R. Hackett, R. Shaykhiev, M. S. Walters, R. Wang, R. K. Zwick et al., The human airway epithelial basal cell transcriptome, PLoS ONE 6, vol.5, 2011.

L. Haghverdi, F. Buettner, and F. J. Theis, Diffusion maps for high-dimensional single-cell analysis of differentiation data, Bioinformatics 31, vol.18, pp.2989-2998, 2015.

L. Haghverdi, A. T. Lun, M. D. Morgan, and J. C. Marioni, Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors, Nature Biotechnology, pp.1-18, 2018.

R. Hajj, T. Baranek, R. L. Naour, P. Lesimple, E. Puchelle et al., Basal Cells of the Human Adult Airway Surface Epithelium Retain Transit-Amplifying Cell Properties, Stem Cells 25.1, pp.139-148, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00141214

X. Han, R. Wang, Y. Zhou, L. Fei, H. Sun et al., Mapping the Mouse Cell Atlas by Microwell-Seq, Cell 172.5, pp.1091-1097, 2018.

T. Hashimshony, N. Senderovich, G. Avital, A. Klochendler, Y. De-leeuw et al., CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq, Genome Biology 17.1, pp.1-7, 2016.

T. Hashimshony, F. Wagner, N. Sher, and I. Yanai, CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification, Cell Reports, vol.2, issue.3, pp.666-673, 2012.

C. L. Hattrup and S. J. Gendler, Structure and Function of the Cell Surface (Tethered) Mucins". In: Annual Review of Physiology, vol.70, pp.431-457, 2008.

M. J. Hawrylycz, E. S. Lein, A. L. Guillozet-bongaarts, E. H. Shen, L. Ng et al., An anatomically comprehensive atlas of the adult human brain transcriptome, Nature 489, vol.7416, pp.391-399, 2012.

. Hca-consortium, Single-cell RNA sequencing: Technical advancements and biological applications, Molecular Aspects of Medicine, vol.59, pp.36-46, 2017.

M. Herriges and E. E. Morrisey, Lung development: Orchestrating the generation and regeneration of a complex organ, pp.502-513, 2014.

M. J. Herring, L. F. Putney, G. Wyatt, W. E. Finkbeiner, and D. M. Hyde, Growth of alveoli during postnatal development in humans based on stereological estimation, American Journal of Physiology -Lung Cellular and Molecular Physiology, vol.307, pp.338-344, 2014.

S. C. Hicks, F. W. Townes, M. Teng, and R. A. Irizarry, Missing data and technical variability in single-cell RNA-sequencing experiments, Biostatistics 19, vol.4, pp.562-578, 2017.

B. Hie, B. Bryson, and B. Berger, Efficient integration of heterogeneous single-cell transcriptomes using Scanorama, Nature Biotechnology, vol.37, pp.685-691, 2019.

B. L. Hogan, C. E. Barkauskas, H. A. Chapman, J. A. Epstein, R. Jain et al., Repair and regeneration of the respiratory system: Complexity, plasticity, and mechanisms of lung stem cell function, Cell Stem Cell, vol.15, pp.123-138, 2014.

K. U. Hong, S. D. Reynolds, A. Giangreco, C. M. Hurley, and B. R. Stripp, Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvidepletion, American Journal of Respiratory Cell and Molecular Biology, vol.24, pp.671-681, 2001.

K. U. Hong, S. D. Reynolds, S. Watkins, E. Fuchs, and B. R. Stripp, ). Micrographia, or, Some physiological descriptions of minute bodies made by magnifying glasses : with observations and inquiries thereupon. London : Printed for James Allestry, American Journal of Pathology, vol.164, pp.577-588, 2004.

C. H. Hung, L. C. Chen, Z. Zhang, B. Chowdhury, W. L. Lee et al., Regulation of TH2 responses by the pulmonary Clara cell secretory 10-kd protein, Journal of Allergy and Clinical Immunology, vol.114, pp.664-670, 2004.

B. Hwang, J. H. Lee, and D. Bang, Single-cell RNA sequencing technologies and bioinformatics pipelines, 2018.

T. Ilicic, J. K. Kim, A. A. Kolodziejczyk, F. O. Bagger, D. J. Mccarthy et al., Classification of low quality cells from single-cell RNA-seq data, Genome Biology 17, vol.1, p.29, 2016.

K. Imkamp, M. Berg, C. J. Vermeulen, I. H. Heijink, V. Guryev et al., Nasal epithelium as a proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci, Journal of Allergy and Clinical Immunology, vol.142, pp.314-317, 2018.

S. Islam, U. Kjallquist, A. Moliner, P. Zajac, J. Fan et al., Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq, African journal of paediatric surgery : AJPS 7.3, pp.194-200, 2011.

S. Islam, A. Zeisel, S. Joost, G. L. Manno, P. Zajac et al., Quantitative single-cell RNA-seq with unique molecular identifiers, Nature methods 11, pp.163-169, 2014.

A. Iwasaki, E. F. Foxman, and R. D. Molony, Early local immune defenses in the respiratory tract, Nat Rev Immunol, vol.17, pp.7-20, 2017.

D. A. Jaitin, E. Kenigsberg, H. Keren-shaul, N. Elefant, F. Paul et al., Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types, Science 343.6172, pp.776-779, 2014.

M. Jänicke, T. J. Carney, and M. Hammerschmidt, Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo, Developmental Biology, vol.307, pp.258-271, 2007.

R. Jankowski and S. Márquez, Embryology of the nose: The evo-devo concept, In: World Journal of Otorhinolaryngology, vol.6, p.33, 2016.

H. M. Kang, M. Subramaniam, S. Targ, M. Nguyen, L. Maliskova et al., Multiplexed droplet single-cell RNA-sequencing using natural genetic variation, Nature Biotechnology, vol.36, issue.1, pp.89-94, 2018.

N. Karaiskos, P. Wahle, J. Alles, A. Boltengagen, S. Ayoub et al., The Drosophila embryo at single-cell transcriptome resolution, Science 358, vol.6360, pp.194-199, 2017.

G. Kelsey, O. Stegle, and W. Reik, Single-cell epigenomics: Recording the Past and Predicting the Future, Biochemistry and Molecular Biology Education 75, pp.69-75, 2017.

M. Kesimer, C. Ehre, K. A. Burns, C. W. Davis, J. K. Sheehan et al., Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways, Mucosal Immunology, vol.6, pp.379-392, 2013.

P. V. Kharchenko, L. Silberstein, and D. T. Scadden, Bayesian approach to singlecell differential expression analysis, Nature Methods 11, pp.740-742, 2014.

V. Y. Kiselev, K. Kirschner, M. T. Schaub, T. Andrews, A. Yiu et al., SC3: consensus clustering of single-cell RNA-seq data, Nature methods 14, vol.5, 2017.

T. Kivioja, A. Vähärautio, K. Karlsson, M. Bonke, M. Enge et al., Counting absolute numbers of molecules using unique molecular identifiers, Nature Methods 9, pp.72-74, 2011.

A. M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres et al., Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell 161.5, pp.1187-1201, 2015.

M. W. Konstan, P. Cheng, and T. F. Boat, A Comparative Study of Lysozyme and Its Secretion by Tracheal Epithelium, pp.175-181, 1982.

K. D. Korthauer, L. Chu, M. A. Newton, Y. Li, J. Thomson et al., scDD: A statistical approach for identifying differential distributions in single-cell RNA-seq experiments, p.35501, 2015.

K. Kurimoto, Y. Yabuta, Y. Ohinata, Y. Ono, K. D. Uno et al., An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis, Nucleic Acids Research, vol.34, 2006.

L. Lun, A. T. , K. Bach, and J. C. Marioni, Pooling across cells to normalize single-cell RNA sequencing data with many zero counts, Genome Biology 17.1, 2016.

L. Manno, G. , R. Soldatov, A. Zeisel, E. Braun et al., RNA velocity of single cells, pp.494-498, 2018.

G. Lamblin, J. P. Aubert, J. M. Perini, A. Klein, N. Porchet et al., Human respiratory mucins, European Respiratory Journal, vol.5, pp.247-256, 1992.

P. R. Langer-safer, M. Levine, and D. C. Ward, Immunological method for mapping genes on Drosophila polytene chromosomes (biotin-labeled DNA/antibiotin/fluorescence microscopy/immunoperoxidase localization, Genetics 79.July, pp.4381-4385, 1982.

J. H. Levine, E. F. Simonds, S. C. Bendall, K. L. Davis, E. A. Amir et al., Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis, Cell 162.1, pp.184-197, 2015.

Y. Lin, K. Golovnina, Z. Chen, H. N. Lee, Y. L. Negron et al., Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster, BMC genomics, vol.17, p.28, 2016.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology 15, vol.12, pp.1-21, 2014.

M. D. Luecken and F. J. Theis, Current best practices in single-cell RNA-seq analysis: a tutorial, Molecular Systems Biology 15.6, e8746, 2019.

A. Lun, Overcoming systematic errors caused by log-transformation of normalized single-cell RNA sequencing data, p.404962, 2018.

A. T. Lun, D. J. Mccarthy, and J. C. Marioni, A step-by-step workflow for low-level analysis of single cell RNAseq data, p.1000, 2016.

A. Lun, S. Riesenfeld, T. Andrews, T. P. Dao, and T. Gomes, Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data, p.234872, 2018.

L. Maaten, G. Van-der, and . Hinton, Visualizing Data using t-SNE, Journal of Machine Learning Research, pp.2579-2605, 2008.

E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar et al., Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell 161.5, pp.1202-1214, 2015.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol.1, pp.281-297, 1967.

B. Marcet, F. Libert, J. M. Boeynaems, and D. Communi, Extracellular nucleotides induce COX-2 up-regulation and prostaglandin E2 production in human A549 alveolar type II epithelial cells, European Journal of Pharmacology, vol.566, issue.1-3, pp.167-171, 2007.

D. J. Mccarthy, Y. Chen, and G. K. Smyth, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation, Nucleic Acids Research, vol.40, pp.4288-4297, 2012.

D. J. Mccarthy, K. R. Campbell, A. T. Lun, and Q. F. Wills, scater: preprocessing, quality control, normalisation and visualisation of single-cell RNA-seq data in R, vol.3, p.69633, 2016.

C. M. Mcdougall, M. G. Blaylock, J. G. Douglas, R. J. Brooker, P. J. Helms et al., Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies, American Journal of Respiratory Cell and Molecular Biology, vol.39, pp.560-568, 2008.

C. S. Mcginnis, L. M. Murrow, and Z. J. Gartner, DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors, Cell Systems 8.4, pp.329-337, 2019.

L. Mcinnes, J. Healy, J. Melville, R. R. Mercer, M. L. Russell et al., UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, In: American journal of respiratory cell and molecular biology, vol.10, pp.613-624, 1994.

E. Mereu, G. Iacono, A. Guillaumet-adkins, C. Moutinho, G. Lunazzi et al., matchSCore: Matching Single-Cell Phenotypes Across Tools and Experiments". In: bioRxiv, p.314831, 2018.

D. T. Montoro, A. L. Haber, M. Biton, V. Vinarsky, B. Lin et al., A revised airway epithelial hierarchy includes CFTR-expressing ionocytes, Nature, 2018.

A. E. Moor and S. Itzkovitz, Spatial transcriptomics: paving the way for tissuelevel systems biology, Current Opinion in Biotechnology, vol.46, pp.126-133, 2017.

M. Mori, J. E. Mahoney, M. R. Stupnikov, J. R. Paez-cortez, A. D. Szymaniak et al., Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors, pp.258-267, 2015.

M. J. Muraro, G. Dharmadhikari, D. Grün, N. Groen, T. Dielen et al., A Single-Cell Transcriptome Atlas of the Human Pancreas, pp.385-394, 2016.

U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha et al., The transcriptional landscape of the yeast genome defined by RNA sequencing, Science 320, vol.5881, pp.1344-1349, 2008.

M. Z. Nikoli?, O. Caritg, Q. Jeng, J. A. Johnson, D. Sun et al., Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids, pp.1-33, 2017.

J. Ordovas-montanes, D. F. Dwyer, S. K. Nyquist, K. M. Buchheit, M. Vukovic et al., Allergic inflammatory memory in human respiratory epithelial progenitor cells, Nature 560, vol.7720, pp.649-654, 2018.

J. Pan, .. L. Adair-kirk, .. C. Patel, T. Huang, N. S. Yozamp et al., Myb Permits Multilineage Airway Epithelial Cell Differentiation, pp.3245-3256, 2014.

S. Parekh, C. Ziegenhain, B. Vieth, W. Enard, and I. Hellmann, zUMIs -A fast and flexible pipeline to process RNA sequencing data with UMIs, GigaScience 7.6, pp.1-9, 2018.

J. A. Park and D. J. Tschumperlin, Chronic intermittent mechanical stress increases MUC5AC protein expression, American Journal of Respiratory Cell and Molecular Biology, vol.41, pp.459-466, 2009.

J. Park, K. Polanski, K. Meyer, and S. A. Teichmann, Fast Batch Alignment of Single Cell Transcriptomes Unifies Multiple Mouse Cell Atlases into an Integrated Landscape, pp.0-27, 2018.

K. Park, T. R. Korfhagen, M. D. Bruno, J. A. Kitzmiller, H. Wan et al., Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis , asthma , and chronic obstructive pulmonary disease . In the present work , mouse SAM pointed domain-containing ETS t, J Clin Invest, vol.117, pp.978-988, 2007.

K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11, pp.559-572, 1901.

T. Peng, D. B. Frank, R. S. Kadzik, M. P. Morley, K. S. Rathi et al., Hedgehog actively maintains adult lung BIBLIOGRAPHY quiescence and regulates repair and regeneration, pp.578-582, 2015.

T. Peng, Y. Tian, C. J. Boogerd, M. M. Lu, R. S. Kadzik et al., Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor, Nature 500, vol.7464, pp.589-592, 2013.

M. Perez-moreno, C. Jamora, and E. Fuchs, Sticky business: Orchestrating cellular signals at adherens junctions, pp.108-117, 2003.

S. Picelli, O. R. Faridani, Å. K. Björklund, G. Winberg, S. Sagasser et al., Full-length RNA-seq from single cells using Smart-seq2, Nature Protocols 9, pp.171-181, 2014.

B. Pijuan-sala, J. A. Griffiths, C. Guibentif, T. W. Hiscock, W. Jawaid et al., A single-cell molecular map of mouse gastrulation and early organogenesis, Nature 566, vol.7745, pp.490-495, 2019.

L. W. Plasscheart, R. ?ilionis, R. Choo-wing, V. Savova, J. Knehr et al., A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte, p.538652, 2018.

N. Porchet and J. Aubert, Les gènes MUC Mucin or not mucin ?, In: Medecine/Sciences, vol.20, issue.5, pp.569-574, 2004.

X. Qiu, A. Hill, J. Packer, D. Lin, Y. A. Ma et al., Single-cell mRNA quantification and differential analysis with Census, Nature Methods, vol.14, pp.309-315, 2017.

J. Raidt, J. Wallmeier, R. Hjeij, J. G. Onnebrink, P. Pennekamp et al., Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia, European Respiratory Journal, vol.44, pp.1579-1588, 2014.

A. Raj, P. Van-den-bogaard, S. A. Rifkin, A. Van-oudenaarden, and S. Tyagi, Imaging individual mRNA molecules using multiple singly labeled probes, Education and Ageing 5.048853, pp.1-40, 2008.

A. Raj and A. Van-oudenaarden, Stochastic Gene Expression and Its Consequences, Cell 135, vol.2, pp.216-226, 2008.

D. Ramskold, S. Luo, Y. Wang, R. Li, . Deng et al., Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells, Nature Biotechnology, vol.47, pp.777-782, 2012.

P. Rao-tata and J. , Plasticity in the lung: Making and breaking cell identity, pp.755-766, 2017.

L. Reid, B. Meyrick, V. B. Antony, L. Chang, J. D. Crapo et al., Summary The Mysterious Pulmonary Brush Cell A Cell in Search of a Function, pp.136-139, 2005.

P. A. Reyfman, J. M. Walter, N. Joshi, K. R. Anekalla, A. C. Mcquattie-pimentel et al., Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis, vol.0, pp.1-75, 2018.

N. Riaz, S. L. Wolden, D. Y. Gelblum, and J. Eric, Differential Response of Human Nasal and Bronchial Epithelial Cells upon Exposure to Size-fractionated Dairy Dust Brie, pp.6072-6078, 2016.

D. Risso, F. Perraudeau, S. Gribkova, S. Dudoit, and J. Vert, ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data, 2017.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, vol.43, p.47, 2015.

N. Roberts, R. Mubarak, D. Francisco, M. Kraft, and H. W. Chu, Comparison of paired human nasal and bronchial airway epithelial cell responses to rhinovirus infection and IL-13 treatment, Clinical and Translational Medicine, 2018.

M. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology 11.3, R25, 2010.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: A Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics 26.1, pp.139-140, 2009.

J. R. Rock, M. W. Onaitis, E. L. Rawlins, Y. Lu, C. P. Clark et al., Basal cells as stem cells of the mouse trachea and human airway epithelium, Endocrinology 154, vol.2, pp.738-748, 2013.

J. R. Rock, C. E. Barkauskas, M. J. Cronce, Y. Xue, J. R. Harris et al., Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition, Proceedings of the National Academy of Sciences of the United States of America, 2011.

D. F. Rogers, Airway goblet cells: responsive and adaptable front-line defenders, pp.1690-1706, 1994.

A. Rotem, O. Ram, N. Shoresh, R. A. Sperling, A. Goren et al., Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state HHS Public Access Author manuscript, Nat Biotechnol, vol.33, pp.1165-1172, 2015.

A. D. Ruscio, A. K. Ebralidze, T. Benoukraf, L. A. Goff, J. Terragni et al., Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution, Nature Genetics, vol.503, pp.371-376, 2014.

A. B. Russell, C. Trapnell, and J. D. Bloom, Extreme heterogeneity of influenza virus infection in single cells, pp.1-26, 2018.

W. Saelens, R. Cannoodt, and Y. T. Helenasaeys, A comparison of singlecell trajectory inference methods: towards more accurate and robust tools, Nature Biotechnology, vol.37, pp.547-554, 2018.

N. Schaum, J. Karkanias, N. F. Neff, A. P. May, S. R. Quake et al., Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris, Nature, vol.562, pp.367-372, 2018.

C. Schemberg, DoubletDetection". In: Achieving 'At-one-ment, pp.1-2, 2016.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270, vol.5235, pp.467-470, 1995.

P. R. Sears, C. W. Davis, M. Chua, and J. K. Sheehan, Mucociliary interactions and mucus dynamics in ciliated human bronchial epithelial cell cultures, American Journal of Physiology -Lung Cellular and Molecular Physiology, vol.301, pp.181-186, 2011.

S. Semrau, N. Crosetto, M. Bienko, M. Boni, P. Bernasconi et al., FuseFISH: Robust detection of transcribed gene fusions in single cells, Cell Reports, vol.6, issue.1, pp.18-23, 2014.

M. Setty, V. Kiseliovas, J. Levine, A. Gayoso, L. Mazutis et al., Palantir characterizes cell fate continuities in human hematopoiesis, Biorchiv, 2018.

M. Setty, M. D. Tadmor, S. Reich-zeliger, O. Angel, T. M. Salame et al., Wishbone identifies bifurcating developmental trajectories from single-cell data, Nature Biotechnology, vol.34, pp.637-645, 2016.

A. K. Shalek and M. Benson, Single-cell analyses to tailor treatments, Science Translational Medicine, vol.9, pp.1-4, 2017.

J. M. Shannon, L. D. Nielsen, S. A. Gebb, and S. H. Randell, Mesenchyme specifies epithelial differentiation in reciprocal recombinants of embryonic lung and trachea, vol.212, pp.482-494, 1998.

E. Shebani, S. Shahana, C. Janson, and G. M. Roomans, Attachment of columnar airway epithelial cells in asthma, Tissue and Cell, vol.37, pp.145-152, 2005.

E. Shema, B. E. Bernstein, and J. D. Buenrostro, Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution, Nature Genetics, vol.51, issue.1, pp.19-25, 2019.

V. Sivakamasundari, M. Bolisetty, S. Sivajothi, S. Bessonett, D. Ruan et al., Comprehensive Cell Type Specific Transcriptomics of the Human Kidney, 2017.

C. Soneson and M. D. Robinson, Bias, robustness and scalability in single-cell differential expression analysis, Nature Methods, vol.15, pp.255-261, 2018.

R. Stark, M. Grzelak, and J. Hadfield, RNA sequencing: the teenage years, Nature Reviews Genetics, 2019.

K. Street, D. Risso, R. B. Fletcher, D. Das, J. Ngai et al., Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics, p.128843, 2017.

B. R. Stripp and S. D. Reynolds, Maintenance and repair of the bronchiolar epithelium, Proceedings of the American Thoracic Society 5.3, pp.328-333, 2008.

M. Strunz, L. M. Simon, M. Ansari, L. F. Mattner, I. Angelidis et al., Longitudinal single cell transcriptomics reveals Krt8 + alveolar epithelial progenitors in lung regeneration, 2019.

T. Stuart and R. Satija, Integrative single-cell analysis, Nature Reviews Genetics, vol.20, pp.257-272, 2019.

H. G. Stunnenberg, S. Abrignani, D. Adams, M. De-almeida, L. Altucci et al., The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery, Cell 167.5, pp.1145-1149, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01614945

P. Sui, D. L. Wiesner, J. Xu, Y. Zhang, J. Lee et al., Pulmonary neuroendocrine cells amplify allergic asthma responses, 2018.

V. Svensson, R. Vento-tormo, and S. A. Teichmann, Exponential scaling of singlecell RNA-seq in the past decade, Nature Protocols 13, vol.4, pp.599-604, 2018.

F. Tang, C. Barbacioru, Y. Wang, E. Nordman, C. Lee et al., mRNA-Seq whole-transcriptome analysis of a single cell, Nature Methods, vol.6, pp.377-382, 2009.

A. Tata, Y. Kobayashi, R. D. Chow, J. Tran, A. Desai et al., Myoepithelial Cells of Submucosal Glands Can Function as Reserve Stem Cells to Regenerate Airways after Injury, Cell Stem Cell, vol.22, pp.668-683, 2018.

M. S. Taylor, R. R. Chivukula, L. C. Myers, W. R. Jeck, A. Waghray et al., A Conserved Distal Lung Regenerative Pathway in Acute Lung Injury, American Journal of Pathology, vol.188, pp.1149-1160, 2018.

C. Trapnell and D. Cacchiarelli, Monocle: Cell counting, differential expression, and trajectory analysis for single-cell RNA-Seq experiments, 2016.

C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nature biotechnology, vol.32, pp.381-387, 2014.

K. J. Travaglini, A. N. Nabhan, L. Penland, R. Sinha, A. Gillich et al., A molecular cell atlas of the human lung from single cell RNA sequencing, vol.7191, p.742320, 2019.

B. Treutlein, D. G. Brownfield, A. R. Wu, N. F. Neff, G. L. Mantalas et al., Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq, Nature 509, vol.7500, pp.371-375, 2014.

P. Tsao, M. Vasconcelos, K. I. Izvolsky, J. Qian, J. Lu et al., Notch signaling controls the balance of ciliated and secretory cell fates in developing airways, Development 136.13, pp.2297-2307, 2009.

C. A. Vallejos, D. Risso, A. Scialdone, S. Dudoit, and J. C. Marioni, Normalizing single-cell RNA sequencing data: challenges and opportunities, Nature Methods, vol.14, 2017.

V. E. Velculescu, L. Zhang, W. Zhou, J. Vogelstein, M. A. Basrai et al., Characterization of the yeast transcriptome, Cell 88, vol.2, pp.243-251, 1997.

V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler, Serial analysis of gene expression (SAGE), Methods in molecular biology 270.October, pp.484-487, 1995.

R. Vento-tormo, M. Efremova, R. A. Botting, M. Y. Turco, M. Vento-tormo et al., Single-cell reconstruction of the early maternal-fetal interface in humans, Nature 563.7731, pp.347-353, 2018.

F. A. Vieira-braga, G. Kar, M. Berg, O. A. Carpaij, K. Polanski et al., A cellular census of human lungs identifies novel cell states in health and in asthma, Nature Medicine, 2019.

T. Volckaert, T. Yuan, C. M. Chao, H. Bell, A. Sitaula et al., Fgf10-Hippo Epithelial-Mesenchymal Crosstalk Maintains and Recruits Lung Basal Stem Cells, Developmental Cell, vol.43, issue.1, pp.48-59, 2017.

J. Von-moltke, M. Ji, H. E. Liang, and R. M. Locksley, Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit, Nature 529, vol.7585, pp.221-225, 2016.

A. Wagner, A. Regev, and N. Yosef, Revealing the vectors of cellular identity with single-cell genomics, Nature Biotechnology, vol.34, issue.11, pp.1145-1160, 2016.

Z. Waks, A. M. Klein, and P. A. Silver, Cell-to-cell variability of alternative RNA splicing, Molecular Systems Biology 7.506, pp.1-12, 2011.

B. Wang, J. Zhu, E. Pierson, D. Ramazzotti, and S. Batzoglou, Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning, Nature Methods, vol.14, pp.414-416, 2017.

J. K. Watson, S. Rulands, A. C. Wilkinson, A. Wuidart, M. Ousset et al., Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium, Cell Reports, vol.12, issue.1, pp.90-101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02379286

M. J. Webster and R. Tarran, Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration, vol.81, pp.293-335, 2018.

C. Weinreb, S. Wolock, and A. M. Klein, SPRING: A kinetic interface for visualizing high dimensional single-cell expression data, Bioinformatics 34.7, pp.1246-1248, 2018.

J. A. Whitsett, Airway Epithelial Differentiation and Mucociliary Clearance, pp.0-3

J. H. Widdicombe and J. J. Wine, Airway Gland Structure and Function, AIRWAY GLAND STRUCTURE AND FUNCTION, vol.95, pp.1241-1319, 2015.

C. Wijkstrom-frei, S. El-chemaly, R. Ali-rachedi, C. Gerson, M. A. Cobas et al., Lactoperoxidase and human airway host defense, American Journal of Respiratory Cell and Molecular Biology, vol.29, pp.206-212, 2003.

A. Winkelmann and T. Noack, The Clara cell: A "Third Reich eponym, European Respiratory Journal, vol.36, pp.722-727, 2010.

F. A. Wolf, F. K. Hamey, M. Plass, J. Solana, J. S. Dahlin et al., PAGA : graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells, Genome Biology, pp.1-9, 2019.

F. A. Wolf, P. Angerer, and F. J. Theis, SCANPY: Large-scale single-cell gene expression data analysis, Genome Biology 19.1, pp.1-5, 2018.

S. L. Wolock, R. Lopez, and A. M. Klein, Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data, Cell Systems 8.4, pp.281-291, 2019.

Y. Xu, T. Mizuno, A. Sridharan, Y. Du, M. Guo et al., Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis, JCI Insight 1.20, pp.1-18, 2016.

A. Yen, P. Kheradpour, Z. Zhang, A. Heravi-moussavi, Y. Liu et al., Integrative analysis of 111 reference human epigenomes, Nature 518, vol.7539, pp.317-330, 2015.

M. D. Young and S. Behjati, SoupX removes ambient RNA contamination from droplet based single cell RNA sequencing data, p.303727, 2018.

R. Yuste, Fluorescence microscopy today, Nature Methods 2, vol.12, pp.902-904, 2005.

L. Zappia, A. B.-phipson, R. Oshlack, F. Children, P. Rd et al., Splatter : simulation of single-cell RNA sequencing data, pp.1-36, 2017.

A. Zeisel, A. B. Manchado, S. Codeluppi, P. Lonnerberg, G. L. Manno et al., Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Science 347, vol.6226, pp.1138-1180, 2015.

J. A. Zepp and E. E. Morrisey, Cellular crosstalk in the development and regeneration of the respiratory system, 2019.

W. Zhang, X. Qu, B. Chen, M. Snyder, B. Li et al., Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1, Nature 133.1, pp.48-61, 2017.

G. X. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent et al., Massively parallel digital transcriptional profiling of single cells, Nature Communications, vol.8, pp.1-12, 2017.

C. Zhu, Y. Gao, H. Guo, B. Xia, J. Song et al., Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution, Cell Stem Cell, vol.20, pp.720-731, 2017.

Y. Y. Zhu, E. M. Machleder, A. Chenchik, R. Li, P. D. Siebert et al., Reverse Transcriptase Template Switching -BioTechniques". In: BioTechniques, pp.892-897, 2001.

C. Ziegenhain, B. Vieth, S. Parekh, B. Reinius, A. Guillaumet-adkins et al., Comparative Analysis of Single-Cell RNA Sequencing Methods". In: Molecular Cell, vol.65, pp.631-643, 2017.

C. References and . Aggarwal, On k-anonymity and the curse of dimensionality, Proceedings of the 31st VLDB Conference, 2005.

D. Arthur and S. Vassilvitski, k-means++: The advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007.

H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the kurdyka-lojasiewicz inequality, Mathematics of Operations Research, 2010.

F. Bach, G. R. Lanckriet, and M. I. Jordan, Multiple kernel learning, conic duality, and the smo algorithm, Proceedings of the Twenty-first International Conference on Machine Learning, 2004.

F. R. Bach, Sharp analysis of low-rank kernel matrix approximations. International Conference on Learning Theory (COLT, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00723365

F. R. Bach and Z. Harchaoui, Diffrac: a discriminative and flexible framework for clustering, Advances in Neural Information Processing Systems, vol.20, pp.49-56, 2008.

M. Barlaud, W. Belhajali, P. L. Combettes, and L. Fillatre, Classification and regression using an outer approximation projection-gradient method, IEEE Transactions on Signal Processing, vol.65, issue.17, pp.4635-4644, 2017.

B. Gilet and D. Caillau,

H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643354

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM journal on imaging sciences, vol.2, issue.1, pp.183-202, 2009.

J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, vol.146, issue.1, pp.459-494, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00916090

L. Bottou and Y. Bengio, Convergence properties of the k-means algorithms, Advances in Neural Information Processing Systems, vol.7, pp.585-592, 1995.

S. Boyd and L. Vandenberghe, Convex Optimization, 2009.

F. Bunea, C. Giraud, M. Royer, and N. Verzelen, PECOK: A convex optimization approach to variable clustering, 2016.

E. J. Candès, The restricted isometry property and its implications for compressed sensing, Comptes Rendus Acad Sciences, vol.346, issue.1, pp.589-592, 2008.

E. J. Candès, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted 1 minimization, Journal of Fourier analysis and applications, vol.14, issue.5-6, pp.877-905, 2008.

A. Chambolle and C. , On the convergence of the iterates of "fista, Journal of Optimization Theory and Applications, vol.166, issue.3, pp.968-982, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01060130

P. L. Combettes and J. Pesquet, Proximal splitting methods in signal processing, Fixed-point algorithms for inverse problems in science and engineering, pp.185-212, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643807

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling & Simulation, vol.4, issue.4, pp.1168-1200, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017649

L. Condat, Fast projection onto the simplex and the l1 ball, Mathematical Programming Series A, vol.158, issue.1, pp.575-585, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01056171

L. Condat, A convex approach to k-means clustering and image segmentation, p.1504799, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01504799

F. De-la-torre and T. Kanade, Discriminative cluster analysis, ICML 06 Proceedings of the 23rd international conference on Machine learning, 2006.

C. Ding and T. Li, Adaptive dimension reduction using discriminant analysis and k-means clustering, Proceedings of the 24th International Conference on Machine Learning, ICML '07, pp.521-528, 2007.

D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization, Proceedings of the National Academy of Sciences, vol.100, issue.5, pp.2197-2202, 2003.

D. L. Donoho and B. F. Logan, Signal recovery and the large sieve, SIAM Journal on Applied Mathematics, vol.52, issue.2, pp.577-591, 1992.

J. Duchi, S. Shalev-shwartz, Y. Singer, and T. Chandra, Efficient projections onto the l 1-ball for learning in high dimensions, Proceedings of the 25th international conference on Machine learning, pp.272-279, 2008.

, K-sparse: clustering with feature selection using alternating minimization

D. Evanko, Method of the year 2013: Methods to sequence the dna and rna of single cells are poised to transform many areas of biology and medicine, Nature Methods, vol.11, 2014.

N. Flammarion, B. Palaniappan, and F. R. Bach, Robust discriminative clustering with sparse regularizers, Journal of Machine Learning Research, vol.18, issue.80, pp.1-50, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01357666

J. Friedman, T. Hastie, and R. Tibshirani, Regularization path for generalized linear models via coordinate descent, Journal of Statistical Software, vol.33, pp.1-122, 2010.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine learning, vol.46, issue.1-3, pp.389-422, 2002.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, The entire regularization path for the support vector machine, Journal of Machine Learning Research, vol.5, pp.1391-1415, 2004.

T. Hastie, R. Tibshirani, and M. Wainwright, Statistcal learning with sparsity: The lasso and generalizations, 2015.

L. Hubert and P. Arabie, Comparing partitions, Journal of Classification, vol.2, issue.1, pp.193-218, 1985.

V. Y. , Sc3: consensus clustering of single-cell rna-seq data, Nature Methods, 2017.

A. M. , Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, 2015.

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino et al., Feature selection: A data perspective, ACM Computing Surveys, vol.50, 2016.

P. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, vol.16, issue.6, pp.964-979, 1979.

J. Mcqueen, Some methods for classification and analysis of multivariate observations, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967.

D. G. Mixon, S. Villar, and R. Ward, Clustering subgaussian mixtures with k-means. Information and inference, vol.00, pp.1-27, 2017.

S. Mosci, L. Rosasco, M. Santoro, A. Verri, and S. Villa, Solving structured sparsity regularization with proximal methods, Machine Learning and Knowledge Discovery in Databases, pp.418-433, 2010.

A. Y. Ng, Feature selection, 1 vs. 2 regularization, and rotational invariance, Proceedings of the twenty-first international conference on Machine learning, p.78, 2004.

A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, Advances in Neural Information Processing Systems, vol.14, pp.849-856, 2002.

N. Parikh and S. Boyd, Proximal Algorithms. Foundations and Trends in Optimization, 2014.

J. Peng and Y. Wei, Approximating k-means-type clustering via semidefinite programming, SIAM J. Optim, vol.18, pp.186-205, 2017.

M. Radovanovic, A. Nanopoulos, and M. Ivanovic, Hubs in space : Popular nearest neighbors in high-dimensional data, Journal of Machine Learning Research, vol.11, 2010.

B. Gilet and D. Caillau,

J. Peter and . Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, vol.20, pp.53-65, 1987.

S. Z. Selim and M. A. Ismail, K-means-type algorithms: A generalized convergence theorem and characterization of local optimality, IEEE Trans. Patt. An. Machine Intel., PAMI, vol.6, pp.81-87, 1984.

S. K. Shevade and S. S. Keerthi, A simple and efficient algorithm for gene selection using sparse logistic regression, Bioinformatics, vol.19, issue.17, pp.2246-2253, 2003.

S. Sra, S. Nowozin, and S. J. Wright, Optimization for Machine Learning, 2012.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.

R. Tibshirani, G. Walther, and T. Hastie, Estimating the number of clusters in a data set via the gap statistic, Journal of the Royal Statistical Society. Series B (Methodological), pp.411-423, 2001.

D. Usoskin, A. Furlan, S. Islam, H. Abdo, P. Lönnerberg et al., Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing, Nature Neuroscience, vol.18, pp.145-153, 2015.

L. J. Van-der-maaten and G. E. Hinton, Visualizing high-dimensional data using t-sne, Journal of Machine Learning Research, vol.9, pp.2579-2605, 2008.

U. and V. Luxburg, A tutorial on spectral clustering, Statistics and computing, 2007.

B. Wang, J. Zhu, E. Pierson, D. Ramazzotti, and S. Batzoglou, Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning, Nature methods, vol.14, pp.414-416, 2017.

P. Wei and S. Xiaotong, Penalized model-based clustering with application to variable selection, Journal of Machine Learning Research, vol.8, issue.2, pp.1145-1164, 2007.

C. Wei-chien, On using principal components before separating a mixture of two multivariate normal distributions, Journal of the Royal Statistical Society, vol.32, issue.3, 1983.

D. Witten and R. Tibshirani, A framework for feature selection in clustering, Journal of the American Statistical Association, vol.105, issue.490, pp.713-726, 2010.

A. Zeisel, A. B. Muñoz-manchado, S. Codeluppi1, P. Lönnerberg, G. L. Manno et al., Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq, Science, vol.347, issue.6226, pp.1138-1142, 2015.

, RNA was extracted with the miRNeasy mini kit (Qiagen) following manufacturer's instructions. mRNA-seq was performed from 2 ?g of RNA that was first subjected to mRNA selection with Dynabeads® mRNA Purification Kit (Invitrogen). mRNA was fragmented 10 min at 95°C in RNAseIII buffer (Invitrogen) then adapter-ligated, reverse transcribed and amplified (6 cycles) with the reagents from the NEBNext Small RNA Library Prep Set for SOLiD. Small RNA-seq was performed from 500 ng RNA with the NEBNext Small RNA Library Prep Set for SOLiD (12 PCR cycles) according to manufacturer's instructions. Both types of amplified libraries were purified on Purelink PCR micro kit (Invitrogen), then subjected to additional PCR rounds (8 cycles for RNA-seq and 4 cycles for small RNA-seq) with primers from the 5500 W Conversion Primers Kit (Life Technologies), RNA sequencing of HAECs. For Supplementary Fig. 2B, three independent HAEC cultures (HAEC1, HAEC2, HAEC3) were triggered to differentiate in air-liquid interface (ALI) cultures for 2 days (ALI day, vol.2

A. Kit, SOLiD data were analyzed with lifescope v2.5.1, using the small RNA pipeline for miRNA libraries and whole transcriptome pipeline for RNA-seq libraries with default parameters. Annotation files used for production of raw count tables correspond to Refseq Gene model v20130707 for mRNAs and miRBase v18 for small RNAs. Data generated from RNA sequencing were then analyzed with Bioconductor, Caliper Lifesciences), and finally quantified with the Bioanalyzer High Sensitivity DNA Kit (Agilent)

R. Xenopus-e2f4-chip-seq, Reads from ChIP-seq were mapped to the X. laevis genome release 7.1 using Bowtie2 50 . Peaks were called and annotated according to their positions on known exons with HOMER 51 . Peak enrichments of E2F4 binding site in the promoters of centriole genes and cell cycle genes 9 were estimated in presence or absence of Multicilin and a ratio of E2F4 binding (Multicilin vs no Multicilin) was calculated. Promoter reporter studies. The human CDC20B promoter was cloned into the pGL3 Firefly Luciferase reporter vector (Promega) with SacI and NheI cloning sites. The promoter sequenced ranged from ?1073 to +104 relative to the transcription start site. 37.5 ng of pGL3 plasmid were applied per well. pCMV6-Neg, pCMV6-E2F1 (NM_005225) and pCMV6-E2F4 (NM_001950) constructs were from Origene. 37.5 ng of each plasmid was applied per well. 25 ng per well of pRL-CMV (Promega) was applied in the transfection mix for transfection normalization (Renilla luciferase). HEK 293T cells were seeded at 20,000 cells per well on 96-well plates. The following day, cells were transfected with the indicated plasmids (100 ng of total DNA) with lipofectamine 3000 (Invitrogen), RNA-seq (samples GSM1434783 to GSM1434788) and ChIP-seq (samples GSM1434789 to GSM1434792) data were downloaded from GSE59309. Reads from RNA-seq were aligned to the Xenopus laevis genome release 7.1 using TopHat2 47 with default parameters. Quantification of genes was then performed using HTSeq-count 48 release 0.6.1 with "-m intersection-nonempty" option. Normalization and statistical analysis were performed using Bioconductor package DESeq2 49

. Animals, on the protection of animals used for scientific purposes. Experiments on X. laevis and mouse were approved by the 'Direction départementale de la Protection des Populations, Pôle Alimentation, issue.14, pp.62-12112012, 2010.

, Pericentrin was revealed using Alexa 514 (detection 535-564 nm, depletion 660 nm), ?-tubulin was revealed using Alexa 568 (detection 582-667 nm, depletion 775), and FOP was revealed using Alexa 488 (detection 498-531 nm, depletion 592 nm). Pictures were deconvoluted using Huygens software. Maximum intensity projection of 3 deconvoluted pictures is presented in Fig. 4g. Primary antibodies: rabbit anti-CDC20B (1:500; Proteintech, 133376-1-AP), mouse IgG anti-PLK1 (1:500; Ther-moFisher, 33-1700), rabbit anti-Pericentrin (1:500, Abcam, ab4448), mouse IgG1 anti-FoxJ1 (1:1000; eBioscience, Dissected brains were subjected to 12 min fixation in 4% paraformaldehyde, 0.1% Triton X-100, blocked 1 h in PBS, 3% BSA, incubated overnight with primary antibodies diluted in PBS, 3% BSA, and incubated 1 h with secondary antibodies at room temperature, p.250

. Abcam, Ab 11316), rabbit anti-ZO1 (1:600; ThermoFisher Scientific, 61-7300), rabbit anti-Spag5 (1:500; Proteintech, 14726-1-AP), mouse IgG1 anti-ZO1 (1:600; Invitrogen, mouse IgG2b anti-FGFR1OP (FOP), pp.33-9100, 2000.

H. Abnova, A-11034), Alexa Fluor 647 goat antirabbit (1:800; ThermoFisher Scientific, A-21244), Alexa Fluor 514 goat anti-rabbit (1:800; ThermoFisher Scientific, A-31558), Alexa Fluor 488 goat anti-mouse IgG2b (1:800; ThermoFisher Scientific, A-21141), Alexa Fluor 568 goat anti-mouse IgG2b (1:800; ThermoFisher Scientific, A-21144), Alexa Fluor 488 goat anti-mouse IgG2a (1:800, mouse IgG1 anti-?tubulin (1:500; Sigma-Aldrich, T9026). Secondary antibodies: Alexa Fluor 488 goat anti-rabbit, vol.647, p.800

, Expression constructs containing shRNA targeting specific sequences in the CDC20B coding sequence under the control of the U6 promoter were obtained from Sigma-Aldrich (ref. TRCN0000088273 (sh273), TRCN0000088274 (sh274), TRCN0000088277 (sh277)). PCX-mcs2-GFP vector (Control GFP) kindly provided by Xavier Morin

, Electroporated animals were reanimated in a 37°C incubator before returning to the mother. Statistical analyses of mouse experiments. Analysis of CDC20B signal intensity in deuterosomes (dot plot in Fig. 3b). For each category, >25 cells from two different animals were analyzed. Deuterosome regions were delineated based on FOP staining and the intensity of CDC20B fluorescent immunostaining was recorded using ImageJ software, and expressed as arbitrary units, P1 pups were anesthetized by hypothermia

*. Mature, Analysis of the number of centrioles per cell at 15dpe (Fig. 4j): > 100 cells were analyzed per condition. n = 3, 3, 3, and 3 animals for sh control, sh273, sh274, and sh277, respectively, from two independent experiments. Unpaired t test vs sh control: p < 0.0001 (sh273, sh274, sh277 ****). Analysis of ependymal cell categories at 15dpe (Fig. 4k): Data are mean ± sem from three independent experiments. More than 500 cells were analyzed for each condition, Analysis of Cdc20b shRNAs efficiency (Fig. 4c): For each cell at the deuterosomal stage, the intensity of CDC20B fluorescent immunostaining was recorded using ImageJ software and expressed as arbitrary units

, After dissection, tracheas were placed in cold DMEM:F-12 medium (1:1) supplemented with 15 mM HEPES, 100 U/mL penicillin, 100 ?g/mL streptomycin, 50 ?g/mL gentamicin sulfate, and 2.5 ?g/mL amphotericin B. Each trachea was processed under a binocular microscope to remove as much conjunctive tissue as possible with small forceps and was opened longitudinally with small dissecting scissors. Tracheas were then placed in supplemented DMEM:F-12 containing 0.15% protease XIV from S. griseus. After overnight incubation at 4°C, FCS was added to a final concentration of 10%, and tracheal epithelial cells were detached by gentle agitation, Mouse tracheal epithelial cells (MTECs)

, Cells were plated on regular cell culture plates and maintained in a humidified atmosphere of 5% CO 2 at 37°C for 4 h to allow attachment of putative contaminating fibroblast. Medium containing cells in suspension was further centrifuged at 400×g for 5 min and cells were resuspended in supplemented DMEM:F-12 containing BEGM Singlequots kit supplements and 5% FCS. Cells were plated on rat tail collagen I, FCS

. Transwells®, Air-liquid interface culture was conducted once transepithelial electrical resistance had reached a minimum of 1000 ohm/cm 2 (measured with EVOM2, World Precision Instruments)

, Air-liquid interface culture was obtained by removing medium at the apical side of the Transwell®, and by replacing medium at the basal side with supplemented DMEM:F-12 containing 2% Ultroser-G TM, p.10

, 5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) (Sigma) was added one day after setting-up the air-liquid interface, vol.3

, Immunostaining on HAECs and MTECs. Three days after setting-up the air-liquid interface, MTECs on Transwell membranes were pre-extracted with

, A-11034), Alexa Fluor 647 goat antimouse (1:1000; ThermoFisher Scientific, A-21235). For co-staining of CDC20B and DEUP1, CDC20B primary antibody was directly coupled to CF TM 633 with the Mix-n-Stain TM kit (Sigma-Aldrich) according to the manufacturer's instruction. Coupled primary antibody was applied after secondary antibodies had been extensively washed and after a 30 min blocking stage in 3% normal rabbit serum in PBS. Western blot and immunofluorescence on transfected cells. Cos-1 or Hela cells cells were grown in DMEM supplemented with 10% heat inactivated FCS and transfected with Fugene HD (Roche Applied Science) according to manufacturer's protocol. Transfected or control cells were washed in PBS and lysed in 50 mM Tris HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, containing 1% NP-40 and 0.25% sodium deoxycholate (modified RIPA) plus a Complete Protease Inhibitor Cocktail (Roche Applied Science) on ice. Cell extracts separated on polyacrylamide gels were transfered onto Optitran membrane (Whatman) followed by incubation with rabbit anti-mouse CDC20B (1:500, Proteintech, 24579-1-AP) or homemade rabbit anti-Xenopus Cdc20b (1:300) antibody and horseradish peroxidase conjugated secondary antibody, 5% Triton X-100 in PBS for 3 min, and then fixed with 4% paraformaldehyde in PBS for 15 min at room temperature. HAECs were treated 21 days after setting-up the air-liquid interface. They were fixed directly on Transwells® with 100% cold methanol for 10 min at ?20°C (for CDC20B and Centrin2 co-staining, Supplementary Figure 4a, b) or with 4% paraformaldehyde in PBS for 15 min at room temperature (for CDC20B single staining, p.1000

, using lipofectamine 3000 according to manufacturer's instructions, were rinsed on ice with chilled Ca2+ and Mg2+ free Dulbecco's PBS (DPBS, Invitrogen), harvested using a cell scraper and lysed on ice for 5 min, Asynchronous HEK cells transfected with the plasmids described below

, Incubation was performed overnight at 4°C. Columns were washed and eluted with 50 ?L elution buffer. Samples were denatured at 70°C for 10 min with Bolt? LDS Sample Buffer and Bolt reducing agent, then separated on 4-12% gradient Bolt precast gels (ThermoFisher), transferred onto nitrocellulose (Millipore), and subjected to immunoblot analysis using either anti-CDC20B (Pro-teinTech, 133376-1-AP, 1/500) or anti-c-myc antibody (clone 9E10, 1/1000). In Fig. 6, note that the high level of expression of myc-PLK1 (Fig. 6a) and myc-SPAG5 (Fig. 6b) drained out locally the ECL reagent at the peak of the protein. The resulting double bands correspond in fact to unique ones. Human SPAG5, subcloned into pCMV6-MT, was from OriGene. Human DEUP1 and PLK1 were cloned into pCS2-MT vector (Addgene)

, After concentration on a ?-Precolumn Cartridge Acclaim PepMap 100 C 18 (i.d. 5 mm, 5 ?m, 100 Å, ThermoFisher Scientific) at a flow rate of 10 ?L/min, using a solution of H 2 O/ACN/FA 98%/2%/0.1%, a second peptide separation was performed on a 75 ?m i.d. × 250 mm (3 ?m, 100 Å) Acclaim PepMap 100 C 18 column (ThermoFisher Scientific) at a flow rate of 300 nL/min. Solvent systems were: (A) 100% water, 0.1% FA, (B) 100% acetonitrile, 0.08% FA. The following gradient was used t = 0 min 6% B; t = 3 min 6% B; t = 119 min, 45% B; t = 120 min, 90% B; t = 130 min 90% B (temperature at 35°C). NanoHPLC was coupled via a nanoelectrospray ionization source to the Hybrid Quadrupole-Orbitrap High Resolution Mass Spectrometer (ThermoFisher Scientific). MS spectra were acquired at a resolution of 70,000 (200 m/z) in a mass range of 300-2000 m/z with an AGC target 3e6 value of and a maximum injection time of 100 ms. The 10 most intense precursor ions were selected and isolated with a window of 2 m/z and fragmented by HCD (Higher energy C-Trap Dissociation) with normalized collision energy (NCE) of 27. MS/MS spectra were acquired in the ion trap with an AGC target 2e5 value, the resolution was set at 17 500 at 200 m/z combined with an injection time of 100 ms. Data were reprocessed using Proteome Discoverer 2.1 equipped with Sequest HT. Files were searched against the Swissprot Homo sapiens FASTA database, -gel digestion, NanoHPLC, and Q-exactive plus analysis. For mass spectrometry analysis, protein spots were manually excised from the gel and destained with 100 ?L of H2O/ACN (1/1), 2016.

, For sense probe, it was linearized by SpeI and transcribed by T7. For antisense probe it was linearized by ApaI and transcribed by Sp6 RNA polymerase. Synthetic capped mRNAs were produced with the Ambion mMESSAGE mMACHINE Kit. pCS105/GFP-CAAX was linearized with AseI and mRNA was synthesized with Sp6 polymerase. pCS2-mRFP and pCS2-GFP-gpi were linearized with NotI and mRNA was synthesized with Sp6 polymerase. pCS-Centrin4-YFP (a gift from Reinhard Köster, Technische Universität Braunschweig, Germany) was linearized with Notl and mRNA was synthesized with Sp6 polymerase. pCS2-GFP-Deup1 and pCS2-Multicilin(MCI)-hGR were kindly provided by Chris Kintner; both plasmids were linearized with ApaI, and mRNAs were synthesized with Sp6 polymerase. Embryos injected with MCI-hGR mRNA were cultured in Dexamethasone 20 ?M in MBS 0,1× from st11 until fixation, Xenopus embryo injections, plasmids, RNAs, and morpholinos. Eggs obtained from NASCO females were fertilized in vitro, dejellied and cultured using standard protocols 54

. Venus-cdc20b, Quantities of mRNA injected: 500 pg for GFP-CAAX, RFP, GFP-gpi, Separase and Separase(PD); 25 to 500 pg for GFP-Deup1; 40 to 500 pg for MCI-hGR; 1 ng for Venus-cdc20b, cdc20b-Venus, cdc20b, and cdc20b-RFP; 500 pg to 1 ng for RFP-cdc20b, cdc20b-Venus, and cdc20b were generated by GATEWAY? Cloning Technology

, Spl Mo 5?-acacatggcacaacgtacccacatc-3?. 20 ng of MOs was injected per blastomere or 10 ng of each Mo for co-injection

Q. Pcr and . Rt-qpcr, RT reactions were carried out using iScript? Reverse Transcription Supermix for RT-qPCR (BIO-RAD). qPCR reactions were carried out using SYBRGreen on a CFX Bio-rad qPCR cycler. To check cdc20b temporal expression by qPCR we directed primers to exons 9/10 junction (Forward: 5?-ggctatgaattggtgcccg-3?) and exons 10/11 junction (Reverse: 5?-gcagggagcagatctggg-3?) to avoid amplification from genomic DNA. The relative expression of cdc20b was normalized to the expression of the housekeeping gene ornithine decarboxylase (ODC) for which primers were as follows: forward: 5?-gccattgtgaagactctctccattc-3?: reverse: 5?-ttcgggtgattccttgccac-3?. To check the efficiency of Mo SPL, expected to cause retention of intron 1 in the mature mRNA of cdc20b we directed forward (5?-cctcccgagagttagagga-3?) and reverse (5?-gcatgttgtactttctgctcca-3?) primers in exon 1 and exon2, respectively. To check the expression of p53 in morphants by qPCR, Xenopus embryos were snap frozen at different stages and stored at ?80°C. Total RNAs were purified with a Qiagen RNeasy kit (Qiagen). Primers were designed using Primer-BLAST Software. PCR reactions were carried out using GoTaq® G2 Flexi DNA Polymerase (Promega)

, Embryos were fixed in 4% paraformaldehyde (PFA) overnight at 4°C and stored in 100% methanol at -20°C. Embryos were rehydrated in PBT and washed in MABX (Maleic Acid Buffer + Triton X100 0,1% v/v). Next, embryos were

, For immunofluorescence, embryos were fixed at RT in PFA 4% in PBS, and incubated in the CDC20B antibody diluted 1/150 in BSA 3% in PBS. For all experiments, secondary antibodies conjugated with Alexa were used. GFP-CAAX in Supplementary Figure 5g was revealed using a rabbit anti-GFP antibody together with a secondary antibody coupled to Alkaline Phosphatase (AP), which was revealed as follows: embryos incubated with the AP-conjugated antibody were washed twice in alkaline phosphatase buffer, BR + 15% Serum + MABX with respective primary and secondary antibodies

, REF:11681460001) until appropriate staining. Finally embryos were washed twice in MABX and fixed in MEMFA 30 min at RT. To mark cortical actin in MCCs, embryos were fixed in 4% paraformaldehyde (PFA) in PBT (PBS + 0.1% Tween v/v) for 1 h at room temperature (RT), washed 3 × 10 min in PBT at RT, then stained with phalloidin-Alexa Fluor 555 (Invitrogen, 1:40 in PBT) for 4 h at RT, and washed 3 × 10 min in PBT at RT. Primary antibodies: mouse anti-Acetylated??-Tubulin (Clone 6-11B-1, :1000), rabbit anti-?-Tubulin (Abcam, Ab 16504, 1:500), mouse anti-?-Tubulin (Clone GTU88, Ab 11316, Abcam, 1:500), Chicken anti-GFP (AVES, GFP-1020, 1:1000), rabbit anti-GFP (Torrey Pines Biolabs, TP401, 1:500), mouse anti-Centrin (Clone 20H5, EMD Millipore, vol.1, p.500

, For single staining, all RNA probes were labeled with digoxigenin. For FISH on section, embryos were fixed in 4% paraformaldehyde (PFA), stored in methanol for at least 4 h at ?20°C, then rehydrated in PBT (PBS + Tween 0.1% v/v), treated with triethanolamine and acetic anhydride, incubated in increasing sucrose concentrations and finally embedded with OCT (VWR Chemicals). 12 ?m-thick cryosections were made. Double FISH on sections was an adaptation of the whole-mount FISH method. 80 ng of cdc20b digoxigenin-labeled sense and antisense riboprobes and 40 ng of antisense ?-tubulin fluorescein-labeled riboprobe 56 were used for hybridization. All probes were generated from linearized plasmids using RNA-labeling mix (Roche). FISH was carried out using Tyramide Signal Amplification -TSA TM Plus Cyanine 3/Fluorescein System, situ hybridization on Xenopus embryos. Whole-mount chromogenic in situ hybridization and whole-mount fluorescent in situ hybridization (FISH) was performed as detailed by Marchal and colleagues 54 , and Castillo-Briceno and Kodjabachian 55 , respectively

. Microscopy, Flat-mounted epidermal explants were examined with a Zeiss LSM 780 confocal microscope. Four-colors confocal z-series images were acquired using sequential laser excitation, converted into single plane projection and analyzed using ImageJ software, Scanning Electron Microscopy, p.stage

, Embryos in 70% ethanol were further dehydrated with vigorous agitation in ethanol once at 90% and twice at 100% for 30 min each; they were subsequently subjected to CO 2 critical point drying (CPD030, Balzers) at 31°C and 73 atm. Finally, samples were sputter-coated with gold (vacuum 1 × 10-12 Torr, beam energy 3-4 keV) for immediate SEM digital imaging (FEI TENEO) of the skin epidermis, M) made with filtered (0.22 ?m) bi-distilled water, during 4 h with vigorous agitation, then washed with phosphatase buffer and filtered bi-distilled water, vol.9, p.4668, 2018.

A. Meunier and J. Azimzadeh, Multiciliated cells in animals, Cold Spring Harb. Perspect. Biol, vol.8, p.28233, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01471943

N. Spassky and A. Meunier, The development and functions of multiciliated epithelia, Nat. Rev. Mol. Cell Biol, vol.18, pp.423-436, 2017.

E. R. Brooks and J. B. Wallingford, Multiciliated cells, Curr. Biol, vol.24, pp.973-982, 2014.

C. Kyrousi, Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche, Development, vol.142, pp.3661-3674, 2015.

M. Arbi, GemC1 controls multiciliogenesis in the airway epithelium, EMBO Rep, vol.17, pp.400-413, 2016.

B. Terre, GEMC1 is a critical regulator of multiciliated cell differentiation, EMBO J, vol.35, pp.942-960, 2016.

F. Zhou, Gmnc is a master regulator of the multiciliated cell differentiation program, Curr. Biol, vol.25, pp.3267-3273, 2015.

J. L. Stubbs, E. K. Vladar, J. D. Axelrod, and C. Kintner, Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation, Nat. Cell Biol, vol.14, pp.140-147, 2012.

L. Ma, I. Quigley, H. Omran, and C. Kintner, Multicilin drives centriole biogenesis via E2f proteins, Genes Dev, vol.28, pp.1461-1471, 2014.

I. K. Quigley and C. Kintner, Rfx2 stabilizes Foxj1 binding at chromatin loops to enable multiciliated cell gene expression, PLoS Genet, vol.13, p.1006538, 2017.

M. I. Chung, RFX2 is broadly required for ciliogenesis during vertebrate development, Dev. Biol, vol.363, pp.155-165, 2012.

M. Boon, MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia, Nat. Commun, vol.5, p.4418, 2014.

J. Wallmeier, Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia, Nat. Genet, vol.46, pp.646-651, 2014.

S. P. Sorokin, Reconstructions of centriole formation and ciliogenesis in mammalian lungs, J. Cell. Sci, vol.3, pp.207-230, 1968.

E. R. Dirksen, Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct, J. Cell. Biol, vol.51, pp.286-302, 1971.

R. G. Anderson and R. M. Brenner, The formation of basal bodies (centrioles) in the Rhesus monkey oviduct, J. Cell. Biol, vol.50, pp.10-34, 1971.

V. I. Kalnins and K. R. Porter, Centriole replication during ciliogenesis in the chick tracheal epithelium, Z. Zellforsch. Mikrosk. Anat, vol.100, pp.1-30, 1969.

R. M. Steinman, An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis, Am. J. Anat, vol.122, pp.19-55, 1968.

A. Jord and A. , Centriole amplification by mother and daughter centrioles differs in multiciliated cells, Nature, vol.516, pp.104-107, 2014.

K. Dehring and D. A. , Deuterosome-mediated centriole biogenesis, Dev. Cell, vol.27, pp.103-112, 2013.

H. Zhao, The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis, Nat. Cell Biol, vol.15, pp.1434-1444, 2013.

J. H. Sir, A primary microcephaly protein complex forms a ring around parental centrioles, Nat. Genet, vol.43, pp.1147-1153, 2011.

B. Marcet, Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway, Nat. Cell Biol, vol.13, pp.693-699, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00848890

F. E. Tan, Myb promotes centriole amplification and later steps of the multiciliogenesis program, Development, vol.140, pp.4277-4286, 2013.

H. Yu, Cdc20: a WD40 activator for a cell cycle degradation machine, Mol. Cell, vol.27, pp.3-16, 2007.

R. Song, miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110, Nature, vol.510, pp.115-120, 2014.

T. Otto, Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit, Proc. Natl Acad. Sci. USA, vol.114, pp.10660-10665, 2017.

J. Wu, Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis, Proc. Natl Acad. Sci. USA, vol.111, pp.2851-2857, 2014.

B. Chevalier, miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways, Nat. Commun, vol.6, p.8386, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432243

O. Mercey, Characterizing isomiR variants within the microRNA-34/449 family, FEBS Lett, vol.591, pp.693-705, 2017.

E. N. Firat-karalar, N. Rauniyar, J. R. Yates, and T. Stearns, Proximity interactions among centrosome components identify regulators of centriole duplication, Curr. Biol, vol.24, pp.664-670, 2014.

M. E. Robu, p53 activation by knockdown technologies, PLoS Genet, vol.3, p.78, 2007.

M. E. Werner, Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1, J. Cell. Biol, vol.206, pp.367-376, 2014.

E. N. Firat-karalar and T. Stearns, The centriole duplication cycle, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.369, p.20130460, 2014.

M. F. Tsou, Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells, Dev. Cell, vol.17, pp.344-354, 2009.

J. Kim, K. Lee, and K. Rhee, PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit, Nat. Commun, vol.6, p.10076, 2015.

K. Matsuo, Kendrin is a novel substrate for separase involved in the licensing of centriole duplication, Curr. Biol, vol.22, pp.915-921, 2012.

A. Jord and A. , Calibrated mitotic oscillator drives motile ciliogenesis, Science, vol.358, pp.803-806, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02425381

E. L. Huttlin, The BioPlex network: a systematic exploration of the human interactome, Cell, vol.162, pp.425-440, 2015.

J. F. Rual, Towards a proteome-scale map of the human protein-protein interaction network, Nature, vol.437, pp.1173-1178, 2005.

K. H. Thein, J. Kleylein-sohn, E. A. Nigg, and U. Gruneberg, Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity, J. Cell. Biol, vol.178, pp.345-354, 2007.

S. C. Chiu, The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation, Am. J. Physiol. Cell Physiol, vol.307, pp.466-478, 2014.

M. Eguren, The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors, Nat. Commun, vol.4, p.2880, 2013.

H. J. Chung, J. E. Park, N. S. Lee, H. Kim, and C. Y. Jang, Phosphorylation of astrin regulates its kinetochore function, J. Biol. Chem, vol.291, pp.17579-17592, 2016.

X. Qiu, Single-cell mRNA quantification and differential analysis with Census, Nat. Methods, vol.14, pp.309-315, 2017.

E. Z. Macosko, Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell, vol.161, pp.1202-1214, 2015.

D. Kim, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, p.36, 2013.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

S. Heinz, Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities, Mol. Cell, vol.38, pp.576-589, 2010.

C. Boutin, NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis, Proc. Natl Acad. Sci. USA, vol.107, pp.1201-1206, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00507499

C. Boutin, S. Diestel, A. Desoeuvre, M. C. Tiveron, and H. Cremer, Efficient in vivo electroporation of the post-natal rodent forebrain, PLoS ONE, vol.3, p.1883, 2008.

L. Marchal, G. Luxardi, V. Thome, and L. Kodjabachian, BMP inhibition initiates neural induction via FGF signaling and Zic genes, Proc. Natl Acad. Sci. USA, vol.106, pp.17437-17442, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428873

P. Castillo-briceno and L. Kodjabachian, Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a nonreproductive context, Front. Zool, vol.11, p.9, 2014.

G. A. Deblandre, D. A. Wettstein, N. Koyano-nakagawa, and C. Kintner, A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos, Development, vol.126, pp.4715-4728, 1999.