
HAL Id: tel-02948567
https://theses.hal.science/tel-02948567

Submitted on 24 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security for the internet of things : a bottom-up
approach to the secure and standardized internet of

things
Timothy Claeys

To cite this version:
Timothy Claeys. Security for the internet of things : a bottom-up approach to the secure and stan-
dardized internet of things. Computers and Society [cs.CY]. Université Grenoble Alpes, 2019. English.
�NNT : 2019GREAM062�. �tel-02948567�

https://theses.hal.science/tel-02948567
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Timothy Claeys

Thèse dirigée par Bernard Tourancheau
Professeur, Université Grenoble Alpes
et coencadrée par Franck Rousseau
Maitre de Conférence, Grenoble INP

préparée au sein de Laboratoire d’Informatique de Grenoble (LIG) dans
l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique (EDMSTII).

Sécurité pour l’Internet des Objets:
Une approche de bas en haut pour un
Internet des Objets sécurisé et normalisé

Security for the Internet of Things:
A bottom-up approach to the secure and
standardized Internet of Things

Thèse soutenue publiquement le 19 décembre 2019,
devant le jury composé de :

Bernard Tourancheau
Professeur, Université Grenoble Alpes, Directeur de thèse
Marine Minier
Professeure, Université de Lorraine, Rapporteur
Laurent Toutain
Professeur, IMT Atlantique Bretagne-Pays de la Loire, Président
Congduc Pham
Professeur, Université de Pau et des Pays de l’Adour, Examinateur
Mathieu Cunche
Maître de Conférences, INSA Lyon, Examinateur
Franck Rousseau
Maître de Conférences, Grenoble INP, Co-Encadrant de thèse

Abstract

The rapid expansion of the IoT has unleashed a tidal wave of cheap Internet-connected hardware. For

many of these products, security was merely an afterthought. Due to their advanced sensing and actuating

functionalities, poorly-secured IoT devices endanger the privacy and safety of their users.

While the IoT contains hardware with varying capabilities, in this work, we primarily focus on the con-

strained IoT. The restrictions on energy, computational power, and memory limit not only the processing

capabilities of the devices but also their capacity to protect their data and users from attacks. To secure the

IoT, we need several building blocks. We structure them in a bottom-up fashion where each block provides

security services to the next one.

The first cornerstone of the secure IoT relies on hardware-enforced mechanisms. Various security fea-

tures, such as secure boot, remote attestation, and over-the-air updates, rely heavily on its support. Since

hardware security is often expensive and cannot be applied to legacy systems, we alternatively discuss

software-only attestation. It provides a trust anchor to remote systems that lack hardware support. In the

setting of remote attestation, device identification is paramount. Hence, we dedicated a part of this work to

the study of physical device identifiers and their reliability.

The IoT hardware also frequently provides support for the second building block: cryptography. It

is used abundantly by all the other security mechanisms, and recently much research has focussed on

lightweight cryptographic algorithms. We studied the performance of the recent lightweight cryptographic

algorithms on constrained hardware.

A third core element for the security of the IoT is the capacity of its networking stack to protect the com-

munications. We demonstrate that several optimization techniques expose vulnerabilities. For example,

we show how to set up a covert channel by exploiting the tolerance of the Bluetooth LE protocol towards

the naturally occurring clock drift. It is also possible to mount a denial-of-service attack that leverages the

expensive network join phase. As a defense, we designed an algorithm that almost completely alleviates the

overhead of network joining.

The last building block we consider is security architectures for the IoT. They guide the secure inte-

gration of the IoT with the traditional Internet. We studied the IETF proposal concerning the constrained

authentication and authorization framework, and we propose two adaptations that aim to improve its se-

curity.

Finally, the deployment of the IETF architecture heavily depends on the security of the underlying com-

munication protocols. In the future, the IoT will mainly use the object security paradigm to secure data

in flight. However, until these protocols are widely supported, many IoT products will rely on traditional

security protocols, i.e., TLS and DTLS. For this reason, we conducted a performance study of the most crit-

ical part of the protocols: the handshake phase. We conclude that while the DTLS handshake uses fewer

packets to establish the shared secret, TLS outperforms DTLS in lossy networks.

ii

Résumé

La rapide expansion du marché de l’IoT a permis de relier de plus en plus de matériels bon marché à

l’Internet. Pour bon nombre de ces objets, la sécurité ne constitue pas une priorité. En raison de leurs

fonctionnalités avancées de détection et de manipulation, ces produits IoT mal sécurisés mettent en dan-

ger la vie privée et la sécurité de leurs utilisateurs.

Bien que l’IoT englobe des objets connectés de capacités variables, dans ces travaux, nous nous concen-

trons sur les équipements contraints en énergie, en ressources mémoires, et à faible puissance de calcul.

Ces restrictions limitent non seulement la possibilité de traitements, mais aussi la capacité à protéger les

données et les utilisateurs. Afin de sécuriser l’IoT, nous identifions plusieurs éléments de bases permettant

de fournir des services de sécurité sur l’ensemble d’un équipement.

L’implémentation des mécanismes de sécurité au niveau matériel constitue un premier pilier pour

l’IoT sécurisé. Diverses fonctions, telles que le démarrage sécurisé, l’attestation à distance et les mises à

jour "over-the-air", dépendent en effet fortement de son support. Comme l’implémentation de la sécurité

matérielle est souvent coûteuse et ne peut être appliquée aux systèmes existants, nous étudions l’attestation

purement logicielle. Cette méthode fournit une racine de confiance aux systèmes distants qui ne support-

ent pas la sécurité au niveau matériel. Dans le cadre de l’attestation à distance, l’identification de l’appareil

est primordiale. Une partie de ce travail est donc consacrée à l’étude des identificateurs physiques des

dispositifs et de leur fiabilité.

L’IoT sécurisé repose sur un deuxième élément clé: la cryptographie. Cette dernière est abondamment

utilisée par tous les autres mécanismes de sécurité et largement étudiée. Nous étudions les performances

des algorithmes cryptographiques récents pour les dispositifs contraints.

Un troisième élément central pour sécuriser l’IoT est la capacité de la pile protocolaire à sécuriser les

communications. Nous montrons par exemple qu’il est possible d’exploiter la tolérance du BLE à la dérive

d’horloge pour établir un canal couvert. D’autre part, il est possible de monter une attaque de déni de

service en exploitant les phases énergivores du réseau, notamment la phase d’attache. Nous proposons

dans ces travaux un algorithme défensif qui réduit quasiment à néant les surcoûts liés à la connexion au

réseau.

Les architectures de sécurité constituent le dernier pilier pour la sécurité de l’IoT. Elles permettent en

effet de guider le déploiement d’un IoT sécurisé à grande échelle. Après avoir étudié la proposition de l’IETF

de schéma d’authentification et d’autorisation pour l’IoT, nous proposons deux pistes d’amélioration de la

sécurité.

Enfin, la mise en place d’une architecture de sécurité implique le choix du protocole. Dans le con-

texte des réseaux contraints énergétiquement, le critère déterminant sera la consommation. Même si, à

l’avenir, l’IoT utilisera principalement le paradigme d’objets sécurisés pour protéger les données, tant que

ces derniers ne seront pas largement supportés, de nombreux produits IoT s’appuieront sur les protocoles

de sécurité traditionnels tels que TLS et DTLS. C’est pourquoi nous réalisons une étude de performance sur

la partie la plus critique de ces protocoles : l’établissement du secret partagé. Nous montrons que, même

si le "handshake" DTLS utilise moins de paquets pour établir le secret partagé, TLS obtient des meilleurs

résultats dans les réseaux avec pertes.

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisors, Franck Rousseau and Bernard Tourancheau,

for their guidance over the past four years. They allowed me to independently develop my research while

supporting me with excellent advice. I am grateful for the opportunities they have given me which have

lead to many unforgettable experiences around the world.

Additionally, I would like to thank all the members of the jury for their compelling questions and com-

ments during the defense. I am grateful to Prof. Laurent Toutain and Prof. Marine Minier, for having re-

viewed my entire manuscript, and Mr. Mathieu Cunche and Prof. Congduc Pham, for their helpful remarks

on my work and presentation.

A major part of my research was done in the context of the IoTize project. I would like to thank Vincent

and Francis from the eponymous company who aided me in understanding many complex topics related

to microcontrollers. Furthermore, I wish to thank all the wonderful people in the Drakkar research group.

I have learned from everyone in the team and their help has been invaluable in completing this work. I

particularly enjoyed all the time I spent with Henry and Etienne during breaks, talking about a wide variety

of scientific topics. More than once they have helped me overcome technical obstacles.

Throughout my Ph.D. I have met countless new people and some have become close friends. From

Grenoble, I want to thank Jacques, Lina, David, and Aline with whom I have spent many hours outside of

the lab enjoying the French Alps in winter and summer, Makbule, who I met in Berkeley and who has been

a big support in the final months, and finally Margaret for her assistance in correcting my English grammar

and spelling. In addition, I want to thank my friends in Belgium and the KRSG rowing club who have always

enthusiastically welcomed me back whenever I came to visit.

Special thanks go to Elodie, Colin, Pierre, and Mara. Besides being incredible colleagues, Elodie and

Pierre have helped me extensively in my daily life in France. I was always welcome at the Morino’s home

and they were there for me during moments of hardship and joy.

Finally, I want to write down my profound gratitude to my family. Leaving Belgium to start a Ph.D. in

a foreign country is not an easy choice, but with the unwavering support, encouragements and love of my

parents, Alexandra and Frank, my brother Ruben, and grandparents, it has become an amazing adventure.

Without all these people, I probably would not have succeeded in completing this thesis. Thank you to

all who have supported me and believed in me.

iv

Contents

Contents v

List of Figures vii

List of Tables xi

List of Acronyms xiii

List of Publications xix

I Building blocks of the secure Internet of Things 7

1 Define a Thing 9

1.1 Terminology . 10

1.2 The Internals of IoT hardware . 11

2 Basics of Cryptography 17

2.1 Notions of Security . 19

2.2 Symmetric-Key Cryptography . 24

2.3 Public-Key Cryptography . 36

2.4 Cryptography on Constrained Hardware . 41

3 A Secure IoT Networking Stack 47

3.1 An Internet Threat Model . 49

3.2 Identity Management and Access Control . 49

3.3 The IoT Application Layer and End-to-End Security . 53

3.4 A Transport Layer Protocol Showdown . 57

3.5 The Network Layer and its Challenges . 59

3.6 Security for the IoT Physical and Link Layer . 61

4 System Security for Constrained Devices 65

4.1 Threat Model . 66

4.2 Trusted Computing Security Properties . 67

4.3 Software-based Trusted Computing . 68

4.4 Hybrid- and Hardware-based Trusted Computing . 72

II A bottom-up approach to securing the Internet of Things 79

5 Scalable and Secure Physical Device Identification 81

5.1 Signal-based Fingerprinting . 83

5.2 Physical Unclonable Functions . 89

v

CONTENTS

6 Vulnerabilities in Time Synchronized Link Layer Protocols 95
6.1 Denial of Service Recovery for the TSCH Link Layer . 97

6.2 Thermal Covert Channel in BLE Networks . 105

7 Performance of Transport Layer Security over IEEE 802.15.4E Networks 115
7.1 A Detailed Overview of the (D)TLS 1.2 Handshake . 116

7.2 The (D)TLS Handshake over IEEE 802.15.4E . 119

7.3 Performance Evaluation . 123

8 Security Architectures for the Internet of Things 131
8.1 Token-based Authenticated Key Establishment . 133

8.2 IoTChain: A Blockchain Architecture for the IoT . 138

Bibliography 149

vi

List of Figures

1 The IOTIZE architecture. 2

1.1 Main components of a modern microcontroller. 11

1.2 Security features in low-power MCUs. 13

1.3 Building blocks of a secure IoT device. 15

2.1 Definition of indistinguishable encryption with the attack game. 20

2.2 The PRG is computationally indistinguishable from a true random seed if the distinguishing

probability of A is negligible. 21

2.3 A PRF, for a given key k, must be computationally indistinguishable from a function taken

uniformly at random from Funx[X ,Y] for any efficient algorithm A. 22

2.4 The difference between the one-time pad and a stream cipher. 25

2.5 General construction principles of a block cipher using the iterated cipher paradigm. 26

2.6 A block cipher configured in ECB mode. 28

2.7 A block cipher configured in CBC mode. 28

2.8 A block cipher configured in CTR mode. 29

2.9 The ECBC MAC protects against length-extension attacks by appending a final iteration of the

PRF. 30

2.10 The hash-then-PRF paradigm to construct a secure MAC system. 31

2.11 Instantiations of the hash-then-MAC paradigm. 32

2.12 Construction of a CRHF-based MAC function. 33

2.13 Diagram of the CCM authenticated cipher mode. 35

2.14 Diagram of the GCM authenticated cipher mode. 35

2.15 Generic key exchange protocol over an insecure channel. 38

2.16 Representations of point additions over elliptic curves. 41

3.1 Comparison of the TCP/IP stack with the standardized IoT stack. 48

3.2 OAuth authorization grant code flow for a web server application. 50

3.3 ACE authorization flows. 51

3.4 The blockchain, the consensus protocol provides security and resolves forks in the chain. . . . 52

3.5 OSCORE transformation . 55

3.6 The SIGMA-I protocol forms the template for EDHOC key exchange. 56

3.7 EDHOC messages mapped on the SIGMA-I protocol. 56

3.8 The differences between the TLS 1.2 and TLS 1.3 handshake protocols. 58

3.9 A typical TSCH schedule with multiple dedicated slots. 61

3.10 IEEE 802.15.4 link layer frame. The auxiliary security header describes how the frame is pro-

tected. 62

4.1 SWATT remote attestation function. 68

4.2 Probability of detecting malicious code on the device. 69

4.3 SWATT remote attestation function. 70

4.4 Secure boot with a Root-of-Trust for Measurement. 71

vii

LIST OF FIGURES

4.5 Generic architecture for a TEE-enabled system. 72

4.7 Hardware specificities for TrustZone-enabled devices. 73

4.8 Hardware layout of a Sancus node. 75

4.9 Handling memory-mapped peripherals and shared resources in Sancus and TrustLite. 77

5.1 Clock frequency measurements for clock modeling. 84

5.2 Clock frequency measurements for clock modeling. 85

5.3 Simplified multi-path fading model. 86

5.4 Impact of frequency shifts on multi-path fading and the resulting RSS. 86

5.5 Adapting the Sybil detection algorithm to recognize prover location spoofing. 87

5.6 The adversary’s transmission can no longer be distinguished from the prover’s. 88

5.7 Multi-channel position verification. 89

5.8 The race conditions that occur in an SRAM cell during power up lead to an unpredictable

startup value. 90

5.9 Autocorrelation for a CC2538 device on bit- and byte-level. 91

5.10 Recurring patterns in SRAM startup values of the STM32F4. 91

5.11 Cross-correlation between different devices. 92

5.12 Hamming distances for blocks of 32-bits of SRAM (Static Random Access Memory). 93

5.13 Temperature impact on the intra-device Hamming distance. 93

6.1 Timeslot template, the internal structure of a TSCH slot. 97

6.2 Frame-based synchronization. 98

6.3 DoS vulnerability in the TSCH time synchronization mechanism. 99

6.4 The drift keeps on growing once the child node is desynchronized. 100

6.5 A node pair illustrating the predictive rejoin scheme. (1) The standard TsRxOffset and TsTx-

Offset values. (2) The predicted relative skew allows for rescheduling of the Rx window

(shown as the RX’ window). (3) Rx window expands for the unpredictable skew after desyn-

chronization. 100

6.6 Rejoin latencies with respect to application traffic. 102

6.7 Temperature and drift in time for compensated and uncompensated devices. 103

6.8 Current measurements with a Tektronix MD03012 oscilloscope of the TelosB platform (battery

at 2.2 V). 104

6.9 Bluetooth Low Energy in connected mode. During a connection event multiple frames can be

exchanged. 105

6.10 The slave uses an adaptive PGT to compensate clock skew and guarantee reception of the

master frame. 106

6.11 The covert receiver measures the induced clock skew between the connection intervals. 106

6.12 The Raspberry Pi 3B platform on which we used to test the covert channel. 109

6.13 Implementation of the covert channel on the Raspberry Pi 3B. From top to bottom: raw and

filtered skew, the derivative of the filtered skew, the CPU temperature and the decoded bits. . . 110

6.14 Cooled covert channel on the Raspberry Pi. We observe that the additional cooling allows for

a faster return to the Tb temperature. Similarly the clock skew recovers faster. 111

6.15 Covert channel on the Motorola X 2014. Compared to the filter clock skew on the Raspberry

Pi platform, the clock skew variations are much more suppressed. 112

6.16 Covert channel on the iPhone 5s. No temperature information was easily available, so the heat

graph is omitted. 113

7.1 (D)TLS handshake protocol. The first two messages are a DTLS-only feature. 117

7.2 DTLS handshake message, wrapped in a record message . 118

7.3 DTLS sliding window for replay detection. 119

7.4 DTLS endpoints, not aware they are communicating with a constrained device that needs

additional time for the cryptographic operations, are at risk of needlessly retransmitting entire

DTLS flights. 120

7.5 TCP spoofing to improve handshake reliability. 121

7.6 Multi-layer fragmentation for (D)TLS records. 122

viii

LIST OF FIGURES

7.7 Experimental setup to analyze (D)TLS handshake performance. 124

7.8 TLS handshake latency using secp192r1 and secp256r1, with and without hardware support. 125

7.9 Memory pressure of the (D)TLS handshake, performing mutual authentication with certificates.125

7.10 Impact of the MTU choice on the internal reassembly buffer of the constrained (D)TLS endpoint.128

7.11 Impact of the TSCH (Time Slotted Channel Hopping) schedule on the handshake latency. . . . 129

7.12 Impact of lossy links on the TLS handshake protocol. 129

7.13 Comparison of (D)TLS handshake behavior over lossy links. 130

8.1 COSE wrapped access token. The COSE_Sign object allow for multiple signers on the object. . 134

8.2 Token exchanges between the client and resource server: SIG1 and SIG2 correspond to the

signatures of the AS and client, respectively . 136

8.3 The IoTChain architectures. 139

8.4 Token lifetime on the blockchain. 140

8.5 Experimental Ethereum testnet. 141

ix

LIST OF FIGURES

x

List of Tables

1.1 Specifications of commercially available MCUs. 12

1.2 Energy consumption of IEEE 802.15.4 radios. 14

2.1 The function family Funs[X ,Y] mapping 1 bit inputs to 1 bit outputs. 22

2.2 Key size comparison. 40

2.3 Encryption performance of the different state-of-the-art AEAD ciphers. 43

2.4 Speed-Memory trade-off for AES. 43

2.5 ECDH performance (ECP window = 6). 44

2.6 ECDSA performance (ECP window = 6). 44

2.7 RSA signature performance. 44

3.1 Security levels defined by IEEE 802.15.4. 63

6.1 Average join latencies. 102

6.2 Impact of the arithmetic precision on the drift prediction. 103

6.3 Estimated energy consumption of the join schemes (mJ). 104

6.4 Calibration values for the covert channel: RPI-3B . 109

6.5 Calibration values for the covert channel Motorola . 111

6.6 Calibration values for the covert channel: iPhone 5s . 112

6.7 Error rate on different hardware architectures . 113

7.1 Impact of the MTU on the TLS and DTLS handshake . 126

7.2 Performance-enhancing proxy and TLS . 128

xi

LIST OF TABLES

xii

List of Acronyms

6LoWPAN IPv6 Low-power Wireless Personal Area Networks. 5, 48, 57, 59, 60, 64, 119–121, 124, 126–130,

138, 142, 145, 146

6top 6TiSCH Operation Sublayer. 97, 122, 124

AAD Additional Authenticated Data. 55

ACE Authentication and Authorization for Constrained Environments. 3, 4, 6, 51, 52, 56, 132–134,

136, 137, 140, 142, 145–147

ACL Access Control List. 62

AE Authenticated Encryption. 25, 32, 34, 35

AEAD Authenticated Encryption with Authenticated Data. 5, 34, 35, 41–43, 45, 48, 55, 56, 58, 59, 62,

75, 135–138, 140

AES Advanced Encryption Standard. 2, 5, 26, 27, 29, 30, 32–35, 43, 55, 62, 124

AGC Automatic Gain Control. 83

AIMD Additive Increase/Multiplicate Decrease. 123

AMQP Advanced Message Queuing Protocol. 57

API Application Programming Interface. 51, 53, 72, 76, 139, 143

AS Authorization Server. 132–138, 140–142

ASN Absolute Slot Number. 61, 62, 97, 100, 101

BCH Bose, Ray-Chaudhuri, Hocquenghem. 94, 108

BFT Byzantine Fault Tolerance. 52

BLE Bluetooth Low Energy. 3–5, 86, 96, 105–108, 111, 112, 114, 146

CA Certificate Authority. 117, 134

CAESAR Competition for Authenticated Encryption: Security, Applicability, Robustness. 2, 5, 18, 41, 42,

45, 145

CBC Cipher Block Chaining. 27–30, 32, 34, 35

CBC-MAC Cipher Block Chaining Message Authentication Code. 30, 31, 35

CBOR Concise Binary Object Representation. 51, 56, 116, 132, 138

CCA Chosen-Ciphertext Attack. 21, 25, 34, 45

CCM Counter and Cipher Block Chaining. 34, 35, 43, 55, 62

CMOS Complementary Metal–Oxide–Semiconductor. 89

xiii

List of Acronyms

COA Ciphertext-Only Attack. 20

CoAP Constrained Application Protocol. 5, 48, 51, 53–57, 61, 63, 116, 138, 139, 147

CoJP Constrained Join Protocol. 63

CORE Constrained RESTful Environments. 53, 54, 116

COSE CBOR Object Signing and Encryption. 48, 55, 56, 116, 132–135, 137, 138, 147

COTS Commodity Off-The-Shelf. 10, 66, 70, 71

CPA Chosen-Plaintext Attack. 20, 25, 27, 28, 34, 36

CPU Central Processing Unit. 1, 5, 10–13, 18, 42, 43, 70, 72–78, 96, 104, 107–109, 111–113, 146

CRHF Collision-Resistant Hash Function. 32, 33, 39

CSI Channel State Information. 83

cTLS compact TLS. 147

CTR Counter Mode. 27–29, 34, 35

CWC Carter-Wegman Counter. 35

CWT CBOR Web Token. 133, 134

DCCP Datagram Congestion Control Protocol. 123

DDoS Distributed Denial-of-Service. 1

DES Data Encryption Standard. 26

DLP Discrete Logarithm Problem. 24, 38–41, 45, 147

DMA Direct Memory Access. 108

DNS Domain Name System. 54

DNSSEC Domain Name System Security Extensions. 54

DODAG Destination- Oriented Directed Acyclic Graph. 60

DoH DNS-over-HTTPS. 54

DoS Denial-of-Service. 3, 5, 54, 60, 64, 66, 96, 99, 102, 119, 126, 141, 145

DPA Differential Power Analysis. 42

DRM Digital Rights Management. 78

DRTM Dynamic Root-of-Trust for Measurement. 66, 67, 70, 74

DSA Digital Signature Algorithm. 36, 40

DTLS Datagram Transport Layer Security. 3–6, 43, 48, 52, 54, 58, 59, 63, 116, 118–121, 123, 124, 126–

130, 132, 139, 141, 146

EB Enhanced Beacon. 62, 63, 97, 98, 100–102, 104, 114

ECB Electronic Codebook. 27, 28

ECBC Encrypted-CBC. 30

ECDH Elliptic Curve Diffie-Hellman. 43, 44

ECDHE Elliptic Curve Diffie-Hellman Ephemeral. 58

ECDSA Elliptic Curve Digital Signature Algorithm. 41, 43, 44, 58, 138

ECN Explicit Congestion Control. 123

EDHOC Ephemeral Diffie-Hellman over COSE. 5, 48, 56, 132, 134–137, 142, 147

EUI Extended Unique Identifiers. 59, 63

xiv

List of Acronyms

EVM Ethereum Virtual Machine. 53

GCM Galois-Counter Mode. 35, 43

GPIO General Purpose Input/Output. 12

HIP Host Identity Protocol. 141

HMAC Hashed Message Authentication Code. 33, 71, 74, 135–137

HTTP Hypertext Transfer Protocol. 48, 51, 53, 54, 61, 63

HTTPS Hypertext Transfer Protocol Secure. 50

I2C Inter-Integrated Circuit. 12

IC Integrated Circuit. 10, 89, 90, 92

ICE Indisputable Code Execution. 69, 70, 74, 78

IDAU Implementation-Defined Attribution Unit. 73

IDM Integrated Device Manufacturer. 90

IE Information Elements. 62, 97

IETF Internet Engineering Task Force. 2, 3, 10, 48, 51, 53, 57–60, 63, 116, 122, 123, 134, 137, 145, 147

IIoT Industrial Internet of Things. 1, 10

IO Input/Output. 13, 76

IoT Internet of Things. 1–6, 10–15, 18, 40, 42, 45, 48, 49, 51, 53, 54, 57–61, 63, 64, 66, 78, 82, 89, 94,

96, 116, 119, 121, 126, 130, 132, 133, 138, 142, 145–147

IP Internet Protocol. 48, 54, 57, 59, 61, 63, 118, 119, 123

IPC Inter-Process Communication. 77, 78

IPSec Internet Protocol Security. 33–35, 60

IPv4 Internet Protocol version 4. 59

IPv6 Internet Protocol version 6. 14, 48, 57, 59, 60, 63, 64, 118, 119, 121, 124, 126, 127, 138

ISR Interrupt Service Routine. 77

IT Information Technology. 1, 10, 18, 64

IV Initialization Vector. 27–30, 33, 34, 43, 54, 55

JP Join Proxy. 63

JRC Join Registrar/Coordinator. 63

JSON JavaScript Object Notation. 50, 51

JTAG Joint Test Action Group. 71

JWT JSON Web Tokens. 50

KA Keep-Alive. 97–102

KDF Key Derivation Function. 71

KID Key Identifier. 55

KIM Key Identifier Mode. 62

KPA Known-Plaintext Attack. 20

LFSR Linear Feedback Shift Register. 21, 42, 108

xv

List of Acronyms

LoS Line-of-Sight. 86, 87, 113

LQI Link Quality Indicator. 14

M2M Machine-to-Machine. 1, 51

MAC Message Authentication Code. 24, 29–36, 38, 39, 45, 55, 59, 60, 64, 75, 77, 118, 121

MCU Microcontroller Unit. 2, 11–13, 74, 89

MFL Maximum Fragment Length. 118, 121, 126

MITM Man-In-The-Middle. 137

MMU Memory Management Unit. 13

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor. 89, 90

MPU Memory Protection Unit. 11–13, 68, 73, 76–78

MQTT Message Queuing Telemetry Transport. 57

MSF Minimal Scheduling Function. 122, 127

MSS Maximum Segment Size. 119, 121, 123, 126, 130

MTU Maximum Transmission Unit. 48, 121, 126, 127, 129

NAT Network Address Translation. 118

NIST National Institute of Standards and Technology. 2, 24, 26, 41, 42, 44, 45, 147

NSA National Security Agency. 44

OAuth Open Authorization. 2–4, 6, 48–51, 132, 133, 142, 145

OCB Offset Codebook. 34

OS Operating System. 66–68, 74–77

OSCORE Object Security for Constrained RESTful Environments. 4–6, 48, 52, 54–56, 63, 64, 116, 132, 134,

138, 139, 141, 147

OTP One Time Pad. 19, 24

P2P Peer-to-Peer. 53, 105

PAN Personal Area Network. 97

PC Personal Computer. 10, 43, 66, 70, 74, 76, 77, 108, 114, 124

PCB Printed Circuit Board. 10

PDP Provable Data Possession. 69

PDR Packet Delivery Ratio. 102

PEP Performance-Enhancing Proxy. 120, 121, 127, 130

PGP Pretty Good Privacy. 54

PGT Packet Guard Time. 97–101, 106

PKI Public-Key Infrastructure. 57, 132, 134, 135, 142, 147

PLL Phase-Locked Loop. 12

PMTU Path MTU. 119, 121

PoP Proof-of-Possession. 51, 52, 132, 133, 135–137, 139, 140, 143

POR Power-On-Reset. 71

PoS Proof-of-Stake. 52, 53, 138

xvi

List of Acronyms

PoW Proof-of-Work. 52, 53, 138, 141

ppm Parts-per-Million. 83, 85, 97, 103, 105

PPT Probabilistic-Polynomial Time. 19–24, 31, 37

PRF Pseudorandom Function. 22, 23, 30–34, 71

PRG Pseudorandom Generator. 21, 24, 25, 68, 70

PRP Pseudorandom Random Permutation. 23, 25, 30

PSK Pre-Shared Key. 58, 63, 64, 117

PUF Physical Unclonable Function. 3, 5, 82, 89, 93, 94, 145, 146

RAM Random-Access Memory. 10, 13, 43, 48, 67, 68, 74, 116, 123, 126

REE Rich Execution Environment. 72, 74

RF Radio Frequency. 83

RFC Request for Comments. 2, 40, 51, 57, 58, 64, 116–118, 134, 138, 147

RFID Radio-Frequency Identification. 10

RNG Random Number Generator. 19

ROLL Routing Over Low-power and Lossy Networks. 60

ROM Read-Only Memory. 12, 68, 72, 74

ROP Return-Oriented Programming. 67, 75, 78

RoT Root-of-Trust. 66, 71, 73

RPL Routing Protocol for Low power and Lossy Networks. 5, 60, 102

RSA Rivest–Shamir–Adleman. 36–38, 44, 45, 57, 58

RSN Record Sequence Number. 118

RSS Radio Signal Strength. 5, 83, 85–89, 94, 146

RTC Real-Time Clock. 12

RTM Root-of-Trust for Measurement. 66–68, 71, 72, 77

RTO Retransmission Timeout. 127

RTR Root-of-Trust for Reporting. 66, 70–72, 82

RTS Root-of-Trust for Storage. 66, 70–72

RTT Round Trip Time. 4, 58, 119–121

S/MIME Secure/Multipurpose Internet Mail Extensions. 54

SACK Selective Acknowledgment. 120, 129, 130

SAU Security Attribution Unit. 73

SCA Side-Channel Attack. 42

SHA Secure Hash Algorithm. 32, 124

SNR Signal-to-Noise Ratio. 14

SoC System-On-Chip. 11, 12, 71, 90, 124

SPI Serial Peripheral Interface. 12

SR Status Register. 70

SRAM Static Random Access Memory. viii, 5, 12, 42, 71, 72, 89–94, 146

SRTM Static Root-of-Trust for Measurement. 66, 67, 70, 71

xvii

List of Acronyms

SSH Secure Shell. 33, 35

SSL Secure Socket Layer. 34

SWD Serial Wire Debug. 71

TCB Trusted Computing Base. 5, 66, 71, 72, 74, 76–78

TCP Transport Layer Protocol. 6, 48, 57, 63, 116, 119–121, 123, 124, 126–130, 146

TCXO Temperature-Compensated Crystal Oscillator. 109, 111, 112

TEE Trusted Execution Environment. 72, 74

TLS Transport Layer Security. 2–6, 18, 21, 29, 32–35, 41–43, 45, 48, 51, 54, 56–59, 61, 63, 64, 116–121,

123–130, 132, 139, 146, 147

TOCTTOU Time-of-Check-to-Time-Of-Use. 70

TSCH Time Slotted Channel Hopping. ix, 61–64, 96–99, 101, 104–106, 114, 120–122, 124, 127, 129, 146

TSMP Time Synchronized Mesh Protocol. 61

UART Universal Asynchronous Receiver/Transmitter. 12, 71

UDP User Datagram Protocol. 4, 53, 57–59, 63, 116, 118–120, 123, 126, 127, 129, 130, 138

UHF Universal Hash Function. 30–32

UOWHF Universal One-Way Hash Function. 31, 32

URI Uniform Resource Identifier. 54, 140

URL Uniform Resource Locator. 50, 134

VM Virtual Machine. 67

VRB Virtual Reassembly Buffer. 60

WEP Wired Equivalent Privacy. 34

WPA2 Wi-Fi Protected Access II. 34

XOR Exclusive Or. 24–26, 28, 42, 70

xviii

List of Publications

International Conferences

Olivier Alphand, Michele Amoretti, Timothy Claeys, Simone Dall’Asta, Andrzej Duda, Gianluigi Ferrari,

Franck Rousseau, Bernard Tourancheau, Luca Veltri, and Francesco Zanichelli. IoTChain: A Blockchain

Decurity Architecture for the Internet of Things. In IEEE Wireless Communications and Networking Con-

ference (WCNC), pages 1–6. IEEE, 2018.

Timothy Claeys, Franck Rousseau, Boris Simunovic, and Bernard Tourancheau. Thermal Covert Channel

in Bluetooth Low Energy Networks. In 13th ACM Conference on Security and Privacy in Wireless and Mobile

Networks (WiSec), pages 267–276. ACM, 2019.

Timothy Claeys, Franck Rousseau, and Bernard Tourancheau. Securing Complex IoT Platforms with Token

Based Access Control and Authenticated Key Establishment. In International Workshop on Secure Internet

of Things (SIoT), pages 1–9. IEEE, 2017.

Timothy Claeys, Franck Rousseau, Bernard Tourancheau, and Andrzej Duda. Clock Drift Prediction for

Fast Rejoin in 802.15. 4e TSCH Networks. In 26th International Conference on Computer Communication

and Networks (ICCCN), pages 1–9. IEEE, 2017.

National Conferences in French

Timothy Claeys, Franck Rousseau, Boris Simunovic, and Bernard Tourancheau. Faire évader secrètement

des données d’un réseau BLE sécurisé. In CoRes, 2019.

xix

LIST OF PUBLICATIONS

xx

Introduction

Context

Since its conception in the late 1960s, the Internet has been an ever-changing and ever-growing technology.

The advent of the smartphone, approximately 15 years ago, introduced the first wave of pervasive, Internet-

connected, computing devices providing notable computational power and global connectivity from the

palm of our hand [1]. The emerging IoT (Internet of Things) further enables the ubiquitous computing

paradigm. Fueled by advances in low-power computing and networking, it interconnects numerous every-

day objects and attaches them to the Internet. The origins of the IoT trace back to the initial M2M (Machine-

to-Machine) communication protocols, used in telemetry. However, the functionalities we associate with

today’s IoT considerably surpass the original M2M features. Many IoT devices come with advanced sensing

and actuating capabilities, allowing for the coordination of actions on local, national, or global levels, using

the input of real-time data [2].

The applications enabled by the IoT vary widely. Examples range from small-scale commercial systems

such as home automation to public use cases, e.g., Smart Cities. The IIoT (Industrial Internet of Things) also

forms one of the core components of “Industry 4.0”, a.k.a. the 4th Industrial Revolution, which defines the

concept of the Smart Factory. The integration of production means with the IIoT makes it possible to gather

and analyze data across machines. The pervasive and connected nature of the IIoT can present businesses

with crucial insights into their supply chain and production processes, allowing them to create a leaner

and more agile global economy. Although the added value of the IoT seems extraordinary, one question

remains: what are the security implications?

The interconnection of previously autonomous and isolated systems naturally gives rise to problems in

interoperability and security. As the number of deployed IoT devices increases, it becomes more challeng-

ing to manage the infrastructure and those devices securely. The consequences of poorly secured IoT de-

vices are not solely affecting the security and privacy of their immediate users. It was not until recently, with

the record-breaking DDoS (Distributed Denial-of-Service) attacks by the Mirai botnet, which took down

large parts of the Internet, that the full force of the vulnerable IoT became clear [3]. In addition, the actu-

ating capabilities of many IoT devices provide novel attack vectors for systems and infrastructure, such as

the power grid. Recent work by Soltan et al. [4] highlighted the potential risks incurred by vulnerable high

wattage IoT devices. Through the compromise of a few tens of thousands of air conditioners, water heaters

or electric ovens, an attacker could cause a large-scale blackout of a nation’s energy grid.

The design of security protocols and mechanisms for the IoT is a daunting task. The low-power nature,

limited computational capabilities, and possibly hostile operating environments of the IoT systems impose

further challenges. The security mechanisms we can typically find in the traditional IT (Information Tech-

nology) infrastructure are ill-suited for the IoT. They frequently require power-hungry computations, high

bandwidth, and specialized hardware. Nonetheless, over the course of this Ph.D, significant progress has

been made by the research community and industry towards a more secure IoT. Several new trends are

appearing in various areas of IoT security.

On the lowest level, chip designers are moving towards the integration of hardware security mechanisms

in the low-power CPUs (Central Processing Units). Through the addition of hardware-enforced boundaries,

IoT software developers can divide their code by privilege level. The most striking example in this field was

1

INTRODUCTION

the introduction of the Arm TrustZone technology for the immensely popular Cortex-M line of processors

back in 2017.

Only last year, the CAESAR (Competition for Authenticated Encryption: Security, Applicability, Robust-

ness) cryptographic competition concluded, proposing two novel encryption algorithms, Ascon, and ACORN,

optimized for the IoT. At the same time, NIST (National Institute of Standards and Technology) kicked off a

new competition for IoT cryptography, likewise focussing on symmetric encryption. The proposals are cur-

rently under evaluation, but since cryptographic algorithms typically need years of scrutiny, they will not be

available in the near future. For now, the IoT must rely on long-established cryptographic primitives, such

as AES (Advanced Encryption Standard) and elliptic curve cryptography. As a compromise, many new MCU

(Microcontroller Unit) designs aimed at the IoT market now include some form of hardware acceleration to

relieve the overhead of cryptography partially.

Finally, network security protocols make abundant use of cryptographic protocols to protect data in

flight from unauthorized access. Compared to the prevalent security protocol on the traditional Internet,

i.e., TLS (Transport Layer Security), which focusses on securing the communication channel, the IoT net-

working protocols pursue an object security model. The protection of network traffic is relocated from the

transport layer to the application layer, allowing for a more fine-grained control over the protection do-

mains. The connectionless security model is also a better fit with the needs of the IoT applications, which

often rely on asynchronous traffic patterns, intermediate data caches to allow for duty-cycled devices and

group communication. In July of 2019, the IETF (Internet Engineering Task Force) ratified the first of a suite

of upcoming RFC (Request for Comments), detailing the new security protocols aimed at the IoT. Besides

the object security architectures, the IETF is working on a lightweight authentication and authorization

framework for the IoT, inspired by OAuth (Open Authorization) 2.0.

Motivation

This thesis is part of the IOTIZE project whose goal is to propose a simple turnkey solution to extend new

and existing embedded systems with two functionalities: a human-machine interface and a connection

with the Internet, see Figure 1. Throughout this Ph.D. we worked with the IOTIZE development team to

investigate the tradeoffs between security and production costs. The challenges and issues faced during

the product development inspired many of the research questions presented in this thesis.

HMI
Gateways

Caches
IoTized

Systems
Cloud

Servers

IoTize
Wireless

connectivity

programming,
reading, writing …

Figure 1: The IOTIZE architecture [5]. (Icons: [6])

Of vital importance in the design of new IoT products is the choice of appropriate hardware. Although

hardware-backed security such as Arm’s TrustZone carries many advantages, for some constrained applica-

tions, the extra cost of the added silicon might be prohibitive. Additionally, the immutability of the hardware

can also be a drawback. In case design flaws are discovered in the hardware architecture, it is not possible

to fix the problem through updates. These issues inspired us to study alternative approaches to defend IoT

systems from software attacks. While shielding Internet-connected devices from malicious code injection

without hardware support is near to impossible, remote attestation protocols provide a valid alternative. At-

testation routines attempt to evaluate the integrity of a target system periodically. A significant challenge is

to ensure that the routine executes untampered on the chosen target. To this aim, we studied several finger-

printing techniques on low-power hardware. By combining the attestation routine with physical identifiers,

the security guarantees of the attestation routines improve notably.

2

INTRODUCTION

Since the IOTIZE product attaches itself to existing, likely battery-powered devices, the incurred addi-

tional energy should be minimal. In the context of the IoT, communication is expensive; thus, the choice of

a fitting protocol stack was imperative. Both BLE (Bluetooth Low Energy) and IEEE 802.15.4E have pushed

the boundaries of low-power communication and are excellent candidates. They share a similar design

philosophy, relying on time synchronization to minimize the duty cycle and, consequently, the energy con-

sumption of both the transmitter and receiver devices. However, due to imperfections in the hardware,

keeping the devices synchronized is not trivial. The link layer synchronization algorithm is critical to the

operation of the protocols and is, therefore, an appealing target to adversaries. We discovered two weak-

nesses intrinsic to low-power, time-synchronized protocols. Further investigation led to the proposal of a

defensive algorithm for IEEE 802.15.4E mesh networks and a covert channel attack for BLE connections.

Link layer protocols potentially provide hop-by-hop encryption of the data within the mesh network,

but it is the responsibility of higher-layer protocols to encrypt the sensor data destined for the Internet.

With the object security protocols still mostly being under construction by the IETF, for now, the IoT appli-

cation developers fall back on traditional transport layer security protocols, e.g., TLS and DTLS (Datagram

Transport Layer Security). The IETF chose DTLS as the designated security protocol for the IoT because

of its tolerance for packet losses, but DTLS does not offer any other benefits compared to TLS. Ironically,

the DTLS handshake is more complicated than the TLS equivalent and seems poorly adapted to lossy net-

works. Motivated by this paradoxical observation, we conducted an in-depth study of both the TLS and

DTLS handshake over an IEEE 802.15.4E network.

IOTIZE exposes previously isolated systems to the Internet. The addition of the IOTIZE hardware allows

interested parties to obtain sensor data and interact with the internal configuration of the embedded system

remotely, see Figure 1. We directly understand that an access control system should strictly limit these

powerful capabilities to authorized parties only. In 2014, the IETF started working on the adoption of the

OAuth 2.0 architecture for the IoT. The resulting ACE (Authentication and Authorization for Constrained

Environments) framework provides an authentication and authorization mechanism that suits the IOTIZE

use case well. However, the framework foresees the use of unconditionally trusted authorization servers.

Since it is unclear which party, vendor or buyer, would operate these trusted servers, we proposed two

architectures which strive to reduce the capabilities of the authorization server. The latter helps not only

the IOTIZE business case but also improves the overall security and robustness of the framework.

Contributions

This thesis presents several contributions to various aspects of IoT security. We structure their presentation

in a bottom-up fashion:

• At the physical layer, we have studied the different approaches to device identification. The IoT brings

with it an explosion of new hardware attached to the Internet. If we have any hope of securely man-

aging these devices, reliable device identification is paramount. This contribution is placed in the

context of software-based remote attestation protocols. Software-based attestation is valuable for

systems that lack support for security features such as memory protection. We analyzed two main

categories of physical fingerprinting techniques: signal-based identifiers and PUF (Physical Unclon-

able Function)-based identifiers. However, we show that none of the mechanisms can provide a con-

strained IoT device with a unique, unspoofable identifier. Nonetheless, in scenarios where devices

are compromised and secret keys are lost, physical fingerprinting is the only viable approach to dis-

tinguish between the compromised devices. Combined with a remote attestation protocol that can

detect, and possibly purge, malicious code on the system, we could build a tool to recover hacked IoT

devices automatically.

• At the link layer, the contribution is two-fold. First, we show that IEEE 802.15.4E, one of the most

promising protocols for mesh networks, is vulnerable to a simple DoS (Denial-of-Service) attack.

IEEE 802.15.4E is a time-synchronized protocol. It allows both the sender and receiver to reduce ra-

dio usage, obtaining duty cycles of 1% or lower. The synchronization mechanism between the nodes

is crucial to the operation of the network. The key insight is that with a short jamming attack, a ma-

licious actor can knock-out large parts of the network for extended periods. The attack is destructive

3

INTRODUCTION

because there does not exist a fast algorithm to synchronize nodes back to the network. Currently, the

synchronization of a node demands a significant amount of time and energy. We proposed an algo-

rithm that minimizes energy consumption and latency for a node to rejoin a network to which it was

previously synchronized. The rejoin cost is only slightly higher than what the node would have con-

sumed during regular network operation, which is an improvement of a factor 1000 over the current

situation.

The second part of the contribution focusses on the BLE protocol. BLE shares its design philosophy

with IEEE 802.15.4E. It also uses time synchronization and channel hopping. In this part of our

thesis, we propose a novel technique to build covert channels between BLE-enabled devices. We

exploit the temperature sensitivity of the crystal oscillators used by the BLE radio chip to modulate a

clock skew on top of the precisely-timed, legitimate BLE traffic. The covert channel does not disrupt

the working of the protocol but is measurable by a colluding device. We showed that the attack works

on different hardware architectures, with varying success, by implementing it on a Raspberry Pi 3B, a

Motorola smartphone, running Android, and an iPhone 5s on iOS 11.

• The network security for the IoT has seen a paradigm shift from the transport layer security to ob-

ject security at the application layer. Nonetheless, transport layer security will remain widely used

in the IoT, at least in the near future, while we wait for the ratification of multiple object security

protocols. We have performed an in-depth study of the two most prevalent transport layer security

protocols, TLS and DTLS, in the context of the IoT. The performance results show that DTLS, while

being tolerant to packet losses once the security context is established, functions poorly when the

handshake message are carried over a lossy network compared to TLS. The lack of acknowledgment

packets and accurate estimates on the RTT (Round Trip Time) between both endpoints causes un-

controlled retransmissions of oversized UDP (User Datagram Protocol) datagrams, resulting in the

DTLS handshake transmitting significantly more bytes than TLS.

• The final contribution centers around security architectures for the IoT. We propose two novel frame-

works that are mostly inspired by the recent work on authorization and authentication architectures.

Both frameworks adopt the token-based protocol flows of the ACE and OAuth architectures but make

improvements in terms of security. In the first part, the proposed scheme follows the security model

of OAuth 1.0a, which integrates its proper security model, facilitating deployment in complex net-

working environments. It uses self-securing tokens that are independent of the underlying transport

protocols. At the same time, we reduce the amount of trust users must have in third-parties, respon-

sible for access token distribution. The latter was also the primary design goal of the second part

of this contribution. We replaced the trusted party with an authorization blockchain which trans-

parently regulates access token generation through smart contracts. Additionally, we combined the

blockchain with the OSCORE (Object Security for Constrained RESTful Environments) object security

architecture to provide full end-to-end security [7].

Structure of the thesis

Instead of focussing on a single element of the IoT ecosystem, we have attempted to sketch a broad pic-

ture of the current state of the IoT security. This document is primarily split into two parts. The first part

describes the different building blocks of a secure IoT. While we consider each building block in a sepa-

rate chapter, they are not independent, and we often refer to other chapters to point out relationships and

dependencies. The second part of this thesis contains the various contributions. We present them in a

bottom-up fashion, starting from the physical layer of the IoT device, and working our way up through the

networking stack to generic security architectures for large-scale deployments.

Part I, Chapter 1 – Define a Thing IoT is a broad domain, we can categorize a plethora of devices

as IoT. Therefore, we start the first chapter by narrowing down the actual definition of an IoT device used

throughout this thesis. We present the most common hardware components we can find inside an IoT

device and discuss how they differ from traditional Internet hosts. The chapter also zooms in on the various

security features constrained hardware provides. Finally, we point out the tradeoffs that are typically made

by IoT product designers, and we briefly discuss the emerging trends in IoT hardware related to security.

4

INTRODUCTION

Part I, Chapter 2 – Basics of Cryptography The second chapter provides an exhaustive back-

ground on modern cryptography. Cryptography is used abundantly by the other building blocks, and a

solid foundation is therefore imperative. The chapter starts by presenting the different notions of security.

It explains how to reason about the security of a cipher, and it lists the various threat models considered

by cryptographers. Next, we examine the most common symmetric-key constructions. We describe each

time the generic format and show a real-life example, e.g., block ciphers and AES. The AEAD (Authenticated

Encryption with Authenticated Data) ciphers form the culmination of our discussion on symmetric cryp-

tography. The second part of the chapter focusses on public-key cryptography. We explain how one-way

functions such as integer factorization and the discrete logarithm problem lay the foundation of public-key

encryption, key establishment protocols, and digital signatures. We also consider elliptic curve cryptogra-

phy, since it makes public-key constructions feasible for the constrained IoT. The chapter concludes with a

performance study of the popular cryptographic algorithms on low-power hardware. We also compare the

advanced AEAD ciphers from TLS 1.3 with the winning algorithms from the CAESAR competition.

Part I, Chapter 3 – A Secure IoT Networking Stack We describe the standardized IoT network-

ing stack in Chapter 3. We present the different layers of the networking stack in a top-down manner and

provide each time a discussion of the available security mechanisms. First, we consider the issue of au-

thorization and access control in the IoT. We detail the solution developed for a similar problem on the

world wide web, and we show the parallels with the IoT’s equivalent. Next, we describe CoAP (Constrained

Application Protocol) and the upcoming security protocols, i.e., OSCORE, and EDHOC (Ephemeral Diffie-

Hellman over COSE), to protect application-layer traffic. We briefly sketch the internals of TLS and DTLS,

but a more comprehensive study is presented in Chapter 7. RPL (Routing Protocol for Low power and Lossy

Networks) and 6LoWPAN (IPv6 Low-power Wireless Personal Area Networks) are also considered with their

associated security model. Finally, we present the IEEE 802.15.4E protocol and link layer security.

Part I, Chapter 4 – System Security for Constrained Devices The final building block we

discuss, concentrates on trusted computing for the constrained IoT. The chapter handles two device ar-

chitectures. Firstly, we consider devices without any form of hardware-backed security boundaries. We

present different remote attestation methods that attempt to detect malicious activity on the device with a

software-only approach. Secondly, we enumerate various techniques, designed by both the industry and

research community to build hardware security into low-power devices. Most designs rely on a combina-

tion of trusted hardware and software components, although one architecture has a pure hardware TCB

(Trusted Computing Base). We finish the chapter with a discussion on the tradeoffs between software and

hardware trusted computing.

Part II, Chapter 5 – Scalable and Secure Physical Device Identification In the first chapter

of the contributions, our goal is to analyze simple hardware fingerprinting methods to improve the security

guarantees software-based remote attestation protocols can provide. We limit ourselves to signal-based

techniques and PUFs since most other methods require specialized equipment. Signal-based fingerprinting

tries to extract unique identifiers from overheard radio transmission. We study clock skew patterns and RSS

(Radio Signal Strength) features. Next, we discuss the SRAM PUF on constrained hardware. We conclude

that none of the techniques suffice to reliable identify IoT devices.

Part II, Chapter 6 – Vulnerabilities in Time Synchronized Link Layer Protocols Chapter 6

presents our findings on vulnerabilities in time-synchronized protocols. The first part gives an in-depth

overview of the inner-working of the IEEE 802.15.4E standard. It explains how the network formation

and maintenance operates, and how it deals with the unstable crystal oscillators. We show that there is

a significant DoS vulnerability, which allows an attacker to take most of the network down. Next, we de-

tail the algorithm we designed that minimizes the latency and energy cost for a node to perform network

resynchronization. The algorithm reduces most of the additional energy a node had to spend after desyn-

chronization, which makes the DoS attack less attractive for attackers. In the second part of the chapter,

we switch roles and build a covert channel between BLE-enabled devices. It relies on thermal energy emit-

ted by the CPU to modulate data under the form of a clock skew. We perform the attack on three different

hardware platforms and study its performance.

5

INTRODUCTION

Part II, Chapter 7 – Performance of Transport Layer Security over IEEE 802.15.4E Net-
works We briefly discuss both TLS and DTLS during our overview of the state of the art of IoT networking

protocols, but in Chapter 7, we perform an in-depth study. More precisely, we discuss the differences be-

tween both protocols in the context of the IoT. We focus on the initial handshake since it is one of the most

critical and resource-demanding phases of both TLS and DTLS. Although DTLS is tolerant towards packet

losses and thus suitable for a specific range of IoT applications, during the handshake, the protocol per-

forms poorly in lossy networks. DTLS implements some of the TCP (Transport Layer Protocol) features

half-heartedly to provide reliability during the handshake, but the lack of roundtrip timing information

results in unnecessary retransmissions. Finally, we also consider the overall memory footprint of both pro-

tocols and notice that their performance is almost identical.

Part II, Chapter 8 – Security architectures for the Internet of Things The final chapter

concerns security architectures for the IoT. In Chapter 3, we gave an overview of ACE, and OAuth 2.0, its

equivalent on the world wide web. We build on this knowledge to propose two new frameworks. The first

framework takes the ACE model but combines it with the security model of OAuth 1.0a. In both ACE and

OAuth 2.0, security is decoupled from the architecture. They entirely rely on the underlying networking

stack to provide the necessary protection. The OAuth 1.0a model implements its proper security. Our new

framework additionally removes some of the trust in the different endpoints, improving the overall security

of the architecture. The second proposal entirely focusses on removing trusted third-parties from the archi-

tecture. It uses blockchain technology to authorize Internet hosts to access IoT resources dynamically. The

blockchain is combined with OSCORE, the object security framework for the IoT [7], to provide end-to-end

security of the exchanged data.

We conclude this work with a general conclusion. It summarizes the contributions from the individual

chapters and provides several future research directions concerning security for the constrained IoT.

6

Part I

Building blocks of the secure Internet of
Things

7

Chapter 1

Define a Thing

Contents
1.1 Terminology . 10

1.1.1 A Low-Power Device Classification . 10

1.2 The Internals of IoT hardware . 11

1.2.1 The Microcontroller Unit . 11

1.2.1.1 Security Features of the Microcontroller . 13

1.2.2 The Wireless Transceiver . 14

1.2.3 Sensors and Actuators . 14

1.2.4 The Energy Source . 14

9

CHAPTER 1. DEFINE A THING

Introduction

Nowadays, a broad assortment of computing devices classify as IoT (Internet of Things). Examples range

from comprehensive home automation systems to the tiniest energy-scavenging RFID (Radio-Frequency

Identification) chips. The IoT also revolutionizes in the industry. The IIoT (Industrial Internet of Things) can

implement supply chain tracking or monitor assembly lines at manufacturing sites through the deployment

of wireless sensor networks [8]. Smartdust can even be used to combat global warming by providing us with

large-scale environmental measurements in hostile areas [9, 10].

In contrast to traditional IT (Information Technology) systems, i.e., PCs (Personal Computers) and servers,

built to run a variety of programs, IoT devices tend to be optimized for a particular application. The latter

helps to lower the price and in some cases, energy consumption of the end product. The wide range of

diverse IoT applications causes a significant disparity in hardware characteristics. Some IoT systems have

high-performance specifications and possess advanced computing capabilities [11], while others must sur-

vive years on a single battery [12].

In this thesis, we are concerned with the constrained IoT. We define the constrained IoT as the set of

Internet-connected devices that have strict limitations in terms of computational power, total available

memory, and energy supply. Although the capabilities of a single device are limited, equipped with a battery

and a radio transceiver, they can form a wireless network. Their wireless nature makes the devices mobile,

and in multi-hop network formation, they can cover large areas by relaying information.

In this first chapter, we explore the typical hardware components of COTS (Commodity Off-The-Shelf)

constrained IoT devices. Detailed knowledge of the various hardware building blocks is crucial to the se-

curity of any device. We will see, throughout the subsequent chapters, that hardware support forms the

foundation of fundamental security properties such as isolation, device authentication, confidentiality, and

integrity. Because of the stringent limitations on the constrained devices, many hardware features, avail-

able on more powerful systems, are not implemented. By studying the components available on low-power

devices, we can build alternative techniques in an effort to provide similar security properties.

1.1 Terminology

Throughout this document, we refer to tiny devices with limited CPU (Central Processing Unit) perfor-

mance, memory, and energy supply as constrained devices. We also interchangeably use the terms: smart

object, thing, board, platform and embedded system to describe a PCB (Printed Circuit Board) that con-

tains different electronic components, e.g., ICs (Integrated Circuits), energy supply, and a wireless interface.

When the constrained devices form a network, we refer to them as nodes or motes.

1.1.1 A Low-Power Device Classification

Despite the overwhelming variety of existing constrained IoT devices, the IETF (Internet Engineering Task

Force) [13] has proposed a classification based on the performance characteristics of the devices. Typically,

these characteristics are available code memory, RAM (Random-Access Memory), and the CPU speed.

• Class 0 devices are the most constrained. They have less than 10 KiB of RAM and less than 100 KiB of

code memory. These devices will most likely have one preconfigured setup which persists throughout

their lifetime. Class 0 devices generally cannot be secured or managed in the traditional sense [13].

• Class 1 devices are more powerful than Class 0 (i.e., 10 KiB of RAM and 100 KiB of code memory),

but it remains a challenge to deploy a traditional secure communication stack. The current research

majorly efforts focus on adapting communication protocols and security schemes to suit this device

class.

• Class 2 devices are the most powerful devices in the classification. They have around 50 KiB of RAM

and 250 KiB of code memory. These devices are capable of running the traditional Internet protocol

suite, but for reasons such as bandwidth efficiency, available code space for the applications and

overall energy consumption of the device, they also use the adapted IoT protocol stack.

10

CHAPTER 1. DEFINE A THING

The boundaries between the classes coincide with distinct clusters of commercially available chips.

Each higher class corresponds to a bump in computational capabilities and memory, but also means the

devices require additional power. During this thesis, we principally focused on devices from Class 1 and 2.

1.2 The Internals of IoT hardware

To more accurately define a Thing, we have a closer look at the usual hardware of a constrained IoT device.

We can divide the hardware into four subsystems: the microcontroller unit, the wireless transceiver, sensors

and actuators, and the energy source. On some hardware designs, these subsystems are distinguishable,

while other designs integrate multiple components in a single SoC (System-On-Chip).

Main System Bus

PLLCrystal
Oscillator

Flash SRAM ROM

RTC

Power
Management

System
Control

Watchdog
Timer

Bus
Bridge

Peripheral Bus Infrastructure

UART GPIO SPI I2C

Timer

PWM

ADC
DAC

Voltage
Regulator MPU

Processor Core

Crypto
Cell

Figure 1.1: Main components of a modern microcontroller [5].

1.2.1 The Microcontroller Unit

At the center of the IoT device, we find the MCU (Microcontroller Unit). Depending on the requirements

of the final product, the microcontroller has different performance characteristics and components. The

simplified block diagram in Figure 1.1 shows the most common components inside a microcontroller [5].

At the heart of the MCU, we can find the CPU, it performs the gross of the calculations. It has several

internal registers, some of which are generic and used to store intermediate results, others describe the

current CPU configuration. The CPU contains an interrupt controller. When an interrupt occurs, the CPU

jumps to the appropriate interrupt vector and executes the interrupt service routine. An interrupt allows the

CPU to execute a specific section of code when a particular internal or external event transpires. A variety

of MCU subsystems can be configured to generate interrupts. The CPU is also directly connected to several

memory systems through the main system bus. Optionally, CPU accesses to memory and MCU subsystems

can be monitored and verified by an MPU (Memory Protection Unit). Low-end CPUs typically do not feature

a cache; however, the MCU designer might choose to add a system-level cache to accelerate flash look-ups.

For example, the STM32F4 family of MCUs employs the ART Accelerator cache to circumvent the speed

mismatch between the processor and the flash memory. On each instruction fetch from flash, the ART

cache additionally loads 4 to 5 instructions. Preloading instructions keeps the CPU running at full speed

without having to install more high-end flash. Some MCUs also come with a cryptographic coprocessor.

This component provides hardware acceleration for cryptographic primitives.

11

CHAPTER 1. DEFINE A THING

The predominant memory types are flash, ROM (Read-Only Memory), and SRAM (Static Random Access

Memory). The first two are non-volatile memories. They are used to store program code, with the difference

that the latter can only be programmed once (usually by the device manufacturer). It usually holds the boot

code, the first instructions executed by the CPU during the device’s start-up sequence. The SRAM is volatile

memory. It can hold both program code as well as data. It is mainly used as a scratchpad by the CPU when

executing program code. SRAM holds among other things the stack and heap segments of an executing

program.

Other components directly linked to the CPU are the crystal oscillator and the PLL (Phase-Locked Loop)

system. The crystal oscillator is an external component that provides a stable clock signal to the system. The

crystal and its surrounding electrical components determine the exact frequency of the oscillator. Some

microcontrollers also have internal oscillators based on RC-circuits (however, their output frequency can

be somewhat inaccurate) [5]. The PLL allows the software to control the frequencies of the clock signals

fed into the digital circuits. Different digital logic requires distinct frequencies. As a result, the MCU can

have an external crystal of just 12 MHz, while the processor is running at a much higher clock speed (e.g.,

100 MHz), and some of the peripherals running at a divided clock speed. The PLL uses the crystal oscillator

as a reference clock while generating the various operating frequencies. Timer circuits use the clock signals

to tell time. A timer consists of a register that increments for each elapsed clock tick. The RTC (Real-Time

Clock) is a particular type of timer that counts seconds. It uses a low-power crystal oscillator and keeps

track of time even when the device is powered off.

MCUs often possess various energy modes. The power management system controls the power mode

of the device. In standard mode, an MCU may draw a substantial amount of energy. Increasingly aggres-

sive sleep modes shut down additional parts of the MCU to save energy. The most aggressive modes only

keep a few subsystems of the MCU active. In these configurations, data retention in SRAM is not always

guaranteed [14]. When the sleep mode is active, memory leakage and the crystal oscillator are the primary

contributors to the overall energy consumption. Decreasing energy consumption in sleep mode is thus of

utmost importance as the IoT devices spend most of their time sleeping. The MCU can be configured to

return to standard mode on the arrival of an interrupt.

Finally, a regular MCU implements several interfaces to the external world. These come under the

form of GPIO (General Purpose Input/Output), UART (Universal Asynchronous Receiver/Transmitter), I2C

(Inter-Integrated Circuit) and SPI (Serial Peripheral Interface) systems. They provide a parallel or serial data

interface to control external devices and to read external signals.

In general, production cost and the available energy supply limit the MCU’s capabilities. The addition

of hardware, to support additional features, requires more silicon, which raises the price of the end product

and the overall energy consumption. The energy constraints of the MCU directly impact the supported total

memory size and the processor frequency [2]. Larger memory sizes imply larger cell and transistor count,

which directly influences leakage currents. Consequently, MCU sleep modes that retain data memory in

sleep modes have higher power consumption compared to those where data memory is not retained. A

higher processor frequency consumes additional energy, but it also allows the CPU to complete its tasks

more rapidly, resulting in more time spent in low power modes. In Table 1.1, we depict some characteristics

of commercially available MCU systems.

TABLE 1.1: Specifications of commercially available MCUs.

MCU Identifier
Instruction

size [bits]
SRAM [KiB]

Max. CPU

freq. [MHz]

CPU on

[mA/MHz]

CPU sleep

[µA]
MPU

Crypto

support

ATmega8A [15] 8 1 16 0.56 1.5

MSP430F16x [16] 16 10 8 1.8 5.1

CC2538 SoC [14] 32 32 32 0.185 0.44 X X

STM32F401xD/E [17] 32 96 84 0.146 12 X

12

CHAPTER 1. DEFINE A THING

1.2.1.1 Security Features of the Microcontroller

The limitations put on hardware due to energy and cost restrictions also directly affect the security of the

constrained IoT. Security critical features common to in high-end systems have been made optional, al-

lowing to trade security for production cost and energy-efficiency. A prime example is memory protection.

More powerful commodity systems possess an MMU (Memory Management Unit). The MMU is a hard-

ware component that contains each application to its own virtual memory space. The MMU prevents any

attempt of a program to access the memory of a different application or the kernel. It sits between the pro-

cessor and the RAM, and it checks any memory accesses performed by the processor. The MMU drastically

limits the damage a rogue or malicious application can inflict on other applications and the system.

In the constrained IoT, the (silicon) cost of a full-fledged MMU is prohibitive, but protecting the memory

of safety and security-critical functions is still an indispensable feature, definitely for Internet-connected

devices. The Arm Cortex-M family of processors, prominent in designs for low-power devices, optionally

includes an MPU1. The MPU is a programmable component that defines multiple memory ranges and at-

taches specific memory attributes and memory access permissions. The system designer can protect parts

of memory from non-privileged software, by configuring the MPU in the start-up code of the device. Mem-

ory zones used as communication buffers for possibly untrusted interfaces, e.g., a networking interface,

are particularly vulnerable and should be isolated from the rest of the system. The developer should mark

the code that accesses these untrusted memory areas as unprivileged. The Arm architecture uses memory-

mapped IO (Input/Output) to communicate with peripheral devices. The MPU can thus additionally shield

the peripherals from unprivileged code.

Handler
Mode

Privileged Unprivileged
Process Stack

Pointer
Main Stack

Pointer

CPU states

CPU startup state

(a) Cortex-M0+ CPU states.

Core MPU System

Cache

Cortex-M Processor

Memory
Controller

SRAM or
Flash

Memory attributes

Memory
access

Memory
access

Memory
access

Memory
access

(b) MPU checks CPU memory accesses and triggers a MemFault if the access is illegiti-
mate.

Figure 1.2: Security features in low-power MCUs.

Devices that contain an MPU have two CPU privilege levels. The code running in unprivileged mode

has restrictions on memory and register accesses, while privileged code can access the entire memory and

all CPU registers. Privileged code can easily switch to unprivileged mode, but the inverse is not true. The

code must go through an exception handler, which can enforce certain restrictions, to return the CPU to

privileged mode.

Hardware accelerators for cryptographic primitives form another class of vital hardware components

for the security of the constrained IoT. Security protocols employed on the Internet require expensive cryp-

tographic operations, see Chapter 3. For the low-end MCUs used in IoT devices, the cryptographic func-

tions result in a notable overhead. Implementing the algorithms in software not only requires a lot of flash

memory, but they also hog the CPU and consume a lot of battery. Hardware accelerators free space in flash

memory, and they allow the CPU to offload expensive operations. They also facilitate the implementation

of the networking protocols by providing a fast and more energy-efficient way of encrypting and decrypting

data. Hardware implementations of cryptographic functions can also increase the overall security of the

system. In the next chapter, we present some essential cryptographic primitives and show that while they

can provide powerful security properties, small mistakes in the implementations can lead to fatal flaws in

the security protocols. Providing vetted hardware implementations of the primitives reduces the chance of

critical security bugs.

1Starting from the Cortex-M0+. The least powerful Cortex-M0 does not include an MPU to reduce silicon area and power consump-
tion

13

CHAPTER 1. DEFINE A THING

1.2.2 The Wireless Transceiver

To become part of a network and by extension the entire Internet, IoT devices are frequently equipped with

a wireless transceiver. The role of the wireless transceiver or radio is twofold. On the one hand, it encodes

the digital information into an electromagnetic wave emitted by the radio antenna. On the other hand,

a radio needs to be able to capture such an emitted electromagnetic wave and decode it back to digital

data [2]. Table 1.2 presents the characteristics of some state-of-the-art transceivers.

TABLE 1.2: Energy consumption of IEEE 802.15.4 radios.

Radio Identifier Tx @ 0 dBm [mA] Rx [mA]

CC2538 SoC [14] 24.0 20.0

CC2520 [18] 25.8 18.5

CC2420 [19] 19.5 21.8

AT86RF231 [20] 11.6 10.3

The ability of a radio to demodulate and decode an electromagnetic wave depends on several factors

such as the strength and quality of the incoming signal and the radio modulation techniques. The SNR

(Signal-to-Noise Ratio) metric represents the ratio of the strength of the received signal to the background

noise at the receiver side. A low SNR makes it harder for the receiving radio to decode the incoming sig-

nal. The SNR value depends on the power of the emitted signal, receiver sensitivity, and interference on the

channel. The LQI (Link Quality Indicator) is a metric that tries to gauge the quality of the received transmis-

sion. It uses either energy detection, the SNR or both [21]. A low LQI indicates a complicated demodulation

process.

Due to energy constraints, IoT devices use limited transmission power when communicating. If we

compare current consumption values in Table 1.2 with those in Table 1.1, we can conclude that radio usage

dominates the energy consumption of constrained IoT devices. This is a key insight that has played an fun-

damental role in the design of the low-power communication protocols. The limited output power impacts

the range over which IoT devices can communicate. Depending on the environment, the distances range

from a few meters to tens of meters. Devices can form multi-hop networks by establishing peer-to-peer

links between neighboring devices. In these formations, data is relayed over long distances to a central de-

vice using a specialized protocol stack. Characteristic for the IoT, the protocol stack supports IPv6 (Internet

Protocol version 6), allowing the individual devices in the network to be uniquely addressed on the Internet.

We discuss the constrained Internet stack further in chapter 3.

1.2.3 Sensors and Actuators

Sensors in IoT devices provide measurements from their immediate surroundings. The most basic sensors

are temperature, humidity, light, pressure, accelerometer, and gyroscope. IoT devices can also interact with

their environment through the use of an actuator. Examples of simple actuators that are controlled by an

IoT device are smart light bulbs, smart locks, valves, or switching boards.

1.2.4 The Energy Source

One can use constrained devices in scenarios where the conventional energy sources are unavailable, or

the devices have to be mobile, and they can therefore not use a wired energy source. The predominant

energy source in these scenarios is a battery. Because of the vast number of devices, the battery life must be

as long as possible to prevent frequent battery renewal. For systems that require very little energy, energy

scavenging techniques are an option. Examples are solar cells, piezoelectric elements, and temperature

gradients. The harvested energy can power the device directly (when there is no battery), or it can recharge

a battery.

14

CHAPTER 1. DEFINE A THING

Discussion

Production cost and energy supply are the primary factors guiding the design of constrained IoT devices.

Both factors influence the overall device capabilities, not only in terms of computational power and avail-

able memory but also in its potential to protect users and their data from attackers. The hardware design

of the device directly affects the security guarantees the end product can offer. Regrettably, the past years

have shown that product designers have all too often sacrificed the security-critical components in order to

lower the overall production cost. Prior to the IoT, the impact of such vulnerabilities was limited as embed-

ded devices were part of closed and isolated systems. Attackers almost always required physical access to

the system to exploit the flaws. However, the current IoT evolution pushes the product designers to provide

networking capabilities to anything with elemental computational power, exposing the devices to attack

vectors they were never designed to withstand.

Luckily, the tide is turning. Chip vendors and system designers have become aware of the new threats

their products are facing, and they are building security into the hardware. The integration of security

mechanisms in the early stages of the product development phase ensures that the hardware can act as

a trusted foundation. Upon this foundation, we can create the building blocks that will help us protect

the IoT. Features such as secure boot, network security, secure over-the-air updates, intellectual property

protection, etc. can help in mitigating the bulk of the attacks that the IoT is currently facing. Hardware

assistance not only supports us in building secure systems; it permits us to do this efficiently. For exam-

ple, hardware acceleration for cryptographic algorithms almost eliminates its overhead and dramatically

improves the adoption of the newly developed secure networking protocols. Hardware-enforced memory

protection can efficiently separate critical system components from untrusted software, allowing for the

deployment of secure boot, firmware updates, and patching, damage control, etc. New emerging technolo-

gies such as Arm TrustZone are state of the art in hardware security support for the IoT. They implement the

discussed security features and much more in an attempt to provide system-wide protection. We discuss

Arm TrustZone and similar technologies in Chapter 4.

Hardware support
memory protection,

hardware acceleration,
secure key storage

Cryptographic primitives
symmetric cryptography and

public key cryptography

Network Security
OSCORE, TLS,
DTLS, IPSec

Device Security
Secure boot, remote attestation

Secure updates

Figure 1.3: Building blocks of a secure IoT device.

Although appropriate hardware support seems almost indispensable for the future of the IoT, it is only a

part of the solution. In the subsequent chapters, we discuss the different security building blocks that must

flawlessly work together to build a secure IoT device. We start our discussion with a chapter on cryptogra-

phy, a powerful but delicate tool that appears as a crucial component in the other building blocks.

15

CHAPTER 1. DEFINE A THING

16

Chapter 2

Basics of Cryptography

Contents
2.1 Notions of Security . 19

2.1.1 Pseudorandom Generators . 21

2.1.2 Pseudorandom Functions . 22

2.1.3 Pseudorandom Permutations . 23

2.1.4 One-Way Functions . 23

2.1.4.1 The Factoring Assumption . 24

2.1.4.2 Discrete Logarithm Assumption . 24

2.2 Symmetric-Key Cryptography . 24

2.2.1 Stream Ciphers . 24

2.2.2 Block Ciphers . 25

2.2.3 Block Cipher Modes of Operation . 27

2.2.3.1 Electronic Codebook . 27

2.2.3.2 Cipher Block Chaining . 28

2.2.3.3 Counter Mode . 28

2.2.4 Message Authentication Codes . 29

2.2.4.1 Message Integrity using Pseudorandom Functions 30

2.2.4.2 Message Integrity using Universal Hashing . 30

2.2.4.3 Message Integrity from Keyless Collision Resistant Hashing 32

2.2.5 Authenticated Encryption . 34

2.2.5.1 Authenticated Encryption with Associated Data 34

2.3 Public-Key Cryptography . 36

2.3.1 Public-Key Encryption . 36

2.3.2 Key Exchange Algorithms . 37

2.3.3 Digital Signatures . 38

2.3.4 Elliptic Curve Cryptography . 40

2.3.5 Discrete Logarithms over Elliptic Curves . 41

2.4 Cryptography on Constrained Hardware . 41

2.4.1 CAESAR . 42

2.4.1.1 ACORN & Ascon . 42

2.4.2 Performance Study . 42

2.4.2.1 Symmetric Primitives . 42

2.4.2.2 Asymmetric Primitives . 43

17

CHAPTER 2. BASICS OF CRYPTOGRAPHY

Introduction

Cryptography is ubiquitous. These days, the bulk of computing systems use it extensively. Historically,

cryptography was the art of inventing codes to hide messages from the prying eyes of the enemy. Mod-

ern cryptography, however, is a science that encompasses much more than only secret communication.

It includes, among others, data integrity and authentication, secret key exchange algorithms, and digital

signatures. The most common security properties cryptosystems strive to provide are:

Confidentiality is the property whereby information is not revealed to unauthorized parties [22]. To ob-

tain confidentiality, we use encryption. Encryption algorithms convert the plaintext to some illegible

form, known as the ciphertext. The mapping of the plaintext to the ciphertext, for a given encryption

algorithm, depends on the encryption key. Only the entities in possession of the decryption key can

retrieve the original data through the process of decryption.

Data Integrity protects the data from being altered. Cryptographic primitives such as cryptographic hash

functions are applied to the data to detect, with very high probability, malicious modifications or

accidental changes to the data.

Data Origin Authentication guarantees that only a party with knowledge of a specific secret key can create

some data. Data authentication is considered to be a stronger property than data integrity. Data

origin authentication directly implies the data integrity property since a modified message has a new

source [23].

Entity Authentication and Non-Repudiation ensure that a party cannot deny that they created some data.

Systems achieve non-repudiation through the use of a public key cryptography algorithm (i.e., digital

signatures). This property is, for example, particularly crucial in electronic voting schemes, where a

voter should not be able to deny having already cast a vote. Non-repudiation seems similar to data

origin authentication, but there is a fundamental difference between both properties. Data origin

authentication uses a symmetric key, a secret key shared by two or more entities. A recipient of a

protected message can verify the message originated from an entity with access to the key, but the

recipient cannot, however, prove which of the entities in possession of the key created the message.

In a cryptographic scheme that offers non-repudiation, we can uniquely identify the creator of the

message.

While powerful, cryptography remains highly brittle. Over the past decades, many, seemingly innocu-

ous mistakes in cryptographic specifications and implementations lay at the foundation of disastrous vul-

nerabilities in security systems. The substantial amount of flaws found in the past version of networking

protocols such as TLS (Transport Layer Security) are living proof that cryptography is notoriously hard to

get right. With the emergence of the IoT, the security community is now facing an additional challenge.

Cryptographic schemes need to consume fewer CPU cycles and energy while still providing a sufficient

level of security. An increasing number of IT systems support elliptic curve cryptography to accommodate

the utilization of less potent devices on the Internet. Asymmetric cryptography based on elliptic curves is

faster, requires less memory, and is overall more secure than its counterpart based on modular arithmetic.

At the same time, recent public competitions target the design of new lightweight authenticated encryption

schemes suitable for the IoT.

Throughout this chapter, we outline the essential concepts of modern cryptography. We introduce the

basic notions of information security and present the various threat models for cryptosystems, allowing us

to reason about their security. We build on this knowledge to describe the most widely used cryptographic

algorithms. First, we discuss the different algorithms that belong to the family of symmetric cryptography:

stream ciphers, block ciphers, message authentication codes, and authenticated encryption ciphers. Sec-

ondly, we consider the cryptographic mechanisms we can build with asymmetric cryptography. We present

public-key encryption, key exchange algorithms, and digital signatures. We distinguish between algorithms

based on modular arithmetic over the integers and elliptic curve cryptography.

A part of this chapter is devoted to lightweight cryptography. We review the finalists of the CAESAR

(Competition for Authenticated Encryption: Security, Applicability, Robustness) competition for authenti-

cated encryption schemes briefly. We conclude this chapter with a performance analysis of several state-

of-the-art primitives on constrained hardware.

18

CHAPTER 2. BASICS OF CRYPTOGRAPHY

2.1 Notions of Security

The basic algorithm used in cryptography to provide confidentiality is called a cipher.

Definition 2.1.1. Cipher: A cipher E defined over a triple (K,M,C), denoting the key space, message space

and ciphertext space, is a pair of efficient1 algorithms (E ,D) where E : M×K→ C and D : K×C→M such

that,

∀m ∈M, ∀k ∈K : D (k, E(k, m)) = m (2.1)

One of the more famous ciphers is the OTP (One Time Pad), invented by Gilbert Vernam in 1917. The

OTP owes its fame to its property of perfect secrecy. Informally stated, a cipher provides perfect secrecy if

an intercepted ciphertext reveals no information about the plaintext, even if the attacker, denoted as A, has

unbounded computational power.

Definition 2.1.2. Perfect Secrecy: A cipher E(E ,D) over (K,M,C) has perfect secrecy if ∀m0,m1 ∈M with

|m0| = |m1|, ∀k ∈K and ∀c ∈ C such that,

Pr
[
A(E(k,m0) = c)

]
= Pr

[
A(E(k,m1) = c)

]
with k

R←−K (2.2)

Equation 2.2 states that the probability distributions obtained by encrypting m0 and m1 with randomly

selected keys from K must be equal. An attacker looking at these distributions does not gain any additional

information.

The main drawback of the OTP is the length of the encryption key. It must have the same size as the

plaintext message. Additionally, every bit of the key must be sampled from a truly random source. The

secret key, which can stretch to gigabytes in size, depending on the message, must be shared over a secure

channel with the recipient for decryption of the ciphertext. We can directly remark that if such a secure

channel exists, then we could use it to transfer our plaintext message without encrypting it.

In practice, finding a strong source of randomness is challenging. The Linux operating system provides

a software RNG (Random Number Generator) implemented as a device called /dev/random. It obtains en-

tropy from several hardware sources such as keyboard events, mouse events, and hardware interrupts. Ad-

ditionally, one can use an external device that can generate randomness [24]. These systems use quantum

random processes, the time between emissions during radioactive decay, inherent semiconductor thermal

noise, shot noise from Zener diodes, or free-running oscillators [25]. In 2012, starting with the Ivy Bridge

processor family, Intel introduced a hardware random number generator in its processors. Output from the

generator is read using the RdRand instruction that is intended to provide a fast uniformly random bit gen-

erator. Because of aging, the hardware might malfunction, causing predictable bit sequences. The output

of the hardware circuit is, therefore, continuously tested. Lack of strong randomness is also a significant

issue on constrained hardware, as discussed by Yan et al. [26].

Due to the above reasons, the OTP is not a practical cipher. Modern cryptography does not consider

adversaries with unlimited computational resources. It assumes instead that the adversary’s computational

power is bounded in some reasonable way. In particular, the adversary is limited to PPT (Probabilistic-

Polynomial Time) algorithms.

Definition 2.1.3. Probabilistic Polynomial Time Algorithm: A PPT algorithm is an algorithm that takes

an input x and makes random decisions during its execution. It terminates after |p(x)| steps, for some

polynomial p.

The assumption of a bounded adversary permits us to use a weaker, albeit more practical, definition of

security called computational security. We can use Equation 2.2 to motivate the definition of computational

security. Instead of insisting that distributions in Equation 2.2 are equal, we only require that they are very

close; that is ∣∣∣∣Pr
[
A(E(k,m0) = c)

]
−Pr

[
A(E(k,m1) = c)

]∣∣∣∣≤ ε with k
R←−K (2.3)

1In theory, efficient means an algorithm that runs in polynomial time, in practice some time constraints can be placed on the
runtime of the algorithm.

19

CHAPTER 2. BASICS OF CRYPTOGRAPHY

for some very small, or negligible, value of ε. In a practical scenario, the definition of negligible is often

a scalar, e.g., ε≤ 2−80, but in theory, it is expressed as a function of a security parameter n [27]. By picking a

larger security parameter, we can obtain a higher level of security. For the most part, the security parameter

determines the length of the key used by the cryptographic algorithm.

Definition 2.1.4. Negligible A function f :Z≥1 →R is called negligible if ∀c ∈R>0 there exists n0 ∈Z≥1 such

that ∀n ∈Z : n ≥ n0, we have | f (n)| < 1/nc .

To reason about the security of ciphers, cryptographers use “attack games”. They formalize the inter-

actions between an adversary and the cipher, denoted as the challenger. The challenger challenges the

adversary to break the cipher. The attack game for encryption security of a cipher E(E ,D), defined over

(K,M,C), and a given PPT adversary A can be defined as follows:

A
Efficient

Adversary

Efficient
Challenger

Experiment b

c
R←− E(k, mb)

k
R←− K

b̂ ∈ {0, 1}

m0, m1 ∈ M
c

Figure 2.1: Definition of indistinguishable encryption with the attack game.

1. The adversary picks two messages, m0,m1 ∈M, and sends them to the challenger.

2. The challenger picks a random b ∈ {0,1} and computes k
R←− K , c

R←− E(k,mb). The challenger sends c

to the adversary.

3. The adversary outputs a bit b̂ ∈ {0,1}. The adversary outputs b̂ = 0 if he thinks the challenger en-

crypted m0 and similarly he outputs b̂ = 1 if he thinks the challenger encrypted m1.

The encryption scheme is now secure if the success probability of any PPT adversary in the attack game,

also denoted as the attacker’s advantage, is at most negligible. We say that the cipher has indistinguishable

encryptions.

INDadv[A,E] =
∣∣∣∣Pr

[
A(E(k,m0)) = 1

]
−Pr

[
A(E(k,m1)) = 1

]∣∣∣∣ (2.4)

Definition 2.1.5. Secure Cipher A cipher E(E ,D) is secure if for all PPT adversaries A, INDadv[A,E] is

negligible.

Informally, a secure cipher is a cipher that only leaks a negligible amount of additional information

about the plaintext, regardless of any prior information that the attacker has obtained about the plaintext.

The indistinguishable encryption definition can be used to reason about the cipher’s strength in the pres-

ence of different types of attackers. If a cipher provides indistinguishability in the presence of an attacker

with capabilities x, we say it is an x-secure cipher. For example, the above definition describes indistin-

guishable encryption in the presence of a passive eavesdropping attacker. This cipher is thus a ciphertext-

only secure cipher. We now list all the attacker types in order of the “increasing strength”. Each subsequent

attacker model incorporates all the previous attacker capabilities.

• COA (Ciphertext-Only Attack): the attacker can only observe ciphertexts (the values of m0 and m1 are

not known by A in the attack game).

• KPA (Known-Plaintext Attack): the attacker knows the plaintext values of the observed ciphertext

messages, but it does not control plaintext. A natural scenario for this model is the encryption of

known header information in messages, e.g., e-mail.

• CPA (Chosen-Plaintext Attack): the attacker can obtain the ciphertext of plaintext messages of its

choosing. The attacker thus specifically chooses m0 and m1 in the attack game.

20

CHAPTER 2. BASICS OF CRYPTOGRAPHY

• CCA (Chosen-Ciphertext Attack): the attacker additionally has the capability to decrypt messages of

its choice. Although this attack model seems unrealistically strong, many padding oracle attacks on

the TLS protocol [28–30] belong to this attack model.

To build systems that are secure in these different threat models, we need primitives with certain com-

putational hardness as a property. Examples of these primitives are pseudorandom generators, pseudoran-

dom function families, and one-way functions.

2.1.1 Pseudorandom Generators

A PRG (Pseudorandom Generator) is an efficient, deterministic algorithm G that picks as input a seed s :

{0,1}n , uniformly at random from the finite seed space S and outputs a long random-looking sequence of

bits, r : {0,1}m , belonging to finite space R.

G : {0,1}n → {0,1}m with m > n (2.5)

Many of the classical techniques for building PRGs are unsuitable for cryptographic applications. For

example, a standalone LFSR (Linear Feedback Shift Register) is well-known to be cryptographically inse-

cure. We can solve for the feedback pattern given a small number of output bits. A PRG is secure, and

suitable for cryptography if its output is computationally indistinguishable from a truly random sequence.

We use an attack game to provide the security definition of the PRG, see Figure 2.2.

A
Challenger

Efficient
Adversary

b̂ ∈ {0, 1}
r s

R←− S
r ← G(s)

r
R←− R

Figure 2.2: The PRG is computationally indistinguishable from a true random seed if the distinguishing probability of

A is negligible.

For a PRG denoted as G and defined over (S ,R), and for an adversary A, we present the following attack

game.

• The challenger picks at random a value b ∈ {0,1} and generates r . It then sends r to the adversary. The

value r is calculated as follows:

- if b = 0: . The challenger picks uniformly at random a seed s
R←−S and generates a pseudorandom

sequence r ←G(s).

- if b = 1:. The challenger picks bitstring r
R←−R from a truly random source.

• Given r , the adversary tries to detect if he has been given a trult random bitstring or a pseudorandom

bitstring. He outputs b̂ ∈ {0,1}.

The attacker wins the attack game if he succeeds with a non-negligible probability. Let W0 be the event

that r ←G(s), and W1 be the event that r
R←−R [31].

PRGadv[A,G] =
∣∣∣Pr

[
A(W0) = 1

]
−Pr

[
A(W1) = 1

]∣∣∣∣ (2.6)

Definition 2.1.6. Secure PRG A PRG G is secure if the value PRGadv[A,G] is negligible for all PPT-bounded

adversaries A.

Intuitively, we cannot say that a single fixed bitstring is pseudorandom. Instead, we define pseudoran-

domness over a distribution of bitstrings. When we say that a specific distribution is pseudorandom, it

means that we cannot distinguish it from the uniform distribution over all the bitstrings.

21

CHAPTER 2. BASICS OF CRYPTOGRAPHY

2.1.2 Pseudorandom Functions

A PRF (Pseudorandom Function) is a deterministic, efficient algorithm F that has two inputs: a key k and

an input data block x. The output y = F (k, x) is called an output data block. The PRF F is defined over

(K,X ,Y), where K is the key space of k, X is the input data block space of x and Y , the output data block

space of y . The notion of security for a PRF states that for a uniformly at random chosen key k, the function

F (k, ·) should be indistinguishable from a true random function for a PPT adversary.

Similarly to pseudorandom bitstrings, it does not make sense to say that a single function is random. We

define a function family that takes inputs from X and maps them to Y . We then pick uniformly at random a

function from this family and compare it to our pseudorandom function F (k, ·). The family of all functions

mapping X to Y can be denoted as Funs[X ,Y].

TABLE 2.1: The function family Funs[X ,Y] mapping 1 bit inputs to 1 bit outputs.

function family f1 f2 f3 f4

f :X →Y outputs: y

input: x
0 0 0 1 1

1 0 1 0 1

This function family in Table 2.1 only contains 4 functions but for larger input and output spaces the size

of the function family grows drastically: |Funs[X ,Y]| = |Y ||X |, e.g., for X : {0,1}3 and Y : {0,1}4, the family

already holds 2.81e14 functions. Note that the input and output do not necessarily have to be of the same

size. The PRF’s security depends on its indistinguishability from a function picked at random from this vast

function family.

A
Challenger

Efficient
Adversary

b̂ ∈ {0, 1}

x

f
R←− Funs[X , Y]

f ← F(k, ·)
k

R←− K
y

Figure 2.3: A PRF, for a given key k, must be computationally indistinguishable from a function taken uniformly at

random from Funx[X ,Y] for any efficient algorithm A.

Again, to define security of the PRF more formally, we introduce a new attack game. For a given PRF F ,

defined over (K,X ,Y) , and for a given adversary A, we define the following game:

1. The challenger randomly picks b, with b ∈ {0,1} and computes f ∈ Funs[X ,Y]:

- if b = 0: The challenger picks at random a key k
R←−K, and instantiates a function f ←F (k, ·)

- if b = 1: The challenger picks at random a function from the family f
R←− Funs[X ,Y].

2. Next, the adversary submits a query x ∈X to the challenger

3. The challenger evaluates the function y ← f (x) with y ∈Y and sends the result y to the adversary.

4. The adversary computes and outputs b̂ ∈ {0,1}.

The attacker wins the game if he can distinguish with a non-negligible probability the output generated

by the pseudorandom function from the output generated by the truly random function. The event that

f ←F (k, ·) is the denoted asW0, and W1 is the event that f
R←− Funs[X ,Y].

PRFadv[A,F] =
∣∣∣Pr

[
A(W0) = 1

]
−Pr

[
A(W1) = 1

]∣∣∣∣ (2.7)

Definition 2.1.7. Secure PRF A PRF F is secure if the value PRFadv[A,F] is negligible for all efficient ad-

versaries A.

22

CHAPTER 2. BASICS OF CRYPTOGRAPHY

2.1.3 Pseudorandom Permutations

A PRP (Pseudorandom Random Permutation) is an efficient, deterministic permutation P defined over the

spaces (K,X). It is very similar to a PRF, but there are some additional constraints. The input data block

space and output data block space are the same finite setX . On top of being computationally indistinguish-

able from the permutation picked at random from the permutation family, a PRP is a bijective function for

which exists an efficient inversion algorithm. The PRP primitive is the abstract model of a block cipher,

which we discuss later in the chapter.

The attack game for a given PRP P , and for a given adversary A is formalized as follows:

1. Again, the challenger picks b at random with b ∈ {0,1} and selects p ∈ Perms[X] as follows:

- if b = 0: The challenger picks at random a key k
R←−K, and instantiates a permutation f ←P(k, ·)

- if b = 1: The challenger picks at random a permutation from the family f
R←− Funs[X ,Y].

2. The adversary submits a query x ∈X to the challenger

3. The challenger computes y ← p(x) with y ∈X and sends y to the adversary.

4. The adversary computes and outputs b̂ ∈ {0,1}.

The attacker wins if he can distinguish with a non-negligible probability the pseudorandom permuta-

tion from the truly random permutation. The event that p ←P(k, ·), is denoted as W0 and W1 is the event

that p
R←− Perms[X].

PRPadv[A,P] =
∣∣∣Pr

[
A(W0) = 1

]
−Pr

[
A(W1) = 1

]∣∣∣∣ (2.8)

Definition 2.1.8. Secure PRP A PRP P is secure if the value PRPadv[A,P] is negligible for all efficient ad-

versaries A.

2.1.4 One-Way Functions

Pseudorandom generators, functions, and permutations form the building blocks of all the symmetric cryp-

tography we will further discuss in this chapter. Symmetric cryptography can be proven secure under the

assumption that the pseudorandom generators and functions exist. Currently, an unconditional proof of

the existence of these primitives is not possible2. To work around this problem cryptographers formulated

a minimal assumption: the existence of one-way functions [31]. If one-way functions exist, the pseudoran-

dom constructions are achievable.

One-way functions are functions that are easy to compute but hard to invert. The latter means that a PPT

adversary only has negligible probabilty on success when trying to invert the function within a reasonable

time. Let H be an efficient one-way function defined over (M, T). We define the following attack game to

reason about the one-wayness of H:

1. The challenger chooses m ∈M at random, computes t ←H(m) and sends t to A
2. The adversary computes m′ ∈M
3. The adversary wins if H(m′) → t

OWadv[A,H] =
∣∣∣∣Pr

[
A(H(m)) ∈H−1(H(m))

]∣∣∣∣ (2.9)

Definition 2.1.9. Secure one-way function We say that H is a secure one-way function if the adversary’s

advantage over the one-way function, denoted as OWadv[A,H], is negligible for every PPT adversary.

We will now briefly present two problem statements that are believed to be one-way.

2It would require a proof for the famous mathematical problem NP 6=P .

23

CHAPTER 2. BASICS OF CRYPTOGRAPHY

2.1.4.1 The Factoring Assumption

The factoring problem can be described as finding positive integers p, q , where p and q are prime3, such

that pq = N , for a given N . Naive algorithms can solve the problem in exponential time by using a trial

division approach: check if p divides N for all p in [2,
p

N]. Although better algorithms are known, nobody

has succeeded in finding a PPT algorithm that correctly solves the factoring problem.

2.1.4.2 Discrete Logarithm Assumption

The DLP (Discrete Logarithm Problem) can be defined in any cyclic group, although it is only considered

hard in a few [31]. Groups are basic algebraic structures. We do not provide their definition but refer the

interested reader to Shoup et al. [33].

If G is a cyclic group of order q , then there exists a generator g ∈ G such that {g 0, g 1, . . . g q−1} = G. For

every h ∈ G there is a unique x ∈ Zq , such that g x = h. We call x the discrete logarithm of h with respect to

g . The problem to solve can be defined as follows:

• An efficient algorithm G generates a cyclic group Gwith order q and generator g .

• The challenger picks x ←Zq and calculates h = g x .

• The adversary gets G, q, g ,h and outputs x ′ ∈Zq

The adversary wins the game if g x′ = h. The discrete logarithm assumption is the assumption that there

exists an efficient algorithm G for which the discrete logarithm is hard. The DLP is the core component of

the famous Diffie-Hellman key establishment algorithm.

2.2 Symmetric-Key Cryptography

In symmetric-key cryptosystems, all the communicating parties possess the same secret key. This key is

used in conjunction with a cipher to convert, i.e., encrypt and decrypt, between plaintext and ciphertext.

Additionally, the secret can be used to generate and verify a MAC (Message Authentication Code) to protect

the message from tampering.

In the previous chapter, we saw that the length of the key is related to the security parameter of the

cryptosystem. Thus, the length of the key plays vital role in the cryptosystem’s resilience against brute

force attacks. In a brute force attack, the adversary tries to decrypt the plaintext message by trying all the

possible keys. Because the computational power of computers increases year after year, the key length of

the encryption scheme should be chosen conservatively if the ciphertext must resist brute force attacks in

the upcoming decade. Currently, NIST (National Institute of Standards and Technology) recommends key

lengths of 128 bits for securing data whose “security life” extends the year 2031 and beyond [22].

2.2.1 Stream Ciphers

Stream ciphers individually encrypt the bits of the plaintext message. It calculates the XOR (Exclusive Or)

operation between a bit from the key and a plaintext bit. Decryption is the inverse operation; the cipher

recovers the plaintext by calculating the bitwise XOR between the key bits and the ciphertext. The most

famous stream cipher is undoubtfully the OTP, which we shortly discussed in the previous Section 2.1. The

length of the key and the requirement for it to be genuinely random make the OTP impractical. In practice,

we pick a short uniformly random key, from which a secure PRG can produce a keystream. Encryption and

decryption are defined as follows,

E(s,m) →G(s)[0 . . . v −1]⊕m with |m| = v (2.10)

and decryption,

D(s,c) →G(s)[0 . . . v −1]⊕ c with |c| = v (2.11)

3To generate the large prime numbers, we can use an efficient algorithm such as the Miller-Rabin primality test [32].

24

CHAPTER 2. BASICS OF CRYPTOGRAPHY

It is important to note that the use of a PRG reduces but does not eliminate the need for a strong source

of random bits. The PRG is a “randomness expander”, it must be fed a truly random seed to generate a

pseudorandom sequence.

Insecure
channelplaintext

bits
ciphertext

bits
ciphertext

bits
plaintext

 bits

keystream keystream

Secure out-of-band channel

True
random
source

(a) Block diagram of a one-time pad cryptographic system.

Insecure
channelplaintext

bits
ciphertext

bits
ciphertext

bits
plaintext

 bits

keystream keystream

PRG PRGshort random
 seed

(b) Block diagram of a stream cipher.

Figure 2.4: The difference between the one-time pad and a stream cipher.

Stream ciphers instantiated from a secure PRG are CPA-secure. For a chosen-plaintext, the correspond-

ing ciphertext allows the attacker to recover a part of the keystream. However, if G is a secure PRG, the

attacker does not learn anything about previous or successive keystream bits. Hence, the attacker cannot

learn anything extra about remaining encrypted message parts.

Even when using a secure stream cipher, an adversary still has powerful attacks at his disposal. If an

attacker can force a stream cipher to encrypt two messages with the same part of the keystream, the attacker

can break the cipher. If the attacker intercepts two ciphertexts c1 and c2, both encrypted with the same seed

s, he can obtain the XOR of both original plaintext messages:

∆= c1 ⊕ c2 = (m1 ⊕G(s))⊕ (m2 ⊕G(s)) = m1 ⊕m2 (2.12)

One solution would be to change the seed for every encrypted message. In practice, stream ciphers,

such as ChaCha20, often take an additional input called a nonce. The underlying PRG can then be defined

as a function G :S×N →R. The space N is called the nonce space. By adding a nonce to the algorithm we

can generate multiple pseudorandom outputs from a single seed s. The value of the nonce can be arbitrary,

but it should never be used twice for the same seed.

A second vulnerability arises when the communication parties send each other unauthenticated ci-

phertext. An adversary can change bits in the ciphertext at will without being detected. This attack is called

a bit-flipping attack (and belongs to the CCA threat model). Suppose an attacker intercepts a ciphertext

c = E(s,m) = m ⊕G(s). He can change c to c ′ = c ⊕∆ for some ∆ of the attacker’s choice. The receiver then

gets the following plaintext message

D(s,c ′) = c ′⊕G(s) = (c ⊕∆)⊕G(s) = m ⊕∆. (2.13)

The attacker has, without knowledge of either m or s, manipulated the plaintext message predictably.

This unwanted property is called malleability. In Section 2.2.5, we introduce AE (Authenticated Encryption)

ciphers, which are specifically designed to prevent this type of attack.

2.2.2 Block Ciphers

Block ciphers operate on chunks of data, denoted as blocks. A block cipher takes a key k and a block of

plaintext b, both with a fixed size, and outputs a block of ciphertext. As noted in Section 2.1, a PRP is an

abstract model of a block cipher. A practical PRP consists of two functions:

1. A simple non-linear function that takes a key and a block of data as input

2. A key expansion function, which is a PRG that is used to expand the key k into n keys k1, . . . ,kn .

In the context of block ciphers, the simple non-linear function is called a round function, and multiple

of those are chained together to form a secure encryption algorithm. The round functions take each one of

the expanded keys, called round keys. The encryption E(k, x) and decryption D(k, y) algorithms are defined

as follows:

25

CHAPTER 2. BASICS OF CRYPTOGRAPHY

• Key expansion: use the key expansion function G to stretch the key k to n keys, one for each round

function Ê :

(k1 . . . ,kn) ←G(k) (2.14)

• Encryption: for i . . . ,n apply Ê(ki , ·):

y ← Ê(kn , Ê(kn−1 . . . , Ê(k1, x) . . .)) (2.15)

• Decryption: for i . . . ,n apply D̂(ki , ·):

x ← D̂(k1,D̂(k2 . . . ,D̂(kn , y) . . .)) (2.16)

Interestingly, the round function Ê on its own is not a secure block cipher, but heuristic evidence sug-

gests that security of a block cipher comes from iterating it many times. There is no rigorous method that

measure security of a round function and derives how many times it must be iterated before it becomes a

secure block cipher. We only know that certain functions, like linear functions, never lead to secure block

ciphers, while simple non-linear functions appear to give a secure block cipher after a few iterations [27].

key expansion

round
function

round
function

round
function

round
function

round
function

round key round key

key

plaintext
ciphertext

Figure 2.5: General construction principles of a block cipher using the iterated cipher paradigm.

Advanced Encryption Standard is currently the most widely deployed block cipher. AES (Advanced

Encryption Standard) was chosen in October 2000 by NIST as the successor of DES (Data Encryption Stan-

dard). The original algorithm, named Rijndael after its inventors Vincent Rijmen and Joan Daemen, was

picked after a three-year-long public competition. AES uses a series of permutations and substitutions and

therefore executes fast when implemented in both hardware and software. It has a 16-byte block size and

uses keys of length 128, 192, and 256 bits. Following the design principles we described above, AES uses a

chained round function to encrypt plaintext. Depending on the key length, it either uses 10, 12, or 14 com-

binations of the AES round function. A high-level overview of the AES function is shown in Algorithm 1.

Algorithm 1 AES block encryption.

1: procedure ENCRYPTION(State,Key)

2: KeyExpansion(Key, RoundKey)

3: AddRoundKey(State, RoundKey[0])

4: for 0 < i < NR do
5: RoundFunc(State, RoundKey[i])

6: FinalRound(State, RoundKey[NR])

At the start of the encryption function, a key expansion takes place, which creates NR +1 round keys,

where NR is the number of round functions. After the expansion, the encryption algorithm applies an initial

AddRoundKey. The AddRoundKey consists of a bytewise XOR between the current internal AES state and the

round key. Next, the algorithm executes NR times the round function, see Algorithm 2.

The encryption finishes with one application of the FinalRound, see Algorithm 3. Note that Final-

Round differs from RoundFunc only in the absence of MixColumns step.

Internally, the RoundFunc applies subsequently, SubBytes, ShiftRows, MixColumns, and AddRound-

Key. The SubBytes step is the substitution step of the cipher, where each byte in the state is substituted

26

CHAPTER 2. BASICS OF CRYPTOGRAPHY

Algorithm 2 AES round function.

1: procedure ROUNDFUNC(State,ExpandedKey[i])

2: SubBytes(State)

3: ShiftRows(State)

4: MixColumns(State)

5: AddRoundKey(State, ExpandedKey[i])

Algorithm 3 AES final round function.

1: procedure ROUNDFUNC(State,ExpandedKey[NR])

2: SubBytes(State)

3: ShiftRows(State)

4: AddRoundKey(State, ExpandedKey[NR])

using a Rijndael box (S-Box). Practically, this results in a table lookup operation for each byte of the 16 bytes

in the AES state. The main property of the SubBytes step is non-linearity, and it is the only non-linear

transformation of the cipher. S-box values are carefully constructed and are paramount for the security of

the cipher. The ShiftRows step cyclically shifts rows of the state represented as a 4×4 matrix over different

offsets. The four offsets have to be different to achieve resistance against differential and linear cryptanaly-

sis. The first row of the state matrix is not shifted, while the second, the third, and the fourth rows are shifted

with offsets one, two, and three, respectively. The MixColumns step is another linear transformation where

each column of the state matrix is multiplied modulo x4 + 1 with a fixed polynomial. The coefficients of

the polynomial were selected in a way the multiplication can be implemented very efficiently even on 8-bit

processors. The AES decryption algorithm performs the inverse steps to recover the original plaintext.

2.2.3 Block Cipher Modes of Operation

While a secure stream cipher allows us to encrypt messages of arbitrary length, block ciphers only encrypt

data blocks of a fixed size. In reality, we often want to encrypt messages that are much longer than the block

size. To do so, we split the message in chunks of the appropriate block size, potentially by adding padding

bytes to the last block, and then we encrypt each block separately with the same key.

In Section 2.2.1, we saw that we need to be extremely careful when reusing keys. Reusing the same key

to encrypt multiple message chunks with any block cipher is insecure. To make key reuse possible, we need

to use a probabilistic cipher. Probabilistic ciphers introduce randomness in the encryption process. The

randomness often comes under the form of an IV (Initialization Vector). Next, we discuss the different block

cipher modes of operation, which allow us to build CPA-secure block ciphers. We present three common

modes: ECB (Electronic Codebook), CTR (Counter Mode), and CBC (Cipher Block Chaining).

2.2.3.1 Electronic Codebook

The ECB mode, shown in Figure 2.6, is the most straightforward mode of operation; however, it is not CPA-

secure. The cipher cuts the message M into blocks, (m1,m2,m3, . . . ,mk) with a length that corresponds to

the block size of the cipher. Padding is applied when the plaintext is not a multiple of the block size. The

block cipher encrypts each block of plaintext message individually.

ci = E(k,mi) with i ∈ [1,k] (2.17)

The ECB decryption mode takes a similar approach. The ciphertext is cut up in blocks of the appropriate

length, and the procedure decrypts each block independently.

mi = D(k,ci) with i ∈ [1,k] (2.18)

A block cipher should never use plain ECB. The ECB mode has the undesired property that identical

plaintext result in identical ciphertext. As fragments of plaintext tend to repeat (network protocol headers,

specific application data) an attacker could mount an attack based on statistical analysis.

27

CHAPTER 2. BASICS OF CRYPTOGRAPHY

Block
Cipher

key

m1

c1

Block
Cipher

key

m2

c2

Block
Cipher

key

m3

c3

(a) Encryption.

Block
Cipher

key

m1

c1

Block
Cipher

key

m2

c2

Block
Cipher

key

m3

c3

(b) Decryption.

Figure 2.6: A block cipher configured in ECB mode.

2.2.3.2 Cipher Block Chaining

The CBC mode is a CPA-secure mode of operation for block ciphers, depicted in Figure 2.7. In order to

remove the property of ECB that identical plaintext blocks result in identical ciphertext, CBC introduces a

dependency between subsequent ciphertext blocks: the i th ciphertext block is obtained by encrypting the

i th plaintext block with (i −1)th ciphertext block.

ci = E(k, xi ⊕mi) with xi =
{

IV if i = 1

ci−1 if i > 1
(2.19)

The inter-block dependency ensures that two identical plaintext blocks in a message result in different

ciphertext blocks. However, two identical messages will still result in an identical ciphertext, which leaks

information about the plaintext. The CBC mode overcomes this issue by introducing some randomness in

the encryption process. The algorithm calculates the XOR between the first plaintext block and a randomly

chosen IV. When using different IVs, the same plaintext will produce different ciphertext when encrypted

under the same key k. To decrypt a probabilistically encrypted message, the recipient recovers the IV from

the received message and calculates the XOR between the IV and the first decrypted block. The IV is not a

secret, and it is sent in the clear to the receiver for the decryption process.

mi = xi ⊕D(k,ci) with xi =
{

IV if i = 1

ci−1 if i > 1
(2.20)

Block
Cipher

key

m1

c1

Block
Cipher

key

m2

c2

Block
Cipher

key

m3

c3

IV

(a) Encryption.

Block
Cipher

key

m1

c1

Block
Cipher

key

m2

c2

Block
Cipher

key

m3

c3

IV

(b) Decryption.

Figure 2.7: A block cipher configured in CBC mode.

2.2.3.3 Counter Mode

The CTR mode is a CPA-secure block cipher mode that allows for parallel encryption and decryption, see

Figure 2.8. CTR mode uses the IV as the initial value of a monotonic counter to encrypt/decrypt succes-

sive blocks. CTR mode does not pass the plaintext blocks through the block cipher encryption primitive.

Instead, it merely calculates the XOR of the plaintext block and the encrypted monotonic counter.

ci = mi ⊕E(k, IVi) with i ∈ [1,k] (2.21)

Decryption is simply the inverse operation.

mi = ci ⊕E(k, IVi) with i ∈ [1,k] (2.22)

28

CHAPTER 2. BASICS OF CRYPTOGRAPHY

The CTR mode emulates a stream cipher. The output of the AES algorithm is used as a keystream. The

message is bitwise XORed with the output of the algorithm. The counter is typically constructed by taking

a random nonce and concatenating it with a counter that increments for each encrypted block. CTR mode

allows for parallel encryption and decryption because each block is independent.

Block
Cipher

key

m1

c1

Block
Cipher

key Block
Cipherkey

nonce + counternonce + counternonce + counter

m2

c2

m3

c3

(a) Encryption.

Block
Cipher

key

m1

c1

Block
Cipher

key Block
Cipherkey

nonce + counternonce + counternonce + counter

m2

c2
m3

c3

(b) Decryption.

Figure 2.8: A block cipher configured in CTR mode.

It is imperative that for both the CBC and CTR modes, the same IV and key pair is never repeated. More

specifically, for the CBC mode, the IV must be completely unpredictable4. For CTR mode the initial IVs

must be sufficiently spread out in the IV space such that two different counters never collide for a same key.

2.2.4 Message Authentication Codes

Looking back at the four properties we described at the start of this chapter, we notice that all previously

described constructions only provide confidentiality. To protect our message from malicious alteration

by an active adversary, we turn our attention to the next two properties: data integrity and data origin

authentication. An algorithm that provides data integrity and data origin authentication uses a shared key

between the sender and the receiver and is called a MAC.

Definition 2.2.1. MAC system A MAC system I(S,V) consists of a pair of efficient algorithms, S and V . The

algorithm S generates a tag and the algorithm V verifies the tag.

• S is a probabilistic algorithm. It is invoked as t
R←− S(k,m), where k is a key, m is a message.

• V is a deterministic algorithm. It is invoked as r ← V (k,m, t), where k is a key, m is a message and t

is the tag generated by S. The output of the algorithm is either accept or reject.

To reason about the security of MAC systems, we can describe a new attack game. During the game, the

attacker can request the challenger many tags t
R←− S(k,m) on messages of his choice. This attack is called

the chosen message attack. Using the chosen message attack, the attacker must come up with a new valid

pair (m, t). The attacker can freely choose m. If the attacker succeeds, he has found an existential MAC

forgery. The formal description of the attack game goes as follows:

1. The challenger picks a secret key at random, k
R←−K.

2. A queries the challenger i times. For i = 1,2, . . ., the i th signing query is the message mi ∈M. The

challenger returns the tag ti
R←− S(k,mi).

3. After a while A outputs a candidate forgery pair (m f , t f) ∈ M×T . The candidate forgery cannot

appear in the list of previously specified pairs.

(m f , t f) ∉
{

(m1, t1), (m2, t2), . . .
}

(2.23)

The attaker A wins the game if (m f , t f) is a valid pair under the key k (i.e., V (k,m, t) = accept). His

advantage with respect to the MAC system I is denoted as MACadv[A,I]. It expresses the probability that

A wins the attack game.

Definition 2.2.2. Secure MAC system We say that a MAC system I is existentially unforgeable under a

chosen message attack if for all efficient adversaries A, the value MACadv[A,I] is negligible.

4BEAST is a well-known attack on TLS1.0 which exploits a predictable IV in CBC mode to recover the plaintext

29

CHAPTER 2. BASICS OF CRYPTOGRAPHY

We can build MAC systems in several ways: based on pseudorandom functions, by using universal hash-

ing and from collision resistant hash functions. The MAC systems can be deterministic or randomized. In

a deterministic system, for a given key k and a given message m, there is only one valid tag. A randomized

MAC uses a randomized signing algorithm and for a given key k and message m, there are many valid tags.

2.2.4.1 Message Integrity using Pseudorandom Functions

We can build a secure MAC from any secure PRF. As discussed in Section 2.1, a PRF is an algorithm F that

takes two inputs, a key k and an input data block x, and outputs a value y ← F (k, x). The PRF switching

lemma [27] states that any secure PRP is a secure PRF. Thus, we can use block ciphers such as AES as a

real-life instantation of a PRF. For a given PRF F , we define the deterministic MAC system as follows:

S(k,m) =F (k,m) and F (k,m, t) =
{
accept if F (k,m) = t

reject otherwise
(2.24)

A problem arises if we want to create integrity tags for messages that are larger than the block size of

the chosen PRF, i.e., AES has a block size of 128 bits. To extend the signing domain of the MAC algorithm

S, we can reuse the CBC mode as described in Section 2.2.3. The encryption of the last block of plaintext

is dependent, in a complicated way, on the encryption of all the preceding plaintext blocks. In some sense,

the last block of ciphertext provides a cryptographic accumulation of the entire encryption process [23].

The CBC-MAC (Cipher Block Chaining Message Authentication Code) primitive builds on this intuition.

CBC-PRF
PRF

message

PRF PRF

k
k

tag
tag’

Figure 2.9: The ECBC MAC protects against length-extension attacks by appending a final iteration of the PRF.

CBC-MAC computes a message authentication tag by encrypting the plaintext with a block cipher in

CBC mode, using an initial all null IV, and throwing away all intermediate ciphertext blocks but the last.

A naive implementation of the CBC-MAC, as described above, is only secure for fixed-length messages.

When trying to use this primitive for variable-length messages, it becomes vulnerable to a length extension

attack [27, 34]. The attack goes as follows:

1. First the attacker gets a valid tag t on a message m1.

2. The attacker calculates t ⊕m2, where m2 is some arbitrary message chosen by the attacker.

3. The attacker feeds t ⊕m2 into the CBC-MAC algorithm and gets a tag t ′ on the message t ⊕m2

4. The resulting tag t ′ is a valid tag for the combined message m1||m1.

To protect ourselves from a length extension attack the tag t ′ can be encrypted by applying the PRF

one last time before returning the tag t to the attacker, this construction is known as the ECBC (Encrypted-

CBC) and is shown in Figure 2.9. This way, the tag t cannot be used as a prefix to request a new tag on the

combination of m1 and m2. Alternatively, we could prepend the length of the message to the first block of

the plaintext before calculating the CBC-MAC.

2.2.4.2 Message Integrity using Universal Hashing

A second technique to build a secure MAC system uses a UHF (Universal Hash Function), followed by a

secure PRF, a.k.a. the hash-then-PRF paradigm. Before we can explain this construct any further, we intro-

duce a new primitive, called the hash function.

30

CHAPTER 2. BASICS OF CRYPTOGRAPHY

Hash PRF
t

k1 k2

message tag

Figure 2.10: The hash-then-PRF paradigm to construct a secure MAC system.

A hash function H is a function that maps inputs from a vast space M to a smaller output space T . The

elements of T are often called message digests. Since the digest space T is typically much smaller than the

message space M, many collisions can occur (by the pigeonhole principle).

Definition 2.2.3. Collision Two messages m0,m1 ∈M form a collision for the hash function H if

H(m0) = H(m1) and m0 6= m1 (2.25)

When considering hash functions, we usually deal with a family of hash functions. The functions are

indexed by a key s. This key is not secret. It is merely a means to specify a function H in the family H. A

hash function family is called universal if for a randomly picked H ∈ H, the probability that two distinct

messages m0 and m1 collide is at most 1/|T |.∣∣∣∣Pr
[

H(m0) = H(m1)
]∣∣∣∣≤ 1

|T | (2.26)

In other words, a universal hash function family is equivalent to having a probability distribution on the

functions from M to T that map elements of M uniformly at random to elements of T .

For cryptographic applications, we need some stronger properties than the hash function simply “being

good” at avoiding collisions. We require that no PPT adversary can find collisions. This property is called

collision resistance. Collision resistance is a strong security requirement that is difficult to achieve. There

exist other levels of security which are useful in cryptographic hash functions. We list them in order of

increasing strength:

• Pre-image resistance or one-wayness: Given only a message digest H(m), it is difficult to find any

message (or pre-image), m′ that generates that digest, H(m) = H(m′).

• Second pre-image resistance: Given a message m and its digest H(m), it is difficult to find another

message that has the same message digest, H(m) = H(m′).

• Collision resistance: It is difficult to find two different messages, m1 6= m2 with the same message

digest H(m1) = H(m2).

A UHF that has second pre-image resistance is called a UOWHF (Universal One-Way Hash Function)

and can be used to build a MAC. In a UOWHF attack game, the challenger picks a challenge m, then fixes

the UOWHF by selecting one randomly from the hash function family, and finally proposes the challenge,

H(m), to the adversary. The adversary wins if he finds another input m′ that hashes to the same value.

UOWHFs can be constructed from polynomials modulo a prime. Let l be a length parameter and let p

be a prime. We define a hash function Hpoly that hashes a message m ∈Z≤l
p to a single element t ∈Zp . The

key space is S ← Zp . Let m be a message, m = (a1, a2, . . . av) ∈ Z≤l
p for some 0 ≤ v ≤ l . Let s ∈ Zp be a key.

The hash function Hpoly(s,m) is defined as follows:

Hpoly(s, (a1, . . . , av)) = sv +a · sv−1 +·· ·+av−1 · s +av ∈Zp (2.27)

Note that this UOWHF can only be used once. An adversary that evaluates the function at a single

point can completely recover the key, s. For example, if m = (a1), since Hpoly(s,m) = s + a1, an adversary

who has both m and Hpoly(s,m) immediately obtains s ∈ Zp . Since we only required second pre-image

resistance and not the more powerful collision resistance property, it might be trivial for an attacker to find

a collision now that he knows s. Consequently, cryptographic applications of UOWHF hide the output from

the adversary, either by encryption or by other means. Compared to other MAC systems, UOWHF provides

some speed benefits. The polynomials are faster to evaluate than the iterative application of PRFs, i.e., the

CBC-MAC.

31

CHAPTER 2. BASICS OF CRYPTOGRAPHY

Carter-Wegman MAC is a randomized MAC system based on a UOWHF. There exist multiple valid

tags for each message. The Carter-Wegman MAC first fixes some large integer N , e.g., 2128, and sets the tag

space T ←ZN , to the (abelian) group of size N where addition is defined modulo N . We use a hash function

H and a PRF F that output values in ZN :

• H is a UOWHF defined over (KH ,M,T)

• F is a PRF defined over (KF ,R,T)

The Carter-Wegman MAC, shown in Figure 2.11a, takes as input a message m ∈M, a pair of keys (kh ,k f)

and a value r , picked uniformly at random from their respective input spaces (KH ,KF ,R). The algorithm

outputs a tag t as a pair of values in the output space (T ×R):

v ← H(m,kh)+F (r,k f) ∈ZN (2.28)

The tag t is a tuple of (v,r). To verify a Carter-Wegman tag, the verifier recovers the value r from the

tuple and repeats the tag calculation. It compares its result to the received tag. A state-of-the-art example

of a Carter-Wegman-style MAC is Poly1305 [35, 36]. The algorithm uses a polynomial modulo the prime

2130 −5 and sets N = 2128. It takes a 256-bit key, and splits it into two parts: the first part is necessary for

the evaluation of the polynomial while the second part acts as a key for the PRF, i.e., AES. Poly1305 forms in

combination with the stream cipher ChaCha20, an AE cipher. ChaCha20+Poly1305 is included in the latest

two versions of the TLS protocol, i.e., version 1.2 & 1.3 [37].

Hash PRF

kh kf

msg r

v r

(a) Block diagram of the Carter-Wegman MAC system.

AES

kh kf

msg r

v r

Hpoly(kh, (m1, . . .mL))

mL · kL
h + · · · + m1 · k1

h mod 2130 − 5

mod 2128

16 B16 B

16 B
16 B

(b) Diagram of the Poly1305 MAC, as specified in the original de-
scription by Bernstein et al. [36].

Figure 2.11: Instantiations of the hash-then-MAC paradigm.

2.2.4.3 Message Integrity from Keyless Collision Resistant Hashing

A final method to design MAC systems builds on CRHFs (Collision-Resistant Hash Functions). Similarly to

the previous constructions we discussed, the MAC system extends its domain by applying a hash function to

the input. While both the UHF and CBC constructions use keyed hash functions, this time, the construction

uses a keyless hash function.

The construction is known as the hash-then-MAC paradigm. The hash-then-MAC construction looks

similar to the hash-then-PRF composition, but there is a significant difference. A CRHF can extend the input

domain of any MAC signing algorithm S, while a UOWHF can only use a PRF as a signing algorithm. Recall

that we must use a secure PRF as a signing algorithm to hide the details of the key used by the UOWHF;

otherwise, the attacker could break the collision resistance of the UOWHF and, consequently, the security

of the entire MAC system. In general, the signing algorithm is not required to have this confidentiality

property, it should only provide us with tag unforgeability. Keyless CRHFs do not possess any secret that

needs to be protected to guarantee the collision resistance. Therefore a simpler signing algorithm could be

used.

A keyless CRHF can be designed from number-theoretic primitives such as the discrete logarithm prob-

lem or through a block cipher. The most widely used method to turn a block cipher in a CRHF is called

Davies-Meyer. The well-known SHA (Secure Hash Algorithm)-family of cryptographic hash functions uses

32

CHAPTER 2. BASICS OF CRYPTOGRAPHY

MACmessage

k

tag
CRHF S

(a) The hash-then-mac paradigm.

m1 m2 m3

tagIV
hDM hDM hDM

(b) Merkle-Damgård paradigm for variable-input CRHFs.

Figure 2.12: Construction of a CRHF-based MAC function.

Davies-Meyer. The Davies-Meyer hash function derived from the block cipher E(E ,D) maps inputs inX×K
to outputs in X . The function is defined as follows:

hDM (x, y) = E(y, x)⊕x (2.29)

The Davies-Meyer construction gives us a CRHF, hDM , for short input messages. A frequent approach to

construct a CRHF for arbitrary length input messages is to use the Merkle-Damgård paradigm. First, select

a CRHF that hashes short messages, e.g., hDM . In this context, hDM is called a compression function. Next,

chain several instances of the compression function together. Each compression function takes as input

the output of the previous compression function and a fixed-sized block of the message, see Figure 2.12b.

The first compression function in the Merkle-Damgård construction takes a public, fixed IV as input. Note

that the internal block cipher uses the consecutive message blocks mi as keys. Standard block ciphers, such

as AES are built to encrypt long messages with a fixed key. If we change the key on every block it will slow

down the CRHF. Block ciphers often have a non-negligible key expansion phase.

Another reason to not use an off-the-shelf block cipher in the Merkle-Damgård construction is that the

block size may be too short. Typical block ciphers produce a 128-bit output which is too short for collision

resistance. Due to the birthday paradox [38], an attacker can find a collision with only 264 evaluations of the

function. In addition, the relatively short keys, result in Merkle-Damgård processing only 128 message bits

per round. Instead, Merkle-Damgård uses a custom block cipher designed explicitly for rapid key changes

with longer keys (typically, 512-bits or even 1024-bits long) so that the internal block cipher can process

many more message bits in every round. For example SHA256 has a message block size of 512 bits and a

digest size of 256 bits.

Combining the Merkle-Damgård CRHF with a signing algorithm forms a secure MAC system. In reality,

this construct is not widely used because of several reasons:

1. The security of the MAC relies completely on the collision resistance of the hash function. A collision-

finding attack, such as a birthday attack, or a more sophisticated one, can be carried out entirely

offline.

2. When using the hash-then-MAC paradigm we need two different primitives to calculate a MAC. First,

a CRHF and then a signing algorithm, e.g. a PRF.

Hash-Based Message Authentication Codes provide a way to combine a keyless Merkle-Damgård

hash function, such as SHA256, with a secret key to implement a secure MAC. An HMAC (Hashed Message

Authentication Code) uses a fixed CRHF, H , with a block size of B bytes, i.e., B = 32 in case of SHA256 and

takes as input a key k and a message m. Additionally, it defines two fixed and different strings of size B

called ipad and opad [39]. An HMAC is computed as follows:

H(k ⊕opad, H(k ⊕ipad,m)) (2.30)

The HMAC is the most widely deployed MAC on the Internet. Protocols such as TLS, IPSec (Internet

Protocol Security), and SSH (Secure Shell) use HMACs abundantly, among others as a means for deriving

session keys during session setup.

33

CHAPTER 2. BASICS OF CRYPTOGRAPHY

2.2.5 Authenticated Encryption

An AE scheme combines an encryption algorithm and a MAC algorithm in a single cryptographic construc-

tion. AE-secure ciphers provide us with confidentiality, integrity, and authenticity. It is the only scheme that

is secure in the strongest threat model, i.e., CCA. There are roughly two mechanisms to build AE ciphers:

the first is called the generic composition that combines a standalone secure cipher with a standalone se-

cure MAC, the second method builds an AE cipher directly from a block cipher or PRF. These are sometimes

called integrated schemes or one-pass schemes. They are faster than the composed schemes, which are two-

pass, but they are often patented. An example of a one-pass scheme is the OCB (Offset Codebook) mode.

For the generic composition technique three combinations exist:

• Encrypt-then-MAC provides a ciphertext with integrity protection. The result of this mode is a ciphertext-

tag pair (c, t). Encrypt-then-MAC is supported in TLS version 1.2 and 1.3 as well as in IPSec.

• MAC-then-Encrypt computes a MAC over the plaintext, which is subsequently encrypted, resulting

in a ciphertext c. Older versions of the TLS protocol use this scheme, but is not always secure. The

infamous POODLE [28] attack on SSL (Secure Socket Layer)5 version 3.0, exploited a flawed MAC-

then-Encrypt cipher to recover plaintext messages from the SSL connection.

• Encrypt-and-MAC computes a MAC over the plaintext and then encrypts the plaintext, resulting in

a ciphertext-tag pair (c, t). The ciphertext is not integrity protected. This method should also be

avoided.

Ciphers that are AE-secure posses the following properties: the encryption algorithm must be CPA-

secure and the corresponding MAC algorithm must provide ciphertext integrity.

Definition 2.2.4. AE-secure We say that a cipher E is simply AE-secure, if E is CPA-secure and provides

ciphertext integrity.

Ciphertext integrity prevents an attacker from exploiting the malleability of a cipher. We briefly, pre-

sented the bit-flipping attack in Section 2.2.1 that exploited the lack of ciphertext integrity.

2.2.5.1 Authenticated Encryption with Associated Data

AE ciphers are often extended to accept a nonce and additional data as their input, next to the plaintext

and key. These schemes are called, AEAD (Authenticated Encryption with Authenticated Data) ciphers. The

integrity of the additional data is protected by the cipher but the data is not encrypted. The need for this

construction is apparent in the context of networking protocols. Ciphers protect the content of network

packets, but the headers of the packet need to remain legible. An AEAD cipher can encrypt the payload of

the packet and concurrently, protect the integrity of the header. The AEAD cipher uses the nonce to derive

IVs for the internal encryption and MAC algorithms. The nonce should never be repeated; otherwise, the

AEAD scheme loses its security guarantees.

CCM: Counter with CBC-MAC is a widely used composed AEAD mode and was designed as a non-

patented alternative to OCB. Its implementation became mandatory for the IEEE 802.11I standard, which

defines WPA2 (Wi-Fi Protected Access II), as the replacement of the broken WEP (Wired Equivalent Privacy)

security protocol. Currently, it is one of the few AEAD ciphers in TLS 1.3, and it is also the designated cipher

of IEEE 802.15.4. The CCM (Counter and Cipher Block Chaining) mode [40] is a combination of CTR

and CBC, to provide confidentiality and authenticity while using a single key [41] and a nonce. CCM only

supports block ciphers with a 128-bit block length, such as AES-128 [42]. CCM is popular in constrained

environments because of the following reasons:

• CCM can be configured to use variable-length authentication tags (from 32-bits to 128-bits), thus

allowing varying degrees of protection against unauthorized modifications [43]. By limiting the size

of the tag, a constrained device has fewer bytes to transmit. The latter presents a clear case where

there is a trade-off between energy consumption and security.

5SSL is the deprecated name for the TLS protocol. In 1999 TLS 1.0 was introduced.

34

CHAPTER 2. BASICS OF CRYPTOGRAPHY

• CCM uses one cryptographic construction to provide encryption and confidentiality, limiting the

overall code size compared to other AE constructions where an additional hash function is required.

Additionally, CCM only requires the encryption functionality. The decryption algorithm can be omit-

ted. When combined with AES, which is sometimes supported in hardware on constrained devices [14],

it provides a secure, energy-efficient, and fast encryption scheme.

Figure 2.13 shows the schematic of CCM mode. First, CCM authenticates the message. The first block

in the CBC chain consists of the nonce, flags and the message length. Next, the cipher appends blocks of

“additional data”. Then, the algorithm feeds the plaintext blocks into the CBC-MAC. In the second stage,

the plaintext is encrypted with a block cipher in CTR mode [44]. The 16-byte counter values are formed by

concatenating the flags, nonce value and an incrementing counter.

AESK

S0

AESK

len(m)

AESK

ad1

AESK

ad2

AESK

p0

AESK

AESK

adr

CTR1

c0

AESK

c1

CTR2

AESK

p1

AESK

AESK

CTRm

pm

S0

Tag

cm

AE
S-

CB
C-

M
AC

AES-CTR

N ||F

N | CTR0F | + 1 + 1 … + (m - 2)

Figure 2.13: Diagram of the CCM authenticated cipher mode.

GCM: Galois Counter Mode is probably the most popular AEAD mode. It is supported in TLS 1.3,

IPSec and SSH. It has an Encrypt-then-MAC form. GCM (Galois-Counter Mode) mode is an improvement

over an older AEAD mode, called CWC (Carter-Wegman Counter). GCM uses CTR mode encryption with

the addition of a Carter-Wegman-style MAC based on the GHASH function, a variant of the Hpoly function

(see Section 2.2.4.2). The input and output are elements in the Galois field {0,1}128, hence the name GCM.

An advantage of GCM over CCM is that the message length does not need to be known in advance. On

larger systems, GCM mode is also faster then CCM as both the encryption and the authentication phase

can be computed in parallel. Since 2011 Intel introduced a dedicated instruction to quickly compute binary

polynomial multiplication, speeding up the GHASH calculations.

AESK

MULKh

ad1 ad2

p0

AESK

adr

CTR1

c0

AESK

c1

CTR2

p1

AESK

CTRm

pm

Tag

cm

AES-C
TR

N | 0311 + 1 + 1 … + (m - 2)

MULKhMULKh MULKh MULKh MULKh MULKh

G
H
AS

H

len(ad) | len(p)

Figure 2.14: Diagram of the GCM authenticated cipher mode.

35

CHAPTER 2. BASICS OF CRYPTOGRAPHY

2.3 Public-Key Cryptography

During our overview of the symmetric-key algorithms we stumbled on some questions for which we have

not provided any answers:

• Key exchange: Symmetric-key algorithms are well-suited for fast encryption and decryption of data,

but both communicating parties need to share a secret key. How can we securely establish a secret

key between two entities without relying on some secure out-of-band channel?

• Non-repudiation: We discussed several methods to design MAC systems. They provide integrity and

authenticity of the message, but fail to pinpoint the source of the message. How can we build a cryp-

tosystem that allows us to identify the source of the data?

These questions can be answered by using public-key cryptography, also known as asymmetric cryp-

tography. We start our discussion on public-key cryptography with a definition of a public-key encryption

scheme. We show how to instantiate a public key encryption scheme by using the RSA (Rivest–Shamir–Adleman)

trapdoor function. Next, we present the Diffie-Hellman protocol to establish a shared secret between two

parties over an insecure channel and, finally the DSA (Digital Signature Algorithm) protocol to provide the

non-repudiation property.

2.3.1 Public-Key Encryption

In a public-key encryption system, one party (the receiver) generates a pair of keys (kp ,ks), denoted as the

public key and the private key, respectively. The sender uses the public key to encrypt messages for the

receiver. The receiver then uses the private key to decrypt the ciphertext. All interested parties can obtain

the public key kp . This approach stands in stark contrast to symmetric cryptography, where there is a single

key, used for both encryption and decryption. The symmetric key must be kept secret at all times.

Definition 2.3.1. Public-key encryption scheme A public-key encryption scheme E(G ,E ,D) consists of a

triple: a key generation algorithm G , an encryption algorithm E and a decryption algorithm D .

• The probabilistic key generation algorithm is invoked as (kp ,ks)
R←− G . The keys kp and ks are called

the public and private key, respectively.

• The probabilistic encryption algorithm is run as c
R←− E(kp ,m), where m is a message from some finite

message space M and c is the ciphertext from the space C.

• Finally, D is a deterministic decryption algorithm that decrypts the ciphertext as follows, m ← D(ks ,c).

In the above scheme, we assume that everybody who wants to obtain a legitimate copy of the public key

can do so. In practice, this is a non-trivial problem to solve, but we do not discuss it here.

Similarly to symmetric encryption primitives, public-key encryption is CPA-secure when it is probabilis-

tic. The same plaintext encrypted under the same key should not result in the same ciphertext. The main

difference with the CPA-secure symmetric ciphers is that the adversary is now in possession of the public

key, kp , allowing him to obtain encrypted plaintexts of his choosing without the need to interact with a

challenger. In the symmetric setting, the attacker must ask the challenger for the encryption of a plaintext.

The attacker does not possess the secret key. The CPA-security of public encryption schemes can be defined

as follows:

1. The probabilistic key generation algorithm generates (kp ,ks), kp is given to the adversary.

2. The adversary picks a pair of messages m0 and m1 and sends them to the challenger

3. The challenger picks a random bit b ∈ {0,1}, computes the ciphertext c
R←− E(kp ,mb) and sends the

result to the adversary.

4. The attacker still has the power to call the encryption function on other messages of his choice.

5. Finally, The adversary outputs a bit b̂.

36

CHAPTER 2. BASICS OF CRYPTOGRAPHY

The public-key encryption scheme E(G ,E ,D), is secure if for all PPT adversaries it provides indistin-

guishable encryptions under chosen-plaintext attacks.

INDadv[A,E] =
∣∣∣∣Pr

[
A(E(kp ,m0)) = 1

]
−Pr

[
A(E(kp ,m1)) = 1

]∣∣∣∣ (2.31)

Definition 2.3.2. CPA-secure public-key encryption The public-key encryption scheme E(G ,E ,D) is secure

if for all PPT adversaries A, INDadv[A,E] is negligible.

RSA named after its inventors Rivest, Shamir, and Adleman, is probably the most famous method to

instantiate a public-key encryption scheme. In Section 2.1, we saw examples of one-way functions. Until

now, we have not seen any direct applications of these functions. However, at the core of the RSA scheme

lies the RSA assumption directly related to the factorization assumption.

If we have a group Z∗
N , where N is the product of two primes p and q , the order of the group can be

computed with Euler’s totient function φ(N) = (p − 1)(q − 1). If the factors, p and q of N are known, we

can derive the group order and any computations modulo N can potentially be simplified by working in

the exponent modulo φ(N). If the factorization is not known, finding the group order is difficult. The

RSA exploits this asymmetry. The RSA problem can now be described informally as follows: given N , an

integer e > 0 that is relatively prime to φ(N), and an element y ∈ Z∗
N , compute y1/e mod N . Alternatively,

given N ,e, y , find x such that xe = y mod N . There also exists an integer d that satisfies the equation ed =
1 mod φ(N). This is true if e is invertible modulo φ(N). The RSA problem thus rests on the assumption that

there is no efficient algorithm that can calculate the e th root of m modulo a large composite number N .

The fastest known algorithm to calculate the e th root requires the factorization of N . It is possible, however,

that there are other ways of solving the RSA problem that do not involve explicit computation of φ(N), and

so we cannot conclude that the RSA problem is as hard as factoring. We now present the RSA algorithm for

public-key encryption. The RSA key derivation function is presented in Algorithm 4, and takes as input a

security parameter l .

Algorithm 4 RSA key generation.

1: procedure RSA KEYGEN(l)

2: Generate l-bit prime p

3: Generate l-bit prime q

4: Calculate φ(N) = (p −1)(q −1)

5: Find e such that gcd(e,φ(N)) = 1

6: d ← e−1 mod φ(N))

7: return (d , N) and (e, N)

The pair kp ← (e, N) represents the public key, while ks ← (d , N) is the private key. The number N

is called the RSA modulus, the number e is called the encryption exponent, and d is called a decryption

exponent. We can encrypt a message m ∈Z∗
N with a given public key kp as follows:

E(kp ,m) → c ≡ me mod n. (2.32)

Decryption consists of exponentiation of the ciphertext c with the private key ks :

D(ks ,c) → cd mod n ≡ (me)d ≡ med ≡ m mod n (2.33)

The above construction is what is called “textbook RSA”. This is a deterministic form of the public-key

encryption scheme and is thus inherently insecure.

2.3.2 Key Exchange Algorithms

Key exchange protocols allow two parties to establish a shared secret over an insecure channel. This shared

secret is then often transformed in a key for a symmetric cipher. We can describe a generic key exchange

protocol between two entities, Alice and Bob. The protocol makes use of two functions, E and F . Alice starts

the protocol by choosing a random secret value α and computing E(α). Next, she sends the result to Bob.

37

CHAPTER 2. BASICS OF CRYPTOGRAPHY

Similarly, Bob picks his secret β and calculates E(β). He also sends the result to Alice. Finally, both Alice

and Bob derive the shared secret by computing F (α,β). For this scheme to be efficient and secure against

an eavesdropping adversary, the following properties must hold:

1. E should be efficiently computable.

2. Given α and E(β), or β and E(α), it should be simple to compute F (α,β).

3. Given only E(α) and E(β), it should be hard to compute F (α,β).

The functions E and F must be easy to compute to build an efficient protocol. The protection against an

eavesdropping adversary comes from the third property. An adversary that monitors the communication

channel sees only E(α) and E(β). He should not be able to compute the shared secret efficiently from this

information.

Insecure channel

Alice Bob
E(α)

E(β)

F (αβ) F (αβ)

α β

Figure 2.15: Generic key exchange protocol over an insecure channel.

Diffie-Hellman is a well-known key establishment scheme. The protocol is based on the hardness of

the DLP problem presented in Section 2.1. The protocol between two parties called Alice and Bob starts

with algorithm G generating a group G and generator g with order m. These parameters are publicly known

and often available ahead of time. Alice chooses a random x ∈ {1, . . .m − 1} and computes h1 = g x . Alice

sends h1 to Bob. Bob chooses a random value y ∈ {1, . . .m−1} and computes h2 = g y . Bob sends h2 to Alice.

Alice computes hx
2 = g y x and Bob computes hy

1 = g x y . Because g x y = g y x , both parties now share a secret

value k = g x y . An eavesdropper, Eve, cannot carry out the same operation as Alice or Bob in order to com-

pute the key k. Eve does not know x or y and cannot compute them. The latter would involve solving the

DLP, which is assumed to be hard. However, just as there might be an alternative approach to solving the

RSA problem (without relying on integer factorization), there might exist an alternative method to calculate

k, which does not depend on solving discrete logarithms. The assumption that no other method exists is

known as the computational Diffie-Hellman assumption. It is assumed that finding k from g x and g y is

hard. Unfortunately, even the computational Diffie-Hellman assumption is not enough to guarantee secu-

rity in the key exchange protocol. The security of the Diffie-Hellman key exchange needs an even stronger

assumption called the decisional Diffie-Hellman assumption. This assumption states that g x y is not just

hard to compute for eavesdroppers, but also hard to distinguish from a random element in the group. In

case, g x y could be easily distinguished, an attacker could recover up to half of the bits of the secret k [31].

2.3.3 Digital Signatures

The last public-key construct we discuss is digital signatures. Functionally, a digital signature is similar to a

MAC. They allow a signer who has established a private key ks to sign a message in such a way that any other

party who knows kp can verify that the message originated from the signer. The signature authenticates and

protects the integrity of the message.

Additionally, the signature provides non-repudiation. While everyone with the public key can verify the

signature, only the sender could have created the signature, under consideration that the private key was

not stolen. Once signed, the signer cannot deny having done so.

Definition 2.3.3. Signature scheme A signature schemeS(G ,S,V) is a triple of efficient algorithms, where G

is called a key generation algorithm, S is called a signing algorithm, and V is called a verification algorithm.

Algorithm S is used to generate signatures and algorithm V is used to verify signatures.

38

CHAPTER 2. BASICS OF CRYPTOGRAPHY

• G is a probabilistic algorithm that outputs a pair (kp ,ks), where ks is called a secret signing key and

kp is called a public verification key.

• S is a probabilistic algorithm that is invoked as σ
R←− E(ks ,m), where ks is a secret key (as output by G)

and m is a message. The algorithm outputs a signature σ.

• V is a deterministic algorithm invoked as V (kp ,m,σ). It outputs either accept or reject.

The definition of a secure signature scheme is similar to the definition of a secure MAC. We give the

adversary the power to mount a chosen message attack, namely the attacker can request the signature on

any message of his choice. The attacker should not be capable of creating an existential forgery. The attack

game for a given signature scheme S(G ,S,V), defined over (M,Σ), and a given adversary A, goes as follows:

• The challenger creates a key pair (kp ,ks)
R←−G and sends kp to A.

• A queries the challenger several times. For i = 1,2, . . . the i th signing query is a message mi ∈ M.

Given mi , the challenger computes σi
R←− S(ks ,mi), and then gives σi to A.

• A outputs a candidate forgery (m f ,σ f) ∈M×Σ, where

m f ∉
{

m1,m2, . . .
}

(2.34)

We say that the adversary wins the game if V (kp ,m f ,σ f) = accept. We define A’s advantage with re-

spect to S, denoted SIGadv[A,S], as the probability that A wins the game.

Definition 2.3.4. We say that a signature scheme S is secure if for all efficient adversaries A, the quantity

SIGadv[A,S] is negligible.

To extend the input domain of the signature scheme, allowing signing of arbitrary long messages, the

scheme can be extend with a CRHF. This construct is very similar to the ones presented during our discus-

sion on MAC systems, and is denoted as the hash-and-sign paradigm. Let S(G ,S,V) be a signature scheme

defined over (M,Σ) and let H : M′ → M be a hash function, where the set M′ is much larger than M.

Define a new signature scheme S ′(G ,S′,V ′) over (M′,Σ) as

S′(ks ,m) ← S(ks , H(m)) and V ′(kp ,m,σ) ←V (kp , H(m),σ) (2.35)

Digital Signature Algorithm uses the computational hardness of the DLP to create unforgeable sig-

natures. It is constructed according to the hash-and-sign paradigm. The algorithm uses a cyclic group G

modulo a large prime p. The order q of the generator g is a prime that divides p −1. The recommended

bit sizes for (p, q) are (3072,256) [22]. The signer also chooses a private key x ∈ {1 . . . q − 1}. The value

y = g x mod p constitutes the public key. The parameters (p, q, g) are publicly known. The signing and

verification functions are depicted in Algorithm 5.

Algorithm 5 Digital Signature Algorithm.

1: procedure DSA SIGNING(x, p, q, g)

2: Choose a random value k ∈ {1 . . . q −1}.

3: Compute r = (g k mod p) mod q . If r = 0, go back to step 2.

4: Compute s = k−1(H(m)+x · r) mod q , if s = 0, go back to step 2.

5: return signature (r, s).

1: procedure DSA VERIFICATION(y, p, q, g)

2: Verify 0 < r < q and 0 < s < q .

3: Compute w = s−1 mod q .

4: Compute u1 = H(m) ·w mod q

5: Compute u2 = r ·w mod q

6: Compute v = (g u1 yu2 mod p) mod q

7: return accept if v = r else reject.

39

CHAPTER 2. BASICS OF CRYPTOGRAPHY

The hash function, H , is commonly instantiated with SHA256. The security of a DSA signature depends

heavily on the value k. This value must be random, secret, and unique. Violating these criteria might lead to

a compromise of the private key x. RFC (Request for Comments) 6979 proposed an adapted version of DSA,

called the deterministic digital signature algorithm that derives the value k in a deterministic way from the

private key x. Deterministic DSA makes it easier to implement the algorithm, since it does no longer require

access to a source of high-quality randomness [45].

2.3.4 Elliptic Curve Cryptography

Until now, all the public-key constructs we discussed base their security on hard mathematical problems

over large groups of integers. Due to Moore’s law and progress in algorithm design, cryptosystems that base

their security on these mathematical problems have been forced to steadily grow their key sizes to provide a

sufficient level of security [46, 47]. The best-known algorithm to solve the DLP in multiplicative groups over

the integers, the general number field sieve, runs approximately in exp(O((log p)1/3)) for an n-bit prime.

In 2016, this made it possible to solve the DLP for a 768-bit prime. The large key sizes make cryptography

based on modular arithmetic computationally very expensive. In the context of constrained IoT devices, it

even becomes impossible to use these algorithms on certain hardware platforms.

Alternatively to modular arithmetic over the set of integers, we can define operations over an elliptic

curve. The best known discrete-log algorithm in an elliptic curve group of size q runs in time O(
p

q). The

key size can thus be significantly smaller while still providing sufficient security. Table 2.2 compares the key

sizes between the modular arithmetic and elliptic curves for a given security level defined by the length of

the symmetric key.

TABLE 2.2: Key size comparison.

Symmetric Modulus Elliptic curve

key size [bits] size [bits] group size [bits]

80 1024 160

128 3072 256

256 15360 512

In cryptographic applications, elliptic curves are defined over finite fields, a.k.a. Galois fields. We write

E(Fp) to denote that E is defined over Fp .

Definition 2.3.5. Elliptic Curve Let p > 3 be a prime and let a,b ∈ Fp satisfy 4a3 + 27b2 6= 0. An elliptic

curve E defined over Fp is given by an equation

y2 = x3 +ax +b (2.36)

A point on the elliptic curve can be written as (x, y) if it satisfies the curve equation and both x and y are

in Fp . The curve includes an additional point O called the point at infinity.

Schoof’s algorithm [48] can efficiently calculate the number of points on a curve E(Fp), even for large

prime numbers p. The points on the curve form a cyclic group. The group law, ‘�’. defined on the points

of an elliptic curve, provides a way to perform point addition. The point O is the identity element of the

group. We can thus write P�O = P . If P = (x1, y1) and Q = (x2, y2) are two points in the curve, to calculate

their sum P�Q = R, with R = (x3, y3), we use the following three rules:

• If x1 6= x2 we use the cord method, see Figure 2.16. Let sc = y1−y2
x1−x2

be the slope of the cord through the

points P and Q. The coordinates of the sum can be calculated as

x3 = s2
c −x1 −x2 and y3 = sc (x1 −x3)− y1. (2.37)

• If P = Q and y1 = y2 6= 0 we use the tangent method. Let st = 3x2
1+a

2y1
be the slope of the tangent at P .

Define

x3 = s2
t −2x1 and y3 = st (x1 −x3)− y1. (2.38)

40

CHAPTER 2. BASICS OF CRYPTOGRAPHY

y

x

−R

R

Q

P

(a) Point addition P�Q = R on the curve y2 = x3 −x +1.

y

x
P

Q

R

mod 11

0
10

10

(b) All the points on the curve y2 = x3 +1 over the field F11.

Figure 2.16: Representations of point additions over elliptic curves.

• Finally, if x1 = x2 and y1 =−y2 then P�Q =O.

We can also define scalar multiplication with a point on the curve. We write 2P = P�P , 3P = P�P�P ,

and more generally αP = (α−1)P�P .

2.3.5 Discrete Logarithms over Elliptic Curves

Now that we have defined how to do computations over an elliptic curve, we can present the DLP over an

elliptic curve. Let P be a point on the curve E(Fp) of prime order q so that qP = O. The DLP in elliptic

curve groups is the problem of computing α given the points P and αP as input, for a random α ∈ Zq .

However, there are some exceptions, and parameters of the curve must be chosen carefully. For this reason,

NIST standardized a list of curves for which the parameters are considered safe. One of the most widely

used curves is secp256r1, a.k.a. P256. All implementations of TLS 1.3 are required to support this curve

for Diffie-Hellman key exchanges and the ECDSA (Elliptic Curve Digital Signature Algorithm) signature

scheme [27]. The curve P256 is defined as

y2 = x3 −3x +b mod p. (2.39)

The prime p is of the form 2256 −2224 +2192 +296 −1. The special structure of p can be used to improve

the performance of arithmetic operations modulo p. The value of b is

b = 0x5AC635D8AA3A93E7B3ZBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B. (2.40)

Assuming there are no shortcuts, computing discrete logarithm on this curve through brute force takes

approximately
p

q group operations, which is about 2128.

2.4 Cryptography on Constrained Hardware

Cryptographic algorithms have always been perceived as inefficient and time-consuming, particularly on

constrained devices. Consequently, many product designers have used this as an excuse to not provide

encryption in their products, leading to exposure of sensitive user data. In this section, we perform a com-

parative study of the cost of state-of-the-art cryptography on an embedded device. We analyze memory

consumption and throughput of the algorithms. We study the AEAD cipher suites available in the latest

version of TLS and see how they stack up against Ascon, a finalist from the CAESAR competition. Finally,

we measure the cost of public-key cryptography.

41

CHAPTER 2. BASICS OF CRYPTOGRAPHY

2.4.1 CAESAR

The CAESAR competition started in 2013 to establish a modern portfolio of AEAD ciphers. There were three

general use-cases for the submissions. Authors could submit AEAD ciphers for high-performance applica-

tions, AEAD ciphers providing defense-in-depth, and AEAD ciphers optimized of resource-constrained en-

vironments (e.g., the IoT). In this work, we are only interested in the use case for constrained environments.

The submissions were additionally ranked based on their resilience against SCAs (Side-Channel Attacks).

While modern cryptographic algorithms have always concentrated on security against brute-force attacks

that recover sensitive information, resilience against SCAs is a more recent desirable property. SCAs analyze

leaking information while the cryptographic functions are executing. A powerful SCA is DPA (Differential

Power Analysis). While performing a DPA-attack, the adversary can measure minute changes in power out-

put of the device, resulting from manipulating the different bits of the key and plaintext. Following sufficient

measurements, the attacker can statistically derive the correct secret key. The wireless, remote nature of IoT

devices, while having little physical protection, makes them particularly vulnerable to these types of phys-

ical attacks. Therefore, SCA-resistant, efficient, and robust AEAD ciphers are paramount for the security

of the IoT. In March 2018, the CAESAR committee announced the final round winners: ACORN [49] and

Ascon [50].

2.4.1.1 ACORN & Ascon

ACORN is a bit-based sequential authenticated cipher, based on a stream cipher. It uses a 128-bit key,

and the authentication tag length is less than or equal to 128 bits. ACORN uses a 293-bit internal state by

concatenating six LFSRs. The cipher processes one bit of the plaintext or additional data per step. Each

step, the internal state updates, and the cipher produces a new key bit to XOR with the plaintext. ACORN is

very fast in both hardware and software as up to 32 steps can be processed in parallel.

The second finalist was Ascon. Ascon is a sponge-based cipher. Sponge-based constructions are rela-

tively new and also form the basis of Keccak, the winner of NIST’s SHA3 competition. Sponge constructions

act on a variable-length input and produce an arbitrary fixed-length output. The sponge operates in two

phases – absorbing and squeezing. In the absorbing phase, input bits from the additional data or plaintext

are XORed into the internal state of the sponge. In the squeezing phase, each squeeze returns a fixed-length

number of bits, which form an output block.

2.4.2 Performance Study

To run the performance tests, we used an STM32F401RE board [17]. The board uses a Cortex-M4F CPU at

84 MHz with 96 KiB of SRAM and 512 KiB of flash. Instruction prefetch, data cache, and instruction cache

are enabled to obtain the best performance. The implementation of the cryptographic algorithms is pro-

vided by ARM’s mbed TLS library [51], except for the Ascon algorithm, whose implementation can be found

in the SUPERCOP project [52].

For each primitive, we analyze the runtime and memory pressure. All the code is compiled with the

-Os optimization flag. Memory usage can be divided into the amount of flash memory used, to store the

program code, and peak SRAM usage, which contains the stack, the heap, and the segments .bss and

.data. If available, test vectors provided by NIST’s [53] Cryptographic Algorithm Validation Program are

used.

2.4.2.1 Symmetric Primitives

While TLS 1.2 still provided a plethora of different symmetric ciphers, many which had been found insecure

over the years, TLS 1.3 only supports a small set of secure AEAD ciphers. The remaining five symmetric

cipher suites are:

• TLS_AES_128_GCM_SHA256 and TLS_AES_256_GCM_SHA384

• TLS_AES_128_CCM_8_SHA256 and TLS_AES_128_CCM_SHA256

• TLS_CHACHA20_POLY1305_SHA256

42

CHAPTER 2. BASICS OF CRYPTOGRAPHY

The first two cipher suites are fast on potent architectures, such as the ones used in PCs and smart-

phones. The Intel x86 CPU architecture provides dedicated hardware support for both the AES and GHASH

part of the GCM AEAD cipher. The ChaCha20+Poly1305 cipher was introduced to provide an alternative

to AES-based ciphers and to accommodate for fast encryption on systems that lack AES hardware support.

Finally, for reasons discussed above, the CCM variant was introduced for the more resource-constrained

devices. The CCM_8 mode provides shorter authentication tags to minimize the number of bytes on the

wire. During the performance tests, each of the TLS cipher encrypted one block of plaintext (16B) with a 12

byte IV and 16 bytes of additional data. The Ascon algorithm also encrypted 16 bytes of plaintext with 16 of

additional data but used an IV of 16 bytes.

TABLE 2.3: Encryption performance of the different state-of-the-art AEAD ciphers.

Primitive
Key size Time [ms] SRAM [B]

Heap [B] Flash [B]
[bits] (× 1e4) stack .bss .data

AES-GCM
128 1957 2868 2648 12 280 6440

256 2105 2884 2648 12 280 6456

AES-CCM 128 1960 2448 2648 12 280 5636

ChaCha20+Poly1305 128 + 128 1985 976 0 4 0 2809

Ascon (v1.2) 128 701 648 0 0 0 13308

If we compare the results, we notice that the AES-based cipher all have a similar throughput. The CCM

variant consumes slightly less RAM and flash memory compared to GCM. The stream cipher does not per-

form better than the block ciphers on our test hardware, but it needs significantly less memory (both RAM

and flash), compared to the block ciphers.

The new lightweight AEAD cipher, Ascon, is almost three times faster than the traditional ciphers. It

also has a strongly reduced memory consumption. It does consume more than twice the amount of flash

memory used by the AES-based algorithms. We did not test the ACORN primitive since its SUPERCOP

implementation is not optimized for 32-bit CPUs. The results are, therefore, significantly worse compared

to the other ciphers.

Some algorithms, such as AES, allow for a speed-up in encryption and decryption if some intermediate

results can be pre-computed and stored in memory. ARM’s mbed TLS uses the T-table optimization tech-

nique, which pre-computes up to 8192 B of data. The tables can be stored in flash memory (to save on RAM

usage) or stored in RAM for faster access time. Table 2.4 shows the different performance results for the

different levels of pre-computation for the AES algorithm. We must realize that the improvements obtained

will differ between different devices. Much depends on the CPU data path and the flash access timings.

TABLE 2.4: Speed-Memory trade-off for AES.

Primitive
Key size ROM Less RAM Time [ms] SRAM [B]

Heap [B] Flash [B]
[bits] Tables Tables (× 1e4) stack .bss .data

AES-ECB

128 128 2596 8748 4 0 2700

128 X 168 864 0 4 0 10880

128 X 115 2572 2604 4 0 2604

128 X X 157 864 0 4 0 4752

2.4.2.2 Asymmetric Primitives

We test two asymmetric primitives: ECDH (Elliptic Curve Diffie-Hellman) and ECDSA. Both primitives are

necessary during an authenticated key establishment. The former because it calculates the shared secret

by multiplying the peer’s public key with its private key. The latter is widely used to provide authentication

during the key exchange. In Chapter 7, we provide an in-depth study of the TLS and DTLS (Datagram

43

CHAPTER 2. BASICS OF CRYPTOGRAPHY

Transport Layer Security) handshake. The performance of both primitives plays a significant role in the

overall latency of the handshake.

Table 2.5 shows the performance results obtained for the ECDH primitive. In the test, we parse the

public key from the peer and derive the shared secret by multiplying it with our private key. We tested two

curves. The first curve is the widely deployed NIST curve, P-256. The second curve, Curve25519, was de-

fined by Daniel J. Bernstein [54]. The curve provides the same security level as P-256 (128 bits) but achieves

a better performance. Besides, Curve22519 lends itself to implementation in constant-time, making it re-

sistant to a wide range of side-channel attacks [55].

Recently, Curve25519 gained much interest as an alternative for the NIST curves. The discovery of the

NSA (National Security Agency) backdoor in the Dual_EC_DRBG algorithm has cast severe doubts on the

security of the NIST curves [56, 57]. There is no explanation for the seeds chosen to generate the curves,

and some cryptographers suspect there might be an NSA backdoor hidden in the parameter choices. In

contrast, the process used to pick Curve25519 is fully documented and rigid enough so that independent

verification can and has been done [58].

TABLE 2.5: ECDH performance (ECP window = 6).

Primitive Curve Time [ms]
SRAM [B]

Heap [B] Flash [B]
stack .bss .data

ECDH
SECP256R1 437 1856 16 52 4308 14336

Curve25519 375 1824 16 52 1412 16844

Table 2.6 and Table 2.7 depict the performance results for distinct digital signature algorithms. All the

algorithms calculated a signature on the same short string. For ECDSA, we tested two NIST curves. To put

their performance results in perspective, we can compare them to RSA-based signatures. The P-256 curve

provides the same level of security as a 2048 bit RSA key. The signature speed is roughly three times faster

for ECDSA, while heap and stack consumption is approximately two times lower.

Interestingly, RSA signature verification is extremely fast. There is a high asymmetry in cost associated

with RSA signing and RSA verification. The elliptic curve digital signature schemes also show an inequality

in speed and memory usage between signing and verification. However, for the ECDSA primitive, signature

verification is approximately 25% more expensive than the signing operation.

TABLE 2.6: ECDSA performance (ECP window = 6).

Curve Curve MD
Operation

Time [ms]
SRAM [B]

Heap [B] Flash [B]
sign verify stack .bss .data

ECDSA

SECP256R1 SHA-256 X 459 1592 44 16 4072 18144

SECP256R1 SHA-256 X 608 1368 52 16 4512 14960

SECP384R1 SHA-256 X 748 1696 44 16 10012 18672

SECP384R1 SHA-256 X 937 1440 52 16 10212 15592

TABLE 2.7: RSA signature performance.

Primitive
Key size Padding Operation

Time [ms]
SRAM [B]

Heap [B] Flash [B]
[bits] Mode sign verify stack .bss .data

RSA
2048 PKCSv1.5 X 1447 3462 52 12 10032 19968

2048 PKCSv1.5 X 30 3056 52 12 4936 17280

44

CHAPTER 2. BASICS OF CRYPTOGRAPHY

Discussion

In the past decades, cryptography has become an indispensable tool for the construction of secure com-

munication protocols. More than ever, we rely on cryptography to protect our data and systems from unau-

thorized access. With the emergence of the constrained IoT, the necessity to build fast and energy-efficient

algorithms has only increased. Cryptographic algorithms are split into two categories: symmetric primi-

tives and asymmetric primitives.

The class of symmetric algorithms is the most intuitive. Communication parties share a secret key and

use it for both encryption and decryption. Besides confidentiality, symmetric cryptography also aims to

protect the integrity of the messages. Integrity protection ensures that malicious modification is detected,

and the receiving party does not undertake any actions based on falsified information. In general, the con-

strained IoT can execute symmetric primitives without much difficulty. However, in scenarios with strin-

gent timing constraints, e.g., in time-slotted network protocols, or when energy is scarce, faster and less

laborious algorithms are required. For this reason, competitions on constrained symmetric cryptography

are underway. Only last year, the CAESAR competition concluded, and currently, a NIST competition is in

its second stage.

The category of asymmetric algorithms, a.k.a. public-key cryptography presents solutions for several

problems that symmetric constructions cannot solve. It provides public-key encryption, digital signatures,

and key-exchange mechanisms. The asymmetric key, consists of a pair, denoted as the public key and the

private key. While anyone can obtain the public key, the private key is kept secret. Asymmetric algorithms

are more challenging to execute for the constrained IoT. They require much energy and often several sec-

onds to complete. Most constrained devices, therefore, focus on the elliptic curve variant. Elliptic curve

algorithms are capable of providing the same security level with much smaller key sizes, making them more

suitable for low-power devices.

There is a good chance that in the near future, many of the algorithms we currently use to protect our

data will be broken. In recent years, there has been a substantial amount of research on quantum com-

puters. These machines exploit quantum mechanical phenomena to solve mathematical problems that are

difficult or intractable for conventional computers [59]. In 1994, Peter Shor published an algorithm that

would break the public-key algorithms based on the factorization assumption and the DLP if a powerful

quantum computer existed [60]. Since it is believed that a large-scale quantum computer could be built

in the upcoming decades, NIST has issued a cryptographic competition for post-quantum cryptography.

Just as the traditional Internet, the IoT will have to adapt and deploy post-quantum cryptography. Already

researchers are studying the use of post-quantum, hash-based signatures, and lattice-based primitives on

constrained devices [61, 62].

Instead of merely using the cryptographic algorithms as a black box throughout this thesis, we presented

an exhaustive introduction to modern cryptography in this chapter. We explained the reasoning behind the

design of the constructions and their pitfalls. We started our discussion with the presentation of the as-

sumptions upon which rest the security of many cryptographic primitives. We defined what it means for

a cipher to be secure. Next, we presented the different symmetric primitives. We highlighted the differ-

ences between stream ciphers and block ciphers and showed different methods to construct MAC systems.

Finally, we combined encryption and MAC algorithms in the AEAD construct. AEAD ciphers are the only

symmetric construction that are secure in the strongest attacker model, i.e., CCA.

In the second part we switched to public-key cryptography. We considered, public-key encryption, key

exchange methods and signature schemes. We detailed the mathematical problems that lay at the core

of these constructions. Finally, we concluded this chapter with some performance tests of the discussed

algorithms on constrained hardware. We compared the well-known AEAD ciphers, used in TLS 1.3 with

Ascon, one of the winners of the CAESAR cryptographic competition. Concerning public-key cryptography,

we tested the performance of different elliptic curve algorithms and showed their performance gain over

RSA.

45

CHAPTER 2. BASICS OF CRYPTOGRAPHY

46

Chapter 3

A Secure IoT Networking Stack

Contents
3.1 An Internet Threat Model . 49

3.2 Identity Management and Access Control . 49

3.2.1 Token-based Access Control . 49

3.2.1.1 The Open Authorization Framework 2.0 . 49

3.2.1.2 Authorization and Authentication in Constrained Environments 51

3.2.2 Blockchain and the IoT . 52

3.2.2.1 Blockchain Internals . 52

3.2.2.2 Managing the IoT through Blockchain . 53

3.3 The IoT Application Layer and End-to-End Security . 53

3.3.1 The Constrained Application Protocol . 53

3.3.2 OSCORE: Object Security for Constrained RESTful Environments 54

3.3.3 EDHOC: Ephemeral Diffie-Hellman over COSE . 56

3.4 A Transport Layer Protocol Showdown . 57

3.4.1 Tradeoffs between UDP and TCP . 57

3.4.2 TLS: Transport Layer Security . 57

3.4.2.1 TLS Reborn: TLS 1.3 . 58

3.4.3 DTLS: Datagram Transport Layer Security . 58

3.5 The Network Layer and its Challenges . 59

3.5.1 6LoWPAN: A Tale of Compression and Fragmentation 59

3.5.1.1 Security in 6LoWPAN . 60

3.5.2 Routing Security in the IoT . 60

3.5.3 IPSec for the IoT . 60

3.6 Security for the IoT Physical and Link Layer . 61

3.6.1 Time Synchronized Channel Hopping Protocol . 61

3.6.2 Security for the IEEE 802.15.4 Link Layer . 62

3.6.2.1 Secure Join . 63

47

CHAPTER 3. A SECURE IOT NETWORKING STACK

Introduction

Traditionally, the complexity of computer networking has been dealt with through abstraction. A network

stack consists of layers. Each layer uses the services of the underlying layer and provides an interface to the

layer above. On the left side of Figure 3.1, we depict the communication and security protocols that typically

make up the network stack used on the Internet (web), and the right side shows the ones considered in this

thesis. To understand the differences between both stacks it is essential to keep in mind the hardware

characteristics of the devices for which they were developed.

HTTP

UDP, TCP

IPv4, IPv6

CSMA/CD,
CSMA/CA

IEEE 802.11,
IEEE 802.3, LTE

CoAP

UDP

IPv6

IEEE 802.15.4 (E),
BLE, LoRaWAN

IEEE 802.15.4,
BLE, LoRaWAN

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

OSCORE

DTLSTLS, DTLS

IPsec

LL Security LL Security

6LoWPan

COSE | EDHOC

Figure 3.1: Comparison of the TCP/IP stack with the standardized IoT stack.

As discussed in Chapter 1 IoT, devices are often marked by significant limitations on energy and com-

putational resources. These constraints have a direct impact on the operation of the lower layers and the

security mechanism employed throughout the stack. Small packet sizes, radio duty cycling, and low trans-

mission power characterize the physical and link layer of the IoT stack. Security protocols should be con-

servative with the use of computationally complex cryptography to prevent battery depletion. Finally, the

properties of the traditional Internet protocols are often incompatible with the demands of the IoT applica-

tions. Applications requiring support for multicast messaging and caching cannot simply use the prevalent

TCP (Transport Layer Protocol) and TLS (Transport Layer Security) protocols.

In response, several IETF working groups are currently standardizing new or adapted protocols that ad-

dress the needs of the IoT. The protocols must be kept simple to reduce the code footprint and RAM usage,

but should be interoperable with the existing Internet technologies. CoAP (Constrained Application Proto-

col) has been specifically designed for easy integration with HTTP (Hypertext Transfer Protocol), allowing

traditional Internet hosts to access the IoT directly. Security protocols can benefit from the rising popular-

ity of elliptic curve cryptography and modern AEAD encryption schemes. The COSE (CBOR Object Signing

and Encryption) compact message format allows for efficient encoding of the data with built-in support

for encryption, integrity protection, and signatures. OSCORE (Object Security for Constrained RESTful En-

vironments) and EDHOC (Ephemeral Diffie-Hellman over COSE) aim to complement or replace TLS and

DTLS (Datagram Transport Layer Security) in the IoT space. They both leverage COSE to optimize the mes-

sage length. The push towards energy-efficiency in IoT protocols has also blurred the boundaries of the

different layers in the network stack. The 6LoWPAN (IPv6 Low-power Wireless Personal Area Networks)

specification provides an adaptation layer between the network layer and the link layer. It describes how to

transmit IPv6 packets over IEEE 802.15.4 networks [63]. This is not a straightforward process. For instance,

due to the IPv6 default minimum MTU (Maximum Transmission Unit) size of 1280 bytes, an unfragmented

IPv6 packet would be too large to fit in an IEEE 802.15.4 frame. It shows the need for a fragmentation

mechanism between the IP (Internet Protocol) and the link layer. Additionally, the IPv6 header is 40 bytes

long. Without compression techniques, the header would waste the scarce bandwidth [64].

In this chapter, we give an overview of the different protocols of the standardized IoT stack. The first part

of this chapter is devoted to a discussion on authentication and access control in the IoT. We describe how

OAuth (Open Authorization) tackled a similar issue on the world wide web, and we present the adapted

version for the IoT, currently under development by the IETF. Next, we provide an overview of the stan-

dardized IoT networking stack. We use a top-down approach to present the trade-offs between different

protocol choices, their security features, and we discuss the associated network security protocols.

48

CHAPTER 3. A SECURE IOT NETWORKING STACK

3.1 An Internet Threat Model

Security analyses of systems commonly begin with a model of the attacker. Dolev and Yao [65] formulated

the standard attack model against messages exchanged over a network. The Dolev-Yao model makes the

following assumptions about an attacker:

• Eavesdrop: An adversary can listen to any message exchanged through the network.

• Forge: An adversary can create and inject entirely new messages into the data-stream or change mes-

sages in flight; these messages are called forgeries.

• Replay: A special type of forgery, called a replay, is distinguished. To replay a message, the adversary

resends legitimate messages that were sent earlier.

• Delay and Rush: An adversary can delay the delivery of some messages or accelerate the delivery of

others.

• Reorder: An adversary can alter the order in which messages are delivered.

• Delete: An adversary can destroy in-transit messages, either selectively or all the messages in a data-

stream.

The Dolev-Yao model is considered to be a powerful model, giving much power to the attacker. How-

ever, there are some aspects to take into account. The cryptographic operations used in the networking

security protocols are considered unbreakable. Besides, the model does not handle the compromise of the

individual nodes in the network. These types of attacks require a different model, presented and discussed

in Chapter 4.

3.2 Identity Management and Access Control

Many IoT devices operate without any human interaction. Due to the vast quantities of devices, manual

management would be a very time-consuming and tedious task. Nonetheless, during the lifetime of these

devices, they will often have to make non-trivial authorization and authentication decisions, most notably,

which parties are allowed to access the resources generated by the devices. This is the problem that autho-

rization and authentication architectures try to solve.

3.2.1 Token-based Access Control

The authentication and authorization challenges that the IoT is currently facing have been encountered

before in other domains, i.e., the world wide web. For the world wide web, the issue can be formulated

as follows: how can a third-party web application dynamically request (scoped) access to sensitive user

information stored by another web service. For example, a webpage personalizes its content for each user.

To do so, it wants to obtain the full name, age, and gender of a user by retrieving this information from the

user’s Facebook profile. A naive approach would be to provide the web application with the user’s password

to access the information stored by Facebook. One can directly notice that this would provide the web

application with unrestricted access to all the user’s information. Additionally, it would be difficult for the

user to revoke the web application’s access rights; the user would have to change its password. The OAuth

framework solves this problem.

3.2.1.1 The Open Authorization Framework 2.0

In the context of OAuth 2.0 [66], the third party is known as the client, the user is the resource owner, and the

web service storing the user information is the resource server. The user information is called the protected

resource. To delegate scoped access rights to different clients, OAuth uses tokens. A trusted party, called the

authorization server1, creates the tokens. The issued access tokens encode the scope of the client, e.g., the

protected resources that can be accessed, and a time duration specifying the token’s period of validity. The

1In practice, the authorization server and resource server are often managed by the same entity.

49

CHAPTER 3. A SECURE IOT NETWORKING STACK

authorization server can use JWT (JSON Web Tokens) [67] to encode claims in a JSON (JavaScript Object

Notation) object that is then signed. The tokens are transported inside a URL (Uniform Resource Locator).

To protect the confidentiality of interactions between the different entities and to prevent token theft, all

the communication must use HTTPS (Hypertext Transfer Protocol Secure).

OAuth is a flexible framework that adapts to several usage scenarios. Depending on the client type (e.g.,

web server app, native app or browser-based script) and the level of trust between the resource owner and

the client, different authorization mechanisms and protocol flows are available: authorization code flow,

implicit flow, resource owner password credentials flow, and client credentials flow. Each flow uses a specific

resource owner grant type that it issues to the client. The general principles of each flow stay the same:

1. A client obtains an authorization grant, after being authorized by the resource owner.

2. The client exchanges the authorization grant for an access token at the authorization server.

3. The client uses the token to access the protected resources on the resource server.

In Figure 3.2, we depict the authorization code flow. This authorization flow is widely used on the web

to provide web applications with access to protected resources, e.g., Google or Facebook user information.

Before a client can interact with an authorization server, the client registers at the authorization server. The

details of the registration process are out of the scope of the OAuth protocol. In practice, this process is

usually a manual task. During the registration process, the authorization server assigns credentials to the

client: a public OAuth client ID and (optionally) a client secret. The client may later use the client secret (if

issued) to authenticate to the authorization server while exchanging a grant for a token [68].

2

Authorization Server

Client

Resource
Server

Resource
Owner

1Accept Deny

Protected
resources

3

4https

https

http
s

http
s

Figure 3.2: OAuth authorization grant code flow for a web server application.

1. Client Authorization: To start the flow, a resource owner visits the client (i.e., web application). When

a client wants to access protected resources on behalf of the resource owner it asks the resource owner

for authorization. The client redirects the owner to the authorization server where the owner needs

to authenticate. This authentication step verifies if the resource owner is allowed to grant access to

the requested protected resources.

2. Obtaining an Authorization Grant: After a successful authentication, the resource owner can inspect

and possibly limit the scope and duration of the client request. Once validated the owner is redirected

to the client. The redirection URL carries the authorization grant issued by the authorization server

for the client.

3. Retrieving the Access Token: The client can now recontact the authorization server and recover an

access token in exchange for the authorization grant.

4. Accessing Protected Resources: With the token in hand, the client can access the protected resources,

stored on the resource server.

50

CHAPTER 3. A SECURE IOT NETWORKING STACK

OAuth security is extensively described in RFC 6819 [69]. As a flexible and extensible framework, the

OAuth security depends on many factors. The most important takeaway is that OAuth is a mechanism for

authorization delegation. The protocol does not support authentication, although clients have misused it as

a way to authenticate resource owners to their application. In this scenario, the client sees the authorization

server and resource server as an identity API (Application Programming Interface). The client requests

authorization from the resource owner to access a user-specific identifier on the resource server. If the client

succeeds in obtaining an access token for this identifier, the resource owner is considered to be logged in

successfully to the client’s application [68]. Because OAuth was not designed with authentication in mind,

the approach is highly dangerous. To fill the void of authentication through external parties (a.k.a. identity

providers), OpenID Connect was created. It is an open standard published in early 2014 that defines a thin

interoperable layer on top of OAuth to perform user authentication.

Because of the high complexity of the system and the many interactions between independent compo-

nents, access token theft remains a threat. As a solution, the IETF worked on a draft for a PoP (Proof-of-

Possession) architecture. We discuss the PoP principle further in detail in the next section. Alternatively,

a new extension for the TLS protocol was proposed called, the token binding protocol [70]. Token binding

allows the authorization server to bind the exchanged tokens to the underlying TLS protocol cryptographi-

cally, preventing attackers from replaying stolen tokens over new connections.

3.2.1.2 Authorization and Authentication in Constrained Environments

ACE (Authentication and Authorization for Constrained Environments) adapts and builds on the OAuth

framework to provide authentication and authorization for the IoT of constrained devices. Instead of (web)

applications requesting access to user data stored on powerful servers, ACE sketches an architecture where

both the client and the resource server are possibly constrained [71]. It uses by default CoAP [72] and CBOR

(Concise Binary Object Representation) [73] instead of HTTP and JSON for communication.

Similar to OAuth, ACE defines different authorization flows for specific scenarios. Each flow has a corre-

sponding grant type, but there are two preferred types, namely the authorization code grant and the client

credentials grant. The authorization code grant is a good fit for use with apps running on smartphones and

tablets that request access to IoT devices. This can be a common scenario in the smart home environment,

where users and applications need to go through an authentication and authorization phase (at least dur-

ing the initial setup phase). ACE uses the client credential grant when the communication is purely M2M

(Machine-to-Machine). It is a simplified authorization flow designed for use cases where the client itself is

constrained. In this case, the resource owner has pre-arranged access rights for the client with the autho-

rization server. The client has a set of client credentials, which it can use to obtain an access token from the

authorization server directly.

Authorization Server

Resource Servers
(constrained)

Clients (possibly constrained)

Resource
Owners

Authorization Grant Flow

Client Credentials Flow

1

2

3

4

1
2

3

5

Figure 3.3: ACE authorization flows.

Figure 3.3 shows the authorization code flow and the client credential flow. The authorization code flow

for ACE corresponds almost entirely to its OAuth sibling. ¶ A user (resource owner) opens an application

51

CHAPTER 3. A SECURE IOT NETWORKING STACK

(client). The application wants to access some protected resources, on behalf of the user, hosted on the

constrained resource servers. The application redirects the resource user to the authorization server, where

the resource owner authenticates and checks the scope of the client’s request. · After validation, the client

receives an authorization grant. ¸ The client can then exchange the grant for an access token. ¹ Finally,

the token is presented to the resource server to obtain the protected resources. During a client credential

flow, ¬, the client directly requests a token at the authorization server. If the requested scope matches the

predefined access rules, an access token is issued. ­ The client can then present the token to the resource

server.

Because the resource servers can be highly constrained, the ACE framework provides an extra optional

step, called token introspection. In this step, the resource server will delegate the access token validation to

the authorization server (see º and ®). Access token validation can require the use of asymmetric cryptog-

raphy, e.g., signature validation, which could pose a high strain on the device’s limited resources if it needs

to serve many different clients.

ACE security defines a set of profiles that present the encodings and protocols the client, resource

server, and authorization server must support to exchange data securely. Examples are the OSCORE [74]

or DTLS [75] profiles. The profiles define methods to provide encryption, integrity, and replay protection of

the data. Additionally, the profiles must declare how the entities can mutually authenticate each other. The

authorization server is responsible for provisioning the keying material so that client and resource servers

can authenticate each other.

ACE implements, by default, PoP access tokens. The authorization server generates a PoP token when

it binds a client’s cryptographic key to the access token. When used to access protected resources on the

resource server, the client must prove possession of the secret that is bound to the PoP. Only the legitimate

client of the token can prove possession of the secret.

3.2.2 Blockchain and the IoT

3.2.2.1 Blockchain Internals

In recent years, the blockchain technology has made a lasting impact on the research community and in-

dustry. It gained widespread fame as the underlying technology for cryptocurrencies, but it offers a wide

variety of opportunities in multiple research domains. The blockchain technology distinguishes itself from

its competitors due to the Byzantine threat model in which it operates. Distributed systems that function

in a Byzantine threat model keep on functioning in the presence of compromised participants. The BFT

(Byzantine Fault Tolerance) describes the maximum amount of malicious actors in the system that work

towards the same goal until the system fails.

In general, a blockchain can be considered as a persistent log whose records are stored in time-stamped

blocks. Each block contains transactions between parties. A cryptographic hash identifies a block, and it ref-

erences the hash of the preceding block. Anything that is stored in the blockchain is public. The blockchain

is maintained by nodes, each having a copy of the entire chain. The initial block is often called the genesis

block. To provide security in the network and consistency among all the different copies of the blockchain,

the participants run a consensus protocol. Not all the participants in the blockchain network need to run

the consensus protocol. The nodes that do are called miners. There exist various types of consensus proto-

cols: the most famous are called PoW (Proof-of-Work) and PoS (Proof-of-Stake).

Hash
Tx Tx Tx

Tx Tx Tx

Figure 3.4: The blockchain, the consensus protocol provides security and resolves forks in the chain.

52

CHAPTER 3. A SECURE IOT NETWORKING STACK

The participants in a blockchain network connect in a P2P (Peer-to-Peer) fashion. When transactions

occur between participants, the transaction information propagates throughout the network. Each miner

constructs its block, which it fills with transactions it overhears. In a PoW consensus protocol, the miners

try to solve a cryptographic puzzle. The average time to solve the puzzle is known as the block time. It is a

network-dependent parameter. For example, in the Bitcoin [76] network, the block time is 10 min, while in

the Ethereum [77] network, it is only 15 sec. When one of the miners succeeds in finding a solution for the

puzzle, it broadcasts its solution to all the other participants. If they can successfully validate the solution,

everybody adds the block to their local copy of the chain. Multiple miners can find a solution at the same

time. In this case, the blockchain will fork. Some parts of the network will continue working with the chain

with solution A, while the other parts continue with solution B . Since the miners are configured to always

work on the longest chain, once one of the branches overtakes the other, all the miners will switch to the

longest branch.

The PoW consensus protocol suffers from several drawbacks. First, the protocol consumes large amounts

of energy, e.g., the Bitcoin network currently uses more energy than a small nation. Secondly, because of

the difficulty of solving the cryptographic puzzle, miners are organized in mining pools. These pools lead

to a more centralized system, undermining the idea behind the blockchain technology and its security. A

promising more resource-efficient alternative is PoS. In the PoS protocol, the cryptographic puzzle is re-

placed with a voting system that selects for each block a new block minter. The consensus protocol selects

a minter based on the amount of wealth the minter has invested in the consensus protocol, i.e., the stake.

Distinct implementations of the PoS protocol provide different punishments to discourage malicious be-

havior of the minter. In general, minters lose their stake if they maliciously manipulate the minted blocks.

3.2.2.2 Managing the IoT through Blockchain

Blockchains are automatically associated with cryptocurrencies, but with the rise of the Ethereum network,

more applications became available. Ethereum provides the ability to execute smart contracts. Smart con-

tracts are like regular computer programs, but they execute on in the EVM (Ethereum Virtual Machine).

All Ethereum nodes execute the smart contract in their local instantiation of the EVM. The next appended

block then solidifies the blockchain state changes triggered by the smart contract. The consensus protocol

ensures that everyone agrees on the result of the contract execution.

In the context of IoT, programmable blockchains like Ethereum could provide an elegant solution to

long-standing problems concerning identity management and resource transactions. A recurring challenge

in the IoT is to track and verify the ownership and identity of IoT devices. The ownership of an IoT device

can change several times during the lifetime of a device from the manufacturer, supplier, retailer, and con-

sumer. The ownership must change or be revoked when an IoT device gets resold, decommissioned, or

compromised. By creating a smart contract that handles the device ownership, the whole process could be

done transparently and securely. The literature also contains proposals where the blockchain technology is

used for logging and manage trading of resources generated by IoT devices [78–80].

3.3 The IoT Application Layer and End-to-End Security

3.3.1 The Constrained Application Protocol

The application layer is the top layer of the networking stack. It exposes an API to developers to easily

exchange data between applications over a network. Application layer protocols are concerned with trans-

ferring information needed by the actual application, e.g., web pages or temperature readings from a sen-

sor. CoAP [72] is a constrained application layer protocol designed by the IETF CORE (Constrained RESTful

Environments) working group. CoAP messages can easily be mapped to HTTP for integration with the tra-

ditional web. CoAP uses a RESTful API in a typical client-server architecture.

CoAP is designed with the restrictions over the lower layers in mind. Although there are strong sim-

ilarities with the HTTP protocol, significant changes were made to facilitate its use in highly constrained

environments. CoAP can be used in combination with UDP (User Datagram Protocol), and optionally pro-

vides application layer reliable unicast and best-effort multicast. The protocol has a low parsing overhead

53

CHAPTER 3. A SECURE IOT NETWORKING STACK

and it supports asynchronous message exchanges. CoAP provides simple proxy and caching capabilities

through a “freshness” mechanism. Caching of application data can reduce the overall traffic in constrained

networks. The latter is exceptionally beneficial for the battery lifetime of the low-power devices and the

overall latency in the network. Resource discovery is an optional feature of the protocol. The CoAP message

format is divided into two layers, a message layer in charge of reliability, and sequencing and a request/re-

sponse layer in charge of mapping requests to responses. Figure 3.5 shows the different message fields for a

CoAP message.

The message layer uses a 16-bit message identifier to provide reliability and detect duplicates. A 2-bit

type field indicates the type of the message: confirmable, non-confirmable, acknowledgment, or reset. The

first two types indicate the need for replies, whether or not piggybacked on an acknowledgment message.

If a confirmable message cannot be processed, the receiver must answer with a reset message.

The request-response layer sets the method code or response code in the 8-bit code field. The primary

method codes supported by CoAP are GET, POST, PUT, and DELETE. Analogous to the HTTP response codes,

CoAP uses the specific conventions. Codes 2.xx represents successfully received and processed. Client

error codes use the 4.xx format and internal server errors return 5.xx. Optional (or default) request and

response information, such as the URI (Uniform Resource Identifier) and payload content-type, are carried

as CoAP options. There are two types of CoAP options: critical and elective. The CoAP endpoint can ignore

elective options if they are not understood, while critical options must be answered with a 4.02 (Bad Option)

response if they cannot be processed correctly. A variable-length token field is used to correlate responses

and requests independently from the underlying messages [64].

3.3.2 OSCORE: Object Security for Constrained RESTful Environments

The defacto way to provide confidentiality, integrity, and authenticity for application data in transit is to

build secure channels on the transport layer of the network stack, see Section 3.4. This approach to security

is connection-focused and works well for typical Internet applications such as e-commerce, e-banking, or

IP telephony [81, 82]. In these examples, we can identify the endpoints and the connections between them.

Difficulties emerge once the notion of a connection disappears. This often occurs in systems and protocols

with intermittent connectivity between the communicating parties, e.g., data is served from cache. For ex-

ample, DNS (Domain Name System) provides data integrity with the application-level extension DNSSEC

(Domain Name System Security Extensions), and not with a connection-oriented protocol, such as DTLS

or TLS2 [86, 87]. Electronic mail, passing multiple application level gateways, and without a clear connec-

tion between endpoints, is secured with S/MIME (Secure/Multipurpose Internet Mail Extensions) [88] or

PGP (Pretty Good Privacy) [89]. IoT applications emerge as another example. The IoT application traffic is

typically asynchronous, many of duty-cycled networks will employ caches at network entry points to alle-

viate pressure on the constrained devices, and group communication between the constrained devices will

happen frequently. Caches and proxies would require the termination of the DTLS and the TLS connection.

Therefore, these middleboxes not only have access to the data required for performing their intended func-

tionality but are also able to eavesdrop on or manipulate any part of the message payload and metadata

in transit between the endpoints [7]. To provide an end-to-end security model that better fits the needs

of the IoT, the CORE working group defined a new security protocol that operates at the application layer,

OSCORE [7], based on the work by Vučinić et al. [82]. OSCORE protects the CoAP requests/response layer

end-to-end across intermediary nodes.

OSCORE endpoints use a pre-established shared security context that contains information on the mas-

ter secret, the master salt, the context ID, the IV, and the cryptographic algorithms to use (for key derivation

from the master secret and authenticated encryption). Each endpoint also has a sender context and receiver

context. The first contains a sender ID, sender key and sequence number, while the latter has a recipient

ID, recipient key and replay window. CoAP messages use a critical option to indicate that OSCORE is used

to protect the contents of the packet. Not all CoAP fields can be encrypted to ensure the proper working of

the CoAP caches and proxies. OSCORE divides the CoAP fields in classes. Class E fields are encrypted and

integrity protected, fields of class I are only integrity protected, and class U consists of unprotected fields.

Similarly, the different CoAP options are split in Class E , I , and U options. OSCORE protects the CoAP class

2As of 2019, several companies, i.e. Google and Cloudflare among others, have started serving DoS (DNS-over-TLS) to protect user
privacy. There are also experiments with DoH (DNS-over-HTTPS) [83–85].

54

CHAPTER 3. A SECURE IOT NETWORKING STACK

E and I fields and options by wrapping them in a COSE object. In Figure 3.5, the protected CoAP fields are

colored green, the unprotected red.

COSE [90] is a binary message format for a concise representation of small messages. COSE messages

can be encrypted, MAC’ed, and signed. The basic format defines three fields: protected header, unprotected

header, and content (see Figure 3.5). The headers are flexible and can carry different types of information.

For example, they can carry information about the content protection mechanism, such as the algorithm

identifier, key identifier, IVs, and other contextual information. The COSE content itself is either the plain-

text or the ciphertext. Depending on the COSE object type, an additional field might be added. There are

6 COSE message types: COSE_Encrypt0, COSE_Encrypt, COSE_Mac0, COSE_Mac, COSE_Sign1 and COSE_-

Sign. The type names followed by a 0 or 1 indicate that the COSE object is either encrypted for a single

recipient, MAC’ed without any additional recipient information, or signed by a single signer. In those sce-

narios, the additional field contains, either a single signature (for COSE_Sign1) or a single MAC (for COSE_-

Mac0). Note that the ciphertext from the COSE_Encrypt0 message is carried in the content field; thus, the

additional field is empty. The other message types are used when multiple recipients are addressed, or mul-

tiple signatures are attached. The additional field now contains a recipient structure or signatures structure.

Both structures follow the same message format: headers, protected and unprotected, followed by either a

recipient-specific key wrap of the used encryption or MAC key or a signature for each signer. The recursive

message structure allows for a small code footprint on constrained devices.

 CoAP header Token

Variable Variable
Payload
Marker

8 bits32 bits

Version Type TKL Req. &
Resp. codes Message ID Payload

Marker

2 bits 4 bits 8 bits 16 bits2 bits Variable

Payload

Variable

Token

8 bits

Original CoAP
 Message

OSCORE
Message

Options

Protected
Header

Unprotected
Header

COSE Encrypt0
ObjectCiphertext MAC

COSE Content

Fixed Size CoAP Header

AEAD

Class U
Options

PlaintextAAD
implicitly known

Key ID = Sender ID
OSCORE version

IV = Sender SeqNum
Class I Options

Compress
strip COSE

headers

COSE Content

Type
OSCORE

ValueLength

CoAP Option

Figure 3.5: OSCORE transformation

OSCORE uses the COSE_Encrypt0 message type to protect the E , and I class CoAP fields and options,

see Figure 3.5. It uses an AEAD algorithm for encryption and integrity protection. By default, it uses AES-

CCM. The plaintext input of the AEAD algorithm consists of a concatenation of the CoAP response code,

the class E options [7], and the CoAP payload (if there is a payload present in the original CoAP message),

prefixed with the payload marker. The AAD (Additional Authenticated Data) input to the AEAD cipher,

consists of the OSCORE version, the AEAD algorithm identifier, KID (Key Identifier), the IV, and the CoAP

class I options. The COSE protected header is empty and the unprotected header contains the IV, the KID

parameter, and optionally a KID context. The final OSCORE message now consists of the original CoAP

header, a CoAP token (if any), and the unprotected options (there is at least the OSCORE option). The

request/response code in the CoAP header of the OSCORE message has been replaced with either a CoAP

POST or CHANGED code since the original value has been encrypted and stored inside the COSE object. The

information in the COSE unprotected header will be carried in the value field of the OSCORE option, see

Figure 3.5.

55

CHAPTER 3. A SECURE IOT NETWORKING STACK

3.3.3 EDHOC: Ephemeral Diffie-Hellman over COSE

During the discussion on OSCORE, we stated that the protocol uses a shared security context, but we did

not explain how OSCORE established this context. At the time of writing, the ACE working group is de-

signing the EDHOC lightweight key exchange mechanism [91]. The protocol will provide perfect forward

secrecy, through ephemeral Diffie-Hellman with elliptic curve keys, and identity protection. Authentication

will happen through pre-shared keys (symmetric, raw public keys, or certificates) established out-of-band.

They can be provided by a trusted third party like the authorization server in the ACE framework. EDHOC

uses COSE for cryptography, CBOR for encoding, and CoAP for transport, leveraging existing libraries and

limiting the additional code footprint.

X
(x, X)

Y, AEADK2(IDV , signy(X, Y))

y · X → K2, K3

Message 2

Message 1

(y, Y)

AEADK3(IDU , signx(X, Y))

x · Y → K2, K3

Message 3

Initiator (U) Responder (V)

Figure 3.6: The SIGMA-I protocol forms the template for EDHOC key exchange.

EDHOC, just like TLS 1.3, is a SIGMA-I type protocol [92], allowing each party to check the other’s

identity without revealing it to a passive attacker [93]. The protocol uses three message to establish a

shared secret. The initiator (U) starts the protocol by deriving an ephemeral key pair (x, X) and sending

the ephemeral public key, X , to the responder (V). The responder generates its ephemeral pair (y,Y) and

derives two symmetric keys K2 and K3 from the Diffie-Hellman shared secret, y · X . The key K2 is used to

encrypt the public identity credential IDV together with a signature over the two ephemeral public keys

(X ,Y) responder (V). Upon receiving the second message, the initiator can also derive K2 and K3, from x ·Y
and check the identity of the responder. It then forms the third message containing the encrypted signature

of (X ,Y) and its identity credential IDU . The signatures over the ephemeral public keys, ensure that both

parties agree on the keys if they are freshly generated.

EDHOC uses the SIGMA-I protocol as a template and adds a few parameters. EDHOC adds connection

identifiers CU and CV and, cryptographic suites to negotiate an elliptic curve, key derivation algorithm and

AEAD cipher. Optionally the exchange messages can also carry unprotected application data. Protected

application data can be transferred, starting from message 3. EDHOC makes use of COSE_Key objects,

two different COSE message types, COSE_Encrypt0, COSE_Sign1, and COSE context information objects

COSE_KDF_Context. The parameters IDcredU and IDcredV , allow to both parties to obtain credV and credU .

credV and credU are then used to verify the other parties identity.

(x, X)

y · X → K2, K3

Message 2

Message 1

(y, Y)

x · Y → K2, K3

Message 3

Initiator (U) Responder (V)

TYPE, SUITESU , X, CU , APP1

CU , Y, CV , AEADK2(IDcredV
, signy(credV , TH2), APP2)

CV , AEADK3(IDcredU
, signx(credU , TH3), APP3)

Figure 3.7: EDHOC messages mapped on the SIGMA-I protocol.

56

CHAPTER 3. A SECURE IOT NETWORKING STACK

3.4 A Transport Layer Protocol Showdown

3.4.1 Tradeoffs between UDP and TCP

Currently, the main transport layer protocols in IP-based IoT scenarios are TCP [94] and UDP [95]. TCP

provides reliability, traffic control and congestion control. However, reliable transport protocols require ad-

ditional overhead information and acknowledgment packets. The standard TCP header is 20 bytes long,

and TCP options can potentially add another 40 bytes. Additional drawbacks in the context of the IoT were

summarized by Carles et al. [96]. TCP lacks flexibility for loss-tolerant applications and it is unsuitable for

multicast (precluding it from group-oriented applications). TCP has worse performance than UDP-based

solutions for non-critical monitoring with relatively frequent sensor reading updates. The alternative, UDP,

is a connectionless datagram-oriented protocol. The UDP header is only 8 bytes long, and it provides a min-

imum of protocol mechanisms and overhead. On the downside, the delivery of packets is not guaranteed,

and duplicates are not detected.

In consequence of the TCP overhead, many initial IP-based IoT deployments resorted to using UDP in

combination with application-layer reliability. For example, the support for confirmable messages in CoAP.

The IETF wrote several RFCs describing header compression techniques in combination with 6LoWPAN

for UDP when being carried in IPv6 packets. This can potentially shrink the UDP header from 8 bytes

to, on average 4, bytes. A similar proposal for 6LoWPAN TCP header compression was started but never

completed [97].

Nonetheless, the need for smooth integration of CoAP with enterprise infrastructure has recently trig-

gered the development of a CoAP over TCP specification [96]. Additionally, messaging protocols such as

MQTT (Message Queuing Telemetry Transport) and AMQP (Advanced Message Queuing Protocol), both as-

suming TCP underneath, have achieved IoT market presence. These novel industry and standardization

tendencies suggest that TCP may gain extensive support in IoT scenarios soon. With appropriate config-

uration, TCP can behave similarly to unicast end-to-end reliability mechanisms well-accepted for the IoT,

while integrating much better with middleboxes than UDP. The specific parameters and options that can

boost TCP performance in constrained scenarios are summarized in [98]. Other work on TCP optimizations

present improvements based on the use of caching that reduces the number of control packets [99].

3.4.2 TLS: Transport Layer Security

TLS is the prevalent protocol that secures today’s Internet traffic. TLS is a so-called hybrid cryptosystem. It

combines both symmetric key cryptography (for bulk encryption of the transport layer packets) and public-

key cryptography (to establish keys for the symmetric algorithms) in one system. TLS makes heavy use of

PKI (Public-Key Infrastructure) to build trust between the communicating parties. TLS requires a reliable

transport protocol to function correctly, e.g., TCP. The TLS protocol consists of 2 layers. The bottom layer is

fixed and is called the record layer. Depending on the state of the TLS protocol, the record layer encapsulates

messages from the handshake protocol, the alert protocol, the change cipher spec protocol or the application

data protocol.

To bootstrap a TLS connection, both peers (client and server) run the TLS handshake protocol. They

negotiate the different encryption and signing algorithms by sending each other hello messages. The client

presents its supported algorithms, in order of preference, and the server picks the first match. Next, PKI

certificates and key shares are exchanged. The key shares can be generated by running either the Diffie-

Hellman key exchange mechanism or the RSA key exchange. When a peer has derived the shared secret (for

example, by combining its private key with the received key share), the peer uses the change cipher spec

protocol to indicate that all the subsequent messages will be encrypted with the newly established keys.

The final messages of the TLS handshake are called the Finished messages. It is the first message that is

protected with the derived keys and allows both peers to check if everything went well. If something goes

wrong, the alert protocol is used to notify the peer.

Over the last few years, TLS has had its fair share of issues. On the one hand, TLS has been proven a

challenging protocol to implement. Many vulnerabilities, including Heartbleed [100], BERserk [101], and

goto fail; [102] are not fundamental to the protocol and mostly resulted from a lack of testing. On the

other hand, the recent proliferation of formal verification techniques for network security protocols have

57

CHAPTER 3. A SECURE IOT NETWORKING STACK

unveiled many design flaws in the protocol. The weaknesses range from purely theoretical (SLOTH [103]

and CurveSwap [104]), to feasible for highly resourced attackers (WeakDH [105], LogJam [105], FREAK [106],

SWEET32 [107]), to practical and dangerous (POODLE [28], ROBOT [29]).

3.4.2.1 TLS Reborn: TLS 1.3

In 2013, the IETF started working on a new version, called TLS 1.3 [108]. TLS 1.3 entered RFC status in March

2018. The most visible improvement is the speedup of the handshake protocol. It now takes one full RTT

(Round Trip Time) less to complete, see Figure 3.8. While TLS 1.2 took two full RTTs until application data

could be exchanged, TLS 1.3, only requires one RTT. The client tries to guess the key exchange algorithm

the server is going to pick, allowing the client to send its key share during the first RTT. In case the client

picks an unsupported algorithm, the server requests a new key share.

Client Hello
[ciphersuites] Server Hello

[ciphers]
Certificate
Key share

[signature]Key share

Finished

Finished

Application Data

Application Data

Encrypted

1-RTT

2-RTT

3-RTT

(a) TLS 1.2 handshake

Client Hello
[ciphersuites]

Key share
Server Hello
[ciphers]
Key share

Finished

Application Data

Application Data

Certificate
[signature]

Finished
En

cr
yp

te
d

1-RTT

2-RTT

(b) TLS 1.3 handshake

Figure 3.8: The differences between the TLS 1.2 and TLS 1.3 handshake protocols.

Another striking change introduced by TLS 1.3 is a complete purge of all the insecure legacy features and

algorithms such as static RSA and static Diffie-Hellman key establishments, RC4, 3DES, MD5, and SHA1,

AES-CBC, RSA-PCKS1.5 padding, DSA3, compression, and renegotiation features. The remaining key ex-

change algorithms are (EC)DHE, PSK (Pre-Shared Key)-only and PSK with (EC)DHE, and the symmetric

cipher suites are all AEAD algorithms. TLS 1.3 also cryptographically signs the negotiated cipher suites to

prevent downgrade attacks.

Furthermore, all the handshake messages following the ServerHello message are now encrypted, with

the freshly established key. Extensions to the protocol can also be encrypted. The key derivation functions

that transform the master secret in a useable encryption key have been redesigned. The base specification

now includes elliptic curve algorithms.

The session resumption negotiation, where an old master secret is used to establish an new secure ses-

sion, was also improved to provide forward secrecy in TLS 1.3, by running an additional ECDHE (Elliptic

Curve Diffie-Hellman Ephemeral) key exchange during the session resumption. Session resumption, com-

bined with the client’s ability to guess the server’s key exchange algorithm paved the way for the 0-RTT

handshake. A client can thus immediately attach application data to the client hello message. However,

there are two caveats while using 0-RTT: forward secrecy is not enabled for the initial application data com-

ing from the client, and the initial application data can be replayed.

Overall, TLS 1.3 has improved the latency, encrypts larger parts of the handshake protocol, has become

more resilient against cross-protocol attacks and, removed insecure features.

3.4.3 DTLS: Datagram Transport Layer Security

Due to the wide deployment of unreliable UDP-based IoT applications, the traditional TLS protocol is un-

usable. DTLS is a modified version of TLS that functions properly over datagram transport [86]. Similarly to

TLS, DTLS encapsulates its messages within DTLS records. The record layer supports the same four subpro-

tocols: handshake, alert, change cipher spec, and application data protocol. To be able to handle datagram

3ECDSA is still supported as signature algorithm.

58

CHAPTER 3. A SECURE IOT NETWORKING STACK

losses, DTLS uses ciphers with no residual state. Every datagram is protected independently from the next

one, DTLS does not support any stream ciphers. In TLS, the anti-replay and message reordering protec-

tion are provided by a MAC that includes a sequence number, but the sequence numbers are implicit in

the records [109]. DTLS adds explicit record sequence numbers and employs a replay window since it can

not rely on message ordering from the transport layer. Furthermore, DTLS uses a retransmission timer

mechanism during the handshake. UDP datagrams containing DTLS messages can grow very large during

the handshake. To prevent fragmentation at the IP layer, which is no longer supported by IPv6, DTLS im-

plements its fragmentation mechanism. We provide a more in-depth comparison of the DTLS and TLS in

Chapter 7.

It is interesting to note, that apart from the obvious advantage of using an already standardized protocol,

no argument has been given on actual applicability of DTLS for the IoT [2]. DTLS suffers from some of the

same drawbacks as TLS, when applied to IoT applications. It is incompatible with multicast traffic, uses a

verbose encoding scheme and the large datagram sizes, e.g., exchange of certificates during the handshake,

make it hard to deploy the protocol in constrained networks.

At the time of writing, the DTLS 1.3 specification is still under review by the IETF. The new DTLS version

will inherit many of the changes from TLS 1.3. The specification will use the new handshake pattern, sup-

port only AEAD ciphers, use the new, improved session resumption mechanism, and the new key derivation

function. The DTLS 1.3 record layer has also been redesigned to optimize the header sizes, and the sequence

numbers will be encrypted [110].

3.5 The Network Layer and its Challenges

The standardized IoT stack foresees the use of IPv6 to attach embedded systems to the broader Internet.

IPv6 improves on IPv4 (Internet Protocol version 4) in several ways. The most noticeable change is the

address space. IPv6 endpoints use addresses of 16 bytes. This solves the well-known issue of the limited IPv4

address space (232 distinct addresses) but poses a challenge for the constrained IoT devices that use small

link layer frames. The larger address result in an increased IP header size. Furthermore, IPv6 compatible

devices must be capable of handling IP packets of 1280 bytes. When IPv6 needs to cross over IEEE 802.15.4,

which uses frame sizes of 127 bytes, the need for an adaptation layer becomes apparent.

3.5.1 6LoWPAN: A Tale of Compression and Fragmentation

In the absence of the link layer security overhead, the IEEE 802.15.4 frames can transport up to 102 bytes

of payload [111]. The 6LoWPAN adaptation layer optimizes the usage of this limited payload space through

header compression. It also defines mechanisms for the support of operations required in IPv6, in par-

ticular, neighbor discovery [112] and address auto-configuration. Before the network layer hands an IPv6

datagram to the link layer, 6LoWPAN leverages the shared state across all devices in a local network (such as

network prefix) to compress the upper-layer headers. In the case of IEEE 802.15.4, this typically results in

an available application-level payload size of approximately 80 bytes. For a detailed overview of 6LoWPAN

compression techniques, the reader should refer to RFC 4944 [63] and the subsequent updates. When an

IPv6 packet exceeds the available link layer payload size, the 6LoWPAN fragmentation mechanism treats the

(compressed) IPv6 packet as a single data field and iteratively segments this field into fragments according

to the maximum frame size at the data link layer [113].

To route the different 6LoWPAN frames, 6LoWPAN supports two different schemes: mesh-under and

route-over [114]. In the mesh-under scheme, the routing decisions, based on the information provided by

the routing protocol, are taken by the 6LoWPAN adaptation layer. The node uses the 6LoWPAN mesh header

to transport the original source and destination addresses, in EUI (Extended Unique Identifiers) 64-bit ad-

dress or the 16-bit short address format. The link layer addresses that are included in the IEEE 802.15.4

header indicate the immediate next hop, reachable from the current node. Mesh-under routing has the ad-

vantage that it does not require per-hop reassembly of the full IPv6 datagram in case the original datagram

was fragmented. When using the route-over mechanism, IPv6 datagrams need to be reassembled and de-

compressed at each hop to read the address information stored in the IPv6 header. In this scenario, routing

decisions are taken on the network layer based on the IPv6 header information.

59

CHAPTER 3. A SECURE IOT NETWORKING STACK

The per-hop reassembly policy of the route-over schemes results in a high end-to-end latency. Addi-

tionally, all the intermediary motes must be capable of allocating buffers of 1280 bytes to store the assem-

bled IPv6 datagram temporarily. In response to these issues, the IETF proposed a fast fragment forwarding

scheme [115]. The core idea is to inflate the first received fragment, containing the IPv6 header, deriving the

link-layer destination based on the IPv6 address and storing the info in a VRB (Virtual Reassembly Buffer)

as a key-value pair (fragment tag, link-layer address). Every fragment originating from the same IPv6 data-

gram carries the same fragment tag value. Thus, for subsequent packets, the node can quickly look up the

link-layer address in the VRB and directly forward the fragment.

3.5.1.1 Security in 6LoWPAN

A security analysis done by Hummen et al. [113] shows that the current design of the 6LoWPAN fragmen-

tation mechanism is vulnerable to low-cost DoS (Denial-of-Service) attacks. An attacker can easily block

fragmented IPv6 datagrams of its choice by injecting a single spoofed 6LoWPAN fragment. An attacker can

also execute a buffer reservation attack by forging a 6LoWPAN fragment. The attacker pretends to occupy

the entire reassembly buffer space by sending one fragment. The inability of the nodes to detect malicious

packets leads to buffer depletion. Valid fragments cannot be stored because malicious fragments occupy

the space.

As a countermeasure, the authors propose a content-chaining scheme. To this end, the legitimate

sender adds an authentication token, based on the principles of hash chains, to each fragment during the

6LoWPAN fragmentation procedure. The recipient can cryptographically verify the link between fragments

at the time of reception and discard maliciously duplicated fragments early on the forwarding path. A sec-

ond defense mechanism is based on a split buffer approach. It forces the attacker to compete with the

legitimate fragments for buffer space. The attacker must now invest more resources in the attack. Before

it was a DoS based on a single malicious fragment, now it resembles a flooding attack. Hence, the attacker

does not benefit significantly from sending fragmented packets over unfragmented packets and must have

sufficient resources to mount a flooding-based DoS attack against the target node.

3.5.2 Routing Security in the IoT

The ROLL (Routing Over Low-power and Lossy Networks) working group of the IETF designed routing solu-

tions for the IoT. RPL (Routing Protocol for Low power and Lossy Networks) is currently the most common

approach to routing in 6LoWPAN environments. It provides a framework adaptable to the requirements

of particular classes of applications. In a typical constrained network, nodes connect through multi-hop

paths to a small set of sink devices. RPL builds a DODAG (Destination- Oriented Directed Acyclic Graph)

identified by a DODAG ID for each network sink. It accounts for link costs, node attributes, node status

information, and its respective objective function. The network topology depends on a rank metric, which

encodes the distance of each node to its sink, as specified by the objective function. The rank should mono-

tonically decrease along the DODAG and towards the root node.

The header of the RPL control messages defines a security field that can provide integrity and replay

protection as well as optional confidentiality and delay protection. Cryptographic MACs and signatures

provide authentication over the entire ICMPv6 RPL control message. Encryption provides confidentiality of

the RPL ICMPv6 message.

3.5.3 IPSec for the IoT

Several research efforts have considered IPSec as a potential solution to provide end-to-end security for the

IoT. The authors mostly investigated the feasibility of porting IPSec to the IoT. They evaluated the process-

ing overhead and energy requirements of different cryptographic suites used by IPSec, but also the memory

footprints and system response time. Even though it was initially considered too heavy for constrained

environments, these results led to the common conclusion that a lightweight version of IPSec is a feasible

option [2].

By operating at the network layer, it can be used with any transport protocols, including potential future

ones [116]. Furthermore, it ensures the confidentiality and integrity of the transport layer headers (as well

60

CHAPTER 3. A SECURE IOT NETWORKING STACK

as the integrity of IP headers), which can not be done with a higher-level solution like TLS. The latter, while

being an advantage in some scenarios, could also hurt the deployment of smart objects. Integrity at the

network layer would obstruct any protocol mappings. More precisely, the cryptographic authentication of

the IP payload prevents an HTTP-CoAP mapping at the network gateway.

3.6 Security for the IoT Physical and Link Layer

The typical protocol stack for the IoT employs IEEE 802.15.4 to support low-energy communications

at the physical and link layers. IEEE 802.15.4 supports communications at 250 kbitps in a short range

of approximately 10 m. Several amendments exist to the standard. We are particularly interested in the

IEEE 802.15.4E amendment. It defines modifications to the link layer to support time-synchronized multi-

hop communications.

3.6.1 Time Synchronized Channel Hopping Protocol

TSCH (Time Slotted Channel Hopping), defined in the IEEE 802.15.4E addendum, uses up to 16 differ-

ent frequency channels to provide a robust and possibly latency-bounded way of communication in the

multi-hop networks. TSCH finds its roots in the TSMP (Time Synchronized Mesh Protocol) [117]. It uses a

sparse time-slotted schedule, see Figure 3.9, combined with frequency channel hopping. The schedule syn-

chronizes the nodes’ accesses to the wireless transmission medium and prevents collisions, while channel

hopping provides frequency diversity in the 2.4 GHz ISM band.

slotframe

time slot

Ch
an

ne
l O

ffs
et

ASN / time

slot

TxRxTxRx Tx

Tx

Rx
Rx

TxRx Tx

Tx

Rx
Rx

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

Figure 3.9: A typical TSCH schedule with multiple dedicated slots.

A TSCH schedule consists of a repeating structure, called a slotframe. A slotframe, in turn, consists of

a group of timeslots. A timeslot is subdivided by channels into slots. The individual slots describe when a

node should wake up to communicate with its neighbors and when it should sleep to save battery energy,

see Figure 3.9. There are three types of active slots: transmission slots (Tx), reception slots (Rx), and shared

slots (TxRx). The position of the slots in the schedule allows the calculation of the radio frequency chan-

nel used in the pairwise communication between nodes. Each timeslot has a unique ASN (Absolute Slot

Number). The ASN is a simple counter initialized to zero at the start of the network formation. The counter

is incremented for every timeslot. The value of the ASN is tracked by all the devices synchronized to the

network. Each slot is uniquely identified by an ASN and a channel offset value. When a node encounters an

active slot in its schedule, it turns on its radio and tunes it to the right frequency F , using Equation 3.1.

F = F

[(
ASN + channelOffset

)
mod nch

]
(3.1)

Every TSCH node in the same network shares the same hopping sequence, a list of all the physical chan-

nels used by the nodes. In total, there are 16 different frequency channels, but the hopping sequence can

be longer as channels are allowed to repeat in the sequence. When the length of the hopping sequence

and the length of the slotframe (expressed in timeslots) are relatively prime, Equation 3.1 iterates over all

the channels in a pseudorandom manner, resulting in frequency diversity and helps mitigate the effects of

interference and multipath fading. In case specific frequencies experience a lot of interference, channels

can be blacklisted.

61

CHAPTER 3. A SECURE IOT NETWORKING STACK

A single slot in the schedule must be long enough to send a maximum length IEEE 802.15.4 frame (127

bytes) and receive a short acknowledgment frame. While the exact duration of a slot is implementation-

specific, 10 ms, 15 ms, or 20 ms are commonly used. When a node wakes up for a Tx slot in its schedule,

it checks the transmission buffer for a frame to send. If the buffer is empty, the node goes back to sleep.

If there is a frame in the buffer, the node activates the radio, sends the frame, and possibly waits for the

acknowledgment. For an Rx slot, the node turns on its radio to receive a frame, sends back an acknowledg-

ment if required, and goes back to sleep. When the node does not receive anything within a specified time

interval, it goes back to sleep. During the TxRx slot, the node first checks the buffer for a frame to transmit.

If there is one, it proceeds as in the Tx slot; otherwise, it acts as an Rx slot. No frame reception in Rx mode

means that either the sender had nothing to send or the frame sent by a neighboring node was lost.

Network advertisement is done by periodically sending out an EB (Enhanced Beacon) containing a pay-

load with IE (Information Elements). IEs contain all the information needed by a node to join the network.

The IEs allow the joining node to construct an initial local schedule and negotiate with the advertising node

dedicated slots in which only one pair of nodes can communicate. After building the initial schedule, the

node starts emitting its own EB to advertise the network further.

3.6.2 Security for the IEEE 802.15.4 Link Layer

The 2011 IEEE 802.15.4 standard defines security mechanisms at the link layer. There are several security

modes available with different security guarantees. Figure 3.10 illustrates the layout of an IEEE 802.15.4

link layer frame. The auxiliary security header field, present when the security-enabled bit is set to 1 in

the frame control field, specifies information required for security processing, including how the frame is

protected, denoted by the security level, and which keying material is used.

PHY Header

SHR PHR
6LoWPAN - IPv6 payloadFrame

Ctrl.
Sequence
Number Addr. Fields

Aux Sec
Hdr.

MAC Header

C
RC

5B 1B 2B 1B 0 - 20B 0 - 14B Variable 2B

FCSSL KIM ASN Rsrvd
Key ID

Security Control
Frame Counter

1B

2b 2b 1b 1b 2b 0 - 4B 0 - 9B

Figure 3.10: IEEE 802.15.4 link layer frame. The auxiliary security header describes how the frame is protected.

The standard uses the AEAD cipher, AES-CCM, to provide authentication and, optionally, confidential-

ity. The keys are 128 bits long. The nonce necessary for the CCM-mode can be derived in two different ways.

If IEEE 802.15.4 operates in TSCH mode, the nonce is a concatenation of the 8-byte source address and

ASN value, encoded in 5 bytes, else, the nonce is formed by concatenating the source address, the frame

counter value and nonce security level. In both cases, the nonce is 13 bytes long. The remaining two bytes

are used as counter. They increment for each 16-byte block that CCM-mode protects, see Chapter 2.

Table 3.1 shows the different security levels. IEEE 802.15.4 allows for various levels of data authentica-

tion, to minimize the security overhead and for optional data confidentiality. In the previous version of the

standard, security level 4 was a level that only provided data confidentiality but without data authenticity.

This level was deprecated in the 2015 standard.

The KIM (Key Identifier Mode) bits, inside the security control field, inform the receiver how the key used

to protect the frame can be derived. The frame counter suppression and ASN field are set according to the

mode of operation of IEEE 802.15.4, TSCH mode or non-TSCH mode.

The IEEE 802.15.4 standard also provides access control functionalities, enabling a sensing device to

use the source and destination addresses of the frame to search for information on the security mode and

security-related information required to process security for the message. The 802.15.4 radio chips of the

device stores an ACL (Access Control List) with a maximum of 255 entries, each containing the information

required for the processing of security for communications with a particular destination device.

62

CHAPTER 3. A SECURE IOT NETWORKING STACK

TABLE 3.1: Security levels defined by IEEE 802.15.4.

Sec. Level Mode Encrypted Integrity MIC Length [B]

0 NONE 0

1 MIC-32 X 4

2 MIC-64 X 8

3 MIC-128 X 16

4 RESERVED

5 ENC-MIC-32 X X 4

6 ENC-MIC-64 X X 8

7 ENC-MIC-128 X X 16

3.6.2.1 Secure Join

The 6tisch IETF working group defined a secure join procedure that can be used by new devices, called

pledges to join a secured TSCH network [118]. The term secure join refers to network access authentica-

tion, authorization, and parameter distribution. The CoJP (Constrained Join Protocol) handles parameter

distribution needed for a pledge to become a joined node. CoJP assumes the presence of a JRC (Join Reg-

istrar/Coordinator), a central entity. The pledge and the JRC share a PSK. The PSK is used to configure

OSCORE to provide a secure channel to the CoJP. How the PSK is installed is not defined in the 6tisch draft,

although a provisioning phase by a key exchange protocol is suggested. The secure join follows:

1. The pledge synchronizes to the network by listening for EB frames. The node that sent the EB acts as

a JP (Join Proxy) for the pledge, it will relay traffic between the pledge and the JRC

2. The pledge configures its link-local IPv6 address and advertises it to the JP using IPv6 neighbor dis-

covery protocol. This step may be omitted if the link-local address has been derived from a known

unique interface identifier, such as an EUI address.

3. The pledge sends a join request to the JP to securely identify itself to the network. The join request is

forwarded to the JRC.

4. In case of successful processing of the request, the pledge receives a join response from the JRC. The

response contains key material used by the network for encryption and message integrity protection.

Discussion

It is now clear how the limitations of the underlying hardware have affected the design of the IoT networking

stack. Starting at the physical and link layer, the necessity to consume little energy imposed strict duty cycles

and small frame sizes on the communication protocols. These design choices bubbled upwards throughout

the stack, affecting the choices of the higher-layer protocols. The deployment of the IPv6 protocol makes

every IoT device uniquely addressable on the Internet but requires the use of an adaptation layer to pro-

vide fragmentation and header compression. At the transport layer, UDP was chosen over TCP because

of its simplicity, resulting in a small code footprint, and a limited header size. Finally, CoAP has a similar

functionality as HTTP, but it packs some additional features to accommodate the unique characteristics

of the IoT. CoAP has also inherited some of the mechanisms of TCP for those IoT applications that require

reliability.

Security for the IoT network traffic can, in a similar fashion to the traditional Internet stack, be imple-

mented at several layers. The most significant difference with the traditional TCP/IP stack can be found at

the application layer. The IoT networking stack implements object security. The object security paradigm

is connectionless and supports multicast security and caching of encrypted packets. DTLS, which has been

chosen as the designated network security protocol for the IoT, does not support these features. Compared

to TLS, which is more prevalent in the traditional Internet, DTLS does not need a reliable transport layer. It

handles datagram losses by protecting each DTLS datagram independently. In practice, this means that the

cipher suites cannot have any residual state in between records [86]. However, DTLS requires more header

63

CHAPTER 3. A SECURE IOT NETWORKING STACK

information than TLS, and it uses the same verbose packet format and encoding scheme. For these reasons,

its applicability in the constrained IoT is highly debatable.

Just like any other Internet-connected system, IoT networks can become the victim of DoS attacks. This

threat places high demands on resiliency and survivability upon the network. Since IoT networks have been

designed to operate under harsh conditions, we would expect them to provide a minimal level of resilience

against the DoS threat. For example, adaptive routing protocols could route traffic around nodes that have

been brought offline due to a DoS attack. However, multiple vulnerabilities still exist. The 6LoWPAN layer,

responsible for reassembling large IPv6 packets, can easily fall victim to a simple but effective DoS attack,

as described in Section 3.5.1. Researchers have proposed some countermeasures, but none have made it

into the RFCs. The 6LoWPAN DoS attack can be partially mitigated by activating link layer authentica-

tion. The network will reject malicious 6LoWPAN frames if they do not possess a valid MAC. Other types

of DoS attacks include excessive querying or jamming. In a TSCH network, battery depletion due to exces-

sive querying can be mitigated by imposing a strict duty cycle, fixing the total number of allocated slots in

the schedule. However, the flood of additional packets could induce high latencies for legitimate network

traffic. A jamming attack in TSCH can be very destructive for the operation of the network since it breaks

the time synchronization of the network. We will shed more light on this type of attacks and its defense in

Chapter 6.

A separate set of security considerations applies to IoT devices bootstrapping into a network (e.g., for

initial key establishment). This generally involves application-level exchanges or out-of-band techniques

for the initial key establishment and may rely on application-specific trust models [119]. The Secure Join

procedure for 6tisch-enabled networks describes such a mechanism. Nodes use a PSK to enroll in a net-

work. The PSK authenticates the application layer OSCORE packets with the authorization server.

In this chapter, we considered the IoT networking stack and its defenses in the context of the Dolev–Yao

threat model. We saw that the state-of-the-art security protocols could provide extensive protections to the

network traffic on all layers of the stack. The model, however, limits the attacker to network only attacks,

considering perfect cryptography and secrecy of the keys. IoT devices are more than other IT systems vul-

nerable to code injection and physical attacks. These attacks can compromise the security of the entire

device and extract any secret inside. While powerful systems use multiple layers of protection mechanisms,

a constrained IoT device cannot spare the resources to provide defense in depth. A single vulnerability

can suffice to hack the device. Since the attackers will almost always choose the path of least resistance,

device security is not an aspect we can ignore. In the next chapter, we study several software-based and

hardware-based techniques to improve the device security state.

64

Chapter 4

System Security for Constrained Devices

Contents
4.1 Threat Model . 66

4.2 Trusted Computing Security Properties . 67

4.3 Software-based Trusted Computing . 68

4.3.1 Attacker Model for Software-based Trusted Computing 68

4.3.2 SWATT: SoftWare-based ATTestation for Embedded Devices 68

4.3.2.1 Malicious Software Detection Probability . 69

4.3.3 ICE: Indisputable Code Execution . 69

4.3.4 Secure Boot for Off-The-Shelf Constrained Hardware . 70

4.4 Hybrid- and Hardware-based Trusted Computing . 72

4.4.1 Adversary Model for Hardware and Hybrid Trusted Computing 72

4.4.2 Arm TrustZone-M . 72

4.4.3 SMART: Secure and Minimal Architecture for a Dynamic RoT 74

4.4.4 Sancus 2.0 . 74

4.4.4.1 Loading & Protecting Software Modules . 75

4.4.4.2 Remote Attestation & Secure Communication 75

4.4.4.3 Local Attestation & Secure Linking . 76

4.4.5 TrustLite . 76

4.4.6 TyTan: Tiny Trust Anchor for Tiny Devices . 77

65

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

Introduction

In the last chapter of our overview of the secure building blocks for the constrained IoT, we have a closer look

at device security. While the previous chapter was devoted to protecting data on the network by employing

different cryptographic protocols, we considered the source and destination devices to be uncompromised

and trusted. However, this trust is often misplaced [120]. Any computing system can be compromised by

adversaries, from complex server systems to the tiniest microcontrollers [121]. Once infected with mali-

cious software, the system will no longer behave as expected.

The goal of trusted computing is to develop mechanisms that provide guarantees about the behavior

of the software running on a device. More specifically, a device can be trusted if it always behaves as ex-

pected for the intended purpose [120]. A trusted computing architecture breaks the system into relatively

small discrete modules. The modules have well-defined characteristics. This design approach then permits

decision making based upon the expectations of the behavior of the modules. The most crucial discrete

modules of the architecture are also known as the TCB (Trusted Computing Base). It is the set of hardware

and software components critical to the security of a system. To keep the TCB as small as possible, the most

trusted computing technologies build trust chains. The chains are anchored in a trusted component, which

we refer to as the RoT (Root-of-Trust). A RoT is inherently indivisible, and it provides a functionality upon

which all subsequent trust decisions are based. There exist several types of RoTs:

RTM (Root-of-Trust for Measurement) is a trusted implementation of a cryptographic hash or checksum

function, which provides us with an integrity measurement of the system. RTMs can either by static or

dynamic. A secure boot procedure is an example of an SRTM (Static Root-of-Trust for Measurement).

After a successful, secure boot, the system enters a known, trustworthy state. When the RTM can be

activated dynamically, for example, just before we want to execute some sensitive code, we call this a

DRTM (Dynamic Root-of-Trust for Measurement).

RTS (Root-of-Trust for Storage) is a trusted implementation of a protected memory area to store crypto-

graphic keys.

RTR (Root-of-Trust for Reporting) is similarly to the RTS a protected area in the device which contains a

unique platform identity.

The concept of trusted computing is not new. It has been present in computer science security literature

for quite some time. The ideas have since trickled down in COTS systems such as PCs, mobile phones, and

have even started influencing the design of the more constrained IoT devices [122]. Depending on the na-

ture of the trusted components, we can distinguish software, hybrid, or hardware-based trusted computing

architectures. In hardware architectures, the user’s trust is anchored in the immutability of the hardware,

hybrid architectures mix trusted hardware, and trusted software and software-based designs only contain

trusted software components. Hardware and hybrid designs can protect the system critical functions from

advanced attackers that have compromised the OS (Operating System). Software-based designs typically

cannot curb attackers once the security is breached and must resort to detection and reporting mecha-

nisms to inform the surrounding systems of the compromise.

In this chapter, we look at the applicability of trusted computing in the constrained IoT. We discuss

several software, hybrid, and hardware designs and discuss the features they provide.

4.1 Threat Model

We can define two different threat models for constrained IoT devices, based on which components make

up the TCB: a treat model for software-only trusted computing and a model for hybrid and hardware-based

trusted computing architectures. In both scenarios, the attacker has additional capabilities on top of the

abilities described in the Dolev-Yao model [65], allowing the attacker to compromise all components of

the system that do not belong to the TCB. In both attacker models, the architectures do not provide any

availability guarantees; thus, they are all vulnerable to DoS (Denial-of-Service) attacks. Physical attacks,

invasive attacks, and side-channel attacks are out-of-scope of the threat models. In the sections that discuss

the software, hybrid, and hardware designs, we provide more details on the respective attacker models.

66

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

4.2 Trusted Computing Security Properties

Isolation and attestation are the most straightforward features trusted computing aims to provide. These

properties can subsequently be used to build additional features such as sealing and code confidentiality.

Software Isolation is the first line of defense against many different types of attacks. Isolation puts

software components and their associated data in their own protected memory space. No software out-

side this memory space can interfere with the runtime state of the protected software. Additionally, the

protected software component has only a small set of enforced, predefined entry points. External code

cannot make arbitrary calls into the code memory of the protected software, preventing malicious code of

bypassing access control checks, and use techniques like ROP (Return-Oriented Programming) attacks to

reveal sensitive data inside the protected domain. For high- to mid-end systems, two important classes of

solutions exist that enforce isolation [123]:

1. By using virtual memory, each software module gets its own virtual address space. The operating

system or hypervisor implements and guards communication channels between them (for instance,

shared memory sections or inter-process communication channels).

2. By using a memory-safe virtual machine (for instance, a Java VM (Virtual Machine)), software mod-

ules are deployed in memory-safe bytecode, and the security architecture in the VM guards the inter-

actions between them.

The listed approaches have some clear drawbacks when considered in the context of low-end systems.

First, the cost (in terms of required resources such as chip surface, power, or performance) is not suited for

low-end systems. Secondly, these solutions all require the presence of a sizable trusted software layer (either

the Operating System OS, hypervisor, or the VM implementation). Finally, both solutions require extensive

support from hardware. When discussing the hardware and hybrid approaches to trusted computing, we

present several “lightweight” approaches to hardware-enforced isolation.

Attestation provides a proof of the integrity of the internal memory, e.g., RAM and flash, and the state

of a device. We distinguish between local and remote attestation. A device performs local attestation when

it checks the integrity of its proper components. If a third-party performs the integrity check, it is called

remote attestation.

Attestation techniques use a challenge-response paradigm. During the protocol, the verifier checks the

integrity of either the full memory or a specific critical function. The verifier initiates the protocol by send-

ing the prover a challenge. If the prover can provide the correct answer to the challenge, the verifier con-

siders the prover successfully verified. In remote attestation, the verifier is often some base station that

interacts with a device in the network. For local attestation, a combination of trusted software and hard-

ware components implement the verifier functionality. The challenge-response attestation routine uses a

checksum function, denoted as H, to compute a checksum value over the prover’s memory contents. The

protocol also uses a nonce, N , to ensure the freshness of the response. The checksum acts as an RTM.

Throughout the chapter, we will see that the attestation routine can be leveraged to build both SRTMs and

DRTMs.

Sealing is a mechanism that encrypts code or data in such a way that it can only be decrypted under cer-

tain circumstances. The latter is often achieved by binding the encryption key to the identity of the device,

the state of specific software modules or their configuration. The binding can be enforced by deriving the

key from the result of a local attestation routine.

Code Confidentiality ensures that unauthorized parties cannot obtain sensitive code or data. To se-

curely enforce this property the system must provide memory isolation and encryption. Isolation ensures

that no other software components can spy on the code at runtime, while the encryption protects the code

and data at rest. A mechanisms based on sealing can enforce that only a specific component can unlock the

code and data.

67

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

4.3 Software-based Trusted Computing

Software-only techniques target platforms that lack any form of hardware support for trusted computing.

The absence of security-critical components that can provide isolation, e.g., an MPU, actively impedes the

deployment of efficient defenses against attacks. The next best thing is the detection of malicious activity

on the system, for example, through attestation. Many constrained devices do not use a full-fledged OS

with multiple applications, but instead, use a simple bare-metal application, making the attestation of the

system more feasible.

Without isolation and code confidentiality, the attestation checksum function executed on the prover

can be modified by the attacker in an attempt to forge a valid response. Hence, the RTM can be tampered

with and is not inherently secure. Next, we present two implementations of software-only remote attesta-

tion functions and discuss how they try to prevent the attacker from breaking the RTM.

4.3.1 Attacker Model for Software-based Trusted Computing

Previous work [124–130] describes an attacker with the ability to infect a victim with malicious code. The

code is persistent and can hide in flash memory or RAM. The attacker has full control over the device and

can modify program and data memory, except ROM memory. Any cryptographic keys stored in unprotected

memory are also lost. The attacker’s goal is to evade detection by the attestation protocol. At attestation

time, the malicious code is still running and can actively try to evade detection by moving around bits of

memory. The malicious code is, however, not capable of colluding with other malicious devices during

attestation time. The threat model also does not encompass an attacker, which might have copied the

device’s contents to a more powerful device. The model thus assumes that the attestation code executes on

the correct device.

4.3.2 SWATT: SoftWare-based ATTestation for Embedded Devices

SWATT uses a checksum function that pseudorandomly accesses the memory contents of a device while

calculation its attestation value. It is important to understand that an attacker cannot predict in which or-

der the attestation function will access the different memory lines. Any malicious code active during the

attestation routine must reroute memory accesses that would reveal a word of malicious code. The access

must be redirected to the original memory word that would have been stored at the particular location. Ma-

licious code can, therefore, not simply overwrite the original memory contents but must store the original

memory words somewhere else in memory. The outputs of the pseudorandom function not only depends

on the initial nonce value, provided by the verifier but also on the current value of the attestation function.

The latter makes the attestation routine non-parallelizable. SWATT puts strict timing constraints on the

response time of the prover. The verifier detects possible reroutings of memory addresses by the additional

latency in the response of the prover. The authors claim that if the malicious code had to reroute even a

single memory access, they would be capable of detecting the delay in the prover’s response.

VerifierProver

H

randomized memory accesses

Original
device

contents

N

checksumH

Figure 4.1: SWATT remote attestation function.

A similar SWATT-like proposal [129], which does not base its security on timing constraints, requires

that the unused memory space of the device is filled with randomness. The randomness filling can happen

pre-deployment or on-the-fly. For the latter, the verifier provides a seed that the prover uses in combination

with a PRG to fill its free memory with random values. Having the memory occupied with known random-

ness (the verifier knowns the seed that generated the randomness and can thus generate the same memory

68

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

contents), prevents the attacker from installing malicious code on the system. The attacker can no longer

store a copy of the original memory contents elsewhere on the device, thus rerouting becomes impossible.

4.3.2.1 Malicious Software Detection Probability

To make sure no malicious code can stay hidden, SWATT must include all memory locations in the check-

sum, even though the address are generated randomly. The authors use the Coupon Collector’s Problem.

The verification procedure does O(n ln(n)) accesses to the memory, where n is the memory size. The result

of the Coupon Collector’s Problem states that if X is the number of memory accesses required to access

each memory location at least once then the probability that not all memory locations are checked after

c · (n ln(n)) access is

P
[

X > c ·n ln(n)
]
≤ n−c+1. (4.1)

To reduce the total number of memory accesses during the integrity check while minimizing the security

risks, Perito et al. [131] propose to use the principle of PDP (Provable Data Possession). Again the attestation

protocol uses randomly generated memory addresses, but instead of trying to include the entire memory

in the checksum H, only x different memory addresses are used. The probability that the malicious code

stays hidden on the device can written down as follows

P
[
Mfound

]
≥ 1−

(
1− m

d

)x
, (4.2)

where m is the number of memory words where malicious code resides and d is the total number of

memory words. Figure 4.2 shows the probability of detecting malicious code on the devices after t dif-

ferent memory accesses. To generate the figure, we picked the memory characteristics of a typical sensor

node [14]. The device contains 131,072 memory words. The malicious code residing on the device varies

between 100 and 1600 bytes in size. Number of memory accesses performed by the checksum routine range

from 256 to 8192, this is only 0.1%−6% of the total number of read operations to scan the entire memory.

0 1 2 3 4 5 6 7 8
Memory Accesses 1e3

20

40

60

80

100

D
et

ec
tio

n
Pr

ob
ab

ili
ty

 (%
)

m = 25 (100B)
m = 50 (200B)
m = 100 (400B)
m = 200 (800B)
m = 400 (1600B)

Figure 4.2: Probability of detecting malicious code on the device.

4.3.3 ICE: Indisputable Code Execution

ICE (Indisputable Code Execution) challenge-response schemes [126, 130] verify if some critical code (called

the target code) on the prover has executed in its entirety and without interference of malicious code. To this

end, the routine builds an untampered execution environment for the target code. It enforces the integrity

of the execution environment through self-checksumming code. The authors define self-checksumming

code as a sequence of instructions that compute a checksum over themselves while executing in a way that

the checksum would be wrong or the computation would be slower if the sequence of instructions were

modified [126].

69

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

ICE builds the untampered execution environment in three steps. Firstly, the integrity of the target code

must be checked. Secondly, the CPU is configured to provide atomic execution, preventing malicious code

from intervening during the execution of the target code. In practice, this is achieved by disabling all the

interrupts. Finally, the target code is invoked. All these steps must happen atomically to prevent TOCTTOU

(Time-of-Check-to-Time-Of-Use) type attacks. In this type of attack, the adversary regains control just after

the integrity check, but before the code is executed, allowing the attacker to provide the verifier with a valid

checksum and still run maliciously modified code. The ICE routine effectively provides a DRTM for the

execution of the target code.

VerifierProver

randomized memory accesses

Original
device

contents

N

checksumICE
IC

E

Figure 4.3: SWATT remote attestation function.

Seshadri et al. [126, 130] claim that ICE provides the above properties on COTS devices without the

need for any hardware support. In previous work, the ICE-routine accepted a start address and end address

for the memory region, which needed to be verified. Applying ICE to remote attestation, the ICE-function

builds an untampered execution environment for the memory attestation function.

Algorithm 6 Self-checksumming code

1: procedure INTCHECK(N)

2: for 0 < i < N do
3: x ← x +x2 ∨5 mod 216

4: addr= ((addr⊕x)∧MASK+codebegin

5: C j ← PC⊕mem(addr)+ l ⊕C j−1 +x +addr+C j−2 ⊕SR

6: C j ← ROTLEFT(C j)

7: j ← (j +1) mod10

Algorithm 6 presents the pseudocode of the ICE routine. As input, it takes value N , which denotes the

number of iterations (and memory reads) the function performs. Firstly, the code uses a simple, fast PRG

to generate random memory addresses. The function then uses a strongly-ordered checksum. It consists of

an alternate sequence of additions and XOR operations between the memory contents, address values, PC

(Program Counter), and the SR (Status Register) to compute the checksum. This sequence of operations has

the property that the final value of checksum will be different with high probability if the attacker altered

the sequence of operations in any way. A strongly-ordered checksum function prevents the attacker from

computing the checksum out-of-order or in parallel. It also prevents the attacker from removing operations

from the checksum function or replacing them with other operations in an attempt to speed up checksum

computation.

4.3.4 Secure Boot for Off-The-Shelf Constrained Hardware

While on-the-fly memory integrity verification, as presented in the works above, is a desirable property for

remote attestation, the lack of hardware support for an immutable attestation function makes the check-

sum functions complicated and computationally expensive. Some of the schemes also rely on strong tim-

ing constraints, which is not ideal since small latencies induced by the network could trigger false positives.

The work presented by Schulz et al. [132] proposes an attractive alternative approach. Instead of requiring

the capability to attest the memory at arbitrary moments in time, their approach only supports software

integrity verification at system boot. The architecture relies on a minimal set of hardware features to im-

plement a secure boot procedure. In return, the attestation architecture succeeds in providing a hardware-

enforced SRTM, RTR, and an RTS, which allows for a stronger attacker model. More precisely, their approach

can protect against collusion attacks.

70

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

Platform
keys

Boot code

Kernel

Apps

Root-of-Trust

2nd stage

Figure 4.4: Secure boot with a Root-of-Trust for Measurement.

Although the dependency on hardware limits the deployability of their solution (e.g., not possible on an

LPC1200 board [133]), the requirements are minimal and already available on the majority of COTS devices.

The scheme offers a middle-ground between the pure software techniques and more exotic and expensive

hardware architectures, see Section 4.4. The secure boot scheme builds a chain of trust, see Figure 4.4,

by accumulating different integrity checksum values, mx of the different boot stages in a single value Mx ,

where x is the index of the current boot stage being evaluated.

Mx ← PRFAK (Mx−1,mx) (4.3)

For each checksum value, it uses a PRF function combined with a new attestation key AKx . Every AKx

is derived from the master key, AK , through the use of a KDF (Key Derivation Function). A single HMAC

function can instantiate both the PRF and the KDF.

AKx ← KDFAKx−1 (mx), with AK0 ← AK (4.4)

To securely implement the secure boot attestation scheme, the hardware must provide the following

functionalities:

1. RoT Integrity: The TCB consists of the initial boot code, which sets up the device in a secure config-

uration, and the checksum function together with the AK (both form the SRTM). The RTM calculates

the authenticated checksum over the second stage boot loader. The boot code must be able to protect

itself, the checksum and the AK to prevent any from malicious alteration of the RTM. When leaving

the POR (Power-On-Reset) phase, the boot code locks itself and the RTM, i.e., it marks the corre-

sponding flash pages execute-only. Before passing control to the untrusted code, the flash page that

contains the AK is read/write locked (activation of RTS & RTR). These settings must be immutable

and must stay in place until the next POR.

2. Intermediate Checksum Protection: When calculating the mx measurements and deriving the attes-

tation keys AKx , the respective boot stage must be able to operate in a secure memory that cannot be

accessed by later boot stages or other unauthorized platform components. In practice, this require-

ment breaks down to operating in memory that is shielded against simple hardware attacks, such as

the SoC on-DIE SRAM, and clearing sensitive intermediate values from memory and caches before

handing control to the respective next stage.

3. Debug Protection: Once programmed and provisioned, the device should reject unauthorized ac-

cess via external interfaces such as UART consoles, JTAG (Joint Test Action Group), or SWD (Serial

Wire Debug) debug interfaces. Since the attacker model does not encompass physical attacks, this

constraint should be straightforward.

By linking the integrity check with a unique device key, the trusted computing scheme can defend

against collusion attacks. Under the assumption, that TCB is secure, a verifier that triggers the secure boot,

and later obtains the final measurements is now sure the attestation routine was effectively run on the in-

tended device.

71

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

4.4 Hybrid- and Hardware-based Trusted Computing

When trust is anchored in hardware, the architecture can provide more security features and stronger guar-

antees than the ones we saw with the software-based schemes. Below, we describe different proposals and

discuss the different features they support.

4.4.1 Adversary Model for Hardware and Hybrid Trusted Computing

Trusted computing systems that have their trust anchored in hardware can defend against much more pow-

erful attacks. The attacker is assumed to control the entire system, except for the components that are part

of the TCB. Because the hardware provides isolation, it automatically supports secure storage (RTS), secure

reporting (RTR), and immutable integrity checksum functions (RTM). The hardware support helps in build-

ing both dynamic on-the-fly memory integrity checks and static secure boot verification. The system can

defend against collusion attacks.

4.4.2 Arm TrustZone-M

The Arm TrustZone architecture is an implementation of a TEE (Trusted Execution Environment). A TEE is

an isolated execution environment in which applications can securely execute irrespective of the rest of the

system [134]. GlobalPlatform has formed a committee to standardize the APIs for different implementations

of the TEE, see Figure 4.5. Software inside the TEE runs alongside software executing in the REE (Rich

Execution Environment).

Internal TEE API

Trusted
App

Trusted
App

Trusted
App

Secure HAL
(Crypto, Timers, GPIO, …)

TEE OS LibrariesTEE API

Rich OS

Non-Secure HAL

Native
App

Native
App

Native
App

Privileged
Unprivileged

TEE-enabled hardware

Libraries

Figure 4.5: Generic architecture for a TEE-enabled system.

The original TrustZone Security Extensions targeted the powerful Cortex-A processors, but recently, with

the introduction of the ARMv8 architecture for the Cortex-M line, Arm extended TrustZone to low-power

CPUs. The implementation of TrustZone for the A- and M-line processors is quite different due to the dis-

tinct design requirements, but the overall functionality remains the same. For the rest of this section, when

we refer to TrustZone, we mean the TrustZone ARMv8M architecture for low-power devices.

TrustZone divides the entire system in two worlds: the secure world (S) and the non-secure world (NS).

The main idea is to put security-critical functions in the secure world and the remaining firmware in the

non-secure world. All the system resources are divided between the two worlds, e.g., CPU cycles, mem-

ory, peripherals, etc. In each world, we can additionally have a separation between privileged and non-

privileged software, as described in Chapter 1. This separation is orthogonal to the secure, non-secure

worlds, see Figure 4.6a.

When a TrustZone-enabled CPU boots, it starts in the secure world. It configures the system1 and loads

a dynamic memory configuration. This configuration divides the entire device memory map (flash, SRAM,

ROM, and peripherals) between the secure and non-secure world, see Figure 4.7b. Code stored on flash

pages that belongs to the secure world is denoted as secure code, while its counterpart is called non-secure

code. Secure code can freely access the non-secure resources, but the opposite is not true. Non-secure

1On embedded systems the startup code is often responsible for initializing the C-runtime environment, setting up the clock system
and configuring peripheral devices.

72

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

software can only call secure functions that are compiled with the right compiler attributes. These functions

are secure world entry points, and by marking them as such in the source code, the compiler uses special

instructions to handle the world transition. More precisely, the compiler uses the SG, BXNS, and BLXNS

instructions. The SG, or secure gate, instruction is used to transition from the non-secure to the secure

world. The BXNS instruction branches or returns to the non-secure world, and the BLXNS instruction is used

by secure software to call non-secure functions. Some CPU registers are also banked. For example, there

are four different stack pointers – two for the secure world and two for the non-secure world.

The non-secure code does not branch directly into the secure world but uses a veneer. A veneer is typi-

cally used to extend the range of branch instructions, by becoming the intermediate target. In this scenario,

the Arm linker uses “secure gateway veneers” to handle the non-secure to secure state transitions. The SG

instruction is executed in the veneer to initiate the state change. The veneers reside in a special memory,

marked as non-secure callable (NSC). From the secure gateway veneers, the code branches further into the

secure world. When the processor returns from the secure world to the non-secure world, it must clear all

the non-banked CPU registers to prevent any information leakage.

Handler Mode

Privileged Unprivileged

CPU states

CPU startup state

NS S NS S

NS S

(a) Secure and Non-Secure CPU states.

S-WorldNS-World

Code

Data, Stack,
Heap

Code

Data, Stack, Heap

Entry
function

Entry
function

Veneer

Veneer

NSC

(b) Veneers in NSC memory form a bridge between the NS and S worlds.

The entire memory configuration is loaded and enforced by a special hardware component, called the

SAU (Security Attribution Unit). The SAU can configure up to 8 memory areas. Optionally, chip designers

can use an IDAU (Implementation-Defined Attribution Unit), which supports up to 256 statically config-

ured regions. Similarly to the MPU, the SAU and IDAU sit between the CPU core and the system’s memory

and check every access, depicted in Figure 4.7a. Both hardware components check their respective config-

urations, and the highest security attribute is used to deny or grant access.

Core

FPU

Bus Matrix

Memory Protection
SAU

MPU_NSMPU_S

NVIC

AHB interfaces

IRQ co-processor interface

IDAU

(a) Simplified block diagram of a TrustZone-enabled CPU.

Flash

SRAM

0x0007FFFF

ROM

0x00000000

0x1FFF0000
0x20000000

0x20017FFF

ext-Flash

Peripherals

0xFFFFFFFF

0xA0FFFFFF

0xA0000000
0x9FFFFFFF

0x9FFF0000

Secure

Non-Secure

Non-Secure

Secure

0x20000000

0x20017FFF

(b) Memory map.

Figure 4.7: Hardware specificities for TrustZone-enabled devices.

Arm also added a new control signal, known as the NS-bit, to the bus infrastructure. This allows the

TrustZone technology to extend the isolation between both worlds to the peripheral devices. The NS-bit

communicates the current security state of a master component to a slave component. When peripherals

in the non-secure world try to access secure world peripherals, the bus transaction fails.

The Arm TrustZone Extensions are implemented in two ARMv8 Cortex-M designs: the Cortex-M23 and

the Cortex-M33. It is important to note that the TrustZone architecture only provides the hardware isolation

features. To build any RoT-like feature, attestation routine or sealing mechanism, the user must write its

trusted software that runs from the secure world. For example, the OP-TEE project implements a secure

73

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

world OS for the Cortex-A TrustZone. It is designed to run from within the TEE with a Linux kernel on the

REE side. Similar projects are being developed for the Cortex-M TrustZone-enabled devices.

4.4.3 SMART: Secure and Minimal Architecture for a Dynamic RoT

Eldefrawy et al. [135] describe an approach to establish a DRTM. The design goals of SMART are similar

to the previously discussed ICE proposals. Both contributions aim to provide an untampered execution

environment where they execute an integrity-checked piece of software. Any attempt to intervene by mali-

cious code can be thwarted or detected. The difference lies in the approach. Where ICE tried to obtain the

above properties with a software-only technique, SMART uses a minimal set of architectural changes to the

hardware to enforce the DRTM. The hardware support also allows them to authenticate the prover device

strongly. The SMART routine accepts a memory range [a,b] and a memory address x as input parameters.

The attestation function checks the integrity of the memory range and then transfers executing to x. With

x = a the verified code can be executed.

SMART relies on four building blocks: attestation ROM, secure key storage, MCU access controls, and

reset and memory erasure. The ROM stores the attestation code and ensures it is immutable. The attes-

tation code starts by disabling the interrupts and calculates an HMAC over the memory range. Afterward,

it jumps to the address provided by x. The secure key storage guards the symmetric key used during the

HMAC function. The access controls inside the CPU ensure that only the attestation code can access the

secure key. This is enforced by tracking the value of the PC. The access controls also specify a single entry

point for the ROM code. Software can only jump to the first instruction stored in ROM. In addition, the

ROM code can only be exited from the last instruction. When the access control mechanism detects an in-

valid memory access, the processor resets immediately. The attestation code is carefully written to ensure it

cleans up any sensitive data after it has finished. However, when the processor resets during its execution,

this cleanup might be skipped. Therefore, all RAM is erased by the hardware when the processor boots or

after a reset.

4.4.4 Sancus 2.0

In the previously discussed architectures, the TCB consisted of software and hardware components. In the

TrustZone architecture, the TCB contains all the hardware techniques to enforce the TEE and the actual

privileged code running inside the secure world. The SMART design relied on hardware modifications to

the CPU and the attestation code stored in ROM.

The Sancus 2.0 architecture [123], an updated version of the original Sancus architecture proposed in

2013, differs from the others in that it provides a hardware-only TCB. Secure storage, inaccessible to soft-

ware, is provided for volatile cryptographic keys and security-critical data, while static keys and algorithms

are etched in silicon to omit all the software components from the TCB. The authors describe a setting

where an infrastructure provider manages deployed Sancus nodes (implementation based on the MSP430).

The infrastructure provider allows a variety of third-party software providers to deploy software, denoted as

software modules, on the nodes. All the nodes and the infrastructure provider share a fixed symmetric key

KN , denoted as the node master key. When third-party software providers want to load a trusted applica-

tion onto a node, they go through the infrastructure provider. Each software provider has a unique public

identifier, SP , which is used by the infrastructure provider to derive a key KDF(KN ,SP) = KN ,SP . Each soft-

ware provider gets its unique secret key, KN ,SP , which allows secure deployment of software modules. The

software provider uses this key to derive a software-module-specific key KDF(KN ,SP ,SM) = KN ,SP,SM . The

value SM is the software module identity which can be calculated by hashing the contents of the .text

section, the start and end addresses of the .text section, and the start and end addresses of the runtime

data (containing the software module stack and .bss variables) of the software module.

SM =H(.text,Cst ar t ,Cend ,Dst ar t ,Dend) (4.5)

This means that each software module is loaded on a node in a very specific address range in memory.

However, the loading process itself is not protected. The address ranges for the software module binary

segments are also known as the software module layout.

74

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

SM1 layout

SM2 layout

SMn layout

Cstart Cend Dstart Dend

KDF KN

Code &
Constants

(.text, .rodata)

protected
runtime

data
(stack, .bss)

unprotected

u
n
p

ro
te

c
te

d

unprotected

E
n
try p

o
in

t

PC
access
control

AEAD
[encrypt]
[decrypt]

KN, SP1, SM1

KN, SP1, SM2

KN, SP2, SM1

Hardware-only TCB Public SP
identifier

SM identity

Node memory
Sa

nc
us

 N
od

e

Figure 4.8: Hardware layout of a Sancus node.

4.4.4.1 Loading & Protecting Software Modules

When the untrusted OS, deployed on the Sancus nodes, receives a third-party software module, it will load

it in memory. Any malicious code active on the system could now intervene and change the code in the

.text segment and change the start and end addresses the .text segment and the runtime data segment.

Once the loading phase finishes, the OS calls a Sancus-specific CPU instruction protect; the instruction

does the following:

• The layout is checked to not overlap with existing modules. A new module is registered by storing the

layout information in the protected storage of the processor (see Figure 4.8).

• Memory access control is enabled (see below).

• It creates the module specific key: KN ,SP,SM .

If malicious code would have changed either the contents of the .text segment or the address ranges,

the derived key, KN ,SP,SM , would not match with the key owned by the software provider and any attempt

to attest the module or set-up a secure communication channel with the module would fail.

Access to the software module memory is protected by control logic inside the CPU. The logic enforces

that the .data section of a module is only accessible when instructions from the corresponding module are

being executed. Code execution can only start by jumping to a well-defined entry point. The entire memory

range containing the instructions is marked “execute-only”. By enforcing the code entry point, the Sancus

node prevents attackers from mounting ROP-like attacks. Besides memory access control, the processor

also ensures that modules cannot be interrupted while being executed to prevent the register contents from

leaking outside the module. The unprotect instruction disables the memory access controls and clears the

module’s code- and data. Memory access violations, intercepted by the CPU’s hardware trigger a CPU and

memory reset.

4.4.4.2 Remote Attestation & Secure Communication

The CPU also provides the encrypt and decrypt instructions that use a hardware-implemented AEAD ci-

pher. These instructions can be used to provide confidentiality, integrity, and authenticity guarantees for

the data exchanged between modules and their providers. The authenticated ciphertext can be sent using

the untrusted OS over an untrusted network. To perform a remote attestation, the software provider sends

a nonce to the node. The node returns the MAC of this nonce using the key KN ,SP,SM , and the encrypt

instruction. Only if the module was correctly installed, the node’s hardware would have generated the cor-

rect key. Therefore, if the software provider can verify the returned MAC, it knows the module is correctly

running without malicious interference.

75

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

4.4.4.3 Local Attestation & Secure Linking

The Sancus architecture also supports secure linking between two software modules. If a software module

SM1 wants to link against another, already deployed module SM2, it must include the modules ID in its

.text segment. When SM1 wants to call a functionality of SM2, it first uses the attest instruction. This

instruction verifies that SM2 is effectively loaded in memory; it computes the identity of the module and

compares the result with the ID embedded in SM1. If the instruction succeeds, SM2 is securely installed,

and SM1 can call the SM2 function securely. The callee can also attest the caller by using the instruction

attest-caller. The hardware only supports one single entry point per module. A Sancus-enabled com-

piler can circumvent this limitation by implementing multiple logical entry points by means of a jump

table. The compiler assigns every logical entry point a unique ID. When calling a logical entry point, its ID

is placed in a register before jumping to the physical entry point of the module. From the physical entry

point, the code then jumps to the correct function based on the stored ID. When returning from an external

function call, the module entry point is also used by providing an ID for the logical “return entry point”.

The secure linking technique is necessary to provide resource sharing in the Sancus architecture. Imag-

ine that a memory-mapped temperature sensor is attached to the node. A special software module, SMS ,

must be installed that provides an API to interact with the temperature sensor. All modules that want to

access the sensor must then secure link with the SMS module.

4.4.5 TrustLite

The TrustLite architecture was developed by the Intel Collaborative Research Institute for Secure Comput-

ing. It was implemented as an extension to the Intel Siskiyou Peak research platform. The authors use the

terminology trustlet to describe protected software on the platform. The architecture provides operating-

system-independent isolation, confidentiality, and attestation of trustlets. Additionally, there is trusted

inter-process communication for the trustlets, secure peripherals, and support for handling memory ac-

cess violations and hardware interrupts. The latter functionality is not available in the SMART or Sancus

architecture.

When a TrustLite device boots, the first software that executes is the Secure Loader. The Secure Loader

sets up the different trustlets and loads their data regions into memory. The Loader also configures the

system MPU to enforce isolation between the memory regions (both code and data) associated with the

different trustlets. The MPU has enhanced capabilities and is called execution-aware. It acts like the con-

trol logic described in Sancus and SMART. Internally, the execution-aware MPU has a limited amount of

registers containing code address ranges, data segments, and memory-mapped IO zones reserved for each

trustlet. A truslet data segment can only be accessed if the PC is in the corresponding code segment. The

configured code and data regions are also recorded in the Trustlet Table, a write-protected zone in memory,

such that they can be verified by other trustlets or during an attestation routine. When a memory protection

violation occurs, a CPU exception is raised and handled as in regular MPU designs. In particular, the MPU

protection fault invalidates the executing instruction, and thus also any associated (speculatively allowed)

data reads and instruction fetches. The CPU exception engine flushes the pipeline and diverts execution

to the designated exception handler. This functionality is not available on Sancus and SMART nodes. Any

violations trigger an immediate CPU and memory reset.

Similar to the Sancus approach, shared resources and peripheral access are protected by assigning their

memory ranges exclusively to a dedicated trustlet. This trustlet then presents an abstract interface to the

other trustlets. However, the Trustlite MPU allows for more flexibility by supporting the association of multi-

ple non-continuous data regions with a single code region. Recall that in Sancus, a layout register contains

one start and one end address, forcing the protected data region to be continuous. If a Sancus software

module wants access to a memory-mapped peripheral, it must make sure it includes it in its protected data

segment, forcing the runtime data to be allocated in the address ranges close to the addresses giving access

to the peripherals. Otherwise, large chunks of memory might be lost, as shown in Figure 4.9.

In contrast to SMART and Sancus, TrustLite supports general interrupts interfering with the trustlets.

The architecture ensures that no sensitive information leaks when it interrupts an executing trustlet. To

avoid having to add all the interrupt handlers to the TCB, the authors decided to modify the CPU exception

engine. The engine stores the stack, the instruction pointer, and general-purpose registers in the protected

data region of the interrupted trustlet. Next, control is transferred to the OS by restoring its stack pointer is.

76

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

Dstart Dend

runtime data memory
need by code

Pe
rip

he
ra

l 1

Pe
rip

he
ra

l 2

Wasted memory
st
ac

k

he
ap

Memory Space

(a) If the peripheral and data section are not located
close to each other, memory is wasted.

Dstart Dend

runtime data memory
need by code

Pe
rip

he
ra

l 1

Pe
rip

he
ra

l 2Memory useable
by other Trustlets

st
ac

k

he
ap

Memory Space

(b) MPU registers allow to associate two independent
data regions with the same code region.

Figure 4.9: Handling memory-mapped peripherals and shared resources in Sancus and TrustLite.

This is followed by the execution of the ISR (Interrupt Service Routine). When returning from an interrupt,

the PC jumps to the trustlet entry point and restores the trustlet stack pointer in software.

Each trustlet uses an entry vector to specify the addresses that can be called by other tasks or trustlets.

The trustlet itself can execute its entire code section, but other tasks or trustlets can only execute the ad-

dresses listed in the entry vector. The entry vector needs to be carefully programmed to avoid information

leakage or other exploits.

Signaling and sending short messages between trustlets is done by calling the entry of a specific trust-

let and passing the arguments in CPU registers. Larger messages can be transferred by passing a pointer

to a shared memory region, which needs to be inside an MPU region. Trusted communication between

trustlets is performed by means of a simple handshake protocol. The handshake requires that the initiator

verifies the platform state, and that each party attests the other trustlet state by checking the correctness

of the relevant entries in the trustlet table and MPU registers. The initiator may additionally perform an

integrity check of the responder program code to ensure that it was not maliciously modified. After mutual

attestation, subsequent messages can be authenticated by means of a cryptographic session token.

4.4.6 TyTan: Tiny Trust Anchor for Tiny Devices

TyTan is the final architecture we discuss. It is a hybrid trusted computing architecture that likewise uses

an execution-aware MPU. It provides task isolation, attestation, secure IPC (Inter-Process Communication)

with mutual authentication, and has real-time guarantees. TyTan extends TrustLite by allowing for dynamic

task relocation by the OS. The authors extended FreeRTOS with a binary loader to perform the dynamic task

relocation. Loading at runtime requires the allocation of memory for the new task, loading the task into

memory, and preparing its stack. The MPU provides a secure driver that allows to dynamically reconfigure

the MPU internal registers to protect the relocated task. Next, the task is measured by an independent RTM

task. Finally, the OS is notified so that it can add the task to its scheduler.

Several static, secure software components are parts of the TCB. The secure boot task is responsible for

loading all other trusted software components. Each component is isolated from the rest of the system by

the MPU. The MPU driver code is also securely loaded by the secure boot task. The remote attestation task

uses the result of the RTM task and a MAC algorithm to provide integrity checks to a remote verifier. Secure

IPC is done by means of the IPC proxy task. It is responsible for forwarding a message m from the sender

S to a receiver R. For short messages, the sender invokes the proxy with the receiver identity i dR , obtained

through the RTM task, and message m as parameters. The IPC proxy task then copies m into R’s memory.

Since the MPU ensures that only the proxy can write to R memory, this implicitly authenticates m and i dS .

For large messages, the proxy sets up shared memory that is accessible only by the communicating tasks.

The Secure Storage task seals data by storing it encrypted in non-secure memory. It is encrypted with

a task key that is derived from i dt . Tasks communicate with secure storage via the secure IPC. Finally, a

trusted Interrupt Multiplexor task is used to securely save the context of an interrupted task to its stack and

clear the CPU registers before control is passed to the interrupt handler. Different interrupt handlers can

be specified in the interrupt descriptor table, protected by the MPU.

77

CHAPTER 4. SYSTEM SECURITY FOR CONSTRAINED DEVICES

Discussion

Trusted computing is a loaded term in the field of computer science. Despite the advanced security guar-

antees it can provide, the use of trusted computing mechanisms in computing systems has raised some

concerns. Trusted computing is strongly correlated with DRM (Digital Rights Management), which has re-

ceived notable criticism. Trusted computing can be used to restrict the freedom of the users or violate their

privacy. Secure boot and sealing can be misused to prevent users from installing other software, locking out

the competition. The disclosure of platform unique identifiers, keys, or configuration parameters can lead

to the identification of users who wish to remain anonymous. Moreover, the terminology used to describe

the technology, “trusted”, is confusing. It is important to realize that trusted computing does not entail se-

curity. In trusted computing systems, users are asked to trust a set of components blindly. If one of the

trusted components is breached, the security of the system is no longer guaranteed. Users are given no

guarantees that the trusted components will not violate their security policies. This stands in stark contrast

to trustworthy computing, where users are given proof that the system components will not violate security

policies. Nonetheless, we need trusted components to build secure systems.

We started this chapter with a description of the methods used to build trust in platforms that pro-

vide no or little hardware support. We could argue that these mechanisms have no TCB, and, under the

assumption that the hardware behaves as intended, the user does not have to put its trust in any compo-

nent2. These techniques provide thus a high level of trustworthiness. However, the lack of hardware support

has definitely its drawbacks. Software-only attestation mechanisms are defined in a limited threat model,

and many proposals have been proven insecure, including the ones presented in this thesis – the work of

Castelluccia et al. [136] highlights these vulnerabilities and shows how to exploit them. The authors present

a compression attack and a rootkit attack. The first compresses program code to make place for a malicious

payload, while the latter uses program hooks and a ROP chain to erase and reinstall the malicious code dy-

namically. The authors also succeeded in providing a more optimal checksum verification function. This

breaks the security of the schemes that rely on timing constraints. Finally, they prove that the ICE check-

sum function is insecure. One might start to question why we even include these works in this overview.

Although the implementations presented in the works are flawed, the ideas behind the design are still valid.

The use of software-based attestation in a general manner, independent of the underlying hardware is not

possible [136, 137]. In spite of that, we believe that by adapting the ideas to specific hardware platforms,

aided by recent advances in formal verification [138], they can form a valid approach for legacy systems

with no hardware support.

The second part of this chapter is dedicated to hardware trusted computing solutions for the con-

strained IoT. In general, we can distinguish two approaches. The first one, used by Arm in their Trust-

Zone technology, divides all the resources on the system into two protection domains: a secure world and

a non-secure world. Switching between both worlds is highly-regulated and enforced through special CPU

instructions. The code is instrumented with these context-switching instructions at compile time.

SMART, Sancus and TrustLite all use extended version of the traditional MPU, denoted in some works

as an execution-aware MPU. The MPU not only divides the memory into different zones based on the CPU

privilege level but also adds isolation based on the current value of the instruction pointer. The SMART

architecture provides the most basic implementation and only enforces extra rules on the attestation key

and attestation routine. The Sancus architecture uses information about the memory layout of a specific

software module in combination with its MPU. The drawback is that memory zones associated with a code

regions must be continuous. Finally, TrustLite provides more flexibility by allowing multiple data regions

to be associated with a code region. The amount of trusted software components depends on the amount

of available internal MPU registers. TrustLite also provides more extensive IPC capabilities then the other

research proposals.

2This claim is not entirely true since the users must trust the verifier in the remote attestation protocol.

78

Part II

A bottom-up approach to securing the
Internet of Things

79

Chapter 5

Scalable and Secure Physical Device
Identification

Contents
5.1 Signal-based Fingerprinting . 83

5.1.1 Clock Skew Patterns . 83

5.1.1.1 Background: Clock Drift & Clock Skew Modeling 83

5.1.1.2 Remote Attestation and Clock Skew Identification 84

5.1.1.3 Forging Skew Patterns . 84

5.1.2 Received Signal Strength Features . 85

5.1.2.1 Background: Multipath Fading & Channel Hopping 86

5.1.2.2 Adapting Sybil Detection Algorithms For Remote Attestation 87

5.2 Physical Unclonable Functions . 89

5.2.1 SRAM PUFs . 89

5.2.1.1 Background: Statistical Properties of SRAM Startup Values 90

5.2.1.2 SRAM Startup Values as a Fuzzy Identifier . 92

5.2.1.3 SRAM Identification for Remote Attestation . 93

81

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

Introduction

In the previous chapter, we discussed how to build trust in constrained devices. There were two main ap-

proaches: software-based and hardware-based. Hardware-based constructions have strong security guar-

antees and properties but require expensive modifications to the underlying hardware. Except for the Trust-

Zone architecture, none of the designs that enable lightweight, trusted computing are currently in use on

a large scale. The software approach is more flexible and has the advantage that it can installed on legacy

devices. The main drawback is the weaker attacker model. Software-based techniques struggle to defend

against collusion attacks. Without hardware support, the devices cannot securely store a unique key, de-

noted as the RTR, which purpose is to bind the attestation response to the identity of the device. Therefore,

an attacker can unnoticed reroute the attestation challenge from the compromised prover to a second, po-

tentially more powerful, device to forge the correct answer.

The problem statement has some similarities with the Sybil attack in networks. We can define the Sybil

attack as a malicious device impersonating multiple network node identities. The impersonated nodes are

known as Sybil nodes. A particular case of the Sybil attack is the collusion attack. A powerful malicious

device impersonates the identity of one or more “non-compromised nodes” during the attestation routine.

A first approach to counter a traditional Sybil attack in constrained networks is through the use of secret

information stored on the legitimate nodes. However, in our software-based attestation attacker model,

presented in Chapter 4, we considered all secret information compromised. A second more promising

method uses resource testing [139]. Resource testing assumes that each physical entity is limited in some

resources. The verifier tests whether advertised node identities correspond to different physical entities by

verifying that each advertised identity has as much of the tested resource as a physical device.

To strengthen device identification further, we propose to use hardware fingerprinting techniques. The

basic idea is to passively or actively extract unique physical patterns, also known as features, from the de-

vice’s hardware. The features were introduced during the device’s manufacturing process. Before deploy-

ment, the features of all devices in the network are measured and securely stored in a database. During the

attestation protocol, the verifier extracts the features from the prover executing the attestation function. The

verifier can check the identity of the device it is communicating with, by comparing the extracted features

with those stored in the database. Such an approach would allow software-based attestation techniques to

defend against collusion attacks. We introduce a new terminology to reason about the uniqueness of the

device’s features. We use the term inter-device if we compare the extracted features of device A with the

features of device B . Also, we use the term intra-device to describe a comparison between two or more sets

of features extracted from the same device (potentially under different external influences). The hardware

characteristics that we consider for device fingerprinting must at least satisfy the following properties:

• They must possess enough inter-device entropy, meaning that if an attacker analyzes the features of a

large number of devices, he still cannot forge the fingerprint of his target. The characteristics should

not be biased, making it easy for the attack to guess or brute force an identifier.

• The intra-device features should be stable, even in the presence of environmental changes. The val-

ues of the extracted features should not change significantly between two different extractions. Sig-

nificant changes in the measured values would lead to a high false-positive or false-negative rate.

In this chapter, we present our first contribution. We study the applicability and security of physical

device identification in the context of the constrained IoT. We first identified two families of fingerprint-

ing approaches: signal-based fingerprinting and PUF (Physical Unclonable Function)-based identification.

We specifically selected fingerprinting techniques that rely on ubiquitous hardware components to ensure

ease of deployment on legacy devices. Additionally, we also consider the verifier device to be constrained.

The latter puts certain restrictions on the precision with which we can measure the prover’s features. Be-

cause of the limitations on energy supply, features that can be measured, passively are preferred over ac-

tive extraction techniques. We use low-power IEEE 802.15.4E sensor nodes to perform experiments with

signal-based features. PUF-based features are extracted from several types of devices. For each considered

hardware component, we collect the features under varying environmental circumstances, and we present

the properties. Next, we provide a discussion on its use in constrained (remote attestation) protocols and

the robustness of the approach.

82

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

5.1 Signal-based Fingerprinting

Signal-based fingerprinting is a great candidate for efficient device identification in low-power networks.

Wireless communication offers a rich set of features that can be extracted and analyzed. The device’s iden-

tities can be observed by passively sniffing the passing network traffic. Feature extraction can happen with-

out the cooperation of the prover. Since the features are based on meta-data derived from the radio trans-

mission, the technique also works if the network uses encryption to protect the transmission. Examples are

timing information, radio startup transient behavior, or signal strength. In general, we can identify two sub-

sets of signal-based fingerprinting techniques: location-dependent and location-independent mechanism.

In the category of location-independent features we can find characteristics such as clock skew mea-

surements and various physical layer RF (Radio Frequency) parameters, e.g., the transient phase at the

start of transmissions [140], frequency offsets, and phase offsets [141] and AGC (Automatic Gain Control)

behavior [142]. Among location-dependent features, one can use RSS (Radio Signal Strength) or CSI (Chan-

nel State Information). The main challenge is that many of these radio characteristics require specialized

hardware to be measured with sufficient accuracy or are utterly inaccessible from software on the low-

power devices. Unique signal characteristics that are accessible through software on our IEEE 802.15.4E

enabled test platform, are RSS, and clock skew information. Drivers can read RSS information directly from

a radio register during or after packet reception. Since the IEEE 802.15.4E uses channel hopping to pro-

vide transmission robustness, we can measure the RSS information on 16 different channels. The clock

skew of the prover device can be measured on the physical layer through hardware timestamps on the link-

layer through explicit link-layer timing information or packet inter-arrival timings in the upper layers. The

IEEE 802.15.4E protocol heavily depends on timing measurements for the link-layer operation. Thus, this

information is easily measurable through software timestamps triggered by radio interrupts.

5.1.1 Clock Skew Patterns

Electronic clock systems frequently use an external crystal oscillator to provide a reference signal. Alter-

natively, clock signals can be generated by RC-circuits, but these circuits suffer from poor frequency accu-

racy. The crystals have a predefined operating frequency. For example, 32.768 kHz is a typical frequency

in low-power devices. The accuracy of the crystal depends on internal, and external influences. Produc-

tion spread, small imperfections in the crystal and the surrounding electrical components are considered

to be internal factors. External factors such as temperature changes, supply voltage, and aging also affect

the clock frequency. The clock drift is commonly expressed in ppm (Parts-per-Million). Since clock drift

partially depends on hardware characteristics, it could act as a physical device identifier.

5.1.1.1 Background: Clock Drift & Clock Skew Modeling

We denote the listed frequency of the oscillator component as the target frequency. We call the difference be-

tween the real oscillator frequency and the target frequency, the absolute clock drift, Dabs. Figure 5.1a shows

the measured frequencies of several crystal oscillators measured on the CC2538 platform. The CC2538 plat-

form uses a low-power oscillator with a target frequency of 32.768 kHz. We used a logic analyzer running at

250 Msamples per second to track the frequency of the oscillator. Small fluctuations in the clock frequency

and the offset compared to the target frequency are partially caused by imperfections in the crystal and the

surrounding components. The difference between the absolute drift of two systems is called the relative

drift Drel. The relative drift over time leads to a clock skew between two systems. The clock skew can be

calculated by equation 5.1, where ±e f [ppm] is the production spread and ε represents the frequency offset

between both devices.

δskew =∆t

(
1

1±e f
+∆ε

)
(5.1)

The main external factor that influences the clock drift is temperature. Figure 5.1b shows the distribu-

tion of the oscillator frequency in a population of 30 devices. We notice two effects. First, there is a definite

shift in average operating frequency when the ambient temperature changes. Second, when the oscillators

83

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

0 1 2 3 4 5
Time [s]

5.4

5.5

5.6

5.7

5.8

5.9

6.0
Fr

eq
ue

nc
y

[H
z]

+3.276e4

Dev. A
Dev. B
Dev. C

(a) Evolution of the oscillator frequency over time.

−30 −20 −10 0 10 20 30 40
Drift [ppm]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ili

ty
 D

en
si

ty

Freq. Distribution @ 25°C
Freq. Distribution @ -18°C

(b) Clock frequency distribution.

Figure 5.1: Clock frequency measurements for clock modeling.

function near their nominal operating conditions, the spread on the frequency offset is limited. The stan-

dard deviation, σ, is 5.12. However, if the temperature diverges from the optimal temperature, the impact

on the oscillator frequency differs for each device (σ = 8.66). Datasheets of clock crystals often describe

the relationship between the temperature and the crystal frequency, but our measurements show that this

relationship is different for each device. Other causes, i.e., supply voltage and crystal aging, change more

slowly [143]. We can describe the overall impact of the external factors by an additional term in the equa-

tion 5.2.

δskew =∆t

(
1

1±e f
+∆ε+E(t)

)
(5.2)

5.1.1.2 Remote Attestation and Clock Skew Identification

We can imagine a remote attestation protocol that combines one of the software checksum functions pre-

sented in the previous chapter with clock skew-based authentication. During the execution of the check-

sum function, the prover can be instructed to send dummy packets to the verifier. The exact moment the

prover has to send the packet depends on the intermediate results of the checksum. The randomization

of the transmission timings makes each run of the attestation function unique. Recall that the attestation

protocol provides a unique nonce at the start of the protocol to prevent replay attacks. An attacker can

only recover the exact timing information on which it has to send a dummy packet by correctly calculating

the checksum. The verifier measures the relative clock skew by checking the arrival timings of the dummy

packets. If the dummy packets do not arrive at the right moment, either the intermediate checksum value

was wrong, or another device sent the dummy packet. In both cases, the verifier detects an anomaly.

5.1.1.3 Forging Skew Patterns

A remote attestation protocol that relies on clock skew patterns for device identification must reliably and

accurately be capable of measuring the clock skew of its neighbors. Thus, a verifier cannot attest a prover

that is more than one hop away, as the intermediate hop could introduce unpredictable delays. If the clock

skew measurements do not have sufficient precision, the verifier must wait a long time for the skews to

diverge sufficiently. Otherwise, the verifier is not capable of distinguishing two different devices. The clocks

precision is a time for a single clock tick, in this case, 30.5µs. Figure 5.2a shows the relative clock skews of

three distinct devices (B , C , and D) to device A (represented by the gray dashed line). At the start of the

attestation protocol, the devices need to synchronize their clocks. We notice that all three devices start with

a little offset. The limited precision of the clocks causes the synchronization offset. The offset is around

10µs, well-below the clock’s precision of 30.5µs. By using its low-power 32 kHz clock, device A can detect

three different neighbors after approximatively 5 s.

84

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

0 20 40 60 80 100 120 140 160
Time [s]

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

C
lo

ck
 S

ke
w

 [m
s]

Dev. B
Dev. C
Dev. D

(a) Evolution of the relative clock skew over time.

10.5 11.0 11.5 12.0 12.5 13.0 13.5
Relative Skew [ppm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ob

ab
ili

ty
 D

en
si

ty

Clock accuracy
Skew (Dev. A - Dev. D)

(b) Skew distribution for a single pair of devices.

Figure 5.2: Clock frequency measurements for clock modeling.

The total amount of devices that can be uniquely identified by the verifier during an attestation protocol

depends on the total time the clocks drift freely, the precision of the verifier’s measurements, the stability of

the relative skew between the devices and the overall distribution of the clock drift of all the systems. If we

assume that the majority of the devices have a clock drift in the interval ±30 ppm, the maximum relative

clock skew is limited to ±60 ppm. After 1 min of free clock drift, a prover with a 32 kHz clock, can distinguish

a maximum of 117 devices. However, the latter is only valid if the clock skew stability remains within an

“accuracy slot” (see Figure 5.2b) and has a uniform distribution in the ±30 ppm drift interval. Figure 5.2b

shows the distribution of 30 skew measurements between the same devices, 20 s after a synchronization

point. We can see that some of the skew measurements spillover in neighboring “accuracy slots”, possibly

causing identification errors.

Figure 5.1b shows the distribution of the clock skews for 30 distinct CC2538 devices. We note that the

drift distribution is relatively limited, meaning that many devices have similar clock skew patterns and will

be indistinguishable from each other for the prover. Similar clock drift distributions are found in other

research which investigated clock drift, e.g., Lanze et al. [144] studied clock drift in IEEE 802.11 networks.

The reason for the limited variance in the drift distribution of the clocks is probably due to quality specifica-

tion constraints by vendors. It is to be expected that for crystal oscillators which are used in communication

protocols, a preselection is done by manufacturers to assure a minimum level of quality.

Clock skew-based identification mechanisms are further complicated by the fact that the relative clock

skew between two device varies over time. A sudden change in temperature or a voltage drop due to deplet-

ing batteries may alter the clock skew in such a way that the identification mechanism would generate false

positives or false negatives. Figure 5.1b shows that a strong temperature swing causes a non-negligible shift

in clock frequency. Finally, an attacker might be able to learn the specific clock skew between the verifier

and the prover by comparing the relative clock skews it shares with both devices. For example, an attacker

device has a +5 ppm relative skew with the verifier and a +3 ppm skew with the prover. The attacker can

derive that the relative skew between the prover and verifier is +2 ppm. It could use this information to

forge the clock skew pattern of a legitimate node.

5.1.2 Received Signal Strength Features

The second signal-based identification feature uses the RSS values associated with each received packet.

RSS values can provide an estimation of the link quality between two nodes [21, 145]. In addition, the mea-

surements can be used to localize nodes in a wireless network [146, 147]. In the context of security proto-

cols, RSS has been used to recognize Sybil attacks [148, 149] by detecting that two transmissions, supposedly

coming from different identities, are coming from the same physical location. In our case, this localization

information assures us that the attestation response is at least coming from the physical location where

we expect the prover to be positioned. In static networks, with nodes that cannot be easily removed and

replaced, this would force the attacker to intercept the attestation challenge, solve it remotely, send the so-

85

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

lution to the compromised prover, which then transmits it to the verifier. Surrounding the attested node

with trusted helper nodes can verify that the prover is not using radio transmission to communicate with

other colluding devices in between the reception of the attestation challenge and the attestation response.

An attacker would then require a physical connection to the malicious prover. Since the latter would con-

stitute physical tampering, we did not include it in our attacker model, see Chapter 4.

5.1.2.1 Background: Multipath Fading & Channel Hopping

The verifier and prover devices typically operate in slowly changing environments, e.g., an office space

where people and objects move around, affecting the measured RSS values. To better understand the im-

pact of multipath fading on the RSS values, we use a simple scenario, shown in Figure 5.3, where two nodes,

A and B , are communicating, similar to [150].

BA reflectiontransmission

x

l

Figure 5.3: Simplified multi-path fading model.

We consider a LoS (Line-of-Sight) signal and one reflection. The signal at the receiving node can be

described as

r = cos
(
2π f t + 2πx

λ

)
+cos

(
2π f t + 2π(2l −x)

λ
+φ

)
, (5.3)

where f is the frequency, t is time, λ the wavelength and φ the phase shift caused by the reflection. The

received transmission power at the receiver is impacted by the phase relationship of the two converging

signal. The amplitude of the signal is given by

Ar = cos

(
2π

(l −x

λ

))
(5.4)

If the converging signals arrive in anti-phase, destructive interference occurs, also known as a deep fade,

leading to very low RSS values and poor overall packet reception. By changing either the distance x or

the carrier frequency f , it is possible to manipulate the RSS. Frequency hopping technologies, such as

IEEE 802.15.4E or BLE (Bluetooth Low Energy), leverage these properties to mitigate the effects of mul-

tipath fading. The work in [150] showed that for IEEE 802.15.4E nodes operating in the 2.4 GHz band, in

order to transition out of a deep fade, they can either move their location by half the wavelength (λ=5.5 cm)

or change the operating frequency. As an example, Figure 5.4 shows the distribution of the different RSS

measurements on separate frequency channels for a node pair operating in an office environment.

80 70 60 50
RSSI [dBm]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

ba
bi

lit
y

D
en

si
ty

Channels
11 (2460 MHz)
13 (2470 MHz)
15 (2480 MHz)
16 (2485 MHz)
17 (2490 MHz)
22 (2515 MHz)
25 (2530 MHz)
26 (2535 MHz)

Figure 5.4: Impact of frequency shifts on multi-path fading and the resulting RSS.

86

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

Depending on the LoS distance between the communicating nodes, the necessary change in frequency

ranges from a single to a few IEEE 802.15.4E channels (one channel is 5 MHz in width). The wireless com-

munication theory also defines the concepts of coherence length and coherence bandwidth. They are used

to quantify the maximum change in distance or frequency that will result in the properties of the channel

being largely the same (highly correlated).

5.1.2.2 Adapting Sybil Detection Algorithms For Remote Attestation

As stated before, by calculating the origin location of the received transmissions, a verifier can thwart Sybil

attacks. Two messages, supposedly coming from two distinct nodes in different locations, can be traced

back to the same physical location by measuring the RSS at the multiple receivers. Four receivers are re-

quired [146], to calculate the Cartesian coordinates of a node. Their RSS values combined in a set of equa-

tions reveal the coordinates of the transmission’s origin. Solving these equations each time can be quite

cumbersome, and it requires, on top of the trusted verifier, three additional trusted nodes to take the RSS

measurements. The works in [148, 149] present a technique that merely uses a single additional helper

node to mitigate Sybil attacks. Instead of calculating the exact location, they detect changes in location if

the messages truly originate from different devices. Both papers use the following approach. The signal

strength of each received packet on the helper and verifier can be modeled as follows,

Ri = P0 ·K

dα
i

(5.5)

where Ri represents the received signal strength, P0 the original transmit power, K is a constant, di

the Euclidean distance and α is the distance-power gradient. The basic Sybil attack detection algorithm

functions as follows:

• At time t1 the malicious node, sends out a transmission with a node identity tag ID1. One verifier

node and one helper node receive the transmission and log the RSS (R1
v and R1

h).

• At time t2 the malicious node, emits a second packet, now impersonating ID2. Again both the verifier

and the helper measure the RSS (R2
v and R2

h).

• The helper transmits its data (R1
h and R2

h) to the verifier node which calculates the following ratio’s.

R1 =
R1

v

R1
h

and R2 =
R2

v

R2
h

. (5.6)

A Sybil attack is detected if both ratios are equal (R1 −R2 = 0), or very close (R1 −R2 < ε). The transmis-

sions, supposedly coming from nodes with identifiers ID1 and ID2, were emitted from the same physical

location. Ratios that are significantly different unveil two physically different locations.

Prover

Verifier

Adversary

Attestation
Challenge

-60
-70

-80
-90

Helper

(a) Localization of the attestation response.

0.10 0.08 0.06 0.04 0.02 0.00 0.02 0.04
RSS Ratio Difference

0

20

40

60

80

100

120

P
ro

ba
bi

lit
y

D
en

si
ty

Transmitter
Adversary
Prover (alternate)
Prover (original)

(b) Detection of prover location forgery.

Figure 5.5: Adapting the Sybil detection algorithm to recognize prover location spoofing.

87

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

For our purposes, the reasoning is the inverse. The setup is shown in Figure 5.5a. Imagine the verifier

has a set of trusted RSS measurements of the prover device. It can calculate the trusted ratio, Rt . The

verifier sends an attestation request to the prover device. When an answer arrives, the verifier and the helper

measure the RSS values. The verifier computes the ratio Rr and compares it to its trusted, stored RSS ratio,

Rt , for this particular prover. If the ratios are close or equal, Rt
?= Rr , the attestation response came from

the location where the prover is supposed to be. Otherwise, the response came from a different location

(potentially from a more powerful malicious device that forged the attestation response). Figure 5.5b shows

the RSS ratio differences for several nodes and locations. The “prover (original)” data shows the RSS ratio

difference between transmissions emitted by the prover node at time t1 and time t2, as described in the

algorithm above. As expected, the difference of the RSS ratios is centered around 0, meaning that both

transmissions, at t1 and t2, came from the same physical location. We can clearly distinguish between the

“prover (original)” distribution and the distribution describing the adversary. Since the difference of the

ratios is not centered around 0, the adversary is in a different physical location than the prover. To prove

that distributions are majorly influenced by the location of the nodes and not manufacturing dependent

differences between the radio transceiver’s circuits, we repeated the experiment and switched out the prover

node with another device, “prover (alternate)”. The resulting distribution is also centered around 0 and

overlaps strongly with the distribution obtained from the “prover (original)” device.

However, by only using two receivers, there is a risk. The concepts of coherence bandwidth and coher-

ence length tell us there are other locations where the channel characteristics are closely correlated to the

channels currently used between the prover and the verifier and the prover and the helper. If we place the

adversary’s device in such a location and change its output power accordingly, we can achieve the same

absolute RSS values at both receivers and also the same RSS ratios. The transmission coming from the

adversary in a different physical location would not be distinguishable from the prover’s transmission.

0.04 0.02 0.00 0.02 0.04
RSS Ratio Difference

0

20

40

60

80

100

P
ro

ba
bi

lit
y

D
en

si
ty

Transmitter
Adversary
Prover (alternate)
Prover (original)

Figure 5.6: The adversary’s transmission can no longer be distinguished from the prover’s.

Figure 5.6 shows the resulting histograms when the adversary is in the coherence position. Calculating

the exact position is difficult due to the many environmental factors influencing the state of the channel. We

experimentally derived the position of the coherence position for the adversary. We can observe that the

distributions now strongly overlap, and it has become complicated to distinguish a transmission coming

from the adversary device from a transmission coming from the prover. The adversary would be able to

intercept any attestation request, forge the response, and send it to the verifier without being detected. In

the Sybil attack detection algorithm from [148, 149], this position would trigger false positives, since the

algorithm only reveals one physical location for two node identities.

One solution would be to add additional receivers, increasing the difficulty for the adversary to exper-

imentally find the coherence position that fits all three receivers at the same time. The protocol would

then require three trusted device instead of two. Instead, we propose to leverage the multiple frequency

channels that are available to the channel hopping protocols. The coherence position is specific for a given

frequency. It can never match for the frequency channels at the same time. We tested this hypothesis and

the results are depicted in Figure 5.7. For the channels 11, 14 and 17, the RSS ratios are all highly similar,

resulting in indistinguishable distributions (as seen in Figure 5.6), however, on all the other channels we can

88

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Channels

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

R
S

S
 R

at
io

 D
iff

er
en

ce

Transmitter
Adversary
Alternate Prover
Original Prover

Figure 5.7: Multi-channel position verification.

clearly distinguish between the adversary’s position and the prover’s position. As a control experiment, we

again switch out the original prover device, with an alternate device, placing it in the same position with the

same antenna orientation. The RSS distributions are all centered around 0, validating the alternate prover’s

position as valid.

5.2 Physical Unclonable Functions

A PUF is a primitive that derives some unique information from complex physical characteristics of an

IC [151]. For example, it is possible to generate some unique device-specific data from the delay character-

istics of wires and transistors. PUFs depend on the random variations that occur during the IC manufac-

turing process, making the PUF behavior extremely difficult to predict. We can distinguish between strong

and weak PUFs. A strong PUF generates a unique, unpredictable response based on a challenge. It uses

the unique characteristics of the underlying physical system to perform the challenge-response mapping.

An attacker with access to a challenge input and response output should not be capable of modeling the

behavior of the PUF. A weak PUF typically does not accept a challenge (or has a fixed one). It generates a

unique identity based on the characteristics of the internal IC. In general, a weak PUF should hide the PUF’s

output from the attacker, as one or a few responses are sufficient to model the PUF.

Both PUF-types can help to increase device security of constrained hardware by generating secret in-

formation that is only accessible when the chip is powered. PUFs limit the overall attack surface by forcing

the adversary to mount an attack while the IC is running and using the secret. A significantly more compli-

cated task than recovering cryptographic keys from non-volatile memory. PUFs can be implemented with

various physical systems, but most common are silicon-based PUFs. Some examples are the ring oscilla-

tor PUFs and arbiter PUFs [151]. Although strong PUFs provide better security properties than weak PUFs,

strong PUFs are not readily available on constrained hardware. Instead, we use a weak PUFs that can be

implemented on most constrained hardware. It utilizes the internal SRAM of the MCU powering the IoT

device.

5.2.1 SRAM PUFs

The SRAM PUF builds upon the observation that the power-up values of SRAM cells reveal a physical fin-

gerprint unique to the IC. A typical SRAM cell, capable of storing a single bit of information, consists of six

CMOS (Complementary Metal–Oxide–Semiconductor)-type MOSFETs (Metal-Oxide-Semiconductor Field-

Effect Transistors). The cell is made up of two cross-coupled inverters and two access transistors. The two

CMOS inverters drive two state nodes, labeled A and B in Figure 5.8a. Both state nodes contribute to the

state of the cell. The cell has two stable states, 0 and 1, and the standby state when the cell is unpowered. In

the standby state, both state nodes are discharged. When a device boots, all the cells in the IC get powered-

89

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

on. The cells transition from their unstable standby state to one of the two stable states, either 0, when A = 0

and B = 1, or 1, when A = 1 and B = 0. The tendency of the cells to stabilize on a specific value depends on

the relative strength of the MOSFETs that make up the cell. The MOSFET’s strength, in turn, depends on

process variation mismatch during the production phase of the IC and environmental noise to which the

IC is subject during the powering-on process.

T1 T2

T3 T4

T6T5

VDD

WL

BL BL

A
B

(a) An SRAM cell consisting of 6 transistors.

0.0

0.2

0.4

0.6

0.8

1.0

(b) Startup values for a 64×64 block of SRAM cells.

Figure 5.8: The race conditions that occur in an SRAM cell during power up lead to an unpredictable startup value.

We denote the cell tendency to transition to 1 or the 0 as the skew of the cell. We can identify three

types of cells: 0-skewed cells, 1-skewed cells, and neutral cells. The skewed cells will always transition to

the same state, regardless of noise conditions. However, neutral-skewed cells do not have a strong tendency

toward either state, and during each power-up, they can transition to either 0 or 1. The unstable behavior is

not necessarily due to perfectly matched inverters. Probably there is an unknown combination of volatile

variables that cause the cell to flip to one state or the other under nominal conditions [152]. This latter is

essential as it indicates that neutral-skewed cells may not remain neutral across all operating conditions.

5.2.1.1 Background: Statistical Properties of SRAM Startup Values

Before we look at the identification capabilities of the SRAM startup values, we study some of its statisti-

cal properties. We use two different populations of devices. We have 30 CC2538 SoCs [14] manufactured

by Texas Instruments and four STM32F401RE [17] by STMicroelectronics. Both companies are IDMs (Inte-

grated Device Manufacturers); the companies design and produce their proper silicon wafers and chips1. A

significant difference between both device’s SRAM startup values could, in addition to identifying a single

device, also identify the chip manufacturer.

If we carefully observe the startup values shown in Figure 5.8b, we notice that memory shows with alter-

nating patterns of consecutive 1 bits and consecutive 0 bits. Such a pattern can be caused by SRAM cells not

being completely mutually independent. To model the correlation between the cells, we calculate the au-

tocorrelation of the fingerprints. In Figure 5.9, we observe the autocorrelation of the SRAM cells for a single

CC2538B device. We also calculated the autocorrelation coefficients for the other CC2538B devices in our

possession, and we obtained the same pattern across all devices. The transparently colored red rectangle

shows the 95% confidence interval. Anything outside the rectangle is with a high probability a statistical

pattern. We can see that there is some correlation between a cell and its direct neighbors, the cells 256-bit

positions further, and the cells on the relative positions 32 and 64, respectively.

Furthermore, the correlation coefficient pattern shown in the top half of the figure is periodic. The same

pattern reappears every 256 bits. We suspect that the SRAM is organized in lines of 32 bits. In the lower half

of the figure, we plot the autocorrelation on the byte-level. A byte distinctly shows a strong correlation with

bytes in the relative positions 4 and 8 with respect to its address. This observation reinforces our hypothesis

about the layout of the SRAM.

1IDM companies differ from fabless companies, such as Qualcomm and Broadcomm, which only produce the designs and then
outsource the production to an IDM or a Pure Play Foundry, e.g. TMSC, GlobalFoundries.

90

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

0 32 64 96 128 160 192 224 256
lag [bits]

0.06

0.03

0.00

0.03

0.06
A

C
F

32nd bit position

64th bit position

0 32 64 96 128 160 192 224 256
lag [bytes]

0.02

0.00

0.02

0.04

0.06

0.08

A
C

F

4th byte position

8th byte position

Figure 5.9: Autocorrelation for a CC2538 device on bit- and byte-level.

0 32 64
lag [bits]

0.06

0.03

0.00

0.03

0.06

A
C

F

0 32 64
lag [bytes]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

A
C

F

(a) Autocorrelation for a STM32F4 device.

0.0

0.2

0.4

0.6

0.8

1.0

(b) Startup values for a 128×128 block of a STM32F4.

Figure 5.10: Recurring patterns in SRAM startup values of the STM32F4.

In Figure 5.10a, we show the autocorrelation for a single STM32F401RE. Again, we verified the auto-

correlation for the remaining STM32F4 devices and obtained a similar pattern, except for one other device

which did not show any clear correlation between the subsequent bits. For the three remaining devices, the

periodicity of the correlation coefficients is 64-bits long. The pattern is so distinct that it can be observed by

plotting the SRAM startup values of the device, shown in Figure 5.10b. The figure shows the startup values

in a 128×128 grid. We can clearly distinguish four bands, which are alternately darker and lighter colored.

The darker zones contain significantly more 0 bits, while the lighter zones mostly consist of 1 bits.

Another aspect that is of interest is how the devices correlate to each other. Figure 5.11 shows the cor-

relation matrix for the CC2538B and STM32F4 devices. On the left, we plot how the initial 32-bit values of

each SRAM chip, across different devices, are correlated. Overall we do not notice any strong correlation

between the different devices. On the right, we depict the correlation between the entire memory chips of

the different devices. Although the overall correlation is almost none-existing, we remark that the CC2538

devices from Texas Instruments are slightly more mutually correlated compared to the devices from STMi-

croelectronics. We did not find any clear explanation for this bias.

91

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

TI1
TI2
TI3
TI4
TI5
TI6
TI7
TI8
TI9

TI10
TI11
TI12
TI13
TI14
TI15

ST16
ST17
ST18
ST19

0.25

0.00

0.25

0.50

0.75

1.00

(a) Cross-device 32-bit correlation.

TI1
TI2
TI3
TI4
TI5
TI6
TI7
TI8
TI9

TI10
TI11
TI12
TI13
TI14
TI15

ST16
ST17
ST18
ST19 0.0

0.2

0.4

0.6

0.8

1.0

(b) Cross-device full memory correlation.

Figure 5.11: Cross-correlation between different devices.

5.2.1.2 SRAM Startup Values as a Fuzzy Identifier

We define a device’s SRAM fingerprint as the combination of all the values an SRAM IC acquires immediately

after the device is powers-on. The majority of the cells in the chip always obtain the same value for sub-

sequent power-cycles. The remainder, neutral-skewed cells, are unpredictable. The neutral cells thus add

randomness to the device’s fingerprint. To investigate if a block of SRAM cells can act as a unique identifier

for a device, we conducted the following experiments:

• Intra-Device Hamming distance: We power-cycle the same device multiple times and extract each

time the first 128 bits. We calculate the Hamming distance between the subsequent SRAM dumps to

analyze the stability of the device’s fingerprint.

• Inter-Device Hamming distance: We calculate the Hamming distance between the SRAM chips of

identical devices produced by the same manufacturer.

• Cross-Manufacturer Hamming distance: We calculate the Hamming distance between the SRAM

chips of different devices produced by different manufacturers.

We start by acquiring 30 different SRAM fingerprints for the same device A, [FA0 , . . .FA30]. We treat a

single fingerprint, FAi , as an array of individual SRAM cells. For a device with 32 KiB of memory, we have an

array of length 262,144. We compute the probability, for each cell, that it will to hold the value 1.

FA =
∑n

i=0 FAi

n
(5.7)

Next, if the probability of a cell to transition to a 1 value is greater than 50%, we mark the cell as a 1-bit

cell; otherwise, it is a 0-bit cell. This way, we generate an average fingerprint, denoted as F̂A , that represents

the most probable startup state and thus the most probable identifier for the device. By averaging over

multiple power-cycles, we reduce the impact of noise, making F̂A more representative of the device. Once

we have established F̂A , we gather 50 new SRAM fingerprints of the same device. For each newly extracted

fingerprint, we calculate the Hamming distance between F̂A and the new fingerprint per 32-bit line.

Figure 5.12 shows to Hamming distance plots. On the left of Figure 5.12, we depicted the Hamming dis-

tance distribution for all the consecutive 32-bit SRAM lines of a CC2538B device compared to itself, com-

pared to the entire population of CC2538B devices and the four STM32F4 devices. For a single SRAM line,

approximatively one cell flipped value between consecutive power-cycles. The majority of the cells are thus

fixed and can be used to identify the device. Inter-device Hamming distance is on average, 15 bits. We can

strongly differentiate between fingerprints coming from the same device and fingerprints extracted from

two identical, but distinctive devices. An average Hamming distance of 15 for a 32-bit line is somewhat

surprising. We would have expected the Hamming distance to be 16 bits. The 1-bit bias for the CC2538B

devices is reflected in the slight cross-correlation, which we depicted in Figure 5.11b. This bias has also been

found on other devices, see [152]. On right side, we performed the same analysis but now with respect to an

92

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

0 5 10 15 20 25 30
Hamming distance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n

Intra-device
Inter-device
Cross-manufacturer

(a) HD with respect to the CC2538B.

0 5 10 15 20 25 30
Hamming distance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n

Intra-device
Inter-device
Cross-manufacturer

(b) HD with respect to the STM32F4.

Figure 5.12: Hamming distances for blocks of 32-bits of SRAM.

STM32F401RE device. We can see that the inter-device and cross-manufacturer Hamming distance is fully

overlapping. We already noted that there is no cross-correlation between two distinct STM32F4 devices.

Finally, we investigate the impact of the temperature on the SRAM startup values. We cool down the

device to −18 ◦C and recalculate the intra-device Hamming distance. Instinctively we expect the SRAM to

lose some of its entropy. Figure 5.13 shows the ambient temperature’s impact on the Hamming distance,

and thus the stability of the neutral-skewed under temperature changes.

0 2 4 6 8 10
Hamming distance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n

Intra-device @ +25°C
Intra-device @ -18°C

Figure 5.13: Temperature impact on the intra-device Hamming distance.

We note that some of the neutral-skewed cell seem to have transitioned to a more stable behavior if we

strongly reduce the temperature of the device. The respective means of the Hamming distance distribution

at 25 ◦C and −18 ◦C are 1,36 and 1,15.

5.2.1.3 SRAM Identification for Remote Attestation

SRAM-based identification clearly improves on many of the weaknesses that plagued clock skew finger-

printing. Identifiers derived from the SRAM startup values are unique. Cold temperatures seem to stabi-

lize some of the neutral-skewed cells but this does not affect the uniqueness of the startup values. The

main drawback is that an attacker who compromises a device can simply learn the SRAM PUF response by

power-cycling the device. The PUF is unprotected, and merely one response suffices to spoof identification

requests from a verifier. To protect the SRAM from being easily read-out by malicious code, a trusted boot

code, that wipes the SRAM startup values before any other software component becomes active, is neces-

sary. The trusted boot code, in turn, must be protected by hardware. This approach is similar to the secure

boot mechanism we discussed in Chapter 4.

93

CHAPTER 5. SCALABLE AND SECURE PHYSICAL DEVICE IDENTIFICATION

Conclusions

In this chapter, we considered several techniques to derive physical fingerprints from the device’s hard-

ware. The methods we analyzed were designed and tested on low-power IEEE802.15.4E devices. We dis-

cussed two main categories: signal-based identifiers and PUF-based identifiers. None of the fingerprint

approaches we saw, can provide a constrained IoT device, without hardware support, with a reliable and

secure physical identifier. However, in scenarios where devices are compromised, the different techniques

can provide some level of identification where otherwise none is available. Furthermore, multiple features

can be combined to form a more reliable device fingerprint. Different features can accommodate different

granularities in device identification giving rise to tradeoffs in false positive and false negative rates. For

instance, location-dependent features such as RSS can be used in conjunction with a clock skew tracking

algorithm. Devices that implement some form of software-based secure boot, see Section 4.3.4, can use

SRAM to hide their unique identifier from an attacker while being powered-off.

In our discussion of the SRAM, we only considered the identification properties of the SRAM startup val-

ues. The literature contains several other applications, such as secure random number generation and se-

cure key storage for constrained devices, which leverage the unique behavior of the SRAM chips. Secure key

storage uses error-correcting codes. A popular choice are the BCH (Bose, Ray-Chaudhuri, Hocquenghem)

codes to counter the instability of the neutral-skewed cells. Constructions that build true random num-

ber generators use the neutral-skewed cells as a strong source of randomness on the constrained devices.

However, these constructions assume that the individual SRAM bits are independent random variables.

The autocorrelation patterns we exposed clearly show that this is not true. Additional work is required to

analyze how this impacts the entropy in the startup values.

Another aspect that should be considered in future works are the privacy concerns related to physical

identifiers. Identifiers are important to the proper working of many protocols and services, not limited to

security. However, the uniquely revealing nature of identifiers, combined with careless broadcasting over

the wireless medium, raises serious privacy concerns. These concerns are even amplified in the case of

physical fingerprints since a device cannot change the characteristics from which the identifier is derived.

This makes it possible to track devices across location and time, possibly without the consent of the end-

user. When developing protocols that make use of physical fingerprinting techniques, we should carefully

consider the impact on the privacy of the end-user and strive to make sure that only authorized parties are

able to track the device’s identity.

94

Chapter 6

Vulnerabilities in Time Synchronized
Link Layer Protocols

Contents
6.1 Denial of Service Recovery for the TSCH Link Layer . 97

6.1.1 TSCH PAN Formation and Maintenance . 97

6.1.2 DoS Vulnerability . 98

6.1.3 Fast Recovery for Desynchronized Nodes . 99

6.1.3.1 Principles of the Predictive Rejoining Scheme 99

6.1.3.2 Compensation for Unpredictable Drift Causes 101

6.1.4 Experimental Evaluation . 101

6.1.4.1 Node Join Latency . 101

6.1.4.2 Adaptive Radio Reception Window . 103

6.1.4.3 Energy Consumption . 104

6.2 Thermal Covert Channel in BLE Networks . 105

6.2.1 A Primer on Bluetooth Low Energy . 105

6.2.1.1 The BLE Synchronization Mechanism . 105

6.2.2 Attack Scenario . 106

6.2.3 Covert Communication Protocol . 107

6.2.3.1 Encoding and Decoding . 107

6.2.3.2 Calibration of the channel . 108

6.2.3.3 Error correction and data whitening . 108

6.2.4 Experimental Evaluation . 108

6.2.4.1 Setup . 108

6.2.4.2 Clock Skew Tracking . 108

6.2.4.3 Victim configuration . 109

6.2.4.4 Raspberry Pi 3B . 109

6.2.4.5 Motorola X 2014 . 110

6.2.4.6 iPhone 5s . 111

6.2.5 Performance Discussion . 112

95

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

Introduction

Link-layer time synchronization is a recurring feature in low-power networking. In both TSCH and BLE, it

provides an efficient way to transmit data between nodes. It is frequently combined with a schedule that

tells the transmitting and listening nodes exactly when they should send and expect incoming data. The

latter also helps avoid frame collisions in the network. Link layer protocols that are not time synchronized

require the listening nodes to be always active, thus wasting much energy. Keeping the network synchro-

nized is not a trivial task. To this goal, the protocol uses a global, virtual network clock, to which the indi-

vidual nodes’ clocks are aligned. In the previous chapter, we saw that the clock systems are susceptible to

drift. When the drift grows unchecked, the node will no longer be able to communicate. Both TSCH and

BLE have mechanisms to counter clock drift and keep a tight network synchronization.

The operation of the link layer and the overall energy-efficiency of the IoT device depend heavily on

the network synchronization, which makes it an attractive target for adversaries. An adversary could ef-

fortlessly perform a DoS attack by blocking or interfering with critical synchronization frames in a TSCH

or BLE network. In Section 6.1, we present the first part of our second contribution. We discuss in de-

tail the synchronization mechanisms used in TSCH and why the DoS attack could be devastating to the

network. A direct defense against DoS attacks targeting the synchronization mechanisms is near to impos-

sible unless we can physically secure the access to the entire network. Alternatively, we present a novel

algorithm allowing for the fast recovery of all the desynchronized nodes after the attack took place. The

algorithm works distributed and acts in three phases. Before an actual attack takes place, nodes learn the

relative clock drift to their time source neighbor, a parent node responsible for propagating timing informa-

tion. During the jamming attack, the nodes desynchronize from the network but keep track of the global

network clock through the use of an offline low-power timer and clock drift predictions. After the attack

subsides, the desynchronized nodes use an adaptive reception window. The window gets scheduled at spe-

cific times to maximize the chances of receiving a frame from the time source neighbor, which would allow

resynchronization to the network. Altogether, the algorithm minimizes the downtime of the attacked nodes

and reduces the required energy to rejoin the network with a factor of 1000 compared to the current state of

the art.

In Section 6.2, we discuss the second part of this contribution. We switch roles from defender to attacker.

We exploit the synchronization mechanisms used in BLE to build a covert channel between a compromised

victim device and a covert receiver. Covert channels allow two colluding devices to exchange data secretly.

An adversary can use the channel to leak sensitive information such as passwords or encryption keys with-

out triggering security mechanisms. We describe an attack scenario where a BLE-enabled device is infected

with a malicious application. The application secretly leaks sensitive data from the compromised device

by piggybacking its data on the legitimate BLE traffic generated by another application. The covert chan-

nel uses the same principles as the side-channel attack presented in [153]. The main idea of the attack is

to use heat emissions of the victim device’s CPU, provoked by the malicious application, to influence the

frequency of the crystal oscillator. The CPU’s heat causes a shift in the frequency of the crystal which trans-

lates into a measurable clock skew. In contrast to the work presented in [153], the attacker does not interact

directly with the victim. Our covert channel leverages the existing traffic of a legitimate BLE connection

to an innocent third device, henceforth known as the helper device, to hide the communication channel

to the covert receiver. The attacker measures the varying clock skew of the victim by passively sniffing the

traffic between the victim and the helper. As long as the total clock skew stays within the limits of the link

layer’s synchronization constraints, the covert channel remains hidden and does not disrupt the legitimate

connections. We show the feasibility of the attack on three different hardware platforms: a Raspberry Pi

3B, a Motorola X 2014, and an iPhone 5s, respectively running Arch Linux, Lineage OS 14.1 (equivalent to

Android Nougat 7.1.2) and iOS 11.4.1. We built a simple application that sets up a persistent BLE connec-

tion to a helper device, i.e., a smart light bulb. At the same time a malicious application schedules threads

of cryptographic calculations in the background to heat the crystal oscillator and modulate bits under the

form of a changing clock skew. The malicious application does not require any special privileges. As covert

receiver, we use an Ubertooth One [154], a simple off-the-shelf Bluetooth sniffer, to passively measure the

varying clock skew between the victim and the smart light bulb. The overall throughput of the channel is

low, between 10 to 60 bits per hour, but comparable to related work that uses thermal energy to build covert

channels.

96

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

6.1 Denial of Service Recovery for the TSCH Link Layer

6.1.1 TSCH PAN Formation and Maintenance

In Chapter 4, we already gave a brief introduction to the workings of the TSCH protocol. Previously we ex-

plained that TSCH uses a schedule consisting of repeating slotframe structures. The slotframe is sparsely

populated with active slots for transmission or reception of frames. Each active slot uses one of 16 distinc-

tive radio frequencies, which are mapped on channels (channel 11 to 26). The exact frequency used by each

slot can be derived with the equation 3.1, which selects pseudo-randomly a channel from the channel hop-

ping list. During the inactive slots, the nodes sleep to conserve energy. For new nodes to join the network,

they must capture an EB frame. EBs are special link-layer frames that advertise the network presence to

surrounding nodes. They contain multiple IEs, listing the information necessary to join the network. The

following IEs are mandatory to ensure the successful joining of a new node:

• Synchronization IE: contains the network’s current ASN

• Timeslot IE: carries the timeslot template that specifies the internal structure of an active slot. It

tells a node among other when the radio of the receiver and sender should be activated. Figure 6.1

presents a timeslot template.

• Channel Hopping IE: contains the channel hopping sequence used by the network.

• TSCH Slotframe and Link IE: holds one or more slotframes to construct the schedule. The joining

nodes can use the active slots to communicate with the advertising device.

Tx Window Rx Ack.

Tx Ack.Rx Window

Tx
Slot

Rx
Slot

PGT

AGT

TsRxOffset

TsTxOffset

Figure 6.1: Timeslot template, the internal structure of a TSCH slot.

Not only the contents of the EB frame are essential, but also its exact arrival time. A new node uses the

EB frame arrival time to align its newly constructed, local schedule with the schedule used by its neigh-

bors. In Figure 6.1, we see that the expected frame arrival time is TsTxOffset seconds after the start of a

timeslot. The initial bootstrap synchronization of a new node is denoted as advertisement-based synchro-

nization [155].

After the initial join phase, nodes maintain time synchronization through regular communication with

their time source neighbor. The time source neighbor is a parent node whose timing information is used to

calibrate the clock. The entire TSCH network forms a time source tree, with the PAN (Personal Area Net-

work) coordinator as the initial time source, see Figure 6.3a. The need for synchronization comes from the

fact that independent clocks systems off the nodes drift, which unmistakably leads to clock skew, see Chap-

ter 5. To combat the inevitable clock skew, TSCH defines a synchronization method based on exchanging

KA (Keep-Alive) frames. A higher network management layer, such as 6top (6TiSCH Operation Sublayer),

can create a KA frame when there has not been a clock calibration for a long time. When a node does not

communicate with its time source neighbor for a time longer than the KA interval, it is considered desyn-

chronized. KA frames contain no data; their only purpose is clock calibration.

The KA mechanism is merely a fallback system in case there is not enough application traffic in the

network to keep the nodes synchronized. Otherwise, a node can use generic link-layer frames exchanged

with its time source neighbor, to perform frame-based or acknowledgment-based synchronization. Both

synchronization methods require the receiver to measure the clock skew (δskew) on frame reception. The

clock skew is defined as the number of clock ticks between the expected and actual time of the frame arrival.

Because of the clock skew, nodes have to use a guard time when turning on the radio, see Figure 6.2. The

length of the PGT (Packet Guard Time) also directly affects the KA interval. If we consider a maximum

relative clock skew, δskew, of 60 ppm and a PGT of 2600µs [155], then the KA interval can be calculated as

follows:

97

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

|KA| = PGT

2 ·δskew
(6.1)

For the above values, the KA interval amounts to ± 21 s. Therefore, a receiver turns on its radio PGT/2

earlier than it expects the arrival of a frame (see Figure 6.2. If at least one frame is sent every KA interval,

then |δskew| < PGT/2 and the reception of the frame should be guaranteed. When the node does not receive

a frame preamble after a full PGT, it will turn its radio off and go back to sleep. The same procedure is used

on the transmitter side when it expects an acknowledgment.

Transmission

Reception

t(s)

t(s)

TxTsOffset

RxTsOffset

δrel

PGT

2

Expected
arrival time

Start of
slot

Start of
slot

PGT

2

Figure 6.2: Frame-based synchronization.

The frame-based synchronization and acknowledgement-based synchronization schemes are defined

as follows:

1. The receiver records a timestamp ts when it detects the frame start symbol.

2. It measures the clock skew as follows:

δ= RxTsOffset+ PGT

2
− ts , (6.2)

where RxTsOffset represents the time between the beginning of the timeslot and the activation of

the radio. For Tx and Rx slots these offsets are called TsTxOffset and TsRxOffset, respectively, see

Figure 6.2.

3. In case of frame-based synchronization, the receiver will use the measured value of δrel to calibrate

its clock. When using acknowledgement-based synchronization, the receiver will add δrel to the ac-

knowledgement frame, which is sent back to the transmitter. In this scenario, the transmitter cali-

brates its clock.

6.1.2 DoS Vulnerability

The previous section described how a node joins a network after it has captured an EB frame and how to

maintain the synchronization. However, we omitted one crucial bit of information. How can a new node

capture an EB without ever being synchronized to the network? A new node has no information on the

schedule, nor is it synchronized in any way to the network. An EB can be transmitted on one of the 16

different frequency channels, significantly lowering the chances that a new node will overhear an EB when

it randomly scans a channel. If we consider that a joining node is only in range of one neighbor, we ignore

the fact that there can be transmission errors and frame collisions, and there is one EB sent every slotframe,

the average joining time is

T j = ts ∗ C +1

2
(6.3)

where C is the number of channels and ts is the length of a slotframe expressed in seconds. The IEEE

standard [156] does not provide a more efficient mechanism to capture EBs, making the initial join proce-

dure extremely expensive. Some work has been done to accelerate the initial join phase in TSCH networks,

but they rely heavily on specific network advertisement policies and depend on the density of the network

the new node wants to join [157, 158].

98

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

PAN Coordinator - Time Source

Tim
e propagationTim

e
pr

op
ag

at
io
n

Time
propagation

(a) TSCH time source tree.

PAN Coordinator - Time Source

Tim
e propagationJamming

subtree
desynchronises

(b) Desynchronization of subtree.

Figure 6.3: DoS vulnerability in the TSCH time synchronization mechanism.

It is essential to realize that the expensive join procedure is not only performed when the node joins the

network for the first time, but each time it desynchronizes from the network. Once a node is desynchro-

nized, i.e., when the drift has grown larger than the PGT/2, there are no mechanisms in place to keep the

clock skew in check. The only way to rejoin the network is to perform a new advertisement-based synchro-

nization, requiring active scanning of the different channels. Desynchronization can frequently occur due

to interference or depleted batteries. We saw that a mere 21 s without communication with the time source

neighbor could suffice to desynchronize a node. Furthermore, if a node desynchronizes and it is not capa-

ble of resynchronization to network within a KA interval, its children also desynchronize, causing a chain

reaction that can desynchronize an entire subtree of the network, see Figure 6.3b. Resynchronizing the en-

tire subtree to the network can take up to n×T j seconds, where n is the number of nodes in the subtree and

requires a substantial amount of energy.

It is now clear that an attacker can perform a powerful DoS attack on the network without investing

much energy. By jamming a single communication link in the network for the duration of a KA, the attacker

can take down a large part of the network. If the attacker jams a communication link close to the root of

the time source tree, the number of desynchronized nodes, and thus the impact on the network, grows. Not

only does it takes a long time for all the nodes to resynchronize. The procedure is also expensive energy-

wise.

6.1.3 Fast Recovery for Desynchronized Nodes

Preventing DoS attacks is difficult, and in a low-power network, we cannot invest much energy in counter-

ing these types of attacks. However, we can try to minimize the damage done to the network. We designed

a fast, distributed resynchronization scheme that uses clock skew prediction, derived from the drift model

presented in Chapter 5, to quickly rejoin the network after being desynchronized. It is backward compati-

ble with the standard TSCH protocol. Nodes implementing the scheme do not rely on any actions taken by

other nodes and can thus coexist with “standard” nodes. Based on the hardware characteristics presented

back in Chapter 1, we assume that the radio is the primary energy-consumer. Our algorithm is tailored to

minimize the time during which a node actively scans for frames. To decide when the node needs to reac-

tivate its radio, we use prior information stored on the node from its initial synchronization to the network.

The scheme computes the relative clock skew with its time source neighbor to predict possible arrival times

of the incoming frames. To capture the frames, we use an adaptive listening window, which compensates

for any unforeseen drift causes and inaccuracies in the prediction scheme. While the standard TSCH proto-

col specifies a fixed duration for the PGT, we adapt the PGT based on the computed clock skew, the minimal

duration being default PGT (2600µs).

6.1.3.1 Principles of the Predictive Rejoining Scheme

Phase 1. The first stage is active when the nodes are still synchronized. Every node periodically measures

its clock skew with respect to its time source neighbor, δskew, by using the frame-based or acknowledgment-

99

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

based synchronization method and calibrates its clock accordingly, see Figure 6.2. The rejoining scheme

derives the average clock skew between itself and its time source neighbor. The average clock skew is con-

tinuously updated with freshly measured clock skew values as long as the node stays synchronized. A node

also stores the ASN value of the slot where the last synchronization occurred. After each calibration, the

node restarts a low-power timer that counts the elapsed slots until a new clock calibration takes place. The

timer keeps running even when the node is in the low-power sleeping mode to save energy. A node becomes

desynchronized when the time elapsed since the last clock calibration exceeds the KA interval. At this in-

stant, we cannot guarantee that frames will be captured as the relative clock skew, δskew, might be larger

than PGT/2. When the desynchronized node no longer exchanges frames with its time source neighbor, the

clock drift causes the skew to grow further, see Figure 6.4. The ASN of the desynchronized node for a given

slot will no longer correspond to the ASN used by its time source neighbor, and the node will fail to calculate

the correct frequency channel.

Time source
Neighbor

Desynchronized
 Node

Timeslot
ASN: 5

Channel: 17

Timeslot
ASN: 4

Channel: 11

Timeslot
ASN: 106

Channel: 15

Timeslot
ASN: 105

Channel: 26

Timeslot
ASN: 5

Channel: 17

Timeslot
ASN: 4

Channel: 11

Timeslot
ASN: 106

Channel: 15

Timeslot
ASN: 105

Channel: 26

δrel

t(s)

t(s)

Figure 6.4: The drift keeps on growing once the child node is desynchronized.

Besides the invalid ASN, the information included in the EB frame (slotframe size, channel hopping

sequence, and timeslot template) during the initial synchronization phase remains valid after desynchro-

nization. We can make this assumption because changing these parameters would require a full update of

the whole network.

Phase 2. The second phase starts when the node detects it is desynchronized from the network. The

node can notice the desynchronization either directly after the KA interval overflows or after an extended

period of time when the node wakes up from low power mode. The node now starts the procedure to rejoin

the network. It will try to locate the transmissions from its time source neighbor in order to realign itself

to the network. The node starts by adding the value of the low-power timer to the most recently stored

ASN. The resulting value gives the node the first estimation of the ASN currently used by the network. Next,

the node calculates the relative clock skew by multiplying the most recent drift estimation with the total

time the node was desynchronized. If the total relative skew since the last clock calibration is larger than

an entire timeslot, the node updates its estimated ASN value. For example, on the right side of Figure 6.4,

the desynchronized node estimates an ASN of 105, while due to the clock drift, the actual ASN used by the

network, and the time source neighbor, is 104. By accounting for the clock skew, a node detects that the

estimated ASN is off by one because the clock skew is larger than a timeslot.

1 2

1

full timeslot

full timeslot

t(s)

t(s)

Tx
Window

Rx
Window

Rx’
Window

Ti
m

e
So

ur
ce

N

ei
gh

bo
r

D
es

yn
ch

ro
ni

ze
d

N
od

e

(a)

1 2

1

full timeslot

full timeslot

t(s)

t(s)

Tx
Window

Rx
Window

Rx’
Window

3

Ti
m

e
So

ur
ce

N
ei

gh
bo

r
D

es
yn

ch
ro

ni
ze

d
N

od
e

(b)

Figure 6.5: A node pair illustrating the predictive rejoin scheme. (1) The standard TsRxOffset and TsTxOffset values.

(2) The predicted relative skew allows for rescheduling of the Rx window (shown as the RX’ window). (3) Rx window

expands for the unpredictable skew after desynchronization.

100

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

Phase 3. In the final step, the desynchronized node looks at its stored schedule for the first upcoming Rx

slot for communication with its time source neighbor, and it goes to sleep until the Rx slot. When the node

wakes up, it reestimates its additional skew and adjusts if necessary. The schedule contains the channel

offset of the respective Rx slot, and combined with the estimated ASN, the node can tune its radio to the

right frequency channel. The node uses the estimated skew to reschedule the Rx window such that it aligns

with the Tx window of its time source neighbor (see Figure 6.5a). The node activates its radio for a full

PGT interval. If the time source neighbor does not send a frame in the Rx slot, the node repeats the final

step and locates the next Rx slots. When the node successfully captures an incoming frame from its time

source neighbor, it recalibrates its clock with the frame-based synchronization method. The low-power

timer resets, and the node is again synchronized with its time source neighbor, and by extension, the entire

network. The captured frame does not necessarily have to be addressed to the desynchronized node, but

the transmitter must be the node’s time source neighbor. The node can use any frame from the time source

neighbor to synchronize (its contents are not relevant), which means that an encrypted frame can also be

used to resynchronize, only the arrival time is needed to recalibrate the clock.

6.1.3.2 Compensation for Unpredictable Drift Causes

Unforeseen drift fluctuations after desynchronization and finite arithmetic precision during the skew es-

timation may create an undetectable skew between the Tx window of the time source neighbor and the

Rx window of the desynchronized node, see Figure 6.5b. We must keep in mind that the drift estimation

of Phase 1 is only an ephemeral snapshot of the situation. The drift can change any moment after desyn-

chronization due to external causes, e.g., temperature fluctuations. The second cause of scheduling errors

is the finite precision when the node calculates the relative skew. Some platforms only use 16-bit integer

arithmetic. Rounding errors become significant when a node is desynchronized for more extended periods.

The adaptive listening window grows steadily over time (see Figure 6.5b), to compensate for the skew

caused by unforeseen drift causes. Its size depends on the total time the node was desynchronized, the

arithmetic precision, and the worst-case external drift change, e.g. the largest temperature change, expected

in the network. The window expands in both directions as the desynchronized node does not know in which

direction the relative drift will evolve. Nodes with a temperature sensor and having sufficient energy can

apply drift compensation in real-time. Its goal is to keep the actual relative drift as close as possible to the

previously established relative drift estimation. If the node obtains a stable relative skew by compensating

the drift changes that occur after desynchronization, our scheme gives a more precise prediction of the

relative skew and the instant of the Tx window used by the time source neighbor. This results in a smaller

adaptive listening window, and thus lower energy consumption.

6.1.4 Experimental Evaluation

To validate our prediction-based rejoining scheme, we implemented it on the TelosB, OpenMote, and Green-

Net platforms [159, 14, 160], using the OpenWSN networking stack. We use the TSCH minimal schedule with

16 frequency channels and a slotframe of 101 timeslots, 15 ms each, to obtain a 1% duty cycle [161]. The EB

interval can be calculated by adding a random value from the interval [−3,48; +3,48] to a fixed 30 s offset.

This approach lowers the probability of an EB collision when all network nodes use the same EB interval

and timeslot for advertising. We compare our scheme with the proposals by Vogli et al. [157] and Duy et

al. [158].

6.1.4.1 Node Join Latency

In the first experiment, we evaluated the join latency of our scheme. We use a single-hop setup with two

nodes. The first node is configured as the network sink, while a second node is set up as a network leaf.

At the beginning of the experiment, we wait until the leaf is synchronized with the sink. Once the initial

synchronization occurs, we wait an additional 5 min for the leaf node to learn the relative skew to the sink

node, i.e., its time source neighbor (see Phase 1 in the rejoining scheme). Once the leaf node establishes

an initial relative drift estimation, the sink node stops all communication, effectively simulating a jamming

attack. After a full KA interval, without communication, the leaf node enters the desynchronized state, and

101

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

the resynchronization procedure starts. We keep the sink node silent for a total of 5 min. Following this de-

lay, we instruct the sink to resume its normal behavior, marking the end of the DoS attack. Starting from this

instant, we start measuring the time for the leaf node to resynchronize with the sink. In this experiment, the

rejoin procedure becomes active directly after the node desynchronizes. During the entire 5 min jamming,

the leaf node will try to resynchronize. Table 6.1 shows the average join latency for three different scenarios.

We obtain the experimental results for our scheme after 35 runs on the OpenMote platform, and we com-

pute the average join latency for the other schemes based on the theoretical expressions, experimentally

validated by the authors in their respective papers [157, 158]. Below the results for the other proposals, we

show the ratio with respect to our scheme.

TABLE 6.1: Average join latencies.

Join Scheme EB (30 s) EB (15 s) EB (6 s)

Predictive Rejoin 7.51 5.9 5.25

Fast|Rapid Join [157, 158]
255 127.5 51

×34 ×22 ×10

Rapid Join [158] with 4 EBs
63.75 31.88 12.75

×8 ×5 ×2

We can see that our scheme significantly outperforms the other proposals in each scenario. The upper

bound join latency for our scheme never surpasses the interval between two EBs as we will always capture

every frame sent by the time source neighbor for a PDR (Packet Delivery Ratio) of 100% and a correct drift

estimation. However, other frames such as RPL, KA, or application data frames will very often speed up

the resynchronization process. Adding extra EB frames will therefore only slightly improve the speed of our

scheme. The other proposals only rely on EBs for resynchronization and do not predict the transmission

times of the time source neighbor. Fast Join by Vogli [157] sends one EB per node in the network. Rapid

Join Scheme by Duy [158] has two modes: the first mode emulates Fast Join, the second mode lets every

node send multiple EBs (corresponds to the scheme in the last row of Table 6.1). The latter mode obtains

faster node rejoining, but consumes more energy from the network perspective as every node sends extra

EBs. A typical energy cost for an EB, depending on its size and hardware platform, is 72.4µJ with a battery

at 2.2 V [158].

0 1 4
Application Traffic

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

La
te

nc
y

[s
]

Node
TelosB
OpenMote
GreenNet

Figure 6.6: Rejoin latencies with respect to application traffic.

We further tested the influence of the application traffic on the performance off the predictive rejoin

scheme. Figure 6.6 shows the synchronization speed for three different applicative traffic loads. In the first

setup, there is no application compiled on top of the stack, and nodes only rely on EBs, RPL, and KA frames

to resynchronize. In the second setup, the time source neighbor node transmits one additional data frame

every EB period, and in the last scenario, the sink sends four extra data frames.

102

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

6.1.4.2 Adaptive Radio Reception Window

The arithmetic precision of our calculations plays an vital role in the accurate scheduling of the adaptive

reception window. The OpenWSN code is written in a portable way so it can execute on a wide range of

different platforms. We used integer arithmetic to compute the relative skew estimation. The usage of

floating-point arithmetic is either not supported, or its cost too elevated on low-power platforms. We op-

timized our code to obtain a relative drift precision of 0.5 ppm. The experimental results in Table 6.2 were

obtained using the same setup as described above, but we kept the leaf node desynchronized for 1 h. After

1 h, we measured the difference between the skew prediction and the real skew, using the logic analyzer

running at 25 MHz. If the error on the skew prediction is smaller than the PGT/2 (1300µs), a successful

resynchronization is possible without an expanded reception window.

TABLE 6.2: Impact of the arithmetic precision on the drift prediction.

Platform Predicted Real Prediction Error

TelosB 39.26 39.94 0.68

OpenMote 2.13 2.39 0.26

GreenNet 21.67 23.65 1.98

We already saw that temperature changes could affect the absolute clock drift of a device. We set up an

experiment where a node is exposed to fluctuating temperature, ranging from 10 ◦C to 35 ◦C. We performed

the experiment twice. At first, the desynchronized node did not have a temperature sensor, and therefore,

it could not compensate for additional temperature-based drift. Secondly, the desynchronized is equipped

with a temperature sensor. It uses the temperature measurements to compensate for the drift in real-time.

In both experiments, the sink was kept at room temperature (25 ◦C). The leaf measured its temperature, and

the relative clock drift every minute and sent the results to the sink as plotted Figure 6.7.

0 10 20 30 40 50 60 70
Time [min]

5

10

15

20

25

30

35

40

Te
m

pe
ra

tu
re

 [°
C

]

Temp (1)
Temp (2)

4

6

8

10

12

D
ri

ft
 [p

pm
]

Uncompensated Drift (1)
Compensated Drift (2)

Figure 6.7: Temperature and drift in time for compensated and uncompensated devices.

To compensate for the drift in software, we used the relation −0.035 ppm/◦C2 × (T −T0)2 [162]. When

the nodes started communicating, the temperature was 25◦C, and both the clocks operated at their nominal

temperature. The relative drift measured during the first 10min of the experiment, at a constant temper-

ature, was approximately 9.5 ppm for both node pairs. After 10min, we gradually changed the ambient

temperature of the leaf node. The node, without a temperature sensor, could not compensate, and the rel-

ative drift for node pair ¬ dropped drastically. Notice that Phase 1 of our scheme accounts for the observed

9.5 ppm, and the adaptive listening window must compensate for the additional drift. Node pair ¬ experi-

enced a drift change of 5 ppm caused by the temperature changes (see Figure 6.7), which amounts to a clock

skew of 18 ms after 1 h. Because we cannot predict how the drift changes, we need to expand the listening

window in both directions: (2 ·18ms)+PGT = 38.6ms. Node pair ­ only needs to compensate for a change

of 1.5 ppm, which amounts to a smaller Rx window of 13.4ms.

103

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

6.1.4.3 Energy Consumption

Figure 6.8 presents the measured current consumption for a synchronized pair of TelosB nodes (a) and

when the predictive rejoining scheme is active (b). We use the simplified energy model by Vilajosana et

al. [155] to obtain the overall energy consumption from the current measurements. We split the energy

consumption of the platform into three states: CPU idle, CPU active and radio active. The different states

draw 0.66 mJ, 2.86 mJ, and 39.6 mJ, respectively.

4 ms

5 mV

Leaf Node

1

1

1 2 3 1 2

1 2 3 1 Sink Node

Timeslot

(a)

4 ms

5 mV

Leaf Node

1 1 2 3 1

Scheduling adaptive Rx window

Drift 54
Sink Node

(b)

Figure 6.8: Current measurements with a Tektronix MD03012 oscilloscope of the TelosB platform (battery at 2.2 V).

In Figure 6.8, ¶ marks the start of a TSCH timeslot. The CPU executes code to check if a frame needs to

be sent. The frame gets prepared for transmission in state ·. In ¸, we observe the activation of the radio.

Figure 6.8b starts with the desynchronized node, detecting a potential incoming transmission from the time

source neighbor and subsequently calculating the relative clock skew offset (¹). It reschedules the adaptive

listening window in order to capture an incoming frame. Resynchronization fails in Figure 6.8b; thus in º,

the CPU continues with the same procedure. The total used energy in a timeslot is calculated as the sum of

the energy spent in each state (Idle, Active, Radio), where T , I and Vb represent the time spent in a state, the

current drawn in a state, and the battery voltage, respectively:

Etot = (TIdleIIdle +TActiveIActive +TRadioIRadio) ·Vb (6.4)

An “idle slot” is a slot during which only the CPU is responsible for energy consumption. Slots during

which the radio is active are “radio slots”. Fast and Rapid Rejoin Schemes [157, 158] do not use prediction

to localize the incoming EB. Therefore, they need to keep their radio active all the time. The multi-beacon

option of Rapid Join also requires additional network energy because it sends multiple EBs in the same

EB interval. The sink uses a duty cycle of 1%. Since our scheme only wakes up the desynchronized node

when it expects an incoming transmission, the overall duty cycle remains very low. It uses one double-

sized active slot to reschedule the listening window and 99 idle slots per slotframe (see Figure 6.8b). This

approach facilitates the rescheduling of the listening window when it is located in between two timeslots.

The energy drawn for 99 idle slots and one double-sized active slot amounts to 1.29 mJ, while the energy for

101 active slots is 59.99 mJ. Table 6.3 shows the computed energy for the measured join latencies presented

in Table 6.1. Below the used energy for the other proposals, we show the ratio with respect to our scheme.

TABLE 6.3: Estimated energy consumption of the join schemes (mJ).

Join Scheme EB (30 s) EB (15 s) EB (6 s)

Predictive Rejoin 6.45 5.15 4.51

Fast|Rapid Join [157, 158]
15.3e3 7.65e3 3.06e3

× 2372 × 1485 × 678

Rapid Join [158] (4 EBs)
3.82e3 1.91e3 0.76e3

× 592 × 370 × 168

104

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

6.2 Thermal Covert Channel in BLE Networks

6.2.1 A Primer on Bluetooth Low Energy

BLE was first introduced in Bluetooth Core specification v4.0 [163]. In contrast to classic Bluetooth, which

can transfer a lot of data, BLE is optimized for low-power applications that only periodically need to com-

municate. Similarly to TSCH, BLE allows devices to go into a sleep mode between data transmissions, effec-

tively lowering the overall power consumption of the entire protocol. The Bluetooth communication stack

roughly splits into three parts [164]. At the bottom, we can find the controller part. The controller contains

the lowest two layers of the Bluetooth stack: the physical layer and link-layer. The controller is typically

implemented in the firmware of the Bluetooth radio chip. The host encompasses the higher levels of the

Bluetooth stack, such as logical link control, attribute protocol, generic access profile, etc. The host is often

a part of the operating system of the device that uses Bluetooth networking. On top of the host, we can

find the Bluetooth applications. These live traditionally in userspace. The BLE link-layer design philosophy

is similar to that of IEEE 802.15.4E. BLE devices share a global network clock to synchronize the devices.

BLE devices follow a strict schedule to minimize energy consumption and interference issues. The schedule

pseudorandomly hops through 40 different frequency channels. Three of those channels are used purely

for advertisement, while the remaining transport data.

Although in the most recent update of the Bluetooth Core specification [165], version 5.0, changes were

introduced to support multi-hop networking like TSCH, BLE is most frequently used to establish a P2P con-

nection between two devices. The devices either fulfill the slave role or master role. Typically slave devices

are very simple, e.g. a temperature sensor or light bulb that generates some application data. The master

is a more powerful device, for example, a smartphone. The master device discovers a nearby slave device

by listening for advertisement frames. The slaves periodically emit advertisements during an advertise-

ment event. When a master device has captured an advertisement frame, it can start a negotiation phase

by responding with a connection request frame. The connection setup establishes the parameters for the

connection. The connection request frame of the master device contains, among other a connection inter-

val and a pseudorandom hopping sequence. The connection interval indicates how often the master and

slave will wake-up to exchange data, known as a connection event, and the pseudorandom sequence de-

scribes the order in which the frequency hopping takes place. Values for the connection interval range from

7.5 msec to 4 sec and are a multiple of 1.25 msec. The start of a connection event is called an anchor point.

The master device initiates a connection event by sending a frame to the slave, see Figure 6.9. This frame

can contain application data, but more often, it merely acts as a poll request, asking the slave to respond

with its application data. The slave answers either with its data or with an empty frame in case it has no

data to transmit. Both devices keep following this schedule until the master disconnects.

Time [s]

M

S S

M M

S S

M M

S S

M

Connection Interval Connection Interval

Anchor Point Anchor Point Anchor Point

Connection Event

Figure 6.9: Bluetooth Low Energy in connected mode. During a connection event multiple frames can be exchanged.

The master and slave can also negotiate a slave latency parameter. This parameter defines the number

of consecutive connection events that the slave device can ignore, allowing the slave to spend more time in

sleep mode to conserve energy.

6.2.1.1 The BLE Synchronization Mechanism

The Bluetooth Core specification specifies two different clock accuracies. During a connection event or

advertising event, the devices use the active clock accuracy, with a drift less than or equal to ±50 ppm.

When in sleep mode, the devices use the sleep clock accuracy, which can have a maximal drift of ±500 ppm.

105

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

Because of the potentially significant drift and the resulting clock skew, there is an uncertainty in the slave

device of the exact timing of the next anchor point. BLE uses a highly similar PGT mechanism as TSCH to

ensure frame reception when experiencing clock skew. When the slave receives a frame from the master, the

slave updates its anchor point [165] and always responds with a (potentially empty) frame unless the slave

latency parameter is not 0. The slave is required to resynchronize its clock to its master at each connection

event to avoid accumulating a large clock skew. To ensure that the slave wakes up in time to receive the first

frame of the master during a connection event, it estimates the position of the next anchor point, taking

into account the possible clock drift. During the connection setup, the master can indicate its sleep clock

accuracy. The slave can use the master sleep clock accuracy and its local sleep clock accuracy to more

precisely estimate the relative clock skew between both devices and ,thus, the positions of the next anchor

points. In contrast to standard TSCH which uses a fixed size for the PGT, BLE devices calculate a window

widening parameter according to the following formula,

δwi ndow =∆t
[

(Dm +Ds)/1×106
]

(6.5)

The slave starts listening for a frame from the master a full window widening value before the expected

anchor point, see Figure 6.10. The ∆t parameter indicates the elapsed time since the last anchor point

(and resynchronization of the slave to the master). The values Dm and Ds are the master’s and slave’s clock

inaccuracies, respectively.

Time [s]
Connection IntervalAnchor Point Expected

Anchor Point

M
as

te
r

Sl
av

e

Tx

Rx Tx

Rx Tx

clock skewConnection Interval

Window
widening

Figure 6.10: The slave uses an adaptive PGT to compensate clock skew and guarantee reception of the master frame.

6.2.2 Attack Scenario

In a typical attack scenario, a user gets tricked into installing a malicious application. The malicious ap-

plication could be impersonating a legitimate application, or the legitimate application itself was compro-

mised due to a supply chain attack [166]. The malicious application has access to sensitive data such as

passwords or encryption keys (e.g., a password manager). However, the application cannot use any net-

working functionalities, as the user did not grant the application those privileges. It has no direct way to

extract sensitive data from the victim device. Instead, the malicious application modulates the sensitive

data on top of the frames exchanged by long-lived BLE connections of legitimate applications. Examples of

such long-lived connections are a smartwatch connected to a smartphone or a smartphone connected to

wireless headphones or smart loudspeakers.

Victim

Covert Receiver

Helper
Conn. Interval Conn. Interval Conn. Interval

Conn. Event Conn. Event

Figure 6.11: The covert receiver measures the induced clock skew between the connection intervals.

106

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

Figure 6.11 depicts the attack scenario. There are three distinct entities: the victim device, a neutral

helper device, and the covert receiver, which is fully controlled by the attacker. By scheduling well-timed

CPU intensive calculations, the malicious application can control the heat emission of the CPU. These

emissions directly influence the frequency of crystal oscillator. The malicious application uses the impact

of the E(t) in equation 5.2 to cause a varying, measurable clock skew. Bits can be encoded under the form

of these clock skew variations. The victim has to take on the role of master in the BLE connection as this

forces the helper device to stay synchronized to the victim even if the malicious application triggers a sig-

nificant clock skew. The covert receiver can be positioned anywhere in the BLE transmission range and acts

as a hidden slave device. There are no physical or logical connections between the victim and the covert

receiver. The covert receiver can even be located in an adjacent room. We assume that the covert receiver

can measure with sufficient precision the intervals between the consecutive BLE transmissions.

6.2.3 Covert Communication Protocol

Next, we describe the communication protocol between the victim device and the covert receiver. The com-

munication channel is unidirectional; thus, we allow for a significant overhead in the protocol dedicated to

error correction codes as there is no way the covert receiver can ask for the retransmission of data.

6.2.3.1 Encoding and Decoding

In our communication protocol, we use a simple On-Off Keying technique to transmit data. A substantial

variation in the clock skew is triggered, to encode a 1-bit, by heating the oscillator. A 0-bit is encoded as

the absence of a varying clock skew. We used several threads of cryptographic calculations to generate a

high CPU load. The malicious application must keep the temperature steady for a while, ensuring that the

heat can propagate throughout the device and reach the oscillator. When the malicious application releases

the CPU load, the device and crystal oscillator cool down, and the clock skew returns to its previous value.

During this process, the covert receiver is measuring the elapsing connection intervals (CI j) by creating a

timestamp (Ti) at the reception of the first packet of the master at the start of a connection event.

CI j = (Ti −Ti−1) (6.6)

By subtracting the subsequent connection intervals, the attacker calculates the clock skew for the con-

nection interval.

∆Cskew =∆CI = CI j −CI j−1 (6.7)

The attacker then uses a low-pass filter to extract the trends in the clock skew behavior, S(t). By calcu-

lating the derivative, dS
d t , over the filtered signal, the attacker can detect sudden important variations in the

clock skew. When the absolute value of the clock skew variation is higher than a predefined threshold value

Vth a 1-bit is detected; otherwise, the filtered signal is decoded as a 0-bit.

Bit string(t) =

 1 |dS
d t | ≥Vth

0 |dS
d t | <Vth

(6.8)

The threshold value Vth is discovered by calculating the standard deviation (σ) over dS
d t . A scaling factor

α is experimentally derived.

Vth =σ
(dS

d t

)
∗α (6.9)

A preamble prepends each message. It marks the start of a data transmission. A preamble of a single 1-

bit denotes the start of a transmission. We must choose a preamble starting with a 1-bit because the covert

receiver can detect only a change in the clock skew. A 0-bit is encoded as the absence of varying clock skew

and can, therefore, not be identified by the decoder.

107

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

6.2.3.2 Calibration of the channel

Before the actual transmission of data, we have to calibrate the channel. The calibration values must be

given to the malicious application before installation on the victim. We can derive the parameters on de-

vices identical to the victim platform. Since the attack relies on hardware characteristics, the parameters

must be derived for each platform individually. Initially, the base temperature of the device, Tb , must be

measured. The base temperature corresponds to the temperature of the CPU when it is idle. Secondly, the

target temperature,Tt , must be defined. Thirdly, we must set the time interval, ∆T , for which the malicious

application must hold the CPU temperature at Tt when encoding a binary 1. Finally, the malicious applica-

tion needs to know the cooldown time, Tc . This variable describes the time needed by the system to return

to the base temperature Tb and for the clock skew to settle on its previous value.

6.2.3.3 Error correction and data whitening

The malicious application uses two techniques to provide reliable transmission: error correction codes and

data whitening. A possible candidate for the error correction codes are the BCH codes [167]. BCH codes

can correct multiple errors, depending on the construction of the code word. For example, the BCH(63,31)

code adds maximally 31 check bits to a data payload of 32 bits and allows the covert receiver to correct up

to 5 bitflips in the received codeword.

Data whitening scrambles the data before transmission to prevent long sequences of ones or zeros.

Because each binary 1 is encoded as an increase in CPU temperature, there exists a risk that several con-

secutive encoded 1-bits could saturate the sensitivity of the oscillator to temperature changes. As remnant

heat builds up in the system, the device does not have enough time to cool down; hence, we can no longer

precisely control the skew. We borrow the data whitening technique described in the Bluetooth Core spec-

ification [165]. A simple LFSR is used to generate a pseudorandom bit string. This bit string is then XORed

with the original data to obtain a pseudorandom bit sequence, ready for transmission.

6.2.4 Experimental Evaluation

6.2.4.1 Setup

We discuss our implementation of the attack on three hardware platforms: Raspberry Pi 3B, Motorola X

2014, and an iPhone 5s. Each experiment we performed, followed the attack scenario shown in Figure 6.11.

The experiments took place in an office at room temperature. The role of the helper device was fulfilled by

a simple BLE-enabled light bulb [168]. As a covert receiver, we used an Ubertooth One [154] connected to a

PC. The distance between the different devices was approximately 2 m.

6.2.4.2 Clock Skew Tracking

The Ubertooth is capable of sniffing a specific BLE connection when it can overhear the initial connection

setup. The handshake negotiates all the parameters necessary to calculate anchor points and to derive

the frequency hopping pattern. The Ubertooth firmware registers timestamps at the reception of every

frame. The timestamps are generated by the Ubertooth’s CPU [169] by reading the current timer value at

the reception of radio DMA (Direct Memory Access) interrupt. The timer runs with a period of 50 MHz. The

Ubertooth sends the timestamps to the computer. We only keep the timestamps of the first frame emitted by

the victim/master device at every connection event. The difference between two consecutive timestamps

corresponds to the connection interval of the victim, see equation 6.6. The connection interval remains

stable when the oscillator operates at a fixed temperature (a constant clock skew between the victim and

the helper/covert receiver). In this scenario, all the terms in equation 5.2 are stable, resulting in a stable

clock skew. If the oscillator experiences a fluctuating ambient temperature, the E(t) term causes a varying

clock skew, and the Ubertooth measures the resulting varying connection intervals.

108

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

6.2.4.3 Victim configuration

We used three different platforms with different software stacks to test feasibility of our attack: a Raspberry

Pi 3B [170] running Arch Linux, a Motorola X 2014 running Lineage OS 14.1, and an iPhone 5s with iOS

11.4.1. Before the start of the experiment, during the reconnaissance phase, the physical characteristics of

the victim device are investigated. We try to register the base temperature of each device, the temperature

of a device when idle, the amount of heat that was effectively generated, and how fast the heat propagated

throughout the device and finally how quickly this heat dissipated. We also verified the size of the clock

skew variations due to the increasing or decreasing temperature. Significant variations point towards a

direct thermal path between the CPU and the oscillator or the use of an uncompensated crystal oscillator,

while small variations might be caused by the CPU and oscillator being thermally isolated or the use of a

TCXO (Temperature-Compensated Crystal Oscillator).

6.2.4.4 Raspberry Pi 3B

Reconnaissance phase The Raspberry Pi 3B board uses a quad-core 1.2 GHz Broadcom BCM2835 64-

bit CPU and a BCM43438 chipset for Wi-Fi and BLE connectivity [171]. Figure 6.12a shows the positions of

the CPU and the wireless chipset with crystal oscillator on the board. The distance between the CPU and

the oscillator is approximately 1.5 cm. Both the CPU and BLE chip are attached to the same board, allowing

for a direct thermal path, see Figure 6.12b.

(a) The position of the CPU and the crystal oscillator on the PCB. (b) Thermal image (source: [172]).

Figure 6.12: The Raspberry Pi 3B platform on which we used to test the covert channel.

After inspection of the board and the datasheet of the BCM43438, we suspect that the board uses an

uncompensated crystal oscillator, although verification of this assumption is not possible as the majority

of the Raspberry Pi schematics are not publicly available. The board also exposes one internal CPU tem-

perature sensor. In the first instance, we analyzed how well the heat of the CPU propagates throughout the

board. With a thermocouple [173], we track in real-time the temperature of the oscillator as we vary the

load on the CPU. We use this information to derive the values to calibrate the covert channel.

TABLE 6.4: Calibration values for the covert channel: RPI-3B

Constant Value Comments

Tb 39 ◦C Temperature for idle CPU

Tt 47 ◦C Tt +1 for every consecutive ‘1’ bit

∆th 10 s

∆tc 65 s Cool down time: Tt → Tb

109

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

Figure 6.12b shows the heat spread from the CPU throughout the board. The article [172] discusses the

changes in heat propagation between the Raspberry Pi 3B and the Raspberry Pi 3B+. Although the newer

model has a better heat spread, the heat propagation is sufficiently wide to reach the oscillator. Measure-

ments with thermocouple [173] indicate 10 ◦C to 15 ◦C difference between the temperature measured at the

CPU package and the oscillator.

−10

0

10

C
lo

ck
 s

ke
w

 [u
s]

Raw ΔCI

−0.005

0.000

0.005

D
er

iv
at

iv
e Derivative

40

45

50

C
PU

 te
m

p
[°

C
]

CPU temp

0 1000 2000 3000 4000 5000 6000
Time [s]

0.0

0.5

1.0

D
ec

od
ed

 b
its bits

−0.1

0.0

0.1Filtered ΔCI = S(t)

0.000

0.002

0.004

Figure 6.13: Implementation of the covert channel on the Raspberry Pi 3B. From top to bottom: raw and filtered skew,

the derivative of the filtered skew, the CPU temperature and the decoded bits.

Covert Channel Performance With the characteristics of the victim known, the malicious software

on the Raspberry Pi can set up a covert channel. Figure 6.13 shows a covert transmission of approximately

2 h. The raw skew data is directly measured by the Ubertooth and logged by the computer. By filtering the

signal, we extract the clock skew trend from the original noisy signal. The second graph in Figure 6.13 shows

the derivative of the filtered signal. We also plot the derivative a second time with the negative values set

to 0. We observe that the peaks in CPU temperature match well with clock skew variations, shown by the

peaks in the derivated signal. Finally, we use equation 6.8 and equation 6.9 to extract the bits, shown in the

lowest graph of the figure. The throughput of the channel is approximately 38 bits per hour.

To improve the throughput of the channel, we needed to accelerate the cooldown phase of the covert

channel. In a second experiment, we assumed that the malicious software also controlled a fan. This fan

could be activated to help cooling the CPU and the oscillator. We used the same base temperature and

target temperature, but the cooldown time, ∆Tc , was reduced to 30 s. The results are shown in Figure 6.14.

The throughput of the new cooled channel is approximately 45 bits per hour.

6.2.4.5 Motorola X 2014

Reconnaissance phase The Motorola X 2014 uses a Qualcomm Snapdragon 801 8974-AC CPU [174]

and a Qualcomm WCN3680 802.11ac Combo Wi-Fi/Bluetooth/FM chipset [175]. The wireless chipset of

the phone uses, highly probable, a TCXO [176]. Because we have no access to the actual schematics of

the phone, we cannot verify this assumption. The phone’s hardware has 15 different temperature sensors.

Lineage OS makes the sensor values readable under /sys/class/thermal/thermal_zone[1-15]/temp

in the filesystem. Although many of the sensor names are cryptic, some of them can easily be attributed

to hardware components of the phone, e.g., chg_temp exposes the temperature sensor of the battery. After

carefully testing the temperature values, returned by the sensors during CPU intensive calculations, we pick

a sensor for our experiment, which corresponds well to the measured clock skew.

110

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

−10

0

10
C

lo
ck

 s
ke

w
 [u

s]
Raw ΔCI

−0.005

0.000

0.005

D
er

iv
at

iv
e Derivative

40

45

50

C
PU

 te
m

p
[°

C
]

CPU temp

0 500 1000 1500 2000 2500 3000
Time [s]

0.0

0.5

1.0

D
ec

od
ed

 b
its bits

−0.1

0.0

0.1

Filtered ΔCI = S(t)

−0.005

0.000

Figure 6.14: Cooled covert channel on the Raspberry Pi. We observe that the additional cooling allows for a faster return

to the Tb temperature. Similarly the clock skew recovers faster.

TABLE 6.5: Calibration values for the covert channel Motorola

Constant Value Comments

Tb 27 ◦C Temperature for idle CPU

Tt 32 ◦C

∆Th 1 s

∆Tc ±400 s Cool down time: Tt → Tb

Covert Channel Performance The Motorola X 2014 uses a Qualcomm Snapdragon 801 8974-AC

CPU [174] and a Qualcomm WCN3680 802.11ac Combo Wi-Fi/Bluetooth/FM chipset [175]. The wireless

chipset of the phone uses, highly probable, a TCXO. A full teardown of a first-generation Motorola X shows

the approximate locations of the CPU and the BLE chip [177]. They seem to be far apart. A teardown of the

second-generation Motorola (used in our experiments) also shows metal heatsinks covering the individual

chips. This hardware layout would allow the phone to evacuate the majority of the generated heat before it

reaches the BLE chip. If the chip additionally uses a TCXO, the effects of the CPU heat on the induced clock

skew could be negligible. Because we have no access to the actual schematics of the phone, we cannot verify

these assumptions.

Compared to the experiment with the Raspberry Pi 3B, the throughput of the covert channel on the

phone is much smaller, see Figure 6.12a. The throughput is approximately 6 to 8 bits per hour. Several

reasons can be found that explain this performance drop. The heat-up time and cooldown time are much

larger. The slow increase in temperature is probably due to the use of metal heat sinks over the different

chips, preventing the heat of the CPU from spreading to the other components on the motherboard. Once

the oscillator has reached its target temperature, we cancel the CPU load. In contrast to the Raspberry Pi, the

phone’s hardware is protected by its exterior casing, preventing the build-up heat from dissipating quickly.

The usage of the TCXO also impedes strong clock skew variations which make the detection of peaks in the

filtered signal harder.

6.2.4.6 iPhone 5s

Reconnaissance phase The iPhone 5s uses Apple’s A7 chip, a custom ARMv8 1.3 GHz dual-core pro-

cessor [178]. The Wi-Fi/Bluetooth chipset is based on Broadcom’s BCM4334 [179]. The BCM4334 is similarly

111

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

−100

0

100

C
lo

ck
 s

ke
w

 [u
s]

Raw ΔCI

−0.002

0.000

0.002

D
er

iv
at

iv
e Derivative

26

28

30

32

C
PU

 te
m

p
[°

C
]

CPU temp

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.0

0.5

1.0

D
ec

od
ed

 b
its bits

−0.1

0.0

0.1
Filtered ΔCI = S(t)

0.000

0.001

0.002

0.003

Figure 6.15: Covert channel on the Motorola X 2014. Compared to the filter clock skew on the Raspberry Pi platform,

the clock skew variations are much more suppressed.

to the BCM43438 capable of using a TCXO to compensate temperature variations. The iPhone’s OS does not

expose any internal temperature sensors. A teardown of the iPhone 5s reveals the positions of the A7 and

BLE chip [178]. Compared to Motorola’s logic board, the iPhone’s BLE chip seems to be in proximity to the

A7 processor.

TABLE 6.6: Calibration values for the covert channel: iPhone 5s

Constant Value Comments

Tb - No access to temperature sensors

Tt - No access to temperature sensors

∆th ±60 s

∆tc ±70 s Cool down time: Tt → Tb

Covert Channel Performance The iPhone 5s has a much higher throughput compared to the Mo-

torola. It is approximately 32 bits per hour. The influence of the CPU’s heat on the oscillator is rapidly

noticeable. Additionally, the clock skew returns fast to its base value when we stop heating the CPU. We

cannot say with certainty why the iPhone’s oscillator is more susceptible to the temperature changes, but

we guess that the close vicinity of the BLE chip to the A7 application processor allows for a direct thermal

path. The phone’s heat sink also seems to be more efficient, which allows for fast heat dissipation. A metal

band additionally surrounds the iPhone’s exterior casing, which functions as a large heatsink.

6.2.5 Performance Discussion

The bandwidth of our covert channel depends on several factors, including the time required to heat or

cool down the oscillator to a specific temperature, and the error rate in the transmission. Both parameters,

in turn, depend on the hardware architecture of the victim and the distance between the heat source and

crystal oscillator. Another critical factor is the sensitivity of the crystal to sudden temperature changes.

On high-end hardware, such as smartphones, the clock skew variations are suppressed due to the use of a

TCXO. The latter hurts the throughput of the channel. It makes the decoding of the signal more challenging

and error-prone. Table 6.7 summarizes the different performance characteristics obtained.

112

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

−200

−100

0

100

200
C

lo
ck

 s
ke

w
 [u

s] Raw ΔCI

−0.2

−0.1

0.0

0.1

0.2

D
er

iv
at

iv
e

Derivative

0 500 1000 1500 2000 2500 3000 3500 4000
Time [s]

0.00

0.25

0.50

0.75

1.00

D
ec

od
ed

 b
its

bits

−4

−2

0

2

4

Filtered ΔCI = S(t)

0.00

0.05

0.10

0.15

Figure 6.16: Covert channel on the iPhone 5s. No temperature information was easily available, so the heat graph is

omitted.

TABLE 6.7: Error rate on different hardware architectures

Platform
Throughput

(bph)

Bits

sent
Errors

Error

rate

RPi 3B 38 61 3 5%

RPi 3B (cooled) 45 33 2 6%

Motorola X 8 6 0 < 1%

iPhone 5s 32 27 0 < 1%

The calibration phase, prior to the attack, helps to improve the throughput and accuracy of the channel.

Our experiments showed that the exact calibration values are not always available, e.g., on the iPhone, no

base or target temperature could be discovered. In this scenario, we experimentally derived and fixed the

values for the heat-up time and cooldown time. By adding a safety margin to these values, we can try to

compensate situations where the base temperature of the device differs from the situation under which

the experimental values were established. To improve throughput even further, we can try to speed up

the heating up or cooling down phase. We showed that with the addition of a cooling fan to the control

of the malicious application, we could improve the bitrate. Additionally, throughput could be improved by

using multi-level encoding techniques if the CPU heat emissions can control the clock skew with acceptable

precision, and the clock skew variations are sufficiently large.

Compared to the work in [180], our thermal covert channel is slower. Matsi et al. directly use the CPU

temperature to establish the covert channel, which makes it more reactive to changes in CPU load. Our

thermal covert channel must indirectly be measured through the effects on the clock skew. The drawback

of the work in [180] is the range of the channel. Covert communication is limited to applications running

on the same physical machine. The work presented in Bitwhisper [181] is capable of extending the range

of the thermal covert channel to 40 cm. Because of the air-gapped constraints, they cannot sniff wireless

transmissions, and therefore the range stays limited. Our approach has a similar throughput as Bitwhisper,

but the range of the covert channel extends to the full transmission range of BLE. There is no need for a LoS

which improves on the attack’s stealthiness. Moreover, the covert receiver does not need to interact with the

victim device. It suffices to sniff the legitimate traffic passively.

113

CHAPTER 6. VULNERABILITIES IN TIME SYNCHRONIZED LINK LAYER
PROTOCOLS

Conclusion

In this chapter, we analyzed two vulnerabilities intrinsic to time-synchronized link-layer protocols. Both

vulnerabilities are a clear example of how the strong optimization of networking protocols can introduce

new security problems. The first vulnerability relies on the fact that the initial cost of network joining is

highly disproportionate compared to the cost of the regular link layer operation. Contrary to slave adver-

tisement in BLE, TSCH does not limit the network advertisement to a few channels. The already scarce EB

transmissions are spread out over multiple channels, making it significantly more costly, both in terms of

join latency and energy consumption, to overhear an EB. Since the network synchronization relies on fre-

quent message exchanges, an attacker can easily interfere with the method without the need for advanced

equipment, deliberately triggering the expensive rejoin procedure. We were able to mitigate this vulnera-

bility by sharply reducing the cost of network rejoining. At the same time, the overall join latency is mini-

mized. Resynchronizing nodes can use any frame originating from their time source neighbor. Rejoining a

network to which nodes were previously synchronized, does no longer require disproportionate power and

time compared to the regular network operation.

The second vulnerability exploits the highly predictive behavior of time-synchronized networks. Due to

strict synchronization, an external entity can easily predict the time instances where communication will

occur. If an attacker can to modify this behavior freely, the comparison between the expected behavior and

the measured behavior can be used as a means to encode bits. The initial data obligatory frame from the

master at the start of a connection provides the perfect anchor point to measure any offsets to communica-

tion protocol. Since the BLE slaves are obligated to adapt to any drift changes, the normal conventional of

the protocol is not compromised. Note that this attack is equally possible on TSCH-enabled hardware since

its schedule also provides the means to predict communication instances. However, allocated slots in the

TSCH schedule merely provide the possibility for communication. If the transmitting node has no pending

frames, the slot will go unused. We also showed that the attack is not limited to devices with a rather sim-

ple hardware layout. Both on the Raspberry Pi and the iPhone, the covert channel achieved a respectable

throughput. In future work, the channel could be tested on even larger systems, such as PCs. They provide

an additional challenge since these systems can regulate their temperature through the use of fans.

114

Chapter 7

Performance of Transport Layer Security
over IEEE 802.15.4E Networks

Contents
7.1 A Detailed Overview of the (D)TLS 1.2 Handshake . 116

7.1.1 Differences between TLS & DTLS . 118

7.1.1.1 Record Protocol Changes . 118

7.1.1.2 Handshake Protocol Changes . 119

7.2 The (D)TLS Handshake over IEEE 802.15.4E . 119

7.2.1 Efficient Handshake Reliability . 119

7.2.2 Multi-Layer Fragmentation . 121

7.2.3 Handling Burst Traffic . 122

7.3 Performance Evaluation . 123

7.3.1 Experimental Setup . 123

7.3.1.1 Software stack . 123

7.3.1.2 Hardware . 124

7.3.2 Handshake Measurements . 124

7.3.2.1 Cryptographic Impact . 124

7.3.2.2 Impact of Network Stack Configuration . 126

7.3.2.3 Handshake Reliability . 128

115

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

Introduction

IoT applications can protect data in transit with either transport layer security or object security. The OS-

CORE protocol, which implements the object security paradigm for use with CoAP, has many advantages

compared to DTLS, the designated security protocol for the IoT [82]. The CORE working group designed

OSCORE from scratch, with all the best security practices taken into account. It does not need to provide

backward compatibility with older versions of the protocol. OSCORE also leverages newly designed encod-

ing mechanisms, such as COSE and CBOR, optimized for low complexity and code footprint. In contrast to

the transport layer security protocols, it supports several indispensable features such as secure group com-

munication, application-level translation proxies, and caching of encrypted messages. These advantages

will prove invaluable for securing the constrained IoT.

Nonetheless, the IoT revolution is happening right now. The IETF ratified the OSCORE RFC only re-

cently, in July of 2019, but many supporting protocols are not yet ready. The OSCORE specification only

describes how to transform a CoAP message into an OSCORE message. Mechanisms for secure key estab-

lishment and OSCORE endpoint authentication are still under development at the IETF. Besides, it will take

some time until the new IoT protocols become widely adopted.

IoT product designers are therefore falling back to DTLS. DTLS is a mature protocol which enjoys exten-

sive support. Several state-of-the-art software libraries provide open-source, vetted implementations that

can be used out-of-the-box in IoT projects. Libraries such as mbed TLS [51] and wolfSSL [182] are highly

configurable and allow for minimalistic implementations, reducing the overall code size. However, DTLS

is poorly optimized for usage in highly constrained devices. The most critical an expensive part of the pro-

tocol is the handshake phase. It establishes a shared master secret and subsequently derives the session

keys. It requires numerous computationally expensive cryptographic operations and large RAM buffers to

store the incoming and outgoing DTLS datagrams. Since the underlying transport layer, UDP, provides no

transmission reliability, the DTLS handshake reimplements multiple aspects of TCP. More precisely, it adds

sequence numbers to the DTLS headers and employs a naive retransmission mechanism with back-off.

DTLS must also performs transport-layer fragmentation to prevent oversized datagrams. Developers can

parametrize these features up to some extent to obtain better performance in constrained environments,

but they must make multiple assumptions about the capabilities of the other endpoint. In real-life deploy-

ments the characteristics of the other DTLS endpoint are not always known.

While DTLS and TLS have approximatively the same overhead, TLS requires a reliable transport layer

protocol, i.e., TCP. TCP has long been considered too heavyweight as a transport protocol for the IoT. How-

ever, due to the concourse of several circumstances, discussed in Chapter 3, a resurrection of TCP in the

context of the IoT is possible. The many options and customizations of TCP allow us to squeeze out signifi-

cant performance gains in scenario’s where the overall reliability of the communication link is questionable.

The above motivated us to perform an in-depth study of the TLS and DTLS handshake over low-power lossy

networks. We analyzed several factors of the handshake phase in both protocols. We investigated how both

protocols handle the reliability and fragmentation of the handshake packets. Next, we studied handshake

latency and the total number of transmitted link-layer frames and bytes.

7.1 A Detailed Overview of the (D)TLS 1.2 Handshake

The TLS and DTLS 1.2 handshake protocols are responsible for negotiating a session that contains: a session

identifier, an optional peer certificate (X.509v3), a compression method, a cipher suite, a master secret and

finally a boolean value stating if the session is resumable. Recall that the handshake messages are carried

in the body of record layer messages, the lowest layer of the (D)TLS protocol. The RFCs also use the term

fragment to refer to the body of a record layer message [183, 109]. To avoid confusion with messages that are

the explicit result of a fragmentation mechanism, possibly on other layers of the networking stack, we will

consistently use the term record fragment to denote the body of a record layer message. The (D)TLS session

negotiation happens in different phases. We illustrated the full handshake protocol in Figure 7.1. Initially,

the peers exchange hello messages (ClientHello and ServerHello), agreeing on a compression method and

cryptographic algorithms. The messages also contain random values and state the support for session re-

sumption (the client uses an empty session ID if no session resumption is wanted or supported). The client

116

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

can also request additional functionalities of the server by including extensions in its hello message. The

client can use, for example, the signature_algorithm extension to indicate to the server which signature

and hash algorithm pairs it can use when computing digital signatures. If the client wishes to use ellip-

tic curve cryptography, it must include the supported_groups and the ec_points_format extensions to

indicate which elliptic curves it supports and how the elliptic curve points will be exchanged, either com-

pressed or uncompressed.

Client Hello
[version, randc , sessionID , suites + ext] + [cookie if DTLS]

Server Hello
[version, rands , sessionID , cipher + ext]

Server
Certificate

[certificate list]

Server Key
Exchange

[DHParams, sign(cert_privkey, (randc ,rands , DHParams))]

Certificate
Request

[client cert type, sign & hash algorithms, Names]

Server Done
[empty message]

Client Certificate
[certificate list]

Client Key
Exchange

[DH Public key]

Certificate Verify
[sign(cert_privkey, message transcript)]

Change Cipher
Spec

[change cipher spec]

Finished
[PRF(m_secret, finishedc , Hash(message transcript))]

Finished

Change Cipher
Spec

[change cipher spec]

[PRF(m_secret, finisheds , Hash(message transcript))]

Client Hello

Hello Verify
Request

[version, cookie]

[version, randc , sessionID , suites + ext]

CLIENT SERVER

DTLS Flight 1

DTLS Flight 3

DTLS Flight 2

DTLS Flight 4

DTLS Flight 5

DTLS Flight 6

Figure 7.1: (D)TLS handshake protocol. The first two messages are a DTLS-only feature.

In the second phase, cryptographic parameters are transfered, necessary to derive the shared master

secret. The peers also swap information to perform (mutual) authentication. When an appropriate cipher

suite is chosen, e.g., when the suite uses ECDHE_ECDSA as a key exchange method, the server will send a

ServerCertificate message. This message contains a list of X.509v3 certificates. The first certificate in the

chain is the server’s certificate, the last one is a self-signed certificate (potentially from a root CA (Certifi-

cate Authority)) and represents the trust anchor. If the client provided a signature_algorithm extension,

then all certificates provided by the server must be signed by a signature and hash pair that appears in the

extension. PSK authentication and raw public keys are also supported. The latter is defined in a TLS ex-

tension (RFC 7250 [184]). Following the certificate chain, the server sends a ServerKeyExchange message, if

the client and the server negotiated an ephemeral key exchange mechanism. In case a static key exchange

117

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

algorithm was selected, the client already has all the information necessary to continue with the key estab-

lishment. When the server wishes to perform mutual authentication on the transport layer, the server will

request a client certificate through a CertificateRequest message. The server then notifies the client with the

ServerDone message that it has no more data to send. In response to a CertificateRequest message, the client

immediately sends its certificate chain. The client then follows-up with the ClientKeyExchange and the Cer-

tificateVerify message. The last two messages provide the server with the client’s key share and a signature

calculated with client’s private key over the message transcript. The server can verify the authenticity of the

client and derive the shared master secret.

In the final phase of the handshake protocol, the client sends a ChangeCipherSpec message, indicating

that the new derived keys are installed in the record layer. This message must arrive before the client’s last

message, the Finished message. The latter contains the shared master secret, a string and a hash of the

entire handshake encrypted with the negotiated encryption algorithm and the session key, derived from

the master secret. The server responds with its own ChangeCipherSpec message and Finished message. The

last roundtrip allows both peers to verify if all the handshake steps completed successfully.

7.1.1 Differences between TLS & DTLS

DTLS majorly follows the TLS specification, but there are some essential modifications due to the unrelia-

bility of the UDP transport layer. We will now briefly present the most important changes.

7.1.1.1 Record Protocol Changes

The DTLS record layer header has two additional fields compared to TLS. An epoch field and a sequence

number field, called the RSN (Record Sequence Number), see Figure 7.2. Epoch numbers are used by end-

points to determine which cipher state has been used to protect the record fragment. The endpoints incre-

ment the epoch numbers on each ChangeCipherSpec message. Epoch numbers are required to resolve the

ambiguity that arises when data loss occurs during a session renegotiation or when multiple handshakes

are performed in close succession.

LengthVersionType Seq. numEpoch

Record Layer
frag. lengthLengthType frag. offset

Seq.
num

Handshake Layer

8 bit 16 bit 16 bit 48 bit 16 bit 8 bit 16 bit 16 bit 24 bit 24 bit

Payload

Record Layer Fragment

Figure 7.2: DTLS handshake message, wrapped in a record message

TLS employs implicit sequence numbers for replay protection. The sequence number is also used in

the MAC calculation of the TLS records. RSNs play a similar role in DTLS but must be explicitly specified

since records can get lost or can be delivered out-of-order. The DTLS record layer combines the RSN and

the epoch number in a single 64-bit value while computing the MAC. RSNs increment by 1 for each record

and are reset to zero whenever the cipher state is rolled over due to a session renegotiation. Thus, DTLS

implementations must make sure the RSN/epoch pair is unique. DTLS can optionally performs replay

detection by using the sliding window mechanism (defined in RFC 2401 [185]), see Figure 7.3. If datagrams

always arrived in order, it would suffice for a DTLS endpoint to track the most recent RSN seen in order

to detect replays. Since datagrams may also arrive out-of-order, a sliding replay window is required. The

endpoints reject duplicate datagrams, and datagrams with RSNs that are lower than the left edge of the

window.

DTLS records must fit in a single UDP datagram to prevent buffering of incomplete records on the DTLS

record layer. DTLS should attempt to size records so that they do not trigger IP fragmentation along the way.

Loss of a single IP fragment would result in the loss of the entire datagram. Also, NAT (Network Address

Translation) devices and firewalls might drop IP fragments, and IP fragmentation is no longer supported

by default in IPv6. It is noteworthy that both TLS and DTLS support an extension that can explicitly limit

the size of the record fragments, called the MFL (Maximum Fragment Length) extension. Although, it is

118

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

7 8 9 10 11 12 13 14 15 1665 16 17

RSNHighest RSN
received

Sliding Window Rejecting Future

Not yet
received

Figure 7.3: DTLS sliding window for replay detection.

not widely support by TLS servers, since the TCP protocol can perform segmentation to avoid oversized IP

datagrams1.

7.1.1.2 Handshake Protocol Changes

The unreliability of the transport layer had a major impact on the design of the DTLS handshake protocol.

Unlike application data, the handshake protocol must exchange its messages reliably. They are necessary

to derive a shared security context successfully. Therefore, the DTLS handshake protocol reimplements

some of the mechanisms we can find in the TCP protocol, to compensate for UDP’s unreliability. More

precisely, the handshake protocol employs a retransmission mechanism and message sequence numbers.

The handshake message sequence numbers are independent of the record layer sequence numbers. The

retransmission operation works as follows: the DTLS handshake is divided into multiple flights, see Fig-

ure 7.1. Each time one of the peers has sent a full flight, it arms a timer. If the timer expires and the peer

has not yet received the entire next flight, it will resend the entire previous flight. Handshake messages can

grow larger than the PMTU (Path MTU), mostly due to long certificate chains. To prevent IP fragmentation

DTLS, does support fragmentation, but only on the handshake layer. Handshake messages have a fragment

offset field and fragment length field, see Figure 7.2, to enable reassembly at the receiver side.

DTLS uses a connectionless transport protocol, which makes it vulnerable to two types of DoS attacks.

The first attack is a resource consumption attack where a large amount of malicious clients only send Clien-

tHello packets to exhaust the resources of the server. The second attack is an amplification attack where

malicious clients spoof the IP address of a victim device and send ClientHello to the server. The server then

responds with an entire DTLS flight (containing the server hello, server certificates, server key exchange, and

server hello done). To mitigate these attacks, DTLS can optionally use a cookie exchange technique. At the

start of the handshake protocol, the client must replay a cookie provided by the server in order to demon-

strate that it is capable of receiving packets at its claimed IP address. The cookie exchange adds one full

RTT to the handshake latency compared to TLS. The technique is depicted in the first two messages in Fig-

ure 7.1. TLS does not suffer from the described attacks since it runs over TCP. The TCP handshake takes

place before the first TLS message can be sent. It provides an efficient way of detecting address spoofing

and potential DoS attacks.

7.2 The (D)TLS Handshake over IEEE 802.15.4E

Now that we understand the mechanisms behind the (D)TLS handshake, we can start our study of both

protocols in the context of the IoT. For our comparison, we use the standard IoT networking stack. The

lowest two layers are occupied by the IEEE 802.15.4E protocol, followed by 6LoWPAN, IPv6 and finally,

either UDP and DTLS or TCP and TLS. We describe a scenario where a (D)TLS connection is established

between a node in the IEEE 802.15.4E network and a device outside of the LoWPAN.

7.2.1 Efficient Handshake Reliability

Both protocols require reliability during the handshake phase, but we saw in the previous section that they

tackle the issue in different ways. DTLS has a straightforward, albeit naive retransmission mechanism.

DTLS schedules a retransmission when it has transmitted an entire DTLS flight. The retransmission occurs

1The TCP protocol can explicitly negotiate the maximum size of its segments through the MSS (Maximum Segment Size) option.

119

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

if the next flight is not received entirely within the timeout delay. The default timeout value is 1 s, and it

doubles each time the transmission fails, maxing out at 60 s. Since neither UDP nor DTLS uses acknowl-

edgment packets, there is no way of informing the peer which DTLS messages inside the flight were well

received and which ones got lost. Therefore, DTLS is obligated to retransmit the entire flight.

The DTLS retransmission behavior is ill-suited for low-power networks for several reasons. First, both

endpoints must be capable of estimating the latencies in the network correctly. The latter is tricky because

TSCH network latency depends on the number of hops a UDP datagram needs to traverse, the density of

the TSCH schedule, and the size of the UDP datagram. The TSCH network fragments large UDP datagrams

into multiple 6LoWPAN frames. Each one of them is sent in an available active slot in the TSCH schedule. A

network with a depth of multiple hops, combined with a sparse schedule, will induce a high latency on the

end-to-end connection. Although the constrained node endpoint in the TSCH network might be aware of

these factors impacting the RTT, the DTLS endpoint out on the Internet is probably not. Secondly, the cryp-

tographic operations necessary to complete the handshake often require considerable time on low-power

devices without hardware support, see Chapter 3. The operations need to complete before an answer can

be sent back, adding a significant delay to the RTT. Unless the Internet DTLS endpoint has a very con-

servative initial retransmission value for the DTLS handshake, the cryptographic latency will cause many

unnecessary retransmissions. Since DTLS retransmits entire flights, which can reach more than 1000 bytes

for flights four and five, this has dire consequences for the operation of the TSCH network.

TLS endpoint

TLS
endpoint

TCP segment

TCP ACK

TCP segment

Network
delay

Crypto
delay

TCP ACK

cancel
retransmission

timer

DTLS endpoint

DTLS
endpoint

UDP datagram

UDP datagram

Network
delay

Crypto
delay

network latency,
crypto latency,
datagram lost ?

Figure 7.4: DTLS endpoints, not aware they are communicating with a constrained device that needs additional time

for the cryptographic operations, are at risk of needlessly retransmitting entire DTLS flights.

TLS relies wholly on TCP to provide the necessary handshake reliability. TCP segments carry entire

or partial TLS records, with each segment having its proper retransmission timer. Contrary to UDP, TCP

uses acknowledgment packets in combination with its retransmission timers. The acknowledgments are

cumulative, meaning that they acknowledgment all prior segments. They provide TCP with an accurate

estimation of the RTT. The retransmission timer is initialized at 1 s upon completion of the TCP handshake

and gets updated throughout the lifetime of the connection. TCP’s flexible roundtrip estimation provides a

significant advantage compared to the static values DTLS uses. However, the estimation happens on a per-

segment basis and does not account for possible fragmentation on the lower layers. Several small TCP seg-

ments, not requiring any fragmentation, can traverse the TSCH network rather quickly, lowering the overall

RTT estimation. If these small segments are followed by a large TCP segment, which requires 6LoWPAN

fragmentation, the current RTT value might be too aggressive, triggering an unnecessary retransmission.

The behavior of the TCP retransmission mechanism can be improved for use in low-power networks.

First, by employing the TCP’s SACK (Selective Acknowledgment) option [186], the number of unnecessary

retransmissions can be reduced. The SACK option allows the receiver to communicate to the sender which

segments it has received and which require retransmission. The option is advantageous in a scenario where

multiple TCP segments are on the wire, and segments successfully received are interleaved with segments

lost. A receiver could then add one or more SACK blocks to its acknowledgment to precisely indicate which

segments need retransmission.

A second improvement is less conventional and based on a PEP (Performance-Enhancing Proxy) [187,

188]. TCP PEPs are a commonly used technique to accelerate TCP connections over satellite links. TCP

spoofing, a term synonymously used for TCP PEP functionality, intercepts a TCP connection before the

120

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

Internet

TLS endpoint
Network
Gateway

TSCH Network

TLS
endpoint

TCP PEP

traditional RTT
fragmentation-aware RTT

Figure 7.5: TCP spoofing to improve handshake reliability.

segments are sent to the satellite and terminates the connection as if the interceptor is the intended desti-

nation. It forwards the TCP segments further to the actual destination, but it accounts for the specificities of

the satellite link, notably a long RTT. For the original TCP endpoints, the TCP PEP is transparent. Since the

PEP generates the acknowledgments, they arrive much faster at the sender, allowing the TCP protocol on

both endpoints to sustain a much higher throughput compared to a TCP satellite link without a PEP. In the

context of the IoT, the PEP could be co-hosted with the network gateway. Its goal is to prevent unnecessary

retransmissions that could occur due to the high latency induced by the peculiarities of the TSCH network.

The network gateway intercepts the TCP connection and quickly generates acknowledgments for segments

originating from the Internet endpoint. Since the network gateway is aware of the specifics of the TSCH

network, it can calculate a novel RTT, which takes into account the fragmentation ratio of TCP segments.

7.2.2 Multi-Layer Fragmentation

The maximum size of a (D)TLS record is 16,535 B. Since a (D)TLS record is the unit of protection, mean-

ing that the encryption and MAC are calculated over an entire record, the record must be fully received

before decryption is possible. In practice, both (D)TLS endpoints must be capable of allocation an input

and output of buffer 16,535 B to store incoming and outgoing records. Typically constrained devices cannot

support buffers of this size. Several approaches are available to limit the size of the incoming and outgoing

records. We can assume the application running on both endpoints is aware of the fact that at least one of

the peers is constrained. The application should thus avoid passing large blobs of application data to the

(D)TLS layer, as this would result in oversized records. Alternatively, the constrained peer can negotiate the

MFL extension during the handshake. If both endpoints support the MFL extension and negotiate its usage,

it restricts the maximum size of the record fragments during the handshake and the later exchanges of ap-

plication data. Valid sizes are 512 B, 1024 B, 2048 B, and 4096 B. There are some drawbacks to the extension.

Since this is an optional feature not all (D)TLS implementations support it. In addition, only clients can

request the use of MFL extension. (D)TLS servers have no way of restricting the size of record fragments2.

As mentioned before, the DTLS handshake protocol, by default, supports the fragmentation of hand-

shake messages to make sure that they do not exceed the PMTU. Large handshake messages can frequently

occur in the messages containing the certificate chains. Thus, the maximum record fragment size and by

extension, the maximum length of a handshake message fragment, for DTLS depends on the PMTU. In a

constrained network, the IPv6 MTU depends on the 6LoWPAN fragmentation layer. If the TSCH nodes are

IPv6 compliant, the nodes should support the minimal IPv6 MTU of 1280 B. This requires a 6LoWPAN layer,

which must be able to buffer up to 11 link-layer frames. Alternatively, the maximum fragment length exten-

sion, described above, can be used to set a maximum record fragment length that is smaller than the PMTU,

e.g. 512 B, even if the IPv6 PMTU allows larger datagrams.

Just as DTLS, TLS clients can try to use the maximum fragment length extension to limit the size of

the record fragments. No handshake fragmentation mechanism exists for TLS handshake messages since

the TCP layer produces segments which it automatically limits in size accordingly to the PMTU. The TCP

protocol also implements the TCP MSS option. This option allows both the client and the server to limit the

size of the TCP segments, independent of the underlying PMTU. The latter is very helpful in environments

where constrained nodes communicate over IPv6 but are not fully capable of supporting 1280 B IPv6 frames.

The MSS option ensures that the IPv6 frames carrying a TCP segment will never exceed a specific value. Of

course, TLS can also use the MFL extension to reduce the record fragment size.

2To address these issues the “record size limit” extension was defined. It is valid for all (D)TLS version and supposed to replace the
deprecated MFL extension. [189]

121

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

MFL
negotiated?

MFL = 214

No

MFL in
{ 29, 210, 211, 212 }

Yes Handshake
message (HS)

DTLS
TLS?

TLS DTLS

Encapsulate in
TLS record

Yes

No
Fragment

Encapsulate in
DTLS record

No

Encapsulate in
UDP datagram

|TLS| > MSS
 |TLS| > PMTU

Smaller
Segments

Encapsulate in
TCP datagram

D
T
L
S

 o
r

T
L
S

 la
ye

r

Encapsulate in
IPv6

6LoWPAN
Frag

Encapsulate in
IEEE 802.15.4

Fragment

Yes

No

Yes

No
Tr

a
n
sp

o
rt

 L
a
ye

r
N

e
tw

o
rk

L
a
ye

r
6
L
o

W
P

A
N

 a
d

a
p

ta
tio

n
 &

IE
E

E
 8

0
2
.1

5
.4

 L
a
ye

r

|HS| > MFL

Fragment

|HS| > MFL
 |HS| > PMTU

Yes

MFL < PMTU ?
|FRAG| = MFL : |FRAG| = PMTU

MSS < PMTU ?
|SGMT| = MSS : |SGMT| = PMTU

Figure 7.6: Multi-layer fragmentation for (D)TLS records.

7.2.3 Handling Burst Traffic

Typical applications running on top of constrained wireless networks periodically generate small amounts

of data. TSCH uses a scheduling function to manage slot allocation and deletion in the schedule. The de-

fault scheduling function is called the MSF (Minimal Scheduling Function) and is being developed by the

IETF [190]. It uses commands from 6top to manipulate the TSCH schedule. The MSF tracks the usage of the

slots in the schedule. If slot usage surpasses a threshold value, the scheduling function will try to allocate

more slots. If slot usage drops below a threshold, it will delete slots from the schedule. This approach works

well when the applications only sporadically generate data. It keeps the duty cycle of nodes minimal, reduc-

ing energy consumption in the network. However, the (D)TLS handshake does not follow this paradigm. It

generates a massive burst of traffic, which could easily overflow the small packet buffer sizes on the nodes,

leading to congestion and packet losses. The MSF function is not adapted to handle these traffic patterns.

Any allocation done for burst traffic should not be limited to the communication link between the traffic

originator and its parent but should extend over all the hops to the network sink. Currently, the 6top does

not provide a command that can instruct nodes to build such a “tunnel”, but the 6top addCell command

does contain a 2 B field for opaque metadata that should be passed directly to scheduling algorithms run-

ning on top of MSF. Alternative scheduling functions or future updates of the MSF IETF draft [190] could

use this field to instruct the nodes to forward the allocation request to all the hops between the originator

122

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

and the network sink.

Congestion control is not available when using UDP as transport protocol and DTLS does not incorpo-

rate any of the TCP congestion control mechanism. One solution might be to allow the application running

on the constrained node to explicitly request the lower layers to allocate more slots and potentially build a

tunnel to quickly evacuate the burst traffic from the network, as discussed above. The application should

make this request before it starts the handshake procedure. When the handshake completes, it is the appli-

cation’s responsibility to tear down the tunnel. DTLS messages could also be carried over DCCP (Datagram

Congestion Control Protocol) [191], which provides congestion control for unreliable datagrams.

TCP provides multiple mechanisms to handle congestion traffic inside the network. However, the tra-

ditional congestion mechanisms (AIMD (Additive Increase/Multiplicate Decrease) and TCP slow start) are

not well-suited for wireless networks. The congestion mechanism increases or decreases the size of the

congestion window, which is typically up to 4 times the MSS [192]. Alternatively, RFC 6928 [193] defined an

experimental new value for the initial congestion window, which in practice results in an initial window of

10 times the MSS. The latter is nowadays used in many TCP implementations [98]. Since typical constrained

applications periodically send small bits of information, the congestion mechanism is not useful. In case

of burst traffic like the (D)TLS handshake, an initial small congestion window could limit the sending rate,

if a low enough MSS was negotiated, but then rapidly allow for more we data in flight. A more appropriate

congestion mechanism for highly constrained networks is Nagle’s algorithm. Nagle’s algorithm limits the

amount of data in flight to a single full-sized MSS, unless another full-sized segment is available. Nagle’s al-

gorithm is depicted in Algorithm 7. Constrained nodes typically use statically allocated buffers, and Nagle’s

algorithm will ensure that they are utilized at maximum efficiency. Without Nagle, many small segments

could occupy buffer spaces foreseen for bigger segments, thus wasting a lot of RAM.

Algorithm 7 Nagle’s Algorithm

1: procedure TRANSMIT(D)

2: if wnd_size>= mss and |D| >= mss then
3: Send(D)

4: else
5: if data in flight then
6: Queue(D)

7: else
8: Send(D)

The IETF draft on lightweight TCP [98] also mentions the use of the ECN (Explicit Congestion Control)

bit in combination with TCP to limit network congestion. ECN allows a router (intermediate node) to signal

a warning for looming congestion by setting a bit in the IP header of a packet, e.g., when the internal buffer

has reached 75% of its capacity. An ECN-enabled TCP receiver will echo back the congestion warning to

the TCP sender by setting the ECN flag in its next acknowledgment. The sender then triggers congestion

control measures as if a packet loss had occurred. Finally, the use of delayed acknowledgment packets

can also help reducing congestion in the network. TCP’s delayed acknowledgments are meant to reduce

the number of acknowledgment packets sent within a TCP connection, thus reducing network overhead.

However, it is well-known that delayed acknowledgments should not be used in combination with Nagle’s

algorithm since this would hurt throughput in the network.

7.3 Performance Evaluation

7.3.1 Experimental Setup

7.3.1.1 Software stack

In order to obtain experimental results on the performance of DTLS and TLS on top of IEEE 802.15.4E, we

ported the mbed TLS library to the OpenWSN project [194]. We had to overcome several challenges before

we could start with the evaluation. Two core parts are missing in the current version of the OpenWSN stack:

123

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

there is no 6LoWPAN fragmentation mechanism to handle large IPv6 datagrams, and the TCP protocol is

not implemented. We implemented both protocols and integrated them with the OpenWSN stack. We

designed two abstraction layers, called opendtls and opentls, which function as a wrapper around the

mbed TLS library and allow applications to interact with the (D)TLS stack and open secure channels.

At the lower layers, OpenWSN uses timers and interrupts to implement the TSCH schedule. On the

boundary of each timeslot, the node wakes up, e.g., every 20 ms. It checks the slot type and acts accord-

ingly. During an active slot, the software will schedule additional timers implementing the internal timeslot

behavior, described in Chapter 6 and Figure 6.1. When a frame is sent or received, the IEEE 802.15.4E

software layer schedules an upper-layer task (6top task). OpenWSN uses a simple non-preemptive task

scheduler to execute the tasks. It executes the tasks according to a statically specified priority. OpenWSN

does not use any heap memory; all variables are global or live on the stack. Since mbed TLS needs a heap

to perform its cryptographic operations, it provides its proper heap allocation functions. A large memory

buffer is declared as a global variable and passed to mbed TLS to use as a heap.

7.3.1.2 Hardware

We used state-of-the-art OpenMote hardware to perform our experiments. The OpenMote platform uses

the CC2538 SoC [14]. It has 32 KiB of memory and a 32 MHz Arm Cortex-M3 processor. Additionally, it

provides a cryptographic co-processor for AES and SHA functions and hardware acceleration for several

big integer and elliptic curve operations. The sink node of the TSCH network is connected through a se-

rial interface to a PC implementing the network gateway, see Figure 7.7. The network gateway software,

called openvisualizer [195], is also provided by the OpenWSN project. It implements the 6LoWPAN com-

pression, decompression, fragmentation, and reassembly of TSCH frames. It uses a TUN interface to route

the packets to their final destination.

7.3.2 Handshake Measurements

We performed several experiments using different sets of configuration parameters to assess the impact

on the performance of both the TLS and DTLS stack. During the experiments, a low-power node opens a

(D)TLS connection to a server on the Internet. The TCP/ip network stack of the server is not modified and is

unaware it is talking with a constrained device. The (D)TLS handshake always uses mutual authentication

through the exchange of certificates, unless noted otherwise. The certificate chains exchanged are only

one certificate long. The received certificate is matched against a stored root certificate which acts a trust

anchor for the authentication.

Internet

Network
Gateway

TSCH Network

(D)TLS
endpoint

OpenVisualizer

serial link

OpenWSN +
mbed TLS

OpenWSN +
mbed TLS

TUN
+ hops

Ethernet
 WiFi

Figure 7.7: Experimental setup to analyze (D)TLS handshake performance.

7.3.2.1 Cryptographic Impact

The different asymmetric primitives used during the secure connection setup can significantly impact the

duration of the handshake. We test two elliptic curves of different sizes (secp256r1 and secp192r1). The

chosen key establishment cipher suite is ECDHE_ECDSA. We can configure our devices to either use the

software-only implementation of the primitives or leverage the hardware support on the OpenMote plat-

form. The mbed TLS stack provides an exciting feature for the software-only implementations. It allows us

to interrupt the cryptographic operations and treat other high-priority tasks first. Later we can return to the

operation and continue where it was interrupted. In single-threaded environments, with non-preemptive

scheduling, this keeps the system responsive even when the cryptographic operations take several seconds

124

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

to complete (see Chapter 2). Figure 7.2 shows how cryptographic operations can impact the total duration

of the handshake.

SECP192R1 (H)

3.4

3.5

3.6

3.7

3.8
H

S
 L

at
en

cy
 (s

)

SECP192R1 (S)

5.45

5.50

5.55

5.60

5.65

5.70

5.75

5.80

5.85

SECP256R1 (H)

4.7

4.8

4.9

5.0

5.1

5.2

5.3

5.4

SECP256R1 (S)

9.4

9.5

9.6

9.7

9.8

9.9

10.0

10.1

Figure 7.8: TLS handshake latency using secp192r1 and secp256r1, with and without hardware support.

In addition to the impact on the handshake latency, the memory pressure devices experience also de-

pends on the chosen curve and the availability of hardware support. Every heap allocation comes with an

additional header block, which contains metadata about the allocation. In mbed TLS, this header block is

32 B long. Figure 7.9 shows the heap allocations throughout the TLS handshake. The lower bar is the sum of

all allocation for a given (D)TLS state, while the upper part signifies the overhead of metadata on the heap.

Clie
nt

Hell
o

Serv
er

Hell
o

Serv
er

Cert

Serv
er

KeX

Serv
er

Cert
 R

eq

Serv
er

Don
e

Clie
nt

Cert

Clie
nt

KeX

Cert
 V

eri
fy

Clie
nt

CCS

Clie
nt

Fini
sh

Serv
er

CCS

Serv
er

Fini
sh

Flus
h B

uff
ers

HS W
rap

 U
p

Handshake State

0

2000

4000

6000

8000

10000

12000

B
yt

es

TLS Allocations
DTLS Allocations
Heap Overhead

(a) Cryptography accelerated

Clie
nt

Hell
o

Serv
er

Hell
o

Serv
er

Cert

Serv
er

KeX

Serv
er

Cert
 R

eq

Serv
er

Don
e

Clie
nt

Cert

Clie
nt

KeX

Cert
 V

eri
fy

Clie
nt

CCS

Clie
nt

Fini
sh

Serv
er

CCS

Serv
er

Fini
sh

Flus
h B

uff
ers

HS W
rap

 U
p

Handshake State

0

2000

4000

6000

8000

10000

12000

B
yt

es

TLS Allocations
DTLS Allocations
Heap Overhead

(b) Software-only cryptography

Figure 7.9: Memory pressure of the (D)TLS handshake, performing mutual authentication with certificates.

We observe that there are less heap allocations when using hardware support for specific steps in the

handshake. The difference is evident when the node treats the ServerKeyExchange record. For other steps

in the handshake, the difference is limited. Two factors explain this behavior. Firstly, we mentioned before

that the OpenMote does not have a co-processor for asymmetric algorithms, it has hardware acceleration

for specific operations on elliptic curves, e.g., scalar multiplication, point addition, etc. Therefore, we can-

not accelerate the entire asymmetric algorithms, merely subparts of it. Secondly, the mbed TLS software

only exports specific function signatures that can be overwritten to provide internal calls to hardware ac-

celeration. We also notice that even before the handshake starts, there is roughly 4600 B already allocated on

the heap. Mbed TLS stores multiple data structures on the heap before the handshake commences. These

contain the device’s root certificate, private key, and variables describing the TLS state machine.

125

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

7.3.2.2 Impact of Network Stack Configuration

Maximum Transmission Unit defines the largest payload size that can be transmitted on the net-

work layer. IPv6-compliant IoT devices should support an MTU of 1280 B [196]. However, the tight memory

constraints on low-power IoT devices make this a challenging requirement. When we compile the Open-

WSN stack with our TCP implementation, it supports IPv6 datagrams with a maximum payload size of

864 B. Combining OpenWSN with UDP allows for an MTU of 1377 B. Since TCP requires more RAM than

UDP, there is fewer buffer space left to store 6LoWPAN fragments, that can be reassembled in a large IPv6

datagram, resulting in a lower MTU. TCP requires RAM for the variables maintaining the connection state,

the TCP state machine, and the send and receive buffers. The size of the MTU affects the amount of bytes

transmitted during the (D)TLS handshake.

TABLE 7.1: Impact of the MTU on the TLS and DTLS handshake

SSL-type
Restrictions [B]

MTU [B]
Latency [s] Bytes TxRx [B]

Nagle
MSS MFL µ σ µ σ

TLS

844 - 864 4.495 0.096 3102 5.49 X

844 - 864 4.285 0.076 3358 0.60 -

336 - 356 4.539 0.089 3345 1.25 X

336 - 356 4.241 0.118 3671 3.74 -

DTLS
- 512 529 3.891 0.090 2841 0.83 -

- 1024 1041 3.795 0.064 2680 1.00 -

Table 7.1 shows the handshake latency and the total number of exchanged bytes between both end-

points to establish the shared (D)TLS security contexts. We count the bytes of the received and transmitted

IEEE 802.15.4E frames containing handshake data. We tested various MTU configurations. As explained

before, during the TLS handshake, we can limit the size of the TCP segments, and by extension, the IPv6

datagrams by choosing a small MSS value during the TCP handshake. When we compare the TLS hand-

shakes with the MTUs at 864 B and 356 B, respectively, it shows that a larger MTU results in fewer transmit-

ted bytes. Since more TLS data fits in a TCP segment, it reduces the overhead of the TCP header and the

number of acknowledgments necessary. By activating Nagle’s algorithm, we can further reduce the number

of transmitted bytes.

Recall that in the DTLS protocol, records must fit entirely into a UDP datagram. Because of the poten-

tially sizeable handshake messages, the DTLS handshake layer implements a fragmentation mechanism.

Using the MFL extension, a client can inform the server of the maximum record fragment size it supports.

With an IPv6 MTU of 1377 B, the node can use two different MFL sizes: 512 B and 1024 B. Both values indi-

cate the size of the record fragment, thus to derive the MTU, we add 13 B for the DTLS record header, and a

4 B compressed UDP header. Similarly to TCP, a higher IPv6 MTU results in fewer datagrams and thus less

overhead caused by additional headers. Compared to TLS, DTLS uses fewer bytes to complete the hand-

shake. Several factors contribute to this difference. UDP does not use acknowledgment packets, and UDP

and TCP have significantly different header sizes. The UDP header is even further compressed from the

standard 8 B down to 4 B through 6LoWPAN header compression, while TCP uses an uncompressed header

of 20 B.

The second aspect we evaluated is the handshake latency. We observe that the MTU only slightly im-

pacts the overall latency of both the TLS and DTLS handshake. When we activate Nagle’s algorithm in the

TCP algorithm, it incurs an additional delay. Without Nagle, TCP can pipeline the segments, having mul-

tiple unacknowledged segments in transit. Nagle’s algorithm optimizes the segment space but limits the

number of unacknowledged segments in flight. To time the latency of the TLS, we start the clock when the

client sends it first syn segment to open the TCP connection. While timing the DTLS handshake latency,

we start the clock when the client sends the initial ClientHello, triggering DoS protection on the server end-

point. To prevent unnecessary DTLS retransmissions, we set the DTLS timeout value to a conservative 3 s

interval. To avert redundant TCP retransmissions, we drop the initial synack segment issued by the server,

while performing the TCP handshake. The latter causes a single synack retransmission but also opens the

126

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

connection with a more conservative fallback RTO (Retransmission Timeout) value of 3 s instead of 1 s, en-

suring that TCP does not needlessly retransmits during the TLS handshake [197]. It does, however, induce

an additional 1 s delay to the TLS handshake.

The final parameter that is impacted by the MTU is the internal 6LoWPAN reassembly buffer pressure

on the constrained (D)TLS endpoint. We did not consider the buffer pressure of the intermediate router

nodes since they use fast fragment forwarding [115]. The 6LoWPAN fragments are not reassembled on the

routers and are directly forwarded to the next hop, see Chapter 3. As long as the intermediate routers have

sufficient active slots, dedicated to communication with their parents and children, their buffers will not be

at risk of overflowing.

The size of the MTU affects the buffer pressure since a node must be able to store all the individual

fragments before it can reassemble the IPv6 datagram and treat it in the higher layers of the stack. Fig-

ure 7.10 shows the results for varying MTU configurations for both TLS and DTLS. We remark that for large

MTUs, Nagle’s algorithm increases the buffer pressure (see the top plot in Figure 7.10). The large segments

require many 6LoWPAN fragments. We can clearly distinguish two phases in the handshake protocol. The

initial peak corresponds to the reception of the ServerCertificate, ServerKeyExchange, CertificateVerify, and

ServerDone packets. The second bump is the accumulation of 6LoWPAN fragments being queued for trans-

mission, after the node has prepared its ClientCertificate, ClientKeyExchange, CertificateVerify, ChangeCi-

pherSpec, and Finished packets. Without Nagle, the endpoints are not obligated to put all the TLS records

in a single TCP segment, resulting in fewer 6LoWPAN fragments per IPv6 datagram.

When we lower the MTU to 356 B, the behavior is inverted. Without Nagle, the node quickly sends

multiple, shorter TCP segments, which are all fragmented and subsequently queued for transmission. In-

terestingly, the initial peak, caused by the incoming server TLS handshake messages, has almost completely

disappeared. With Nagle activated and an MTU of 356 B, the client’s handshake messages are split into two

TCP segments. The first one is filled and transmitted directly; the second segment is not full and can thus

not be sent until an acknowledgment is received for the first segment (see Algorithm 7).

Lowering the MTU even further does not reduce buffer pressure. With a lower MTU, TCP can fill many

segments. Since Nagle, tells us that multiple filled segments can be transmitted without having received an

acknowledgment, all the segments are queued for transmission, creating many 6LoWPAN fragments in the

internal buffer.

The DTLS handshake behaves similarly to a TLS connection that uses a large MTU and Nagle’s algo-

rithm. DTLS sends entire flights at once, causing many 6LoWPAN fragments in transit. They must all be

correctly received before reassembly can take place. Lowering the MTU lowers the buffer pressure for in-

coming messages, but does nothing to alleviate buffer pressure for outgoing messages.

Performance Enhancing Proxies are an alternative solution to prevent TCP’s retransmission prob-

lem without modifying the TCP implementation. By enabling the gateway as a PEP, we can partially cir-

cumvent the additional delays introduced by the IEEE 802.15.4E link layer. Table 7.2 depicts the results.

We notice that the TLS handshake takes one second less to complete, with the PEP enabled. It even com-

pletes faster than the DTLS handshake. The latter might seem surprising since the TLS connection needs

to exchange more data to establish the secure connection. However, the DTLS handshake (with an MTU

of 1041 B) requires 25 IEEE 802.15.4E frames to complete. Only one of those frames is not a 6LoWPAN

fragment and, thus, does not induce fragmentation and reassembly delays. The TLS handshake requires 30

IEEE 802.15.4E frames to complete. The additional overhead comes from the TCP acknowledgments. Ten

of the 30 frames are sufficiently small to traverse the network without fragmentation, 20 frames are 6LoW-

PAN fragments. We can thus conclude that with the configuration depicted in Table 7.2, DTLS spends a

significant time waiting for all the 6LoWPAN fragments, because of the high fragmentation rate of the UDP

datagrams.

TSCH’s schedule has the most significant impact on the handshake latency. Until now, all measure-

ments have used a schedule with only active slots. All slots were either allocated for transmission or recep-

tion. Figure 7.11 shows the handshake latency with respect to the number of active slots in the schedule. The

slots are allocated at random in the slotframe by MSF. We use the network gateway as a PEP, and we choose

a conservative DTLS timeout to prevent needless TCP retransmissions when we grow the TSCH schedule

and thus lower the duty cycle of the nodes. For both TLS and DTLS, we maximize the MTU, and we activate

127

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

0.0

2.5

5.0

7.5

Bu
ffe

r p
re

ss
ur

e Configuration
TLS (no nagle) | MTU = 864
TLS (nagle) | MTU = 864

0

5

10

Bu
ffe

r p
re

ss
ur

e Configuration
TLS (no nagle) | MTU = 356
TLS (nagle) | MTU = 356

0

5

10

Bu
ffe

r p
re

ss
ur

e Configuration
TLS (no nagle) | MTU = 229
TLS (nagle) | MTU = 229

0 50 100 150 200
Allocations

0

5

10

Bu
ffe

r p
re

ss
ur

e Configuration
DTLS | MTU = 519
DTLS | MTU = 1041

Figure 7.10: Impact of the MTU choice on the internal reassembly buffer of the constrained (D)TLS endpoint.

TABLE 7.2: Performance-enhancing proxy and TLS

SSL-type
Restrictions

MTU [B]
Latency [s] Bytes TxRx [B]

Nagle
MSS µ σ µ σ

TLS
844 864 3.323 0.125 3098 2.13 X

844 864 3.209 0.083 3359 1.15 -

Nagle’s algorithm for TCP. For the single-hop setup, the latency of both the TLS and DTLS handshake is

quite similar. Until 25% active slots, TLS performs slightly better, but when we increase the slotframe size

further, the delay induced by the TCP acknowledgment packets becomes more significant. When we repeat

the same experiment with a two-hop network, the behavior is similar and amplified.

7.3.2.3 Handshake Reliability

We already saw that both TLS and DTLS approach the issue of handshake reliability differently. Recall that

TLS entirely relies on the functionalities of TCP to handle packet losses, while DTLS comes with a simple

retransmission mechanism. IEEE 802.15.4E provides a rather reliable link and physical layer. Channel

hopping and dedicated slots in the schedule mitigate many of the transmission errors due to multi-path

fading and collisions. The link layer uses acknowledgments and up to 15 retransmissions combined with

a back-off mechanism to minimize losses. However, IEEE 802.15.4E frames can be dropped quickly due

to limited buffer sizes in the nodes. In the previous section, we saw that some transport configurations

incur a high buffer pressure. To test how both TLS and DTLS behave when the lower layers do not provide

100% reliability, we set up an experiment where 6LoWPAN fragments had a 5% chance of being dropped

128

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

5.94 11.76 26.09 54.55 100.0
Active slots [%]

0

10

20

30

40
La

te
nc

y
[s

]

SSL
dtls (1 hop)
tls (1 hop)

5.94 11.76 26.09
Active slots [%]

La
te

nc
y

[s
]

SSL
dtls (2 hop)
tls (2 hop)

Figure 7.11: Impact of the TSCH schedule on the handshake latency.

when traversing the TSCH network. Figure 7.12 shows the results for the TLS handshake. As we already

discussed in the previous sections, a lower MTU results in more bytes exchanged to establish up the secure

connection. However, when there are losses, the smaller TCP segments allow to more precisely indicate,

through the use of the TCP SACK option, which segments require retransmission. When the receiver can

accurately indicate which losses occurred, the transmitter can minimize the data it has to retransmit. This

means there are fewer 6LoWPAN fragments on the network, and the handshake will finish faster.

yes no
Nagle Activated

2000

3000

4000

5000

6000

7000

Li
nk

 L
ay

er
 B

yt
es

 [B
]

IPv6 MTU
356
864

yes no
Nagle Activated

4

6

8

10

12

H
an

ds
ha

ke
 L

at
en

cy
 [s

]

IPv6 MTU
356
864

Figure 7.12: Impact of lossy links on the TLS handshake protocol.

In a second experiment, we looked at the behavior of the DTLS handshake over lossy links. The sim-

ple retransmission mechanism of DTLS does not provide any feedback mechanisms between transmitter

and receiver. Since all the DTLS records are combined in only a few large UDP datagrams, loss of a single

6LoWPAN fragment results in the loss of numerous DTLS records, and the entire flight is retransmitted.

Figure 7.13 depicts the comparison between the lossy TLS and DTLS handshake.

We directly notice that the lack of control over the retransmission mechanism provided by DTLS, results

in a drastic increase in the number of bytes exchanged between the DTLS endpoints. The latter also clearly

affects the handshake latency.

129

CHAPTER 7. PERFORMANCE OF TRANSPORT LAYER SECURITY OVER
IEEE 802.15.4E NETWORKS

TLS DTLS
SSL

2000

4000

6000

8000

Li
nk

 L
ay

er
 B

yt
es

 [B
]

IPv6 MTU
356
529
864
1041

TLS DTLS
SSL

0

10

20

30

40

H
an

ds
ha

ke
 L

at
en

cy
 [s

]

IPv6 MTU
356
529
864
1041

Figure 7.13: Comparison of (D)TLS handshake behavior over lossy links.

Conclusion

This chapter presented our third contribution. It provided an in-depth analysis of the most critical part

of the (D)TLS protocol: the handshake. We structurally presented the differences between TLS 1.2 and

DTLS 1.2 and analyzed how they impact the handshake’s performance when the messages are carried in

IEEE 802.15.4E frames. We showed that DTLS needs fewer bytes to complete the handshake. It has a

lower handshake latency than TLS when the (D)TLS endpoint is a leaf node whose frames need to traverse

multiple hops before they reach the gateway. However, there are several other aspects where TLS achieves

better results than DTLS.

Firstly, TLS has a slightly lower memory consumption than DTLS during the handshake. We can at-

tribute the difference to the fact that the DTLS handshake protocol must use an internal buffer to reassem-

ble the fragmented handshake messages. When we also account for the difference in memory consumption

due to the complexity of TCP compared to UDP, the results are different. They depend majorly on the sizes

of the TCP send and receive buffers.

Secondly, during the handshake, TLS can take full advantage of the many TCP optimization mecha-

nisms. The MSS option and Nagle’s algorithm can collaborate to relieve reassembly buffer pressure. The

TCP MSS and SACK options are extremely helpful in lossy environments, and they allow the TLS handshake

to minimize its impact when packet losses occur. The DTLS handshake suffers from high latency and nu-

merous redundant retransmission over lossy networks.

Finally, the usage of a TCP PEP allows a constrained device to interact with a powerful server. It is not

necessary to tweak the server’s behavior and accommodate for the limited capabilities of the low-power

client. The TCP acknowledgments allow the endpoints to distinguish between delays induced by the net-

work and delays caused by the cryptographic computations. DTLS does not have such a feedback mech-

anism. A server performing the handshake protocol does not know if the delays it measures between out-

going and incoming messages are due to network latencies or cryptographic computations. DTLS requires

prior knowledge of the network latencies and the capabilities of the other endpoint. Otherwise, unneces-

sary retransmission might occur.

Future work should focus on the analysis of the new (D)TLS 1.3 protocol. The speedup of the handshake

protocol in (D)TLS 1.3 (from two to one roundtrip) should also benefit the constrained devices. In addition,

a comparison with the new object security protocols tailored for the IoT would be very valuable.

Since we have demonstrated that TLS is a worthy replacement for DTLS in certain scenarios, it is also

interesting to revive the abandoned 6LoWPAN header compression mechanism for TCP [97]. Initial results

show that the 20 B header can be compressed to merely 6 B in 95% of the cases [198]. The TCP header

compression would then easily save up to 250 B during the TLS handshake.

130

Chapter 8

Security Architectures for the Internet of
Things

Contents
8.1 Token-based Authenticated Key Establishment . 133

8.1.1 Drawbacks of Standard ACE . 133

8.1.2 Security Goals . 133

8.1.3 Architecture Description . 133

8.1.3.1 Access Token Generation . 134

8.1.3.2 Authenticated Access Token Exchanges . 135

8.1.4 Security Considerations . 136

8.1.5 Implementation Considerations . 137

8.1.5.1 Computational Impact and Memory Overhead 137

8.1.5.2 Bandwidth Limitations . 137

8.2 IoTChain: A Blockchain Architecture for the IoT . 138

8.2.1 Authorization Blockchain . 138

8.2.1.1 Authorization and Authentication Flow . 138

8.2.1.2 Adding and Revoking Entities . 140

8.2.2 Security Considerations . 140

8.2.3 Implementation on the Ethereum Private Testnet . 141

131

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

Introduction

In our previous contributions, we focussed primarily on challenges unique to the characteristics of the con-

strained IoT, i.e., the lack of hardware-enforced security, vulnerabilities in low-power link layer protocols

and the difficulty of establishing a secure channel over lossy networks. Besides these issues, the IoT also

inherits various practical problems from the traditional Internet. In our last contribution, we present the

issues of authorization, authentication, and secret key establishment for the IoT.

The IoT exposes vast amounts of data generated by billions of sensors. This data, to which we will

further refer as protected resources, is only valuable if the interested parties, a.k.a. clients, can access it. The

resource owners plausibly want to limit access to the protected resources. Only authorized clients should be

able to retrieve the resources. The owner could wish to restrict access on the grounds of privacy or because

the protected resources are part of its revenue model. In any case, some form of negotiation has to occur

between the resource owner and the possible clients. In Chapter 3, we presented two frameworks that

solve this issue in a scalable manner. On the web, the most common approach is to use the OAuth (Open

Authorization) 2.0 framework, which authorizes clients to access specific protected resources on behalf of

the resource owner. OAuth 2.0 extensively uses access tokens, issued by a trusted third-party denoted as

the AS (Authorization Server). The tokens encode claims and delegate protected resource access rights to

the token possessor. The ACE (Authentication and Authorization for Constrained Environments) working

group adapted the OAuth 2.0 framework to the context of the IoT. The resulting ACE framework implements

both authorization and authentication between the clients and resource servers while possibly both sides

are constrained.

Both OAuth and ACE rely entirely on the underlying transport protocol to provide secure communica-

tion. It is the responsibility of the security protocol to establish an authenticated shared secret and encrypt

the connections between the various endpoints. OAuth 2.0 should always be used in combination with

a secure communication protocol, i.e., TLS, to defend against access token theft. ACE defines multiple

security profiles. ACE currently supports DTLS and OSCORE (Object Security for Constrained RESTful En-

vironments) as underlying security profile. ACE and OAuth share a common limitation. In addition to the

necessary trust anchor for endpoint authentication, e.g., PKI certificates for TLS and DTLS or authentica-

tion servers for OSCORE and EDHOC (Ephemeral Diffie-Hellman over COSE), OAuth and ACE define the

central AS as an trusted third-party. In the ACE framework, the AS fulfills several security-critical opera-

tions. Firstly, it generates the access tokens, based on rules provided by the resource owner, granting the

client access to the protected resources on the resource servers. Secondly, it performs token introspections

in case of highly constrained resource servers, and finally, it distributes the cryptographic PoP (Proof-of-

Possession) keys, enabling the client to proof its legitimate ownership over the token.

In this final chapter, we propose two novel security frameworks inspired by OAuth, ACE, EDHOC and

OSCORE. In both proposals, we mainly keep the same architectural design and protocol flows as in ACE, but

we append and integrate elements to build a framework that provides both authorization and authenticated

key establishment while minimizing the trust in the AS. In the first proposal, we describe an architecture

that uses self-protecting and self-contained tokens, through the use of COSE (CBOR Object Signing and

Encryption) objects and the CBOR (Concise Binary Object Representation) web token format, which serve

two goals: authorizing the access to the protected resources and providing mutual authentication for key

establishment. To reduce the overall trust the participating devices must place in the AS we rely on the well-

established PKI. To lessen the impact of the asymmetric operations, we designed reusable tokens. On each

reiteration of the token, except the initial token exchange, only symmetric key operations are necessary.

The reusable tokens also diminish the reduces the amount of communication in the network.

In the second proposal, we increase the robustness of the authorization architecture by replacing the

single trusted AS endpoint by a decentralized authorization system, based on blockchain technology. The

role of the AS is fulfilled by blockchain miners, which manage authorization requests through the use of

smart contracts. The smart contracts are published by the resource owners. Key servers hold the symmetric

keys that are used by the resource servers to encrypt protected resources. The smart contracts add access

tokens for the authorized to the blockchain. A client can subsequently issue a request to the key server

for a set of resource decryption keys. If the key server can find a valid token for the client on the public

blockchain, it transfers the keys. Finally, the client recovers the encrypted resources from the resource

server or an intermediate cache and decrypts them locally.

132

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

8.1 Token-based Authenticated Key Establishment

8.1.1 Drawbacks of Standard ACE

In the ACE framework, access tokens issued by an AS are instantly valid for all the resource servers in their

domain. This powerful ability turns the AS into a valuable target for attackers. A compromised AS can

obtain all protected resources. The PoP mechanisms cannot defend against a compromised AS. PoP binds

either a symmetric key or public key to the access token. In the former case, the AS generates the symmetric

key and performs the binding operation, i.e., signs the token. The AS has thus access to the secret key. In

the latter scenario, the client creates an asymmetric key pair and sends the public part to the AS to bind it

to the token. Here, the AS does not have access to the private key, but since the key pair is not authenticated

in any way, e.g., by a certificate chain, it does not add protection against a rogue AS.

Since ACE also considers that the client can be constrained, it recommends the use of long-term tokens.

To provide this feature, the ACE framework proposes to use token introspection. The client is not issued a

real token by the AS, but a reference to it. When the client sends the reference to the resource server, it will

in turn contact the AS to learn which claims are associated with the token reference. The tokens are thus

not self-contained and they force frequent communication between the AS and the resource server.

8.1.2 Security Goals

Before we detail the design of our adapted ACE framework any further, we need to outline the different

threats to which our architecture must be resilient. The threat model lists token-specific threats and threats

against endpoints in the architecture. The token-related threats are:

• Access token integrity: We want to prevent unauthorized entities from forging valid tokens or from

freely modifying the content of the token after its creation.

• Token theft: A token theft detection mechanism must be in place to stop unauthorized entities from

using stolen tokens to access protected resources.

We list the threats against the different endpoint in the architecture below:

• Resource server security: The resource servers are often constrained devices, deployed in remote

areas. The lack of physical protection and memory isolation makes the devices vulnerable to a wide

range of physical attacks, network attacks, and remote code injections. Therefore, we want to mini-

mize the storage of secrets in the resource servers and continuously authenticate the devices during

communication.

• Client security: The clients can be very heterogeneous. They can be laptops, smartphones, cloud

services, or other smart devices. The tokens stored on these devices must be protected from theft.

The clients must be authenticated during communication, and we must prevent them from forging

valid tokens or modifying issued tokens. Additionally, we want to preserve the privacy of the clients.

• Authorization server security: The AS creates tokens for the clients after they successfully authenti-

cate. It is our goal to block a compromised AS from obtaining the protected resources.

8.1.3 Architecture Description

We designed a new token-based access control scheme with integrated authenticated key establishment for

IoT platforms. The access tokens consist of a set of encoded access rights, known as token claims, wrapped

in a COSE object. Access tokens organize the claims according to the CWT (CBOR Web Token) specifica-

tion [199]. The architecture is standalone and does not depend on the security of the underlying transport

method. It follows the same approach to security as the original OAuth 1.0a framework [200]. OAuth 1.0a

differs from OAuth 2.0 in that it defines its proper security model. There is no dependency on the properties

of the underlying transport layer. OAuth 1.0a is deemed more secure than OAuth 2.0, but more challenging

to implement [201].

133

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

Similar to ACE, the new architecture handles resource servers and with intermittent Internet connectiv-

ity by using self-contained tokens. Constrained clients with poor connection to the AS can obtain long-lived

access tokens. Long-lived tokens support multiple subsequent authentications, but contrary to ACE, they

are still self-contained. By integrating the security directly in the framework, it can effortlessly be deployed

in complex, multi-hop environments where the underlying network stack can change and, therefore, does

not always ensure secure communication. Tolerance for intermittent connectivity is particularly valuable

in duty-cycled environments. We make several assumptions about the endpoints in our framework; the

constrained devices are capable of lightweight asymmetric cryptography, and every device can either con-

tact a certificate authority or has a root certificate embedded. The latter enables the different endpoints to

sign messages and verify the identities behind the signatures.

8.1.3.1 Access Token Generation

Before a client can retrieve a valid access token from the AS for a protected resource, it must receive permis-

sion from the resource owner. Communication between the client, AS and resource owner, can be protect

with EDHOC and OSCORE. In Chapter 3, we discussed the most prominent ACE protocol flows: the “au-

thorization grant flow” and the “client credential flow”. The former flow obtains permissions dynamically,

while the latter uses statically configured rules. Since the various entities possess PKI certificates, the re-

source owner can grant permission based on the information included in the client certificate. Clients

should of course proof ownership of the certificate by signing a challenge with the corresponding private

key. With a valid permission issued by the resource owner, the client can request an access token from the

AS. The AS sets the token claims according to the permission and wraps the token claims in a COSE_sign

object, depicted in Figure 8.1. The CWT RFC defines most of the token claims used in this chapter [199]. The

AS attaches its signature to the COSE object and transfers it to the client. The client verifies the signature of

the AS and signs the COSE object with its private key. The token subdivides the claims into three parts: the

token identity information fields, token scope fields, and token protection fields.

Protected
Header

Unprotected
Header Identity Scope Protection

Token Claims
COSE Payload

Signature AS Signature
Client

COSE Signature
Structure

COSE Sign
Object

Figure 8.1: COSE wrapped access token. The COSE_Sign object allow for multiple signers on the object.

Token identity information field contains a subject claim and an audience claim. The former iden-

tifies a precise resource server that is the target of the particular access token, while the latter stores an

identifier that points towards the clients credentials. A recent IETF draft started specifying the different

attributes that can be carried inside the COSE headers to refer to X.509 certificates [202]. The attributes are:

• x5bag: It contains a bag of X.509 certificates.

• x5chain: It contains an ordered array of X.509 certificates. The chain is ordered starting with the

certificate identifying the client and ends with the trusted certificate, i.e. a CA certificate.

• x5t: Identifies a certificate by its hash.

• x5u: Identifies a certificate through a URL.

Both the subject claim and audience claim contain the x5t attribute to identify the resource server and

client, respectively. The entire certificate chains are exchanged during the EDHOC phase, see below.

The issuer claim defined in CWT is omitted in our access token model because the AS includes a key

identifier or certificate attribute in the protected or unprotected header of signature structure of the en-

veloping COSE object.

134

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

Scope field of the token is defined by the AS based on the permission grant that was issued by the re-

source owner. It describes the various actions a client can perform once the resource server successfully

validates the token. These actions are application-dependent. In addition, the scope includes the expira-

tion, not-before, and issued-at claims, which store timing information on the token’s validity period and the

time of creation.

Token protection field includes two replay counters. The long-term replay counter is responsible

for replay protection between distinct tokens acquired from the AS. The counter is incremented by the AS

each time the client requests a fresh token. The AS maintains per client a long-term replay counter value

that is independent of other clients. The short-term replay counter provides replay protection throughout

the lifetime of a specific token. The resource server stores, per client, both replay counter values. The

value of the short-term replay counter must change on every token use to achieve the PoP principle, see

below. When the resource server uses the token timing information, such as the expiration, not-before, and

issued-at fields, to limit the token usage, the short-term replay counter is a simple incrementing counter. If

the resource server does not possess precise time-keeping hardware, the AS leaves the expiration field in the

token scope blank and sets the short-term replay window to a precise value during the token’s creation. The

resource server then decrements the short-term window for every token iteration until the counter reaches

0. At 0, the token expires, and the client will have to request a new token at the AS.

8.1.3.2 Authenticated Access Token Exchanges

A client initiates an authenticated token exchanged by starting the EDHOC protocol, see Chapter 3. During

the key, both parties use ephemeral elliptic curve keys to derive a forward secure shared secret. The ex-

changes are authenticated with the COSE X.509 attributes described above [202]. Since our protocol relies

on PKI. The identifying information corresponds to a certificate chain, which ends in a trusted root certifi-

cate. During the third and last message of the protocol, the initiator, i.e., the client, can send data that is

protected with the shared secret in parallel. We make use of this feature by instructing the client to send the

fresh token together with the last message of the EDHOC protocol, see ¬ in Figure 8.2. When the resource

server has processed the final EDHOC message, it can immediately decrypt the fresh token and process it.

The resource server always processes tokens in two phases. The steps differ for tokens that are fresh and

tokens that have been used before. In the first phase, the resource owner validates the fresh token as follows:

1. It verifies that the token has not expired. It either checks the token scope field, containing the timing

information or the short-term and long-term counter values in the token protection field.

2. It verifies if the hash contained in the audience claim matches with the hash of the first certificate in

the chain delivered in message 3 of the EDHOC protocol.

3. It verifies the signatures of the AS and the client. The signature of the AS can be verified through

its static public key, embedded in the AS certificate. The AS certificate should be installed on each

resource server during an enrollment phase. The client signature over the token is calculated with

the same ephemeral key pair that was generated for the EDHOC protocol. Since the resource server

received the public key during message 1 of the EDHOC protocol it can verify the client’s signature.

4. If the resource server has no previous record on the client, the resource server uses the audience claim

to create a client ID. It then stores both replay counters for this ID.

In the second phase, the resource server creates a COSE_encrypt object. It copies the token claims from

the received COSE_sign object and updates the short-term replay protection window. It encrypts the pay-

load according to the COSE specification using an AEAD cipher. The key for the encryption algorithm, Ksh,

was established during the EDHOC protocol. Before transferring the token back to the client, the resource

server calculates an HMAC over the payload of the COSE_encrypt object, and stores it locally under the

client’s ID. The resource server generates the key, Krs, necessary for the HMAC locally, and the key never

leaves the device. This mechanism prevents the client from tampering with the token, i.e., modifying the

token claims. The resource server then sends the encrypted updated token back to the client, see ­ in

Figure 8.2.

135

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

RESOURCE
SERVERCLIENT

1

2

COSE SIGN {fresh token}SIG1, SIG2

COSE ENCRYPT {updated token}Ksh
HMACKrs {token payload}

3
AEADKsh {counters} || COSE ENCRYPT {updated token}Ksh

4
COSE ENCRYPT {updated token}Ksh

HMACKrs {received payload}

Derive KshDerive Ksh

Sign COSE object

Verify COSE object

equal ?

HMACKrs {token payload}

First
token

exchange

First
token

exchange

Next
token

exchanges

Next
token

exchanges

Authenticated Key Establishment (EDHOC)

Decrypt COSE object

Encrypt COSE object

message 1
message 2
message 3

Figure 8.2: Token exchanges between the client and resource server: SIG1 and SIG2 correspond to the signatures of the

AS and client, respectively

The initial two steps are expensive due to the asymmetric cryptography involved in verifying a fresh

token and setting up of the shared secret with the EDHOC protocol. However, the verification of a fresh

token bootstraps a chain of trust between the client and the resource server that allows them to use solely

symmetric cryptography in the following token exchanges.

The client then receives the updated token. It can verify the authenticity because the token was en-

crypted and authenticated, through the AEAD cipher, with the shared key, Ksh. The shared key acts as a PoP

key. In the original ACE framework, the AS performs the binding between the PoP key and the token. Here,

the token is bound to the Ksh key by the resource server on the first use. The next time the client wants to

authenticate to the resource server, it uses the same token. To proof its possession of the PoP key, the client

encrypts and authenticates, with the AEAD cipher, the concatenation of the long-term and short-term re-

play counters which are embedded in the token. Together both values are unique for a particular client.

The client sends both the encrypted token and ciphertext of the counters to the resource server, see ®.

On access token reception, resource server again uses two phases to process the token. It now executes

the following steps:

1. It decrypts the token and counter information contained in the PoP message.

2. It checks if the counter information corresponds to the information in the token. If they match the

client has proven it possesses the PoP key.

3. It detects token tampering by comparing a freshly calculated HMAC of the token with the previously

stored HMAC.

4. It verifies the token’s expiration time and counters.

If all checks are valid, the token originates from the rightful client and it has not been tampered with.

Because with each token use the resource server updates the short-term replay window. Every time the

client uses the access token it must generate a new PoP response and send it along.

8.1.4 Security Considerations

Eavesdropping Attacks are thwarted by the AEAD ciphers used to protect the token exchanges. Both

fresh tokens and updated tokens are encrypted during transport. The fresh token is protected by the ED-

HOC exchanges and the updated token are explicitly protected by our protocol through COSE_encrypt0

objects. The EDHOC protocol also safeguards the privacy of both the client and resource server.

Replay Attacks are mitigated by the long-term and short-term replay counters. The long-term counter

provides protection against replay when an attacker tries to reuse a token previously issued by the AS. The

long-term counter only increases, for a given client, for each new token obtained from the authorization

136

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

server. The value is set by the authorization server and checked and stored by the resource server. The

short-term replay counter provides protection when a client uses the same token more than once. The

initial value is set in the fresh token and is then incremented or decremented by the resource server on

every usage.

MITM (Man-In-The-Middle) Attacks are prevented by the use of signatures or AEAD ciphers. A

fresh token carries two signatures. One from the authorization server and one from the client. The resource

server uses its embedded trusted certificated to validate the identities. While exchanging the updated to-

kens we employ the proof-of-possession concept from ACE. The shared key Ksh , derived through EDHOC,

is used by the client to authenticate and encrypt the updated token and to generate a unique PoP message.

Rogue Clients cannot forge tokens. A fresh token must have a valid signature from the authorization

server. The integrity of updated tokens is protected by the HMAC calculated by the resource server with Kr s .

This key is only known to the resource server. A resource server could also use a simple cryptographic hash,

such as SHA-256, instead of the HMAC primitive to verify the integrity of the claims, but this would allow

an adversary to perform an offline hash collision search.

Compromised Authorization Servers cannot freely generate tokens. The attacker must compro-

mise the authorization server and a client with a valid certificate to create access tokens.

Compromised Resource Servers lose all the data and key material stored on the device. Since non

of key material is shared with other resource servers or the authorization server, e.g. no network-wide sym-

metric keys, the impact is limited.

8.1.5 Implementation Considerations

8.1.5.1 Computational Impact and Memory Overhead

We did not provide a full implementation of the proposed architecture. However, since many of the the

building blocks were separately discussed throughout this thesis, we can form a rough estimation on the

computational overhead of the architecture. We refer the reader to Chapter 2 and Chapter 7 for more details

on the exact impact of the computations associated with public-key cryptography and certificates.

8.1.5.2 Bandwidth Limitations

Constrained devices use communication protocols with limited packet sizes, such as IEEE 802.15.4E, i.e.,

127 bytes. The size of the exchanged tokens is therefore an important factor. We implemented a COSE

library in Python1 and tested the COSE object sizes for a COSE_sign object and a COSE_encrypt0 object.

The former being the COSE object type being used to protect the fresh token, while the latter holds the

updated token. We used example token claims for test purposes:

• Subject claim: Contains anx5t attribute referencing the resource server’s certificate that is exchanged

during EDHOC. Currently the IETF’s draft on COSE X.509 attributes does not describe truncated

hashes [202]. A tradeoff between security and payload size is possible by limiting the size of the x5t

attribute. In this example we truncate the certificate’s hash to 128 bit.

• Audience claim: Contains an x5t attribute referencing the resource server’s certificate. Similarly, we

truncate the hash to 128 bit.

• Long-term replay window: 48 bit. Counter that is incremented each time the client request a new

token at the AS.

• Short-term replay window: 16 bit. If no timing information is set in the token scope, this field con-

tains the total amount of allowed token uses.

1https://github.com/TimothyClaeys/COSE-PYTHON

137

https://github.com/TimothyClaeys/COSE-PYTHON

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

• Scope claims: the encoding and size of the resource scope claims is highly dependent on the appli-

cation. Here, we allocate 32 B for the claims.

The fresh token size amounts to 72 B. Next, we wrap the fresh token in a COSE_sign object. The COSE

object is shown in Figure 8.1. The protected and unprotected headers of the enveloping COSE structure are

empty. The payload of the COSE object contains the fresh token and the signature structure is a CBOR array

with two signatures. Each signature has a protected and unprotected header, according to the COSE RFC.

The internal headers contain the information on the used signature algorithm. In our example, both the AS

signature and client signature are calculated with the deterministic ECDSA algorithm using secp256r1 as

curve. The resulting COSE signature structure amounts to 290 B. The different parts are then encoded as a

CBOR array holding the enveloping headers, payload and signature structure. The size of the COSE_sign

object is 370 B.

The updated token, uses a COSE_encrypt0 to protect the contents. It consists of the protected and

unprotected headers and the payload, authenticated and encrypted with an AEAD cipher. The different

elements are again encoded as a CBOR array. The total token size now amounts to 72 B. The updated token

is much smaller than the fresh access token, but it still requires 6LoWPAN fragmentation is we want to carry

it over the standardized IoT stack (IEEE 802.15.4E, IPv6, UDP and CoAP), as presented in Chapter 3. If we

want to prevent fragmentation in IEEE 802.15.4E networks, the COSE_encrypt0 object cannot be larger

than 62 B. Some space can be gained by using a COSE AEAD cipher with truncated authentication tags.

8.2 IoTChain: A Blockchain Architecture for the IoT

The goal of the IoTChain architecture is to decentralize the AS and in parallel, provide authenticated key

establishment for an object security protocol, e.g., OSCORE. Figure 8.3 depicts the architecture. It shows the

essential entities in the network and the sequence of operations leading to authorized and authenticated

access of a protected IoT resource. We introduce some additional terminology:

Authorization Blockchain is a permissionless blockchain2 used to authorize endpoints. It generates ac-

cess tokens through the execution of smart contracts. Recall that a blockchain is a distributed ledger

shared by all the participants. The ledger contains chained blocks, which in turn hold transactions.

The consensus protocol, e.g., PoW (Proof-of-Work) or PoS (Proof-of-Stake), provides security and en-

sures that everybody in the network converges to the same blockchain state. A more detailed intro-

duction to blockchain technology is provided in Chapter 3.

Key Server is an entity that manages the cryptographic material that guarantees the confidentiality and

integrity of the protected resources. The key server generates and distributes the keys to the resource

servers and the authorized clients. Potentially, resource servers encrypt protected resources with dif-

ferent keys to provide distinct access groups. In general, a single key server can maintain the keys for

a set of resource servers belonging to the same resource owner. In some scenarios, the key server may

coincide with the resource server, thus simplifying the key exchange procedure.

8.2.1 Authorization Blockchain

8.2.1.1 Authorization and Authentication Flow

The authorization and authentication flow is split into four phases. When it finishes, the client has success-

fully obtained the protected resources.

In the first phase, the resource owner creates a smart contract. The smart contract is a compiled program

that generates an access token for a client when certain conditions are met. The resource owner publishes

its smart contract to the blockchain, see ¬.

In the second phase, a client that wishes to access a protected resource activates the corresponding

smart contract ­. The client verifies that the owner of the smart contract is the resource owner of the

2A permissionless blockchain is public; everybody can participate.

138

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

Authorization Blockchain

Proxy
server

Resource
Servers

Request keys

Trig
ger s

mart

contra
ct Verify if consumer’s

token exist in blockchain

Fetch data

Clients

2

4

5

7

Receive keys6

Generation of token for specific
consumers in blockchain

1 Resource Owner publishes
smart contract

3

Resource
Owners

Key Servers

Figure 8.3: The IoTChain architectures.

protected resources it wishes to access. Verification of the resource owner’s identity happens out-of-band.

A client can trigger a smart contract by directing a transaction to its address. The transaction propagates

through the blockchain network. Every authorization server (i.e., miner) that includes the transaction in

its current block validates the transaction parameters and executes the smart contract. The transaction is

only valid when the client provides the correct input data for the smart contract. For example, an energy

company (the resource owner) has deployed a smart meter (the resource server) at the client’s house. To

authorize the clients to interact with the smart meter and extract information, the company has published a

smart contract on the blockchain. The smart contract requires proof that the client lives at a specific address

to execute correctly. During the execution, the contract generates an access token for the client ®. The

contract then stores the token in its internal storage. The generated access token references the public key

of the client. The public key will later be used to set up a PoP challenge. The token also specifies a lifetime

and describes which resources can be accessed. A resource owner can deploy multiple smart contracts for

the same resource server on the blockchain network. Each contract takes different input parameters and

generates tokens with different privileges.

In the third phase, the client can request the cryptographic keys necessary to decrypt the protected

resources ¯. The key server has a copy of the blockchain but does not participate in the consensus protocol.

The key server interacts with the smart contract and verifies if an access token was issued for the client °.

Subsequently, it checks the access rights encoded in the token. Before the key server sends the keys to the

client, it generates a PoP challenge based on the public key referenced in the token. If the client successfully

responds, the key server then sends the keys that give access to the corresponding protected resources, to

the client over an encrypted link (DTLS, TLS or OSCORE). Only the legitimate client that triggered the smart

contract and provided the public key could have solved the PoP challenge ±. The key server must wait for

n new blocks since the creation of the token to handle scenarios where the blockchain temporarily forked.

The value n is a security parameter. A large n gives the key server strong guarantees on the validity of the

token but might incur a more significant latency, e.g., in the Ethereum network, 12 block confirmations are

required, which corresponds to approximately 3 min latency.

During the final fourth phase, the client downloads the encrypted resources either from a proxy server

or directly from the resource server ². Both entities provide a Restful CoAP API that allows to GET, PUT,

139

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

and POST resources based on their URI. No further authentication is necessary as an unauthorized client

cannot obtain the cryptographic keys to decrypt the protected resources. When the protected resources are

acquired directly from the resource server, protected resource are encrypted and integrity protected with

an AEAD cipher. When the resource server publishes the protected resources to a proxy server, it should

sign the encrypted resources with a private key, which prevents colluding proxy servers and clients from

corrupting the protected resources. The public key to verify this signature is also distributed by the key

servers.

block block

block

block

block

Tx Tx Tx

Contract
+ token

token
Tx Tx Tx

Contract
lifetime

Transaction
to

contract

time [s]

Figure 8.4: Token lifetime on the blockchain.

8.2.1.2 Adding and Revoking Entities

Adding a new client to the architecture is trivial. Since the blockchain is permissionless, no steps are re-

quired before a client can interact with the network. By providing the necessary information in a transac-

tion to a smart contract, it generates a token that allows the new client to access the decryption keys for

a specified resource. To easily revoke clients, new encryption keys should be issued frequently by the key

server. While a token can be valid for an extended period, the key server can distribute new keys to the re-

source server daily. The resource server should always use the latest keys to encrypt new resources, e.g., new

temperature measurements. As long as the client token is valid, the client can recover the new keys from the

key server. When the token expires, the client must rerun the smart contract on the blockchain to generate

a new valid token and obtain the access rights for the keys, see Figure 8.4. When the client misbehaves,

the authorization servers in the blockchain network can add a transaction in block, which invalidates the

client’s access token. The key server will receive this block once it is added to the blockchain and will know

the client is no longer authorized to receive the decryption keys.

Similarly to clients, compromised authorization servers can be revoked. Periodically, the blockchain au-

thorization network adds a block to the blockchain containing the hashes of the identities of the legitimate

authorization servers. In this way, a client can be sure that it sends its transaction to a valid authorization

server, or a key server can be sure it downloads the blockchain from a legitimate authorization server.

8.2.2 Security Considerations

Proof-of-Possession is, similarly to ACE, used by the IoTChain architecture. In ACE, the client can

provide a public key to the AS. The AS then binds the public key to the access token. Only the legitimate

client has the corresponding private key, which it uses in the PoP challenge-response exchange. In the

IoTChain architecture, the client that activates the smart contract provides (an ephemeral) public key. The

generated token references this public key, either through a hash or by storing it directly. The key server that

verifies the token then creates a challenge based on the public key.

Client Privacy is an important issue since the blockchain is permissionless and public; anyone can

read the content of the blocks. Clients can protect their privacy by generating new asymmetric key pairs for

each transaction. This allows the client to isolate each of its transactions. Smart contracts and by extension,

140

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

the resource owners cannot see what other smart contracts the clients have activated if they use ephemeral

keys.

Denial-of-Service attacks aim to prevent the regular operation of the blockchain. Because of the

halting problem, we cannot predict if a smart contract deployed on the blockchain will terminate. The

Ethereum blockchain solves the problem by requiring an upfront payment for the execution of a con-

tract [77]. A user needs to estimate how much it will cost to execute the contract, and the user then pays the

contract with a special currency denoted as gas. If the user does not provide sufficient gas, the contract will

not execute entirely, and it will revert all the changes. Because we do not require a cryptocurrency in the

IoTChain and the smart contracts merely generate access tokens, we can set a limit on the execution time

of a smart contract.

Since there is no cryptocurrency, malicious clients are not actively disincentivized to launch a DoS

(Denial-of-Service) attack on the network by continually triggering smart contracts. Since each AS broad-

casts the transactions, and every AS needs to verify the transactions before executing the smart contract, the

network may become saturated. A simple defense can require each client to solve a cryptographic puzzle

before each transaction. A similar approach is proposed in the HIP (Host Identity Protocol) protocol [203].

Secure Communications between the key servers, resource servers and clients are provided by DTLS

or OSCORE. Authentication is based on certificates or through a challenge-response exchange, i.e., between

the key server and the client. Transactions sent on the blockchain network have signatures to protect their

integrity, but they are sent in clear. The blockchain is a public ledger, so all the transactions can be read.

Clients should, therefore, never put confidential information in the transactions.

8.2.3 Implementation on the Ethereum Private Testnet

To evaluate feasibility of our architecture, we implement the authorization blockchain on top of a private

Ethereum blockchain network. We use the go-ethereum implementation3 of the protocol to set up our

network. The implementation turns a device into a full node in the Ethereum network. It also provides the

possibility to connect to the Ethereum testnet. The testnet lets developers test and debug smart contracts

without spending real cryptocurrencies, i.e., Ether. Because syncing with the entire Ethereum testnet would

take too much time and resources, we decide to mount a local private Ethereum blockchain. To lower

the difficulty of the PoW algorithm currently used in Ethereum, we define a custom genesis block for the

blockchain. The blockchain network consists of five nodes, maintaining the local blockchain, see Figure 8.5.

Authorization
Blockchain

(Ethereum miners)
Client

Key
Server

Resource
Owner

Figure 8.5: Experimental Ethereum testnet.

The resource owner deploys the smart contract shown in Figure 8.1. Once the contract is added to the

blockchain, clients can interact with it by calling its individual public functions. The function addToken

creates a new access token for a client.
3The Ethereum foundation provides an opensource golang implementation of the Ethereum protocol (https://github.com/

ethereum/go-ethereum)

141

https://github.com/ethereum/go-ethereum)
https://github.com/ethereum/go-ethereum)

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

1 pragma s o l i d i t y ^ 0 . 4 . 0 ;

2

3 contract AccessToken {

4 mapping (address => Token) issued ;

5

6 s t r u c t Token {

7 address res ;

8 uint t t l ;

9 bytes4 claims ;

10 }

11

12 function addToken (. . .) public returns (bool) {

13 issued [c l t] . res = _res ;

14 issued [c l t] . t t l = _ t t l ;

15 issued [c l t] . claims = _claims ;

16 return true ;

17 }

18

19 function getToken (. . .) public constant returns (. . .) {

20 return (issued [c l t] . res , issued [c l t] . t t l , issued [c l t] . claims) ;

21 }

22

23 function deleteToken (. . .) public returns (bool) {

24 delete (issued [c l t]) ;

25 }

26 }

Listing 8.1: Smart contract for access token

The access token is stored in the contract’s persistent memory. The token contains the client address

and the resource server address. The ttl field of the access token holds a life time parameter, checked

by the key server when the client requests a decryption key. The deleteToken function might be called

to revoke the client access rights earlier than foreseen. The smart contract in Fig. 7 can be triggered by

everyone in the blockchain network. More complex contracts may require modifiers that restrict access

to certain functions or check if a condition is met before the function is executed by the Ethereum Virtual

Machine (EVM), e.g., has this client paid for the access token.

Conclusion

In the final chapter of this thesis we discussed authorization and authentication architectures for the IoT.

In both of our proposals the idea is to make the existing ACE infrastructure more robust by preventing an

compromised AS, jeopardizes the entire network.

In the first proposal, we make use of the PKI infrastructure to remove the role of trusted third party from

authorization server. Instead of relying on the protection mechanisms offered by the underlying trans-

port protocols, we propose the use of self-protecting tokens, in line with the security model proposed by

OAuth 1.0a. In addition, the tokens are designed to be reusable. The initial token exchange is expensive due

to its large size and the asymmetric cryptography associated with PKI functionalities. Subsequent token ex-

changes capitalize on trust anchor installed by the asymmetric signatures to provide authenticated access to

the protected resources with solely symmetric cryptography. The updated access tokens are much smaller

and with further optimizations they could be carried over a IEEE 802.15.4E without requiring 6LoWPAN

fragmentation. All token exchanges are encrypted and by taking advantage of the EDHOC properties, it

provides privacy for the clients, i.e., an eavesdropper does not learn which protected resources a client can

access.

The second proposal combines blockchain technology with the ACE framework. A blockchain network

implements the role of the AS. The authorization requests are treated by smart contracts deployed by the

resource owners. To gain access to a protected resource, a client issues a transaction to the address of a

142

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

smart contract. Upon validation of the transactions parameters, the contract generates a token which it

stores in it local storage. Key servers can interrogate the access token store through an API offered by the

smart contract. The tokens reference the client’s public key which is subsequently used to set up a PoP

challenge. In the final stage the client obtains the keys necessary to access the protected resources.

143

CHAPTER 8. SECURITY ARCHITECTURES FOR THE INTERNET OF THINGS

144

Conclusions

The work presented in this manuscript was conducted in the context of the IOTIZE project. The goal of this

project was to develop a simple turnkey solution to extend embedded systems with two functionalities: a

human-machine interface and Internet connectivity. To guide the IOTIZE development team in building a

secure product, we studied the state of the art of IoT security.

In the first part of this thesis, we identified various building blocks that are vital for the security of the

IoT. For each block, we analyzed the emerging trends but also listed the liabilities and weaknesses. We

moreover briefly summarize the essential takeaways.

Firstly, we pointed out that hardware-enforced security mechanisms are a necessity at the hardware

layer: without memory isolation, a single vulnerability suffices to compromise the entire system. Alterna-

tive approaches focus on detection instead of prevention, they often rely on strong assumptions about the

attacker’s capabilities and, therefore, cannot guarantee the same security principles.

Cryptography represents the second cornerstone of IoT security. The conventional cryptographic tool-

box provides many secure primitives, but few have an acceptable performance on constrained hardware.

As a result, the CAESAR cryptographic competition elected two novel, lightweight symmetric algorithms.

We highlighted their performance gain with respect to traditional primitives.

A secure and energy-efficient networking stack is the third pillar for a secure IoT. Its purpose is to pro-

tect the vast quantities of data that will be communicated by the constrained devices. The consensus is that

encryption should mostly happen on the application layer since this security model best fits the typical IoT

use cases. As a result, the IETF is developing new object security protocols that depend on highly-optimized

encoding schemes. However, we showed that the push towards an efficient network stack introduced new

vulnerabilities, mainly below the network layer, e.g., 6LoWPAN and IEEE 802.15.4E. The studied vulner-

abilities are intrinsic to the operation of the protocols and expose the constrained devices to potent DoS

attacks.

Finally, the different security architectures guide the secure integration of the IoT with the traditional

Internet. We presented the latest developments of the IETF working group on the ACE framework for con-

strained devices. Their design is highly inspired by OAuth 2.0 and thus exhibits the same weaknesses. Se-

curity entirely depends on the communication protocol and the use of trusted third parties.

Summary of the contributions

The second part of the thesis presented our contributions. They aim to improve the security of the IoT

globally, and thus they target the different building blocks.

Chapter 5 contains the first contribution. We studied the application of physical fingerprinting tech-

niques in the constrained IoT. By combining the unique identifiers with software-only remote attestation

procedures, we strive to improve the security guarantees of the protocol. We split the possible identifiers

into two categories: signal-based identifiers and PUF-based identifiers. We derived an initial signal-based

fingerprint from the natural clock drift between communicating devices. Unfortunately, the clock drift is

unstable when the ambient temperature changes, and it does not provide sufficient entropy to identify a

device uniquely among a large group.

145

CONCLUSIONS

We then presented a second identifying protocol built on a Sybil attack detection algorithm. We ex-

tended the functionality of the original algorithm and capitalized on the different frequency channels that

are available to channel hopping communication protocols. Our proposed algorithm can reliably detect

when transmissions originate from distinct locations by comparing RSS measurements over different fre-

quency channels, hence detecting changes in the original position of the transmissions, but does not iden-

tify a given device in mobile scenarios. This approach is thus only useable when the devices use fixed

pre-defined locations.

In the context of PUF-based identification, we analyzed the SRAM start-up behavior. We studied the

inter- and intra-device start-up values and concluded they contain sufficient entropy to generate a unique

identifier. Besides, we showed the start-up values are stable under varying ambient conditions. Nonethe-

less, without memory protection, an attacker can extract the fingerprint from a compromised device and

thus spoof its identity.

We thus concluded that none of the existing fingerprinting techniques generate a reliable identifier. Still,

in scenarios where IoT devices are entirely compromised, they provide a primary identification mechanism

where otherwise none is available.

Chapter 6 details the second contribution. Throughout the chapter we observed that the optimization

techniques applied to low-power link layer protocols of the IoT networking stack introduced potential vul-

nerabilities.

We presented a first vulnerability inherent to the TSCH protocol. TSCH relies on tight time synchroniza-

tion and channel hopping. While these features reduce energy consumption and provide robust commu-

nications, they complicate the bootstrap phase of the network: nodes spend a disproportionate amount

of energy during the network join phase. By temporarily jamming the wireless link between two well-

chosen devices, an attacker can force the desynchronization of a large part of the network. Consequently,

the desynchronized devices reactivate the costly join phase. We designed a fast and energy-efficient algo-

rithm to mitigate this attack. It uses drift prediction combined with static network information to rejoin

the network at a lower cost than the classical joining algorithm. Experimental results showed that the pro-

posed solution minimizes join latency while reducing energy consumption with a factor 1000 compared to

existing proposals.

The second vulnerability exploits the highly-predictive behavior of time-synchronized networks. Due

to strict synchronization among nodes, an external entity can easily predict the time instants where com-

munications will occur. An attacker that can introduce small offsets in the timings of the transmission can

use this to build a covert channel. The time-synchronized protocols do not detect such additional offsets

because they compensate for naturally occurring clock drift.

We implemented a proof-of-concept of a covert channel on several BLE-enabled devices. Through heat

emission from the CPU, we influenced the frequency of the crystal oscillator, which in turn affected the

timing of the transmissions. The performance of the attack strongly depends on the hardware layout of the

BLE device: devices that have a direct thermal path between the CPU and the crystal oscillator obtained a

significantly higher throughput over the covert channel.

Chapter 7 presents the third contribution. It studies the performance of the existing security proto-

cols over constrained networks. We provided an in-depth analysis of the most critical part of the TLS and

DTLS protocols: the handshake phase. At first, we present a detailed discussion of the various problems

that might occur when carrying large transport layer packets over a low-rate, low-power network. Next, we

conducted an experimental evaluation by porting the mbed TLS library on top of the OpenWSN, a TSCH-

based networking stack. We additionally implemented TCP and the 6LoWPAN fragmentation mechanism

and integrated both with OpenWSN.

The main takeaway is that while the DTLS handshake provides better performance when the commu-

nication link is 100% reliable, its performance quickly deteriorates when packet losses occur. The many

tweakable parameters and optimization of TCP allow better control of the protocol behavior, which lowers

the overhead of retransmission over lossy networks.

Chapter 8 covers the final contribution. It tackles security architectures for the IoT. More precisely, we

proposed two adaptations of the upcoming ACE architecture.

146

CONCLUSIONS

In the first adaptation, we leveraged the existing PKI infrastructure to remove the role of a trusted third

party from the authorization server. We propose to adopt the new COSE message format to provide self-

securing and self-contained tokens. We effectively decoupled the security of the framework from the un-

derlying transport protocols by relying on EDHOC to provide an authenticated key establishment. We de-

signed reusable tokens to alleviate the cost of the expensive cryptographic operations associated with PKI:

the initial token exchange bootstraps a trust anchor that allows us to use only symmetric cryptography for

the subsequent token exchanges.

The second adaptation depicted an end-to-end security architecture that combines blockchain tech-

nology with the ACE framework. Similar to the previous proposal, we aimed to remove any trusted third-

parties by substituting the authorization server with an authorization blockchain. The blockchain handles

authorization requests through smart contracts.

Future work

Throughout this thesis, we have treated several aspects related to IoT security. This approach allowed us

to provide a comprehensive overview of the current state of the art, propose improvements, and identify

compelling future research directions. We list these perspectives in a bottom-up fashion.

With the emergence of hardware security in commercial chipsets, the new generation of IoT devices

will be better equipped to mitigate software attacks. However, for numerous reasons such as production

cost, energy restrictions, and compatibility issues, not all constrained devices will be supplied with these

advanced security features. For this class of systems, remote attestation protocols remain a crucial line of

defense. Although much of the existing protocols have been broken, the ideas behind the designs are still

valid. It seems, therefore, necessary to further advance this field of research.

To provide a stronger foundation and more robust security guarantees for future protocols, Eldefrawy

et al. [138] propose to utilize computer-aided formal verification. Complimentary research on physical

device identifiers can further help localize malicious activity in a constrained network. We believe that a

protocol combining both physical identifiers and formal verification can actively help protect the network

by performing targeted attestation and prevent the propagation of malware through low-power devices.

Presumably, in the upcoming decades, the advances in quantum computing will break public-key cryp-

tography based on integer factorization and the DLP. In response, NIST has issued a competition on quantum-

resistant algorithms [59]. Even though lattice-based primitives show promising results on constrained hard-

ware, additional efforts concerning the constrained IoT are required. More precisely, the current proposi-

tions do not account for side-channel resistance, an increasingly important security characteristic for the

IoT [62, 204].

Furthermore, many of the future IoT applications will rely on the OSCORE protocol to provide secure

end-to-end communication. However, the OSCORE RFC merely describes how to transform a CoAP mes-

sage to an OSCORE message. Mechanisms for secure key establishment and constrained endpoint authen-

tication are still under development.

Currently, the IETF is considering two protocols for key establishment. The first proposal, called ED-

HOC, was extensively described in this thesis. It uses a highly-optimized Diffie-Hellman key exchange pro-

tocol. EDHOC leverages the COSE message format to minimize the message overhead. The second pro-

posal, cTLS (compact TLS), is being developed by the TLS working group [205]. It consists of a condensed

version of TLS 1.3, designed to take up minimal bandwidth. The main advantage of cTLS is that it can rely

on the security of the TLS protocol, and can quickly gain support as the deployment of TLS 1.3 continues.

Due to memory constraints, IoT devices will not provide both implementations. As a result, it seems

necessary to perform a study of both key exchange mechanisms and clearly distinguish their use cases.

Both EDHOC and cTLS rely on either pre-shared keys, raw public keys, or certificates to provide end-

point authentication. On the one hand, the first two methods can provide efficient mutual authentication,

since they only require minimal bandwidth during the authentication phase. However, it is not feasible to

embedded pre-shared keys and raw public keys in constrained devices at the scale of the IoT. On the other

hand, the current certificate infrastructure requires a large bandwidth. The individual certificates are too

large for use in constrained networks. Henceforth, we currently lack a scalable authentication mechanism

dedicated to the constrained IoT.

147

CONCLUSIONS

148

Bibliography

[1] Gregory D Abowd, Liviu Iftode, and Helena Mitchell. Guest Editors’ Introduction: The Smart Phone –

A First Platform for Pervasive Computing. IEEE Pervasive Computing, 4(2):18–19, 2005. 1

[2] Malisa Vucinic. Architectures and Protocols for Secure and Energy-Efficient Integration of Wireless

Sensor Networks with the Internet of Things. PhD thesis, 2015. URL http://www.theses.fr/

2015GREAM084. Doctoral thesis, guided by Tourancheau, Bernard Rousseau, Franck et Damon, Lau-

rent, Informatique Grenoble Alpes 2015. 1, 12, 14, 59, 60

[3] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Za-

kir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al. Understanding the Mirai

Botnet. In 26th USENIX Security Symposium (USENIX Security ’17, pages 1093–1110, 2017. 1

[4] Saleh Soltan, Prateek Mittal, and H Vincent Poor. BlackIoT: IoT Botnet of High Wattage Devices Can

Disrupt the Power Grid. In 27th USENIX Security Symposium (USENIX Security ’18), pages 15–32,

2018. 1

[5] Joseph Yiu. The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors. Academic Press,

2015. 2, 11, 12

[6] The Noun Project, 2019. URL https://thenounproject.com. 2

[7] Goeran Selander, John Mattsson, Francesca Palombini, and Ludwig Seitz. Object Secu-

rity for Constrained RESTful Environments (OSCORE). Internet-Draft draft-ietf-core-object-

security-15, IETF Secretariat, August 2018. URL http://www.ietf.org/internet-drafts/

draft-ietf-core-object-security-15.txt. http://www.ietf.org/internet-drafts/

draft-ietf-core-object-security-15.txt. 4, 6, 54, 55

[8] Analog Devices. SmartMesh Wireless For Tough Industrial IoT Applications, 2019. URL https://

www.analog.com/en/applications/technology/smartmesh-pavilion-home.html#. 10

[9] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer SJ Pister. Smart dust: Communicating with

a Cubic-Millimeter Computer. Computer, 34(1):44–51, 2001. 10

[10] Li Da Xu, Wu He, and Shancang Li. Internet of Things in Industries: A Survey. IEEE Transactions on

Industrial Informatics, 10(4):2233–2243, 2014. 10

[11] Pete Beckman, Rajesh Sankaran, Charlie Catlett, Nicola Ferrier, Robert Jacob, and Michael Papka.

Waggle: An Open Sensor Platform for Edge Computing. In 2016 IEEE SENSORS, pages 1–3. IEEE,

2016. 10

[12] Elodie Morin, Mickael Maman, Roberto Guizzetti, and Andrzej Duda. Comparison of the Device

Lifetime in Wireless Networks for the Internet of Things. IEEE Access, 5:7097–7114, 2017. 10

[13] C. Bormann, M. Ersue, and A. Keranen. Terminology for Constrained-Node Networks. RFC 7228,

RFC Editor, May 2014. URL http://www.rfc-editor.org/rfc/rfc7228.txt. http://www.

rfc-editor.org/rfc/rfc7228.txt. 10

149

http://www.theses.fr/2015GREAM084
http://www.theses.fr/2015GREAM084
https://thenounproject.com
http://www.ietf.org/internet-drafts/draft-ietf-core-object-security-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-object-security-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-object-security-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-core-object-security-15.txt
https://www.analog.com/en/applications/technology/smartmesh-pavilion-home.html#
https://www.analog.com/en/applications/technology/smartmesh-pavilion-home.html#
http://www.rfc-editor.org/rfc/rfc7228.txt
http://www.rfc-editor.org/rfc/rfc7228.txt
http://www.rfc-editor.org/rfc/rfc7228.txt

BIBLIOGRAPHY

[14] A Powerful System-On-Chip for 2.4-GHz IEEE 802.15.4-2006 and ZigBee Applications. Texas Instru-

ments, 12 2012. 12, 14, 35, 69, 90, 101, 124

[15] ATmega8A: AVR 8-bit Microcontroller. Microchip Technology Inc., 2017. 12

[16] MSP430F16x: 16-bit Ultra-Low-Power MCU, 48kB Flash, 10240B RAM, 12-Bit ADC, Dual DAC, 2 US-

ART, I2C, HW Mult, DMA. Texas Instruments, 10 2002. 12

[17] ARM Cortex-M4 32b MCU+FPU, 105 DMIPS, 512KB Flash/96KB RAM, 11 TIMs, 1 ADC, 11 comm. in-

terfaces. STMicroelectronics, 01 2015. 12, 42, 90

[18] 2.4 GHz IEEE802.15.4/Zigbee RF Transceiver. Texas Instruments, 12 2007. 14

[19] 2.4 GHz IEEE802.15.4/Zigbee RF Transceiver. Texas Instruments, 12 2013. 14

[20] Low Power 2.4 GHz Transceiver for ZigBee, IEEE 802.15.4, 6LoWPAN, RF4CE, SP100, WirelessHART, and

ISM Applications. AVR, 09 2009. 14

[21] Ana Bildea, Olivier Alphand, Franck Rousseau, and Andrzej Duda. Link Quality Metrics in Large Scale

Indoor Wireless Sensor Networks. In 2013 IEEE 24th Annual International Symposium on Personal,

Indoor, and Mobile Radio Communications (PIMRC), pages 1888–1892. IEEE, 2013. 14, 85

[22] Elaine Barker. Recommendation for key management part 1: General (revision 4). NIST special pub-

lication, 800(57):1–160, January 2016. 18, 24, 39

[23] Lars R Knudsen and Matthew Robshaw. The Block Bipher Companion. Springer Science & Business

Media, 2011. 18, 30

[24] Altus Metrum. ChoasKey, 2018. URL https://altusmetrum.org/ChaosKey/. 19

[25] Werner Schindler and Wolfgang Killmann. Evaluation Criteria for True (Physical) Random Number

Generators used in Cryptographic Applications. In International Workshop on Cryptographic Hard-

ware and Embedded Systems, pages 431–449. Springer, 2002. 19

[26] Yan Yan, Elisabeth Oswald, and Theo Tryfonas. Cryptographic Randomness on a CC2538: A Case

Study. In 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pages 1–6.

IEEE, 2016. 19

[27] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. Draft of a book, version

0.3, December, 2016. 20, 26, 30, 41

[28] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE bites: Exploiting the SSL 3.0 Fall-

back. Security Advisory, September 2014. 21, 34, 58

[29] Hanno Böck, Juraj Somorovsky, and Craig Young. Return Of Bleichenbacher’s Oracle Threat (ROBOT).

In 27th USENIX Security Symposium (USENIX Security ’18), pages 817–849, 2018. 58

[30] Nadhem J Al Fardan and Kenneth G Paterson. Lucky Thirteen: Breaking the TLS and DTLS Record

Protocols. In 2013 IEEE Symposium on Security and Privacy, pages 526–540. IEEE, 2013. 21

[31] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC,

2014. 21, 23, 24, 38

[32] Joe Hurd. Verification of the Miller–Rabin Probabilistic Primality Test. The Journal of Logic and Alge-

braic Programming, 56(1-2):3–21, 2003. 24

[33] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge university

press, 2009. 24

[34] Matthew Green. Why I hate CBC-MAC, 2013. URL https://blog.cryptographyengineering.

com/2013/02/15/why-i-hate-cbc-mac/. 30

150

https://altusmetrum.org/ChaosKey/
https://blog.cryptographyengineering.com/2013/02/15/why-i-hate-cbc-mac/
https://blog.cryptographyengineering.com/2013/02/15/why-i-hate-cbc-mac/

BIBLIOGRAPHY

[35] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 8439, RFC Editor, June 2018.

32

[36] Daniel J Bernstein. The Poly1305-AES Message-Authentication Code. In International Workshop on

Fast Software Encryption, pages 32–49. Springer, 2005. 32

[37] A. Langley, W. Chang, N. Mavrogiannopoulos, J. Strombergson, and S. Josefsson. ChaCha20-Poly1305

Cipher Suites for Transport Layer Security (TLS). RFC 7905, RFC Editor, June 2016. 32

[38] Frederick Mosteller. Understanding the Birthday Problem. In Selected Papers of Frederick Mosteller,

pages 349–353. Springer, 2006. 33

[39] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Message Authentica-

tion. RFC 2104, RFC Editor, February 1997. URL http://www.rfc-editor.org/rfc/rfc2104.txt.

http://www.rfc-editor.org/rfc/rfc2104.txt. 33

[40] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authen-

tication and Confidentiality. 2004. 34

[41] Hequn Chen and Christof Paar. Authenticated Encryption Modes of Block Ciphers, Their Security

and Implementation Properties, 2009. 34

[42] Doug Whiting, Russ Housley, and Niels Ferguson. Counter with CBC-MAC (CCM). RFC 3610, Septem-

ber 2003. URL https://rfc-editor.org/rfc/rfc3610.txt. 34

[43] René Struik. Formal Specification of the CCM* Mode of Operation. IEEE P802, 15, 2005. 34

[44] Petr Švenda. Basic Comparison of Modes for Authenticated-Encryption (IAPM, XCBC, OCB, CCM,

EAX, CWC, GCM, PCFB, CS). URL https://www.fi.muni.cz/~xsvenda/docs/AE_comparison_

ipics04.pdf. 35

[45] T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital

Signature Algorithm (ECDSA). RFC 6979, IETF, August 2013. URL http://www.rfc-editor.org/

rfc/rfc6979.txt. http://www.rfc-editor.org/rfc/rfc6979.txt. 40

[46] Leonard Adleman. A Subexponential Algorithm for the Discrete Logarithm Problem with Applications

to Cryptography. In 20th Annual Symposium on Foundations of Computer Science, pages 55–60. IEEE,

1979. 40

[47] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Emmanuel Thomé, Joppe W Bos,

Pierrick Gaudry, Alexander Kruppa, Peter L Montgomery, Dag Arne Osvik, et al. Factorization of a

768-bit RSA modulus. In Annual Cryptology Conference, pages 333–350. Springer, 2010. 40

[48] René Schoof. Elliptic Curves over Finite Fields and the Computation of Square Roots mod p. Mathe-

matics of computation, 44(170):483–494, 1985. 40

[49] Hongjun Wu. ACORN:A Lightweight Authenticated Cipher (v3). Technical report, Division of Mathe-

matical Sciences Nanyang Technological University, 09 2016. 42

[50] Florian Mendel Christoph Dobraunig, Maria Eichlseder and Martin Schläffer. Ascon v1.2 Submis-

sion to the CAESAR Competition. Technical report, Institute for Applied Information Processing and

Communications, Graz University of Technology and Infineon Technologies Austria AG, 09 2016. 42

[51] ARM. ARM MBEDTLS, 2019. URL https://tls.mbed.org/. 42, 116

[52] Vampire and ECRYPTII. SUPERCOP, 01 2019. URL https://bench.cr.yp.to/supercop.html. 42

[53] NIST. Cryptographic Algorithm Validation Program. URL https://csrc.nist.gov/Projects/

Cryptographic-Algorithm-Validation-Program/. 42

[54] Daniel J Bernstein. Curve25519: New Diffie-Hellman Speed Records. In International Workshop on

Public Key Cryptography, pages 207–228. Springer, 2006. 44

151

http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
https://rfc-editor.org/rfc/rfc3610.txt
https://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf
https://www.fi.muni.cz/~xsvenda/docs/AE_comparison_ipics04.pdf
http://www.rfc-editor.org/rfc/rfc6979.txt
http://www.rfc-editor.org/rfc/rfc6979.txt
http://www.rfc-editor.org/rfc/rfc6979.txt
https://tls.mbed.org/
https://bench.cr.yp.to/supercop.html
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/

BIBLIOGRAPHY

[55] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic Curves for Security. RFC 7748, January 2016.

URL https://rfc-editor.org/rfc/rfc7748.txt. 44

[56] Matthew Green. The Many Flaws of Dual_EC_DRBG), . URL https://blog.

cryptographyengineering.com/2013/09/18/the-many-flaws-of-dualecdrbg/. 44

[57] Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: A Standardized Back Door. In The

New Codebreakers, pages 256–281. Springer, 2016. 44

[58] Jerome Solinas and David E. Fu. Elliptic Curve Groups modulo a Prime (ECP Groups) for IKE and

IKEv2. RFC 5903, June 2010. URL https://rfc-editor.org/rfc/rfc5903.txt. 44

[59] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner, and Daniel

Smith-Tone. Report on Post-Quantum Cryptography. US Department of Commerce, National Insti-

tute of Standards and Technology, 2016. 45, 147

[60] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceed-

ings 35th annual symposium on foundations of computer science, pages 124–134. Ieee, 1994. 45

[61] Santosh Ghosh, Rafael Misoczki, and Manoj R. Sastry. Lightweight Post-Quantum-Secure Digital

Signature Approach for IoT Motes. Cryptology ePrint Archive, Report 2019/122, 2019. https:

//eprint.iacr.org/2019/122. 45

[62] Zhe Liu, Kim-Kwang Raymond Choo, and Johann Grossschadl. Securing Edge Devices in the Post-

Quantum Internet of Things using Lattice-based Cryptography. IEEE Communications Magazine, 56

(2):158–162, 2018. 45, 147

[63] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6 Packets over IEEE

802.15.4 Networks. RFC 4944, RFC Editor, September 2007. URL http://www.rfc-editor.org/

rfc/rfc4944.txt. http://www.rfc-editor.org/rfc/rfc4944.txt. 48, 59

[64] Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne, Luigi Alfredo Grieco,

Gennaro Boggia, and Mischa Dohler. Standardized Protocol Stack for the Internet of (Important)

Things. IEEE communications surveys & tutorials, 15(3):1389–1406, 2013. 48, 54

[65] Danny Dolev and Andrew Yao. On the Security of Public Key Protocols. IEEE Transactions on Infor-

mation Theory, 29(2):198–208, 1983. 49, 66

[66] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, RFC Editor, October 2012. URL http:

//www.rfc-editor.org/rfc/rfc6749.txt. http://www.rfc-editor.org/rfc/rfc6749.txt.

49

[67] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519, RFC Editor, May

2015. URL http://www.rfc-editor.org/rfc/rfc7519.txt. http://www.rfc-editor.org/

rfc/rfc7519.txt. 50

[68] Daniel Fett, Ralf Küsters, and Guido Schmitz. A Comprehensive Formal Security Analysis of OAuth

2.0. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,

pages 1204–1215. ACM, 2016. 50, 51

[69] T. Lodderstedt, M. McGloin, and P. Hunt. OAuth 2.0 Threat Model and Security Considerations. RFC

6819, RFC Editor, January 2013. 51

[70] A. Popov, M. Nystroem, D. Balfanz, and J. Hodges. The Token Binding Protocol Version 1.0. RFC 8471,

RFC Editor, October 2018. 51

[71] C. Bormann, M. Ersue, and A. Keranen. Terminology for Constrained-Node Networks. RFC 7228,

RFC Editor, May 2014. URL http://www.rfc-editor.org/rfc/rfc7228.txt. http://www.

rfc-editor.org/rfc/rfc7228.txt. 51

152

https://rfc-editor.org/rfc/rfc7748.txt
https://blog.cryptographyengineering.com/2013/09/18/the-many-flaws-of-dualecdrbg/
https://blog.cryptographyengineering.com/2013/09/18/the-many-flaws-of-dualecdrbg/
https://rfc-editor.org/rfc/rfc5903.txt
https://eprint.iacr.org/2019/122
https://eprint.iacr.org/2019/122
http://www.rfc-editor.org/rfc/rfc4944.txt
http://www.rfc-editor.org/rfc/rfc4944.txt
http://www.rfc-editor.org/rfc/rfc4944.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7228.txt
http://www.rfc-editor.org/rfc/rfc7228.txt
http://www.rfc-editor.org/rfc/rfc7228.txt

BIBLIOGRAPHY

[72] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP). RFC 7252,

RFC Editor, June 2014. URL http://www.rfc-editor.org/rfc/rfc7252.txt. http://www.

rfc-editor.org/rfc/rfc7252.txt. 51, 53

[73] C. Bormann and P. Hoffman. Concise binary object representation (cbor). RFC 7049, RFC Editor,

October 2013. 51

[74] Francesca Palombini, Ludwig Seitz, Goeran Selander, and Martin Gunnarsson. OSCORE pro-

file of the Authentication and Authorization for Constrained Environments Framework. Internet-

Draft draft-ietf-ace-oscore-profile-07, IETF Secretariat, February 2019. URL http://www.ietf.

org/internet-drafts/draft-ietf-ace-oscore-profile-07.txt. http://www.ietf.org/

internet-drafts/draft-ietf-ace-oscore-profile-07.txt. 52

[75] Stefanie Gerdes, Olaf Bergmann, Carsten Bormann, Goeran Selander, and Ludwig Seitz. Datagram

Transport Layer Security (DTLS) Profile for Authentication and Authorization for Constrained Envi-

ronments (ACE). Internet-Draft draft-ietf-ace-dtls-authorize-05, IETF Secretariat, October 2018. URL

http://www.ietf.org/internet-drafts/draft-ietf-ace-dtls-authorize-05.txt. http:

//www.ietf.org/internet-drafts/draft-ietf-ace-dtls-authorize-05.txt. 52

[76] Satoshi Nakamoto et al. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. 53

[77] Gavin Wood et al. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Ethereum

project yellow paper, 151(2014):1–32, 2014. 53, 141

[78] Zhetao Li, Jiawen Kang, Rong Yu, Dongdong Ye, Qingyong Deng, and Yan Zhang. Consortium

Blockchain for Secure Energy Trading in Industrial Internet of Things. IEEE transactions on indus-

trial informatics, 14(8):3690–3700, 2017. 53

[79] Haipeng Yao, Tianle Mai, Jingjing Wang, Zhe Ji, Chunxiao Jiang, and Yi Qian. Resource Trading in

Blockchain-based Industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2019.

[80] Ramon Alcarria, Borja Bordel, Tomás Robles, Diego Martín, and Miguel-Ángel Manso-Callejo. A

Blockchain-Based Authorization System for Trustworthy Resource Monitoring and Trading in Smart

Communities. Sensors, 18(10):3561, 2018. 53

[81] Diana Smetters and Van Jacobson. Securing network content. Technical report, Citeseer, 2009. 54

[82] Mališa Vučinić, Bernard Tourancheau, Franck Rousseau, Andrzej Duda, Laurent Damon, and Roberto

Guizzetti. OSCAR: Object security architecture for the Internet of Things. Ad Hoc Networks, 32:3–16,

2015. 54, 116

[83] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. Specification for DNS over

Transport Layer Security (TLS). RFC 7858, RFC Editor, May 2016. 54

[84] MultiMedia LLC. Enable Private DNS with 1.1.1.1 on Android 9 Pie, 2018. URL https://blog.

cloudflare.com/enable-private-dns-with-1-1-1-1-on-android-9-pie/.

[85] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). RFC 8484, RFC Editor, October 2018.

54

[86] Nagendra Modadugu and Eric Rescorla. The Design and Implementation of Datagram TLS. In NDSS,

2004. 54, 58, 63

[87] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Introduction and Require-

ments. RFC 4033, RFC Editor, March 2005. URL http://www.rfc-editor.org/rfc/rfc4033.txt.

http://www.rfc-editor.org/rfc/rfc4033.txt. 54

[88] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Mes-

sage Specification. RFC 5751, RFC Editor, January 2010. URL http://www.rfc-editor.org/rfc/

rfc5751.txt. http://www.rfc-editor.org/rfc/rfc5751.txt. 54

153

http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oscore-profile-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oscore-profile-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oscore-profile-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-oscore-profile-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-dtls-authorize-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-dtls-authorize-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-ace-dtls-authorize-05.txt
https://blog.cloudflare.com/enable-private-dns-with-1-1-1-1-on-android-9-pie/
https://blog.cloudflare.com/enable-private-dns-with-1-1-1-1-on-android-9-pie/
http://www.rfc-editor.org/rfc/rfc4033.txt
http://www.rfc-editor.org/rfc/rfc4033.txt
http://www.rfc-editor.org/rfc/rfc5751.txt
http://www.rfc-editor.org/rfc/rfc5751.txt
http://www.rfc-editor.org/rfc/rfc5751.txt

BIBLIOGRAPHY

[89] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP Message Format. RFC 4880,

RFC Editor, November 2007. URL http://www.rfc-editor.org/rfc/rfc4880.txt. http://www.

rfc-editor.org/rfc/rfc4880.txt. 54

[90] J. Schaad. CBOR Object Signing and Encryption (COSE). RFC 8152, RFC Editor, July 2017. 55

[91] Goeran Selander, John Mattsson, and Francesca Palombini. Ephemeral Diffie-Hellman Over COSE

(EDHOC). Internet-Draft draft-selander-ace-cose-ecdhe-11, IETF Secretariat, January 2019. URL

http://www.ietf.org/internet-drafts/draft-selander-ace-cose-ecdhe-11.txt. http:

//www.ietf.org/internet-drafts/draft-selander-ace-cose-ecdhe-11.txt. 56

[92] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and its Use

in the IKE Protocols. In Annual International Cryptology Conference, pages 400–425. Springer, 2003.

56

[93] Alessandro Bruni, Thorvald Sahl Jørgensen, Theis Grønbech Petersen, and Carsten Schürmann. For-

mal Verification of Ephemeral Diffie-Hellman over COSE (EDHOC). In International Conference on

Research in Security Standardisation, pages 21–36. Springer, 2018. 56

[94] Jon Postel. Transmission Control Protocol. STD 7, RFC Editor, September 1981. URL http://www.

rfc-editor.org/rfc/rfc793.txt. http://www.rfc-editor.org/rfc/rfc793.txt. 57

[95] J. Postel. User Datagram Protocol. STD 6, RFC Editor, August 1980. URL http://www.rfc-editor.

org/rfc/rfc768.txt. http://www.rfc-editor.org/rfc/rfc768.txt. 57

[96] CG Carles Gomez, Andres Emilio Arcia Moret, and Jonathon Andrew Crowcroft. TCP in the Internet

of Things: From Ostracism to Prominence. February 2017. 57

[97] Ahmed Ayadi, David Ros, and Laurent Toutain. Tcp header compression for 6lowpan.

Internet-Draft draft-aayadi-6lowpan-tcphc-01, IETF Secretariat, October 2010. URL http:

//www.ietf.org/internet-drafts/draft-aayadi-6lowpan-tcphc-01.txt. http://www.

ietf.org/internet-drafts/draft-aayadi-6lowpan-tcphc-01.txt. 57, 130

[98] Carles Gomez, Jon Crowcroft, and Michael Scharf. TCP Usage Guidance in the Inter-

net of Things (IoT). Internet-Draft draft-ietf-lwig-tcp-constrained-node-networks-08, Inter-

net Engineering Task Force, June 2019. URL https://datatracker.ietf.org/doc/html/

draft-ietf-lwig-tcp-constrained-node-networks-08. Work in Progress. 57, 123

[99] Adam Dunkels, Juan Alonso, and Thiemo Voigt. Making TCP/IP Viable for Wireless Sensor Networks,

2003. 57

[100] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer, Nicolas

Weaver, David Adrian, Vern Paxson, Michael Bailey, et al. The matter of heartbleed. In Proceedings of

the 2014 Conference on Internet Measurement Conference, pages 475–488. ACM, 2014. 57

[101] Adam Langley. PKCS#1 Signature Validation, . URL https://www.imperialviolet.org/2014/09/

26/pkcs1.html. 57

[102] Adam Langley. Apple’s SSL/TLS bug, . URL https://www.imperialviolet.org/2014/02/22/

applebug.html. 57

[103] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript Collision Attacks: Breaking Authentication

in TLS, IKE, and SSH. In Network and Distributed System Security Symposium – NDSS 2016, San

Diego, United States, February 2016. doi: 10.14722/ndss.2016.23418. URL https://hal.inria.fr/

hal-01244855. 58

[104] Luke Valenta, Nick Sullivan, Antonio Sanso, and Nadia Heninger. In Search of CurveSwap: Measur-

ing Elliptic Curve Implementations in the Wild. In 2018 IEEE European Symposium on Security and

Privacy (EuroS&P), pages 384–398. IEEE, 2018. 58

154

http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.ietf.org/internet-drafts/draft-selander-ace-cose-ecdhe-11.txt
http://www.ietf.org/internet-drafts/draft-selander-ace-cose-ecdhe-11.txt
http://www.ietf.org/internet-drafts/draft-selander-ace-cose-ecdhe-11.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.ietf.org/internet-drafts/draft-aayadi-6lowpan-tcphc-01.txt
http://www.ietf.org/internet-drafts/draft-aayadi-6lowpan-tcphc-01.txt
http://www.ietf.org/internet-drafts/draft-aayadi-6lowpan-tcphc-01.txt
http://www.ietf.org/internet-drafts/draft-aayadi-6lowpan-tcphc-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-tcp-constrained-node-networks-08
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-tcp-constrained-node-networks-08
https://www.imperialviolet.org/2014/09/26/pkcs1.html
https://www.imperialviolet.org/2014/09/26/pkcs1.html
https://www.imperialviolet.org/2014/02/22/applebug.html
https://www.imperialviolet.org/2014/02/22/applebug.html
https://hal.inria.fr/hal-01244855
https://hal.inria.fr/hal-01244855

BIBLIOGRAPHY

[105] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Hal-

derman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot,

Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann. Imperfect Forward Secrecy: How

Diffie-Hellman Fails in Practice. In 22nd ACM Conference on Computer and Communications Secu-

rity, October 2015. 58

[106] Matthew Green. Attack of the week: FREAK (or ‘factoring the NSA for fun

and profit’), . URL https://blog.cryptographyengineering.com/2015/03/03/

attack-of-week-freak-or-factoring-nsa/. 58

[107] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-)security of 64-bit block ciphers:

Collision attacks on HTTP over TLS and OpenVPN. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, pages 456–467. ACM, 2016. 58

[108] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August 2018. URL

https://rfc-editor.org/rfc/rfc8446.txt. 58

[109] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security Version 1.2. RFC 6347,

January 2012. URL https://rfc-editor.org/rfc/rfc6347.txt. 59, 116

[110] Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. The Datagram Transport Layer Security

(DTLS) Protocol Version 1.3. Internet-Draft draft-ietf-tls-dtls13-32, Internet Engineering Task Force,

July 2019. URL https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-32. Work

in Progress. 59

[111] Jorge Granjal, Edmundo Monteiro, and Jorge Sá Silva. Security for the Internet of Things: a Survey

of Existing Protocols and Open Research Issues. IEEE Communications Surveys & Tutorials, 17(3):

1294–1312, 2015. 59

[112] Carsten Bormann, Zach Shelby, Samita Chakrabarti, and Erik Nordmark. Neighbor Discovery Opti-

mization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs). RFC 6775, Novem-

ber 2012. URL https://rfc-editor.org/rfc/rfc6775.txt. 59

[113] René Hummen, Jens Hiller, Hanno Wirtz, Martin Henze, Hossein Shafagh, and Klaus Wehrle. 6LoW-

PAN Fragmentation Attacks and Mitigation Mechanisms. In Proceedings of the sixth ACM conference

on Security and privacy in wireless and mobile networks, pages 55–66. ACM, 2013. 59, 60

[114] Aminul Haque Chowdhury, Muhammad Ikram, Hyon-Soo Cha, Hassen Redwan, SM Shams, Ki-

Hyung Kim, and Seung-Wha Yoo. Route-over vs Mesh-under Routing in 6LoWPAN. In Proceedings

of the 2009 international conference on wireless communications and mobile computing: Connecting

the world wirelessly, pages 1208–1212. ACM, 2009. 59

[115] Yasuyuki Tanaka, Pascale Minet, and Thomas Watteyne. 6LoWPAN Fragment Forwarding. march

2019. URL https://hal.inria.fr/hal-02061838. 60, 127

[116] Shahid Raza, Tony Chung, Simon Duquennoy, Thiemo Voigt, Utz Roedig, et al. Securing Internet of

Things with Lightweight IPSec. 2010. 60

[117] Kris Pister and Lance Doherty. TSMP: Time Synchronized Mesh Protocol. IASTED Distributed Sensor

Networks, 391:398, 2008. 61

[118] K. Pister M. Vucinic, J. Simon and M. Richardson. Minimal Security Framework

for 6TiSCH. Draft, IETF, November 2018. URL https://tools.ietf.org/pdf/

draft-ietf-6tisch-minimal-security-09.pdf. 63

[119] Gabriel Montenegro, Christian Schumacher, and Nandakishore Kushalnagar. IPv6 over Low-Power

Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and

Goals. RFC 4919, August 2007. URL https://rfc-editor.org/rfc/rfc4919.txt. 64

[120] Andrew Martin. The ten-page introduction to Trusted Computing. November 2008. URL https:

//www.cs.ox.ac.uk/files/1873/RR-08-11.PDF. 66

155

https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-or-factoring-nsa/
https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-or-factoring-nsa/
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc6347.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-32
https://rfc-editor.org/rfc/rfc6775.txt
https://hal.inria.fr/hal-02061838
https://tools.ietf.org/pdf/draft-ietf-6tisch-minimal-security-09.pdf
https://tools.ietf.org/pdf/draft-ietf-6tisch-minimal-security-09.pdf
https://rfc-editor.org/rfc/rfc4919.txt
https://www.cs.ox.ac.uk/files/1873/RR-08-11.PDF
https://www.cs.ox.ac.uk/files/1873/RR-08-11.PDF

BIBLIOGRAPHY

[121] Pieter Maene, Johannes Götzfried, Ruan De Clercq, Tilo Müller, Felix Freiling, and Ingrid Ver-

bauwhede. Hardware-Based Trusted Computing Architectures for Isolation and Attestation. IEEE

Transactions on Computers, 67(3):361–374, 2017. 66

[122] arm. TrustZone for Cortex-M, 2019. URL https://www.arm.com/why-arm/technologies/

trustzone-for-cortex-m. 66

[123] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter Maene, Bart Preneel, Ingrid

Verbauwhede, Johannes Götzfried, Tilo Müller, and Felix Freiling. Sancus 2.0: A Low-Cost Security

Architecture for IoT Devices. ACM Transactions on Privacy and Security (TOPS), 20(3):7, 2017. 67, 74

[124] Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep Khosla. SWATT: Software-Based

Attestation for Embedded Devices. In IEEE Symposium on Security and Privacy, 2004. Proceedings.

2004, pages 272–282. IEEE, 2004. 68

[125] Taejoon Park and Kang G Shin. Soft Tamper-Proofing via Program Integrity Verification in Wireless

Sensor Networks. IEEE Transactions on mobile computing, 4(3):297–309, 2005.

[126] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla. Scuba: Secure

code update by attestation in sensor networks. In Proceedings of the 5th ACM workshop on Wireless

security, pages 85–94. ACM, 2006. 69, 70

[127] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert Van Doorn, and Pradeep Khosla. Pi-

oneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems. In

ACM SIGOPS Operating Systems Review, volume 39, pages 1–16. ACM, 2005.

[128] Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher, and Yongdae Kim. Remote Software-Based At-

testation for Wireless Sensors. In European Workshop on Security in Ad-hoc and Sensor Networks,

pages 27–41. Springer, 2005.

[129] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. Distributed Software-Based Attestation for

Node Compromise Detection in Sensor Networks. In 2007 26th IEEE International Symposium on

Reliable Distributed Systems (SRDS 2007), pages 219–230. IEEE, 2007. 68

[130] Arvind Seshadri, Mark Luk, and Adrian Perrig. SAKE: Software Attestation for Key Establishment in

Sensor Networks. In International Conference on Distributed Computing in Sensor Systems, pages

372–385. Springer, 2008. 68, 69, 70

[131] Daniele Perito and Gene Tsudik. Secure Code Update for Embedded Devices via Proofs of Secure

Erasure. In European Symposium on Research in Computer Security, pages 643–662. Springer, 2010.

69

[132] Steffen Schulz, André Schaller, Florian Kohnhäuser, and Stefan Katzenbeisser. Boot attestation: Se-

cure Remote Reporting with Off-The-Shelf IoT Sensors. In European Symposium on Research in Com-

puter Security, pages 437–455. Springer, 2017. 70

[133] LPC1224/25/26/27 User manual. NXP, 05 2017. 71

[134] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted Execution Environ-

ment: What It is, and What It is Not. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 57–64.

IEEE, 2015. 72

[135] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. SMART: Secure and Minimal

Architecture for (Establishing Dynamic) Root of Trust. In NDSS, volume 12, pages 1–15, 2012. 74

[136] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente. On the difficulty of

software-based attestation of embedded devices. In Proceedings of the 16th ACM conference on Com-

puter and communications security, pages 400–409. ACM, 2009. 78

[137] Yanlin Li, Yueqiang Cheng, Virgil Gligor, and Adrian Perrig. Establishing Software-Only Root of Trust

on Embedded Systems: Facts and Fiction. In Cambridge International Workshop on Security Proto-

cols, pages 50–68. Springer, 2015. 78

156

https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m

BIBLIOGRAPHY

[138] Karim Eldefrawy and Gene Tsudik. Opinion: Advancing Remote Attestation via Computer-aided For-

mal Verification of Designs and Synthesis of Executables. In Proceedings of the 12th Conference on

Security and Privacy in Wireless and Mobile Networks, pages 45–48. ACM, 2019. 78, 147

[139] James Newsome, Elaine Shi, Dawn Song, and Adrian Perrig. The Sybil Attack in Sensor Networks:

Analysis & Defenses. In Third international symposium on information processing in sensor networks,

2004. IPSN 2004, pages 259–268. IEEE, 2004. 82

[140] Boris Danev and Srdjan Capkun. Transient-Based Identification of Wireless Sensor Nodes. In Pro-

ceedings of the 2009 International Conference on Information Processing in Sensor Networks, pages

25–36. IEEE Computer Society, 2009. 83

[141] Yuexiu Xing, Aiqun Hu, Junqing Zhang, Linning Peng, and Guyue Li. On Radio Frequency Fingerprint

Identification for DSSS Dystems in Low SNR Scenarios. IEEE Communications Letters, 22(11):2326–

2329, 2018. 83

[142] David A Knox and Thomas Kunz. AGC-based RF Fingerprints in Wireless Sensor Networks for Au-

thentication. In 2010 IEEE International Symposium ön A World of Wireless, Mobile and Multimedia

Networks" (WoWMoM), pages 1–6. IEEE, 2010. 83

[143] David Stanislowski, Xavier Vilajosana, Qin Wang, Thomas Watteyne, and Kristofer SJ Pister. Adaptive

Synchronization in IEEE 802.15.4e Networks. IEEE Transactions on Industrial Informatics, 10(1):795–

802, 2013. 84

[144] Fabian Lanze, Andriy Panchenko, Benjamin Braatz, and Andreas Zinnen. Clock Skew Based Remote

Device Fingerprinting Demystified. In 2012 IEEE Global Communications Conference (GLOBECOM),

pages 813–819. IEEE, 2012. 85

[145] Nouha Baccour, Anis Koubâa, Luca Mottola, Marco Antonio Zúñiga, Habib Youssef, Carlo Alberto

Boano, and Mário Alves. Radio Link Quality Estimation in Wireless Sensor Networks: A Survey. ACM

Transactions on Sensor Networks (TOSN), 8(4):34, 2012. 85

[146] Sheng Zhong, Li Li, Yanbin Grace Liu, and Yang Richard Yang. Privacy-Preserving Location-Based

Services for Mobile Users in Wireless Networks. Department of Computer Science, Yale University,

Technical Report ALEU/DCS/TR-1297, 2004. 85, 87

[147] Cesare Alippi and Giovanni Vanini. A RSSI-Based and Calibrated Centralized Localization Technique

for Wireless Sensor Networks. In Fourth Annual IEEE International Conference on Pervasive Comput-

ing and Communications Workshops (PERCOMW’06), pages 5–pp. IEEE, 2006. 85

[148] Murat Demirbas and Youngwhan Song. An RSSI-Based Scheme for Sybil Attack Detection in Wireless

Sensor Networks. In 2006 International Symposium on a World of Wireless, Mobile and Multimedia

Networks (WoWMoM’06), pages 5–pp. IEEE, 2006. 85, 87, 88

[149] Jiangtao Wang, Geng Yang, Yuan Sun, and Shengshou Chen. Sybil Attack Detection Based on RSSI for

Wireless Sensor Network. In 2007 International Conference on Wireless Communications, Networking

and Mobile Computing, pages 2684–2687. IEEE, 2007. 85, 87, 88

[150] Thomas Watteyne, Steven Lanzisera, Ankur Mehta, and Kristofer SJ Pister. Mitigating Multipath Fad-

ing through Channel Hopping in Wireless Sensor Networks. In 2010 IEEE International Conference on

Communications, pages 1–5. IEEE, 2010. 86

[151] G Edward Suh and Srinivas Devadas. Physical Unclonable Functions for Device Authentication and

Secret Key Generation. In 2007 44th ACM/IEEE Design Automation Conference, pages 9–14. IEEE,

2007. 89

[152] Daniel E Holcomb, Wayne P Burleson, and Kevin Fu. Power-up SRAM State as an Identifying Finger-

print and Source of True Random Numbers. IEEE Transactions on Computers, 58(9):1198–1210, 2008.

90, 92

157

BIBLIOGRAPHY

[153] Steven J Murdoch. Hot or Not: Revealing Hidden Services by their Clock Skew. In Proceedings of the

13th ACM conference on Computer and communications security, pages 27–36. ACM, 2006. 96

[154] Great Scott Gadgets. Project Ubertooth, 2018. URL https://github.com/greatscottgadgets/

ubertooth/. 96, 108

[155] Xavier Vilajosana, Qin Wang, Fabien Chraim, Thomas Watteyne, Tengfei Chang, and Kristofer SJ Pis-

ter. A Realistic Energy Consumption Model for TSCH networks. IEEE Sensors Journal, 14(2):482–489,

2014. 97, 104

[156] IEEE 802.15.4e Low-Rate Wireless Personal Area Networks (Amendment to IEEE Std 802.15.4-2011).

IEEE Standards Office, New York, NY, USA, 2012. 98

[157] Elvis Vogli, Giuseppe Ribezzo, Luigi Alfredo Grieco, and Gennaro Boggia. Fast Join and Synchroniza-

tion Schema in the IEEE 802.15. 4e MAC. In 2015 IEEE Wireless Communications and Networking

Conference Workshops (WCNCW), pages 85–90. IEEE, 2015. 98, 101, 102, 104

[158] Thang Phan Duy, Thanh Dinh, and Younghan Kim. A Rapid Joining Scheme Based on Fuzzy Logic for

Highly Dynamic IEEE 802.15. 4e Time-Slotted Channel Hopping Networks. International Journal of

Distributed Sensor Networks, 12(8):1550147716659424, 2016. 98, 101, 102, 104

[159] Telosb. URL https://openwsn.atlassian.net/wiki/display/OW/TelosB. 101

[160] Liviu-Octavian Varga, Gabriele Romaniello, Mališa Vučinić, M. Favre, A. Banciu, R. Guizzetti,

C. Planat, Pascal Urard, Martin Heusse, Franck Rousseau, Olivier Alphand, Étienne Dublé, and An-

drzej Duda. GreenNet: an Energy Harvesting IP-enabled Wireless Sensor Network. IEEE Internet of

Things Journal, 2, 2015. 101

[161] Xavier Vilajosana, Kris Pister, and Thomas Watteyne. Minimal IPv6 over the TSCH Mode of IEEE

802.15.4e (6TiSCH) Configuration. RFC 8180, May 2017. URL https://rfc-editor.org/rfc/

rfc8180.txt. 101

[162] MSP430 32-kHz Crystal Oscillators. Texas Instruments, 8 2006. Rev. 2. 103

[163] Bluetooth Core specification 4.0. Bluetooth SIG, 6 2010. 105

[164] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and Evaluation of Bluetooth Low Energy:

An Emerging Low-Power Wireless Technology. Sensors, 12(9):11734–11753, 2012. 105

[165] Bluetooth Core specification 5.0. Bluetooth SIG, 12 2016. 105, 106, 108

[166] Lily Hay Newman. Inside the Unnerving Supply Chain Attack that

Corrupted CCleaner, 2018. URL https://www.wired.com/story/

inside-the-unnerving-supply-chain-attack-that-corrupted-ccleaner/. 106

[167] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a Class of Error Correcting Binary Group

Codes. Information and control, 3(1):68–79, 1960. 108

[168] Magic Blue UU Bluetooth Bulb. URL https://www.gearbest.com/smart-light-bulb/pp_

230349.html. 108

[169] LPC1759/58/56/54/52/51: 32-bit ARM Cortex-M3 MCU; up to 512 kB flash and 64 kB SRAM with Eth-

ernet, USB 2.0 Host/Device/OTG, CAN. NXP Semiconductors, 08 2015. URL https://www.nxp.com/

docs/en/data-sheet/LPC1759_58_56_54_52_51.pdf. 108

[170] Raspberry Pi Foundation. Raspberry Pi 3B, 2016. URL https://www.raspberrypi.org/products/

raspberry-pi-3-model-b/. 109

[171] CYW43438: Single-Chip IEEE 802.11 b/g/n MAC/Baseband/Radio with Integrated Bluetooth 4.2. Cy-

press, 07 2018. 109

158

https://github.com/greatscottgadgets/ubertooth/
https://github.com/greatscottgadgets/ubertooth/
https://openwsn.atlassian.net/wiki/display/OW/TelosB
https://rfc-editor.org/rfc/rfc8180.txt
https://rfc-editor.org/rfc/rfc8180.txt
https://www.wired.com/story/inside-the-unnerving-supply-chain-attack-that-corrupted-ccleaner/
https://www.wired.com/story/inside-the-unnerving-supply-chain-attack-that-corrupted-ccleaner/
https://www.gearbest.com/smart-light-bulb/pp_230349.html
https://www.gearbest.com/smart-light-bulb/pp_230349.html
https://www.nxp.com/docs/en/data-sheet/LPC1759_58_56_54_52_51.pdf
https://www.nxp.com/docs/en/data-sheet/LPC1759_58_56_54_52_51.pdf
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

BIBLIOGRAPHY

[172] Gareth Halfacree. Benchmarking the Raspberry Pi 3 B+. URL https://medium.com/@ghalfacree/

benchmarking-the-raspberry-pi-3-b-plus-44122cf3d806. 109, 110

[173] 175, 177, 179 True-rms Multimeters: User manual. Fluke, 05 2003. URL https://dam-assets.

fluke.com/s3fs-public/175_____umeng0200.pdf. 109, 110

[174] Qualcomm Snapdragon 801 Processor. Qualcomm Technologies, Inc, 2014. URL https://www.

qualcomm.com/media/documents/files/snapdragon-801-processor-product-brief.pdf.

110, 111

[175] WCN3680B/WCN3660B: device specification. Qualcomm Technologies, Inc, 07 2017. URL https://

developer.qualcomm.com/download/sd410/wcn3680b-wcn3660b-device-spec.pdf. 110, 111

[176] TCXO, Temperature Compensated Crystal Oscillator. URL https://www.

electronics-notes.com/articles/electronic_components/quartz-crystal-xtal/

tcxo-temperature-compensated-crystal-xtal-oscillator.php. 110

[177] IFIXIT. Motorola Moto X Teardown. URL https://nl.ifixit.com/Teardown/Motorola+Moto+X+

Teardown/16867. 111

[178] APPLE IFIXIT. The Teardown: Apple iPhone 5s. 8, November 2013. 111, 112

[179] BCM4334: Single Chip IEEE 802.11 a/b/g/n MAC/Baseband/Radio with Integrated Bluetooth 4.0 + HS

and FM Receiver. Cypress Semiconductor Corporation, 07 2016. URL http://www.rumjd.com/

Attachments/20160820160827_152216_171.pdf. 111

[180] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller, Lothar Thiele, and

Srdjan Capkun. Thermal Covert Channels on Multi-Core Platforms. In USENIX Security Symposium,

pages 865–880, 2015. 113

[181] Mordechai Guri, Matan Monitz, Yisroel Mirski, and Yuval Elovici. Bitwhisper: Covert Signaling Chan-

nel Between Air-Gapped Computers Using Thermal Manipulations. In Computer Security Founda-

tions Symposium (CSF), 2015 IEEE 28th, pages 276–289. IEEE, 2015. 113

[182] wolfSSL. wolfSSL, 2019. URL https://www.wolfssl.com. 116

[183] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246,

August 2008. URL https://rfc-editor.org/rfc/rfc5246.txt. 116

[184] Paul Wouters, Hannes Tschofenig, John Gilmore, Samuel Weiler, and Tero Kivinen. Using Raw Public

Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). RFC 7250,

June 2014. URL https://rfc-editor.org/rfc/rfc7250.txt. 117

[185] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. RFC 2401, RFC Editor, Novem-

ber 1998. 118

[186] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment Options. RFC 2018,

RFC Editor, October 1996. 120

[187] Jim Griner, John Border, Markku Kojo, Zach D. Shelby, and Gabriel Montenegro. Performance

Enhancing Proxies Intended to Mitigate Link-Related Degradations. RFC 3135, June 2001. URL

https://rfc-editor.org/rfc/rfc3135.txt. 120

[188] Joseph Ishac and Mark Allman. On the Performance of TCP Spoofing in Satellite Networks, volume 1.

IEEE, 2001. 120

[189] Martin Thomson. Record Size Limit Extension for TLS. RFC 8449, August 2018. URL https://

rfc-editor.org/rfc/rfc8449.txt. 121

[190] Tengfei Chang, Mališa Vučinić, Xavier Vilajosana, Simon Duquennoy, and Diego Dujovne.

6TiSCH Minimal Scheduling Function (MSF). Internet-Draft draft-ietf-6tisch-msf-06, Inter-

net Engineering Task Force, August 2019. URL https://datatracker.ietf.org/doc/html/

draft-ietf-6tisch-msf-06. Work in Progress. 122

159

https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-3-b-plus-44122cf3d806
https://medium.com/@ghalfacree/benchmarking-the-raspberry-pi-3-b-plus-44122cf3d806
https://dam-assets.fluke.com/s3fs-public/175_____umeng0200.pdf
https://dam-assets.fluke.com/s3fs-public/175_____umeng0200.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-801-processor-product-brief.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-801-processor-product-brief.pdf
https://developer.qualcomm.com/download/sd410/wcn3680b-wcn3660b-device-spec.pdf
https://developer.qualcomm.com/download/sd410/wcn3680b-wcn3660b-device-spec.pdf
https://www.electronics-notes.com/articles/electronic_components/quartz-crystal-xtal/tcxo-temperature-compensated-crystal-xtal-oscillator.php
https://www.electronics-notes.com/articles/electronic_components/quartz-crystal-xtal/tcxo-temperature-compensated-crystal-xtal-oscillator.php
https://www.electronics-notes.com/articles/electronic_components/quartz-crystal-xtal/tcxo-temperature-compensated-crystal-xtal-oscillator.php
https://nl.ifixit.com/Teardown/Motorola+Moto+X+Teardown/16867
https://nl.ifixit.com/Teardown/Motorola+Moto+X+Teardown/16867
http://www.rumjd.com/Attachments/201608 20160827_152216_171.pdf
http://www.rumjd.com/Attachments/201608 20160827_152216_171.pdf
https://www.wolfssl.com
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc7250.txt
https://rfc-editor.org/rfc/rfc3135.txt
https://rfc-editor.org/rfc/rfc8449.txt
https://rfc-editor.org/rfc/rfc8449.txt
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-msf-06
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-msf-06

BIBLIOGRAPHY

[191] Sally Floyd, Mark J. Handley, and Eddie Kohler. Datagram Congestion Control Protocol (DCCP). RFC

4340, March 2006. URL https://rfc-editor.org/rfc/rfc4340.txt. 123

[192] Dr. Craig Partridge, Mark Allman, and Sally Floyd. Increasing TCP’s Initial Window. RFC 3390, Novem-

ber 2002. URL https://rfc-editor.org/rfc/rfc3390.txt. 123

[193] Jerry Chu, Nandita Dukkipati, Yuchung Cheng, and Matt Mathis. Increasing TCP’s Initial Window.

RFC 6928, April 2013. URL https://rfc-editor.org/rfc/rfc6928.txt. 123

[194] Thomas Watteyne, Xavier Vilajosana, Branko Kerkez, Fabien Chraim, Kevin Weekly, Qin Wang, Steven

Glaser, and Kris Pister. OpenWSN: Open-Source Implementations of Protocol Stacks Based on IoT

Standards, 2013. URL http://www.openwsn.org. 123

[195] Openvisualizer. URL https://github.com/openwsn-berkeley/openvisualizer. 124

[196] Dr. Steve E. Deering and Bob Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 8200, July

2017. URL https://rfc-editor.org/rfc/rfc8200.txt. 126

[197] Dr. Vern Paxson and Mark Allman. Computing TCP’s Retransmission Timer. RFC 2988, November

2000. URL https://rfc-editor.org/rfc/rfc2988.txt. 127

[198] Ahmed Ayadi, Patrick Maillé, David Ros, Laurent Toutain, and Tiancong Zheng. Implementation and

Evaluation of a TCP header Compression for 6LoWPAN. In 2011 7th International Wireless Commu-

nications and Mobile Computing Conference, pages 1359–1364. IEEE, 2011. 130

[199] Michael Jones, Erik Wahlstroem, Samuel Erdtman, and Hannes Tschofenig. CBOR Web Token (CWT).

RFC 8392, May 2018. URL https://rfc-editor.org/rfc/rfc8392.txt. 133, 134

[200] Eran Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849, April 2010. URL https://rfc-editor.

org/rfc/rfc5849.txt. 133

[201] Aimaschana Niruntasukrat, Chavee Issariyapat, Panita Pongpaibool, Koonlachat Meesublak, Pram-

rudee Aiumsupucgul, and Anun Panya. Authorization Mechanism for MQTT-Based Internet of

Things. In 2016 IEEE International Conference on Communications Workshops (ICC), pages 290–295.

IEEE, 2016. 133

[202] Jim Schaad. CBOR Object Signing and Encryption (COSE): Headers for carrying and referencing

X.509 certificates. Internet-Draft draft-ietf-cose-x509-04, Internet Engineering Task Force, Septem-

ber 2019. URL https://datatracker.ietf.org/doc/html/draft-ietf-cose-x509-04. Work

in Progress. 134, 135, 137

[203] Robert Moskowitz, Tobias Heer, Petri Jokela, and Thomas R. Henderson. Host Identity Protocol Ver-

sion 2 (HIPv2). RFC 7401, 2015. URL https://rfc-editor.org/rfc/rfc7401.txt. 141

[204] Ayesha Khalid, James Howe, Ciara Rafferty, and Máire O’Neill. Time-Independent Discrete Gaussian

Sampling for Post-Quantum Cryptography. In 2016 International Conference on Field-Programmable

Technology (FPT), pages 241–244. IEEE, 2016. 147

[205] Eric Rescorla and Richard Barnes. Compact TLS 1.3. Internet-Draft draft-rescorla-tls-ctls-02,

Internet Engineering Task Force, July 2019. URL https://datatracker.ietf.org/doc/html/

draft-rescorla-tls-ctls-02. Work in Progress. 147

160

https://rfc-editor.org/rfc/rfc4340.txt
https://rfc-editor.org/rfc/rfc3390.txt
https://rfc-editor.org/rfc/rfc6928.txt
http://www.openwsn.org
https://github.com/openwsn-berkeley/openvisualizer
https://rfc-editor.org/rfc/rfc8200.txt
https://rfc-editor.org/rfc/rfc2988.txt
https://rfc-editor.org/rfc/rfc8392.txt
https://rfc-editor.org/rfc/rfc5849.txt
https://rfc-editor.org/rfc/rfc5849.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cose-x509-04
https://rfc-editor.org/rfc/rfc7401.txt
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-ctls-02
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-ctls-02

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Publications
	I Building blocks of the secure Internet of Things
	Define a Thing
	Terminology
	The Internals of IoT hardware

	Basics of Cryptography
	Notions of Security
	Symmetric-Key Cryptography
	Public-Key Cryptography
	Cryptography on Constrained Hardware

	A Secure IoT Networking Stack
	An Internet Threat Model
	Identity Management and Access Control
	The IoT Application Layer and End-to-End Security
	A Transport Layer Protocol Showdown
	The Network Layer and its Challenges
	Security for the IoT Physical and Link Layer

	System Security for Constrained Devices
	Threat Model
	Trusted Computing Security Properties
	Software-based Trusted Computing
	Hybrid- and Hardware-based Trusted Computing

	II A bottom-up approach to securing the Internet of Things
	Scalable and Secure Physical Device Identification
	Signal-based Fingerprinting
	Physical Unclonable Functions

	Vulnerabilities in Time Synchronized Link Layer Protocols
	Denial of Service Recovery for the TSCH Link Layer
	Thermal Covert Channel in BLE Networks

	Performance of Transport Layer Security over IEEE 802.15.4E Networks
	A Detailed Overview of the (D)TLS 1.2 Handshake
	The (D)TLS Handshake over IEEE 802.15.4e
	Performance Evaluation

	Security Architectures for the Internet of Things
	Token-based Authenticated Key Establishment
	IoTChain: A Blockchain Architecture for the IoT

	Bibliography

