M. Idzko, D. Ferrari, and H. K. Eltzschig, Nucleotide signalling during inflammation, Nature, vol.509, issue.7500, pp.310-317, 2014.

B. S. Khakh and R. A. North, Neuromodulation by extracellular ATP and P2X receptors in the CNS, Neuron, vol.76, issue.1, pp.51-69, 2012.

K. Wirkner, B. Sperlagh, and P. Illes, P2X3 receptor involvement in pain states, Mol Neurobiol, vol.36, issue.2, pp.165-183, 2007.

D. Yan, Mutation of the ATP-gated P2X(2) receptor leads to progressive hearing loss and increased susceptibility to noise, Proc Natl Acad Sci U S A, vol.110, issue.6, pp.2228-2233, 2013.

W. Pijacka, Purinergic receptors in the carotid body as a new drug target for controlling hypertension, Nat Med, vol.22, issue.10, pp.1151-1159, 2016.

R. A. North and M. F. Jarvis, P2X receptors as drug targets, Mol Pharmacol, vol.83, issue.4, pp.759-769, 2013.

T. Kawate, J. C. Michel, W. T. Birdsong, and E. Gouaux, Crystal structure of the ATP-gated P2X(4) ion channel in the closed state, Nature, vol.460, issue.7255, pp.592-598, 2009.

M. Hattori and E. Gouaux, Molecular mechanism of ATP binding and ion channel activation in P2X receptors, Nature, vol.485, issue.7397, pp.207-212, 2012.

G. Kasuya, Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels, Cell Rep, vol.14, issue.4, pp.932-944, 2016.

S. E. Mansoor, X-ray structures define human P2X3 receptor gating cycle and antagonist action, Nature, vol.538, issue.7623, pp.66-71, 2016.

A. Karasawa and T. Kawate, Structural basis for subtype-specific inhibition of the P2X7 receptor, 2016.

L. E. Browne, L. H. Jiang, and R. A. North, New structure enlivens interest in P2X receptors, Trends Pharmacol. Sci, vol.31, issue.5, pp.229-237, 2010.

C. Habermacher, K. Dunning, T. Chataigneau, and T. Grutter, Molecular structure and function of P2X receptors, Neuropharmacology, vol.104, pp.18-30, 2016.

S. Ding and F. Sachs, Single channel properties of P2X2 purinoceptors, J Gen Physiol, vol.113, issue.5, pp.695-720, 1999.

R. J. Evans, Single channel properties of ATP-gated cation channels (P2X receptors) heterologously expressed in Chinese hamster ovary cells, Neurosci Lett, vol.212, issue.3, pp.212-214, 1996.

T. Riedel, G. Schmalzing, and F. Markwardt, Influence of extracellular monovalent cations on pore and gating properties of P2X7 receptor-operated single-channel currents, Biophys J, vol.93, issue.3, pp.846-858, 2007.

C. Virginio, A. Mackenzie, F. A. Rassendren, R. A. North, and A. Surprenant, Pore dilation of neuronal P2X receptor channels, Nat. Neurosci, vol.2, issue.4, pp.315-321, 1999.

B. S. Khakh, X. R. Bao, C. Labarca, and H. A. Lester, Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds, Nat. Neurosci, vol.2, issue.4, pp.322-330, 1999.

M. B. Rokic and S. S. Stojilkovic, Two open states of P2X receptor channels, Front Cell Neurosci, vol.7, p.215, 2013.

L. Wei, E. Caseley, D. Li, and L. H. Jiang, ATP-induced P2X Receptor-Dependent Large Pore Formation: How Much Do We Know?, Front Pharmacol, vol.7, p.5, 2016.

V. Compan, P2X2 and P2X5 subunits define a new heteromeric receptor with P2X7-like properties, J Neurosci, vol.32, issue.12, pp.4284-4296, 2012.

L. H. Jiang, N-methyl-D-glucamine and propidium dyes utilize different permeation pathways at rat P2X(7) receptors, Am J Physiol Cell Physiol, vol.289, issue.5, pp.1295-1302, 2005.

P. Pelegrin and A. Surprenant, Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor, EMBO J, vol.25, issue.21, pp.5071-5082, 2006.

A. N. Eickhorst, A. Berson, D. Cockayne, H. A. Lester, and B. S. Khakh, Control of P2X(2) channel permeability by the cytosolic domain, J Gen Physiol, vol.120, issue.2, pp.119-131, 2002.

J. A. Fisher, G. Girdler, and B. S. Khakh, Time-resolved measurement of state-specific P2X2 ion channel cytosolic gating motions, J Neurosci, vol.24, pp.10475-10487, 2004.

B. S. Khakh and T. M. Egan, Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics, J Biol Chem, vol.280, issue.7, pp.6118-6129, 2005.

S. Chaumont and B. S. Khakh, Patch-clamp coordinated spectroscopy shows P2X2 receptor permeability dynamics require cytosolic domain rearrangements but not Panx-1 channels, Proc Natl Acad Sci U S A, vol.105, issue.33, pp.12063-12068, 2008.

Z. Yan, S. Li, Z. Liang, M. Tomic, and S. S. Stojilkovic, The P2X7 receptor channel pore dilates under physiological ion conditions, J Gen Physiol, vol.132, issue.5, pp.563-573, 2008.

Y. Shinozaki, Direct observation of ATP-induced conformational changes in single P2X(4) receptors, PLoS Biol, vol.7, issue.5, p.1000103, 2009.

A. Khadra, Gating properties of the P2X2a and P2X2b receptor channels: experiments and mathematical modeling, J Gen Physiol, vol.139, issue.5, pp.333-348, 2012.

L. E. Browne, V. Compan, L. Bragg, and R. A. North, P2X7 receptor channels allow direct permeation of nanometer-sized dyes, J Neurosci, vol.33, issue.8, pp.3557-3566, 2013.

M. Li, G. E. Toombes, S. D. Silberberg, and K. J. Swartz, Physical basis of apparent pore dilation of ATP-activated P2X receptor channels, Nat Neurosci, vol.18, issue.11, pp.1577-1583, 2015.

S. Ding and F. Sachs, Ion permeation and block of P2X(2) purinoceptors: single channel recordings, J Membr Biol, vol.172, issue.3, pp.215-223, 1999.

R. E. Sorge, Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity, Nat Med, vol.18, issue.4, pp.595-599, 2012.

M. Li, T. H. Chang, S. D. Silberberg, and K. J. Swartz, Gating the pore of P2X receptor channels, Nat. Neurosci, vol.11, issue.8, pp.883-887, 2008.

C. Habermacher, Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel, Elife, vol.5, p.11050, 2016.

L. E. Browne, Optical control of trimeric P2X receptors and acid-sensing ion channels, Proc Natl Acad Sci U S A, vol.111, issue.1, pp.521-526, 2014.

G. P. Guerra, M. A. Rubin, and C. F. Mello, Modulation of learning and memory by natural polyamines, Pharmacol Res, 2016.

A. Pippel, Localization of the gate and selectivity filter of the full-length P2X7 receptor, Proc Natl Acad Sci U S A, vol.114, issue.11, pp.2156-2165, 2017.

J. D. Clyne, T. C. Brown, and R. I. Hume, Expression level dependent changes in the properties of P2X2 receptors, Neuropharmacology, vol.44, issue.3, pp.403-412, 2003.

Y. Fujiwara and Y. Kubo, Density-dependent changes of the pore properties of the P2X2 receptor channel, J Physiol, vol.558, pp.31-43, 2004.

I. Tochitsky, How Azobenzene Photoswitches Restore Visual Responses to the Blind Retina, Neuron, 2016.

R. Jiang, A putative extracellular salt bridge at the subunit interface contributes to the ion channel function of the ATP-gated P2X2 receptor, J. Biol. Chem, vol.285, issue.21, pp.15805-15815, 2010.

M. J. Harvey, G. Giupponi, D. Fabritiis, and G. , ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale, Journal of Chemical Theory and Computation, vol.5, issue.6, pp.1632-1639, 2009.

G. Heymann, Inter-and intrasubunit interactions between transmembrane helices in the open state of P2X receptor channels, Proc Natl Acad Sci U S A, vol.110, issue.42, pp.4045-4054, 2013.

A. Roitberg and R. Elber, Modeling side chains in peptides and proteins: application of locally enhanced sampling and simulated annealing methods to find minimum energy conformations, J Chem Phys, vol.95, pp.9277-9287, 1991.

J. C. Phillips, Scalable molecular dynamics with NAMD, J Comput Chem, vol.26, issue.16, pp.1781-1802, 2005.

R. B. Best, Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles, J Chem Theory Comput, vol.8, issue.9, pp.3257-3273, 2012.

K. Vanommeslaeghe, CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J Comput Chem, vol.31, issue.4, pp.671-690, 2010.

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, J Mol Graph, vol.14, issue.1, pp.27-38, 1996.

F. Onasch, The interactions between nucleic acids and polyamines. III. Microscopic protonation constants of spermidine, Biophys Chem, vol.19, issue.3, pp.245-253, 1984.

B. Roux, The membrane potential and its representation by a constant electric field in computer simulations, Biophys J, vol.95, issue.9, pp.4205-4216, 2008.

O. S. Smart, J. G. Neduvelil, X. Wang, B. A. Wallace, and M. S. Sansom, HOLE: a program for the analysis of the pore dimensions of ion channel structural models, J Mol Graph, vol.14, issue.6, pp.354-360, 1996.

, ASICs Mediate Pain and Inflammation in Musculoskeletal Diseases, Bibliographie Abdelhamid RE & Sluka KA, vol.30, pp.449-459, 2015.

C. Acuña-castillo, B. Morales, and J. P. Huidobro-toro, Zinc and copper modulate differentially the P2X4 receptor, J. Neurochem, vol.74, pp.1529-1537, 2000.

S. Adriouch, C. Dox, V. Welge, M. Seman, F. Koch-nolte et al., A Natural P451L Mutation in the Cytoplasmic Domain Impairs the Function of the Mouse P2X7 Receptor, 2002.

, J. Immunol, vol.169, pp.4108-4112

A. Alberto, R. X. Faria, C. Couto, L. Ferreira, C. Souza et al.,

L. A. Alves, Is pannexin the pore associated with the P2X7 receptor?, Naunyn. Schmiedebergs Arch. Pharmacol, vol.386, pp.775-787, 2013.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., General Principles of Cell Communication, 2002.

E. X. Albuquerque, E. Pereira, M. Alkondon, and S. W. Rogers, Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function, Physiol. Rev, vol.89, pp.73-120, 2009.

T. Althoff, R. E. Hibbs, S. Banerjee, and E. Gouaux, X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors, Nature, vol.512, pp.333-337, 2014.

L. A. Alves, R. A. De-melo-reis, C. De-souza, M. S. De-freitas, P. Teixeira et al.,

D. Xavier and R. F. , The P2X7 receptor: Shifting from a low-to a high-conductance channel -An enigmatic phenomenon?, Biochim. Biophys. Acta BBA -Biomembr, vol.1838, pp.2578-2587, 2014.

A. R. Ase, N. S. Honson, H. Zaghdane, T. A. Pfeifer, and P. Séguéla, , 2015.

I. Baconguis, C. J. Bohlen, A. Goehring, D. Julius, and E. Gouaux, X-Ray Structure of Acid-Sensing Ion Channel 1-Snake Toxin Complex Reveals Open State of a Na+-Selective Channel, Cell, vol.156, pp.717-729, 2014.

M. Banghart, K. Borges, E. Isacoff, D. Trauner, and R. H. Kramer, Light-activated ion channels for remote control of neuronal firing, Nat. Neurosci, vol.7, pp.1381-1386, 2004.

T. G. Banke, S. R. Chaplan, and A. D. Wickenden, Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation, Am. J. Physiol. -Cell Physiol, vol.298, pp.1457-1468, 2010.

A. Baranova, D. Ivanov, N. Petrash, A. Pestova, M. Skoblov et al., The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins, Genomics, vol.83, pp.706-716, 2004.

N. M. Barnes, T. G. Hales, S. Lummis, and J. A. Peters, The 5-HT3 receptor -the relationship between structure and function, Neuropharmacology, vol.56, pp.273-284, 2009.

R. Baron, Mechanisms of disease: neuropathic pain--a clinical perspective, Nat. Clin. Pract. Neurol, vol.2, pp.95-106, 2006.

A. A. Beg and E. M. Jorgensen, EXP-1 is an excitatory GABA-gated cation channel, Nat. Neurosci, vol.6, pp.1145-1152, 2003.

J. P. Bennett, S. Cockcroft, and B. D. Gomperts, Rat mast cells permeabilized with ATP secrete histamine in response to calcium ions buffered in the micromolar range, J. Physiol, vol.317, pp.335-345, 1981.

L. Bernier, A. R. Ase, E. Boué-grabot, and P. Séguéla, P2X4 receptor channels form large noncytolytic pores in resting and activated microglia, Glia, vol.60, pp.728-737, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01146612

X. Bo, L. Jiang, H. L. Wilson, M. Kim, G. Burnstock et al., Pharmacological and biophysical properties of the human P2X5 receptor, Mol. Pharmacol, vol.63, pp.1407-1416, 2003.

X. Bo, Y. Zhang, M. Nassar, G. Burnstock, and R. Schoepfer, A P2X purinoceptor cDNA conferring a novel pharmacological profile, FEBS Lett, vol.375, pp.129-133, 1995.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity, Nat. Neurosci, vol.8, pp.1263-1268, 2005.

H. J. Bradley, J. M. Baldwin, G. R. Goli, B. Johnson, J. Zou et al.,

H. , Residues 155 and 348 Contribute to the Determination of P2X7 Receptor Function via Distinct Mechanisms Revealed by Single-nucleotide Polymorphisms, J. Biol. Chem, vol.286, pp.8176-8187, 2011.

A. J. Brake, M. J. Wagenbach, and D. Julius, New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor, Nature, vol.371, pp.519-523, 1994.

L. E. Browne, V. Compan, L. Bragg, and R. A. North, P2X7 Receptor Channels Allow Direct Permeation of Nanometer-Sized Dyes, J. Neurosci, vol.33, pp.3557-3566, 2013.

L. E. Browne, J. Nunes, J. A. Sim, V. Chudasama, L. Bragg et al., Optical control of trimeric P2X receptors and acid-sensing ion channels, Proc. Natl. Acad. Sci. U, 2014.

S. , , vol.111, pp.521-526

R. Bruzzone, S. G. Hormuzdi, M. T. Barbe, A. Herb, and H. Monyer, Pannexins, a family of gap junction proteins expressed in brain, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.13644-13649, 2003.

G. Burnstock, Purinergic nerves, Pharmacol. Rev, vol.24, pp.509-581, 1972.

G. Burnstock, Purinergic signalling and disorders of the central nervous system, Nat. Rev, 2008.

D. Discov, , vol.7, pp.575-590

G. Burnstock, Endothelium-derived vasoconstriction by purines and pyrimidines, Circ. Res, vol.103, pp.1056-1057, 2008.

G. Burnstock and A. Verkhratsky, Early History of Purinergic Signalling, Purinergic Signalling and the Nervous System, pp.7-66, 2012.

G. Burnstock and A. Verkhratsky, Receptors for Purines and Pyrimidines, Purinergic Signalling and the Nervous System, pp.119-244, 2012.

S. Cankurtaran-sayar, K. Sayar, and M. Ugur, P2X7 receptor activates multiple selective dyepermeation pathways in RAW 264.7 and human embryonic kidney 293 cells, Mol. Pharmacol, vol.76, pp.1323-1332, 2009.

E. Cao, M. Liao, Y. Cheng, and D. Julius, TRPV1 structures in distinct conformations reveal activation mechanisms, Nature, vol.504, pp.113-118, 2013.

J. Changeux, W. Leuzinger, and M. Huchet, Specific binding of acetylcholine to acetylcholinesterase in the presence of eserine, FEBS Lett, vol.2, pp.77-80, 1968.

J. P. Changeux, A. Ryter, W. Leuzinger, P. Barrand, and T. Podleski, On the association of tyrocidine with acetylcholinesterase, Proc. Natl. Acad. Sci. U. S. A, vol.62, pp.986-993, 1969.

T. Chataigneau, D. Lemoine, and T. Grutter, Exploring the ATP-binding site of P2X receptors, 2013.

, Front. Cell. Neurosci, vol.7, p.273

S. Chaumont and B. S. Khakh, Patch-clamp coordinated spectroscopy shows P2X2 receptor permeability dynamics require cytosolic domain rearrangements but not Panx-1 channels, Proc, 2008.

, Natl. Acad. Sci. U. S. A, vol.105, pp.12063-12068

C. C. Chen, A. N. Akopian, L. Sivilotti, D. Colquhoun, G. Burnstock et al., A P2X purinoceptor expressed by a subset of sensory neurons, Nature, vol.377, pp.428-431, 1995.

I. P. Chessell, J. Simon, A. D. Hibell, A. D. Michel, E. Barnard et al., Cloning and functional characterisation of the mouse P2X7 receptor, FEBS Lett, vol.439, pp.26-30, 1998.

M. Chung, A. D. Güler, and M. J. Caterina, TRPV1 shows dynamic ionic selectivity during agonist stimulation, Nat. Neurosci, vol.11, pp.555-564, 2008.

C. E. Clarke, C. D. Benham, A. Bridges, A. R. George, and H. J. Meadows, Mutation of histidine 286 of the human P2X4 purinoceptor removes extracellular pH sensitivity, J. Physiol, vol.523, pp.697-703, 2000.

J. D. Clyne, L. Wang, and R. I. Hume, Mutational analysis of the conserved cysteines of the rat P2X2 purinoceptor, J. Neurosci. Off. J. Soc. Neurosci, vol.22, pp.3873-3880, 2002.

S. Cockcroft and B. D. Gomperts, ATP induces nucleotide permeability in rat mast cells, Nature, vol.279, pp.541-542, 1979.

C. Coddou, J. F. Codocedo, S. Li, J. G. Lillo, C. Acuña-castillo et al.,

J. P. Toro, Reactive oxygen species potentiate the P2X2 receptor activity through intracellular Cys430, J. Neurosci. Off. J. Soc. Neurosci, vol.29, pp.12284-12291, 2009.

C. Coddou, R. A. Lorca, C. Acuña-castillo, M. Grauso, F. Rassendren et al., Heavy metals modulate the activity of the purinergic P2X4 receptor, Toxicol. Appl. Pharmacol, vol.202, pp.121-131, 2005.

C. Coddou, Z. Yan, T. Obsil, J. P. Huidobro-toro, and S. S. Stojilkovic, Activation and regulation of purinergic P2X receptor channels, Pharmacol. Rev, vol.63, pp.641-683, 2011.

G. Collo, R. A. North, E. Kawashima, E. Merlo-pich, S. Neidhart et al., , 1996.

, Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels, J. Neurosci. Off. J. Soc. Neurosci, vol.16, pp.2495-2507

V. Compan, L. Ulmann, O. Stelmashenko, J. Chemin, S. Chaumont et al., P2X2 and P2X5 subunits define a new heteromeric receptor with P2X7-like properties, J. Neurosci. Off. J, 2012.

, Soc. Neurosci, vol.32, pp.4284-4296

B. Compans, D. Choquet, and E. Hosy, Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission, Neurophotonics, vol.3, p.41811, 2016.

P. Corringer, M. Baaden, N. Bocquet, M. Delarue, V. Dufresne et al., Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues, J. Physiol, vol.588, pp.565-572, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02174745

P. Corringer, F. Poitevin, M. S. Prevost, L. Sauguet, M. Delarue et al., Structure and Pharmacology of Pentameric Receptor Channels: From Bacteria to Brain, Structure, vol.20, pp.941-956, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01721985

J. Coull, S. Beggs, D. Boudreau, D. Boivin, M. Tsuda et al., BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain, Nature, vol.438, pp.1017-1021, 2005.

P. M. Coutinho-silva-r-&-persechini, P2Z purinoceptor-associated pores induced by extracellular ATP in macrophages and J774 cells, Am. J. Physiol, vol.273, pp.1793-1800, 1997.

S. Damer, B. Niebel, S. Czeche, P. Nickel, U. Ardanuy et al.,

G. Lambrecht, NF279: a novel potent and selective antagonist of P2X receptor-mediated responses, Eur. J. Pharmacol, vol.350, pp.5-6, 1998.

A. Danigo, L. Magy, and C. Demiot, TRPV1 dans les neuropathies douloureuses -Des modèles animaux aux perspectives thérapeutiques. médecine/sciences, vol.29, pp.597-606, 2013.

K. Deisseroth, Optogenetics. Nat. Methods, vol.8, pp.26-29, 2011.

S. Ding and F. Sachs, Ion permeation and block of P2X(2) purinoceptors: single channel recordings, J. Membr. Biol, vol.172, pp.215-223, 1999.

D. L. Donnelly-roberts, M. T. Namovic, C. Faltynek, and M. F. Jarvis, Mitogen-Activated Protein Kinase and Caspase Signaling Pathways Are Required for P2X7 Receptor (P2X7R)-Induced Pore Formation in Human THP-1 Cells, J. Pharmacol. Exp. Ther, vol.308, pp.1053-1061, 2004.

D. L. Donnelly-roberts, M. T. Namovic, P. Han, and M. F. Jarvis, Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors, Br. J. Pharmacol, vol.157, pp.1203-1214, 2009.

A. N. Eickhorst, A. Berson, D. Cockayne, H. A. Lester, and B. S. Khakh, Control of P2X(2) channel permeability by the cytosolic domain, J. Gen. Physiol, vol.120, pp.119-131, 2002.

R. J. Evans, C. Lewis, G. Buell, S. Valera, R. A. North et al., Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors), Mol. Pharmacol, vol.48, pp.178-183, 1995.

R. J. Evans, C. Lewis, C. Virginio, K. Lundstrom, G. Buell et al., Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells, J. Physiol, vol.497, pp.413-422, 1996.

R. C. Ewald and H. T. Cline, NMDA Receptors and Brain Development, Biology of the NMDA Receptor, Van Dongen AM, 2009.

R. X. Faria, F. P. Defarias, and L. A. Alves, Are second messengers crucial for opening the pore associated with P2X7 receptor?, Am. J. Physiol. -Cell Physiol, vol.288, pp.260-271, 2005.

H. Fernandes and L. A. Raymond, NMDA Receptors and Huntington's Disease, Biology of the NMDA Receptor, Van Dongen AM, 2009.

J. A. Fisher, G. Girdler, and B. S. Khakh, Time-resolved measurement of state-specific P2X2 ion channel cytosolic gating motions, J. Neurosci. Off. J. Soc. Neurosci, vol.24, pp.10475-10487, 2004.

C. H. Fiske and Y. Subbarow, PHOSPHORUS COMPOUNDS OF MUSCLE AND LIVER. Science, vol.70, pp.381-382, 1929.

Y. Fujiwara and Y. Kubo, Density-dependent changes of the pore properties of the P2X2 receptor channel, J. Physiol, vol.558, pp.31-43, 2004.

Y. Fujiwara and Y. Kubo, Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides, J. Physiol, vol.576, pp.135-149, 2006.

M. Garcia-guzman, F. Soto, B. Laube, and W. Stühmer, Molecular cloning and functional expression of a novel rat heart P2X purinoceptor, FEBS Lett, vol.388, pp.123-127, 1996.

Z. Gerevich, Z. S. Zadori, L. Köles, L. Kopp, D. Milius et al., Dual effect of acid pH on purinergic P2X3 receptors depends on the histidine 206 residue, J. Biol. Chem, vol.282, pp.33949-33957, 2007.

B. D. Gomperts, Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors, Nature, vol.306, pp.64-66, 1983.

B. J. Gu, C. Rathsam, L. Stokes, A. Mcgeachie, and J. S. Wiley, Extracellular ATP dissociates nonmuscle myosin from P2X7 complex: this dissociation regulates P2X7 pore formation, Am. J. Physiol. -Cell Physiol, vol.297, pp.430-439, 2009.

G. Gürel, M. A. Gustafson, J. S. Pepper, H. R. Horvitz, and M. R. Koelle, Receptors and Other Signaling Proteins Required for Serotonin Control of Locomotion in Caenorhabditis elegans, Genetics, vol.192, pp.1359-1371, 2012.

C. Habermacher, K. Dunning, T. Chataigneau, and T. Grutter, Molecular structure and function of P2X receptors, Neuropharmacology, vol.104, pp.18-30, 2016.

C. Habermacher, A. Martz, N. Calimet, D. Lemoine, L. Peverini et al., Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel, vol.5, p.11050, 2016.

I. Hanukoglu, ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters, FEBS J, 2016.

M. Hashimoto and S. Kokubun, Contribution of P2-purinoceptors to neurogenic contraction of rat urinary bladder smooth muscle, Br. J. Pharmacol, vol.115, pp.636-640, 1995.

M. Hattori and E. Gouaux, Molecular mechanism of ATP binding and ion channel activation in P2X receptors, Nature, vol.485, pp.207-212, 2012.

M. He, H. Zemkova, T. Koshimizu, M. Tomi?, and S. S. Stojilkovic, Intracellular calcium measurements as a method in studies on activity of purinergic P2X receptor channels, Am. J. Physiol. Cell Physiol, vol.285, pp.467-479, 2003.

J. M. Henley and K. A. Wilkinson, AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging, Dialogues Clin. Neurosci, vol.15, pp.11-27, 2013.

G. Heymann, J. Dai, M. Li, S. D. Silberberg, H. Zhou et al., Inter-and intrasubunit interactions between transmembrane helices in the open state of P2X receptor channels, Proc. Natl, 2013.

, Acad. Sci. U. S. A, vol.110, pp.4045-4054

A. D. Hibell, E. J. Kidd, I. P. Chessell, P. Humphrey, and A. D. Michel, Apparent species differences in the kinetic properties of P2X7 receptors, Br. J. Pharmacol, vol.130, pp.167-173, 2000.

T. Ikeda, Pharmacological effects of ivermectin, an antiparasitic agent for intestinal strongyloidiasis: its mode of action and clinical efficacy, Nihon Yakurigaku Zasshi Folia Pharmacol. Jpn, vol.122, pp.527-538, 2003.

K. Inoue, M. Tsuda, and S. Koizumi, ATP-and adenosine-mediated signaling in the central nervous system: chronic pain and microglia: involvement of the ATP receptor P2X4, J. Pharmacol, 2004.

. Sci, , vol.94, pp.112-114

M. F. Jarvis, The neural-glial purinergic receptor ensemble in chronic pain states, Trends Neurosci, vol.33, pp.48-57, 2010.

J. Jasti, H. Furukawa, E. B. Gonzales, and E. Gouaux, , 2007.

, Å resolution and low pH, Nature, vol.449, pp.316-323

P. J. Jensik, D. Holbird, M. W. Collard, and T. C. Cox, Cloning and characterization of a functional P2X receptor from larval bullfrog skin, Am. J. Physiol. Cell Physiol, vol.281, pp.954-962, 2001.

L. Jiang, F. Rassendren, A. Mackenzie, Y. Zhang, A. Surprenant et al., , 2005.

, D-glucamine and propidium dyes utilize different permeation pathways at rat P2X(7) receptors

, Am. J. Physiol. Cell Physiol, vol.289, pp.1295-1302

R. Jiang, D. Lemoine, A. Martz, A. Taly, S. Gonin et al., , 2011.

, Agonist trapped in ATP-binding sites of the P2X2 receptor, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.9066-9071

M. Joffre, Électrophysiologie moléculaire Hermann, 2001.

K. Kaczmarek-hájek, E. Lörinczi, R. Hausmann, and A. Nicke, Molecular and functional properties of P2X receptors--recent progress and persisting challenges, Purinergic Signal, vol.8, pp.375-417, 2012.

A. Karasawa and T. Kawate, Structural basis for subtype-specific inhibition of the P2X7 receptor, vol.5, 2016.

T. Kawate, J. C. Michel, W. T. Birdsong, and E. Gouaux, Crystal structure of the ATP-gated P2X(4) ion channel in the closed state, Nature, vol.460, pp.592-598, 2009.

T. Kawate, J. L. Robertson, M. Li, S. D. Silberberg, and K. J. Swartz, Ion access pathway to the transmembrane pore in P2X receptor channels, J. Gen. Physiol, vol.137, pp.579-590, 2011.

A. Khadra, M. Tomi?, Z. Yan, H. Zemkova, A. Sherman et al., Dual Gating Mechanism and Function of P2X7 Receptor Channels, Biophys. J, vol.104, pp.2612-2621, 2013.

B. S. Khakh, X. R. Bao, C. Labarca, and H. A. Lester, Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds, Nat. Neurosci, vol.2, pp.322-330, 1999.

B. S. Khakh and T. M. Egan, Contribution of transmembrane regions to ATP-gated P2X2 channel permeability dynamics, J. Biol. Chem, vol.280, pp.6118-6129, 2005.

B. Khakh and H. A. Lester, Dynamic selectivity filters in ion channels, Neuron, vol.23, pp.653-658, 1999.

B. S. Khakh, W. R. Proctor, T. V. Dunwiddie, C. Labarca, and H. A. Lester, Allosteric control of gating and kinetics at P2X(4) receptor channels, J. Neurosci. Off. J. Soc. Neurosci, vol.19, pp.7289-7299, 1999.

B. F. King, M. Liu, J. Pintor, J. Gualix, M. T. Miras-portugal et al., Diinosine pentaphosphate (IP5I) is a potent antagonist at recombinant rat P2X1 receptors, Br. J. Pharmacol, vol.128, pp.981-988, 1999.

M. Klapperstück, C. Büttner, P. Nickel, G. Schmalzing, G. Lambrecht et al., , 2000.

, Antagonism by the suramin analogue NF279 on human P2X(1) and P2X(7) receptors, Eur. J. Pharmacol, vol.387, pp.245-252

B. K. Kobilka, Protein Coupled Receptor Structure and Activation, Biochim. Biophys. Acta, vol.1768, pp.794-807, 2007.

F. Koukouli, M. Rooy, D. Tziotis, K. A. Sailor, H. C. O'neill et al., Nicotine reverses hypofrontality in animal models of addiction and schizophrenia, Nat. Med, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01452384

R. H. Kramer, A. Mourot, and H. Adesnik, Optogenetic pharmacology for control of native neuronal signaling proteins, Nat. Neurosci, vol.16, pp.816-823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542261

T. S. Kuhn, D. Lemoine, C. Habermacher, A. Martz, P. Méry et al., Optical control of an ion channel gate, The Structure of Scientific Revolutions University of Chicago Press Lakowicz JR (2013) Principles of Fluorescence Spectroscopy Springer Science & Business Media, vol.110, pp.20813-20818, 1996.

D. Lemoine, R. Jiang, A. Taly, T. Chataigneau, A. Specht et al., Ligand-Gated Ion Channels: New Insights into Neurological Disorders and Ligand Recognition, Chem. Rev, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01498103

J. Levine and N. , TRP channels: Targets for the relief of pain, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00562760

, Biophys. Acta BBA -Mol. Basis Dis, vol.1772, pp.989-1003

J. Levitz, C. Pantoja, B. Gaub, H. Janovjak, A. Reiner et al., Optical Control of Metabotropic Glutamate Receptors, 2013.

, Nat. Neurosci, vol.16, pp.507-516

C. Lewis, S. Neidhart, C. Holy, R. A. North, G. Buell et al., Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons, Nature, vol.377, pp.432-435, 1995.

M. Li, T. Kawate, S. D. Silberberg, and K. J. Swartz, Pore-opening mechanism in trimeric P2X receptor channels, Nat. Commun, vol.1, p.44, 2010.

M. Li, G. Toombes, S. D. Silberberg, and K. J. Swartz, Physical basis of apparent pore dilation of ATP-activated P2X receptor channels, Nat. Neurosci, vol.18, pp.1577-1583, 2015.

F. Libert, M. Parmentier, A. Lefort, C. Dinsart, J. Van-sande et al., Selective amplification and cloning of four new members of the G proteincoupled receptor family, Science, vol.244, pp.569-572, 1989.

E. Lingueglia, J. R. De-weille, F. Bassilana, C. Heurteaux, H. Sakai et al., A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells, 1997.

, J. Biol. Chem, vol.272, pp.29778-29783

S. Locovei, E. Scemes, F. Qiu, D. C. Spray, and G. Dahl, Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex, FEBS Lett, vol.581, pp.483-488, 2007.

K. Lohmann, Ueber die Pyrophosphatfraktion im Muskel, Naturwissenschaften Available, 1929.

R. A. Lorca, C. Coddou, M. C. Gazitúa, P. Bull, C. Arredondo et al., , 2005.

, J. Neurochem, vol.95, pp.499-512

C. Lutz, T. S. Otis, V. Desars, S. Charpak, D. A. Digregorio et al., Holographic photolysis of caged neurotransmitters, Nat. Methods, vol.5, pp.821-827, 2008.

K. J. Lynch, E. Touma, W. Niforatos, K. L. Kage, E. C. Burgard et al., Molecular and functional characterization of human P2X(2) receptors, Mol. Pharmacol, vol.56, pp.1171-1181, 1999.

S. E. Mansoor, W. Lü, W. Oosterheert, M. Shekhar, E. Tajkhorshid et al., X-ray structures define human P2X3 receptor gating cycle and antagonist action, Nature, vol.538, pp.66-71, 2016.

S. Manzini, C. H. Hoyle, and G. Burnstock, An electrophysiological analysis of the effect of reactive blue 2, a putative P2-purinoceptor antagonist, on inhibitory junction potentials of rat caecum, Eur. J. Pharmacol, vol.127, pp.197-204, 1986.

C. Marques-da-silva, M. M. Chaves, N. G. Castro, and M. Coutinho-silva-r-&-guimaraes, , 2011.

, Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: implications for its therapeutic action, Br. J. Pharmacol, vol.163, pp.912-926

K. Maruyama, The Discovery of Adenosine Triphosphate and the Establishment of Its Structure, J. Hist. Biol, vol.24, pp.145-154, 1991.

M. Masin, D. Kerschensteiner, K. Dümke, M. E. Rubio, and F. Soto, Fe65 interacts with P2X2 subunits at excitatory synapses and modulates receptor function, J. Biol. Chem, vol.281, pp.4100-4108, 2006.

A. D. Michel, W. C. Clay, S. W. Ng, S. Roman, K. Thompson et al., Identification of regions of the P2X(7) receptor that contribute to human and rat species differences in antagonist effects, Br. J. Pharmacol, vol.155, pp.738-751, 2008.

A. D. Michel, R. Kaur, I. Chessell, and P. P. Humphrey, Antagonist effects on human P2X(7) receptor-mediated cellular accumulation of YO-PRO-1, Br. J. Pharmacol, vol.130, pp.513-520, 2000.

K. Migita, W. R. Haines, M. M. Voigt, and T. M. Egan, Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X(2) receptor, J. Biol. Chem, vol.276, pp.30934-30941, 2001.

M. Monif, C. A. Reid, K. L. Powell, M. Smart, and D. A. Williams, The P2X7 Receptor Drives Microglial Activation and Proliferation: A Trophic Role for P2X7R Pore, J. Neurosci, vol.29, pp.3781-3791, 2009.

J. Monod, J. Wyman, and J. P. Changeux, ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL, J. Mol. Biol, vol.12, pp.88-118, 1965.

A. Mourot, I. Tochitsky, and R. H. Kramer, Light at the end of the channel: optical manipulation of intrinsic neuronal excitability with chemical photoswitches, Front. Mol. Neurosci, vol.6, p.5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542260

E. Neher and B. Sakmann, Single-channel currents recorded from membrane of denervated frog muscle fibres, Nature, vol.260, pp.799-802, 1976.

R. A. North, Molecular physiology of P2X receptors, Physiol. Rev, vol.82, pp.1013-1067, 2002.

R. W. Olsen and T. M. Delorey, GABA Receptor Physiology and Pharmacology. Available at, 1999.

R. W. Olsen, D. M. Sapp, M. H. Bureau, D. M. Turner, and N. Kokka, Allosteric actions of central nervous system depressants including anesthetics on subtypes of the inhibitory gammaaminobutyric acidA receptor-chloride channel complex, Ann. N. Y. Acad. Sci, vol.625, pp.145-154, 1991.

M. Paukert, S. Hidayat, and S. Gründer, The P2X(7) receptor from Xenopus laevis: formation of a large pore in Xenopus oocytes, FEBS Lett, vol.513, pp.253-258, 2002.

P. Pelegrin and A. Surprenant, Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor, EMBO J, vol.25, pp.5071-5082, 2006.

P. Pelegrin and A. Surprenant, The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release, Purinergic Signal, vol.5, pp.129-137, 2009.

S. Penuela, R. Gehi, and D. W. Laird, The biochemistry and function of pannexin channels, 2013.

, Biochim. Biophys. Acta BBA -Biomembr, vol.1828, pp.15-22

S. Petrou, M. Ugur, R. M. Drummond, J. Singer, and J. V. Walsh, P2X7 purinoceptor expression in Xenopus oocytes is not sufficient to produce a pore-forming P2Z-like phenotype, FEBS Lett, vol.411, pp.339-345, 1997.

Z. A. Pfeiffer, M. Aga, U. Prabhu, J. J. Watters, D. J. Hall et al., Rho. J. Leukoc. Biol, vol.75, pp.1173-1182, 2004.

A. Priel and S. D. Silberberg, Mechanism of ivermectin facilitation of human P2X4 receptor channels, J. Gen. Physiol, vol.123, pp.281-293, 2004.

D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Katz, A. Lamantia et al., Ligand-Gated Ion Channels, 2001.

F. Rassendren, G. Buell, A. Newbolt, R. A. North, and A. Surprenant, Identification of amino acid residues contributing to the pore of a P2X receptor, EMBO J, vol.16, pp.3446-3454, 1997.

F. Rassendren, G. N. Buell, C. Virginio, G. Collo, R. A. North et al., The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA, J. Biol. Chem, vol.272, pp.5482-5486, 1997.

T. Riedel, G. Schmalzing, and F. Markwardt, Influence of Extracellular Monovalent Cations on Pore and Gating Properties of P2X7 Receptor-Operated Single-Channel Currents, Biophys. J, vol.93, pp.846-858, 2007.

S. Roger, P. Pelegrin, and A. Surprenant, Facilitation of P2X7 Receptor Currents and Membrane Blebbing via Constitutive and Dynamic Calmodulin Binding, J. Neurosci, vol.28, pp.6393-6401, 2008.

D. Samways, B. S. Khakh, S. Dutertre, and T. M. Egan, Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors), Proc, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02306894

, Natl. Acad. Sci. U. S. A, vol.108, pp.13800-13805

D. Samways, B. S. Khakh, and T. M. Egan, Allosteric Modulation of Ca2+ flux in Ligand-gated, 2012.

, Cation Channel (P2X4) by Actions on Lateral Portals, J. Biol. Chem, vol.287, pp.7594-7602

D. Samways, Z. Li, and T. M. Egan, Principles and properties of ion flow in P2X receptors, Front. Cell. Neurosci, vol.8, p.6, 2014.

W. P. Schilling, T. Wasylyna, G. R. Dubyak, B. D. Humphreys, and W. G. Sinkins, Maitotoxin and P2Z/P2X7purinergic receptor stimulation activate a common cytolytic pore, Am. J. Physiol. -Cell Physiol, vol.277, pp.766-776, 1999.

R. Schliebs, Basal forebrain cholinergic dysfunction in Alzheimer's disease--interrelationship with beta-amyloid, inflammation and neurotrophin signaling, Neurochem. Res, vol.30, pp.895-908, 2005.

K. Schroder and J. Tschopp, The Inflammasomes. Cell, vol.140, pp.821-832, 2010.

E. M. Schwiebert and B. K. Kishore, Extracellular nucleotide signaling along the renal epithelium, Am. J. Physiol. Renal Physiol, vol.280, pp.945-963, 2001.

Y. Shinozaki, K. Sumitomo, M. Tsuda, S. Koizumi, K. Inoue et al., Direct observation of ATP-induced conformational changes in single P2X(4) receptors, PLoS Biol, vol.7, p.1000103, 2009.

M. L. Smart, B. Gu, R. G. Panchal, J. Wiley, B. Cromer et al., P2X7 receptor cell surface expression and cytolytic pore formation are regulated by a distal C-terminal region, 2003.

, Biol. Chem, vol.278, pp.8853-8860

R. M. Smeal, K. A. Keefe, and K. S. Wilcox, Differences in excitatory transmission between thalamic and cortical afferents to single spiny efferent neurons of rat dorsal striatum, Eur. J. Neurosci, vol.28, pp.2041-2052, 2008.

S. P. Soltoff, M. K. Mcmillian, J. D. Lechleiter, L. C. Cantley, and B. R. Talamo, Elevation of [Ca2+]i and the activation of ion channels and fluxes by extracellular ATP and phospholipase C-linked agonists in rat parotid acinar cells, Ann. N. Y. Acad. Sci, vol.603, pp.76-90, 1990.

R. E. Sorge, T. Trang, R. Dorfman, S. B. Smith, S. Beggs et al.,

H. Meulen, M. Costigan, T. A. Herbert, M. Yarkoni-abitbul, D. Tichauer et al.,

M. , T. K. John, S. L. Slade, G. D. Jordan, and J. , Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity, Nat. Med, vol.18, pp.595-599, 2012.

F. Soto, G. Lambrecht, P. Nickel, W. Stühmer, and A. E. Busch, Antagonistic properties of the suramin analogue NF023 at heterologously expressed P2X receptors, Neuropharmacology, vol.38, pp.141-149, 1999.

T. H. Steinberg, A. S. Newman, J. A. Swanson, and S. C. Silverstein, ATP4-permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes, J. Biol. Chem, vol.262, pp.8884-8888, 1987.

C. Sun, M. E. Heid, P. A. Keyel, and R. D. Salter, The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation, PLoS ONE, vol.8, 2013.

A. Surprenant, F. Rassendren, E. Kawashima, R. A. North, and G. Buell, The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7), Science, vol.272, pp.735-738, 1996.

A. Terakita, The opsins, Genome Biol, vol.6, p.213, 2005.

A. J. Thompson, H. A. Lester, and S. Lummis, The structural basis of function in Cys-loop receptors, Q. Rev. Biophys, vol.43, pp.449-499, 2010.

I. Tochitsky, M. R. Banghart, A. Mourot, J. Z. Yao, B. Gaub et al., , 2012.

, Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors, Nat. Chem, vol.4, pp.105-111

G. E. Torres, T. M. Egan, and M. M. Voigt, Hetero-oligomeric assembly of P2X receptor subunits, 1999.

, Specificities exist with regard to possible partners, J. Biol. Chem, vol.274, pp.6653-6659

E. Toulme, A. Garcia, D. Samways, T. M. Egan, M. J. Carson et al., P2X4 receptors in activated C8-B4 cells of cerebellar microglial origin, J. Gen. Physiol, vol.135, pp.333-353, 2010.

T. Trang and M. W. Salter, P2X4 purinoceptor signaling in chronic pain, Purinergic Signal, vol.8, pp.621-628, 2012.

M. Tsuda, Y. Shigemoto-mogami, S. Koizumi, A. Mizokoshi, S. Kohsaka et al., P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury, Nature, vol.424, pp.778-783, 2003.

K. M. Tye, R. Prakash, S. Kim, L. E. Fenno, L. Grosenick et al., Amygdala circuitry mediating reversible and bidirectional control of anxiety, Nature, vol.471, pp.358-362, 2011.

, Unger B (1846) Das Guanin und seine Verbindungen, Justus Liebigs Ann. Chem, vol.59, pp.58-68

S. Valera, N. Hussy, R. J. Evans, N. Adami, R. A. North et al., A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP, Nature, vol.371, pp.516-519, 1994.

S. Veitinger, The Patch-Clamp Technique, Leica Sci. Available at, 2011.

C. Virginio, D. Church, R. A. North, and A. Surprenant, Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor, Neuropharmacology, vol.36, pp.1285-1294, 1997.

C. Virginio, A. Mackenzie, R. A. North, and A. Surprenant, Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor, J. Physiol. 519 Pt, vol.2, pp.335-346, 1999.

C. Virginio, A. Mackenzie, F. A. Rassendren, R. A. North, and A. Surprenant, Pore dilation of neuronal P2X receptor channels, Nat. Neurosci, vol.2, pp.315-321, 1999.

C. Virginio, R. A. North, and A. Surprenant, Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurones, J. Physiol, vol.510, pp.27-35, 1998.

C. Virginio, G. Robertson, A. Surprenant, and R. A. North, Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors, 1998.

, Mol. Pharmacol, vol.53, pp.969-973

S. Visentin, M. Renzi, C. Frank, A. Greco, and G. Levi, Two different ionotropic receptors are activated by ATP in rat microglia, J. Physiol, vol.519, pp.723-736, 1999.

M. Volgraf, P. Gorostiza, R. Numano, and R. H. Kramer, Allosteric control of an ionotropic glutamate receptor with an optical switch, Isacoff EY & Trauner D, vol.2, pp.47-52, 2006.

S. S. Wildman, S. G. Brown, M. Rahman, C. A. Noel, L. Churchill et al., Sensitization by extracellular Ca(2+) of rat P2X(5) receptor and its pharmacological properties compared with rat P2X(1), Mol. Pharmacol, vol.62, pp.957-966, 2002.

S. S. Wildman, B. F. King, and G. Burnstock, Modulatory activity of extracellular H+ and Zn2+ on ATP-responses at rP2X1 and rP2X3 receptors, Br. J. Pharmacol, vol.128, pp.486-492, 1999.

K. Wirkner, B. Sperlagh, and P. Illes, P2X3 Receptor Involvement in Pain States, Mol. Neurobiol, vol.36, pp.165-183, 2007.

I. B. Witten, S. Lin, M. Brodsky, R. Prakash, I. Diester et al., Cholinergic interneurons control local circuit activity and cocaine conditioning, Science, vol.330, pp.1677-1681, 2010.

Z. Yan, A. Khadra, S. Li, M. Tomi?, A. Sherman et al., Experimental Characterization and Mathematical Modeling of P2X7 Receptor Channel Gating, J. Neurosci, vol.30, pp.14213-14224, 2010.

Z. Yan, S. Li, Z. Liang, M. Tomi?, and S. S. Stojilkovic, The P2X7 receptor channel pore dilates under physiological ion conditions, J. Gen. Physiol, vol.132, pp.563-573, 2008.

Z. Yan, Z. Liang, M. Tomic, T. Obsil, and S. S. Stojilkovic, Molecular determinants of the agonist binding domain of a P2X receptor channel, Mol. Pharmacol, vol.67, pp.1078-1088, 2005.

M. R. Yen and M. H. Saier, Gap junctional proteins of animals: the innexin/pannexin superfamily, 2007.

, Prog. Biophys. Mol. Biol, vol.94, pp.5-14

S. P. Yu and G. A. Kerchner, Endogenous voltage-gated potassium channels in human embryonic kidney (HEK293) cells, J. Neurosci. Res, vol.52, pp.612-617, 1998.

H. Zemkova, A. Khadra, M. B. Rokic, V. Tvrdonova, A. Sherman et al., Allosteric regulation of the P2X4 receptor channel pore dilation, Pflugers Arch, vol.467, pp.713-726, 2015.

F. Zhang, L. Wang, E. S. Boyden, and K. Deisseroth, Channelrhodopsin-2 and optical control of excitable cells, Nat. Methods, vol.3, pp.785-792, 2006.

, Etude moléculaire de la dilatation des récepteurs P2X

, Leur activation par l'ATP, pour des potentiels de membrane proches du potentiel de repos des cellules, induit un influx de cations entraînant une dépolarisation membranaire. Les récepteurs P2X, issus de l'oligomérisation de trois sous-unités identiques (homotrimères) ou hétérologues (hétérotrimères), possèdent tous une partie hydrophobe transmembranaire et une partie hydrophile et glycosylée extracellulaire, Résumé Les récepteurs P2X sont des canaux cationiques non sélectifs, perméables aux ions Na+, K+ et Ca2+

, De plus depuis une vingtaine d'année un état de conductance particulier du canal a été découvert permettant le passage de grosses molécules

, Les résultats obtenus avec nos molécules photoisomérisables ont permis de confirmer que la dilation était un processus rapide. Mais surtout de résoudre le mécanisme moléculaire de l'état dilaté. En effet sous l'effet de la lumière, deux mouvements ont pu être observés. Nous avons déterminé qu'une polyamine, la spermidine, pouvait passer à travers le canal, ce qui n'avait jamais été démontré auparavant, Nous pensons que ces résultats ouvrent de nouvelles perspectives physiologiques dans la signalisation P2X

, Azobenzene, YO-PRO-1, Spermidine Abstract P2X receptors are nonselective cation channels, permeable to Na + , K + and Ca2 + ions. Their activation by ATP, for membrane potentials close to the resting potential of the cells, induces an influx of cations leading to membrane depolarization. P2X receptors, derived from the oligomerization of three identical (homotrimeric) or heterologous (heterotrimeric) subunits, all possess a transmembrane hydrophobic domain and an extracellular hydrophilic and glycosylated domain, Mots clés : P2X, Dilatation, Single Channel

, Moreover, since twenty years, a particular conductance of the canal has been discovered allowing the passage of large molecules

, dilated state or dilatation of the pore

, Our several approach allowed us to understand the mechanism of dilation. However, following our results in electrophysiology, we showed that receptors were immediately dilated in a millisecond time scale