A. Diab, A. Foca, F. Zoulim, D. Durantel, and O. Andrisani, The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals, Antiviral Research, vol.149, pp.211-220, 2018.

M. , The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly, Journal of Virology, vol.66, pp.4107-4123, 1992.

M. Blondot, V. Bruss, and M. Kann, Intracellular transport and egress of hepatitis B virus, Journal of Hepatology, vol.64, pp.49-59, 2016.

J. Jung, S. G. Hwang, Y. Chwae, S. Park, H. Shin et al., Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication, Journal of Virology, vol.88, pp.8754-67, 2014.

E. Hsu, Y. Lin, C. Hung, C. Huang, M. Lee et al., Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3, Journal of Biomedical Science, vol.14, pp.731-775, 2007.

R. Razanskas and K. Sasnauskas, Interaction of hepatitis B virus core protein with human GIPC1, Archives of Virology, vol.155, pp.247-250, 2010.

M. Li, P. Lai, Y. Chou, A. Chi, Y. Mi et al.,

T. Wu, G. Meng, and . Chen, Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation, Oncogene, vol.34, pp.3791-3803, 2015.

I. Pilecka, C. Patrignani, R. Pescini, M. Curchod, D. Perrin et al., Protein-tyrosine phosphatase H1 controls growth hormone receptor signaling and systemic growth, J. Biol. Chem, vol.282, pp.35405-35415, 2007.

S. Han, S. Williams, and T. Mustelin, Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling, Eur. J. Immunol, vol.30, pp.1318-1325, 2000.

M. S. Sozio, M. A. Mathis, J. A. Young, S. Wälchli, L. A. Pitcher et al., PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor zeta subunit, J. Biol. Chem, vol.279, pp.7760-7769, 2004.

T. J. Bauler, E. D. Hughes, Y. Arimura, T. Mustelin, T. L. Saunders et al., Normal TCR signal transduction in mice that lack catalytically active PTPN3 protein tyrosine phosphatase, J. Immunol, vol.178, pp.3680-3687, 2007.

S. H. Zhang, J. Liu, R. Kobayashi, and N. K. Tonks, Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1, J. Biol. Chem, vol.274, pp.17806-17812, 1999.

Y. Zheng, J. Schlondorff, and C. P. Blobel, Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1, J. Biol. Chem, vol.277, pp.42463-42470, 2002.

S. H. Zhang, R. Kobayashi, P. R. Graves, H. Piwnica-worms, and N. K. Tonks, Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta protein, J. Biol. Chem, vol.272, pp.27281-27287, 1997.

T. Jespersen, B. Gavillet, M. X. Van-bemmelen, S. Cordonier, M. A. Thomas et al., Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1, Biochem. Biophys. Res. Commun, vol.348, pp.1455-1462, 2006.

S. Hou, H. Zhi, N. Pohl, M. Loesch, X. Qi et al., PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction, Cancer Res, vol.70, pp.2901-2910, 2010.

E. Hsu, Y. Lin, C. Hung, C. Huang, M. Lee et al., Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3, J. Biomed. Sci, vol.14, pp.731-744, 2007.

M. Jing, J. Bohl, N. Brimer, M. Kinter, and S. B. , Vande Pol, Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins, J. Virol, vol.81, pp.2231-2239, 2007.

H. Zhi, S. Hou, R. Li, Z. Basir, Q. Xiang et al., PTPH1 cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization, Oncogene, vol.30, pp.1706-1715, 2011.

Z. Wang, D. Shen, D. W. Parsons, A. Bardelli, J. Sager et al.,

J. K. Powell, S. Willson, K. W. Markowitz, B. Kinzler, V. E. Vogelstein et al., Mutational analysis of the tyrosine phosphatome in colorectal cancers, Science, vol.304, pp.1164-1166, 2004.

Q. Gao, Y. Zhao, X. Wang, W. Guo, S. Gao et al., Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients, Gastroenterology, vol.146, pp.1397-1407, 2014.

Z. Wang, Protein tyrosine phosphatase PTPN3 inhibits hepatocellular carcinoma growth and metastasis by dephosphorylation of EGFR | OncologyPRO

S. Ikuta, F. Itoh, Y. Hinoda, M. Toyota, Y. Makiguchi et al., Expression of cytoskeletal-associated protein tyrosine phosphatase PTPH1 mRNA in human hepatocellular carcinoma, J. Gastroenterol, vol.29, pp.727-732, 1994.

M. Genera, D. Samson, B. Raynal, A. Haouz, B. Baron et al.,

C. Wolff and . Caillet-saguy, Structural and functional characterization of the PDZ domain of the human phosphatase PTPN3 and its interaction with the human papillomavirus E6 oncoprotein, Scientific Reports, vol.9, p.7438, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02146733

R. Vincentelli, K. Luck, J. Poirson, J. Polanowska, J. Abdat et al., Quantifying domain-ligand affinities and specificities by high-throughput holdup assay, Nat. Methods, vol.12, pp.787-793, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02883959

Y. Duhoo, V. Girault, J. Turchetto, L. Ramond, F. Durbesson et al., High-Throughput Production of a New Library of Human Single and Tandem PDZ Domains Allows Quantitative PDZ-Peptide Interaction Screening Through High-Throughput Holdup Assay, vol.2025, pp.439-476, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02398097

K. Ganti, P. Massimi, J. Manzo-merino, V. Tomai?, D. Pim et al., Interaction of the Human Papillomavirus E6 Oncoprotein with Sorting Nexin 27 Modulates Endocytic Cargo Transport Pathways, PLoS Pathog, vol.12, 2016.

C. D. James and S. Roberts, Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?, Pathogens, vol.5, 2016.

R. T. Javier and A. P. Rice, Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses, J. Virol, vol.85, pp.11544-11556, 2011.

Z. Songyang, A. S. Fanning, C. Fu, J. Xu, S. M. Marfatia et al., Recognition of unique carboxyl-terminal motifs by distinct PDZ domains, Science, vol.275, pp.73-77, 1997.

H. Tochio, Q. Zhang, P. Mandal, M. Li, and M. Zhang, Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide, Nat. Struct. Biol, vol.6, pp.417-421, 1999.

S. Kalyoncu, O. Keskin, and A. Gursoy, Interaction prediction and classification of PDZ domains, BMC Bioinformatics, vol.11, p.357, 2010.

N. Babault, F. Cordier, M. Lafage, J. Cockburn, A. Haouz et al., Peptides targeting the PDZ domain of PTPN4 are efficient inducers of glioblastoma cell death, Structure, vol.19, pp.1518-1524, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02883997

E. Terrien, A. Chaffotte, M. Lafage, Z. Khan, C. Préhaud et al., Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN, Sci Signal, vol.5, p.58, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02883992

P. Maisonneuve, C. Caillet-saguy, M. Vaney, B. Edoo, K. Sawyer et al., Molecular Basis of The Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-Activated Protein Kinase p38?, J. Biol. Chem, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02346943

,

C. Préhaud, N. Wolff, E. Terrien, M. Lafage, F. Mégret et al.,

H. Schnell, M. Buc, and . Lafon, Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein, Sci Signal, vol.3, p.5, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00460584

L. M. Stannard and M. Hodgkiss, Morphological irregularities in Dane particle cores, J. Gen. Virol, vol.45, pp.509-514, 1979.

C. M. Hilditch, L. J. Rogers, and D. H. Bishop, Physicochemical analysis of the hepatitis B virus core antigen produced by a baculovirus expression vector, J. Gen. Virol, vol.71, issue.11, pp.2755-2759, 1990.

C. R. Bourne, S. P. Katen, M. R. Fulz, C. Packianathan, and A. Zlotnick, A mutant hepatitis B virus core protein mimics inhibitors of icosahedral capsid self-assembly, Biochemistry, vol.48, pp.1736-1742, 2009.

A. M. Di-bisceglie, Hepatitis B And Hepatocellular Carcinoma, Hepatology, vol.49, 2009.

. S56-s60,

L. Yadav, F. Tamene, H. Göös, A. Van-drogen, R. Katainen et al., Systematic Analysis of Human Protein Phosphatase Interactions and Dynamics, Cell Systems, vol.4, pp.430-444, 2017.

J. Hatakeyama, J. H. Wald, I. Printsev, H. H. Ho, and K. L. Carraway, Vangl1 and Vangl2: planar cell polarity components with a developing role in cancer, Endocr. Relat. Cancer, vol.21, pp.345-356, 2014.

G. O. Cetin, A. Toylu, N. Atabey, Z. Sercan, and M. Sakizli, Downregulation of VANGL1 inhibits cellular invasion rather than cell motility in hepatocellular carcinoma cells without stimulation, Genet Test Mol Biomarkers, vol.19, pp.283-287, 2015.

M. Beck, P. Schirmacher, and S. Singer, Alterations of the nuclear transport system in hepatocellular carcinoma -New basis for therapeutic strategies, Journal of Hepatology, vol.67, pp.1051-1061, 2017.

T. N. Flores-téllez, T. V. Lopez, V. R. Vásquez-garzón, and S. Villa-treviño, Co-Expression of Ezrin-CLIC5-Podocalyxin Is Associated with Migration and Invasiveness in Hepatocellular Carcinoma, PLoS ONE, vol.10, p.131605, 2015.

Y. Hung, Y. Chan, Y. Chang, K. Lee, H. Hsu et al., Fatty acid metabolic enzyme acyl-CoA thioesterase 8 promotes the development of hepatocellular carcinoma, Oncology Reports, vol.31, pp.2797-2803, 2014.

X. Yue, F. Yang, Y. Yang, Y. Mu, W. Sun et al., Induction of Cyclooxygenase-2 Expression by Hepatitis B Virus Depends on Demethylation-associated Recruitment of Transcription Factors to the Promoter, Virol J, vol.8, 2011.

A. S. Cheng, H. L. Chan, W. K. Leung, K. F. To, M. Y. Go et al.,

J. J. Liew and . Sung, Expression of HBx and COX-2 in chronic hepatitis B, cirrhosis and hepatocellular carcinoma: implication of HBx in upregulation of COX-2, Mod. Pathol, vol.17, pp.1169-1179, 2004.

S. Rousseau, N. Morrice, M. Peggie, D. G. Campbell, M. Gaestel et al., Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs, EMBO J, vol.21, pp.6505-6514, 2002.

H. Ma, X. Zhao, X. Wang, X. Xie, J. Han et al., Cyclic Nucleotide 3'-Phosphodiesterases Inhibit Hepatitis B Virus Replication, PLOS ONE, vol.2, 2013.

W. Zang, B. Li, P. Huang, M. M. Lai, and T. S. Yen, Role of Polypyrimidine Tract Binding Protein in the Function of the Hepatitis B Virus Posttranscriptional Regulatory Element, J Virol, vol.75, pp.10779-10786, 2001.

A. Zlotnick, B. Venkatakrishnan, Z. Tan, E. Lewellyn, W. Turner et al., Core protein: A pleiotropic keystone in the HBV lifecycle, Antiviral Research, vol.121, pp.82-93, 2015.

S. N. Naccache, T. Hasson, and A. Horowitz, Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.12735-12740, 2006.

R. Razanskas and K. Sasnauskas, Interaction of hepatitis B virus core protein with human GIPC1, Archives of Virology, vol.155, pp.247-250, 2010.

R. Rousset, S. Fabre, C. Desbois, F. Bantignies, and P. Jalinot, The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins, Oncogene, vol.16, pp.643-654, 1998.

A. Favre-bonvin, C. Reynaud, C. Kretz-remy, and P. Jalinot, Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome, Journal of Virology, vol.79, pp.4229-4266, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00193769

P. Vanlandschoot, F. Van-houtte, B. Serruys, and G. Leroux-roels, The arginine-rich carboxy-terminal domain of the hepatitis B virus core protein mediates attachment of nucleocapsids to cell-surface-expressed heparan sulfate, J. Gen. Virol, vol.86, pp.75-84, 2005.

V. Bruss, Hepatitis B virus morphogenesis, World J. Gastroenterol, vol.13, pp.65-73, 2007.

D. Meng, R. P. Hjelm, J. Hu, and J. Wu, A theoretical model for the dynamic structure of hepatitis B nucleocapsid, Biophys. J, vol.101, pp.2476-2484, 2011.

C. Chen, J. C. Wang, and A. Zlotnick, A kinase chaperones hepatitis B virus capsid assembly and captures capsid dynamics in vitro, PLoS Pathog, vol.7, 2011.

X. Yu, L. Jin, J. Jih, C. Shih, and Z. H. Zhou, 5Å cryoEM structure of hepatitis B virus core assembled from full-length core protein, PLoS ONE, vol.3, 2013.

N. R. Watts, J. F. Conway, N. Cheng, S. J. Stahl, D. M. Belnap et al.,

. Wingfield, The morphogenic linker peptide of HBV capsid protein forms a mobile array on the interior surface, EMBO J, vol.21, pp.876-884, 2002.

Y. J. Im, S. H. Park, S. Rho, J. H. Lee, G. B. Kang et al., Crystal structure of GRIP1 PDZ6-peptide complex reveals the structural basis for class II PDZ target recognition and PDZ domain-mediated multimerization, J. Biol. Chem, vol.278, pp.8501-8507, 2003.

J. Heger-stevic, P. Zimmermann, L. Lecoq, B. Böttcher, and M. , Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure, PLoS Pathog, vol.14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02353749

,

F. Birnbaum and M. , Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein, J. Virol, vol.64, pp.3319-3330, 1990.

P. Schuck, Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling, Biophys. J, vol.78, pp.1606-1619, 2000.

W. F. Vranken, W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon et al., The CCPN data model for NMR spectroscopy: development of a software pipeline, Proteins, vol.59, pp.687-696, 2005.

Y. Nakatani and V. Ogryzko, Immunoaffinity purification of mammalian protein complexes, Meth. Enzymol, vol.370, issue.03, pp.70037-70045, 2003.

, TCA Precipitation, vol.541, pp.3-10, 2014.

B. Hommel, A. Sturny-leclère, S. Volant, N. Veluppillai, M. Duchateau et al., Cryptococcus neoformans resists to drastic conditions by switching to viable but nonculturable cell phenotype, PLoS Pathog, vol.15, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02612897

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: a peptide search engine integrated into the MaxQuant environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

S. Tyanova, T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat Protoc, vol.11, pp.2301-2319, 2016.

S. Benhenda, A. Ducroux, L. Rivière, B. Sobhian, M. D. Ward et al., Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription, J. Virol, vol.87, pp.4360-4371, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00817739

L. Rivière, B. Quioc-salomon, G. Fallot, B. Halgand, C. Féray et al., Hepatitis B virus replicating in hepatocellular carcinoma encodes HBx variants with preserved ability to antagonize restriction by Smc5/6, Antiviral Res, vol.172, 2019.

P. Cohen, The role of protein phosphorylation in human health and disease, Eur. J. Biochem, vol.268, pp.5001-5010, 2001.

T. Hunter, The role of tyrosine phosphorylation in cell growth and disease, Harvey Lect, vol.94, pp.81-119

M. Larsen, M. L. Tremblay, and K. M. Yamada, Phosphatases in cell-matrix adhesion and migration, Nat. Rev. Mol. Cell Biol, vol.4, pp.700-711, 2003.

A. Alonso, Protein Tyrosine Phosphatases in the Human Genome, Cell, vol.117, pp.699-711, 2004.

T. Mustelin, T. Vang, and N. Bottini, Protein tyrosine phosphatases and the immune response, Nat. Rev. Immunol, vol.5, pp.43-57, 2005.

N. K. Tonks, Protein tyrosine phosphatases: from genes, to function, to disease, Nat Rev Mol Cell Biol, vol.7, pp.833-846, 2006.

M. Hallé, M. L. Tremblay, and T. Meng, Protein Tyrosine Phosphatases: Emerging Regulators of Apoptosis, Cell Cycle, vol.6, pp.2773-2781, 2007.

L. I. Pao, K. Badour, K. A. Siminovitch, and B. G. Neel, Nonreceptor Protein-Tyrosine Phosphatases in Immune Cell Signaling, Annu. Rev. Immunol, vol.25, pp.473-523, 2007.

T. Hunter, Tyrosine phosphorylation: thirty years and counting, Curr. Opin. Cell Biol, vol.21, p.140, 2009.

I. Rhee and A. Veillette, Protein tyrosine phosphatases in lymphocyte activation and autoimmunity, Nat. Immunol, vol.13, pp.439-447, 2012.

P. J. Delves, S. J. Martin, D. R. Burton, and I. M. Roitt,

A. Alonso and R. Pulido, CORRECTIONS -The extended human PTPome: a growing tyrosine phosphatase family, FEBS J, vol.283, pp.2197-2201, 2016.

A. Alonso, C. E. Nunes-xavier, Y. Bayón, and R. Pulido, The Extended Family of Protein Tyrosine Phosphatases, pp.1-23, 2016.

A. Alonso and R. Pulido, The extended human PTPome: a growing tyrosine phosphatase family, FEBS J, vol.283, pp.1404-1429, 2016.

Z. Y. Zhang and J. E. Dixon, Active site labeling of the Yersinia protein tyrosine phosphatase: The determination of the pKa of the active site cysteine and the function of the conserved histidine 402, Biochemistry, vol.32, pp.9340-9345, 1993.

L. Tautz, D. A. Critton, and S. Grotegut, Protein Tyrosine Phosphatases: Structure, Function, and Implication in Human Disease, pp.179-221, 2013.

F. Böhmer, S. Szedlacsek, L. Tabernero, A. Östman, and J. Den-hertog, Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis, FEBS J, vol.280, pp.413-431, 2013.

M. Streuli, N. X. Krueger, T. Thai, M. Tang, and H. Saito, Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR, EMBO J, vol.9, pp.2399-407, 1990.

J. Felberg and P. Johnson, Characterization of recombinant CD45 cytoplasmic domain proteins. Evidence for intramolecular and intermolecular interactions, J. Biol. Chem, vol.273, pp.17839-17884, 1998.

H. Toledano-katchalski, Dimerization in vivo and inhibition of the nonreceptor form of protein tyrosine phosphatase epsilon, Mol. Cell. Biol, vol.23, pp.5460-71, 2003.

S. M. Brady-kalnay and N. K. Tonks, Protein tyrosine phosphatases as adhesion receptors, Curr. Opin. Cell Biol, vol.7, pp.650-657, 1995.

J. N. Andersen, A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage, FASEB J, vol.18, p.30, 2004.

A. Elson and P. Leder, Identification of a cytoplasmic, phorbol ester-inducible isoform of protein tyrosine phosphatase epsilon, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.12235-12244, 1995.

X. Si, Q. Zeng, C. H. Ng, W. Hong, and C. J. Pallen, Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II, J. Biol. Chem, vol.276, pp.32875-82, 2001.

L. Tautz, M. Pellecchia, and T. Mustelin, Targeting the PTPome in human disease, Expert Opin. Ther. Targets, vol.10, pp.157-177, 2006.

L. C. Cantley and B. G. Neel, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway, Proc. Natl. Acad. Sci, vol.96, pp.4240-4245, 1999.

P. Guldberg, Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma, Cancer Res, vol.57, pp.3660-3663, 1997.

A. Perren, Immunohistochemical Evidence of Loss of PTEN Expression in Primary Ductal Adenocarcinomas of the Breast, Am. J. Pathol, vol.155, pp.1253-1260, 1999.

J. Reifenberger, Allelic losses on chromosome arm 10q and mutation of the PTEN (MMAC1) tumour suppressor gene in primary and metastatic malignant melanomas, Virchows Arch, vol.436, pp.487-93, 2000.

M. Keniry and R. Parsons, The role of PTEN signaling perturbations in cancer and in targeted therapy, Oncogene, vol.27, pp.5477-5485, 2008.

Z. Wang, Mutational analysis of the tyrosine kinome in colorectal cancers, Science, vol.300, p.949, 2003.

M. Van-puijenbroek, Mass Spectrometry-Based Loss of Heterozygosity Analysis of Single-Nucleotide Polymorphism Loci in Paraffin Embedded Tumors Using the MassEXTEND Assay, J. Mol. Diagnostics, vol.7, pp.623-630, 2005.

C. Ruivenkamp, LOH of PTPRJ occurs early in colorectal cancer and is associated with chromosomal loss of 18q12-21, Oncogene, vol.22, pp.3472-3474, 2003.

A. V. Mena-duran, SHP1 expression in bone marrow biopsies of myelodysplastic syndrome patients: a new prognostic factor, Br. J. Haematol, vol.129, pp.791-794, 2005.

Q. Zhang, STAT3-and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes, Proc. Natl. Acad. Sci, vol.102, pp.6948-6953, 2005.

T. Sun, Activation of Multiple Proto-oncogenic Tyrosine Kinases in Breast Cancer via Loss of the PTPN12 Phosphatase, Cell, vol.144, pp.703-718, 2011.

T. Noguchi, T. Matozaki, K. Horita, Y. Fujioka, and M. Kasuga, Role of SH-PTP2, a proteintyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation, Mol. Cell. Biol, vol.14, pp.6674-6682, 1994.

R. J. Salmond and D. R. Alexander, SHP2 forecast for the immune system: fog gradually clearing, Trends Immunol, vol.27, pp.154-160, 2006.

M. Tartaglia, Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia, Blood, vol.104, pp.307-320, 2004.

M. Tartaglia, Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia, Nat. Genet, vol.34, pp.148-150, 2003.

M. L. Loh, Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis, Blood, vol.103, pp.2325-2356, 2004.

M. Bentires-alj and B. G. Neel, Protein-Tyrosine Phosphatase 1B Is Required for HER2/Neu-Induced Breast Cancer, Cancer Res, vol.67, pp.2420-2424, 2007.

S. Saha, A Phosphatase Associated with Metastasis of Colorectal Cancer. Science (80-. ), vol.294, pp.1343-1346, 2001.

S. Sur and D. K. Agrawal, Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies, Mol. Cell. Biochem, vol.416, pp.33-46, 2016.

R. He, Z. Yu, R. Zhang, and Z. Zhang, Protein tyrosine phosphatases as potential therapeutic targets, Acta Pharmacol. Sin, vol.35, pp.1227-1273, 2014.

M. Loda, Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis, Am. J. Pathol, vol.149, pp.1553-64, 1996.

R. M. Nikolaienko, B. Agyekum, and S. Bouyain, Receptor protein tyrosine phosphatases and cancer: new insights from structural biology, Cell Adh. Migr, vol.6, pp.356-64, 2012.

A. Östman, C. Hellberg, and F. D. Böhmer, Protein-tyrosine phosphatases and cancer, Nat. Rev. Cancer, vol.6, pp.307-320, 2006.

W. J. Hendriks, Protein tyrosine phosphatases in health and disease, FEBS J, vol.280, pp.708-730, 2013.

N. Bottini, A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes, Nat. Genet, vol.36, pp.337-338, 2004.

A. B. Begovich, A Missense Single-Nucleotide Polymorphism in a Gene Encoding a Protein Tyrosine Phosphatase (PTPN22) Is Associated with Rheumatoid Arthritis, Am. J. Hum. Genet, vol.75, pp.330-337, 2004.

C. Kyogoku, Genetic Association of the R620W Polymorphism of Protein Tyrosine Phosphatase PTPN22 with Human SLE, Am. J. Hum. Genet, vol.75, pp.504-507, 2004.

S. M. Goebel-goody, Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders, Pharmacol. Rev, vol.64, pp.65-87, 2012.

Q. Yang and N. K. Tonks, Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.5949-53, 1991.

F. Itoh, Expression and chromosomal assignment of PTPH1 gene encoding a cytosolic protein tyrosine phosphatase homologous to cytoskeletal-associated proteins, Int. J. Cancer, vol.55, pp.947-951, 1993.

S. H. Zhang, W. R. Eckberg, Q. Yang, A. A. Samatar, and N. K. Tonks, Biochemical characterization of a human band 4.1-related protein-tyrosine phosphatase, PTPH1, Journal of Biological Chemistry, vol.270, 1995.

A. Gjörloff-wingren, Subcellular localization of intracellular protein tyrosine phosphatases in T cells, Eur. J. Immunol, vol.30, pp.2412-2421, 2000.

S. Zhang, R. Kobayashi, P. R. Graves, H. Piwnica-worms, and N. K. Tonks, Serine Phosphorylation-dependent Association of the Band 4.1-related Protein-tyrosine Phosphatase PTPH1 with 14-3-3? Protein, J. Biol. Chem, vol.272, pp.27281-27287, 1997.

S. Hou, p38? Mitogen-activated protein kinase signals through phosphorylating its phosphatase PTPH1 in regulating ras protein oncogenesis and stress response, J. Biol. Chem, vol.287, pp.27895-905, 2012.

S. Ma, Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER), Oncotarget, vol.6, pp.13320-13333, 2015.

Y. Cau, D. Valensin, M. Mori, S. Draghi, and M. Botta, Structure, Function, Involvement in Diseases and Targeting of 14-3-3 Proteins: An Update, Curr. Med. Chem, vol.25, pp.5-21, 2018.

A. H. Chishti, The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane, Trends Biochem. Sci, vol.23, pp.281-282, 1998.

A. J. Baines, H. Lu, and P. M. Bennett, The Protein 4.1 family: Hub proteins in animals for organizing membrane proteins, Biochim. Biophys. Acta -Biomembr, vol.1838, pp.605-619, 2014.

C. Patrignani, Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition, Behav Brain Funct, vol.4, pp.1-14, 2008.

M. Gu and P. W. Majerus, The properties of the protein tyrosine phosphatase PTPMEG, J. Biol. Chem, vol.271, pp.27751-27760, 1996.

S. Hou, PTPH1 dephosphorylates and cooperates with p38? MAPK to increase Ras oncogenesis through PDZ-mediated interaction, Cancer Res, vol.148, pp.895-901, 2010.

S. Töpffer, A. Müller-schiffmann, K. Matentzoglu, M. Scheffner, and G. Steger, Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses, J. Gen. Virol, vol.88, pp.2956-2965, 2007.

E. Hsu, Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3, J. Biomed. Sci, vol.14, pp.731-775, 2007.

A. J. Barr, Large-scale structural analysis of the classical human protein tyrosine phosphatome, Cell, vol.136, pp.352-63, 2009.

K. Chen, Reciprocal allosteric regulation of p38? and PTPN3 involves a PDZ domainmodulated complex formation, Sci. Signal, vol.7, p.98, 2014.

R. Pulido, A. Zúñiga, and A. Ullrich, PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif, EMBO J, vol.17, pp.7337-50, 1998.

M. Camps, A. Nichols, and S. Arkinstall, Dual specificity phosphatases: a gene family for control of MAP kinase function, FASEB J, vol.14, pp.6-16, 2000.

Z. Yu and Z. Zhang, Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases, Chem. Rev, vol.118, pp.1069-1091, 2018.

R. Karisch, Global Proteomic Assessment of the Classical Protein-Tyrosine Phosphatome and, Redoxome". Cell, vol.146, pp.826-840, 2011.

E. Aranda, C. López-pedrera, L. De, J. R. Haba-rodriguez, and A. Rodriguez-ariza, Nitric oxide and cancer: the emerging role of S-nitrosylation, Curr. Mol. Med, vol.12, pp.50-67, 2012.

S. H. Zhang, J. Liu, R. Kobayashi, and N. K. Tonks, Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1, J. Biol. Chem, vol.274, pp.17806-17818, 1999.

S. Bogdan and C. Klämbt, Epidermal growth factor receptor signaling, Curr. Biol, vol.11, pp.292-295, 2001.

G. Tarcic, An Unbiased Screen Identifies DEP-1 Tumor Suppressor as a Phosphatase Controlling EGFR Endocytosis, Curr. Biol, vol.19, pp.1788-1798, 2009.

T. Yuan, Y. Wang, Z. J. Zhao, and H. Gu, Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells, J. Biol. Chem, vol.285, pp.14861-70, 2010.

Y. Xu, L. Tan, V. Grachtchouk, J. J. Voorhees, and G. J. Fisher, Receptor-type proteintyrosine phosphatase-kappa regulates epidermal growth factor receptor function, J. Biol. Chem, vol.280, pp.42694-700, 2005.

T. Tiganis, Protein Tyrosine Phosphatases: Dephosphorylating the Epidermal Growth Factor Receptor. IUBMB Life (International Union Biochem, Mol. Biol. Life), vol.53, pp.3-14, 2002.

E. R. Eden, I. J. White, A. Tsapara, and C. E. Futter, Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction, Nat. Cell Biol, vol.12, pp.267-272, 2010.

N. Ali, Recruitment of UBPY and ESCRT Exchange Drive HD-PTP-Dependent Sorting of EGFR to the MVB, Curr. Biol, vol.23, pp.453-461, 2013.

E. A. Musgrove and R. L. Sutherland, Biological determinants of endocrine resistance in breast cancer, Nat. Rev. Cancer, vol.9, pp.631-643, 2009.

G. Castoria, Tyrosine phosphorylation of estradiol receptor by Src regulates its hormonedependent nuclear export and cell cycle progression in breast cancer cells, Oncogene, vol.31, pp.4868-4877, 2012.

J. Sun, W. Zhou, K. Kaliappan, Z. Nawaz, and J. M. Slingerland, ER? Phosphorylation at Y537 by Src Triggers E6-AP-ER? Binding, ER? Ubiquitylation, Promoter Occupancy, and Target Gene Expression, Mol. Endocrinol, vol.26, pp.1567-1577, 2012.

G. P. Skliris, Z. Nugent, P. H. Watson, and L. C. Murphy, Estrogen Receptor Alpha Phosphorylated at Tyrosine 537 is Associated with Poor Clinical Outcome in Breast Cancer Patients Treated with Tamoxifen, Horm. Cancer, vol.1, pp.215-221, 2010.

S. Massarweh, Tamoxifen Resistance in Breast Tumors Is Driven by Growth Factor Receptor Signaling with Repression of Classic Estrogen Receptor Genomic Function, Cancer Res, vol.68, pp.826-833, 2008.

P. Fan, J. Wang, R. J. Santen, and W. Yue, Long-term Treatment with Tamoxifen Facilitates Translocation of Estrogen Receptor ? out of the Nucleus and Enhances its Interaction with EGFR in MCF-7 Breast Cancer Cells, Cancer Res, vol.67, pp.1352-1360, 2007.

P. S. Suresh, S. Ma, A. Migliaccio, and G. Chen, Protein-Tyrosine Phosphatase H1 Increases Breast Cancer Sensitivity to Antiestrogens by Dephosphorylating Estrogen Receptor at Tyr537, Mol. Cancer Ther, vol.13, pp.230-238, 2014.

S. J. Dawson, E. Provenzano, and C. Caldas, Triple negative breast cancers: Clinical and prognostic implications, Eur. J. Cancer, vol.45, pp.27-40, 2009.

G. Diluvio, NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest, Oncogenesis, vol.7, p.42, 2018.

M. Li, Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation, Oncogene, vol.34, pp.3791-3803, 2015.

N. Yin, The K-Ras effector p38? MAPK confers intrinsic resistance to tyrosine kinase inhibitors by stimulating EGFR transcription and EGFR dephosphorylation, J. Biol. Chem, vol.292, pp.15070-15079, 2017.

F. Dehkhoda, C. M. Lee, J. Medina, and A. J. Brooks, The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front. Endocrinol. (Lausanne), vol.9, p.35, 2018.

C. Pasquali, Identification of Protein Tyrosine Phosphatases with Specificity for the Ligand-Activated Growth Hormone Receptor, Mol. Endocrinol, vol.17, pp.2228-2239, 2003.

I. Pilecka, Protein-tyrosine phosphatase H1 controls growth hormone receptor signaling and systemic growth, J. Biol. Chem, vol.282, pp.35405-35415, 2007.

S. Jentsch and S. Rumpf, Cdc48 (p97): a 'molecular gearbox' in the ubiquitin pathway?, Trends Biochem. Sci, vol.32, pp.6-11, 2007.

H. Meyer, M. Bug, and S. Bremer, Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system, Nat. Cell Biol, vol.14, pp.117-123, 2012.

G. Alexandru, UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover, Cell, vol.134, pp.804-820, 2008.

J. Li, H. Wu, W. Zhang, M. R. Blackburn, and J. Jin, The p97-UFD1L-NPL4 protein complex mediates cytokine-induced I?B? proteolysis, Mol. Cell. Biol, vol.34, pp.335-382, 2014.

S. K. Radhakrishnan, W. Den-besten, and R. J. Deshaies, p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition, Elife, vol.3, p.1856, 2014.

A. Riemer, The p97-Ufd1-Npl4 ATPase complex ensures robustness of the G 2 /M checkpoint by facilitating CDC25A degradation, Cell Cycle, vol.13, pp.919-927, 2014.

M. Raman, C. G. Havens, J. C. Walter, and J. W. Harper, A Genome-wide Screen Identifies p97 as an Essential Regulator of DNA Damage-Dependent CDT1 Destruction, Mol. Cell, vol.44, pp.72-84, 2011.

M. Puumalainen, Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity, Nat. Commun, vol.5, p.3695, 2014.

C. Lavoie, Tyrosine phosphorylation of p97 regulates transitional endoplasmic reticulum assembly in vitro, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.13637-13679, 2000.

K. A. Fortner and . Lymphocytes, Kelley Firestein's Textb. Rheumatol, pp.189-206, 2017.

S. Han, S. Williams, and T. Mustelin, Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling, Eur. J. Immunol, vol.30, pp.1318-1325, 2000.

M. S. Sozio, PTPH1 Is a Predominant Protein-tyrosine Phosphatase Capable of Interacting with and Dephosphorylating the T Cell Receptor ? Subunit, J. Biol. Chem, vol.279, pp.7760-7769, 2004.

T. J. Bauler, Normal TCR Signal Transduction in Mice That Lack Catalytically Active PTPN3 Protein Tyrosine Phosphatase, J. Immunol, vol.178, pp.3680-3687, 2007.

T. J. Bauler, W. J. Hendriks, and P. D. King, The FERM and PDZ domain-containing protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction, PLoS One, vol.3, 2008.

S. F. Lichtenthaler, M. K. Lemberg, and R. Fluhrer, Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments, EMBO J, vol.37, p.99456, 2018.

R. A. Black, A metalloproteinase disintegrin that releases tumour-necrosis factor-? from cells, Nature, vol.385, pp.729-733, 1997.

F. Zunke, The shedding protease ADAM17: Physiology and pathophysiology, Biochim. Biophys. Acta -Mol. Cell Res, vol.1864, pp.2059-2070, 2017.

Y. Zheng, J. Schlöndorff, and C. P. Blobel, Evidence for Regulation of the Tumor Necrosis Factor ?-Convertase (TACE) by Protein-tyrosine Phosphatase PTPH1, J. Biol. Chem, vol.277, pp.42463-42470, 2002.

P. Xu and R. Derynck, Direct Activation of TACE-Mediated Ectodomain Shedding by p38 MAP Kinase Regulates EGF Receptor-Dependent Cell Proliferation, Mol. Cell, vol.37, pp.551-566, 2010.

J. Schwarz, Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor ? ectodomain shedding, J. Biol. Chem, vol.289, pp.3080-93, 2014.

J. Mülberg, The soluble interleukin-6 receptor is generated by shedding, Eur. J. Immunol, vol.23, pp.473-480, 1993.

J. Müllberg, H. Schooltink, T. Stoyan, P. C. Heinrich, and S. Rose-john, Protein kinase C activity is rate limiting for shedding of the interleukin-6 receptor, Biochem. Biophys. Res. Commun, vol.189, pp.794-800, 1992.

K. R. Demarco and C. E. Clancy, Cardiac Na Channels: Structure to Function, Curr. Top. Membr, vol.78, pp.287-311, 2016.

B. Gavillet, Cardiac Sodium Channel Na v 1.5 Is Regulated by a Multiprotein Complex Composed of Syntrophins and Dystrophin, Circ. Res, vol.99, pp.407-414, 2006.

T. Jespersen, Cardiac sodium channel Nav1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1, Biochem. Biophys. Res. Commun, vol.348, pp.1455-1462, 2006.

C. A. Ahern, J. Zhang, M. J. Wookalis, and R. Horn, Modulation of the Cardiac Sodium Channel Na V 1.5 by Fyn, a Src Family Tyrosine Kinase, Circ. Res, vol.96, pp.991-998, 2005.

K. Ono and J. Han, The p38 signal transduction pathway: activation and function, Cell. Signal, vol.12, pp.1-13, 2000.

G. Sabio, p38? regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP, EMBO J, vol.24, pp.1134-1145, 2005.

G. Sabio, Stress-and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2, Biochem. J, vol.380, pp.19-30, 2004.

M. Hasegawa, Stress-activated Protein Kinase-3 Interacts with the PDZ Domain of ?1-Syntrophin, J. Biol. Chem, vol.274, pp.12626-12631, 1999.

A. Cuenda and P. Cohen, Stress-activated Protein Kinase-2/p38 and a Rapamycin-sensitive Pathway Are Required for C2C12 Myogenesis, J. Biol. Chem, vol.274, pp.4341-4346, 1999.

J. Tang, X. Qi, D. Mercola, J. Han, and G. Chen, Essential role of p38gamma in K-Ras transformation independent of phosphorylation, J. Biol. Chem, vol.280, pp.23910-23917, 2005.

C. Patrignani, Characterization of protein tyrosine phosphatase H1 knockout mice in animal models of local and systemic inflammation, J. Inflamm, vol.7, p.16, 2010.

L. Grevès, M. Le-grevès, P. Nyberg, and F. , Age-related effects of IGF-1 on the NMDA-, GHand IGF-1-receptor mRNA transcripts in the rat hippocampus, Brain Res. Bull, vol.65, pp.369-374, 2005.

J. L. Whited, M. B. Robichaux, J. C. Yang, and P. A. Garrity, Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila, Development, vol.126, pp.4065-4076, 2007.

S. Li, Protein tyrosine phosphatase PTPN3 promotes drug resistance and stem cell-like characteristics in ovarian cancer, Sci. Rep, vol.6, p.36873, 2016.

H. Zhi, PTPH1 cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization, Oncogene, vol.30, pp.1706-1715, 2011.

C. Wu, PTPN3 and PTPN4 tyrosine phosphatase expression in human gastric adenocarcinoma, Anticancer Res, vol.26, pp.1643-1652, 2006.

M. Warabi, T. Nemoto, K. Ohashi, M. Kitagawa, and K. Hirokawa, Expression of protein tyrosine phosphatases and its significance in esophageal cancer, Exp. Mol. Pathol, vol.68, pp.187-95, 2000.

Y. Wang, Y. Su, Z. Ji, and Z. Lv, High Expression of PTPN3 Predicts Progression and Unfavorable Prognosis of Glioblastoma, Med. Sci. Monit, vol.24, pp.7556-7562, 2018.

Z. Shi, PTPH1 promotes tumor growth and metastasis in human glioma, Eur. Rev. Med. Pharmacol. Sci, pp.3777-3787, 2016.

J. Tang, X. Qi, D. Mercola, J. Han, and G. Chen, Essential Role of p38? in K-Ras Transformation Independent of Phosphorylation, J. Biol. Chem, vol.280, pp.23910-23917, 2005.

Q. Gao, Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients, Gastroenterology, vol.146, pp.1397-1407, 2014.

Z. Wang, Protein tyrosine phosphatase PTPN3 inhibits hepatocellular carcinoma growth and metastasis by dephosphorylation of EGFR, Ann. Oncol, vol.26, pp.42-70, 2015.

Y. Jung, Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing, Genes, Chromosom. Cancer, vol.51, pp.590-597, 2012.

B. Yuan, PTPN3 acts as a tumor suppressor and boosts TGF? signaling independent of its phosphatase activity, EMBO J, p.99945, 2019.

M. Li, PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization, Oncogene, vol.1, p.15, 2019.

M. B. Kennedy, Origin of PDZ (DHR, GLGF) domains, Trends Biochem. Sci, vol.20, p.350, 1995.

K. Cho, C. A. Hunt, and M. B. Kennedy, The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein, Neuron, vol.9, pp.929-942, 1992.

X. Liu and E. J. Fuentes, Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition, International Review of Cell and Molecular Biology, vol.343, 2019.

K. Luck, S. Charbonnier, and G. Travé, The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains, FEBS Lett, vol.586, pp.2648-2661, 2012.

R. Vincentelli, Quantifying domain-ligand affinities and specificities by high-throughput holdup assay, Nat. Methods, vol.12, pp.787-793, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02883959

B. Z. Harris and W. A. Lim, Mechanism and role of PDZ domains in signaling complex assembly, J. Cell Sci, vol.114, pp.3219-3250, 2001.

G. P. Manjunath, P. L. Ramanujam, and S. Galande, Structure function relations in PDZdomain-containing proteins: Implications for protein networks in cellular signalling, J. Biosci, vol.43, pp.155-171, 2018.

M. Sheng and C. Sala, PDZ Domains and the organization of supramolecular complexes, Annu. Rev. Neurosci. 1, p.29, 2001.

F. Ye and M. Zhang, Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures, Biochem. J, vol.455, pp.1-14, 2013.

K. Venkatachalam, J. Luo, and C. Montell, Evolutionarily conserved, multitasking TRP channels: lessons from worms and flies, Handb. Exp. Pharmacol, vol.223, pp.937-62, 2014.

B. Katz and B. Minke, The Drosophila light-activated TRP and TRPL channels -Targets of the phosphoinositide signaling cascade, Prog. Retin. Eye Res, vol.66, pp.200-219, 2018.

S. Tsunoda, A multivalent PDZ-domain protein assembles signalling complexes in a Gprotein-coupled cascade, Nature, vol.388, pp.243-249, 1997.

S. Tsunoda, Y. Sun, E. Suzuki, and C. Zuker, Independent anchoring and assembly mechanisms of INAD signaling complexes in Drosophila photoreceptors, J. Neurosci, vol.21, pp.150-158, 2001.

W. Feng and M. Zhang, Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density, Nat. Rev. Neurosci, vol.10, pp.87-99, 2009.

D. A. Doyle, Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ, Cell, vol.85, pp.1067-1076, 1996.

J. H. Cabral, Crystal structure of a PDZ domain, Nature, vol.382, pp.649-652, 1996.

Z. Songyang, Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ Domains. Science (80-. ), vol.275, pp.73-77, 1997.

G. Fuh, Analysis of PDZ Domain-Ligand Interactions Using Carboxyl-terminal Phage Display, J. Biol. Chem, vol.275, pp.21486-21491, 2000.

M. A. Stiffler, PDZ domain binding selectivity is optimized across the mouse proteome, Science, vol.317, pp.364-373, 2007.

M. Niethammer, CRIPT, a Novel Postsynaptic Protein that Binds to the Third PDZ Domain of PSD-95/SAP90, Neuron, vol.20, pp.693-707, 1998.

D. A. Doyle, Crystal Structures of a Complexed and Peptide-Free Membrane Protein-Binding Domain: Molecular Basis of Peptide Recognition by PDZ, Cell, vol.85, pp.1067-1076, 1996.

B. A. Appleton, Comparative structural analysis of the Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into determinants of PDZ domain specificity, J. Biol. Chem, vol.281, pp.22312-22332, 2006.

N. J. Skelton, Origins of PDZ Domain Ligand Specificity, J. Biol. Chem, vol.278, pp.7645-7654, 2003.

S. Fournane, Surface plasmon resonance analysis of the binding of high-risk mucosal HPV E6 oncoproteins to the PDZ1 domain of the tight junction protein MAGI-1, J. Mol. Recognit, vol.24, pp.511-523, 2011.

G. Birrane, J. Chung, and J. A. Ladias, Novel Mode of Ligand Recognition by the Erbin PDZ Domain, J. Biol. Chem, vol.278, pp.1399-1402, 2003.

G. Kozlov, D. Banville, K. Gehring, and I. Ekiel, Solution structure of the PDZ2 domain from cytosolic human phosphatase hPTP1E complexed with a peptide reveals contribution of the beta2-beta3 loop to PDZ domain-ligand interactions, J. Mol. Biol, vol.320, pp.813-833, 2002.

E. Terrien, Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN, Sci. Signal, vol.5, p.58, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02883992

J. Zhang, Structural Basis of ?-Catenin Recognition by Tax-interacting Protein-1, J. Mol. Biol, vol.384, pp.255-263, 2008.

S. Mostarda, D. Gfeller, and F. Rao, Beyond the Binding Site: The Role of the ?2 -?3 Loop and Extra-Domain Structures in PDZ Domains, PLoS Comput. Biol, vol.8, p.1002429, 2012.

R. C. Tyler, F. C. Peterson, and B. F. Volkman, Distal interactions within the par3-VE-cadherin complex, Biochemistry, vol.49, pp.951-958, 2010.

F. Diella, Understanding eukaryotic linear motifs and their role in cell signaling and regulation, Front. Biosci, p.6580, 2008.

E. J. Fuentes, S. A. Gilmore, R. V. Mauldin, and A. L. Lee, Evaluation of Energetic and Dynamic Coupling Networks in a PDZ Domain, Protein. J. Mol. Biol, vol.364, pp.337-351, 2006.

Y. Chen, Genome-wide functional annotation of dual-specificity protein-and lipidbinding modules that regulate protein interactions, Mol. Cell, vol.46, pp.226-263, 2012.

B. H. Chang, A Systematic Family-wide Investigation Reveals that ?30% of Mammalian PDZ Domains Engage in PDZ-PDZ Interactions, Chem. Biol, vol.18, pp.1143-1152, 2011.

K. Luck, Putting into practice domain-linear motif interaction predictions for exploration of protein networks, PLoS One, vol.6, p.25376, 2011.

R. R. Penkert, H. M. Divittorio, and K. E. Prehoda, Internal recognition through PDZ domain plasticity in the Par-6-Pals1 complex, Nat. Struct. Mol. Biol, vol.11, pp.1122-1129, 2004.

H. Tochio, Formation of nNOS/PSD-95 PDZ dimer requires a preformed ?-finger structure from the nNOS PDZ domain, J. Mol. Biol, vol.303, pp.359-370, 2000.

P. Wang, Q. Zhang, H. Tochio, J. Fan, and M. Zhang, Formation of a native-like ?-hairpin finger structure of a peptide from the extended PDZ domain of neuronal nitric oxide synthase in aqueous solution, Eur. J. Biochem, vol.267, pp.3116-3122, 2000.

J. E. Brenman, Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and ?1-Syntrophin Mediated by PDZ Domains, Cell, vol.84, pp.757-767, 1996.

N. Lenfant, A genome-wide study of PDZ-domain interactions in C. elegans reveals a high frequency of non-canonical binding, BMC Genomics, vol.11, p.671, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00649419

Y. Mu, P. Cai, S. Hu, S. Ma, and Y. Gao, Characterization of Diverse Internal Binding Specificities of PDZ Domains by Yeast Two-Hybrid Screening of a Special Peptide Library, PLoS One, vol.9, p.88286, 2014.

Y. Hsueh, E. Kim, and M. Sheng, Disulfide-Linked Head-to-Head Multimerization in the Mechanism of Ion Channel Clustering by PSD-95, Neuron, vol.18, pp.803-814, 1997.

Y. J. Im, Crystal structure of GRIP1 PDZ6-peptide complex reveals the structural basis for class II PDZ target recognition and PDZ domain-mediated multimerization, J. Biol. Chem, vol.278, pp.8501-8508, 2003.

A. S. Fanning, M. F. Lye, J. M. Anderson, and A. Lavie, Domain swapping within PDZ2 is responsible for dimerization of ZO proteins, J. Biol. Chem, vol.282, pp.37710-37716, 2007.

J. Chen, L. Pan, Z. Wei, Y. Zhao, and M. Zhang, Domain-swapped dimerization of ZO-1 PDZ2 generates specific and regulatory connexin43-binding sites, EMBO J, vol.27, pp.2113-2136, 2008.

J. Long, Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95, J. Mol. Biol, vol.327, pp.203-214, 2003.

H. Dong, Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2, J. Neurosci, vol.19, pp.6930-6971, 1999.

P. Osten, Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor, Neuron, vol.27, pp.313-338, 2000.

W. Feng, Y. Shi, M. Li, and M. Zhang, Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding, Nat. Struct. Mol. Biol, vol.10, pp.972-978, 2003.

Q. Zhang, J. Fan, and M. Zhang, Interdomain Chaperoning between PSD-95, Dlg, and Zo-1 (PDZ) Domains of Glutamate Receptor-interacting Proteins, J. Biol. Chem, vol.276, pp.43216-43220, 2001.

J. Zhu, Y. Shang, J. Chen, and M. Zhang, Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins, Front. Biol. (Beijing), vol.7, pp.379-396, 2012.

L. Pan, J. Chen, J. Yu, H. Yu, and M. Zhang, The Structure of the PDZ3-SH3-GuK Tandem of ZO-1 Protein Suggests a Supramodular Organization of the Membrane-associated Guanylate Kinase (MAGUK) Family Scaffold Protein Core, J. Biol. Chem, vol.286, pp.40069-40074, 2011.

J. Nomme, The Src Homology 3 Domain Is Required for Junctional Adhesion Molecule Binding to the Third PDZ Domain of the Scaffolding Protein ZO-1, J. Biol. Chem, vol.286, pp.43352-43360, 2011.

P. Maisonneuve, Regulation of the catalytic activity of the human phosphatase PTPN4 by its PDZ domain, FEBS J, vol.281, pp.4852-4865, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02545802

P. Maisonneuve, Molecular Basis of the Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-activated Protein Kinase p38?, J. Biol. Chem, vol.291, pp.16699-16708, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02346943

D. Paolo, G. De-camilli, and P. , Phosphoinositides in cell regulation and membrane dynamics, Nature, vol.443, pp.651-657, 2006.

Y. Ivarsson, Plasticity of PDZ domains in ligand recognition and signaling, FEBS Lett, vol.586, pp.2638-2647, 2012.

K. Meerschaert, The PDZ2 domain of zonula occludens-1 and -2 is a phosphoinositide binding domain, Cell. Mol. Life Sci, vol.66, pp.3951-3966, 2009.

H. Wu, PDZ Domains of Par-3 as Potential Phosphoinositide Signaling Integrators, Mol. Cell, vol.28, pp.886-898, 2007.

L. Pan, Clustering and synaptic targeting of PICK1 requires direct interaction between the PDZ domain and lipid membranes, EMBO J, vol.26, pp.4576-4587, 2007.

Y. Ivarsson, Specificity and Determinants of Lipid-Interacting PDZ Domains from an In-Cell Screen and In Vitro Binding Experiments, PLoS One, vol.8, p.54581, 2013.

R. Sheng, Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins, Nat. Commun, vol.3, p.1249, 2012.

A. S. Fanning and J. M. Anderson, PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane, J. Clin. Invest, vol.103, pp.767-72, 1999.

T. Balla, Inositol-lipid binding motifs: signal integrators through protein-lipid and proteinprotein interactions, J. Cell Sci, vol.118, pp.2093-2104, 2005.

J. Xia, X. Zhang, J. Staudinger, and R. L. Huganir, Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1, Neuron, vol.22, pp.179-87, 1999.

H. J. Chung, J. Xia, R. H. Scannevin, X. Zhang, and R. L. Huganir, Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domaincontaining proteins, J. Neurosci, vol.20, pp.7258-67, 2000.

L. Pangon, The PDZ-binding motif of MCC is phosphorylated at position ? 1 and controls lamellipodia formation in colon epithelial cells, Biochim. Biophys. Acta -Mol. Cell Res, vol.1823, pp.1058-1067, 2012.

P. Boisguerin, Characterization of a Putative Phosphorylation Switch: Adaptation of SPOT Synthesis to Analyze PDZ Domain Regulation Mechanisms, ChemBioChem, vol.8, pp.2302-2307, 2007.

S. W. Pedersen, Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions, ACS Chem. Biol, vol.12, pp.2313-2323, 2017.

J. Long, Autoinhibition of X11/Mint scaffold proteins revealed by the closed conformation of the PDZ tandem, Nat. Struct. Mol. Biol, vol.12, pp.722-728, 2005.

C. M. Petit, J. Zhang, P. J. Sapienza, E. J. Fuentes, and A. L. Lee, Hidden dynamic allostery in a PDZ domain, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.18249-54, 2009.

S. Bhattacharya, A Conformational Switch in the Scaffolding Protein NHERF1 Controls Autoinhibition and Complex Formation, J. Biol. Chem, vol.285, pp.9981-9994, 2010.

P. Jemth, S. Gianni, and . Domains, Folding and Binding ?, Biochemistry, vol.46, pp.8701-8708, 2007.

C. Gautier, L. Laursen, P. Jemth, and S. Gianni, Seeking allosteric networks in PDZ domains, Protein Eng. Des. Sel, vol.31, pp.367-373, 2018.

A. Adato, Usherin, the defective protein in Usher syndrome type IIA, is likely to be a component of interstereocilia ankle links in the inner ear sensory cells, Hum. Mol. Genet, vol.14, pp.3921-3932, 2005.

P. Mburu, Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31, Nat. Genet, vol.34, pp.421-428, 2003.

J. Yang, Ablation of Whirlin Long Isoform Disrupts the USH2 Protein Complex and Causes Vision and Hearing Loss, PLoS Genet, vol.6, p.1000955, 2010.

A. Via, B. Uyar, C. Brun, and A. Zanzoni, How pathogens use linear motifs to perturb host cell networks, Trends Biochem. Sci, vol.40, pp.36-48, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01405781

N. E. Davey, Attributes of short linear motifs, Mol. BioSyst, vol.8, pp.268-281, 2012.

C. James and S. Roberts, Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait? Pathogens, vol.5, 2016.

T. Kiyono, Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.11612-11618, 1997.

S. S. Lee, R. S. Weiss, and R. T. Javier, Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein, Proc. Natl. Acad. Sci, vol.94, pp.6670-6675, 1997.

R. Rousset, S. Fabre, C. Desbois, F. Bantignies, and P. Jalinot, The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins, Oncogene, vol.16, pp.643-654, 1998.

R. S. Weiss and R. T. Javier, A carboxy-terminal region required by the adenovirus type 9 E4 ORF1 oncoprotein for transformation mediates direct binding to cellular polypeptides, J. Virol, vol.71, pp.7873-80, 1997.

R. T. Javier and A. P. Rice, Emerging Theme: Cellular PDZ Proteins as Common Targets of Pathogenic Viruses, J. Virol, vol.85, pp.11544-11556, 2011.

K. Ganti, The human papillomavirus E6 PDZ binding motif: From life cycle to malignancy, Viruses, vol.7, pp.3530-3551, 2015.

B. Margolis, Apicobasal polarity complexes, J. Cell Sci, vol.118, pp.5157-5159, 2005.

F. Martin-belmonte and M. Perez-moreno, Epithelial cell polarity, stem cells and cancer, Nat. Rev. Cancer, vol.12, pp.23-38, 2012.

R. T. Javier and A. P. Rice, Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses, J. Virol, vol.85, pp.11544-11556, 2011.

M. Thomas and L. Banks, Upsetting the Balance: When Viruses Manipulate Cell Polarity Control, J. Mol. Biol, 2018.

L. H. Gutiérrez-gonzález and T. Santos-mendoza, Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism, FASEB J. fj, 2019.

M. Huse, Lymphocyte polarity, the immunological synapse and the scope of biological analogy, Bioarchitecture, vol.1, pp.180-185, 2011.

J. R. Goldenring, A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis, Nat. Rev. Cancer, vol.13, pp.813-820, 2013.

R. Javier, K. Raska, G. J. Macdonald, and T. Shenk, Human adenovirus type 9-induced rat mammary tumors, J. Virol, vol.65, pp.3192-202, 1991.

I. J. Latorre, Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells, J. Cell Sci, vol.118, pp.4283-93, 2005.

K. Kong, M. Kumar, M. Taruishi, and R. T. Javier, The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase, PLoS Pathog, vol.10, p.1004102, 2014.

B. A. Glaunsinger, R. S. Weiss, S. S. Lee, and R. Javier, Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2, EMBO J, vol.20, pp.5578-5586, 2001.

A. Chlenski, Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues, Biochim. Biophys. Acta -Gene Struct. Expr, vol.1493, pp.319-324, 2000.

L. Xie, B. Yamamoto, A. Haoudi, O. J. Semmes, and P. L. Green, PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo, Blood, vol.107, p.1980, 2006.

A. Hirata, PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line, Virology, vol.318, pp.327-336, 2004.

M. Higuchi, Cooperation of NF-B2/p100 Activation and the PDZ Domain Binding Motif Signal in Human T-Cell Leukemia Virus Type 1 (HTLV-1) Tax1 but Not HTLV-2 Tax2 Is Crucial for Interleukin-2-Independent Growth Transformation of a T-Cell Line, J. Virol, vol.81, pp.11900-11907, 2007.

S. Yoshida, Knockdown of synapse-associated protein Dlg1 reduces syncytium formation induced by human T-cell leukemia virus type 1, Virus Genes, vol.37, pp.9-15, 2008.

M. Nejmeddine, HTLV-1-Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at the virological synapse, Blood, vol.114, pp.1016-1025, 2009.

T. Igakura, Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton, Science, vol.299, pp.1713-1719, 2003.

C. Préhaud, S. Lay, B. Dietzschold, and M. Lafon, Glycoprotein of Nonpathogenic Rabies Viruses Is a Key Determinant of Human Cell Apoptosis, J. Virol, vol.77, pp.10537-10547, 2003.

C. Préhaud, Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein, Sci. Signal, vol.3, p.5, 2010.

S. H. Loh, L. Francescut, P. Lingor, M. Bähr, and P. Nicotera, Identification of new kinase clusters required for neurite outgrowth and retraction by a loss-of-function RNA interference screen, Cell Death Differ, vol.15, pp.283-298, 2008.

N. R. Leslie, H. Maccario, L. Spinelli, and L. Davidson, The significance of PTEN's protein phosphatase activity, Adv. Enzyme Regul, vol.49, pp.190-196, 2009.

N. Babault, Peptides Targeting the PDZ Domain of PTPN4 Are Efficient Inducers of Glioblastoma Cell Death, Structure, vol.19, pp.1518-1524, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02883997

C. Caillet-saguy, Strategies to interfere with PDZ-mediated interactions in neurons: What we can learn from the rabies virus, Prog. Biophys. Mol. Biol, vol.119, pp.53-59, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02545804

Z. Khan, Structure-based optimization of a PDZ binding motif within a viral peptide stimulates neurite outgrowth, J. Biol. Chem. jbc.RA119, p.8238, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02271324

M. Jing, J. Bohl, N. Brimer, M. Kinter, and S. B. Vande-pol, Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins, J. Virol, vol.81, pp.2231-2240, 2007.

L. Bruni, ICO/IARCInformation Centre on HPV and Cancer (HPV Information Centre)

, Human Papillomavirus and Related Diseases in the World, Summary Report, vol.17, p.1, 2019.

S. V. Graham, The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review, Clin. Sci. (Lond), vol.131, pp.2201-2221, 2017.

S. V. Graham, The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review, Clin. Sci. (Lond), vol.131, pp.2201-2221, 2017.

S. Digiuseppe, M. Bienkowska-haba, L. G. Guion, and M. Sapp, Cruising the cellular highways: How human papillomavirus travels from the surface to the nucleus, Virus Res, vol.231, pp.1-9, 2017.

J. Doorbar, The Biology and Life-Cycle of Human Papillomaviruses. Vaccine, vol.30, pp.55-70, 2012.

R. B. Roden and P. L. Stern, Opportunities and challenges for human papillomavirus vaccination in cancer, Nat. Rev. Cancer, vol.18, pp.240-254, 2018.

,. De-villiers, C. Fauquet, T. R. Broker, H. Bernard, and H. Zur-hausen, Classification of papillomaviruses, Virology, vol.324, pp.17-27, 2004.

S. B. Vande-pol and A. J. Klingelhutz, Papillomavirus E6 oncoproteins, Virology, vol.445, pp.115-152, 2013.

J. P. Maufort, A. Shai, H. C. Pitot, and P. F. Lambert, A role for HPV16 E5 in cervical carcinogenesis, Cancer Res, vol.70, pp.2924-2955, 2010.

A. C. De-freitas, T. H. De-oliveira, M. R. Barros, A. Venuti, and A. Venuti, hrHPV E5 oncoprotein: immune evasion and related immunotherapies, J. Exp. Clin. Cancer Res, vol.36, p.71, 2017.

D. Estêvão, N. R. Costa, R. M. Gil-da-costa, and R. Medeiros, Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 oncoproteins in cellular malignancy, Biochim. Biophys. Acta -Gene Regul. Mech, vol.1862, pp.153-162, 2019.

S. Mittal and L. Banks, Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation, Mutat. Res. Mutat. Res, vol.772, pp.23-35, 2017.

J. M. Huibregtse, M. Scheffner, and P. M. Howley, Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins, Mol. Cell. Biol, vol.13, pp.4918-4945, 1993.

K. Zanier, Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins, Science, vol.339, pp.694-702, 2013.

K. Zanier, Solution structure analysis of the HPV16 E6 oncoprotein reveals a selfassociation mechanism required for E6-mediated degradation of p53, Structure, vol.20, pp.604-617, 2012.

Y. Nominé, Structural and Functional Analysis of E6 Oncoprotein: Insights in the Molecular Pathways of Human Papillomavirus-Mediated Pathogenesis, Mol. Cell, vol.21, pp.665-678, 2006.

K. Zanier, Formation of well-defined soluble aggregates upon fusion to MBP is a generic property of E6 proteins from various human papillomavirus species, Protein Expr. Purif, vol.51, pp.59-70, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00166240

C. Lee and L. A. Laimins, Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31, J. Virol, vol.78, pp.12366-77, 2004.

C. P. Delury, The Role of Protein Kinase A Regulation of the E6 PDZ-Binding Domain during the Differentiation-Dependent Life Cycle of Human Papillomavirus Type 18, J. Virol, vol.87, pp.9463-9472, 2013.

L. Nicolaides, Stabilization of HPV16 E6 protein by PDZ proteins, and potential implications for genome maintenance, Virology, vol.414, pp.137-145, 2011.

R. A. Watson, M. Thomas, L. Banks, and S. Roberts, Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes, J. Cell Sci, vol.116, pp.4925-4934, 2003.

W. C. Spanos, Deletion of the PDZ motif of HPV16 E6 preventing immortalization and anchorage-independent growth in human tonsil epithelial cells, Head Neck, vol.30, pp.139-147, 2008.

M. A. James, J. H. Lee, and A. J. Klingelhutz, Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motifdependent manner, J. Virol, vol.80, pp.5301-5308, 2006.

M. L. Nguyen, M. M. Nguyen, D. Lee, A. E. Griep, and P. F. Lambert, The PDZ Ligand Domain of the Human Papillomavirus Type 16 E6 Protein Is Required for E6 ' s Induction of Epithelial Hyperplasia In Vivo, vol.77, pp.6957-6964, 2003.

D. Gardiol, Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation, Oncogene, vol.18, pp.5487-5496, 1999.

S. Nakagawa and J. M. Huibregtse, Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase, Mol. Cell. Biol, vol.20, pp.8244-53, 2000.

C. Kranjec and L. Banks, A systematic analysis of human papillomavirus (HPV) E6 PDZ substrates identifies MAGI-1 as a major target of HPV type 16 (HPV-16) and HPV-18 whose loss accompanies disruption of tight junctions, J. Virol, vol.85, pp.1757-64, 2011.

P. Massimi, N. Gammoh, M. Thomas, and L. Banks, HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasomemediated degradation, Oncogene, vol.23, pp.8033-8039, 2004.

M. E. Feigin, Mislocalization of the Cell Polarity Protein Scribble Promotes Mammary Tumorigenesis and Is Associated with Basal Breast Cancer, Cancer Res, vol.74, pp.3180-3194, 2014.

M. Thomas, Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation, Oncogene, vol.21, pp.5088-5096, 2002.

C. Kranjec, P. Massimi, and L. Banks, Restoration of MAGI-1 expression in human papillomavirus-positive tumor cells induces cell growth arrest and apoptosis, J. Virol, vol.88, pp.7155-69, 2014.

K. Shin, S. Straight, and B. Margolis, PATJ regulates tight junction formation and polarity in mammalian epithelial cells, J. Cell Biol, vol.168, pp.705-711, 2005.

D. Michel, PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells, J. Cell Sci, vol.118, pp.4049-4057, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00118506

C. H. Storrs and S. J. Silverstein, PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6, J. Virol, vol.81, pp.4080-90, 2007.

Y. Hamazaki, M. Itoh, H. Sasaki, M. Furuse, and S. Tsukita, Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule, J. Biol. Chem, vol.277, pp.455-61, 2002.

S. S. Lee, B. Glaunsinger, F. Mantovani, L. Banks, and R. T. Javier, Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins, J. Virol, vol.74, pp.9680-93, 2000.

L. Hampson, C. Li, A. W. Oliver, H. C. Kitchener, and I. N. Hampson, The PDZ protein Tip-1 is a gain of function target of the HPV16 E6 oncoprotein, Int. J. Oncol, vol.25, pp.1249-56, 2004.

R. Razanskas and K. Sasnauskas, Interaction of hepatitis B virus core protein with human GIPC1, Arch. Virol, vol.155, pp.247-250, 2010.

K. Handa, E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein, J. Virol, vol.81, pp.1379-89, 2007.

K. W. Jeong, H. Kim, S. Kim, Y. S. Kim, and J. Choe, Human papillomavirus type 16 E6 protein interacts with cystic fibrosis transmembrane regulator-associated ligand and promotes E6-associated protein-mediated ubiquitination and proteasomal degradation, Oncogene, vol.26, pp.487-499, 2007.

J. T. Chang and .. , Highly potent and specific siRNAs against E6 or E7 genes of HPV16-or HPV18-infected cervical cancers, Cancer Gene Ther, vol.17, pp.827-863, 2010.

K. Hoppe-seyler, F. Bossler, J. A. Braun, A. L. Herrmann, and F. Hoppe-seyler, The HPV E6/E7 Oncogenes: Key Factors for Viral Carcinogenesis and Therapeutic Targets, Trends Microbiol, vol.26, pp.158-168, 2018.

D. Martinez-zapien, Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53, Nature, vol.529, pp.541-545, 2016.

C. Stutz, Intracellular Analysis of the Interaction between the Human Papillomavirus Type 16 E6 Oncoprotein and Inhibitory Peptides, PLoS One, vol.10, p.132339, 2015.

K. Zanier, The E6AP Binding Pocket of the HPV16 E6 Oncoprotein Provides a Docking Site for a Small Inhibitory Peptide Unrelated to E6AP, Indicating Druggability of E6, PLoS One, vol.9, p.112514, 2014.

C. Guo, Potent Anti-Tumor Effect Generated by a Novel Human Papillomavirus (HPV) Antagonist Peptide Reactivating the pRb/E2F Pathway, PLoS One, vol.6, p.17734, 2011.

M. Nizard, Immunotherapy of HPV-associated head and neck cancer: Critical parameters, Oncoimmunology, vol.2, p.24534, 2013.
URL : https://hal.archives-ouvertes.fr/halshs-01457167

P. L. Stern, Therapy of Human Papillomavirus-Related Disease, Vaccine, vol.30, pp.71-82, 2012.

L. Selzer and A. Zlotnick, Assembly and Release of Hepatitis B Virus, pp.1-18, 2017.

B. Venkatakrishnan and A. Zlotnick, The Structural Biology of Hepatitis B Virus: Form and Function, Annu. Rev. Virol, vol.3, pp.429-451, 2016.

J. Hu and K. Liu, Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application, Viruses, vol.9, 2017.

H. Li, Nuclear Export and Import of Human Hepatitis B Virus Capsid Protein and Particles, PLoS Pathog, vol.6, p.1001162, 2010.

A. Diab, A. Foca, F. Zoulim, D. Durantel, and O. Andrisani, The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals, Antiviral Res, vol.149, pp.211-220, 2018.

D. H. Kim, H. S. Kang, and K. Kim, Roles of hepatocyte nuclear factors in hepatitis B virus infection, World J. Gastroenterol, vol.22, p.7017, 2016.

M. Nassal, The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly, J. Virol, vol.66, pp.4107-4123, 1992.

M. Blondot, V. Bruss, and M. Kann, Intracellular transport and egress of hepatitis B virus, J. Hepatol, vol.64, pp.49-59, 2016.

J. Jung, Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxylterminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication, J. Virol, vol.88, pp.8754-67, 2014.

C. Chen, J. Wang, and A. Zlotnick, A Kinase Chaperones Hepatitis B Virus Capsid Assembly and Captures Capsid Dynamics in vitro, PLoS Pathog, vol.7, p.1002388, 2011.

S. .. Wynne and R. Crowther,

A. G. Leslie, The Crystal Structure of the Human Hepatitis B Virus Capsid, Mol. Cell, vol.3, pp.771-780, 1999.

L. Selzer, S. P. Katen, and A. Zlotnick, The Hepatitis B Virus Core Protein Intradimer Interface Modulates Capsid Assembly and Stability, 2014.

P. Ceres and A. Zlotnick, Weak Protein?Protein Interactions Are Sufficient To Drive Assembly of Hepatitis B Virus Capsids, Biochemistry, vol.41, pp.11525-11531, 2002.

C. R. Bourne, S. P. Katen, M. R. Fulz, C. Packianathan, and A. Zlotnick, A mutant hepatitis B virus core protein mimics inhibitors of icosahedral capsid self-assembly, Biochemistry, vol.48, pp.1736-1778, 2009.

C. Packianathan, S. P. Katen, C. E. Dann, and A. Zlotnick, Conformational changes in the hepatitis B virus core protein are consistent with a role for allostery in virus assembly, J. Virol, vol.84, pp.1607-1622, 2010.

C. G. Alexander, M. C. Jürgens, D. A. Shepherd, S. M. Freund, and A. E. Ashcroft, Thermodynamic origins of protein folding , allostery , and capsid formation in the human hepatitis B virus core protein, 2013.

K. Klumpp, High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein, Proc. Natl. Acad. Sci, vol.112, pp.15196-15201, 2015.

X. Yu, L. Jin, J. Jih, C. Shih, and . Hong-zhou, 3.5Å cryoEM Structure of Hepatitis B Virus Core Assembled from Full-Length Core Protein, PLoS One, vol.8, p.69729, 2013.
URL : https://hal.archives-ouvertes.fr/jpa-00231094

M. Nassal, Hepatitis B viruses: Reverse transcription a different way, Virus Res, vol.134, pp.235-249, 2008.

P. K. Chua, F. Tang, J. Huang, C. Suen, and C. Shih, Testing the balanced electrostatic interaction hypothesis of hepatitis B virus DNA synthesis by using an in vivo charge rebalance approach, J. Virol, vol.84, pp.2340-51, 2010.

E. B. Lewellyn and D. D. Loeb, The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication, J. Virol, vol.85, pp.1298-309, 2011.

L. Pogam, S. Chua, P. K. Newman, M. Shih, and C. , Exposure of RNA templates and encapsidation of spliced viral RNA are influenced by the arginine-rich domain of human hepatitis B virus core antigen (HBcAg 165-173), J. Virol, vol.79, pp.1871-87, 2005.

T. Chu, A. Liou, P. Su, H. Wu, and C. Shih, Nucleic acid chaperone activity associated with the arginine-rich domain of human hepatitis B virus core protein, J. Virol, vol.88, pp.2530-2573, 2014.

Z. Tan, The interface between hepatitis B virus capsid proteins affects self-assembly, pregenomic RNA packaging, and reverse transcription, J. Virol, vol.89, pp.3275-84, 2015.

M. Katoh, Int. J. Mol. Med, vol.9, pp.585-594, 2002.

R. Rousset, S. Fabre, C. Desbois, F. Bantignies, and P. Jalinot, The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins, Oncogene, vol.16, pp.643-654, 1998.

A. Favre-bonvin, C. Reynaud, C. Kretz-remy, and P. Jalinot, Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome, J. Virol, vol.79, pp.4229-4266, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00193769

K. Deres, Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids, Science, vol.299, pp.893-899, 2003.

W. E. Delaney, Phenylpropenamide derivatives AT-61 and AT-130 inhibit replication of wild-type and lamivudine-resistant strains of hepatitis B virus in vitro, Antimicrob. Agents Chemother, vol.46, pp.3057-60, 2002.

A. Zlotnick, Core protein: A pleiotropic keystone in the HBV lifecycle, Antiviral Res, vol.121, pp.82-93, 2015.

S. G. Julien, N. Dubé, S. Hardy, and M. L. Tremblay, Inside the human cancer tyrosine phosphatome, Nat. Rev. Cancer, vol.11, pp.35-49, 2011.

W. J. Hendriks and F. Böhmer, Non-transmembrane PTPs in Cancer in Protein Tyrosine Phosphatases in Cancer, 2016.

K. E. Chen, Substrate specificity and plasticity of FERM-containing protein tyrosine phosphatases, Structure, vol.23, pp.653-664, 2015.

L. Fielding, NMR methods for the determination of protein-ligand dissociation constants, Curr. Top. Med. Chem, vol.3, pp.39-53, 2003.

C. Caillet-saguy, Regulation of the Human Phosphatase PTPN4 by the inter-domain linker connecting the PDZ and the phosphatase domains, Sci. Rep, vol.7, p.7875, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02192076

M. Genera, Structural and functional characterization of the PDZ domain of the human phosphatase PTPN3 and its interaction with the human papillomavirus E6 oncoprotein, Sci. Rep, vol.9, p.7438, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02146733

P. Hof, S. Pluskey, S. Dhe-paganon, M. J. Eck, and S. E. Shoelson, Crystal structure of the tyrosine phosphatase SHP-2, Cell, vol.92, pp.441-50, 1998.

S. Gupta, The C-terminal Tail of Presenilin Regulates Omi/HtrA2 Protease Activity, J. Biol. Chem, vol.279, pp.45844-45854, 2004.

N. P. Walsh, B. M. Alba, B. Bose, C. A. Gross, and R. T. Sauer, OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain, Cell, vol.113, pp.61-71, 2003.

M. J. Chen, J. E. Dixon, and G. Manning, Genomics and evolution of protein phosphatases, Sci. Signal, vol.10, p.1796, 2017.

R. Tonikian, A specificity map for the PDZ domain family, PLoS Biol, vol.6, p.239, 2008.

D. Eisenberg, E. Schwarz, M. Komaromy, and R. Wall, Analysis of membrane and surface protein sequences with the hydrophobic moment plot, J. Mol. Biol, vol.179, pp.125-142, 1984.

T. Hirakawa, C. Galet, M. Kishi, and M. Ascoli, GIPC binds to the human lutropin receptor (hLHR) through an unusual PDZ domain binding motif, and it regulates the sorting of the internalized human choriogonadotropin and the density of cell surface hLHR, J. Biol. Chem, vol.278, pp.49348-57, 2003.

S. S. Bohlson, M. Zhang, C. E. Ortiz, and A. J. Tenner, CD93 interacts with the PDZ domaincontaining adaptor protein GIPC: implications in the modulation of phagocytosis, J. Leukoc. Biol, vol.77, pp.80-89, 2005.

T. Ligensa, A PDZ domain protein interacts with the C-terminal tail of the insulin-like growth factor-1 receptor but not with the insulin receptor, J. Biol. Chem, vol.276, pp.33419-33446, 2001.

F. Jeanneteau, J. Diaz, P. Sokoloff, and N. Griffon, Interactions of GIPC with Dopamine D2 , D3 but not D4 Receptors Define a Novel Mode of Regulation of G Protein-coupled Receptors, Mol. Biol. Cell, vol.15, pp.696-705, 2004.

E. Chastre, TRIP6, a novel molecular partner of the MAGI-1 scaffolding molecule, promotes invasiveness, FASEB J, vol.23, pp.916-928, 2009.

E. Cuppen, The zyxin-related protein TRIP6 interacts with PDZ motifs in the adaptor protein RIL and the protein tyrosine phosphatase PTP-BL, Eur. J. Cell Biol, vol.79, pp.283-93, 2000.

M. M. Petit, K. R. Crombez, H. B. Vervenne, N. Weyns, and W. J. Van-de-ven, The tumor suppressor Scrib selectively interacts with specific members of the zyxin family of proteins, FEBS Lett, vol.579, pp.5061-5068, 2005.

T. Sugi, Crystal structures of autoinhibitory PDZ domain of Tamalin: implications for metabotropic glutamate receptor trafficking regulation, EMBO J, vol.26, pp.2192-2205, 2007.

B. S. Kang, PDZ Tandem of Human Syntenin: Crystal Structure and Functional Properties, vol.11, pp.459-468, 2003.

J. M. Elkins, Unusual binding interactions in PDZ domain crystal structures help explain binding mechanisms, Protein Sci, vol.19, pp.731-772, 2010.

G. E. Crooks, G. Hon, J. Chandonia, and S. E. Brenner, WebLogo: A Sequence Logo Generator, Genome Res, vol.14, pp.1188-1190, 2004.

E. A. Franzosa and Y. Xia, Structural principles within the human-virus protein-protein interaction network, Proc. Natl. Acad. Sci, vol.108, pp.10538-10543, 2011.

F. Delhommel, Deciphering the unconventional peptide binding to the PDZ domain of MAST2, Biochem. J, vol.469, pp.159-168, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02883950

G. Hultqvist, Energetic Pathway Sampling in a Protein Interaction Domain, Structure, vol.21, pp.1193-1202, 2013.

E. J. Fuentes, C. J. Der, and A. L. Lee, Ligand-dependent Dynamics and Intramolecular Signaling in a PDZ Domain, J. Mol. Biol, vol.335, pp.1105-1115, 2004.

N. R. Christensen, PDZ Domains as Drug Targets, Adv. Ther, vol.2, p.1800143, 2019.