E. Balse, D. F. Steele, H. Abriel, A. Coulombe, D. Fedida et al., Dynamic of ion channel expression at the plasma membrane of cardiomyocytes, Physiol Rev, vol.92, pp.1317-1358, 2012.

E. Agullo-pascual, X. Lin, A. Leo-macias, M. Zhang, F. X. Liang et al., Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc, Cardiovasc Res, vol.104, pp.371-381, 2014.

P. Y. Sato, H. Musa, W. Coombs, G. Guerrero-serna, G. A. Patiño et al., Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes, Circ Res, vol.105, pp.523-526, 2009.

P. Y. Sato, W. Coombs, X. Lin, O. Nekrasova, K. J. Green et al., Interactions between ankyrin-G, Plakophilin-2, and Connexin43 at the cardiac intercalated disc, Circ Res, vol.109, pp.193-201, 2011.

M. A. Makara, J. Curran, S. C. Little, H. Musa, I. Polina et al., Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo, Circ Res, vol.115, pp.929-938, 2014.

P. J. Mohler, I. Rivolta, C. Napolitano, G. Lemaillet, S. Lambert et al., Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes, Proc Natl Acad Sci U S A, vol.101, pp.17533-17538, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02363778

M. L. Milstein, H. Musa, D. P. Balbuena, J. M. Anumonwo, D. S. Auerbach et al., Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia, Proc Natl Acad Sci, vol.109, pp.2134-2143, 2012.

S. Petitprez, A. F. Zmoos, J. Ogrodnik, E. Balse, N. Raad et al., SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes, Circ Res, vol.108, pp.294-304, 2011.

L. Funke, S. Dakoji, and D. S. Bredt, Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions, Annu Rev Biochem, vol.74, pp.219-245, 2005.

J. Abi-char, S. El-haou, E. Balse, N. Neyroud, R. Vranckx et al., The anchoring protein SAP97 retains Kv1.5 channels in the plasma membrane of cardiac myocytes, Am J Physiol Heart Circ Physiol, vol.294, pp.1851-1861, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02330886

J. Eldstrom, W. S. Choi, D. F. Steele, and D. Fedida, SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism, FEBS Lett, vol.547, pp.205-211, 2003.

S. El-haou, E. Balse, N. Neyroud, G. Dilanian, B. Gavillet et al., Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes, Circ Res, vol.104, pp.758-769, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02330905

D. Godreau, R. Vranckx, A. Maguy, C. Goyenvalle, and S. N. Hatem, Different isoforms of synapse-associated protein, SAP97, are expressed in the heart Circulation Research, 2016.

, and have distinct effects on the voltage-gated K+ channel Kv1.5, J Biol Chem, vol.278, pp.47046-47052, 2003.

J. M. Rhett, J. Jourdan, and R. G. Gourdie, Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1, Mol Biol Cell, vol.22, pp.1516-1528, 2011.

Y. P. Hsueh, T. F. Wang, F. C. Yang, and M. Sheng, Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/ LIN-2, Nature, vol.404, pp.298-302, 2000.

A. R. Cohen, D. F. Woods, S. M. Marfatia, Z. Walther, A. H. Chishti et al., Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells, J Cell Biol, vol.142, pp.129-138, 1998.

D. Leonoudakis, L. R. Conti, C. M. Radeke, L. M. Mcguire, and C. A. Vandenberg, A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels, J Biol Chem, vol.279, pp.19051-19063, 2004.

H. E. Boycott, C. S. Barbier, C. A. Eichel, K. D. Costa, R. P. Martins et al., Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes, Proc Natl Acad Sci U S A, vol.110, pp.3955-3964, 2013.

B. Gavillet, J. S. Rougier, A. A. Domenighetti, R. Behar, C. Boixel et al., Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin, Circ Res, vol.99, pp.407-414, 2006.

C. Rucker-martin, P. Milliez, S. Tan, X. Decrouy, M. Recouvreur et al., Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts, Cardiovasc Res, vol.72, pp.69-79, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00112269

C. Aimé-sempé, T. Folliguet, C. Rücker-martin, M. Krajewska, S. Krajewska et al., Myocardial cell death in fibrillating and dilated human right atria, J Am Coll Cardiol, vol.34, pp.1577-1586, 1999.

M. S. Spach, Anisotropy of cardiac tissue: a major determinant of conduction?, J Cardiovasc Electrophysiol, vol.10, pp.887-890, 1999.

A. O. Verkerk, A. C. Van-ginneken, T. A. Van-veen, and H. L. Tan, Effects of heart failure on brain-type Na+ channels in rabbit ventricular myocytes, Europace, vol.9, pp.571-577, 2007.

X. Lin, N. Liu, J. Lu, J. Zhang, J. M. Anumonwo et al., Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes, Heart Rhythm, vol.8, 1923.

D. Shy, L. Gillet, and J. Ogrodnik, PDZ domain-binding motif regulates cardiomyocyte compartment-specific NaV1.5 channel expression and function, Circulation, vol.130, pp.147-160, 2014.

M. J. Lab, A. Bhargava, P. T. Wright, and J. Gorelik, The scanning ion conductance microscope for cellular physiology, Am J Physiol Heart Circ Physiol, vol.304, pp.1-11, 2013.

A. Bhargava, X. Lin, P. Novak, K. Mehta, Y. Korchev et al., Super-resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte, Circ Res, vol.112, pp.1112-1120, 2013.

O. Jeyifous, C. L. Waites, C. G. Specht, S. Fujisawa, M. Schubert et al., SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway, Nat Neurosci, vol.12, pp.1011-1019, 2009.

E. I. Lin, O. Jeyifous, and W. N. Green, CASK regulates SAP97 conformation and its interactions with AMPA and NMDA receptors, J Neurosci, vol.33, pp.12067-12076, 2013.

A. M. Samarel, Focal adhesion signaling in heart failure, Pflu ers Arch, vol.466, pp.1101-1111, 2014.

H. E. Boycott, C. S. Barbier, C. A. Eichel, K. D. Costa, R. P. Martins et al., Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes, Proc Natl Acad Sci U A, vol.110, pp.3955-64, 2013.

F. Brette, K. Komukai, and C. H. Orchard, Validation of formamide as a detubulation agent in isolated rat cardiac cells, Am J Physiol Heart Circ Physiol, vol.283, pp.1720-1728, 2002.

J. W. Smyth and R. M. Shaw, Visualizing cardiac ion channel trafficking pathways, Methods Enzymol, vol.505, pp.187-202, 2012.

A. O. Verkerk, A. Van-ginneken, T. Van-veen, and H. L. Tan, Effects of heart failure on brain-type Na+ channels in rabbit ventricular myocytes, Europace, vol.9, pp.571-577, 2007.

X. Lin, N. Liu, J. Lu, J. Zhang, J. M. Anumonwo et al., Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes, Heart Rhythm, vol.8, pp.1923-1953, 2011.

B. Gavillet, J. S. Rougier, A. A. Domenighetti, R. Behar, C. Boixel et al., Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin, Circ Res, vol.99, pp.407-421, 2006.

S. Petitprez, A. F. Zmoos, J. Ogrodnik, E. Balse, N. Raad et al., SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes, Circ Res, vol.108, pp.294-304, 2011.

C. Orchard and F. Brette, t-Tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes, Cardiovasc Res, vol.77, pp.237-244, 2008.

M. S. Spach, Anisotropy of cardiac tissue: a major determinant of conduction?, J Cardiovasc Electrophysiol, vol.10, pp.887-890, 1999.

E. Balse and C. Eichel, The Cardiac Sodium Channel and Its Protein Partners, Handb Exp Pharmacol, vol.246, pp.73-99, 2018.

C. A. Eichel, A. Beuriot, M. Chevalier, J. Rougier, F. Louault et al., Lateral Membrane-Specific MAGUK CASK Down-Regulates NaV1.5 Channel in Cardiac Myocytes, Circ Res, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528973

D. Atasoy, S. Schoch, A. Ho, K. A. Nadasy, X. Liu et al., Deletion of CASK in mice is lethal and impairs synaptic function, Proc Natl Acad Sci, vol.104, pp.2525-2530, 2007.

Y. Hsueh, The role of the MAGUK protein CASK in neural development and synaptic function, Curr Med Chem, vol.13, pp.1915-1927, 2006.

D. Leonoudakis, L. R. Conti, C. M. Radeke, L. M. Mcguire, and C. A. Vandenberg, A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels, J Biol Chem, vol.279, pp.19051-63, 2004.

Y. Hata, S. Butz, and T. C. Sudhof, CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins, J Neurosci, vol.16, pp.2488-94, 1996.

S. Butz, M. Okamoto, and T. C. Südhof, A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain, Cell, vol.94, pp.773-782, 1998.

J. P. Borg, . Lõpez-figueroa, . Mo, M. De-taddèo-borg, D. E. Kroon et al., Molecular analysis of the X11-mLin-2/CASK complex in brain, J Neurosci, vol.19, pp.1307-1316, 1999.

M. Wong-riley and J. C. Besharse, The kinesin superfamily protein KIF17: one protein with many functions, Biomol Concepts, vol.3, pp.267-282, 2012.

Y. Zhang, Z. Luan, A. Liu, and G. Hu, The scaffolding protein CASK mediates the interaction between rabphilin3a and beta-neurexins, FEBS Lett, vol.497, pp.99-102, 2001.

O. Jeyifous, C. L. Waites, C. G. Specht, S. Fujisawa, M. Schubert et al., SAP97 and CASK mediate sorting of N-Methyl-D-Aspartate Receptors through a novel secretory pathway, Nat Neurosci, vol.12, pp.1011-1019, 2009.

E. I. Lin, O. Jeyifous, and W. N. Green, CASK Regulates SAP97 Conformation and Its Interactions with AMPA and NMDA Receptors, J Neurosci, vol.33, pp.12067-12076, 2013.

T. Hanada, A. Takeuchi, G. Sondarva, and A. H. Chishti, Protein 4.1-mediated membrane targeting of human discs large in epithelial cells, J Biol Chem, vol.278, pp.34445-34450, 2003.

A. J. Baines, H. Lu, and P. M. Bennett, The Protein 4.1 family: hub proteins in animals for organizing membrane proteins, Biochim Biophys Acta, vol.1838, pp.605-619, 2014.

A. R. Cohen, D. F. Woods, S. M. Marfatia, Z. Walther, A. H. Chishti et al., Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells, J Cell Biol, vol.142, pp.129-167, 1998.

T. Biederer and T. C. Sudhof, CASK and protein 4.1 support F-actin nucleation on neurexins, J Biol Chem, vol.276, pp.47869-47876, 2001.

D. Leonoudakis, L. R. Conti, S. Anderson, C. M. Radeke, L. M. Mcguire et al., Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins, J Biol Chem, vol.279, pp.22331-22377, 2004.

A. Bhargava, X. Lin, P. Novak, K. Mehta, Y. Korchev et al., Superresolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte, Circ Res, vol.112, pp.1112-1120, 2013.

J. M. Rhett, E. L. Ongstad, J. J. Gourdie, and R. G. , Cx43 Associates with Nav1.5 in the Cardiomyocyte Perinexus, J Membr Biol, vol.245, pp.411-422, 2012.

C. A. Eichel, A. Beuriot, M. Chevalier, J. Rougier, F. Louault et al., Lateral Membrane-Specific MAGUK CASK Down-Regulates NaV1.5 Channel in Cardiac Myocytes, Circ Res, vol.119, pp.544-556, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528973