R. Glowinski and P. Le-tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, 1989.

R. Glowinski and S. , Splitting Methods in Communication, Imaging, Science, and Engineering, 2016.

K. A. Goebel-and-w and . Kirk, Topics in Metric Fixed Point Theory, vol.28, 1990.

D. Goldfarb-and-s and . Ma, Fast multiple-splitting algorithms for convex optimization, SIAM J. Optim, vol.22, pp.533-556, 2012.

P. A. Lions and . Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal, vol.16, pp.964-979, 1979.

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc, vol.4, pp.506-510, 1953.

W. R. Mann, Averaging to improve convergence of iterative processes, Lecture Notes in Math, vol.701, pp.169-179, 1979.

B. Mercier, Lectures on Topics in Finite Element Solution of Elliptic Problems (Lectures on Mathematics, 1979.

A. Moudafi-and-m and . Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math, vol.155, pp.447-454, 2003.

A. S. Nemirovski-and-d and . Yudin, Problem Complexity and Method Efficiency in Optimization, 1983.

Y. Nesterov, A method for solving the convex programming problem with convergence rate O(1/k 2 ), Dokl. Akad. Nauk, pp.543-547, 1983.

C. W. Outlaw-and-c and . Groetsch, Averaging iteration in a Banach space, Bull. Amer. Math. Soc, vol.75, pp.430-432, 1969.

N. Papadakis, G. Peyré, and A. E. Oudet, Optimal transport with proximal splitting, SIAM J. Imaging Sci, vol.7, pp.212-238, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00918460

B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys, vol.4, pp.1-17, 1964.

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim, vol.14, pp.877-898, 1976.

S. Sra, S. Nowozin, and S. J. Wright, Optimization for Machine Learning, 2012.

P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control Optim, vol.29, pp.119-138, 1991.

B. C. V?, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math, vol.38, pp.667-681, 2013.

E. Zeidler, Nonlinear Functional Analysis and Its Applications I -Fixed-Point Theorems, 1990.

E. Zeidler, Nonlinear Functional Analysis and Its Applications II/A -Linear Monotone Operators, 1990.

E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B -Nonlinear Monotone Operators, 1990.

J. B. Baillon, R. E. Bruck, and A. S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math, vol.4, pp.1-9, 1978.

D. Barro-and-e and . Canestrelli, Combining stochastic programming and optimal control to decompose multistage stochastic optimization problems, OR Spectrum, vol.38, pp.711-742, 2016.

H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev, vol.38, pp.367-426, 1996.

H. H. Bauschke-and-p and . Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2017.

E. Borel, Leçons sur les Séries Divergentes, 1901.

D. A. Borwein and . Borwein, Fixed point iterations for real functions, J. Math. Anal. Appl, vol.157, pp.112-126, 1991.

J. M. Borwein, G. Li, and M. K. Tam, Convergence rate analysis for averaged fixed point iterations in common fixed point problems, SIAM J. Optim, vol.27, pp.1-33, 2017.

R. I. Bo?, E. R. Csetnek, and A. C. Hendrich, Inertial Douglas-Rachford splitting for monotone inclusion problems, Appl. Math. Comput, vol.256, pp.472-487, 2015.

C. Chehab, Nonlinear hybrid procedures and fixed point iterations, Numer. Funct. Anal. Optim, vol.19, pp.465-487, 1998.

C. L. Byrne, Iterative Optimization in Inverse Problems, 2014.

A. Chambolle-and-c and . Dossal, On the convergence of the iterates of the "Fast iterative shrinkage/thresholding algorithm, J. Optim. Theory Appl, vol.166, pp.968-982, 2015.

P. L. Combettes, Quasi-Fejérian analysis of some optimization algorithms, in : Inherently Parallel Algorithms for Feasibility and Optimization, pp.115-152, 2001.

P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, vol.53, pp.475-504, 2004.

P. L. Combettes, Iterative construction of the resolvent of a sum of maximal monotone operators, J. Convex Anal, vol.16, pp.727-748, 2009.

P. L. Combettes-and-t and . Pennanen, Generalized Mann iterates for constructing fixed points in Hilbert spaces, J. Math. Anal. Appl, vol.275, pp.521-536, 2002.

P. L. Combettes-and-j.-c and . Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping, SIAM J. Optim, vol.25, pp.1221-1248, 2015.

P. L. Combettes, S. Salzo, and A. S. Villa, Consistent learning by composite proximal thresholding, Math. Program, pp.2017-2020

P. L. Combettes-and-v and . Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul, vol.4, pp.1168-1200, 2005.

P. L. Combettes-and-i and . Yamada, Compositions and convex combinations of averaged nonexpansive operators, J. Math. Anal. Appl, vol.425, pp.55-70, 2015.

D. Davis, Convergence rate analysis of primal-dual splitting schemes, SIAM J. Optim, vol.25, pp.1912-1943, 2015.

J. B. Diaz-and-f and . Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Amer. Math. Soc, vol.73, pp.516-519, 1967.

W. G. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc, vol.149, pp.65-73, 1970.

L. Fejér, Untersuchungen über Fouriersche Reihen, Math. Ann, vol.58, pp.51-69, 1903.

C. W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl, vol.40, pp.369-372, 1972.

K. Knopp, Theory and Application of Infinite Series, 1954.

P. Kügler-and-a and . Leitão, Mean value iterations for nonlinear elliptic Cauchy problems, Numer. Math, vol.96, pp.269-293, 2003.

D. A. Lorenz-and-t and . Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, pp.311-325, 2015.

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc, vol.4, pp.506-510, 1953.

W. R. Mann, Averaging to improve convergence of iterative processes, Lecture Notes in Math, vol.701, pp.169-179, 1979.

J. J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Sér. A, vol.255, pp.2897-2899, 1962.
URL : https://hal.archives-ouvertes.fr/hal-01867195

C. W. Outlaw-and-c and . Groetsch, Averaging iteration in a Banach space, Bull. Amer. Math. Soc, vol.75, pp.430-432, 1969.

B. T. Polyak, Gradient methods for minimizing functionals, USSR Comput. Math. Math. Phys, vol.3, pp.864-878, 1963.

B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys, vol.4, pp.1-17, 1964.

B. T. Polyak, Minimization of unsmooth functionals, USSR Comput. Math. Math. Phys, vol.9, pp.14-29, 1969.

B. T. Polyak, Comparison of the speed of convergence of single-step and multistep algorithms of optimization when there are noises, Engrg. Cybernetics, vol.15, pp.6-10, 1977.

B. E. Rhoades, Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc, vol.196, pp.161-176, 1974.

K. A. Slavakis and . Yamada, The adaptive projected subgradient method constrained by families of quasi-nonexpansive mappings and its application to online learning, SIAM J. Optim, vol.23, pp.126-152, 2013.

O. Toeplitz and . Über-allgemeine-lineare-mittelbildungen, Prace Mat.-Fiz, vol.22, pp.113-119, 1911.

A. Alotaibi, P. L. Combettes, and A. N. Shahzad, Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set, SIAM J. Optim, vol.24, pp.2076-2095, 2014.

H. Attouch, L. M. Briceño-arias, and P. L. Combettes, A parallel splitting method for coupled monotone inclusions, SIAM J. Control Optim, vol.48, pp.3246-3270, 2010.

J. Baillon, R. E. Bruck, and A. S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups, Houston J. Math, vol.4, pp.1-9, 1978.

H. H. Bauschke-and-p and . Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2017.

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, 1973.

L. M. Briceño-arias-and-p and . Combettes, A monotone + skew splitting model for composite monotone inclusions in duality, SIAM J. Optim, vol.21, pp.1230-1250, 2011.

A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, vol.2057, 2012.

A. Chambolle-and-t and . Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, vol.40, pp.120-145, 2011.

P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, vol.53, pp.475-504, 2004.

P. L. Combettes, Monotoned operator theory in convex optimization, Math. Program, vol.170, pp.177-206, 2018.

P. L. Combettes-and-l and . Glaudin, Quasi-nonexpansive iterations on the affine hull of orbits : from Mann's mean value algorithm to inertial methods, SIAM J. Optim, vol.27, pp.2356-2380, 2017.

P. L. Combettes-and-c and . Müller, Perspective functions : proximal calculus and applications in high-dimensional statistics, J. Math. Anal. Appl, vol.457, pp.1283-1306, 2018.

P. L. Combettes-and-j.-c and . Pesquet, Proximal splitting methods in signal processing, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp.185-212, 2011.

P. L. Combettes-and-j.-c and . Pesquet, Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued Var, Anal, vol.20, pp.307-330, 2012.

P. L. Combettes-and-b and . V?, Variable metric quasi-Fejér monotonicity, Nonlinear Anal, vol.78, pp.17-31, 2013.

P. L. Combettes-and-b and . V?, Variable metric forward-backward splitting with applications to monotone inclusions in duality, Optimization, vol.63, pp.1289-1318, 2014.

P. L. Combettes-ans-v and . Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul, vol.4, pp.1168-1200, 2005.

P. L. Combettes-and-i and . Yamada, Compositions and convex combinations of averaged nonexpansive operators, J. Math. Anal. Appl, vol.425, pp.55-70, 2015.

J. Duchi and Y. Singer, Efficient online and batch learning using forward backward splitting, J. Mach. Learn. Res, vol.10, pp.2899-2934, 2009.

R. Jenatton, J. Mairal, G. Obozinski, and A. F. Bach, Proximal methods for hierarchical sparse coding, J. Mach. Learn. Res, vol.12, pp.2297-2334, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00516723

J. Peypouquet-and-s and . Sorin, Evolution equations for maximal monotone operators : asymptotic analysis in continuous and discrete time, J. Convex Anal, vol.17, pp.1113-1163, 2010.

S. Salzo, The variable metric forward-backward splitting algorithm under mild differentiability assumptions, SIAM J. Optim, vol.27, pp.2153-2181, 2017.

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, vol.49, 1997.

B. C. V?, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math, vol.38, pp.667-681, 2013.

?. , x M ) = k?K ?

, M ) ? H 1 ? · · · ? H M , and set

F. Abboud, E. Chouzenoux, J. Pesquet, J. Chenot, and A. L. Laborelli, Dual block-coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences, J. Math. Imaging Vision, pp.415-431, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01418393

A. Alotaibi, P. L. Combettes, and A. N. Shahzad, Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set, SIAM J. Optim, vol.24, pp.2076-2095, 2014.

H. C. Andrews-and-b and . Hunt, Digital Image Restoration, 1977.

A. Y. Aravkin, J. V. Burke, and A. G. Pillonetto, Sparse/robust estimation and Kalman smoothing with nonsmooth log-concave densities : modeling, computation, and theory, J. Mach. Learn. Res, vol.14, pp.2689-2728, 2013.

T. Aspelmeier, C. Charitha, and D. R. Luke, Local linear convergence of the ADMM/Douglas-Rachford algorithms without strong convexity and application to statistical imaging, SIAM J. Imaging Sci, vol.9, pp.842-868, 2016.

J. Aujol-and-c and . Dossal, Stability of over-relaxations for the forward-backward algorithm, application to FISTA, SIAM J. Optim, vol.25, pp.2408-2433, 2015.

H. H. Bauschke and J. M. Borwein, On projection algorithm for solving convex feasibility problems, SIAM Rev, vol.38, pp.367-426, 1996.

H. H. Bauschke-and-p and . Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2017.

H. H. Bauschke, P. L. Combettes, and D. R. Luke, Finding best approximation pairs relative to two closed convex sets in Hilbert spaces, J. Approx. Theory, vol.127, pp.178-192, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00017939

A. Beck-and-m and . Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci, vol.2, pp.183-202, 2009.

R. Bellman, R. E. Kalaba, and J. A. Lockett, Numerical Inversion of the Laplace Transform : Applications to Biology, 1966.

L. M. Briceño-arias-and-p and . Combettes, Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery, Numer. Math. Theory Methods Appl, vol.2, pp.485-508, 2009.

C. L. Byrne, Iterative Optimization in Inverse Problems, 2014.

Y. Censor, T. Elfving, N. Kopf, and A. T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, vol.21, pp.2071-2084, 2005.

Y. Censor-and-m and . Zaknoon, Algorithms and convergence results of projection methods for inconsistent feasibility problems : A review, Pure Appl. Funct. Anal

L. Chaâri, J. Pesquet, A. Benazza-benyahia, A. Ph, and . Ciuciu, A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging, Med. Image Anal, vol.15, pp.185-201, 2011.

A. Chambolle-and-c and . Dossal, On the convergence of the iterates of the 'Fast iterative shrinkage/thresholding algorithm, J. Optim. Theory Appl, vol.166, pp.968-982, 2015.

A. Chambolle-and-t and . Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, vol.40, pp.120-145, 2011.

C. Chaux, P. L. Combettes, J. Pesquet, and V. R. Wajs, A variational formulation for frame-based inverse problems, Inverse Problems, vol.23, pp.1495-1518, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00621883

E. Chouzenoux, A. Jezierska, J. Pesquet, and A. H. Talbot, A convex approach for image restoration with exact Poisson-Gaussian likelihood, SIAM J. Imaging Sci, vol.8, pp.2662-2682, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00922151

P. L. Combettes, Inconsistent signal feasibility problems : Least-squares solutions in a product space, IEEE Trans. Signal Process, vol.42, pp.2955-2966, 1994.

P. L. Combettes, The convex feasibility problem in image recovery, Advances in Imaging and Electron Physics, vol.95, pp.155-270, 1996.

P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, vol.53, pp.475-504, 2004.

P. L. Combettes, Perspective functions : Properties, constructions, and examples, Set-Valued Var, Anal, vol.26, pp.247-264, 2018.

P. L. Combettes-and-p and . Bondon, Hard-constrained inconsistent signal feasibility problems, IEEE Trans. Signal Process, vol.47, pp.2460-2468, 1999.

P. L. Combettes, L. Condat, J. Pesquet, and B. C. V?, A forward-backward view of some primal-dual optimization methods in image recovery, Proc. IEEE Int. Conf. Image Process, pp.4141-4145, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01098038

P. L. Combettes and . Eckstein, Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions, Math. Programming, vol.168, pp.645-672, 2018.

P. L. Combettes-and-j.-c, . Pesquet, and . Douglas, Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE Journal of Selected Topics in Signal Processing, vol.1, pp.564-574, 2007.

P. L. Combettes-and-j.-c and . Pesquet, Proximal splitting methods in signal processing, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp.185-212, 2011.

P. L. Combettes-and-j.-c and . Pesquet, Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued Var, Anal, vol.20, pp.307-330, 2012.

P. L. Combettes, S. Salzo, and A. S. Villa, Consistent learning by composite proximal thresholding, Math. Program, vol.167, pp.99-127, 2018.

P. L. Combettes-and-b and . V?, Variable metric forward-backward splitting with applications to monotone inclusions in duality, Optimization, vol.63, pp.1289-1318, 2014.

P. L. Combettes-and-v and . Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul, vol.4, pp.1168-1200, 2005.

L. Condat, A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J. Optim. Theory Appl, vol.158, pp.460-479, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00609728

I. Daubechies, M. Defrise, and A. C. De-mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math, vol.57, pp.1413-1457, 2004.

C. De-mol-and-m and . Defrise, A note on wavelet-based inversion algorithms, Contemp. Math, vol.313, pp.85-96, 2002.

M. J. Goldburg-and-r and . Marks-ii, Signal synthesis in the presence of an inconsistent set of constraints, IEEE Trans. Circuits Syst, vol.32, pp.647-663, 1985.

B. A. He and . Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem : From contraction perspective, SIAM J. Imaging Sci, vol.5, pp.119-149, 2012.

M. A. Hintermüller and . Stadler, An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration, SIAM J. Sci. Comput, vol.28, pp.1-23, 2006.

P. R. Johnstone and J. Eckstein-;-Øøô×-»»-Öü-Úºóö-»ô-»½-¼¿º¼-¼-¿ºô, Projective splitting with forward steps : Asynchronous and block-iterative operator splitting, arxiv, 2018.

S. L. Keeling, Total variation based convex filters for medical imaging, Appl. Math. Comput, vol.139, pp.101-119, 2003.

Y. Liu, Z. Liang, and A. J. Ma, Total variation-Stokes strategy for sparse-view X-ray CT image reconstruction, IEEE Trans. Med. Imaging, vol.33, pp.749-763, 2014.

C. Louchet-and-l and . Moisan, Posterior expectation of the total variation model : Properties and experiments, SIAM J. Imaging Sci, vol.6, pp.2640-2684, 2013.

B. Martinet, Détermination approchée d'un point fixe d'une application pseudocontractante. Cas de l'application prox, C. R. Acad. Sci, vol.274, pp.163-165, 1972.

J. J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci, vol.255, pp.2897-2899, 1962.
URL : https://hal.archives-ouvertes.fr/hal-01867195

D. O'connor-and-l and . Vandenberghe, Primal-dual decomposition by operator splitting and applications to image deblurring, SIAM J. Imaging Sci, vol.7, pp.1724-1754, 2014.

N. Papadakis, G. Peyré, and A. E. Oudet, Optimal transport with proximal splitting, SIAM J. Imaging Sci, vol.7, pp.212-238, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00918460

H. Raguet-and-l and . Landrieu, Preconditioning of a generalized forward-backward splitting and application to optimization on graphs, SIAM J. Imaging Sci, vol.8, pp.2706-2739, 2015.

C. Schnörr, Unique reconstruction of piecewise-smooth images by minimizing strictly convex nonquadratic functionals, J. Math. Imaging Vision, vol.4, pp.189-198, 1994.

I. Steinwart, Consistency of support vector machines and other regularized kernel classifiers, IEEE Trans. Inform. Theory, vol.51, pp.128-142, 2005.

M. Tofighi, O. Yorulmaz, K. Köse, D. C. Yildirim, R. Çetin-atalay et al., ÇE-TIN, Phase and TV based convex sets for blind deconvolution of microscopic images, IEEE J. Selected Topics Signal Process, vol.10, pp.81-91, 2016.

R. S. Varga, Matrix Iterative Analysis, 2000.

B. C. V?, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math, vol.38, pp.667-681, 2013.

B. C. V?, A variable metric extension of the forward-backward-forward algorithm for monotone operators, Numer. Funct. Anal. Optim, vol.34, pp.1-16, 2013.

D. C. Youla, Generalized image restoration by the method of alternating orthogonal projections, IEEE Trans. Circuits Syst, vol.25, pp.694-702, 1978.

D. C. Youla-and-v and . Velasco, Extensions of a result on the synthesis of signals in the presence of inconsistent constraints, IEEE Trans. Circuits Syst, vol.33, pp.465-468, 1986.

D. C. Youla and H. Webb, Image restoration by the method of convex projections : Part 1 -theory, IEEE Trans. Med. Imaging, vol.1, pp.81-94, 1982.

T. Zhang, Statistical behavior and consistency of classification methods based on convex risk minimization, Ann. Stat, vol.32, pp.56-85, 2004.

M. A. Alghamdi, A. Alotaibi, P. L. Combettes, and A. N. Shahzad, A primal-dual method of partial inverses for composite inclusions, Optim. Lett, vol.8, pp.2271-2284, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01158985

A. Alotaibi, P. L. Combettes, and A. N. Shahzad, Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set, SIAM J. Optim, vol.24, pp.2076-2095, 2014.

H. Attouch-and-a and . Cabot, Convergence of damped inertial dynamics governed by regularized maximally monotone operators, J. Differential Equations, vol.264, pp.7138-7182, 2018.

H. Attouch, Z. Chbani, J. Peypouquet, and A. P. Redont, Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity, Math. Program, vol.168, pp.123-175, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01821929

J. Aujol, C. Dossal, and A. A. Rondepierre-;-Øøô×-»»-Öü-Úºóö-»ô-»½-¼-º¼-½-ºô, Optimal convergence rates for Nesterov acceleratiion, arxiv, 2018.

H. H. Bauschke, J. Bolte, and A. M. Teboulle, A descent lemma beyond Lipschitz gradient continuity : first-order methods revisited and applications, Math. Oper. Res, vol.42, pp.330-348, 2018.

H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim, vol.42, pp.596-636, 2003.

H. H. Bauschke-and-p and . Combettes, A weak-to-strong convergence principle for Fejérmonotone methods in Hilbert spaces, Math. Oper. Res, vol.26, pp.248-264, 2001.

R. I. Bo?-and-e and . Csetnek, Second order forward-backward dynamical systems for monotone inclusion problems, SIAM J. Control Optim, vol.54, pp.1423-1443, 2016.

L. M. Briceño-arias-and-p and . Combettes, A monotone+skew splitting model for composite monotone inclusions in duality, SIAM J. Optim, vol.21, pp.1230-1250, 2011.

A. Chambolle-and-t and . Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis, vol.40, pp.120-145, 2011.

P. L. Combettes-and-q and . Nguyen, Solving composite monotone inclusions in reflexive Banach spaces by constructing best Bregman approximations from their Kuhn-Tucker set, J. Convex Anal, vol.23, pp.481-510, 2016.

P. L. Combettes-and-j.-c and . Pesquet, Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued Var, Anal, vol.20, pp.307-330, 2012.

P. L. Combettes-and-j.-c and . Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping, SIAM J. Optim, vol.25, pp.1221-1248, 2015.

P. L. Combettes-and-b and . V?, Variable metric quasi-Fejér monotonicity, Nonlinear Anal, vol.78, pp.17-31, 2013.

Q. V. Nguyen, Variable quasi-Bregman monotone sequences, Numer. Algorithms, vol.73, pp.1107-1130, 2016.