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Abstract

Building energy consumption is directly impacted by weather parameters such as tem-
perature, solar radiation, atmospheric pressure, relative humidity and wind velocity. The
knowledge of the building hygrothermal performance enables the design of energy efficient
buildings and the prediction of overall durability and sustainability of envelopes. There-
fore, designers and builders are interested in modeling the long-term performance of the
envelopes by means of accurate, reliable and fast simulation tools.

Several numerical models have been proposed in the literature to study the heat and
moisture transfer in building materials. In general, this problem is solved by tradi-
tional methods, such as finite-difference and finite-volume methods, using mainly implicit
schemes. Nevertheless, these methods impose costly sub-iterations to treat the nonlineari-
ties and very fine discretization, which increase substantially the simulation computational
cost. Therefore, this research has been focused on the development and analyses of nu-
merical methods for efficiently simulate the problem of heat and mass transfer through
porous materials.

In the first part of this thesis, improved schemes of the traditional numerical methods
have been developed to eliminate costly sub-iterations to treat nonlinearities, to improve
the order of accuracy and to save computer run time. Despite the great progress with
the new numerical schemes, the conclusion of the first part shows that we still have to
deal with large systems of equations, particularly when treating multi-dimensional transfer
problems. For this reason, to reduce even more the computational burden and the size of
the system, a reduced-order model, based on spectral methods is proposed in the sequence
to provide an accurate description of the physical phenomena. The degrees of freedom
of the solution is strongly decreased while maintaining the model fidelity. It ensures a
computational cost much lower than the complete original model.

All these methods are applied to problems related to building physics, such as single
and multilayer nonlinear transfer, the determination of optimum insulation thickness, the
process of moisture buffer effects and transfer in one- or two-zone building models. In
conclusion, we show how to build efficient numerical models, in terms of computational
cost and accuracy, to investigate the heat and mass transfer in porous materials.

Keywords: numerical simulation, heat and moisture transfer in porous materials, non-
linear diffusion problems, reduced-order model, spectral methods, parametric problems,
multi-zone building simulation, two-dimensional transfer.
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Resumé

La consommation énergétique des bâtiments est directement impactée par les vari-
ables climatiques et en particulier par la température, la radiation solaire, la pression
atmosphérique, l’humidité relative et la vitesse du vent. La maîtrise de la performance
hygrothermique des bâtiments permet la conception d’ouvrage à faible consommation én-
ergétique intégrant des enveloppes durables et dépourvues de risques de pathologies liées
à l’humidité. Ainsi, les architectes et constructeurs nécessitent de disposer d’outils, pour
simuler les performances de l’enveloppe sur le long terme, qui reposent sur des modèles
précis, fiables et rapides.

Plusieurs modèles ont été proposés dans la littérature pour investiguer les transferts de
chaleur et de masse dans les matériaux poreux composant les bâtiments. Généralement,
les équations régissant les phénomènes sont résolues en employant des méthodes conven-
tionnelles basées sur les différences finies ou les volumes finis combinés avec des schémas
temporels implicites. Cependant, ces méthodes imposent des sous-itérations, coûteuses en
temps de calculs, pour traiter les non linéarités du problème. De plus, elles exigent des
discrétisations très fines qui augmentent significativement les temps de calcul des simu-
lations. Par conséquent, ces travaux de recherches se concentrent sur le développement
et l’analyse de méthodes numériques pour simuler de manière efficiente les problèmes de
transferts de chaleur et de masse dans les matériaux poreux.

Dans la première partie de cette thèse, des schémas améliorés par rapport aux ap-
proches traditionnelles sont proposés pour éliminer les sous-itérations coûteuses pour
traiter les non linéarités, pour améliorer l’ordre de précision et pour diminuer les temps
de calculs. Nonobstant les progrès réalisés avec les nouveaux schémas numériques, les
conclusions de cette première partie montrent que nous manipulons toujours des systèmes
d’équations de grandes dimensions, en particulier lorsqu’il s’agit de problèmes de transferts
multidimensionnels. Pour cette raison, afin de diminuer d’avantage les coûts de calcul et
la taille du modèle, un modèle d’ordre réduit basé sur les méthodes spectrales est proposé
subséquemment. Il garantit une prédiction précise des phénomènes physiques. De plus, le
degré de liberté de la solution est fortement réduit tout en préservant la fidélité du modèle.
Le coût de calcul est nettement inférieur à celui du modèle complet originel.

L’ensemble de ces méthodes sont appliquées à des problèmes relatifs aux phénomènes
physiques intervenant dans les bâtiments, tels que les transferts mono ou multi-couches, la
recherche de l’épaisseur optimale d’isolation, les mécanismes de tampons hygroscopiques
ou encore les transferts à l’échelle de bâtiments mono- ou bi-zones. En conclusion, nous
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démontrons comment construire des modèles numériques efficaces, en termes de temps
de calculs et précision, pour l’investigation des transferts de chaleur et de masse dans les
matériaux poreux.

Mots clés: Simulation numérique, transferts de chaleur et de masse dans les matéri-
aux poreux, problèmes de diffusion non-linéaires, modèles d’ordres réduits, méthodes spec-
trales, problèmes paramétriques, simulation de bâtiments multizones, transferts bidimen-
sionnels
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Resumo

O consumo de energia em edificações é diretamente influenciado por parâmetros climáti-
cos como temperatura, radiação solar, pressão atmosférica, umidade relativa e velocidade
do vento. O conhecimento do desempenho higrotérmico das edificações permite a con-
cepção de edifícios energeticamente eficientes e a previsão da sua durabilidade global.
Portanto, designers e construtores estão interessados em modelar o desempenho higrotér-
mico a longo prazo dos edifícios por meio de ferramentas de simulação precisas, confiáveis
e rápidas.

Diversos modelos numéricos fora propostos na literatura para estudar a transferência
de calor e umidade em materiais de construção. Em geral, esse problema é resolvido por
métodos tradicionais, como os métodos de diferenças finitas e volumes finitos, usando
principalmente esquemas implícitos. No entanto, esses métodos impõem custosas sub-
iterações para tratar as não-linearidades e discretizações muito refinadas, que aumentam
substancialmente o custo computacional da simulação. Portanto, esta pesquisa foi focada
no desenvolvimento e análise de métodos numéricos para simular eficientemente o problema
de transferência de calor e massa através de materiais porosos.

Na primeira parte desta tese, esquemas aprimorados dos métodos numéricos tradi-
cionais foram desenvolvidos para eliminar as sub-iterações causadas pelas não-linearidades,
para melhorar a ordem de precisão e para economizar tempo de simulação do computador.
Apesar do grande progresso com os novos esquemas numéricos, a conclusão da primeira
parte mostra que ainda temos que lidar com grandes sistemas de equações, principalmente
ao tratar problemas de transferência multidimensional. Por esta razão, para reduzir ainda
mais o custo computacional e o tamanho do sistema de equações, um modelo de ordem
reduzida, baseado em métodos espectrais, é proposto para fornecer uma descrição pre-
cisa dos fenômenos físicos. Garantindo assim, um custo computacional muito inferior ao
modelo original completo.

Todos os métodos propostos são aplicados a problemas relacionados à física do edifício,
tais como a transferência não-linear através de uma e de múltiplas camadas de material,
a determinação da espessura ótima do isolamento, a retenção e liberação da umidade na
parede e a transferência em construção de uma e duas zonas. Para concluir, mostra-se
como construir modelos numéricos eficientes, em termos de custo computacional e precisão,
para investigar a transferência de calor e massa em materiais porosos.

Palavras-chaves: simulação numérica, transferência de calor e umidade, materiais
porosos, problemas de difusão não-linear, modelos de ordem reduzida, métodos espectrais,
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simulação multi-zonal em edifícios, transferência bidimensional, problemas paramétricos.
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Abbreviation

ADI Alternating Direction Implicit method
BTCS Backward approximation in Time and Centred in Space
BVP Boundary Value Problem
CFL Courant–Friedrichs–Lewy
CP Canonical Polyadic decomposition
CPU Central Processing Unit
DF DuFort-Frankel
DOF Degrees Of Freedom
FTCS Forward approximation in Time and Centered in Space
IM IMplicit scheme
IMEX IMplicit-EXplicit scheme
IVP Initial Value Problem
MBR Modal Basis Reduction
MOL Method of Lines
MOHL Method of Horizontal Lines
MOVL Method of Vertical Lines
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PGD Proper Generalized Decomposition
POD Proper Orthogonal Decomposition
QUNT Quasi-Uniform Nonlinear Transformation
ROM Reduced-Order Model
SVD Singular Value Decomposition
2D two-dimensional
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Nomenclature

Latin letters
cm moisture storage capacity [kg/(m3 · Pa)]
g moisture flow [kg/(m2 · s)]
hm convective vapour transfer coefficient [s/m]
h height [m]
H enthalpy [J/m3]
j m moisture flow [kg/(s ·m2)]
j q total heat flux [W/m2]
k l liquid permeability [s]
km moisture diffusivity [s]
` length [m]
P s saturation pressure [Pa]
P v vapour pressure [Pa]
R v water gas constant [J/(kg · K)]
S volumetric source term [kg/(m3 · s)]
t time [s]
T temperature [K]
x, y spatial coordinates [m]
w moisture content [kg/m3]

Greek letters
α diffusivity coefficient [m2/s]
δ v vapour permeability [s]
ρ specific mass [kg/m3]
φ relative humidity [ - ]

Dimensionless parameters
Fo Fourier number [ - ]
Bi Biot number [ - ]
c storage coefficient [ - ]
k diffusivity transfer coefficient [ - ]
u unknown [ - ]
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Chapter 1

Introduction

The energy efficiency in buildings has been a large theme of discussion in the past five
decades since the energy crises in the seventies. According to the International Energy
Agency (2019), there is a forecast of growth in the global energy demand of 30%, from
2017 until 2040. Therefore, it is important to manage the energy consumption efficiently
by causing less impact to the planet.

To ensure reasonable and sustainable use of energy in buildings, it is necessary to
understand the physical phenomena involved. Buildings are constantly exposed to vari-
ations of temperature, moisture and air pressure which impact directly on their energy
consumption. Designers and builders are interested in knowing the long-term performance
of building envelopes, using simulation tools. Simulating the hygrothermal behaviour al-
lows to make a good design and to determine the overall durability and sustainability of
the building envelope (Tariku et al., 2010; Woloszyn and Rode, 2008).

Initially, the major hypothesis was that energy consumption was related only to the
heat transfer. Although, in porous materials, moisture transfer and its accumulation have
a direct impact on the heat transfer (Bouddour et al., 1998; Mulay and Worek, 1990;
Rees et al., 2001). As presented by Deru (2003), to precisely determine the heat losses,
simultaneous calculations with moisture content are required. Temperature and moisture
contents are highly interconnected phenomena and, hence, must be simulated together
(Berger et al., 2015b; Mendes, 1997).

Fundamental studies of heat and moisture transfer have been published since 1950’s by
Philip and De Vries (1957) and Luikov (1966). They represented the coupled process of
heat and moisture transfer by a system of two nonlinear partial differential equations which
uses the temperature and the moisture content gradients as driving potentials. However,
detailed simulation of the coupled heat and moisture transfer has only been performed
with the improvement of the computer systems. Indeed, the computational cost to solve
the coupled problem is at least the double than the computational cost to solve only the
heat conduction equation (Deru, 2003).

Computational software such as Domus (Mendes et al., 2008), EnergyPlus (Craw-
ley et al., 2000), DELPHIN (Bauklimatik Dresden, 2011), MOIST (Burch, 1993), WUFI
(Fraunhofer IBP, 2005), TRNSYS (A. Klein et al., 1976) make use of hygrotermal simu-
lations to estimate the energy efficiency of a building (Woloszyn and Rode, 2008). The
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model in some of those tools considers the energy transfer governed by diffusion and latent
mechanisms while the moisture transfer occurs due to capillary migration and vapour dif-
fusion. The mathematical problem can be written by a system of two partial differential
equations (Luikov, 1966):

∂H

∂t
= − ∇ · j q , (1.1a)

∂w

∂t
= − ∇ · j m + S , (1.1b)

where H [J/m3] is the enthalpy, t [s] is the time, j q [W/m2] is the total heat flux, w [kg/m3]
is the moisture content, j m [kg/(s ·m2)] is the moisture flow and S [kg/(m3 · s)] is a
volumetric source term. Different potentials can be used to develop these Equations (1.1),
such as temperature T , vapour pressure P v, capillary pressure P c, volumetric moisture
content w, etc. To solve this System of Equations (1.1), some important challenges have
to be faced:

• The storage and diffusivity coefficients are highly nonlinear, varying relatively to
both of water moisture and temperature fields, and sometimes also varying according
to the space, in the case of multi-layered materials.

• The boundary conditions must be of Robin-type, which are function of time accord-
ing to weather data. In addition, phenomena such as solar radiation, wind and rain
vary also as function of wall orientation.

• There is a difference on the time scales in building physics: the horizon of simulation
is of the order of the years, while the characteristic time of diffusion is the order of
hours and minutes.

• The integration of complex geometries as corners, foundation, roofs and walls in the
whole building simulation requires two- and three-dimensional simulations which
increases considerably the computational difficulty.

Due to the complexities of the problem raised above, the use of analytical solutions
is impossible. Therefore, the approach used by the software to solve these equations is
based on numerical methods, which make use of discrete representations of the continuous
equations. The basics of a numerical approach is the idea of making an approximation of
the solution, which takes a solution for a finite number of Degrees Of Freedom (DOF).
The greater the number of discrete points, the closer to the exact solution will be the
approximated solution if the numerical method converges to the true solution (Maliska,
1995).

2



1.1 Problem statement

In literature, the heat and moisture transfer are generally solved by traditional ap-
proaches, such as the finite-difference method (Fan et al., 2004; Qin et al., 2009), the
finite-volume method (Manz and Simmler, 2003; Mendes and Philippi, 2005; Santos and
Mendes, 2009) and the finite-element method (Lu, 2002; Rouchier et al., 2013; Thomas
et al., 1980). The discretization of the problem regarding the time normally uses im-
plicit schemes, such as the Crank-Nicolson and the Euler implicit scheme (Janssen, 2014;
Mendes and Philippi, 2005). They are chosen due to the supposed unconditional stabil-
ity property, which allows the use of larger time steps. Unlike explicit schemes that are
limited by the CFL stability condition, which requires very refined time step. Neverthe-
less, when treating the nonlinearities of the problem, implicit schemes require important
sub-iterations to reach the convergence of the solution, which makes the simulation highly
time-consuming (Abuku et al., 2009). In addition, Dalgliesh et al. (2005); Dos Santos
and Mendes (2006) reported the high computational cost of simulation tools to compute
the heat and moisture transfer phenomena on the scale of buildings. When the solution
of one problem requires long simulation horizons (years), considering an entire building,
with a mesh grid refinement, the computation becomes too time-consuming to be useful
in practice. Therefore, how to simulate efficiently, i.e., accurately and rapidly, nonlinear
problems of heat and moisture transfer in buildings?

1.2 First attempts of alternative approaches

Model reduction techniques can be used as an alternative approach to solve the coupled
heat and moisture transfer problem. The intent is to construct reduced-order models
(ROMs) to provide an accurate description of the physical phenomena by decreasing the
number of degrees of freedom, while retaining the model fidelity, at a computational
cost much lower than the large original model (Reddy et al., 2017). In recent years,
reduced-order modelling techniques have proven to be powerful tools for solving various
problems. Important efforts have been dedicated to developing reduced-order models
that can provide accurate predictions while dramatically reducing computational time,
for a wide range of applications, covering different fields, including fluid mechanics, heat
transfer, structural dynamics, among others (Bai, 2002; Herzet et al., 2017; Lucia et al.,
2004). Reduced-order models, such as Proper Orthogonal Decomposition (POD) (Tallet
et al., 2016), Modal Basis Reduction (MBR) (Gao et al., 2008; Kim et al., 2014) and
Proper Generalized Decomposition (PGD) (Chinesta et al., 2010), have shown a relevant
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reduction of the computational cost and have been successfully employed by the building
physics community (Berger et al., 2015a). In those works, they have applied reduced-
order models to build accurate solutions with less computational effort than the complete
original model. Reduced-order models can be classified as a priori or as a posteriori. The a
posteriori based approaches need a preliminary computed (or even experimental) solution
data of the large original problem to build the reduced one. Whereas the a priori ones
do not need preliminary information on the studied problem. The reduced-order model
is unknown a priori and is built directly. A careful attention must be paid regarding the
definition of ROMs since sometimes it is related to the degradation of the physical model
(Schilders, 2008), which is not the case of the present work.

Another promising approach to solve the coupled transfer problem is the spectral
method, which is a robust and highly accurate method that has been applied to solve
partial differential equations since the 70’s, but lost its spot due to the difficulties to treat
nonlinearities, complex geometries, irregular domains, and non-periodic boundary condi-
tions. However, Spectral methods have overcome some of the mentioned difficulties and
now they are successfully applied in studies of wave propagation, meteorology, compu-
tational fluid dynamics, quantum mechanics and other fields (Canuto et al., 2006). The
difference between the Spectral methods and the other reduced-order methods is the ex-
ponential convergence and the low dissipation and dispersion errors, making their use very
attractive.

Some works related to transport phenomena can be found in literature involving diffu-
sive (Guo et al., 2013; Wang et al., 2016), convective (Chen et al., 2016; RamReddy et al.,
2015) and radiative (Chen et al., 2015; Li et al., 2008; Ma et al., 2014) heat transfers.
The spectral techniques applied in these works are diversified, adopted according to the
geometry, boundary conditions and field of application. In recent works, researchers have
implemented spectral methods for solving heat and moisture transfer in food engineering
(Pasban et al., 2017) and on fluid flow (Motsa, 2015; Nascimento et al., 2014). It appears
as an interesting alternative to reduce the computational time and increase accuracy that
has never been applied to the field of building physics.

1.3 Scope

Therefore, the scope of this thesis consists in the development of several efficient com-
putational models, based on original mathematical methods, to be applied to the context
of building simulations. The main objective is to extend improved standard techniques
and reduced order models to uni- and bi- dimensional nonlinear heat and moisture trans-
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fer problems, in order to reduce computational cost of simulations without the loss of
accuracy.

This thesis analyses several numerical methods for simulating transfer problems in
building physics. Some of these works have already been published along the doctoral
period. For this reason, this document presents an overview of the work, and the extension
of the problems here presented that can be found in the articles in the Appendix C. The
main purpose is to present our contribution in a more compact document. The following
list presents the published articles already published:

1. Gasparin et al. (2018), Stable explicit schemes for simulation of nonlinear moisture
transfer in porous materials, J. Buil. Perf. Sim., Vol 11(2), pp 129-144, Doi https:
//doi.org/10.1080/19401493.2017.1298669.

2. Gasparin et al. (2018), An improved explicit scheme for whole-building hygrothermal
simulation, Buil. Sim., Vol 11(3), pp 465-481, Doi https://doi.org/10.1007/
s12273-017-0419-3.

3. Gasparin et al. (2018), An adaptive simulation of nonlinear heat and moisture trans-
fer as a boundary value problem, Int. J. Ther. Sci., Vol 133, pp 120-139, Doi
https://doi.org/10.1016/j.ijthermalsci.2018.07.013.

4. Gasparin et al. (2019), An innovative method to determine optimum insulation thick-
ness based on non-uniform adaptive moving grid J. Braz. Soc. Mech. Sci. Eng.,
Vol 41(4), pp 173, Doi https://doi.org/10.1007/s40430-019-1670-6.

5. Gasparin et al. (2019), Solving nonlinear diffusion problems in buildings by means
of a Spectral reduced-order model, J. Buil. Perf. Sim., Vol 12(1), pp 17-36, Doi
https://doi.org/10.1080/19401493.2018.1458905.

6. Gasparin et al. (2018), Advanced Reduced-Order Models for Moisture Diffusion in
Porous Media, Transp. Porous Med., Vol 124(3), pp 965-994, Doi https://doi.
org/10.1007/s11242-018-1106-2.

7. Gasparin et al. (2019), A spectral method for solving heat and moisture transfer
through consolidated porous media. Int. J. Numer. Methods Eng., Vol 117(11), pp
1143-1170, Doi https://doi.org/10.1002/nme.5994.

This document is followed by Chapter 2 that describes each numerical method. First,
we take the one-dimensional nonlinear diffusion equation to present the DuFort-Frankel
method, the Method of Horizontal Lines, the Quasi-Uniform Nonlinear Transformation
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and the Spectral method. Then, the spectral method is extended to solve other types of
problem: one-dimensional parametric simulation and two-dimensional transient transport.

Chapter 3 applies the methodology of Chapter 2 in real case studies. The objective is
to consider simple (but realistic) cases to illustrate the strength of the proposed numerical
methods. The first test case considers one-dimensional moisture transfer through a porous
material. Each solution method is separately analysed in terms of accuracy and computer
run time and at the end, they are all compared against each other. The case study is
elaborated to present the features of each method. More complex numerical experiments
can be found in the enclosed articles.

Chapter 4 addresses the concluding remarks and the future perspectives.
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Chapter 2

Numerical Methods

Contents
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 The mathematical problem . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The DuFort-Frankel scheme . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Important Features . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Extended Application . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The Method of Horizontal Lines . . . . . . . . . . . . . . . . . 19
2.3.1 Important Features . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Extended Application . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 The Quasi-Uniform Nonlinear Transformation . . . . . . . . . 25
2.4.1 Important Features . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Extended Application . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 The Reduced Spectral method . . . . . . . . . . . . . . . . . . 31
2.5.1 One-dimensional space . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2 Parametric approach . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.3 Two-dimensional space . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.4 Important Features . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.5 Extended Application . . . . . . . . . . . . . . . . . . . . . . . . 43

In this chapter, different innovative numerical methods are described, focused on the
diffusion transport phenomena. They are divided into two groups: Group A, with the Im-
proved Complete Original Models and Group B, with theReduced-Order Models.
Group A has two sub-groups, one with a fixed spatial grid, composed by the DuFort-
Frankel method and another sub-group with the adaptive grid, which comprises both
the Quasi-Uniform Nonlinear Transformation and the Method of Horizontal Lines. In the
GroupB, the Spectral method is the reduced-order model that has been chosen. The Spec-
tral techniques here addressed are the Tau–Galerkin method, the Collocation method
and the Chebyshev polynomials. The Spectral method is extended to two-dimensional
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applications and to parametric problems. Figure 2.1 shows graphically the classification
of the numerical methods to be presented in this thesis manuscript.

MOHL

Reduced-
Order

Models

Spectral methodsFixed grid Adaptive grid

Improved 
Complete Original

Models

QUNT

A B

DuFort-Frankel Tau-Galerkin 
+

Collocation
+

Chebyshev

Tau-Galerkin 
+

Chebyshev

Collocation
+

Chebyshev

Figure 2.1: Scheme of the numerical methods presented in this thesis.

The first section of this chapter contains the definitions related to the general notation,
to the mathematical model and to the discretization parameters. Then, each section
contains one numerical method: Section 2.2 describes the DuFort-Frankel approach;
Section 2.3 the Method of Horizontal Lines; Section 2.4 the method of Quasi-Uniform
Nonlinear Transformation; and Section 2.5 presents the Spectral methods. After the
description of each method, their strengths and drawbacks are highlighted in the section
Important Features and how they were applied in the context of building physics specified
in the section Extended Application.
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2.1 Definitions

2.1.1 Notation

Consider x, x̄ and t as being the independent variables, which domains are defined as:

x ∈ Ix ≡ [ 0, 1 ] , x̄ ∈ I x̄ ≡ [−1, 1 ] , and t ∈ I t ≡ [ 0, τ ] .

The field of interest u represents the unknown function, which can be defined as:

u : Ix × I t −→ IR ,

(x, t) 7−→ u (x, t) ,

for one-dimensional problems.
Some partial derivatives are written in a simplified way to have a short-hand notation:

u t
def:= ∂u

∂t
, ux

def:= ∂u

∂x
, and uxx

def:= ∂ 2u

∂x 2 .

2.1.2 The mathematical problem

For explaining the numerical methods, consider the following nonlinear parabolic equa-
tion that can represent the dimensionless heat or the moisture transfer inside a porous
material:

c · ∂u
∂t

= Fo · ∂
∂x

(
k · ∂u

∂x

)
, (2.1)

where Fo = const > 0 is the Fourier number that characterizes the ratio between the
reference time and time of the diffusion phenomenon, c is a dimensionless storage coefficient
and k is the dimensionless diffusivity transfer coefficient. The transport coefficients c and
k are assumed to be real positive functions:

c : IR −→ IR> 0 , k : IR −→ IR> 0 ,

u 7−→ c (u) , u 7−→ k (u) ,

with IR> 0 = { y ∈ IR | y > 0 } being the set of all positive real numbers. In addition,
let us assume that the function k is continuously differentiable, so its derivative is given
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by:
k ′ (u) def:= ∂k (u)

∂u
.

The linear form of Equation (2.1) can be written as the Fourier equation (Evans,
2010; Fourier, 1822):

∂u

∂t
= α · ∂

2 u

∂x 2 , (2.2)

where α = (Fo · k)/c is a constant diffusivity coefficient.
Equations (2.1) and (2.2) have to be supplemented with compatible initial and bound-

ary conditions to obtain a well-posed problem (Hadamard, 1902). Thus, boundary condi-
tions of Robin-type are considered on both sides of the spatial domain:

k · ∂u
∂x

= BiL ·
(
u − uL∞

)
, for x = 0 and t > 0 , (2.3)

− k · ∂u
∂x

= BiR ·
(
u − uR∞

)
, for x = 1 and t > 0 . (2.4)

The dimensionless Biot numbers BiL and BiR represent the ratio of transfer resistances
within the material and the one at its surface. They are considered as constant in time:

BiL = const > 0 and BiR = const > 0 .

Furthermore, the ambient fields uL∞ and uR∞ are time dependent:

uL∞ : t 7−→ uL∞ (t) , uR∞ : t 7−→ uR∞ (t)

where the superscript L represents the left side (at x = 0) and the superscript R represents
the right side (at x = 1) .

At the initial state, the field is given by the initial condition:

u (x, t = 0) = u 0 ,

where u 0 is a given function of space:

u 0 : x 7−→ u 0 (x) .

This is the dimensionless formulation of the physical problem. It is normally presented
using the superscript star ? but it has been removed for the sake of clarity to present the
numerical methods.
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2.1.3 Discretization

Complete discretization

The continuous spatial domain Ix is uniformly discretized, with x j being the spatial
nodes:

x j ≡ j ·∆x, j = 0, 1, 2, . . . , N− 1, N︸ ︷︷ ︸
Nx elements

, ∆x = const > 0 ,

where Nx = N + 1 is the total number of spatial nodes and ∆x is the spatial step size:

∆x def:= `

Nx

,

that can also be related with two spatial nodes of the grid: ∆x = xj+1 − x j . In this
case, ` ≡ 1 since the spatial domain is dimensionless.

The temporal nodes tn are defined by a uniform discretization in the time domain I t
so that:

tn ≡ n ·∆t , n = 0, 1, 2, . . . Nt − 1︸ ︷︷ ︸
Nt elements

, ∆t = const > 0 ,

where ∆t is the time step that can be defined by:

∆t def:= τ

Nt

,

with Nt being the total number of temporal nodes.
Thus, the values of the function u (x, t) in discrete nodes will be denoted by:

unj
def:= u (x j, tn ) ,

also known as a point value on the grid. The Cartesian representation of the discretization
is given in Figure 2.2.

Semi-discretization

To semi-discretize the solution u in space, the surface u (x, t) is replaced by a sequence
of vertical lines (the directions are chosen as in Figure 2.3(a)):

u j (t) def:= u (x j, t) , x j = j ·∆x , j ∈ N 0 ,
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Figure 2.2: Cartesian representation of the space-time discretization.

where ∆x > 0 is the grid spacing and u j is the evolution in time solution.
Moreover, to semi-discretize the solution u in time, the surface u (x, t) is replaced by

a sequence of horizontal lines:

un (x) def:= u (x, tn) , tn = n ·∆t , n ∈ N 0 ,

where ∆t > 0 is a chosen time step. Figure 2.3(b) gives the Cartesian representation of
semi-discretization in time scheme.

Coefficients of the transport equation

In addition, the material properties at the discrete points can be projected on grid
nodes as well:

cnj
def:= c (unj ) , k nj

def:= k (unj ) , k nj+ 1
2

def:= k
(
unj+ 1

2

)
, k nj− 1

2

def:= k
(
unj− 1

2

)
.

The field u evaluated at intermediate nodes j + 1
2 and j − 1

2 are defined as:

unj+ 1
2

=
unj + unj+1

2 , unj− 1
2

=
unj + unj−1

2 .

They represent the mean value of the field at the face between two cells, as depicted in
Figure 2.4.
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Figure 2.3: Cartesian representation of the semi-descritization in space (a) and in time (b).

Figure 2.4: Representation of a cell with the location of the points.

2.2 The DuFort-Frankel scheme

Consider the discretization of Equation (2.1) by means of the finite-difference method,
with Forward approximation in Time and Central approximation in Space (FTCS), also
known as the explicit scheme:

cnj ·
un+1
j − unj

∆t = Fo
∆x 2 ·

[
k nj+ 1

2
· unj+1 −

(
k nj+ 1

2
+ k nj− 1

2

)
· unj + k nj− 1

2
· unj−1

]
.

(2.5)

By using the so-called DuFort–Frankel method (DuFort and Frankel, 1953), the
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discrete point unj from the explicit scheme is replaced by its mean value on two successive
time layers:

unj =
un−1
j + un+1

j

2 .

Thus, Equation (2.5) is modified to obtain the DuFort–Frankel scheme:

un+1
j = λ 1

λ 0 + λ 3
· unj+1 + λ 2

λ 0 + λ 3
· unj−1 + λ 0 − λ 3

λ 0 + λ 3
· un−1

j , n > 1 , (2.6)

with

λ 0
def:= 1 , λ 1

def:= 2 ·∆t · Fo
∆x2 · cnj

· k nj+ 1
2
,

λ 2
def:= 2 ·∆t · Fo

∆x2 · cnj
· k nj− 1

2
, λ 3

def:= ∆t · Fo
∆x2 · cnj

·
(
k nj+ 1

2
+ k nj− 1

2

)
,

which is also an explicit scheme but with a time discretization on three levels instead of
two. The scheme (2.6) has the stencil depicted in Figure 2.5.

Figure 2.5: Stencil of the DuFort–Frankel numerical scheme.

When dealing with the nonlinearities of the material properties, the greatest advantage
of explicit schemes is that they do not require sub-iterations. At the time layer n+ 1, the
material properties k n

j+ 1
2
, k n

j− 1
2
are explicitly calculated at tn. Moreover, the property cnj

is also explicitly computed, being know as a frozen coefficient.

Stability analysis. The standard von Neumann stability analysis on the linear equa-
tion shows that the DuFort–Frankel scheme is unconditionally stable (Richtmyer and
Morton, 1967; Taylor, 1970). The consistency error analysis of the scheme (2.6) for the
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linear Equation (2.2) shows the following result:

Lnj = α · ∆t 2

∆x 2︸ ︷︷ ︸
τ

·∂
2u

∂t2
+ ∂u

∂t
− α · ∂

2u

∂x2 + 1
6 ·∆t

2 · ∂
3u

∂t3

− 1
12 · α ·∆x

2 · ∂
4u

∂x4 −
1
12 · α ·∆t

2 ·∆x · ∂5u

∂x 3 ∂t 2 + O
(∆t 4

∆x 2

)
, (2.7)

where:

Lnj
def:=

un+1
j − un−1

j

2 ·∆t − α ·
unj−1 −

(
un−1
j + un+1

j

)
+ unj+1

∆x 2 .

So, from the asymptotic expansion for Lnj one can see the DuFort–Frankel scheme is
second-order accurate in time and:

• first-order accurate in space if ∆t ∝ ∆x 3/2 ;

• second-order accurate in space if ∆t ∝ ∆x 2 .

It is important to note that the spatial derivative of the boundary condition has to be
discretized to the second order of accuracy O(∆x 2) to maintain the stability of the method
(Taylor, 1970).

Even though the scheme is unconditionally stable, errors can arise. The problem is that
the scheme is inconsistent since the discretized equation leads to a hyperbolic equation
which is not the original PDE:

τ · ∂
2u

∂t2
+ ∂u

∂t
= α · ∂

2u

∂x2 , (2.8)

where τ is defined in Equation (2.7):

τ
def:= α · ∆t 2

∆x 2 .

However, for the DuFort–Frankel scheme to be consistent with the original equation,
we must have:

∆t
∆x → 0 ,

so that the therm in the second derivative in time τ · ∂
2u

∂t2
should be as small as possible

to not disturb the solution.
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The stability of the scheme (2.8) was studied by Taylor (1970) and by Chetverushkin
and Gulin (2012), in which the following relation is obtained so the scheme can be consis-
tent:

∆t
∆x 6

√
τ

α
. (2.9)

Therefore, τ is an important parameter in the scheme, particularly since it depends on
the discretization parameters.

Boundary conditions. According to Taylor (1970), when using theDuFort–Frankel
scheme, the spatial derivatives of the boundary conditions should be discretized consider-
ing a truncation error of the second order O(∆x2), to preserve the accuracy and stability
properties. In this way, Equation (2.3) gives:

k n0 ·
− 3 · un+1

0 + 4 · un+1
1 − un+1

2
2 ·∆x + O(∆x2) = BiL ·

(
un+1

0 − uL∞
(
tn+1

))
.

(2.10)

Thus, un+1
0 can be deduced by rearranging Equation (2.10):

un+1
0 =

4 · un+1
1 − un+1

2 + 2 · b · uL∞
(
tn+1

)
3 + 2 · b , (2.11)

where b = ∆x · BiL/k n0 . A similar approach is adopted for the last node j = N at the
other boundary condition:

k nN ·
3 · un+1

N − 4 · un+1
N−1 + un+1

N−2
2 ·∆x = BiR ·

(
un+1

N − uR∞
(
tn+1

))
. (2.12)

which gives:

un+1
N =

4 · un+1
N−1 − un+1

N−2 + 2 · a · uR∞
(
tn+1

)
3 + 2 · a , (2.13)

where a = ∆x · BiR

k nN
.

Initial condition. To initialize simulations two initial conditions are required since this
method has a three level time discretization. Thus, the initial condition u 0 is used twice
to start the simulation. If the simulation starts at iteration n = 1 then u 0 is used for
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n = 1 and for n = 0 :

u
(
x, t 0

)
= u 0 and u

(
x, t 1

)
= u 0 .

2.2.1 Important Features

The DuFort–Frankel scheme has the benefits of being unconditionally stable,
second-order accurate in time O(∆t 2) and first- or second-order accurate in space, de-
pending on the choice of ∆t. In addition, it has the advantage to explicitly computing
the solution at each time step, avoiding costly sub-iterations. All these characteristics
make the method to be an interesting option in co-simulation and in parallel simulations
(Gasparin et al., 2018c).

Attention should be paid for every unconditionally stable scheme because the choice of
the time discretisation ∆t, which is an important issue to represent accurately the physical
phenomena. As mentioned by Patankar (1980), the unconditional stability property does
not imply that a physically realistic solution will be produced, no matter how large the
time step is. The stability does not guarantee physically plausible solutions. Despite
of being unconditionally stable, it does not mean that any value of ∆t can be used; it
must respect the characteristic time of the problem (Gasparin et al., 2018b). For the
coupled heat and moisture transfer we have used the same value of ∆t, according to the
characteristic time of the slower diffusion process.

2.2.2 Extended Application

The paper Stable explicit schemes for simulation of nonlinear moisture transfer in
porous materials (Gasparin et al., 2018b) is devoted to explore the use of improved ex-
plicit schemes to overcome the stability limitation of the standard explicit scheme. The
proposed schemes are evaluated to solve nonlinear moisture transfer through porous mate-
rials. The first case study considers a linear diffusion transfer through a porous material.
The DuFort–Frankel scheme was compared to (i) the Crank–Nicolson, (ii) the
hyperbolisation, (iii) the classical Euler explicit scheme and (iv) the reference solution.
For ∆t 6 10−3, the error of the DuFort–Frankel scheme is first-order accurate in ∆t,
and for ∆t > 10−3 second-order accurate. The second case study focuses on non-linear
transfer, with material properties strongly dependent on the vapour pressure field. Both
DuFort–Frankel and Crank–Nicolson schemes were used to compute the solution
of the problem. Results have shown that the error is proportional to O(∆t). The Crank–
Nicolson is twice longer than the DuFort–Frankel to compute the solution, due to
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the supplementary operations required to compute the implicit and explicit parts of the
scheme.

Since the DuFort–Frankel method showed promising results, we extended its ap-
plication to whole-building hygrothermal simulations, to the scale of the wall, and, the
scale of one- and two-zone models. This approach may reduce the computational cost
by a factor of twenty, as well as it enables perfect synchronism for whole-building sim-
ulation and co-simulation. These results are shown in An improved explicit scheme for
whole-building hygrothermal simulation (Gasparin et al., 2018c). For the first case study,
of heat and moisture transfer through a wall, the Euler implicit scheme required around
3 sub-iterations, making it three times more costly than the DuFort–Frankel scheme.
When coupling the wall and zone models using implicit schemes, a nonlinear system of
equations has to be solved. By using the DuFort–Frankel explicit scheme, the sys-
tem of equations becomes linear and no sub-iterations are needed. Therefore, with the
DuFort–Frankel approach, the algorithm requires only 9% of the CPU time of the im-
plicit approach. When considering the nonlinearities of the wall material properties and
long-wave radiative heat transfer among the room surfaces, the computational savings rise
to 95%. These results encourage to apply the DuFort–Frankel approach in building
simulation tools. The computational gains should further increase with the number of
rooms, walls, partitions, and furniture.
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2.3 The Method of Horizontal Lines

The Method of Horizontal Lines is one of the methods that is adaptive in space. In
building physics this type of methods is not common. What is normally used is the
non-uniform grids as in (Janssen et al., 2002) but it does not change over time.

Nowadays, the most popular approach to solve Equation (2.2) numerically is the so-
called Method Of Lines (MOL) (Hamdi et al., 2007; Kreiss and Scherer, 1992; Reddy
and Trefethen, 1992; Schiesser, 1994; Shampine, 1994). By using this technique, the first
step is to semi-discretize the diffusion equation in space. Thus, the classical second-
order central finite-difference scheme yields to the following system of coupled ordinary
differential equations (Richtmyer and Morton, 1967):

du j
dt = α

∆x 2 ·
(
u j−1 − 2 · u j + u j+1

)
, j = 1, 2, . . . , N− 1 ,

remembering that u j = u (x j, t) is the definition for the semi-discretization in space.
For simplicity, the discretization is given only for the transport equation, there are still
three remaining equations to complement the problem, two for the boundary conditions
and one for the initial condition. Once the PDE (2.2) is discretized with the MOL, it
yields to a large system of equations to solve. In typical accurate numerical simulations it
has a size of approximatively N ≈ 10 2 . . . 10 3 or even larger. Then, the semi-discretized
system can be solved using various explicit or implicit time-marching schemes (Butcher,
2016). This approach is refereed to as the Method of Vertical Lines (MOVL) which is
shown schematically in Figure 2.6(a). In the field of heat and mass transfer the dominant
majority of numerical simulations follow this philosophy.

However, if one looks at Equation (2.2) from a different perspective, for example, as
the Cauchy–Kovalevskaya form, it can be written as (Evans, 2010):

α · ∂
2 u

∂x 2 = ∂u

∂t
, (2.14)

which can be solved with a totally different numerical technique. By semi-discretizing
Equation (2.14) in time, it yields to the following system:

α · ∂
2 u (x, tn+1)

∂x 2 = u (x, tn+1) − u (x, tn)
∆t .

The main term now is the second-order elliptic differential operator in space, while the
time derivative can be seen (and treated) as a source term of secondary importance. In
other words, instead of having an evolution problem, we have a Boundary Value Problem
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(BVP), which can be tackled by appropriate methods. This approach is schematically
depicted in Figure 2.6(b), which will be called in this work as the Method of Horizontal
Lines (MOHL). Figure 2.6 presents the discretization difference between the MOVL and
the MOHL. Next section aims at detailing the formulation and the appropriate method
to solve Equation (2.3).

(a) (b)

Figure 2.6: The classical numerical solution strategy based on the MOL (a) and the proposed
approach view based on BVPs (b).

Problem reformulation as a BVP

Consider the dimensionless nonlinear diffusion Equation (2.1). For our purposes it will
be more advantageous to rewrite it in a non-conservative form. Thus, after taking one
derivative, Equation (2.1) becomes:

∂u

∂t
− λ̄ (u, ux) ·

∂u

∂x
− ν̄ (u) · ∂

2u

∂x 2 = 0 , (2.15)

where coefficients λ̄ and ν̄ are defined as:

λ̄ (u, ux)
def:= Fo · k ′ (u) · ux

c (u) , ν̄ (u) def:= Fo · k (u)
c (u) .

Equation (2.15) is equivalent to Equation (2.1) for smooth solutions. Indeed, under as-
sumptions that coefficients c (u) and k (u) are positive defined, the solutions are smooth.

Equation (2.15) is an evolution equation written in time–space: first, we write the time
derivative, then, the ones related to space. According to the philosophy of the Method of
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Horizontal Lines, let us rewrite it in space–time:

ν̄ (u) · ∂
2u

∂x 2 + λ̄ (u, ux) ·
∂u

∂x
= ∂u

∂t
.

In other words, we see that the time derivative u t as a source term for our convenience
here. Finally, we rewrite the last equation as a system of first-order differential equations
in the spatial variable x : 

ux = ϑ ,

ϑx = u t
ν̄ (u) −

λ̄ (u, ϑ)
ν̄ (u) · ϑ .

To have a true BVP, we need to eliminate the dependence of the solution regarding the
time. For this reason, the solution u is semi-discretize in time, by replacing the surface
u (x, t) by a sequence of horizontal lines:

un (x) def:= u (x, tn) .

Thus, at each time layer tn we have to solve a true BVP in space:
unx = ϑn ,

ϑnx = (ũ t)n
ν̄ (un) −

λ̄ (un) · ϑn
ν̄ (un) · ϑn ,

where (ũ t)n is an approximation of the time derivative using some difference formulae.
Depending on the desired accuracy the following backward finite-difference formulas can
be considered:

(
ũ t
)n

= un − un−1

∆t + O
(
∆t
)
,(

ũ t
)n

= 3 · un − 4 · un−1 + un−2

2 ·∆t + O
(
∆t 2

)
.

In our work, the second-order accuracy in time is implemented in the calculations to have a
more precise solution, so that we can use ∆t ? > 10−1 . The final scheme is unconditionally
stable according to the construction of the method.

Implementation

As the MOHL is implemented in the MatlabTM environment, the solver bvp4c (Shampine
et al., 2000) is employed to solve the BVP problem at every time step. There are also
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other solvers that can be employed, such as the bvp5c (Shampine et al., 2000) and even
bvp6c (Hale and Moore, 2008). The codes for bvp4c & bvp5c are available within any
standard MatlabTM distribution, while the code bvp6c was developed by Dr. Nick Hale
(Stellenbosh University, South Africa) is freely available. All these methods are based on
finite-difference approximations that implement various orders of Lobatto IIIA formula.
This is a collocation method and the corresponding collocation polynomial provides a
C 1 (I) approximation of the uniform fourth, fifth or sixth orders of accuracy in ∆x, re-
spectively. Special attention should be given to the fact that other implementation details
are significantly different among the solvers, the order is not the only difference among
them. In our numerical simulations we use fourth-order adaptive methods, which are
enough in most practical applications.

Let us consider a system of ordinary differential equations of the form u ′ (x) =
f (x, u) , within the interval [ a, b ] subjected to two boundary conditions ψ (u (a), u (b)) =
0. To use any of the BVP solvers, three inputs are required: the initial guess, a function
with the boundary conditions and another function with the system of ordinary equations.
They will return essentially three outputs: the spatial grid mesh, the solution approxima-
tion of u (x) at the mesh points and the approximation to u ′ (x). Algorithm 1 presents the
procedure of implementation of the MOHL. Note that the solvers produce a solution that
is continuous in the considered interval [ a, b ] and with a continuous first derivative. For
more details on the methods and their implementations, readers may refer to Shampine
et al. (2000) and Hale and Moore (2008).

The essential feature of these algorithms is the adaptive distribution of collocation
nodes. The grid adaptation and error controls are based on the residuals of the contin-
uous solution. The convergence speed towards the BVP solution depends essentially on
the quality of the initial guess. Here we deal with an IVP-BVP problem. Thus, the BVP-
solution value on the previous time step can be a good approximation. However, some
physics-based or vector-based extrapolation techniques might also be used to further re-
duce internal iterations on every time step. The boundary conditions are directly provided
as one of the inputs of the solver. No special treatment needs to be carried out before
supplying it.

2.3.1 Important Features

Mesh refinement is a great issue in the field of numerical simulations of thermal sci-
ence problems. Therefore, the present method shows that the unsteady problem of non-
linear diffusion transfer can be solved from a different perspective. Namely, we inter-
change the order of discretization by proposing a numerical model accurate to the orders
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Algorithm 1 MOHL’s algorithm for the weakly coupled heat and moisture transfer problems.

1: Initialization;
2: Define functions: ODE of u ; . from Equation (2.1)
3: Define functions: BC of u ; . from Equation (2.3) and (2.4)
4: Define initial solution: u 0 ;
5: Set relative and absolute tolerances “tol” of the solver;
6: while t < τ do
7: [ un, unx ] = bvp4c (ODE of un , BC of un , u 0);
8: Compute refined solution;
9: Update: u 0 ;

10: Increment: t := t + ∆t and n := n + 1 ;
11: return u (x, t) and ux (x, t) .

O(∆x 4) . . .O(∆x 6) with a moderate increase of computational efforts.
Moreover, we took advantage of the fact that today there are well-tested robust adap-

tive numerical methods to tackle BVPs in one space dimension (Hale and Moore, 2008;
Shampine et al., 2000). The resulting discretization is fully implicit, thus, unconditionally
stable. In other words, the semi-discretization in time is not subject to any kind of restric-
tion regarding the time step (Courant et al., 1928). Thus, the time step can be chosen
based on the accuracy considerations solely. The distribution of spatial nodes is adaptive
and can change at every time step. The grid is further refined (or unrefined) to meet a
prescribed error tolerance. The numerical solution error is estimated by computing the
continuous residual (inside the domain and at the boundaries).

2.3.2 Extended Application

The work An adaptive simulation of nonlinear heat and moisture transfer as a boundary
value problem (Gasparin et al., 2018a) presents the diffusion processes applied to the heat
and moisture transfer through multilayered porous building materials. To demonstrate
the benefits of this approach, three case studies are presented.

This new method has been evaluated on two numerical case studies of heat and moisture
transfer in porous media. Each case aimed at exciting the non-linear properties of the
material to induce sharp profiles of temperature and vapour pressure. The first case
considered a single material layer with sinusoidal variations of boundary conditions, taking
into account a sudden rain effect at one boundary. The second case studied the heat
and moisture diffusion transfer through a multi-layered material. For both cases, the
numerical method has shown a high accuracy and perfect agreement with the respective
reference solutions. The error was of the order O(10−4) or less. The advantage of the
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proposed method is the adaptive spatial grid according to the solicitations of the physical
phenomena. Moreover, it has been demonstrated that for the same order of accuracy of the
solution, the MOHL numerical model is twice faster than the classical implicit Euler with
central finite-differences approach. In the multilayered domain case study, for example,
the nodes were concentrated at the interface between materials and at higher gradients,
which allowed a solution with high order of accuracy.

The last case study aimed at highlighting the use of the numerical model to compare
the numerical predictions with experimental data. The configuration represents a one
layer wall exposed to climatic boundary conditions. On the other side, the boundary
conditions are controlled so as to impose a step in relative humidity from 40 % to 70 %
with a constant temperature. The comparison revealed a satisfactory agreement between
the numerical results and the experimental data. The MOHL numerical model can provide
a very accurate solution of the physical model to predict the heat and moisture transfer
in porous materials.
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2.4 The Quasi-Uniform Nonlinear Transformation

The Quasi-Uniform Nonlinear Transformation (QUNT) is a numerical method with
an adaptive spatial grid which provides a high resolution where it is required (Blom and
Zegeling, 1994; Khakimzyanov and Dutykh, 2017; Khakimzyanov et al., 2019). However,
this approach is completely different from the Method of Horizontal lines. The adaptivity is
obtained by using a monitor function which indicates the location of the spatial grid points
during the simulation. The adapted grid is obtained by means of the equidistribution
principle. This moving grid approach has the advantage of being conservative in space
and also second-order accurate (or more: 4th order).

A finite-difference scheme on a fixed uniform mesh

Before solving the problem on a moving mesh, one has to chose a robust scheme on a
fixed grid. This scheme will be then generalized to incorporate the motion of the mesh.
Thus, the dimensionless diffusion equation is fully discretized with a uniform grid by using
the IMEX scheme:

cnj ·
un+1
j − unj

∆t = Fo
∆x ·

k nj+ 1
2
·
un+1
j+1 − un+1

j

∆x − k nj− 1
2
·
un+1
j − un+1

j−1

∆x

 . (2.16)

This scheme considers an IMplicit discretization for the field un+1 and an EXplicit dis-
cretization for the storage and diffusivity coefficients, cn and k n. This approach is also
known as the semi-implicit scheme and it approximates the continuous operator to order
O(∆x 2 + ∆t). The advantage of the semi-implicit scheme over the fully implicit is to
avoid sub-iterations in the solution procedure and, at the same time, being stable and
consistent. For simplicity, the boundary conditions are not treated here. In what follows,
the method based on this scheme with the moving grid is described.

Finite-difference scheme on a moving grid

Consider the computational domain I = [ 0 , l ], the reference domain Q = [ 0 , 1 ] and
a bijective time-dependent mapping from Q to I:

x : Q × IR> 0 7−→ I .
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This represents the quasi-uniform nonlinear transformation. In addition, the boundary
points are required to map into each other:

x (0 , t) = 0 and x (1 , t) = l .

The reference domain Q is uniformly discretized into N elements, with q j = j h, j ∈ Z> 0

representing the nodes of the grid, which is equally spaced h = 1/N . However, only the
image of nodes q j under the map x (q , t) are needed, since they constitute the nodes of
the moving mesh:

x (q j, tn) = xnj .

The diffusion Equation (2.1) is rewritten on the domain Q, with the help of the composed
function v (q , t) def:= (u ◦ x) (q , t) ≡ u

(
x (q , t) , t

)
:

J (q , t) · c (v) · ∂v
∂t

= Fo · ∂
∂q

 k (v)
J (q , t) ·

∂v

∂q

 + c (v) · ∂v
∂q

∂x

∂t
,

where J def:= ∂x

∂q
is the Jacobian of the transformation x (q , t). We assume that J > 0 ,

∀ (q, t) .
Therefore, the fully discrete form of the diffusion heat equation on a moving mesh is:

J n
j · cnj ·

v n+1
j − v nj

∆t = Fo
h
·

k nj+ 1
2

J n
j+ 1

2

·

v n+1
j+1 − v n+1

j

h

 − k n
j− 1

2

J n
j− 1

2

·

v n+1
j − v n+1

j−1

h

 +

+ cnj ·

v n+1
j+1 − v n+1

j−1

2 · h

 ·
xn+1

j − xnj
∆t

 .
In summary, this is the parametrization process of the mesh motion by a bijective mapping.
In the sequence, the construction of this map is explained.

Construction and motion of the grid

The equidistribution method is used to construct the adaptive grid. To control the
distribution of the nodes, a positive valued function w (x, t) has to be chosen. This function
is called the monitor function. The choice of the monitor function and its parameters are
important for the accuracy of the scheme. In particular, for unsteady nonlinear problems,
there are several options for w. One can find more information, for example, in (Stockie
et al., 2001). In this work, the function chosen is based on Khakimzyanov et al. (2019)
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and can be written as:

w (x, t) = 1 + α 1 |u|β 1 + α 2 ·
∣∣∣∣∣∂u∂x

∣∣∣∣∣
β 2

, (2.17)

where α 1, α 2, β 1 and β 2 are positive real parameters. The quantity w (x , t) assumes large
positive values in areas where the solution has important gradients, inducing the elements
of the grid mesh to concentrate there. The discrete formulation of the monitor function
presented in Equation (2.17) is written as:

w n
j = 1 + α1

∣∣∣∣unj ∣∣∣∣β1

+ α2 ·

∣∣∣∣∣∣u
n
j+1 − unj

xnj+1 − xnj

∣∣∣∣∣∣
β2

.

A non-uniform grid I is given if we construct the mapping x (q , t) : Q 7−→ I and
evaluate it in the nodes of the uniform grid. To this end, the equidistribution method
proposes that the desired mapping x (q , t) be obtained as a solution of a nonlinear parabolic
problem, which is written as:

∂

∂q

(
w (x , t) · ∂x

∂q

)
= β · ∂x

∂t
, (2.18)

with x (0, t) = 0 and x (1, t) = l as the Dirichlet–type boundary conditions. Equa-
tion (2.18) can be written in the discrete form as:

1
h
·

w n
j+ 1

2
·
xn+1
j+1 − xn+1

j

h
− w n

j− 1
2
·
xn+1
j+1 − xn+1

j

h

 = β ·
xn+1
j − xnj

∆t ,

with the same boundary conditions xn+1
0 = 0 and xn+1

N = l. The parameter β > 0
plays the role of the inverse diffusion coefficient and it controls the smoothness of nodes
trajectories.

Initial grid generation. As the problem depends also on time, it is of capital impor-
tance to obtain a high-quality initial mesh. The initial condition must be adapted to the
new grid before starting the dynamical simulation. At t = 0 we compute the monitor
function w (x, 0) of the initial condition u (x, 0). Then, the mapping x (q, 0) is determined
as the solution of Equation (2.18), which is reduced to a simple second-order ordinary
differential equation:

∂

∂q

(
w (x , 0) · ∂x

∂q

)
= 0 ,
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supplemented with the Dirichlet boundary condition. Thus, the finite-difference ap-
proximation of this latter differential equation is:

1
h
·

w 0
j+ 1

2
·
x 0
j+1 − x 0

j

h
− w 0

j− 1
2
·
x 0
j+1 − x 0

j

h

 = 0 ,

with the discrete boundary conditions x 0
0 = 0, x 0

N = l. The previous nonlinear system
of equations is solved iteratively, with iterations initialized with a uniform grid as the
first guess. Its solution satisfies the equidistribution principle: in areas where w 0

j+ 1
2
takes

large values, the space between two neighboring nodes x 0
j+1 and x 0

j has to be inversely
proportionally small. One can find more information in Khakimzyanov and Dutykh (2017).

Smoothing step To ensure the absolute smoothness of the mesh motion, the monitor
function w can be further filtered. This process, called smoothing step enable to enlarge
the set of acceptable values of the parameters α and β of the monitor function. According
to Khakimzyanov et al. (2019), the following filter inspired by an implicit scheme can
produce robust results:

w̄j+ 1
2

= wj+ 1
2
− σ · w̄j+ 1

2
+ σ

2 ·
(
w̄j− 1

2
+ w̄j+ 3

2

)
, (2.19)

where σ is a positive smoothing parameter. To complete Equation (2.19), boundary
conditions are taken as in the original problem:

w̄ 1
2

= w 1
2
, w̄N− 1

2
= wN− 1

2
.

The smoothed discrete monitor function
{
w̄j+ 1

2

}N−1

j=0
is then obtained by solving the linear

System (2.19). Note that the smoothing operator is applied to the monitor function and
not to the nodes.

On the choice of the parameters The parameters α1, α2, β1, β2, β and σ are chosen
according to the problem and the solution under consideration. To determine the optimal
values one has to make some numerical experiments. Interested readers may consult
Khakimzyanov et al. (2019) for more details on this aspect.
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2.4.1 Important Features

In this work, the Quasi-Uniform Nonlinear Transformation (QUNT) method has been
presented as an innovative method to perform the unsteady diffusion transfer simulations.
The method is based on a non-uniform adaptive grid technique that identifies were the
spatial nodes must be placed. This method has the advantage of being conservative in
space and also second-order accurate. A satisfactory accuracy is shown by using much less
spatial nodes than traditional methods, by moving its nodes where the gradients of the field
are higher. Another remarkable point of this method is that it is easy to be implemented,
by adding extra differential equations without being too computational costly. Simulations
have been efficiently carried out for different wall and roof configurations, showing that
the innovative method efficiently provides a gain of ≈ 25% on the computer run time if
compared with the Euler IMplicit-EXplicit (IMEX) scheme.

2.4.2 Extended Application

Another adaptive method is the Quasi-Uniform Nonlinear Transformation (QUNT),
which has been presented in An innovative method to determine optimum insulation thick-
ness based on non-uniform adaptive moving grids (Gasparin et al., 2019b). The optimum
insulation thickness of buildings walls is determined by taking into account the wall ori-
entation and the position of the insulation in Brazilian buildings, which is determined
through a parametric study. The annual heating/cooling transmission loads have been
calculated using weather data and transient heat flux, simulated over one year.

First, the method is compared with a reference solution to properly understand its
features. The high accuracy of the solution induced the analysis of the physical behaviour.
Then, we studied a case focused on comparing a wall with insulation and another one with
no insulation, applied to the climatic conditions of one Brazilian city. This case proved
the importance of the insulation in reducing the transmission loads. Then, a second case
study is simulated to verify if the insulation is better inside or outside of the building wall.
The last case considered analyzing the effect of wall orientation and the roof assembly.
As Brazil is mostly located in the Southern Hemisphere, the North facade is the one
receiving more solar radiation. In consequence, for the hottest climate cities, the North-
facing wall is the one that requires the thicker insulation layers, while, in the South region
- Curitiba -, the North-facing wall requires thinner layers of insulation.

A basic economic analysis was presented, demonstrating that the implementation of
an insulation layer appears to be a cost-effective measure to save energy consumption.
The optimum insulation thickness for all the wall and roof configurations studied is to be
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between 2 cm and 7 cm. The city that requires less insulation is São Paulo, due to its
mild climate, and the city that needs more insulation is Salvador, due to its temperature
to be high above the thermal comfort values.
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2.5 The Reduced Spectral method

In this section the reduced Spectral method is described. While the previous methods
were classified as complete-original models the spectral method is so efficient that is treated
as a reduced-order model. The method is presented for three different applications (i)
one-dimensional transient diffusion, (ii) one-dimensional transient diffusion with an extra
parameter and (iii) two-dimensional transient diffusion.

2.5.1 One-dimensional space

For convenience, the nonlinear diffusion Equation (2.1) is written in the non-conservative
form and it has its spatial domain transformed to the canonical interval x ∈ [0, 1] x̄ ∈
[−1, 1]. Thus, the diffusion equation is rewritten as follows:

∂u

∂t
− ν (u) · ∂

2u

∂x̄ 2 − λ (u) · ∂u
∂x̄

= 0 , (2.20)

where,

ν (u) def:= 4 · Fo · k (u)
c (u) , λ (u) def:= 4 · Fo

c (u) ·
∂
(
k (u)

)
∂x̄

= 4 · Fo · k
′ (u)
c (u) ·

∂u

∂x
.

The Spectral method assumes that the unknown u (x̄, t) can be accurately represented as
a finite sum (Fornberg, 1996):

u (x̄, t) ≈ un (x̄, t) =
n∑

i= 0
a i (t)ϕ i (x̄) , i = 0, 1, 2, . . . , n . (2.21)

Here, {ϕ i ( x̄ )}ni= 0 is a set of basis functions that remain invariant in time, {a i ( t )}ni= 0

are the corresponding time-dependent spectral coefficients and n represents the number
of degrees of freedom of the solution. Equation (2.21) can be seen as a series truncation
after N = n + 1 modes. The Chebyshev polynomials are chosen as the basis functions
since they are optimal in L∞ approximation norm (Gautschi, 2004). It should be noted
that other bases can be used, such as the Fourier and Legendre polynomials but for
the problems of this work the Chebyshev polynomials ϕ i ( x̄ ) ≡ T i ( x̄ ) are the best
choice (Boyd, 2000). A detailed information about the Chebyshev polynomials can be
found in Appendix A.
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Therefore, the expression of the derivatives in the Chebyshev basis are:

∂un
∂x̄

=
n∑

i= 0
a i (t)

∂T i

∂x̄
(x̄) =

n∑
i= 0

ã i (t) T i (x̄) , (2.22a)

∂ 2un
∂x̄ 2 =

n∑
i= 0

a i (t)
∂ 2T i

∂x̄ 2 (x̄) =
n∑

i= 0

˜̃a i (t) T i (x̄) , (2.22b)

∂un
∂t

=
n∑

i= 0
ȧ i (t) T i (x̄) , (2.22c)

where ȧ
def:= ∂a

∂t
according to Newton’s notation. Note that the derivatives are re-

expanded in the same basis function. As a result, coefficients {ã i (t)} and {˜̃a i (t)} must
be re-expressed in terms of coefficients {a i (t)}. The connection is given explicitly from
the recurrence relation of the Chebyshev polynomial derivatives (Peyret, 2002):

ã i = 2
c i

n−1∑
p= i+ 1
p+ i odd

p a p , i = 0, 1, . . . , n− 1, (2.23)

ãn ≡ 0 ,

˜̃a i = 1
c i

n−2∑
p= i+ 2
p+ i even

p
(
p 2 − i 2

)
a p , i = 0, 1, . . . , n− 2, (2.24)

˜̃an−1 ≡ ˜̃an ≡ 0 ,

with,

c i =

 2 , if i = 0 ,
1 , if i > 0 .

These relations can be written in a matrix form as:

Ã = D̃ · A , and ˜̃A = ˜̃D · A ,

where

A =
(
a 0, a 1, · · · , an−1, an

)T
,

Ã =
(
ã 0, ã 1, · · · , ãn−1, ãn

)T
,

˜̃A =
(
˜̃a 0, ˜̃a 1, · · · , ˜̃an−1, ˜̃an

)T
.

32



Moreover, the elements of matrices D̃ and ˜̃D are deduced from equations (2.23) and (2.24).
Thus, with the derivatives defined in Equation (2.22), the series can be substituted

into Equation (2.20) to provide the residual:

R =
n∑

i= 0
ȧ i (t) T i (x̄) − ν

(
n∑

i= 0
a i (t) T i (x̄)

)
·

n∑
i= 0

˜̃a i (t) T i (x̄)

− λ

(
n∑

i= 0
a i (t) T i (x̄)

)
·

n∑
i= 0

ã i (t) T i (x̄) , (2.25)

which is considered as a misfit of the approximate solution. The purpose is to minimize the
residual, so that the solution satisfies the governing equations. To this end, the residual
is minimized via the Tau–Galerkin method, which requires that Equation (2.25) be
orthogonal to the Chebyshev basis functions 〈R ,T j 〉 = 0 :

〈R ,T j 〉 =
∫ 1

−1

R ( x̄ , t ) · T j (x̄)√
1 − x̄ 2

dx̄ = 0 , j = 0, 1, 2, . . . , n− 2 . (2.26)

The residual can be minimized by other spectral approaches as well. For more details, one
can consult (Mendes et al., 2017, Chap. 6)

As a result, the projected residuals are:

M · ȧ i (t) = G i, j · ˜̃a i (t) + Λ i, j · ã i (t) , (2.27)

where, M is a diagonal and the singular matrix (rank (M ) = N − 2) which contains
the coefficients of the Chebyshev weighted orthogonal system. The matrix M has the
following form:

M =



π
π
2 0

. . .
π
2

0 0
0


,

and, the elements with indices (i, j) are written as:

G i, j =
∫ 1

−1

ν
(∑n

i=0 a i (t) T i (x̄)
)
· T i (x̄) · T j (x̄)

√
1 − x 2

dx ,

33



Λ i, j =
∫ 1

−1

λ
(∑n

i=0 a i (t) T i (x̄)
)
· T i (x̄) · T j (x̄)

√
1 − x 2

dx ,

with indices i, j being the ones defined in Eqs. (2.21) and (2.26).
By using the Chebyshev–Gauß quadrature, the integrals are also approximated by

a finite sum (Peyret, 2002) :

G i, j ≈
π

m

m∑
k= 1

ν k T i (x̄ k) T j (x̄ k) , Λ i, j ≈
π

m

m∑
k= 1

λ k T i (x̄ k) T j (x̄ k) ,

where,

ν k
def:= ν

 n∑
i= 0

a i (t) T i (x̄ k)
 , and λ k

def:= λ

 n∑
i= 0

a i (t) T i (x̄ k)
 .

In addition, x̄ k are the Chebyshev nodes:

x̄ k = cos
 2 · k − 1

2 ·m · π

 , k ∈ {1, 2, . . . , m} .

The value of m was determined empirically according to numerical investigations, which
is considered as m = N + 5 in our computations (Gasparin et al., 2019a).

To complete the problem, the boundary conditions from Equations (2.3) and (2.4) are
also written in the form of the residuals:

ω 1 = k

(
n∑

i= 0
a i (t) T i (−1)

)
·

n∑
i= 0

ã i (t) T i (−1) − BiL

2 ·
(

n∑
i= 0

a i (t) T i (−1) − uL∞ (t)
)
,

ω 2 = k

(
n∑

i= 0
a i (t) T i (1)

)
·

n∑
i= 0

ã i (t) T i (1) + BiR

2 ·
(

n∑
i= 0

a i (t) T i (1) − uR∞ (t)
)
,

with T i (−1) = (−1) i and T i ( 1 ) ≡ 1 (Boyd, 2000). The division of the Biot number (Bi)
by 2 comes from the domain transformation, which can be seen in details in Appendix B.1.

In this way, it is possible to compose the system of ODEs to be solved plus the two
additional algebraic expressions regarding the boundary conditions. Finally, the system
of Differential-Algebraic Equations (DAEs) has the following form:

M · Ȧ = G i, j · ˜̃D · A + Λ i, j · D̃ · A + b , (2.28)

where b is the vector containing the boundary conditions, previously defined by ω 1 and
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ω 2:

b =
(
0, 0, 0, · · · , ω 1, ω 2

)T
Initial values of the coefficients {a i (t = 0)} are calculated by the orthogonal projection

of the initial condition (Canuto et al., 2006):

a 0, i ≡ a i (0) := 2
π · c i

·
∫ 1

−1

u 0 (x̄) · T i (x̄)√
1 − x 2

dx , i ∈ {0, 1, . . . , n} , (2.29)

where, u 0 (x̄) is the dimensionless initial condition. Therefore, the reduced system of ODEs
composed from Eqs. (2.28) and (2.29) can be solved for the time-dependent coefficients:

 M · ȧ i = f (a i, t) ,
a i ( 0 ) = a 0, i .

(2.30)

Different approaches can be used to solve the system of ODEs (2.30). The most straight-
forward solution is to apply a numerical integration scheme, with moderate accuracy. So,
with an embedded error control and not so stringent tolerances, it can be done very effi-
ciently. In this work, the MatlabTM environment was used to perform simulations, and the
solvers ODE15s or ODE23t were used to solve the differential-algebraic system of equations.
The output are the vectors of spectral coefficients {a i (t)}ni=0 at different successive instants
of time. Then, it enables to reconstruct the solution thanks to spectral representations.

2.5.2 Parametric approach

For the sake of simplicity and without loosing the generality, this method is first
explained considering the linear diffusion equation:

∂u

∂t
= α · ∂

2u

∂x̄ 2 , (2.31)

for t ∈ [ 0, τ ] and x̄ ∈
[
−1 , 1

]
. The diffusivity coefficient is consider as another coordinate

with α ∈ [αmin, αmax]. Thus, instead of propagating a solution in time for a fixed α, we
propagate a family of solutions that are parametrized by α , as illustrated in Figure 2.7.
It is almost like solving two-dimensional problems. The difference is that we do not have
the partial derivatives with respect to the third space parameter α in Equation (2.31).

Therefore, we seek for a solution of u that depends on three parameters: space, time
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Figure 2.7: Representation of the parametric solution.

and diffusivity:

u : (x, t, α) ∈ [−1, 1 ]× [ 0, τ ]× [αmin, αmax ] 7−→ IR .

Before applying the spectral method, the interval [αmin, αmax ] must be transformed to
the canonical one [−1, 1 ]. The description of the transformation can be found in the
Appendix B.2. Thus, ᾱ represents the transformation:

[αmin, αmax ] ᾱ−→ [−1, 1 ] .

The Spectral method assumes that the unknown u which depends on (x̄, t, ᾱ) can be
accurately represented as a finite sum:

u (x̄, t, ᾱ) ≈ unm (x̄, t, ᾱ) =
n∑

i= 1

m∑
j= 1

a ij (t) T i−1 (x) P j−1 (ᾱ) . (2.32)

Here, {T i−1 (x̄)}ni= 1 and {P j−1 (x̄)}mi= 1 are sets of basis functions that remains constant
in time, {a i j (t)}n,mi,j= 1 are the corresponding time-dependent spectral coefficients and n ·m
represents the number of degrees of freedom of the solution. Equation (2.32) can be seen
as a series truncation after N = n and M = n modes. The basis function P is chosen
to be the Chebyshev polynomials since they proved to be practical and efficient in our
applications but others basis such as Legendre polynomials could be used.

Using the expression of the derivatives provided in Appendix A, the residual of the
diffusion Equation (2.31) is:

R (x̄, t, ᾱ) =
n∑

i= 1

m∑
j= 1

[
ȧ i j (t) − ᾱ · ˜̃a i j (t)

]
T i−1 (x̄) P j−1 (ᾱ) , (2.33)

which is considered as a misfit of the approximate solution. The purpose is to minimize
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the residual: ∥∥∥∥ R (x̄, t, ᾱ)
∥∥∥∥

2
−→ min ,

which is realized via two methods, the Tau–Galerkin and the Collocation methods. For
this, we require that the residual of Equation (2.33) be orthogonal to the Chebyshev
basis functions 〈R ,T k 〉 = 0 at the collocation points ᾱ p :

〈R ,T k 〉 =
∫ 1

−1

R (x̄, t, ᾱ p) · T k (x̄)√
1 − x̄ 2

dx = 0 ,

with,

k ∈ {0, 1, 2, . . . , n− 2} , and p ∈ {1, 2, . . . , m} .

Namely,

∫ 1

−1

 n∑
i= 1

m∑
j= 1

(
ȧ i j (t) − ᾱ p · ˜̃a i j (t)

)
P j−1 (ᾱ p)

T i−1 (x̄) T k (x̄)√
1 − x̄ 2

dx = 0 . (2.34)

This gives us (n − 2) ·m equations. The extra coefficients are obtained by substituting
the derivative (A.1a) into the boundary conditions (2.3) and (2.4):

n∑
i= 1

m∑
j= 1

ã ij (t) T i−1 (−1) P j−1 (ᾱ p) −
BiL

2 ·
n∑

i= 1

m∑
j= 1

a ij (t) T i−1 (−1) P j−1 (ᾱ p)

+ BiL · uL∞ (t)
2 = 0 , (2.35a)

−
n∑

i= 1

m∑
j= 1

ã ij (t) T i−1 (1) P j−1 (ᾱ p) −
BiR

2 ·
n∑

i= 1

m∑
j= 1

a ij (t) T i−1 (1) P j−1 (ᾱ p)

+ BiR · uR∞ (t)
2 = 0 , (2.35b)

Equations (2.35a) and (2.35b) supplies the 2 · m equations to complete the system of a
total of n ·m equations.

Therefore, the original problem is reduced to a differential-algebraic system of equa-
tions, which has the following form:

M (t, ᾱ) · ȧ l = f (t, ᾱ, a l) , l ∈ {1, 2, . . . , n ·m} , (2.36)

where, M ∈ Mat nm×nm(IR) is the mass matrix and f (t, ν, a l) ∈ IRnm is a vector. The
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matrix {a i j} is transformed into a vector a i j (t) 7−→ a l= (i−1)n+j (t) so that the Sys-
tem (2.36) can be easily solved.

Initial values of the coefficients {a ij (t = 0)}n,mi,j=1 are calculated by the projection of the
initial condition as in Equation (2.29). Thus, the time-dependent coefficients {a ij (t)}n,mi,j=1

are computed by solving the following system: M (t, ᾱ) · ȧ i j = f (t, ᾱ, a i j) ,
a ij (0) = a 0, ij .

(2.37)

This system is similar to Equation (2.30) and can be solved in the same way with the
standard MatlabTM solvers.

2.5.3 Two-dimensional space

Consider the extension of the linear isotropic diffusion Equation (2.2) for the two-
dimensional space already transformed to the canonical interval:

∂u

∂t
= αx ·

∂ 2 u

∂x̄ 2 + α y ·
∂ 2 u

∂ȳ 2 , (2.38)

where αx = 4α/l 2
x and α y = 4α/l 2

y . For the two–dimensional case, four extra equations
are given for the boundary conditions:

∂u

∂ȳ

∣∣∣∣
ȳ=−1

= 0 , (2.39)

∂u

∂ȳ

∣∣∣∣
ȳ= 1

= 0 , (2.40)

u|x̄=−1 = uL∞ (t) , (2.41)

u|x̄= 1 = uR∞ (t) , (2.42)

in this case, Neumann– and Dirichlet–type. To complete the problem, an initial con-
dition must be provided:

u (x̄, ȳ, t = 0) = u 0 (x̄, ȳ) . (2.43)

By using the spectral approach, the solution is approximated by the sum (Canuto
et al., 1988):

u (x̄, ȳ, t) ≈ unm (x̄, ȳ, t) =
n∑

i= 1

m∑
j= 1

a i j (t) T i−1 (x̄) T j−1 (ȳ) . (2.44)
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Here, {T i−1 (x̄)}ni= 1 and {T j−1 (ȳ)}mi= 1 are sets of basis functions (Chebyshev polyno-
mials) and {a i j (t)}n,mi,j= 1 are the corresponding time-dependent spectral coefficients which
are the unknowns of the problem. Then, the residual is composed by substituting Equa-
tion (2.44) into Equation (2.38):

R (x̄, ȳ, t) =
n∑

i= 1

m∑
j= 1

ȧ i j (t) T i−1 (x̄) T j−1 (ȳ) − αx ·
n∑

i= 1

m∑
j= 1

˜̃axi j (t) T i−1 (x̄) T j−1 (ȳ)

− α y ·
n∑

i= 1

m∑
j= 1

˜̃a yi j (t) T i−1 (x̄) T j−1 (ȳ) , (2.45)

The residual R (x̄, ȳ, t) is minimized via the collocation method:

R (x̄ k, ȳ l, t) = 0 ,

which requires that the residual be equal to zero at the Chebyshev–Gauss–Lobatto
points:

x̄ k = − cos
(
π · k
n− 1

)
, k ∈ {0, 1, 2, . . . , n− 1} , (2.46a)

ȳ l = − cos
(
π · l
m− 1

)
, l ∈ {0, 1, 2, . . . , m− 1} . (2.46b)

These points are chosen in order to minimize the error and to prevent against Runge’s
phenomenon (Fornberg, 1996). Figure 2.8 presents the distribution of equally spaced
points. However, their distribution follows Equation (2.46).

Figure 2.8: Representation of the two-dimensional solution collocation points.
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To solve the problem, the residual can be written in a matricial form. For this, consider
the spatial derivatives approximated as in Liu et al. (2011):

∂ 2unm
∂x̄ 2 =

n∑
i= 1

m∑
j= 1

T i−1 (x̄ k) T j−1 (ȳ l) ˜̃axi j (t)

=
[
C (x̄ k)⊗ C (ȳ l)

]
·
[( ˜̃Dx ⊗ Id y

)
· A i j (t)

]
,

and

∂ 2unm
∂ȳ 2 =

n∑
i= 1

m∑
j= 1

T i−1 (x̄ k) T j−1 (ȳ l) ˜̃a yi j (t)

=
[
C(x̄ k)⊗ C(ȳ l)

]
·
[(

Idx ⊗ ˜̃D y

)
· A i j

]
,

where Idx is the identity matrix of size n×n with respect to x̄, Id y is the identity matrix
of size m × m with respect to ȳ and the operation denoted by ⊗ is the Kronecker
product (Kolda and Bader, 2009).

The matrix of spectral coefficients {a i j}n,mi,j=1 was transformed into a vector:

A i j =
[
a 11, a 12, . . . , a 1n, a 21, a 22, . . . , a 2n, am1, am2, . . . , amn

]>
(nm×1)

.

In addition, ˜̃Dx and ˜̃D y correspond to the second order differentiation matrices with
respect to x and y respectively such that ˜̃Dx ∈ Mat n×n (IR) and ˜̃D y ∈ Matm×m (IR), which
are deduced from the recurrence Relation (A.2b). Finally, the vector of the Chebyshev
polynomial values are:

C (x̄ k) =
[
T 0 (x̄ k), T 1 (x̄ k), T 2 (x̄ k), . . . , Tn (x̄ k)

]
(1×n)

,

C (ȳ l) =
[
T 0 (ȳ l), T 1 (ȳ l), T 2 (ȳ l), . . . , Tm (ȳ l)

]
(1×m)

.

Therefore, the original problem is reduced to a system of ordinary differential equations,
which has the following form:

[
C(x̄ k)⊗ C(ȳ l)

]
· Ȧ i j =

[
C(x̄ k)⊗ C(ȳ l)

]
·
[(
α y · Idx ⊗ ˜̃D y + αx · ˜̃Dx ⊗ Id y

)
· A i j

]
,

(2.47)

which is valid only for the internal collocation points:

k = 1, 2, . . . , n− 2 and l = 1, 2, . . . , n− 2 .
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For the boundary conditions, four extra equations appear to complete the system:

n∑
i= 1

m∑
j= 1

ã yi j (t) T i−1 (x̄ k) T j−1 (1) = 0 , (2.48a)

n∑
i= 1

m∑
j= 1

ã yi j (t) T i−1 (x̄ k) T j−1 (−1) = 0 , (2.48b)

n∑
i= 1

m∑
j= 1

a i j (t) T i−1 (1) T j−1 (ȳ l) − uL∞ (t) = 0 , (2.48c)

n∑
i= 1

m∑
j= 1

a i j (t) T i−1 (−1) T j−1 (ȳ l) − uR∞ (t) = 0 , (2.48d)

which has the following matrix compact form:

[
C(x̄ k)⊗ C(−1)

]
·
[(

Idx ⊗ D̃ y

)
· A i j

]
= 0 , (2.49a)[

C(x̄ k)⊗ C(1)
]
·
[(

Idx ⊗ D̃ y

)
· A i j

]
= 0 , (2.49b)[

C(−1)⊗ C(ȳ l)
]
· A i j − uL∞ (t) = 0 , (2.49c)[

C(1)⊗ C(ȳ l)
]
· A i j − uR∞ (t) = 0 , (2.49d)

where D̃ y corresponds to the first order differentiation matrix with respect to y, such that
D̃ y ∈ Mat (m×m), which is deduced from the recurrence Relation (A.2a).

Initial values of the coefficients {a ij (t = 0)} def:= b ij are calculated by approximating
the initial condition u 0 (x̄, ȳ) as:

u 0 (x̄, ȳ) =
n∑

i= 1

m∑
j= 1

b ij T i−1 (x̄) T j−1 (ȳ) , (2.50)

which is expanded and solved for b ij using the collocation points.
Therefore, the time-dependent coefficients {a i j}n,mi,j=1 are computed by solving the fol-

lowing the ODE system:  M · Ȧ i j = f (t, a i j) ,
a ij (0) = b ij .

(2.51)

where, M ∈ Mat nm×nm(IR) is the mass matrix and f (t, a i j) ∈ IRnm is a vector. To
solve the System (2.51), the technique described in (Boyd, 2000, Chap. 10) is employed.
We compose the matrixM and the vector f (t, a i j) by the lines of the grid. Algorithm 2
describes the process to compose f (t, a i j) which is similar toM . The integration in time
is performed with the use of the solver ode15s as in the previous spectral applications.
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Algorithm 2 Spectral-Collocation’s algorithm for composing f (t, a i j) andM.

1: f := zeros (n ·m, 1)
2: M := zeros (n ·m,n ·m)
3: for k = 0 do . Collocation point x̄ 0 = −1
4: for l = 0 : m− 1 do
5: f [l] :=

[
C(−1)⊗ C(ȳ l)

]
· A i j − uL∞ (t) . Equation (2.49c)

6: for k = 1, 2, . . . , n− 2 do . Internal x̄ k collocation point
7: for l = 0 do
8: f [(m− 1)k + 1] :=

[
C(x̄ k)⊗ C(−1)

]
·
[(

Idx ⊗ D̃ y

)
· A i j

]
. Equation (2.49a)

9: for l = 1, 2, . . . ,m− 2 do
10: f [(m− 1)k+ l] :=

[
C(x̄ k)⊗C(ȳ l)

]
·
[(
α y · Idx⊗ ˜̃D y + αx · ˜̃Dx⊗ Id y

)
·A i j

]
11: . Right side of Equation (2.47)
12: M [(m− 1)k + l] :=

[
C(x̄ k)⊗ C(ȳ l)

]
. Left side of Equation (2.47)

13: for l = m− 1 do
14: f [(m− 1)k + (m− 1)] :=

[
C(x̄ k)⊗ C(+1)

]
·
[(

Idx ⊗ D̃ y

)
· A i j

]
.

Equation (2.49b)
15: for k = n− 1 do . Collocation point x̄m−1 = 1
16: for l = 0 : m− 1 do
17: f [l+ (m− 1) · (n− 2)] :=

[
C(+1)⊗C(ȳ l)

]
·A i j − uR∞ (t) . Equation (2.49d)

18: return f (t, a i j) andM.

2.5.4 Important Features

The main advantage of the Spectral-ROM is that the lower number of degrees of free-
dom needed to solve problem (2.31) is much lower than the ones needed to solve by means
of conventional methods such as finite differences, finite elements and finite volumes. The
Spectral approach assumes a separated tensorial representation of the solution by a finite
sum of function products. It fixes a set of spatial basis functions to be the Chebyshev
polynomials and then, a system of ordinary differential equations is built to compute
the temporal coefficients of the solution using the Tau–Galerkin technique. The sum
of polynomials generated suits for the whole domain, providing a high approximation of
the solution which does not depend on the number of spatial nodes. The smoother the
function is, the faster is the convergence of its spectral series (Boyd, 2000). Actually, for
considerably smooth problems, the error decreases exponentially, making the solution with
the same order of accuracy of other methods but with a much lower number of degrees of
freedom. As a result, this method has a low memory usage, allowing to store and operate
a lower number of variables (Trefethen, 1996).
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Nonetheless, spectral methods still have some constraints. For example, complex ge-
ometries are one of their main drawbacks as they work better when the geometry of the
problem is fairly smooth and regular (Boyd, 2000), while finite-element methods are par-
ticularly well suited to problems in very complex geometries. Moreover, spectral methods
can offer higher accuracy in geometries like boxes and spheres, which can be combined
into more complex shapes (Canuto et al., 2007; Fornberg, 1996). In applications where
geometry-related disadvantages are not present, the classic finite-element, finite-volume
and finite-difference methods do not come close in terms of efficiency.

2.5.5 Extended Application

In the first part of the work with the Spectral method Solving nonlinear diffusion prob-
lems in buildings by means of a Spectral Reduced-Order Model (Gasparin et al., 2019a) we
simulate the moisture diffusion in one-dimension through porous materials as a Reduced-
Order Model (ROM). The efficiency of the Spectral approach is demonstrated for simple
and multilayered domains with highly nonlinear properties with sharp boundary conditions
and profiles of solutions. Results show that the Spectral reduced-order model approach
enables to simulate accurately the field of interest. Furthermore, numerical gains become
particularly interesting for nonlinear cases since the proposed method can drastically re-
duce the computer run time, e.g. by a factor of 100, when compared to the traditional
Crank–Nicolson scheme for one-dimensional applications.

Moreover, in A comparative study of two reduced order models for moisture diffusion
problems in building physics (Gasparin et al., 2018d), we explore in details the capabilities
of two model-reduction techniques - the Spectral Reduced-Order Model (Spectral-ROM)
and the Proper Generalised Decomposition (PGD) - to numerically solve moisture diffusion
transfer through porous materials. Both approaches are applied to three different problems
to provide clear examples of the construction and use of these reduced-order models. Linear
and non-linear unsteady behaviours of one-dimensional moisture diffusion are investigated
and also a parametric problem in which the solution depends on space, time and diffusivity.
Results have highlighted that both model-reduction techniques supply accurate solutions
and enable to reduce significantly the order of the model but the convergence of the
spectral method is more efficient.

To complement the studies in one dimension with the Spectral-ROM we extended it to
a coupled heat and moisture transfer problem. In A Spectral method for solving heat and
moisture transfer through consolidated porous media (Gasparin et al., 2018e), the method is
used to compute one-dimensional heat and moisture diffusion transfer in porous materials.
Some adaptations in the method must be carried out due to the coupling between equations
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and the nonlinear coefficients. To demonstrate the benefits of this approach, three case
studies were presented. The first one considers nonlinear heat and moisture transfer
through one material layer. The second case includes the rain effect over two layers domain,
while the last one compares the numerical prediction against experimental observations
to appreciate the reliability of the model. Results show how the nonlinearities and the
interface between materials are easily treated with the Spectral reduced-order model. For
the reliability part, predictions show a good agreement with experimental results, which
confirm robustness, computationally efficiency and high accuracy of the proposed approach
for predicting the simultaneous heat and moisture transfer in porous materials.
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Numerical Experiments
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In this part, the methods described in Chapter 2 are applied to solve nonlinear par-
tial differential equations that represent some transport phenomena in building physics.
This study compares those numerical methods among each other and against the classi-
cal implicit and explicit schemes with the central finite-difference approaches, as well as
with the reference solution. The performance of those numerical methods is presented
in terms of accuracy, stability, convergence and computational time. Three case studies
are considered on the comparison campaign: (i) one-dimensional nonlinear transfer, (ii) a
parametric problem and, (iii) a two-dimensional linear transfer.
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3.1 Numerical experiment 1: 1D nonlinear transport

This case study considers an isothermal one-dimensional nonlinear moisture transfer
through a single layer material, as illustrated in Figure 3.1. The mathematical model is
first defined, followed by the parameters of the problem and the results.

Figure 3.1: One-dimensional physical wall model.

3.1.1 Mathematical Model

The physical problem considers one-dimensional moisture transfer through a porous
material defined in the spatial domain x ∈ Ix ≡ [ 0, ` ] and in time domain t ∈ I t ≡ [ 0, τ ] ,
where ` [m] is the length of the material and τ [s] is the final time of simulation. The
moisture transfer occurs due to vapour diffusion, which mathematically formulated as
(Gasparin et al., 2018b; Rouchier et al., 2016):

cm ·
∂P v

∂t
= ∂

∂x

 km · ∂P v

∂x

 , (3.1)

whose field of interest is the vapour pressure P v : (x, t) 7−→ P v (x, t) [Pa]. It comes from
the relation:

φ : (P v, P s) 7−→
P v

P s

where φ [ - ] is the relative humidity expressed without physical dimension, P s : T 7−→
P s (T ) [Pa] is the saturation pressure and T [K] is the temperature. The coefficient km [s]
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is the the total moisture transfer coefficient under vapour pressure gradient defined as:

km : (P v) 7−→
ρ l ·R v · T

P v

· k l + δ v ,

where δ v : P v 7−→ δ v (P v) [s] and k l : P v 7−→ k l (P v) [s] are the vapour and liquid
permeabilities of the material. The water vapour gas constant R v [J/(kg · K)], the temper-
ature T [K] and the water specific mass ρ l [kg/m3] are considered as constants. Table 3.1
presents the values of the water properties considered in this work. The saturation pres-
sure expression was interpolated for the range of temperature between [ 273.15, 298.15 ] K,
following the Antoine law to ensure the maximum accuracy.

The coefficient cm [kg/(m3 · Pa)] is the the moisture storage coefficient and it is defined
as:

cm : P v 7−→
w ′

P s

,

where w : P v 7−→ w (P v) [kg/m3] is the material moisture content. The relation between
the moisture content w and the relative humidity φ is given by the sorption isotherm, which
depends on the material properties. In addition, the following assumptions are adopted in
this study: (i) no hysteresis effect; (ii) no temperature dependency on the mass balance
equation and (iii) properties are dependent only on the vapour pressure field.

Property Value/expression Unit
Heat capacity, cw 4180 J/(kg · K)
Latent heat of evaporation, L v 2.5 · 10 6 J/kg
Water gas constant, R v 461.5 J/(kg · K)
Density, ρ l 1000 kg/m3

Saturation pressure, P s (T ) 997.3 ·
(
T − 159.5

120.6

)8.275
Pa

Table 3.1: Hygrothermal properties of the water.

Boundary conditions. The vapour transport at the boundaries occurs due to the
vapour pressure difference between the ambient air at the wall surface. The mathematical
model is written as a Robin-type boundary conditions:

km ·
∂P v

∂x
= hLm ·

(
P v − P L

v,∞

)
− g l, L , for x = 0, t > 0 ,

− km ·
∂P v

∂x
= hRm ·

(
P v − P R

v,∞

)
, for x = `, t > 0 ,
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where P v,∞ [Pa] stands for the vapour pressure of the ambient air, hm [s/m] is the con-
vective transfer coefficient, g l [kg/(m2 · s)] is the liquid flow (driving rain). In addition,
the superscript L represents the left boundary side and the superscript R represents the
right boundary. Furthermore, the ambient fields are considered as time dependent:

P v,∞ : t 7−→ P v,∞ (t) , g l : t 7−→ g l (t) ,

and the convective transfer coefficients are positive constants hm = const > 0 .

Initial condition. The initial distribution of the vapour pressure is considered uniform
within the material:

P v (x, t = 0) = P v, i .

Flow. The density of the moisture flow g [kg/(m2 · s)] is an important output and it is
computed as:

g : t 7−→ − km ·
∂P v

∂x

∣∣∣∣∣
x 0

,

where x 0 ∈ Ix.
Equation (3.1) with the initial and boundary conditions pose an important difficulty

in dealing with the nonlinearities of the storage cm and diffusion km coefficients: both
of them depend on the moisture content field. These coefficients are usually given by
empirical functions inferred from experimental data.

Dimensionless representation

Before solving this problem directly, it is of great importance to get a dimensionless
formulation. It enables us to determine important scaling parameters such as Biot and
Fourier numbers. It allows us also to estimate the relative magnitude of various terms in
governing equations, and thus, eventually to simplify the problem using asymptotic meth-
ods (Nayfeh, 2000). In addition, the dimensionless form enables to manipulate numerically
the quantities at the order of O(1) where the floating point arithmetics is designed to have
minimal rounding errors (Kahan and Palmer, 1979). Considering the temperature range
of interest in building applications, all transport coefficients are considered as moisture
content dependent. Thus, the time and the space domains are transformed into a dimen-

48



sionless representation:

x ? : Ix −→ [ 0, 1 ] , t ? : I t −→ [ 0, τ ? ] ,

x 7−→ x

`
, t 7−→ t

t 0
,

where the subscript 0 represents a reference value which is also valid for the next trans-
formations and the superscript ? represents a dimensionless quantity of the same variable.
The dimensionless quantity of the vapour pressure is then defined as:

u : (x ?, t ?) 7−→ P v

P v, 0
,

with the dimensionless properties given by:

c ?m : u −→ cm
cm, 0

, k ?m : u −→ km
km, 0

.

Therefore, the governing Equation (3.1) can be written in a dimensionless form as:

c ?m ·
∂u

∂t ?
= Fom ·

∂

∂x ?

 k ?m · ∂u∂x ?
 , (3.2)

where Fom = const > 0 is known as the Fourier number, which is defined as:

Fom
def:= t 0 · km, 0

` 2 · cm, 0
.

For the the boundary conditions, the dimensionless formulation is:(
k ?m ·

∂u

∂x ?

)
= BiLm ·

(
u − uL∞

)
− g ?l, L , for x ? = 0, t ? > 0 , (3.3)

−
(
k ?m ·

∂u

∂x ?

)
= BiRm ·

(
u − uR∞

)
, for x ? = 1, t ? > 0 , (3.4)

with the Biot numbers Bim = const > 0 being defined as:

Bim
def:= hm · `

km, 0
.

In addition, the ambient variables u∞ and g ?l are written as:

u∞ : t ? 7−→ P v,∞

P v, 0
, g ?l : t ? 7−→ g l · `

km, 0 · P v, 0
.
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Finally, the dimensionless initial condition is:

u (x ?, t ? = 0) = 1 ,

for the reference vapour pressure chosen as the value of the constant initial condition
P v, 0 = P v, i .

3.1.2 Description of the case study

Moisture transfer is strongly nonlinear due to the variation of the material properties.
For this reason, this case study is defined to investigate these effects. The case considers
a 15-cm monolithic material, which properties are given in Table 3.2 and are graphically
represented in Figure 3.2. The expressions of the properties are inspired from the wood
fiber material, present in the paper of Rouchier et al. (2016). The properties are given for
a constant temperature of 23◦C on a isothermal case, which leads to a saturation pressure
of 2804.4 Pa .

Property Expression Unit
Sorption isotherm, w (φ) 931φ5 − 1575φ4 + 956.3φ3 − 268.1φ2 + 55.32φ− 0.01074 kg/m3

Vapour permeability, δ v (φ) 6.8 · 10−10 + 5.446 · 10−10 · exp (9φ 4 − 1.5) s

Table 3.2: Properties of the wood fiber material (Rouchier et al., 2016).
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Figure 3.2: Sorption isotherm (a) and vapour permeability (b) for a temperature of 23◦C.

50



The moisture storage and the moisture diffusivity coefficients are shown in Figures 3.3(a)
and 3.3(b), respectively. Since the measurements were performed for a relative humidity
on the range of φ = [ 0.25, 0.75 ] , the liquid transport is neglected. For the other values
of relative humidity we have approximated the solution. The nonlinearities are consider-
ably high in this case, as the increase of the moisture content increases of one order of
magnitude for cm and three orders of magnitude for km , correspondingly.
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Figure 3.3: Moisture storage coefficient (a) and total moisture transfer coefficient (b).

Initial conditions are considered uniform over the spatial domain, with an initial vapour
pressure of P v, i = 1168.9 Pa , corresponding to a relative humidity of 50 % . The boundary
conditions, represented by the relative humidity φ are shown in Figure 3.4. They oscillate
during the 168 hours of simulation as follows:

φL∞ (t) = 0.5 + 0.35 · sin 2
(

2 · π · t
48 · 3600

)
+ 0.05 · sin

(
π t

120 · 3600

)
,

φR∞ (t) = 0.5 + 0.45 · sin 11
(
π · t + 70
168 · 3600

)
.

The convective mass transfer coefficients are set to hLm = 2·10−7 s/m at the left boundary,
and to hRm = 5 · 10−7 s/m at the right boundary.

This case aims at exciting the nonlinear properties of the material to induce sharp
profiles of the vapour pressure.
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Figure 3.4: Ambient relative humidity φ∞.

Dimensionless parameters. The reference time is t 0 = 1 h, thus, the final simulation
time is fixed to τ ? = 168 . The reference vapour pressure was taken the same as the
initial condition. The problem is considered with Fom = 0.042 and P v, 0 = P v, i . At
the boundaries, the Biot numbers assume the following values: BiLm = 33.58 and BiRm =
83.96 . The unitless vapour pressure varies sinusoidally over the time according to the
following expressions:

uL∞ (t ?) = 1 + 0.7 · sin 2
(
2 · π · t ?/48

)
+ 0.1 · sin

(
π t ?/120

)
,

uR∞ (t ?) = 1 + 0.9 · sin 11
(
(π · t ? + 70)/168

)
.

The properties are dimensionalized with the following reference values:

cm, 0 = 0.0034 and km, 0 = 8.9327 · 10−10 .

For the dimensionless properties of the material, they can be written as:

c ?m (u) = 36.91 · u4 − 99.9 · u3 + 90.99 · u2 − 34.01 · u + 7.018 ,

k ?m (u) = 1.368 + 9.478 · 10−3 · exp (1.457 · u 3) .

3.1.3 Assessment performance for the numerical solution

All the numerical results in this thesis are computed using the MatlabTM environment
(Matlab, 2017b). To analyse the accuracy of the proposed method, the error between the
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solution unum, obtained by one of the numerical methods, and the reference solutions u ref ,
are computed as functions of x by using the following Euclidean norm:

ε 2 (x ) def:=

√√√√ 1
Nt

·
Nt∑
n= 1

(
unnum (x , tn ) − unref (x , tn )

) 2
,

where Nt is the number of temporal steps and u is the vapour pressure dimensionless
field. The reference solution u ref (x, t) is computed by using the MatlabTM open source
toolbox Chebfun (Driscoll et al., 2014). It is an open-source software system used for
numerical computing. Chebfun is capable of dealing with linear and nonlinear differential
and integral operators. By using pde solvers, it enables to compute a numerical solution of
a partial derivative equation with theChebyshev polynomials adaptive spectral methods.
The Chebfun solution is used as reference because it is not an efficient method. It has
a good solution accuracy but for solving the type of problem of this work it has a low
computational speed.

Moreover, the global L∞ error is given by the maximal values of ε 2 (x ) :

ε∞
def:= sup

x ∈ [ 0 , ` ]
ε 2 (x ) .

We state that if the error is above the maximum limit of ε∞ 6 10−2, the solution provided
by the numerical scheme is not considered to be accurate enough.

Another criterion of evaluation is the computational (CPU) time t cpu [s] spent by the
numerical model to compute the solution. The measurement is carried out using the
MatlabTM platform and a computer with a processor Intel R©CoreTMi5 @ 2.80GHz×4 and
16GB of RAM. The ratio R cpu is defined by:

R cpu
def:= t cpu

t ◦
,

where t ◦ is a reference time. One should notice that the codes are not optimized, and the
slight differences between the CPU time should not be considered.

For the flow, the Euclidean error (distance) is computed as:

ξ ( t ) def:=
√(

g ref (x i, t) − g num (x i, t)
)2
,

where g ref is the reference flow computed with Chebfun solution and g num is the flow
computed with other solutions. The global L∞ error of the flow is given by the maximum
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value over time of ξ ( t ) :

ξ∞
def:= sup

t ∈ [ 0 , τ ]
ξ ( t ) .

In this document, when we refer to Implicit scheme that means the Euler method of
finite-difference approximation with backward-time and centred-space (BTCS) discretiza-
tion. For nonlinear problems, the Implicit scheme uses the fixed-point algorithm to perform
sub-iterations at each time step to converge the solution. Here, N denotes the number
of iterations performed by the algorithm. In addition, when we refer to Explicit scheme
that means the Euler method of finite-difference approximation with forward-time and
centred-space (FTCS) discretization.

3.1.4 Results and discussion

Simulations with the numerical methods described in the previous chapter are pre-
sented here. They are compared with the Implicit scheme and with the reference solution
so that the accuracy can be evaluated.

DuFort–Frankel scheme

The classical Explicit scheme is generally avoided when dealing with building physics
simulations, due to the Courant–Friedrichs–Lewy (CFL) (Courant et al., 1928) sta-
bility condition that restrains the temporal discretization to prohibitively small time steps.
By employing the Explicit scheme, the time step must satisfy:

∆t ? 6

(
∆x ?

) 2

2 ·min
u

 c ?m(u)
Fom · k ?m(u)

 . (3.5)

With the given parameters of the case study, the CFL condition is ∆t ? 6 8.5 · 10−4,
corresponding to a physical time step of 3.1 s , which is considerably low.

The DuFort–Frankel scheme is also an explicit scheme. However, it is uncondi-
tionally stable according to the Von–Neumann stability condition, as shown in preced-
ing chapter on Section 2.2. To asses numerically this affirmation, the first simulation is
computed using the DuFort–Frankel scheme, considering a spatial discretization pa-
rameter of ∆x ? = 10−2 and a time step of ∆t ? = 10−2, which is 12 times larger than the
CFL stability condition. Figure 3.5(a) presents the vapour pressure profiles at different
times during the simulation. A good agreement between the reference solution and the
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DuFort–Frankel scheme is observed. It shows that the method provides a stable and
reliable solution even for higher time steps than one given by the CFL restriction.

The time evolution of the fields at the surfaces of the material is presented in Fig-
ure 3.5(b). The vapour pressure at x = 0 m varies according to the frequency of the
relative humidity at the left side, and the vapour pressure at x = 0.15 m varies according
to the frequency at the right side. It is noticed that moisture diffuses faster when its
content is higher within the material.
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Figure 3.5: Vapour pressure profiles at t = 24 h, t = 48 h and t = 84 h (a) and its evolution at
the edges of the material (b).

The errors between the reference solution and the ones computed with the DuFort–
Frankel and the Implicit schemes are given in Figure 3.6. For the Implicit scheme, the
same discretization parameters where considered. For the iterative process, a tolerance
of η 6 10−5 has been used for the convergence of the sub-iterations, using a fixed-
point algorithm. It confirms that both numerical schemes enable to compute an accurate
solution, at the order of 10−3 , with the Implicit being slightly more accurate than the
DuFort–Frankel scheme by considering the same spatial and temporal discretizations.
However, the time necessary for simulating the solution with the Implicit scheme is 20 times
higher than the one with the DuFort–Frankel approach, as reported in Table 3.3. The
implicit scheme requires around 9 sub-iterations per time step to treat the nonlinearities
of the problem. The DuFort–Frankel approach computes directly the solution and
therefore has a reduced computational cost, which is only 5 % of the Implicit scheme
based code.

A parametric analysis of the behaviour of the three numerical schemes namelyDuFort–
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Figure 3.6: Error ε 2 as a function of the spatial domain x .

Reference Implicit DuFort–Frankel
ε∞ — 9.15 · 10−4 1.35 · 10−3

t cpu 43.94 s 28.05 s 1.37 s
R cpu 160 % 100 % 5 %

Table 3.3: Error ε∞ and computational time of the solutions simulated with the same discretiza-
tion values ∆t ? = 10−2 and ∆x ? = 10−2 .

Frankel, Implicit and Explicit schemes is carried out for different values of the temporal
discretization ∆t ?, while the spatial discretization is maintained to ∆x ? = 10−2. Results
of the error ε∞ are shown in Figure 3.7(a) and the respective computational times for each
simulation is given in Figure 3.7(b). As expected, the Explicit scheme was not able to com-
pute a solution when the CFL stability condition is not respected. The value computed
from Equation (3.5), around ∆t ? . 8·10−5 is in accordance with the results from the con-
vergence study. It also confirms that the DuFort–Frankel scheme is unconditionally
stable, as it computes a solution for any discretization parameter ∆t ?. However, the error
grows faster than those for the Implicit scheme. By using theDuFort–Frankelmethod,
the maximum value for the time step that provides an accurate solution is ∆t ? = 5 ·10−2,
equivalent to 3 min. For time steps greater than this, the error of the solution is not ac-
ceptable. Even though, if the Implicit is used with a time step of ∆t ? = 2 ·10−1 ≡ 12 min
the computational time to perform this simulation is still higher than the one used by the
DuFort–Frankel scheme with a smaller time step of ∆t ? = 2 · 10−2 ≡ 1.2 min, which
provides a solution with the same order of accuracy ε∞ ' O

(
5 · 10−3

)
. These values are

indicated by double-arrow in the Figures 3.7(a) and 3.7(b). The problem with the Implicit
scheme is that when we increase the time step, the number of sub-iterations also grows,
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making the cost at each time step higher. This phenomenon is illustrated in Figure 3.8,
presenting the average number of sub-iterations required by the fixed-point algorithm to
perform the simulation for the respective time step.
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Figure 3.7: Error ε∞ computed between the reference solution and the other numerical schemes
as a function of ∆t ? (a) and the respective ratio of the computational time R cpu to perform each
simulation with relation to t ◦ = 449.3 s (the maximal computational time t cpu of the Implicit
simulation) (b).
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Figure 3.8: Average number of sub-iterations of the Implicit scheme as a function of time
discretization ∆t ? .

A second parametric analysis is also performed to evaluate the behaviour of the
DuFort–Frankel scheme, by modifying the discretization values of the temporal and
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spatial grids, as presented in Figure 3.9(a). When ∆t ? is higher than ∆x ?, the inconsis-
tency in the DuFort–Frankel scheme becomes apparent and the error starts to grow.
This happens, since the DuFort–Frankel scheme modifies the original parabolic equa-
tion to a hyperbolic equation, in which the term τ · ∂

2u

∂t 2 is added to the original equation.
To reduce this term influences as much as possible the solution, the parameter τ must
be small, according to the consistency analysis in Equation (2.7). For this reason, when
τ

∆t ? > 1 , the error begins to grow, as shown in Figure 3.9(b). This figure presents the

error as a function of τ

∆t ? , which was computed with a constant value for the diffusivity
α := Fom = 0.042 . If large time steps are required, then one must also use large spatial
grid. However, a balance is required, since there is a limit on the accuracy related to large
time and spatial steps. For example, for ∆t ? = 5 · 10−2, equivalent to 3 min , the ideal
spatial step would be around ∆x ? = 4 ·10−2 in order to have an error of ε∞ ' O

(
10−3

)
.
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Figure 3.9: Error ε∞ computed for different ∆x ? as a function of ∆t ? (a) and as a function of
τ/∆t ? (b).

As illustrated, the choice of the discretization parameters has strong influences on
the computed solution. When analysing the error of the DuFort–Frankel scheme
as a function of the time discretization ∆t ? , three regions have been highlighted. The
first one corresponds to small discretization parameter ∆t ? 6 10−3, where all schemes
provide accurate solutions with different computational costs. The second region, ∆t ? ∈
[1 · 10 −3, 5 · 10 −2], where the DuFort–Frankel scheme is highly recommended due to
the relation between accuracy and computational time. Finally, the last region, where
∆t ? > 5 · 10−2, which includes larger values of ∆t ?, in which the Implicit scheme is
suggested for its accuracy but does not necessarily imply a reduction on the computational

58



cost.
Another feature regarding too large time steps ∆t ? is that the schemes do not succeed in

representing the physical phenomena. As mentioned in (Gasparin et al., 2018b), the time
step has to be carefully chosen in accordance with the characteristic time of the physical
phenomena. Moreover, in building simulation, the recommended time step is not higher
than 10 min (Dos Santos and Mendes, 2004), which can make the DuFort–Frankel
scheme interesting for such applications.

QUNT

The second numerical method applied in this study is the Quasi-Uniform Nonlinear
Transformation (QUNT), in which the spatial grid is no longer uniform but adaptive. Sim-
ulations using the QUNT approach have considered the following values for the parameters
of the monitor function: α1 = 0.5 , β1 = 0.8 , α2 = 0.7 and β2 = 1.5 . These param-
eters have been determined by our numerical investigations and correspond to accurate
predictions for this case study. These parameters varies between ( 0, 2 ) for simulations
of this kind of problem. For the grid diffusion parameter, an acceptable value tested was
β = 1 ∈ ( 0, 100 ) and for the smoothing parameter was σ = 0.01 ∈ ( 0, 10 ). Simulations
are performed for a time discretization of ∆t ? = 1 ·10−2 and a reduced number of spatial
points Nx = 26 the equivalent to ∆x ? = 4 · 10−2. For initial comparisons, these param-
eters are fixed and, then, a parametric study will be performed. The QUNT method is
first compared to the reference solution and with the Implicit scheme, since it is the main
classical approach used in the literature. For the Implicit scheme, the same discretization
values are considered.

The sample trajectory of the adaptive spatial nodes can be observed in Figure 3.10.
The spatial points concentrate where the values of the gradient are higher, particularly at
the boundaries, where important variations are imposed. As the vapour pressure within
the material rises significantly around the 3rd day it forces the grid nodes to significantly
move due to the high gradients. In the rest of the simulation, the motion of the modes is
determined by the oscillation frequency associated to the left boundary condition.

Figure 3.11(a) presents the computed solutions of the vapour pressure profile for the
time instants of t = 24 h, t = 48 h and t = 84 h. As it can be observed, the spatial nodes
of the QUNT method does not coincide with the uniform grid but both methods provide
stable and accurate solutions. In the Figure 3.11(b), the evolution of the vapour pressure
fields is presented for x = 0 m and x = 0.15 m, the boundaries of the material. The grid
points located at these places are the only ones not to move. They are fixed during the
whole simulation time.
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Figure 3.10: Trajectories of the grid nodes in space-time.
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Figure 3.11: Temperature profiles for the time instants of t = 24 h, t = 48 h and t = 84 h (a)
and its evolution at the edges of the material (b).

The results for the error ε 2 over the time are presented in Figure 3.12, for the QUNT,
the IMEX and the Implicit approaches. The IMEX was added to the comparison since
the QUNT method is based on the IMEX, but with an adaptive spatial grid. The moving
grid modifications have improved the method, which makes it to handle better with the
high gradients than the original IMEX method, providing more accurate results, especially
at the boundaries. This figure shows that the QUNT and IMEX methods have a spatial
accuracy of order of O(10−4), while the Implicit scheme has an accuracy of order of
O(10−3), for the same spatial and time discretization. The maximal error of each solution
computed is reported in Table 3.4. Thus, for the same number of spatial nodes (Nx = 26),
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the QUNT can be 4 times more accurate than the Implicit scheme and 2 times faster.
However, the modifications in the adaptivity of the grid has increased the computational
time. For this simulation, the IMEX method takes half of the simulation time required by
the QUNT method.
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Figure 3.12: Error ε 2 as a function of the spatial domain x .

Implicit IMEX QUNT
Nx 26 26 26
ε∞ 3.32 · 10−3 1.75 · 10−3 7.98 · 10−4

t cpu 8.7 s 1.55 s 4.6 s
R cpu 100 % 18 % 52 %

Table 3.4: Computational time and accuracy of the solutions simulated with the same discretiza-
tion values ∆t ? = 10−2 and ∆x ? = 4 · 10−2.

A convergence study was carried out to compare the QUNT, the IMEX and the Implicit
schemes to evaluate the accuracy and the computational time of the solutions. Thus,
for different values of time steps ∆t ? =

{
10−3 , 10−2 , 10−1

}
, the global error ε∞ and

the computational time t cpu are computed as a function of the number of spatial nodes
Nx ∈ [ 6 , 101 ]. Figures 3.13, 3.14 and 3.15 display the results.

Figures 3.13(a), 3.14(a) and 3.15(a) present the error as a function of the number of
spatial nodes, showing that the QUNT method is more accurate among these methods,
followed by the IMEX and then by the Implicit one. For the QUNT method, as the
number of spatial nodes increases, the global error decreases faster when compared to
the other methods. Besides, for Nx = 6 all methods provide solutions of the field with
approximately the same order of accuracy, which is insufficient to get good approximations
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Figure 3.13: Global error ε∞ computed in function of the number of spatial nodes, for ∆t ? =
10−3 (a) and its respective CPU time necessary to perform the simulation (b).
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Figure 3.14: Global error ε∞ computed in function of the number of spatial nodes, for ∆t ? =
10−2 (a) and its respective CPU time necessary to perform the simulation (b).

of the solution. The QUNT approach proved to be very sensible regarding variations of ∆t.
As ∆t decreases, the moving grid adapts better because the solution becomes practically
smoother.

The difference between the IMEX and the Implicit schemes relies on the computation
of the nonlinear properties at each time iteration. For the IMEX scheme, the coefficients
cm and km are computed at the time tn while for the Implicit scheme, they are computed
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Figure 3.15: Global error ε∞ computed in function of the number of spatial nodes, for ∆t ? =
10−1 (a) and its respective CPU time necessary to perform the simulation (b).

at the time tn+1. This difference avoids the sub-iterations in the IMEX scheme. Thus,
the simulations with the Implicit method are slower than the one obtained by the IMEX
as noticed in Figures 3.13(b), 3.14(b) and 3.15(b).

The only situation in which the Implicit method comes close to the QUNT in terms
of efficiency is when there are smaller spatial and time steps, such as ∆t ? = 10−3 and
Nx = 11. In which the Implicit solution is 1.5 times faster than the QUNT and just
1.4 times less accurate, but still acceptable. These small discretization values make the
Implicit scheme to require less sub-iterations.

One interesting feature of the QUNT method is that it provides accurate solutions
for a lower number of spatial nodes than the other two methods. For example, when
∆t ? = 10−1 only 20 spatial nodes are enough to provide a fast solution. Furthermore, the
solution is more accurate than the Implicit scheme even with 100 spatial nodes. However,
with small quantities of spatial nodes, the computation of the flow may lack the accuracy,
as represented in Figure 3.16. A minimum quantity of points is needed to have a good
approximation of the fluxes, which is around Nx ' 20 for the QUNT method and Nx ' 30
for the other two methods.

Figure 3.16 shows that the computation of the flow is less accurate than the compu-
tation of the field. This happens since the error increases when the derivative has to be
computed. Depending on how the derivative is approximated we can lose one order of
accuracy. The QUNT method also provides solutions for the flux more accurate than the
IMEX method. To obtain even higher accuracy on the flow, it is necessary to increase the
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Figure 3.16: Global error of the flow ξ∞ computed as a function of the number of spatial nodes.

derivative approximation order. In this case, the error of the flux is relatively high due to
the nonlinearity of the case study. For a less nonlinear case, the error of the flux density
can be considerably reduced. The horizontal dashed line indicates the acceptable limit for
the accuracy of the flow. Above this line, the error is not acceptable.

Therefore, it is clearly shown that the QUNT approach computes an accurate solution
of the problem with more efficiency than the Implicit scheme. Moreover, the adaptivity
of the spatial grid increases the accuracy of the solution, making the method to converge
faster with fewer spatial nodes than methods with uniform grids. The only problem with
this method is that it requires the determination of some parameter values, that are
not evident at the first moment. However, this problem can be overcame with gain of
experience in using the method.

MOHL

The Method of Horizontal Lines is also adaptive in space but unlike the Quasi-Uniform
Nonlinear Transformation method the quantity of spatial nodes may vary during the
simulation time, because a boundary value problem is solved at each time step. Simulations
for this case study with the Method of Horizontal Lines (MOHL) are performed using the
solver bvp4c with the relative and absolute tolerances both set to tol = 10−4. The time
step discretization is of ∆t ? = 10−1 while the space step is adaptive and depends on the
solver. The initial guess of the vapour pressure field is composed of 20 spatial nodes. For
the Implicit solution, simulations are carried with the same time step ∆t ? = 10−1 but
with a fixed spatial discretization of ∆x ? = 10−2.

The vapour pressure distribution profiles for t = { 24, 48, 84 } h are presented in
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Figures 3.17(a), for the selected mesh, which is determined by the solver, for the reference
solution and for the refined solution. This last one is an evaluation of the solution that
covers all the interval [ 0, l ] in the chosen points, which are not the same as the selected
mesh of the solver. A good agreement can be observed between the MOHL method and
the reference solution.
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Figure 3.17: Three vapour pressure profiles with the selected mesh determined by the MOHL (a)
and the evolution of the vapour pressure on the edges of the material (b).

Simulation results of the vapour pressure evolution on the boundaries of the building
component (x = 0 m and x = 0.15 m ) are presented in Figure 3.17(b). The proposed
method has been able to follow successfully the variations from the boundary conditions
and represent the solution. The step on the relative humidity at the right boundary can
be observed on the vapour pressure evolution. The vapour pressure diffuses slowly over
the material, since the low influence from the opposite boundary can be experienced.
However, as the material adsorbs the moisture, faster it is diffused, following the indicated
properties.

Note that at each time layer, the number of spatial grid points of the selected mesh
varies, since the distribution of spatial nodes is adaptive, with a minimum of 20 and a
maximum of 178 points, as can be observed in Figure 3.18(a). If the tolerance of the solver
is modified, the number of nodes of the spatial grid would change accordingly. The grid is
further refined (or unrefined) to meet a prescribed error tolerance. The numerical solution
error is estimated by computing the continuous residual (inside the domain and at the
boundaries). Figure 3.18(b) shows the location of the points during the simulation. As
with the QUNT method, the spatial nodes are concentrated close to the left boundary as
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the vapour pressure inside the material is increased. Then, after the third day, the number
of spatial nodes and its location stabilises as the step at the right boundary decreases.
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Figure 3.18: Number of spatial grid points over time (a) and the respected selected grid (b).

The error ε 2 between the MOHL and the Implicit methods against the reference solu-
tion are given in Figure 3.19, which is to the order of O

(
10−3

)
for both methods. The

error of the solution with the MOHL is consistent with the chosen tolerances that was set
to tol = 10−4 and to the discretization on time, that is second-order accurate O(∆t 2) .
It is admissible that the actual error is larger than the prescribed tolerance. The solver
estimates the residual and not the actual error stricto sensu (since the exact solution is
unavailable). It is expected, however, that the error decreases when the tolerance decreases
as shown in Table 3.5.

The accuracy of the solution depends on several factors, one of them is the absolute and
relative tolerances of the solver. To compare different values of the tolerance with the solver
bvp4c, Table 3.5 presents the error ε∞, as well as the number of average mesh points used
by the solver and the computational time to perform the simulations. As the tolerances
become more stringent, the solver adapts the solution making the number of mesh points
to increase, in order to provide a consistent solution with the specified accuracy. The initial
number of points chosen was 20 in all cases. For the tolerance tol 6 10−3, the solutions
are considered to be accurate. However, for tol 6 10−5 the computational time required
to perform simulations rises significantly and becomes prohibitive. Thus the tolerances
recommended would be 10−4 6 tol 6 10−3 .

The computational time required to compute the solution of this case study is provided
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Figure 3.19: Error ε 2 computed over the time with the MOHL and with the Implicit approach.

tol ε∞ Average Nx t cpu

10−6 7.22 · 10−5 722 586.6 s
10−5 1.44 · 10−4 396 228.8 s
10−4 2.33 · 10−3 111 89.43 s
10−3 4.97 · 10−3 61 57.35 s
10−2 2.38 · 10−2 25 36.6 s
10−1 3.47 · 10−2 20 32.2 s

Table 3.5: Maximum error ε∞ computed for different tolerances with the solver bvp4c, consid-
ering ∆t ? = 10−1.

in Table 3.6. For the Implicit solution, it takes on average 11 iterations at each time step
to converge to the solution which increases the global computational time of the method.
However, the MOHL method could not be faster than the Implicit approach. In fact, to
solve the boundary value problem at each time step, makes the method slower but more
accurate and robust. In addition, there is the interpolation of the solution for the desired
grid. Thus, small time steps are not recommended since the computational time would be
too high.

MOHL Implicit
∆t ? 2 · 10 −1 10−1

Nx [20, 58] 101
ε∞ 3.78 · 10 −3 3.09 · 10 −3

t cpu 27 s 7 s

Table 3.6: Features and computational time of the MOHL and Implicit scheme.
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One of the advantages of using the solver bvp4c is that it has as output the respec-
tive derivative of the field, making the computation of the flow straightforward. Thus,
Figure 3.20 presents the total moisture flow (liquid plus vapour) at both boundaries. As
it can be observed, the flow follows variations of the boundary conditions. Furthermore,
the left boundary has higher variations because its convective mass transfer coefficient is
higher than the one at the oppose boundary. The step of relative humidity at the right
boundary can also be observed on the moisture flow which suddenly changes.
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Figure 3.20: Moisture flow at the boundaries computed wit the derivative provided by the MOHL.

The advantages of the proposed method are the adaptive spatial mesh grid according
to the solicitations of the physical phenomena and, as the resulting discretization is fully
implicit, the method is unconditionally stable. This feature is highlighted in Figure 3.21.
The MOHL is more stable for large time steps than the Implicit method. In other words,
the semi-discretization in time is not subject to any kind of restriction regarding the time
step. Thus, the time step can be chosen based on the accuracy considerations solely.
Typically, the MOHL can compute a solution with the same order of accuracy as the
Implicit approach with a time step three times larger.

Spectral

The previous numerical methods tested needed to solve large systems of equations to
compute the solution. The spectral approach considers a reduced system of equations
which can drastically reduce the computational time and it also provides very accurate
solutions.

The discretized method provides a reduced system of ordinary differential equations
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Figure 3.21: Global error ε∞ computed as a function of the time discretization.

(ODEs). If before the methods had to solve a system with approximatively 100 degrees
of freedom per time step, with the Spectral method it is reduced to approximatively 10.
The spectral coefficients {an ( t )} are calculated for every intermediate time instant by the
solver ode15s. This solver is set with the absolute and relative tolerances to tol = 10−4.
The inputs are the initial time, the final time and the time step (optional) and then the
solver supplies the integration at the given time.

Similarly to what has been presented for the previous methods, the profiles of the
vapour pressure and its evolution at the boundaries are given in Figures 3.22(a) and
3.22(b), in order to verify the convergence of the solution. It can be seen the physical
phenomenon is well represented and the Spectral solution is in good agreement with the
reference one. The number of modes used in the discretization was N = 11.

The error ε 2 of the Spectral and of the Implicit methods is given in Figure 3.23. Both
solutions of the problem have been computed with the same discretization parameters,
with ∆x ? = 10−2 and ∆t ? = 10−2, which provide an order of accuracy around O(10−4)
for the two solutions. However, the Implicit scheme needs more time to perform simu-
lations 32.3 s while the Spectral method needed only 1.6 s. To compare the efficiency of
the methods employed, Table 3.7 presents some numerical features: (i) the computational
time, (ii) the average number of sub-iterations and (iii) its respective error. The Spec-
tral method is substantially faster than the other methods. It represents only 5 % of the
CPU time needed for the Implicit approach, to obtain a solution with the same order of
accuracy.

The first three and last three coefficients are shown in Figures 3.24(a) and 3.24(b).
They have been computed with the ODE solver and they are then used to compose the
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Figure 3.22: Vapour pressure profiles at different times instants, at t = {24; 48; 84} h (a) and
its evolution on the edges of the material (b).
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Figure 3.23: Error ε 2 from the solutions computed with the Implicit method and with the Spectral
approach, considering N = 11 modes.

final solution with the Chebyshev polynomials. It can be seen that the first coefficients
have the most significant values with the highest magnitudes, and as the order of the
coefficients rises, their value decreases. The last coefficients are always the smallest ones.
When dealing with Chebyshev polynomial, the magnitude of the last spectral coefficient
determines the error upper limit, acting as an error estimator to the solution (Boyd, 2000).

The spectral solution has been projected over a grid with Nx = 101 spatial nodes so
the results can be analysed. However, as the Spectral method provides a global solution
to the problem, the number of spatial nodes does not influence the accuracy of the final
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Numerical Scheme CPU time (s) CPU time (%) Average iterations Error ε∞
Reference Chebfun 44.1 139 — —
Implicit 31.7 100 8 9.27 · 10 −4

Spectral N = 11 1.6 5 — 6.36 · 10 −4

Table 3.7: Computational time required to perform simulations (∆x ? = 10−2 and ∆t ? =
10−2).
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Figure 3.24: Evolution of the first three (a) and of the last three (b) spectral coefficients an .

result. Figure 3.25(a) can corroborate this statement. The spectral solution remains with
the same accuracy as the number of spatial nodes increases, while the Implicit scheme gets
more accurate, since it is a method based on a local approximation. In fact, to get more
accurate results with the spectral method, one needs to increase the number of modes or to
set more strict tolerances on the ODE solver. For each simulation, the computational time
has been measured and is given in Figure 3.25(b), which proves once more the Spectral
method is very efficient. The computational time almost does not change with the increase
of spatial modes which compose the spectral solution.

To analyse the influence of the number of modes on the spectral solution, Figure 3.26
presents the error ε 2 for the Spectral solution computed using different number of modes,
for the discretisation parameters set to ∆x ? = 10−2 and ∆t ? = 10−2. As the number
of modes increases, the solution of the Spectral method becomes more accurate. With
9 modes we already have a satisfactory solution to the problem, with the absolute error
of the order of O(10−3) , while the solution with 8 modes is not enough. However, if the
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Figure 3.25: Error ε∞ as a function of the number of spatial nodes Nx (a) and the computational
time spent in each simulation (b).

problem is linear, the number of modes required can be even further reduced. In Gasparin
et al. (2019a), in the linear case, 6 modes were enough to compose a sufficiently accurate
solution.
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Figure 3.26: Error ε 2 computed for different numbers of modes N .

The other factor influencing the Spectral solution is the tolerance of the solver. For this
reason, a convergence study is performed to verify the efficiency of the proposed method.
The discretization parameters are the same as in the previous study, while the number of
modes N of the Spectral solution and of the tolerance of the solver vary. Figure 3.27(a)
presents the maximum error ε∞ as a function of the number of spectral modes. As we
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increase the number of modes, the solution is more accurate, converging exponentially as
expected by the theoretical results (Boyd, 2000). The smoother a problem is, the faster is
its convergence. One can observe that the solution converges to a minimum value after a
certain number of modes, which is related to the tolerance of the ODE solver. In addition,
the computational time to perform each spectral simulation is presented in Figure 3.27(b).
The computational effort to perform the simulation increases with the number of modes.
However, it remains extremely low.
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Figure 3.27: Maximum absolute error as a function of the number of spectral modes (a) and
their respective CPU simulation time (b).

Figure 3.28 displays the Fourier power spectrum of the signal frequency per unit of
time, at the left and right boundaries and at the middle of the material. The picks of
energy are higher on the left side of the material, which generates the highest gradients.
Some oscillations due to aliasing errors may occur, as the ones around 5·10−1 Hz. However,
the power of this frequency is very low compared to the highest peak. It corresponds to a
difference of 7 orders of magnitude, which does not cause problems to the solution.

The analysis of error ε∞ as a function of the time step ∆t is shown in Figure 3.29. As
shown in the previous study, the implicit scheme is first-order accurate in time. However,
the way the spectral method is implemented does not allow it to be evaluated. Since the
ODE15s was employed, it does not matter how large the time step is, because the solver
will use the adapted one that is convenient to meet the tolerance and then supply the
solution at the time instant required by the user.

Therefore, the spectral reduced-order model has shown a high accuracy and perfect
agreement with the respective reference solutions. The advantage of the proposed method
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Figure 3.28: Fourier power spectrum of the Spectral solution computed at the boundaries and
at the middle of the material x = { 0; 0.075; 0.15 } .
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Figure 3.29: Error ε∞ as a function of the time step ∆t .

is the low computational burden which makes it very efficient.

Reduction of computational efforts

When different numerical methods must be compared, one option is to have a solution
with the same order of accuracy and, then, evaluate the computational time required.
Therefore, Table 3.8 provides the computational time required to compute each solution
for the numerical method indicated. Simulations have been performed with different dis-
cretization values for each numerical method, in order to give a solution with the same
order of accuracy, in this case ε∞ ' O(10−3).

The Reference solution is used to evaluate the accuracy of the numerical methods while
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Reference Implicit DuFort-Frankel QUNT MOHL Spectral N = 10
∆t ? 10−1 10−1 3 · 10−2 2 · 10−1 2 · 10−1 2 · 10−1

∆t [min] 6 6 1.8 12 12 12
∆x ? 10−2 10−2 2 · 10−2 — — 10−2

∆x [cm] 0.15 0.15 0.3 — — 0.15
Nx 101 101 51 41 [ 20, 58 ] 101
tol — — — — 10−3 2.7 · 10 −3

ε∞ — 3.13 · 10−3 3.22 · 10−3 3.39 · 10−3 3.78 · 10−3 3.11 · 10−3

t cpu [ s ] 9.4 5.3 0.3 0.3 27 0.3
R cpu 1.8 1 0.06 0.06 5.1 0.06

Table 3.8: Computational time of the solutions with the same order of accuracy O
(
3 · 10 −3).

the Implicit scheme is used as a reference to the computational run time since it is the
most widely applied method in the building physics domain.

To tell which method is the best, it depends on the circumstances and on the demand
of the user. For the case presented, to get this order of accuracy, three methods have
shown a significant reduction of computational efforts: the DuFort–Frankel method,
the QUNT and the Spectral method. Even if the time step of the DuFort–Frankel
method is not as large as the other methods, it provides a solution with the same order
of accuracy and still reduces computational costs. However, if one still needs to use large
time steps, other methods such as the QUNT, the MOHL and the Spectral one can achieve
the goal with a satisfactory accuracy. It is important to point out that the MOHL requires
a great computational effort compared to the other methods. Due to the sharp gradients
of this problem, at each time step, the bvp solver requires much more time to calculate
the converged solution.

The efficiency of a numerical method is defined here as the combination of accurate
solutions with the minimum of computational efforts. If one wants to reduce computational
costs by simply increasing the time step value, one must pay attention to the minimal
accuracy required. Reductions on computational costs due to large time steps are penalized
with loss of accuracy. In this way, the methods presented here can be attractive alternatives
to reduce computational costs without losing accuracy.
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3.2 Numerical experiment 2: a parametric problem

The issue of solving a parametric problem is to compute the solution of P v depending
not only on the time and space coordinates x and t, but also depending on another
parameter of the problem, such as the moisture diffusivity coefficient α. Thus, the family
of solutions sought are:

P v : Ix × I t × Iα −→ IR ,

(x, t, α) 7−→ P v (x, t, α) ,

where α is defined as a coordinate of the problem within a given interval α ∈ Iα ≡
[αmin, αmax ] , in which Nα is noted as the number of elements (the cardinal) of the domain.

By using the spectral method, two approaches can be adopted to solve this kind of
problem. The first one is to compute the solution P v (x, t) for each value of the parameter
α , by means of a loop in the algorithm. Other classical numerical methods may also use
this approach. The second option is to see the problem as if it were a two dimensional space
problem, but without any boundary conditions or derivatives regarding this parameter in
the governing equation. Thus, the solution is sought as a decomposition on each coordinate
of the problem (as presented in Section 2.5.2).

3.2.1 Mathematical Model

Assume that the transport coefficients of Equation (3.1) are positive constants:

cm = const > 0 and km = const > 0 .

Then, the moisture transfer equation can be written in a simplified way:

∂P v

∂t
= α · ∂

2 P v

∂x 2 , (3.6)

where α def:= km/cm [m2/s] is the diffusivity coefficient. For the parametric problem,
α ∈ Iα and the vapour pressure field is computed as P v : (x, t, α) 7−→ P v (x, t, α) .

Boundary conditions. The boundary conditions that complete the problem are ex-
pressed as:

km ·
∂P v

∂x
= hLm ·

(
P v − P L

v,∞

)
, for x = 0, t > 0 and ∀α ∈ Iα ,
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− km ·
∂P v

∂x
= 0 , for x = `, t > 0 and ∀α ∈ Iα ,

recalling that hm [s/m] is the convective transfer coefficient, which is constant in time
hm = const > 0, that L represents the left boundary side and that P L

v,∞ [Pa] is the
vapour pressure of the ambient air which varies with time as a known function:

P L
v,∞ : t 7−→ P L

v,∞ (t) .

Initial condition. A uniform vapour pressure distribution is considered as the initial
condition within the material:

P v (x, t = 0, α) = P v, i .

Dimensionless representation

As discussed in the previous case study, it is important to get a dimensionless formula-
tion of the problem to be simulated. Therefore, let us consider the following dimensionless
quantities:

u
def:= P v

P v, 0
, u∞

def:= P v,∞

P v, 0
x ?

def:= x

`
,

t ?
def:= t

t 0
, α ? def:= α · t 0

` 2 , Bim
def:= hm · `

km
,

where the subscript 0 denotes a reference value, chosen according to the problem un-
der consideration and the superscript ? represents a dimensionless quantity of the same
variable. Therefore, Equation (3.6) can be written in a dimensionless form as:

∂u

∂t ?
= α ? · ∂

2 u

∂x ? 2 ,

for x ? ∈ ] 0, 1 [ , t ? > 0 and α ? ∈ Iα∗ = [α ?
min, α

?
max] . The dimensionless formulation

of the boundary conditions are:

∂u

∂x ?
= BiLm ·

(
u − uL∞

)
, for x ? = 0, t ? > 0 and ∀α ? ∈ Iα∗ ,

− ∂u

∂x ?
= 0 , for x ? = 1, t ? > 0 and ∀α ? ∈ Iα∗ ,
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where we have the Biot number and the dimensionless ambient vapour pressure given by
the mappings:

BiLm : α ? 7−→ BiLm (α ?) and uL∞ : t ? 7−→ uL∞ (t ?) .

Lastly, the dimensionless initial condition is:

u (x ?, t ? = 0, α ?) = 1 .

Therefore, the dimensionless problem is solved by means of the spectral method in the
case study described next.

3.2.2 Description of the case study

For this case, we seek for a parametric solution of Equation (3.6). The vapour pressure
is computed as a function of time t , space x and the moisture diffusivity coefficient α of
different materials. The left boundary is exposed to cyclic changes of relative humidity
between 33 % and 75 % , with a 24 h period as presented in Figure 3.30. The total time
of simulation is four days, the equivalent to 96 h . The convective vapour coefficient is
set to h v = 2 · 10−8 s/m . The right boundary is set impermeable, with a null flow.
The initial condition is homogeneous among all materials with a vapour pressure value of
P v, i = 925.46 Pa , the equivalent to 33 % of relative humidity. Simulations undergo at a
constant 23◦C temperature that leads to a saturation pressure of 2804.4 Pa. All materials
have the same 10-cm length with the properties given in Table 3.9. The moisture diffusivity
varies within the segment Ωα = [1.97·10 −10, 2.19·10 −8] m2/s. This case study is inspired
in the one presented by Rode and Peuhkur (2006), including the material properties, to
study the so-called moisture buffer effects.

Material Density
ρ [kg/m3]

Vapour permeability
δ v [s]

Moisture capacity
c [kg/kg]

Moisture diffusivity
α [m2/s]

Aggregate concrete 1500 1 · 10−11 0.0950 α 1 = 5.13 · 10−10

Birch 600 1.5 · 10−11 0.1667 α 2 = 2.26 · 10−9

Spruce board 430 1.5 · 10−11 0.1905 α 3 = 1.97 · 10−10

Gypsum 1000 2.5 · 10−11 0.0310 α 4 = 5.50 · 10−9

Cellular concrete 500 7 · 10−11 0.0714 α 5 = 2.19 · 10−8

Brick 1600 3 · 10−11 0.0024 α 6 = 4.20 · 10−10

Table 3.9: Properties of the materials used in the parametric case (Rode et al., 2005).

78



0 1 2 3 4

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.30: Evolution of the relative humidity at the left boundary on the parametric case.

Dimensionless parameters. The reference time is t 0 = 1 h ≡ 3600 s, thus, the final
simulation time is fixed to τ ? = 96 . The reference vapour pressure was taken the same
as the initial condition P v, 0 = 925.46 Pa. At the left boundary, the Biot number assumes
different values, depending on the material: BiLm = [ 200, 133.33, 133.33, 80, 28.57, 66.67 ],
in this order from α 1 to α 6. The vapour pressure varies sinusoidally over the time following
the mapping:

uL∞ (t ?) = 1 + 1.3 · sin 2 (2 · π · t ?/48) .

The dimensionless properties of each material are:

α ?
1 = 7.084 · 10 −5 , α ?

2 = 1.514 · 10 −4 , α ?
3 = 1.848 · 10 −4 ,

α ?
4 , = 8.141 · 10 −4 , α ?

5 = 1.979 · 10 −3 , α ?
6 = 7.887 · 10 −3 .

3.2.3 Results and discussion

Simulations are performed for 6 different values of moisture diffusivity coefficients in
the segment Ωα, representing the materials of Table 3.9. The Spectral-Parametric model
is compared with the Implicit scheme, with the Spectral method using a loop over the
parameter values and also with the reference solution, obtained with the Chebfun toolbox.

Figure 3.31(a) shows the profiles of vapour pressure within each material at the time
instant t = 48 h. It is possible to observe significant variations of the vapour pressure
within each material as the value of the moisture diffusivity coefficient increases. Further-
more, Figure 3.31(b) presents the evolution of vapour pressure near the left boundary, at
x = 1 cm . In these figures, the Spectral-Parametric approach is in a good agreement with
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Figure 3.31: Vapour pressure profiles for each one of the materials at the time instant of t = 48 h
(a) and the vapour pressure evolution near the left boundary at x = 1 cm (b).

the reference solution. However, some oscillations can be observed in Figure 3.31(a) only
for α1. This occurs because the diffusivity coefficient is very low and the number of modes
was not enough to support the stiffness of the problem.

In addition, with the simulated solution, it is possible to verify the variation of moisture
content of each material. For this, Figure 3.32 presents the quantity of water in grams per
kilogram of material, over the time. There are some materials that retain more moisture
than others, which can help to determine the Moisture Buffer Effect (MBV). The material
of the curve on the graphic corresponding to αmin retains very low quantity of mass while
the material of αmax accumulates more the moisture according to the increase of ambient
relative humidity.

To perform the parametric simulation, the Spectral-Parametric needed aroundN = 19
modes for the spatial base functions and M = 6 modes for the parametric base functions,
with the tolerance of the solver ode15s set to tol = 10−5. The solution is projected on
a grid composed by ∆x ? = 1 · 10 −2 and ∆t ? = 1 · 10 −2. To have the same order of
accuracy, the Implicit scheme was discretized with a time step equal to ∆t ? = 1 · 10 −3

and a spatial step of ∆x ? = 5 · 10 −3. One can observe that the number of modes of
the Spectral-Parametric approach is higher. Moreover, the discretization of the implicit
scheme is very refined. This happened because the Aggregate concrete material has a very
slow diffusion process with a low value of the diffusivity coefficient, which concentrates
high gradients near the left boundary and slows down the moisture diffusion through the
material.
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Figure 3.32: Evolution of the mass variation of each material.

The Spectral-parametric model applies two different techniques of spectral methods,
the Tau–Galerkin approach for the spatial basis function and the Collocation method
for the parameter basis function. Both basis functions are the Chebyshev polynomials.
The classical collocation points for the Chebyshev basis are the extrema points (Forn-
berg, 1996). However, as the application is not the classical one, different collocation
points have been tested and are presented in Table 3.10. As a matter of fact, the best
collocation points are the value of the respective parameter to be simulated because during
the simulation these actual values of the parameter are required.

Collocation points ε∞

α k α 1 α 2 α 3 α 4 α 5 α 6

Itself 3.79 · 10 −3 4.53 · 10 −4 2.34 · 10 −4 1.95 · 10 −6 1.67 · 10 −6 1.32 · 10 −6

Extrema 3.79 · 10 −3 6.12 · 10 −2 7.22 · 10 −2 3.47 · 10 −2 1.22 · 10 −1 1.29 · 10 −5

Equi-spaced 3.79 · 10 −3 7.27 · 10 −2 8.79 · 10 −2 5.55 · 10 −2 1.13 · 10 −1 1.35 · 10 −5

Table 3.10: Error ε∞ for the solution of each parameter for different collocation points.

The error ε 2 is shown as a function of space for each material in Figure 3.33(a) for the
Spectral-Parametric solution and in Figure 3.33(b) for the Implicit solution. The methods
are built to give a minimum order of accuracy, around O( 10−3 ) . As the value of the
moisture diffusivity coefficient increases, the error decreases because the diffusion process
becomes less stiff to solve. It can be noticed that the Implicit scheme faces difficulties to
treat the oscillations at the left boundary while the Spectral parametric has a solution
more homogeneous over space.
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Figure 3.33: Error ε 2 computed for the Spectral-parametric solution (a) and also computed for
the Implicit solution.

The Spectral-parametric is also compared with the Spectral solution using a loop over
the values of the parameter. Both solutions are computed using the same quantity of modes
for the spatial basis N = 19 and the same tolerance of the solver tol = 10−5. The speed
of calculation is higher for the spectral-parametric approach as reported in Table 3.11.
These results are also commented in (Gasparin et al., 2018d). Indeed, the number of
modes in the Spectral-parametric approach increases by considering a new parameter as
another coordinate, making the integration in time slower than computing the solution
for each parameter. However, both approaches are able to compute the solution of the
parametric problem faster than the reference solution and the Implicit scheme, for the
same order of accuracy.

Method ε∞ of αmin ε∞ of αmax t cpu R cpu

Reference — — 132.35 s 5.27
Implicit 2.71 · 10 −3 2.67 · 10 −5 25.10 s 1
Spectral-Parametric 3.79 · 10 −3 1.33 · 10 −6 5.29 s 0.21
Spectral 3.79 · 10 −3 1.11 · 10 −5 2.06 s 0.08

Table 3.11: Computational time required to compute the parametric problem and the error ε∞
of solution of αmin and αmax.

Figure 3.34(a) presents the last spectral coefficients of the solutions. The magnitude
of the spectral coefficients is higher than the error of the solution O(10−6) for αmax and
O(10−3) for αmin . It happens because the collocation points do not correspond for the
optimal convergence of the solution. They are chosen according to the specific value of the
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parameter α k . Thus, the Theorem 6 (Boyd, 2000, Page 47) is not valid for this specific
case. Nevertheless, if one works with an interval of variation of the parameter (and not
determined values), the collocation points can be chosen in their optimal way. In this case,
the order of magnitude of the last coefficients would be closer to the order of the error.

Figure 3.34(b) shows the Fourier power spectrum function of the signal frequency
per unit of time, generated by the fast Fourier transform. The peak on the energy is
due to the sinusoidal signal at the boundary, since it is the only parameter that interferes
on the transient solution.
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Figure 3.34: Last spectral coefficients (a) and the Fourier Power Spectrum at the left boundary
(b) for each material.

The convergence of the basis function of the parameters is presented in Figure 3.35(a).
As it can be observed, it drops at different rates with the increase of the number of
modes. Up to 8 parameters the ideal number of modes or collocation points is the quantity
of parameters itself. For more than 8 parameters, it does not worth to increase the
number of modes because the computational efforts are not saved. The computational
run time of each simulation is presented in Figure 3.35(a). As it can be observed, between
M = 10 and M = 15 modes the computational cost doubles. The computational run
time increases because there is still N = 19 modes of the spatial basis function. Thus,
the number of degrees of freedom for these two cases are N ·M = 19 · 10 = 190 and
N ·M = 19 · 15 = 285 .

Figure 3.36 shows the computational run time as a function of the number of elements
of the parameter α k . As expected, the large original model, based on the Implicit scheme
requires an important extra time to compute the parametric solution. Both Spectral ap-
proaches have significantly reduced the computational cost compared to the large original
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Figure 3.35: Convergence of the Spectral modes M (a) and its computational run time (b) for
different quantities of parameters α k.

model. One interesting result is that the Spectral-parametric model becomes more inter-
esting when the solution has to be computed for more than 30 values of the parameter.
The computational time of the Spectral-parametric and the Spectral-loop are almost the
same. This occurs because the number of modes M stops growing after 8 parameters,
which are enough to give a solution with a minimum order of accuracy around O(10−3).
Therefore, if one needs to compute a parametric solution with a large number of these
parameters the Spectral-parametric model would be strongly recommended.
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Figure 3.36: Computational time t cpu as a function of the number of elements Nα .

The advantage of the Spectral-parametric method is related to its ability to compute at
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once the solution depending on the three coordinates, whereas the Spectral and the Implicit
approaches compute the solution for each value of the desired parameter independently
one-by-one with a loop. It should be noted that the Implicit approach is a low-order
approximation that provides a solution less accurate than the one obtained by the spectral
ones.

3.2.4 Tensor representation of the solution

As the solution of the problem depends on more than two parameters, an interesting
option is to have a tensorial representation of the solution. By using a 3rd order tensor,
it can represent the solution with discrete points, as the one presented in Figure 3.37. In
this figure, we have four slices of α and four slices of x for all values of t .

Figure 3.37: Tensor representation of the solution P v (x, t, α).

The problem with the discrete tensor representation is that they demand a high CPU
memory to work and to storage. Thus, a solution to this problem would be to decompose
the tensor with low-rank approximations to compress the high-dimensional data. Remark
that this process is performed after obtaining the solution using one of the numerical
methods.

The most popular tensor decomposition method is the Canonical Polyadic Decompo-
sition (CPD), also known as CANDECOMP-PARAFAC decomposition (CANonical DE-
COMPosition or PARAllel FACtors model) (Carroll and Chang, 1970; Harshman, 1970),
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which is similar to the Singular Value Decomposition (SVD) method for matrices. The
SVD method decomposes the original matrix into a product of three other matrices, two
unitary matrices and a diagonal matrix, reshaping the original matrix.

The idea of the Canonical Polyadic (CP) method is to decompose approximatively the
third-order tensor U of size Nx × Nt × Nα :

U =
(
u i j k

)
∈ IRNx×Nt×Nα ,

into the sum of rank-one tensors, such as a, b and c:

U ≈ Ũ =
R∑
r=1

λ r a r ◦ b r ◦ c r ,

where ◦ denotes the vector outer product, and a r ∈ IRNx , b r ∈ IRNt and c r ∈ IRNα for
r = 1, 2, . . . , R (Kolda and Bader, 2009).

In this work, the toolbox developed by Bader et al. (2017) has been used to decompose
the tensor of the parametric solution, with the function cp_als. This function is based
on an alternating least-squares algorithm (Phan et al., 2012). The original tensor file
containing U has a size of ≈ 44.39 MB. After performing the CP decomposition, the
size of the new file containing the decomposed tensor Ũ is of 1.11 MB, which is 40 times
smaller, as can be seen in Table 3.12. The number of ranks used is R = 15, which provides
a compressed tensor with errors ε∞ = 1.52 · 10−2 and ε 2 = 2.37 · 10−3 . We can say that
Ũ is a rank-15 approximation to U. If one wants to compress even more the tensor, it is
possible to reduce the ranks value but the accuracy of the compressed tensor would be
degraded. The computational effort to decompose the tensor is very low, in this case, for
rank 15, it was of 0.91 s.

Original tensor Decomposed tensor
Nomenclature U Ũ

Matlab class tensor ktensor
Dimension 101× 9601× 6 {15} {101× 15} {9601× 15} {6× 15}
Size 44.39 MB 1.11 MB

Table 3.12: Features of the original and of the decomposed tensors.

The space required to store the solution computed with the implicit method is impor-
tant, representing a file size of 44.39 MB. However, the time to recover one value of the
solution u (x 0 , y 0 , α 0) is equal to 3 · 10−4 s, which is almost instantaneous. By using the
spectral method, the reduced matrix only needs 8.53 MB of storage. The computational
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time to compose one value u (x 0 , y 0 , α 0) scales with 2 ·10−3 s. It is only six times greater
than the Implicit one but the important advantage is the reduction on the storage. With
the tensor obtained by the CP method, the storage of the solution is reduced to 1.11 MB
and the computational time to compose the solution u (x 0 , y 0 , α 0) is 1.2 · 10−3 s. Thus,
in terms of post-processing the solution, the decomposed tensor is more advantageous to
the Spectral method since the storage and the time to access an element are lower.
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Figure 3.38: Error ε 2 (a), computational time t cpu (b) and memory size of the compressed
tensor (c) as function of the number of rank R .

The number of ranks to be chosen depends on the error of the compressed tensor, on
the computational time to perform the compression and also on the size of the compressed
data to be stored. According to Figure 3.38(a), the minimal number of ranks to have
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an acceptable accuracy would be 10. If the computational time to compress the tensor
is taken into account, 10 ranks would be also good, because for lower rank, the solver
needs more iterations to reach the desired tolerance. However, as the number of ranks is
increased, the space needed to store the decomposed tensor also grows but it is still lower
than the original tensor. Thus, based on the three graphics of Figure 3.38, for R ∈ [10, 20]
all values are good options, and the choice of the rank will depend rather on the desired
accuracy.
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3.3 Numerical experiment 3: 2D transport

For the one-dimensional cases, the numerical solutions are validated against a refer-
ence solution computed with the Chebfun package. Unfortunately, the Chebfun does not
simulate yet two-dimensional transient phenomena, so that we need to find another way
to validate the results. For this reason, two case studies are presented in this section. One
simple case, to validate the codes with an analytical solution and a second case with more
complex boundary conditions, which represents better the physics for a real case.

3.3.1 Mathematical Model

Consider the partial differential equation of the moisture diffusion transfer:

cm ·
∂P v

∂t
= ∇

(
km · ∇P v

)
, (3.7)

with the moisture capacity coefficient cm [kg/m3 Pa] and the moisture diffusivity coefficient
km [s] are considered as positive constants:

cm = const > 0 and km = const > 0 .

Thus, the two-dimensional linear diffusion over a plate is given by expanding Equa-
tion (3.7) to become:

∂P v

∂t
= α · ∂

2 P v

∂x 2 + α · ∂
2 P v

∂y 2 , (3.8)

where α def:= km/cm [m2/s] is a constant diffusivity coefficient and the spatial domains are
given by x ∈ [ 0, ` ] and y ∈ [ 0, h ]. The diffusion process is considered isotropic and the
vapour pressure field of the plate, at position (x, y) and time t is denoted by P v (x, y, t) ,
which is depicted in Figure 3.39.

For the validation case, the vapour pressure value is imposed at the boundaries of the
spatial domain using Dirichlet-type conditions:

P v (0, y, t) = P L
v,∞ , P v (`, y, t) = P R

v,∞ ,

P v (x, 0, t) = P B
v,∞ , P v (y, h, t) = P T

v,∞ ,

with P v,∞ = const .
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Figure 3.39: Two dimensional wall model.

On the other hand, for the other case study, mixed boundary conditions are imposed:

km ·
∂P v

∂x

∣∣∣∣
x= 0

= hLm ·
(
P v − P L

v,∞ (y, t)
)
, P v (`, y, t) = P R

v,∞ (t) ,

∂P v

∂y

∣∣∣∣
y= 0

= 0 , ∂P v

∂y

∣∣∣∣
y=h

= 0 ,

with vapour exchange at the left boundary, null flow at the top and bottom boundaries
and the prescribed value at the right boundary.

The initial state of the plate is given by:

P v (x, y, 0) = P v, 0 (x, y) ,

which must be compatible with the boundaries to seek for an analytical solution, so the
problem can be strongly well-posed (Kreiss and Lorenz, 1989).

Dimensionless representation

For the transformation of the original mathematical model, consider the following
dimensionless quantities:

u
def:= P v

P v, 0
, u∞

def:= P v,∞

P v, 0
x ?

def:= x

l
, y ?

def:= y

h
,

t ?
def:= t

t 0
, α ?

x

def:= α · t 0

l 2 , α ?
y

def:= α · t 0

h 2 , BiLm
def:= hLm · l

km
,

where the subscript 0 represents a reference value and the superscript ? represents the
dimensionless quantity of the same variable. Thus, Equation (3.8) can be written in a
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dimensionless form as:

∂u

∂t ?
= α ?

x ·
∂ 2 u

∂x ? 2 + α ?
y ·

∂ 2 u

∂y ? 2 . (3.9)

The dimensionless formulation of the boundary conditions for the validation case are:

u (0, y ?, t ?) = uL∞ , u (1, y ?, t ?) = uR∞ ,

u (x ?, 0, t ?) = uB∞ , u (x ?, 1, t ?) = uT∞

and for the other case are:

∂u

∂x

∣∣∣∣
x ? = 0

= BiLm ·
(
u − uL∞ (y ?, t ?)

)
, u (1, y, t) = uR∞ (t ?) ,

∂u

∂y

∣∣∣∣
y ? = 0

= 0 , ∂u

∂y

∣∣∣∣
y ? = 1

= 0 .

Last, the dimensionless form of the initial condition is:

u (x ?, y ?, t = 0) = u 0 (x ?, y ?) .

3.3.2 Assessment performance for the numerical solution

The error between the solution unum, obtained by one of the numerical methods, and
the reference solutions u ref , are computed as functions of x and y by using the following
root mean square error:

ε 2 (x, y ) def:=

√√√√ 1
Nt

·
Nt∑
n= 1

(
unnum (x, y, tn ) − unref (x, y, tn )

) 2
,

where Nt is the number of temporal nodes and u is the vapour pressure dimensionless field.
The reference solution u ref (x, t) in this case is computed using an analytical solution.

Moreover, the global L∞ error is given by the maximal values of ε 2 (x, y ) :

ε∞
def:= sup

(x, y) ∈ [ 0, l ]×[ 0, h ]
ε 2 (x, y ) .

If the error does not respect the limit of ε∞ 6 10−2, the solution provided by the numerical
scheme is not accurate enough for our applications.

Another criterion of evaluation is the computational time t cpu [ s ] spent by the numer-
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ical model to compute the solution. The ratio R cpu is defined by:

R cpu
def:= t cpu

t ◦
,

where t ◦ is the reference time.

3.3.3 Validation

In this section, the Spectral-2D is validated with an analytical solution since the
Chebfun package does not simulate two-dimensional unsteady transport. Analytical so-
lutions are very restrictive and complex problems cannot be solved by them. Therefore,
this part considers a simplified two-dimensional transfer to validate the algorithms. Three
types of numerical approaches are also tested to compare against the Spectral approach,
(i) the Implicit scheme, (ii) the Alternating Direction Implicit (ADI) method (Peaceman
and Rachford, 1955) and (iii) the Explicit scheme.
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Figure 3.40: Initial condition u 0 (x ?, y ?) of the validation case.

The analytical solution. The analytical solution is generated by the Maple software,
considering a the spatial domain [ 0, 1 ] × [ 0, 1 ], with a initial condition given by the
mapping:

u 0 (x ?, y ?) = x ? · (1 − x ?) · y ? · (1 − y ?) ,
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and constant Dirichlet boundary condition:

uL∞ = uR∞ = uT∞ = uB∞ = 0 .

Figure 3.40 shows the initial condition u 0 (x ?, y ?) . Therefore, the analytical solution is
given by the expression:

u (x ?, y ?, t ?) =

1
π 6

∞∑
p= 1

∞∑
q= 1

16 ·
(
(−1) p + (−1) q − (−1) p+q − 1

)
· sin (qπx ?) · sin (pπy ?) · e−αt ?π 2(q 2+p 2)

q 3 · p 3 .

To have a solution with 8 digits of precision, the analytical solution needs a truncation on
the sum of around 10 modes for p and q.

Simulation tests. Simulations are performed with a dimensionless diffusivity coefficient
of α ? = 0.02 for a time horizon of τ = 16, with a time discretization of ∆t ? = 10−2

for the Implicit, ADI and Spectral method. Due to the CFL condition, the Explicit
scheme is simulated with ∆t ? = 10−3 . The spatial discretization parameters are the
same for both directions, ∆x ? = 10−2 and ∆y ? = 10−2 . The Spectral-Collocation
method is implemented with the same number of modes for both spatial bases, N = 11
and M = 11, making a total of N ·M = 121 modes. In addition, the tolerance of the
solver ode15s is set to tol = 10−6 .

This case study allows to see the drying process of the moisture occurring within the
material. For this end, Figure 3.41(a) presents the value of the field u in the middle of
the material (x ?, y ?) = (0.5, 0.5) . As expected, with the course of time, the value of
the dimensionless field tends to merge to the prescribed value at the boundary. All the
numerical methods seem to be in accordance with the analytical solution at this location.
In addition, Figure 3.41(b) presents the field u as a function of x ?, at y ? = 0.5 and for
different instants t ? = [ 0, 2, 4, 16 ] . In fact, the diffusion process occurs until t ? = 16,
where it reaches the steady state.

To better evaluate the solutions, the distribution of the error ε 2 among the x ? and y ?

axes is presented in Figure 3.42, for each numerical solution implemented. The Implicit
method provided the less accurate solution, with an order of O(10−5) while the other
methods provided a solution with an order of O(10−6), which are satisfactory results. The
solution of the implicit scheme looks different from the explicit because the system of
equations to be solved is constructed from a different way. Normally, in building physics
applications, the solutions do not need to be that accurate. In this case, as we are val-
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Figure 3.41: Evolution of the dimensionless moisture field u at the middle of the material (a)
and the error ε of each numerical solution (b).

idating the numerical model, we sought very precise solution since the variation of u is
on the order of O(10−2). Therefore, it can be concluded that all numerical methods have
converged to the appropriate solution.

The tensor corresponding to the Analytical solution was decomposed so it can be stored
and used for the comparisons. The original tensor has a dimension of 101 × 101 × 1601
with a size of 124.6 MB. By decomposing it with an 8-rank approximation its dimension
reduce to {8} {101×8} {101×8} {16016×8} with amounts to only 0.11 MB . The decom-
positions took 0.3 s to be computed and if one needs to compose the original tensor it is
instantaneously done.

Figure 3.43(a) presents the last spectral coefficients of the solutions a i,m with i =
0, 2, . . . , n . In this case, the order of the last spectral coefficients is compatible with
the error, which is of the order of ∼ O(10−5 ∼ 10−6). Figure 3.43(b) indicates the
Fourier power spectrum function of the signal frequency per unit of time. It describes
the distribution of power in frequency space that composes the signal. The spectrum of
u (t) can contain some information about the nature of u . It is possible to verify that
there is no extra signal forcing from the boundaries and that the problem is linear since
there are no other oscillations on the signal frequency.

A convergence study is also performed for the two-dimensional methods. The spatial
steps are fixed to ∆x ? = 2 · 10−2 and ∆y ? = 2 · 10−2 , while the time step varies. The
error ε∞ for the Explicit, Implicit and the ADI approaches as function of ∆t ? is presented
in Figure 3.44. As expected, the Explicit scheme cannot provide a solution for ∆t ? higher
than the CFL stability condition. In addition, the error of the Implicit scheme starts
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Figure 3.42: Error ε 2 among the x ? and y ? axes.
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Figure 3.43: Evolution of the spectral coefficients a i,m (a) and the Fourier Power Spectrum
for (x ?, 0.5) (b).

to grow before the ADI, but both methods have the same order of accuracy O(∆t ?) .
Another interesting feature of the ADI method is that it is faster than the Implicit one,
making the ADI method a better choice between the two-dimensional finite-differences
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schemes. In the next case study, only the ADI method will be used in comparison with
the Spectral-Collocation.

10
-3

10
-2

10
-1

10
0

10
-6

10
-5

10
-4

10
-3

10
-2

CFL

Figure 3.44: Error ε∞ as function of ∆t ? .

A convergence study is also performed for the Spectral-Collocation method but in
relation to the total number of modes N ·M . Since the collocation method is implemented,
the minimum number of modes for each basis function must be 3, which gives a total of
9 modes. Thus, Figure 3.45 gives the error ε∞ as a function of the number of total
modes, considering different tolerances for the ode solver. The two-dimensional Spectral-
Collocation method converges exponentially, at an order of ∼ O

(
exp (C ·N ·M)

)
, where

C is a constant. Between the tolerances, N ·M = 10 · 10 modes is more than sufficient
to have very accurate solutions and N ·M = 7 · 7 modes can provide solutions of order of
O (10−4), which are appropriate for the type of problem that we are dealing with.

The computational time of the solutions to provide a solution with the same order
of accuracy O

(
10−6

)
is given in Table 3.13. The Implicit scheme is the slowest method

between the ones implemented in our study. Indeed, it is slowed down by the inversion of
the matrix A(NxNy×NxNy) on the solution of A ·U = b at each time step. The modification
of the ADI method makes it faster than the Implicit one. Thus, instead of inverting a
very large matrix, it inverses two smaller matrices C(Ny×Ny) and D(Nx×Nx) to obtain the
solution at each time step. Moreover, it is important to mention that the ADI method
is also more accurate for the same discretization parameters. However, the Spectral-
Collocation method is still more efficient compared to the other approaches. The number
of degrees of freedom of the Spectral-Collocation is N ·M , while for the finite-difference
methods is Nx ·Ny. Thus, the degrees of freedom of the Implicit method is 2.5 · 10 3 and of
the Spectral collocation is 81, representing a reduction of 2 orders of magnitude at each
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Figure 3.45: Error ε∞ as a function of the total number of modes N ·M .

time step.

Analytic Explicit Implicit ADI Spectral (NM = 9 · 9)
∆t ? 10−3 10−3 10−3 10−2 10−2

∆x ? = ∆y ? 10−2 10−2 2 · 10−2 2 · 10−2 2 · 10−2

tol — — — — 10−6

ε∞ — 3.54 · 10−6 7.09 · 10−6 5.01 · 10−6 6.88 · 10−6

DOF 10 4 10 4 2.5 · 10 3 2.5 · 10 3 81
t cpu 229.58 s 2.79 s 334.53 s 2.21 s 1.11 s
R cpu 100 % 1.2 % 145 % 0.9 % 0.4 %

Table 3.13: Computational time of the solutions with the same order of accuracy O
(
10−6).

Therefore, the next case study will be solved only by the Spectral-Collocation and the
ADI methods since their efficiency proved to be the most satisfactory.

3.3.4 Description of the case study

For this case, the left boundary is considered as Robin–type, which increases the
difficulty of the problem. The vapour pressure is computed as a function of time t within
a plate of size 0.1×0.5 m . The material of the plate is the cellular concrete whose properties
are given in Table 3.9. The left boundary is exposed to cyclic changes of relative humidity
between 33 % and 89 % , with a 24 h period, which also changes according to the position y.
The top and bottom boundaries are set impermeable, with null flow and the left boundary
varies smoothly in a step. Figure 3.46(a) and 3.46(b) presents the variations of the ambient
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relative humidity at the left and right boundaries of the material, respectively. Due to the
complexity of the boundary conditions, analytical solutions for this kind of problem are
not simple and sometimes not possible to generate.

The total time of simulation is four days, the equivalent to 96 h ≡ 345600 s . The
convective vapour coefficient at the left boundary is set to h v = 7 · 10−8 s/m . The
initial condition is homogeneous within the material with the a vapour pressure value of
925.46 Pa , the equivalent to 33 % of relative humidity. Simulations undergo at a constant
23◦C temperature which leads to a saturation pressure of 2804.4 Pa.
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Figure 3.46: Evolution of the relative humidity at the left (a) and right boundaries (b).

Dimensionless parameters. The reference time is t 0 = 1 h ≡ 3600 s, thus, the final
simulation time is fixed to τ ? = 96 . The reference vapour pressure was taken the same as
the initial condition u 0 = 1. At the left boundary, the Biot number assumes the value
BiLm = 100. The vapour pressure varies sinusoidally over the time following the mapping:

uL∞ ( y ?, t ?) = 1 + 1.3 · sin
(
π · t ?/24

) 2
+ 0.4 · y ? ,

uR∞ ( t ?) = 1 + 1.9 · sin
(
π · t ?/96

) 2
.

Furthermore, the dimensionless diffusivity coefficients are α ?
x = 1.97 · 10 −3 and α ?

y =
7.91 · 10 −5 . They have distinct values because the length of each domain is not the same.
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3.3.5 Results and discussion

The Spectral-Collocation method is simulated considering 9 modes for both basis func-
tions, namely N ·M = 9 · 9 = 81 total modes. The tolerance of the solver ode15s is set
to tol = 10−4 which integrates the spectral coefficients in a temporal grid of ∆t ? = 10−2.
The final solution is composed for a spatial grid consisting of Nx = Ny = 101 nodes.
For the ADI method, the discretization parameters are defined as ∆t ? = 10−2 and
∆x ? = ∆y ? = 10−2, the same values of the solution computed for the Spectral ap-
proach. As expected, the Spectral method is able to compute the solution in 16.8 s, which
is almost twice faster than the ADI method, which requires about 25.9 s.

Figure 3.47(a) presents different profiles (also called the fibers of the tensor) of vapour
pressure as a function of the space x . The profiles are located at y = 0.24 m and they
are presented for the instants t = {32, 50, 80, 96} . On the other hand, Figure 3.47(b)
presents the evolution of vapour pressure at the locations (x, y) =

{
(0, 0); (0, 0.25);

(0, 0.5)
}

m . Both ADI and Spectral-Collocation methods have converged to the same
solution, apparently. The error cannot be calculated, since there is no reference solution.
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Figure 3.47: Vapour pressure profiles at y = 0.24 m for different time instant (a) and its
evolution at three different locations of the spatial grid (b).

For the Spectral method, one of the indicative of error is the last spectral coefficient. In
this simulation, the value of the last coefficients {a i,m}ni=0 are given in Figure 3.48(a), which
oscillates at an order of O(10−9) . As the results match the ADI solution, it is assumed
that the number of modes is enough to provide a satisfactory solution. In Figure 3.48(b),
one can find the Fourier power spectrum of the solution. The information given by this
graphic is that there are two strong signals, that come from the boundary conditions and
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that the problem is linear. The difference from the validation case is that two peaks with
low frequency and strong energy are present.
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Figure 3.48: Evolution of the spectral coefficients {a i,m}ni=0 (a) and the Fourier Power Spectrum
for (x, y = 0.12) (b).

Figure 3.49 presents the vapour pressure as function of x and y , at four different time
instants. Each one of the graphics represents a slice of the discrete tensor solution. It can
be observed that the solutions of the vapour pressure vary according to both directions
x and y and not only in one direction. If the ambient vapour pressure P v,∞ were not
dependent on the coordinated y, the solution would be a false two-dimensional, with
variations only in the x coordinate. The variation of the boundary condition regarding
y can be also considered in the convective transfer coefficient hm (y) and on an incoming
liquid flow g l (y) .

The final solution provided by each model is a discrete tensor of dimension 101×101×
9601 . To view the values of this tensor in a global way, Figure 3.50 presents several slices.
In this figure, we have three slices of y and four slices of x, for all values of t . This
complete tensor has a size of 747.22 MB and it only contains information for a simulation
performed for a small period of time. For this reason, the tensor decomposition becomes
more important when the problem dimension grows. By decomposing it with a 12-rank
CP-approximation, the tensor is reduced to 0.9 MB . The decompositions took 2.2 s to be
run and if one needs to recompose the original tensor it takes approximatively the same
amount of time.
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Figure 3.49: Slices of the solution for different time instants t = {32, 50, 80, 96} h.

Figure 3.50: Tensor representation of solution the solution P v (x, y, t).
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Chapter 4

Conclusion

Most of the numerical methods applied to mathematical models used in building
physics are commonly based on classical methods to compute the solution of parabolic
problems, such as finite differences and finite volumes approaches. The time discretiza-
tion is chosen according to appropriate stability conditions. Explicit schemes are not
used because they have limitations regarding the CFL stability condition, which leads to
prohibitively small time steps that require a high overall computational run time. Thus,
implicit schemes as the Crank-Nicolson and Euler Implicit schemes are routinely
used. However, even with large time steps, the nonlinearities of the problem demand
sub-iterations at each time step that are also computationally costly. For this reason, the
following question has been raised: how to simulate efficiently, i.e., accurately and rapidly,
nonlinear problems of heat and moisture transfer in buildings?

To answer that question, the manuscript presented a synthesis of the application of
innovative numerical methods for moisture diffusion in porous material. The purpose is to
highlight the strength of each method on simple but realistic cases. More complex cases
of coupled heat and mass transfers are considered in the articles in Appendix C.

Chapter 2 details the methodology to build innovative numerical models with the
DuFort-Frankelmethod, the Quasi-Uniform Nonlinear Transformation, the Method of
Horizontal Lines and the reduced Spectral method. The first three methods are considered
as improved complete original models because they need to solve large systems of equations
but with a reduced cost compared to the classical approaches used in the literature. The
spectral method is considered as a reduced order model, since the size of the system to be
solved is significantly reduced when compared to the original models.

Chapter 3 presents the features of the methods on a real case application. First, they
were compared in a simple case of one-dimensional nonlinear moisture transfer so the
important features can be highlighted. To summarize, Table 4.1 presents the numerical
features of each method so one can compare the methods presented in this work. Regard-
ing the grid mesh, the solution and the precision in space, the precision in time and the
possibility to expand to higher dimensions, the reduced Spectral method highlights from
the others. As spectral method presented the best features, it is evaluated in a paramet-
ric problem and in two-dimensional transfer problems, which are the case studies of the
sequence.
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Solution in space Precision in space Grid mesh Precision in time Dimension
DF local medium fine low n

QUNT local medium adaptive medium n
MOHL global high adaptive medium 1-2

Spectral global high coarse high n

Table 4.1: Global comparison of the numerical methods.

Therefore, the main contribution of this work is the detailed and systematic study of
innovative methods to treat the complexities of nonlinear diffusion transport phenomena
in building physics. The efficiency of the numerical methods depends on different require-
ments, which difficult the choice of the best method, as each one has their strengths and
disadvantages. To illustrate the different applicabilities, Figure 4.1 presents some of the
main criteria that can be used to evaluate the numerical methods: (i) spatial complexities,
(ii) time scales and (iii) reduction of the computational cost.

DuFort-Frankel

Spectral ROM

MOHL

QUNT

Reduction CPU cost

Spatial
complexities

Time scale

Figure 4.1: Synthesis of the numerical methods advantages.

For example, if one aims at dealing with spatial complexities and accurate modelling of
the phenomena at interfaces between two materials, the MOHL and QUNT are good candi-
dates (Gasparin et al., 2018a, 2019b). For coupling the model of heat and moisture transfer
with others through co-simulation approaches (Wetter, 2011), the DuFort-Frankel is
a very promising approach. It is explicit and avoids extra sub-iterations due to model
coupling (Gasparin et al., 2018c). For strong reduction of the computational cost with a
very satisfactory accuracy of the solution, the Spectral has been shown as the best option
(Gasparin et al., 2018e). It is particularly efficient to treat parametric problems where one
aims to compute the solution depending on an input parameter (Gasparin et al., 2018d).
Furthermore, for 2D transport phenomena the Spectral method is also an interesting ap-
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proach. Not to mention that the DuFort-Frankel and the QUNT approaches can also
be extended to two-dimensional problems.

Perspectives

For further work, many aspects can be considered in order to apply the presented
methods in the building simulation field:

• Complexity of the physical phenomena: In this work, the diffusion transfer was the
main physical phenomena studied. From a physical point of view, a lot of phenomena
can be added to improve the mathematical model. For example, the hysteresis is an
important phenomenon that can influence in the final solution but was not explored
(Kwiatkowski et al., 2009; Pedersen, 1992). We have considered the coupling between
heat and moisture transfer in a week way, in which we neglected the heat gradient
in the moisture balance equation. At the interface between two materials, we have
considered continuous field, flux, and flow. However, when other driving potentials
are used, we may have resistance at the interface, which generates a discontinuity of
the solution.

• Multi-dimensional simulation: In this study, the one-dimensional heat and moisture
transfer is widely explored with different numerical methods. The results provide im-
portant perspectives for integration in building simulation programs such as Domus,
EnergyPlus, etc. However, our study on two-dimensional transfer problems is intro-
ductory. To go further in this direction, we need to investigate deeply the nonlinear
transfer in two- and three-dimensional geometries, with multilayered materials. In
addition, simulate the moisture transfer in geometries like corners and foundations
are of fundamental importance since the moisture accumulation in these parts can
bring serious durability problems. In addition, it would be interesting to analyze the
difference between the computation of the heat balance in zones considering one-
dimensional transfers against the heat balance in zones considering two-dimensional
transfers.

• Validation: We have compared our solutions of the numerical methods against ex-
perimental data in only one case, the one-dimensional heat and moisture transfer
through one material. Such efficient numerical approaches can be used for compar-
ison with experimental data for more complex model. Indeed, the MOHL could be
used to compare the numerical prediction with experimental data at the interface be-
tween two porous material. It would require global measurement using for instance
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neutron beam (Sedighi-Gilani et al., 2012). Moreover, a experimental benchmark
two-dimensional heat and mass transfer could be carried out using the Spectral ROM
as a numerical model.

• Large spatial domains: As the spectral method is a type of global method, it can
compute the solution for all the spatial domain independently on the number of
spatial nodes. This feature makes this method very suitable for problems with a
large spatial domain, such as in ground simulation, since we do not need a refined
grid.

• Coupling with simulation software: All the methods and case studies have been im-
plemented in the Matlab environmental. We would like to implement the DuFort-
Frankel and the reduced Spectral methods in a simulation tool so we can evaluate
the gains of the direct implementation. Another alternative would be to perform
a co-simulation alongside with the software, in which the program and the numeri-
cal method are simulated separately but exchanging information at each time step
(Mazuroski et al., 2018).

• Inverse problems: The reduced spectral method can be a good option to perform
inverse problems. When one needs to estimate a parameter, the direct model of heat
and moisture transfer need to be simulated thousands of times which are computa-
tionally expensive. With the reduced order model, the estimation can be performed
much faster (Berger et al., 2017).

• Optimisation of the algorithms: The numerical methods are implemented in the
algorithms in the best form we could. However, they are not optimized. Currently,
in the Spectral method algorithm, the number of modes is determined before starting
simulations. It would be interesting if the algorithm could do it automatically.
Besides, when we simulate the heat and moisture transfer, we compute first the
equation for the moisture transfer and then we compute the equation for the heat
transfer. We would like to perform both equations at the same time.

This list of perspectives opens many fields of investigation and it encourages to go
further on the research.
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Appendix A

Chebyshev polynomials

Here one can find some important information about the Chebyshev polynomials
used in this work, which are based mainly in Boyd (2000); Canuto et al. (2006); Fornberg
(1996); Peyret (2002); Trefethen (1996).

The Chebyshev polynomials are a family of orthogonal polynomials that are a practi-
cal basis for approximating smooth functions on a segment. The Chebyshev polynomials
of first kind are denoted by Tn (x̄) , which is a polynomial of degree n on the segment
x̄ ∈ [−1, 1] that is written as:

Tn (x̄) = cos (n · cos−1 x̄), n ∈ {0, 1, 2, . . .} ≡ Z> 0

For instance, the first few polynomials are:

T 0 (x̄) = 1 , T 1 (x̄) = x̄ , T 2 (x̄) = 2 · x̄ 2 − 1 , T 3 (x̄) = 4 · x̄ 3 − 3 · x̄ , . . .

Higher order polynomials can be constructed using the following recursive relation :

T i+1 (x̄) = 2 · x · T i (x̄) − T i−1 (x̄) .

The values of the Chebyshev polynomials at the boundaries, at x̄ = ±1, are given by:

T i (−1) = (−1) i and T i (1) = 1 , ∀ i ∈ Z> 0 .

In addition, the roots of the polynomial Tn (x̄) = 0 are given by the Gauß points:

x̄ k = cos
(2 · k − 1) · π

2 · n

 , k ∈ {1, 2, . . . , n} .

The scalar product 〈 f, g 〉 with respect to the weight
(
1 − x̄ 2

)−1/2
is defined as:

〈 f, g 〉 =
∫ 1

−1

f (x̄) · g (x̄)√
1 − x̄ 2

dx̄ ,
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so that the orthogonality property of the Chebyshev polynomials is written as:

〈T i, T j 〉 =
∫ 1

−1

T i (x̄) · T j (x̄)√
1 − x̄ 2

dx̄ =


0 , if i 6= j ,

π , if i = j = 0 ,
π
2 , if i = j 6= 0 .

The integrals can be approximated by a finite sum using the Chebyshev-Gauss
quadrature:

∫ 1

−1

f (x̄) · g (x̄)√
1 − x̄ 2

dx̄ ≈ π

m
·

m∑
k= 1

f (x̄ k) g (x̄ k) ,

with x k being the Gauss points.
The spatial derivatives are re-expanded in the same Chebyshev basis function:

∂un
∂x̄

=
n∑

i= 0
a i (t)

∂T i

∂x̄
(x̄) =

n∑
i= 0

ã i (t) T i (x̄) , (A.1a)

∂ 2un
∂x̄ 2 =

n∑
i= 0

a i (t)
∂ 2T i

∂x̄ 2 (x̄) =
n∑

i= 0

˜̃a i (t) T i (x̄) , (A.1b)

As a result, coefficients {ã i (t)}ni=0 and {˜̃a i (t)}ni=0 must be re-expressed in terms of coef-
ficients {a i (t)}ni=0. The connection is given explicitly from the recurrence relation of the
Chebyshev polynomial derivatives:

ã i = 2
c i

n∑
p= i+ 1
p+ i odd

p a p , i ∈ {0, 1, . . . , n− 1} , (A.2a)

ãn ≡ 0 ,

˜̃a i = 1
c i

n∑
p= i+ 2
p+ i even

p
(
p 2 − i 2

)
a p , i ∈ {0, 1, . . . , n− 2} , (A.2b)

˜̃an−1 ≡ ˜̃an ≡ 0 ,

with,

c i =

2 , if i = 0 ,
1 , if i > 0 .
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These recurrence relations can be written in a matrix form as:

Ã = D̃ · A , and ˜̃A = ˜̃D · A ,

where

A =
(
a 0, a 1, · · · , an−1, an

)>
,

Ã =
(
ã 0, ã 1, · · · , ãn−1, ãn

)>
,

˜̃A =
(
˜̃a 0, ˜̃a 1, · · · , ˜̃an−1, ˜̃an

)>
,

and the elements of matrices D̃ and ˜̃D are deduced from Equations (2.23) and (2.24).
Moreover, the temporal derivative is also written with the same Chebyshev basis

function:

∂un
∂t

=
n∑

i= 0
ȧ i (t)

∂T i

∂x̄
(x̄) , (A.3)

where the dot represents ȧ i
def:= d a i

d t .
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Appendix B

Rescaling

To apply the orthogonal polynomials used in this work, some domains must be changed
to fit the segment [−1, 1].

B.1 Change of variables on the spatial domain

For this reason, a change in the spatial domain segment x : [ 0, ` ] 7−→ [−1, 1 ] is
carried out on the following system:



∂u

∂t
= α · ∂

2u

∂x2 , x ∈ ( 0, ` ) and t > 0 ,

u = f(x) , x ∈ ( 0, ` ) and t = 0 ,
∂u

∂x
= BiL ·

(
u − uL∞

)
, x = 0 and t > 0 ,

∂u

∂x
= BiR ·

(
u − uR∞

)
, x = 1 and t > 0 .

(B.1)

First, we consider a linear relation between x and s such that:

x : s 7−→ a · s + b ,

where a and b are real constants. To determine their values, we relate the extrema points: x (−1) = 0 ,
x (+1) = ` ,

which leads to:

a = b = `

2 .

Then, the function x is written as:

x : s 7−→ `

2 · (s + 1) . (B.2)
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Substituting Equation (B.2) in the system of Equation (B.1) leads to the system:


∂u

∂t
= 4 · α

` 2 ·
∂ 2u

∂s 2 , s ∈ (−1, 1 ) and t > 0 ,

u = f̄ (s) , s ∈ (−1, 1 ) and t = 0 ,

∂u

∂s
= ` · BiL

2 ·
(
u − uL∞

)
, s = −1 and t > 0 ,

∂u

∂s
= ` · BiR

2 ·
(
u − uR∞

)
, s = 1 and t > 0 .

(B.3)

B.2 Change of variables on the parametric domain

Similarly, a change in the parametric interval [αmin, αmax ] α̃−→ ∈ [−1, 1 ] is carried
out for the new system on Equation (B.3).

Consider a linear relation between α and α̃ such that:

α̃ : α 7−→ a · α + b ,

α : α̃ 7−→ α̃ − b

a
,

where a and b are real constants. To determine their values, we relate the extrema points: α̃ (αmin) = − 1 ,
α̃ (αmax) = 1 ,

which leads to:

a = 2
αmax − αmin

and b = − 1 − 2 · αmin

αmax − αmin
.

Then, the function α̃ is written as:

α̃ = 2 · (α − αmin)
αmax − αmin

− 1 , (B.4)

and, the function α is written as:

α = (αmax − αmin) · (α̃ + 1)
2 + αmin . (B.5)
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Substituting Equation (B.5) in the system of Equation (B.3) leads to the problem:



∂u

∂t
= 4

` 2 ·

(αmax − αmin) · (α̃ + 1)
2 + αmin

 · ∂ 2u

∂s 2 , s, α̃ ∈ (−1, 1 ) and t > 0 ,

u = f̄ (s) , s ∈ (−1, 1 ) and t = 0 ,

∂u

∂s
= ` · BiL

2 ·
(
u − uL∞

)
, s = −1 and t > 0 ,

∂u

∂s
= ` · BiR

2 ·
(
u − uR∞

)
, s = 1 and t > 0 .
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