D. Mathieu-jaoul and . Céli, Avalanche Compact model featuring SiGe HBTs Characteristics up to BV CBO, Cristell Maneux -HICUM Workshop, 2017.

C. Mathieu-jaoul, T. Maneux, D. Zimmer, and . Céli, Michael Schröter -HICUM Workshop 2018. High Current Impact Ionization Model

?. M. Jaoul--workshop and S. T. Ims, Degradation mechanisms of SiGe, Workshop ST/IMS 2019. Safe Operating Area and Aging for HBTs, 2018.

?. St and U. Bordeaux, Cristell Maneux, T. Zimmer (U. of Bordeaux) and Didier Céli (ST) -STMicroelectronics PhD presentation 2018. High Current Impact Ionization and Aging Model for SiGe HBTs

?. D. Celi, M. Jaoul, and T. , Zimmer -30th BipAk 2018. Extension of HICUM/L2

, Avalanche Model at High Current: Proposal // Activation energies into Joules E0_D = D_E0*1, pp.6-19

, E0_K = K_E0*1, pp.6-19

, // Calculation of the emitter current density JE = (IE/AE)*1e3

/. Laws-for-kr and D. H. Dh-=-d0*exp, P_K*Tdev), issue.E0_D

. Kr-=-kr0*exp, P_K*Tdev)

, // KF as a function of the bias (IAVL)

=. Kf_age and . Cmm*exp, mu0*VBC)*pow((1/abs(JE)+abs(JE)/JEHC)

, // Resistance/Capacitor calculation of the RC ladder network C_H = h_spacer*((1-alpha_C)/(1-alpha_C*alpha_C*alpha_C*alpha_C*alpha_C

. R_h-=-c_h/dh, tran")) begin //Trap Generation I(br_nt) <+ -f_age

, I(br_nt) <+ ddt(V(br_nt))*scale

, //H-diffusion I(br_nh) <+ -f_age

, I(br_nh1) <+ V(br_nh1)/R_H

, I(br_naux1) <+ ddt(C_H*V(br_naux1)*scale)

, I(br_nh2) <+ V(br_nh2)/(alpha_R*R_H)

, I(br_naux2) <+ ddt(C_H*alpha_C*V(br_naux2)*scale)

, I(br_nh3) <+ V(br_nh3)/(alpha_R*alpha_R*R_H)

, I(br_naux3) <+ ddt(C_H*alpha_C*alpha_C*V(br_naux3)*scale)

, I(br_nh4) <+ V(br_nh4)/(alpha_R*alpha_R*alpha_R*R_H)

, I(br_naux4) <+ ddt(C_H*alpha_C*alpha_C*alpha_C*V(br_naux4)*scale)

, I(br_nh5) <+ V(br_nh5)/(alpha_R*alpha_R*alpha_R*alpha_R*R_H)

, I(br_naux5) <+ ddt(C_H*alpha_C*alpha_C*alpha_C*alpha_C*V(br_naux5)*scale)

, I(br_naux5) <+ 1/(alpha_R*alpha_R*alpha_R*alpha_R*R_H)*V(br_naux5)

B. Figure, VerilogA Aging model code, vol.2

B. Ferguson and X. Zhang, Materials for terahertz science and technology, Nature Materials, vol.1, issue.1, pp.26-33, 2002.

P. Siegel, Terahertz technology in biology and medicine, IEEE Transactions on Microwave Theory and Techniques, vol.52, issue.10, pp.2438-2447, 2004.

, Millimeter Waves: Emerging Markets

C. Sirtori, Bridge for the terahertz gap, Nature, vol.417, issue.6885, pp.132-133, 2002.

T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake et al., Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6g and Beyond, IEEE Access, vol.7, pp.78-729, 2019.

H. Song and T. Nagatsuma, Present and Future of Terahertz Communications, IEEE Transactions on Terahertz Science and Technology, vol.1, issue.1, pp.256-263, 2011.

U. Pfeiffer, Integrated Circuit Design for Terahertz Applications, p.201, 2019.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, Terahertz integrated electronic and hybrid electronic-photonic systems, Nature Electronics, vol.1, issue.12, pp.622-635, 2018.

M. Schröter, T. Rosenbaum, P. Chevalier, B. Heinemann, S. P. Voinigescu et al., SiGe HBT Technology: Future Trends and TCAD-Based Roadmap, Proceedings of the IEEE, vol.105, issue.6, pp.1068-1086, 2017.

J. Böck, K. Aufinger, S. Boguth, C. Dahl, H. Knapp et al.,

A. Meister, J. Pribil, R. Wursthorn, B. Lachner, H. Heinemann et al., SiGe HBT and BiCMOS process integration optimization within the DOTSEVEN project, 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting -BCTM, pp.121-124, 2015.

N. Rinaldi and M. Schröter, Silicon-Germanium Heterojunction Bipolar Transistor for mm-Wave Systems Technology, Modeling and Circuit Applications. DULLES: STYLUS PUBLISHING, 2018.

S. H. Naghavi, M. T. Taba, R. Han, M. A. Aseeri, A. Cathelin et al., Filling the Gap With Sand: When CMOS reaches THz, IEEE Solid-State Circuits Magazine, vol.11, issue.3, pp.33-42, 2019.

T. Rosenbaum, Performance prediction of a future silicon-germanium heterojunction bipolar transistor technology using a heterogeneous set of simulation tools and approaches, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01504430

M. Bo?ani? and S. Sinha, Emerging Transistor Technologies Capable of Terahertz Amplification: A Way to Re-Engineer Terahertz Radar Sensors, Sensors, vol.19, issue.11, p.2454, 2019.

P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, Terahertz Imaging and Sensing Applications With Silicon-Based Technologies, IEEE Transactions on Terahertz Science and Technology, vol.9, issue.1, pp.1-19, 2019.

P. Chevalier, T. Meister, B. Heinemann, S. Van-huylenbroeck, W. Liebl et al., Towards THz SiGe HBTs, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp.57-65, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00574425

P. Chevalier, M. Schröter, C. R. Bolognesi, V. Alessandro, M. Alexandrova et al., Si/SiGe:C and InP/GaAsSb Heterojunction Bipolar Transistors for THz Applications, vol.105, pp.1035-1050, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01639677

P. Chevalier, G. Avenier, G. Ribes, A. Montagné, E. Canderle et al.,

, GHz fMAXHBT and high-Q millimeter-wave passives, 2014 IEEE International Electron Devices Meeting, 2014.

H. Rucker, B. Heinemann, and A. Fox, Half-Terahertz SiGe BiCMOS technology, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp.133-136, 2012.

H. Rücker and B. Heinemann, High-performance SiGe HBTs for next generation BiCMOS technology, Semiconductor Science and Technology, vol.33, issue.11, p.114003, 2018.

D. Céli, From device physics to SPICE bipolar models, STMicroelectronics, 2015.

M. Schroter, G. Wedel, B. Heinemann, C. Jungemann, J. Krause et al., Physical and Electrical Performance Limits of High-Speed SiGeC HBTs-Part I: Vertical Scaling, IEEE Transactions on Electron Devices, vol.58, issue.11, pp.3687-3696, 2011.

M. Schroter, J. Krause, N. Rinaldi, G. Wedel, B. Heinemann et al., Physical and Electrical Performance Limits of High-Speed Si GeC HBTs-Part II: Lateral Scaling, IEEE Transactions on Electron Devices, vol.58, issue.11, pp.3697-3706, 2011.

A. K. Sahoo, S. Fregonese, M. Weiß, N. Malbert, and T. Zimmer, Electro-thermal characterization of Si-Ge HBTs with pulse measurement and transient simulation, 2011 Proceedings of the European Solid-State Device Research Conference (ESS-DERC), pp.239-242, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00669428

S. Russo, V. Alessandro, L. L. Spina, N. Rinaldi, and L. K. Nanver, Evaluating the self-heating thermal resistance of bipolar transistors by DC measurements: A critical review and update, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp.95-98, 2009.

J. C. Paasschens, S. Harmsma, and R. V. Toorn, Dependence of thermal resistance on ambient and actual temperature, Bipolar/BiCMOS Circuits and Technology, pp.96-99, 2004.

R. Esposito, S. Frégonèse, A. Chakravorty, P. Chevalier, D. Céli et al., Innovative SiGe HBT Topologies With Improved Electrothermal Behavior, IEEE Transactions on Electron Devices, vol.63, issue.7, pp.2677-2683, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399080

C. Hu, IC reliability simulation, IEEE Journal of Solid-State Circuits, vol.27, issue.3, pp.241-246, 1992.

M. H. Kamrani, C. Jungemann, and V. , Semi-classical simulation of state-of-the-art toward-terahertz silicon-germanium heterojunction bipolar transistors, 2017.

C. M. Grens, J. D. Cressler, and A. J. Joseph, On Common-Base Avalanche Instabilities in SiGe HBTs, IEEE Transactions on Electron Devices, vol.55, issue.6, pp.1276-1285, 2008.

J. Kraft, D. Kraft, B. Loffler, H. Jauk, and E. Wachmann, Usage of HBTs beyond BV/sub CEO, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, pp.33-36, 2005.

C. Zhu, Q. Liang, R. A. Al-huq, J. D. Cressler, Y. Lu et al., Damage mechanisms in impact-ionizationinduced mixed-mode reliability degradation of SiGe HBTs, IEEE Transactions on Device and Materials Reliability, vol.5, issue.1, pp.142-149, 2005.

C. Mukherjee, T. Jacquet, A. Chakravorty, T. Zimmer, J. Böck et al., Low-Frequency Noise in Advanced SiGe:C HBTs-Part II: Correlation and Modeling, IEEE Transactions on Electron Devices, vol.63, issue.9, pp.3657-3662, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399852

S. Balanethiram, A. Chakravorty, R. Esposito, S. Fregonese, and T. Zimmer, An improved scalable self-consistent iterative model for thermal resistance in SiGe HBTs, 2016 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp.150-153, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399878

S. Balanethiram, R. Esposito, S. Fregonese, T. Zimmer, J. Berkner et al., Extracting the temperature dependence of thermal resistance from temperaturecontrolled DC measurements of sige HBTs, 2017 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp.94-97, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695326

S. Balanethiram, R. Esposito, A. Chakravorty, S. Fregonese, D. Céli et al., Efficient Modeling of Distributed Dynamic Self-Heating and Thermal Coupling in Multifinger SiGe HBTs, IEEE Transactions on Electron Devices, vol.63, issue.9, pp.3393-3398, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399074

S. Balanethiram, A. Chakravorty, R. Esposito, S. Fregonese, D. Céli et al., Accurate Modeling of Thermal Resistance for On-Wafer SiGe HBTs Using References Average Thermal Conductivity, IEEE Transactions on Electron Devices, vol.64, issue.9, pp.3955-3960, 2017.

A. K. Sahoo, S. Fregonese, M. Weis, N. Malbert, and T. Zimmer, A Scalable Electrothermal Model for Transient Self-Heating Effects in Trench-Isolated SiGe HBTs, IEEE Transactions on Electron Devices, vol.59, issue.10, pp.2619-2625, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00978803

A. K. Sahoo, S. Fregonese, M. Weiß, C. Maneux, and T. Zimmer, A scalable model for temperature dependent thermal resistance of SiGe HBTs, 2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp.29-32, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00905673

J. J. Ebers and J. L. Moll, Large-Signal Behavior of Junction Transistors, Proceedings of the IRE, vol.42, issue.12, pp.1761-1772, 1954.

H. K. Gummel and H. C. Poon, An integral charge control model of bipolar transistors, The Bell System Technical Journal, vol.49, issue.5, pp.827-852, 1970.

H. C. Poon and J. C. Meckwood, Modeling of avalanche effect in integral charge control model, IEEE Transactions on Electron Devices, vol.19, issue.1, pp.90-97, 1972.

J. Paasschens and W. Kloosterman, The Mextram Bipolar Transistor Model, 2002.

V. Vbic and . Model, VBIC -Vertical Bipolar Intercompany Model, 2019.

H. Rein and M. Schroter, A compact physical large-signal model for high-speed bipolar transistors at high current densities-Part II: Two-dimensional model and experimental results, IEEE Transactions on Electron Devices, vol.34, issue.8, pp.1752-1761, 1987.

H. Stubing and H. Rein, A compact physical large-signal model for high-speed bipolar transistors at high current densities-Part I: One-dimensional model, IEEE Transactions on Electron Devices, vol.34, issue.8, pp.1741-1751, 1987.

D. Celi, M. Rohde, M. Schwarz, and . Workshop, A study of HICUM avalanche model beyond BVCEO, 2016.

S. M. Sze and K. K. Ng, Physics of semiconductor devices, 2007.

H. C. Graaff and F. M. Klaassen, Compact Transistor Modelling for Circuit Design, 1990.

S. L. Miller, Avalanche Breakdown in Germanium, Physical Review, vol.99, issue.4, pp.1234-1241, 1955.

,

J. L. Moll and R. Van-overstraeten, Charge multiplication in silicon p-n junctions, Solid-State Electronics, vol.6, issue.2, pp.147-157, 1963.

J. W. Slotboom, G. Streutker, M. J. Dort, P. H. Woerlee, A. Pruijmboom et al., Non-local impact ionization in silicon devices, International Electron Devices Meeting, pp.127-130, 1991.

E. F. Crabbe, J. M. Stork, G. Baccarani, M. V. Fischetti, and S. E. Laux, The impact of non-equilibrium transport on breakdown and transit time in bipolar transistors, International Technical Digest on Electron Devices, pp.463-466, 1990.

S. L. Miller and J. J. Ebers, Alloyed junction avalanche transistors, The Bell System Technical Journal, vol.34, issue.5, pp.883-902, 1955.

M. Rickelt, H. Rein, and E. Rose, Influence of impact-ionization-induced instabilities on the maximum usable output voltage of Si-bipolar transistors, IEEE Transactions on Electron Devices, vol.48, issue.4, pp.774-783, 2001.

M. Rickelt and H. Rein, A novel transistor model for simulating avalanche-breakdown effects in Si bipolar circuits, IEEE Journal of Solid-References State Circuits, vol.2, issue.9, pp.1184-1197, 2002.

N. Rinaldi and V. , Theory of electrothermal behavior of bipolar transistors: part III-impact ionization, IEEE Transactions on Electron Devices, vol.53, issue.7, pp.1683-1697, 2006.

G. Sasso, M. Costagliola, and N. Rinaldi, Avalanche multiplication and pinch-in models for simulating electrical instability effects in SiGe HBTs, Microelectronics Reliability, vol.50, issue.9, pp.1577-1580, 2010.

M. Pfost, V. Kubrak, and A. Romanyuk, Modeling avalanche multiplication for advanced high-speed SiGe bipolar transistors, 2003 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp.18-21, 2003.

C. Mcandrew, J. Seitchik, D. Bowers, M. Dunn, M. Foisy et al., VBIC95, the vertical bipolar inter-company model, IEEE Journal of Solid-State Circuits, vol.31, issue.10, pp.1476-1483, 1996.

J. Paasschens, W. Kloosterman, and R. Van-der-toorn, Model Derivation of Mextram 504: The Physics Behind the Model, 2002.

M. Schroter, Z. Yan, T. Lee, and W. Shi, A compact tunneling current and collector breakdown model, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198), pp.203-206, 1998.

M. Schröter and A. Chakravorty, Compact Hierarchical Bipolar Transistor Modeling With HiCUM, ser. International Series on Advances in Solid State Electronics and Technology, 2010.

,

R. Van-overstraeten and H. De-man, Measurement of the ionization rates in diffused silicon p-n junctions, Solid-State Electronics, vol.13, issue.5, pp.583-608, 1970.

T. Lackner, Avalanche multiplication in semiconductors: A modification of Chynoweth's law, Solid-State Electronics, vol.34, issue.1, pp.33-42

A. G. Chynoweth, Ionization Rates for Electrons and Holes in Silicon, Physical Review, vol.109, issue.5, pp.1537-1540, 1958.

T. Nardmann, M. Schroter, and P. Sakalas, A Multiregion Approach to Modeling the Base-Collector Junction Capacitance, IEEE Transactions on Electron Devices, vol.63, issue.9, pp.3808-3811, 2016.

M. Schroter and A. Chakravorty, HICUM version 2.4.0 Release Notes, 2017.

M. Jaoul, D. Céli, C. Maneux, M. Schröter, and A. Pawlak, Avalanche compact model featuring SiGe HBTs characteristics up to BVcbo, 2017 47th European Solid-State Device Research Conference (ESSDERC), pp.70-73, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695262

, Sentaurus? Device User Guide

Y. Okuto and C. R. Crowell, Threshold energy effect on avalanche breakdown voltage in semiconductor junctions, Solid-State Electronics, vol.18, issue.2, pp.161-168, 1975.

C. T. Kirk, A theory of transistor cutoff frequency (fT) falloff at high current densities, IRE Transactions on Electron Devices, vol.9, issue.2, pp.164-174, 1962.

M. Jovanovic, A transistor model for numerical computation of forward-bias second-breakdown boundary, IEEE Transactions on Power Electronics, vol.6, issue.2, pp.199-207, 1991.

R. J. Hueting and R. V. Toorn, Analysis of the Kirk effect in silicon-based bipolar transistors with a nonuniform collector profile, IEEE Transactions on Electron Devices, vol.52, issue.11, pp.2489-2495, 2005.

W. Kloosterman and H. De-graaff, Avalanche multiplication in a compact bipolar transistor model for circuit simulation, Proceedings of the 1988 Bipolar Circuits and Technology Meeting, pp.103-106, 1988.

W. Kloosterman and H. De-graaff, Avalanche multiplication in a compact bipolar transistor model for circuit simulation, IEEE Transactions on Electron Devices, vol.36, issue.7, pp.1376-1380, 1989.

W. J. Kloosterman, J. C. Paasschens, and R. J. Havens, A comprehensive bipolar avalanche multiplication compact model for circuit simulation, Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.00CH37124), pp.172-175, 2000.

M. Jaoul, C. Maneux, D. Céli, M. Schröter, and T. Zimmer, A Compact Formulation for Avalanche Multiplication in SiGe HBTs at High Injection Levels, IEEE Transactions on Electron Devices, vol.66, issue.1, pp.264-270, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02379143

F. Stein, SPICE Modeling of TeraHertz Heterojunction bipolar transistors, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01200490

/. Tel,

B. Ardouin, Contribution à la modélisation et à la caractérisation en hautes fréquences des transistors bipolaires à hétérojonction Si/SiGe," thesis, vol.1, 2001.

C. Raya, Modélisation et optimisation de transistors bipolaires à hétérojonction Si/SiGeC ultra rapides pour applications millimétriques, vol.1, 2008.

D. Berger, Etude et validation d'un modèle de transistor bipolaire dédié aux applications hautes fréquences, vol.1, 2004.

A. Pawlak, Advanced modeling of Silicon-Germanium heterojunction bipolar transistors, p.932729494, 2015.

N. Gambetta, B. Cialdella, D. Celi, and M. Depey, A new extraction method for unit bipolar junction transistor capacitance parameters, Proceedings International Conference on Microelectronic Test Structures, pp.161-165, 1995.

G. Gildenblat and E. , Compact modeling: principles, techniques and applications, p.730283533, 2010.

K. Seeger, Semiconductor Physics: an introduction, p.846198919, 2010.

J. A. Lonac, A. Santarelli, I. Melczarsky, and F. Filicori, A simple technique for measuring the thermal impedance and the thermal resistance of HBTs, European Gallium Arsenide and Other Semiconductor Application Symposium, pp.197-200, 2005.

V. D. Shah, R. L. Carter, W. A. Davis, H. T. Russell, W. Chen et al., Thermal modeling of the non-linear thermal resistance of the SiGe HBT using the HICUM model, 2016 IEEE Dallas Circuits and Systems Conference (DCAS), pp.1-4, 2016.

T. Vanhoucke, H. M. Boots, and W. D. Noort, Revised method for extraction of the thermal resistance applied to bulk and SOI SiGe HBTs, IEEE Electron Device Letters, vol.25, issue.3, pp.150-152, 2004.

R. Menozzi, J. Barrett, and P. Ersland, A new method to extract HBT thermal resistance and its temperature and power dependence, IEEE Transactions on Device and Materials Reliability, vol.5, issue.3, pp.595-601, 2005.

D. Céli, Review of Some HICUM Geometry Scaling Laws: Issue and Proposal, 2007.

D. Celi, HICUM/L2 v2.30: Extraction des Parametres du Courant d'avalanche: Scalable approche, STMicroelectronics, Tech. Rep, 2012.

J. Rieh, D. Greenberg, A. Stricker, and G. Freeman, Scaling of SiGe Heterojunction Bipolar Transistors, Proceedings of the IEEE, vol.93, issue.9, pp.1522-1538, 2005.

F. Pourchon, Scalability of the Avalanche Phenomenon in Bipolar Transistor, 2005.

B. R. Wier, K. Green, J. Kim, D. T. Zweidinger, and J. D. Cressler, A Physics-Based Circuit Aging Model for Mixed-Mode Degradation in SiGe HBTs, IEEE Transactions on Electron Devices, vol.63, issue.8, pp.2987-2993, 2016.

A. P. Omprakash, H. Dao, U. S. Raghunathan, H. Ying, P. S. Chakraborty et al., An Investigation of High-Temperature (to 300°C) Safe-Operating-Area in a High-Voltage Complementary SiGe on SOI Technology, IEEE Transactions on Electron Devices, vol.64, issue.9, pp.3748-3755, 2017.

J. J. Chen, G. Gao, J. Chyi, and H. Morkoc, Breakdown behavior of GaAs/AlGaAs HBTs, IEEE Transactions on Electron Devices, vol.36, issue.10, pp.2165-2172, 1989.

N. Rinaldi, V. , and F. M. Paola, Electrothermal Phenomena in Bipolar Transistors and ICs: Analysis, Modeling, and Simulation, pp.1-8, 2006.

J. S. Huang, Study of Transistor Switching Circuit Stability in the Avalanche Region, IEEE Journal of Solid-State Circuits, vol.2, issue.1, pp.10-21, 1967.

H. A. Schafft and J. C. French, Second breakdown" in transistors, IRE Transactions on Electron Devices, vol.9, issue.2, pp.129-136, 1962.

H. A. Schafft, Second breakdown-A comprehensive review, Proceedings of the IEEE, vol.55, issue.8, pp.1272-1288, 1967.

J. E. Carroll and P. J. Probert, Current/voltage characteristics of transistors operating in current-mode second breakdown, IEE Journal on Solid-State and Electron Devices, vol.3, issue.2, pp.41-50, 1979.

M. Latif and P. R. Bryant, Multiple equilibrium points and their significance in the second breakdown of bipolar transistors, IEEE Journal of Solid-State Circuits, vol.16, issue.1, pp.8-15, 1981.

C. Zanoni, . Stork, . Pavan, V. Verzellesi, and C. , Measurements and simulation of avalanche breakdown in advanced Si bipolar transistors, p.1992

, International Technical Digest on Electron Devices Meeting, pp.927-930, 1992.

A. J. Scholten, T. Vanhoucke, and D. B. Klaassen, Temperature and geometry dependence of the electrothermal instability of bipolar transistors, 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp.1-4, 2012.

J. D. Hayden, D. Burnett, and J. Nangle, A comparison of base current reversal and bipolar snapback in advanced n-p-n bipolar transistors, IEEE Electron Device Letters, vol.12, issue.8, pp.407-409, 1991.

N. Rinaldi and V. , Theory of electrothermal behavior of bipolar transistors: part II-two-finger devices, IEEE Transactions on Electron Devices, vol.52, issue.9, pp.2022-2033, 2005.

G. Verzellesi, G. Baccarani, C. Canali, P. Pavan, L. Vendrame et al., Prediction of impact-ionization-induced snap-back in advanced Si n-p-n BJT's by means of a nonlocal analytical model for the avalanche multiplication factor, IEEE Transactions on Electron Devices, vol.40, issue.12, pp.2296-2300, 1993.

N. Rinaldi and V. , Theory of electrothermal behavior of bipolar transistors: Part I -single-finger devices, IEEE Transactions on Electron Devices, vol.52, issue.9, 2005.

B. H. Krabbenborg, H. C. Graaff, and A. J. Mouthaan, Analytical Calculation of Avalanche and Thermal Snapback Points in Bipolar Transistors, ESSDERC '94: 24th European Solid State Device Research Conference, pp.433-436, 1994.

S. Balanethiram and A. Chakravorty, Analysis of electro-thermal instability in bipolar transistors, 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp.713-716, 2015.

H. M. Rein, A simple method for separation of the internal and external (peripheral) currents of bipolar transistors, Solid-State Electronics, vol.27, issue.7, pp.625-631, 1984.

M. Rickelt and H. Rein, An accurate transistor model for simulating avalanche-breakdown effects in Si bipolar circuits, Proceedings of the, 2001.

, BIPOLAR/BiCMOS Circuits and Technology Meeting

M. N. Minneapolis and . Usa:-ieee, , pp.34-37, 2001.

S. Yadav, A. Chakravorty, and M. Schroter, Modeling of the Lateral Emitter-Current Crowding Effect in SiGe HBTs, IEEE Transactions on Electron Devices, vol.63, issue.11, pp.4160-4166, 2016.

T. Vanhoucke, G. A. Hurkx, D. Panko, R. Campos, A. Piontek et al., Physical Description of the Mixed-Mode Degradation Mechanism for High Performance Bipolar Transistors, 2006 Bipolar/BiCMOS Circuits and Technology Meeting, pp.1-4, 2006.

M. Costagliola and N. Rinaldi, Theoretical analysis and modeling of bipolar transistor operation under reversal base current conditions, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp.25-28, 2009.

M. Costagliola, Analysis and experimental characterization of safe operating area of sige heterojunction bipolar transistor, Thesis

T. Vanhoucke and G. A. Hurkx, Unified electro-thermal stability criterion for bipolar transistors, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, pp.37-40, 2005.

P. Cheng, C. M. Grens, and J. D. Cressler, Reliability of SiGe HBTs for Power Amplifiers-Part II: Underlying Physics and Damage Modeling, IEEE Transactions on Device and Materials Reliability, vol.9, issue.3, pp.440-448, 2009.

C. Mukherjee, B. Ardouin, J. Dupuy, V. Nodjiadjim, M. Riet et al., Reliability-Aware Circuit Design Methodology for Beyond-5g
URL : https://hal.archives-ouvertes.fr/hal-01670929

, Communication Systems, IEEE Transactions on Device and Materials Reliability, vol.17, issue.3, pp.490-506, 2017.

D. J. Dimaria and J. W. Stasiak, Trap creation in silicon dioxide produced by hot electrons, Journal of Applied Physics, vol.65, issue.6, pp.2342-2356, 1989.

K. A. Moen, Predictive modeling of device and circuit reliability in highly scaled CMOS and SiGe BiCMOS technology, 2012.

P. Cheng, B. Jun, A. Sutton, A. Appaswamy, C. Zhu et al., Understanding Radiation-and Hot Carrier-Induced Damage Processes in SiGe HBTs Using Mixed-Mode Electrical Stress, IEEE Transactions on Nuclear Science, vol.54, issue.6, pp.1938-1945, 2007.

P. Cheng, C. Zhu, A. Appaswamy, and J. D. Cressler, A New Current-Sweep Method for Assessing the Mixed-Mode Damage Spectrum of SiGe HBTs, IEEE Transactions on Device and Materials Reliability, vol.7, issue.3, pp.479-487, 2007.

C. P. Lee, F. H. Chau, W. Ma, and N. L. Wang, The Safe Operating Area of GaAs-Based Heterojunction Bipolar Transistors, IEEE Transactions on Electron Devices, vol.53, issue.11, pp.2681-2688, 2006.

N. V.-d&apos;alessandro, A. G. Rinaldi, H. M. Metzger, and . Banbrook, On the safe operating area of bipolar cascode amplifiers, 2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp.171-174, 2013.

M. Potéreau, N. Deltimpe, A. Ghiotto, O. Jardel, S. Rochette et al., High-Reliability Active Integrated Power Limiter with Sharp Compression Profile in Ka, 130 nm SiGe Technology, 2019.

G. Zhang, J. D. Cressler, G. Niu, and A. J. Joseph, A new "mixed-mode" reliability degradation mechanism in advanced Si and SiGe bipolar transistors, IEEE Transactions on Electron Devices, vol.49, issue.12, pp.2151-2156, 2002.

J. D. Cressler, Emerging SiGe HBT reliability issues for mixed-signal circuit applications, IEEE Transactions on Device and Materials Reliability, vol.4, issue.2, pp.222-236, 2004.

G. G. Fischer, D. Micusik, and A. Pocej, Long-term reliability of high-performance SiGe:C heterojunction bipolar transistors, 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), pp.1-4, 2012.

M. A. Oakley, B. Wier, U. S. Raghunathan, P. S. Chakraborty, and J. D. Cressler, On the reliability of SiGe HBT cascode driver amplifiers, 2014 IEEE Radio Frequency Integrated Circuits Symposium, pp.445-448, 2014.

B. R. Wier, R. P. Martinez, U. S. Raghunathan, H. Ying, S. Zeinolabedinzadeh et al., Revisiting Safe Operating Area: SiGe HBT Aging Models for Reliability-Aware Circuit Design, 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), pp.215-218, 2018.

M. Diop, Fiabilité et bruit basse fréquence de transistors bipolaires à hétérojonction SiGe :C 250 GHz dédiés aux applications ondes millimétriques, 2009.

M. Pfost, P. Brenner, and R. Lachner, Investigation of advanced SiGe heterojunction bipolar transistors at high power densities, Bipolar/BiCMOS Circuits and Technology, pp.100-103, 2004.

K. Yau, E. Dacquay, I. Sarkas, and S. P. Voinigescu, Device and IC Characterization Above 100 GHz, IEEE Microwave Magazine, vol.13, issue.1, pp.30-54, 2012.

F. Cacho, S. Ighilahriz, M. Diop, D. Roy, and V. Huard, Insights about reliability of Heterojunction Bipolar Transistor under DC stress, 2010 IEEE International Integrated Reliability Workshop Final Report

. Lake-tahoe, . Ca, and . Usa:-ieee, , pp.139-141, 2010.

C. Mukherjee, T. Jacquet, A. Chakravorty, T. Zimmer, J. Böck et al., Low-Frequency Noise in Advanced SiGe:C HBTs-Part I: Analysis, IEEE Transactions on Electron Devices, vol.63, issue.9, pp.3649-3656, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399855

C. Mukherjee, T. Jacquet, T. Zimmer, C. Maneux, A. Chakravorty et al., Comprehensive study of random telegraph noise in base and collector of advanced SiGe HBT: Bias, geometry and trap locations, pp.260-263, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01695274

C. Mukherjee, T. Jacquet, A. Chakravorty, T. Zimmer, J. Boeck et al., Random telegraph noise in SiGe HBTs: Reliability analysis close to SOA limit, Microelectronics Reliability, vol.73, pp.146-152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695265

S. Mohammadi, D. Pavlidis, and B. Bayraktaroglu, Relation between lowfrequency noise and long-term reliability of single AlGaAs/GaAs power HBTs, IEEE Transactions on Electron Devices, vol.47, issue.4, pp.677-686, 2000.

H. Kamrani, D. Jabs, V. Alessandro, N. Rinaldi, T. Jacquet et al., Microscopic Hot-Carrier Degradation Mod-References eling of SiGe HBTs Under Stress Conditions Close to the SOA Limit, IEEE Transactions on Electron Devices, vol.64, issue.3, pp.923-929, 2017.

C. Mukherjee, T. Jacquet, G. G. Fischer, T. Zimmer, and C. Maneux, Hot-Carrier Degradation in SiGe HBTs: A Physical and Versatile Aging Compact Model, IEEE Transactions on Electron Devices, vol.64, issue.12, pp.4861-4867, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695254

K. A. Moen, P. S. Chakraborty, U. S. Raghunathan, J. D. Cressler, and H. Yasuda, Predictive Physics-Based TCAD Modeling of the Mixed-Mode Degradation Mechanism in SiGe HBTs, IEEE Transactions on Electron Devices, vol.59, issue.11, pp.2895-2901, 2012.

A. J. Scholten, D. Stephens, G. D. Smit, G. T. Sasse, and J. Bisschop, The Relation Between Degradation Under DC and RF Stress Conditions, IEEE Transactions on Electron Devices, vol.58, issue.8, pp.2721-2728, 2011.

S. Ighilahriz, Caractérisation et modélisation de la fiabilité des transistors et circuits millimétriques conçus en technologies BiCMOS et CMOS," thesis, 2014.

C. Mukherjee, F. Marc, M. Couret, G. Fischer, M. Jaoul et al., A Physical and Versatile Aging Compact Model for Hot Carrier Degradation in SiGe HBTs under Dynamic Operating Conditions, Solid-State Electronics, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02475429

S. Ghosh, Electronical model evaluation and development of compact model including aging for InP heterojunction bipolar transistors (HBTs)," thesis, vol.1, 2011.

T. Jacquet, Reliability of SiGe, C HBTs operating at 500 GHz : characterization and modeling, thesis, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01476084

G. A. Koné, Caractérisation des effets thermiques et des mécanismes de défaillance spécifiques aux transistors bipolaires submicroniques sur substrat InP dédiés aux transmissions optiques Ethernet à 112 Gb/s," thesis, vol.1, 2011.

S. Mahapatra, Fundamentals of bias temperature instability in MOS transistors: characterization methods, process and materials impact, DC and AC modeling, ser. Springer series in advanced microelectronics, vol.139, 2016.

K. O. Jeppson and C. M. Svensson, Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices, Journal of Applied Physics, vol.48, issue.5, pp.2004-2014, 1977.

A. Fick, Ueber Diffusion, Annalen der Physik, vol.170, issue.1, pp.59-86, 1855.

D. A. Fick, On liquid diffusion, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.10, issue.63, pp.30-39, 1855.

M. Couret, G. Fischer, S. Frégonése, T. Zimmer, and C. Maneux, Physical, smallsignal and pulsed thermal impedance characterization of multi-finger SiGe HBTs close to the SOA edges, 2019 IEEE 32nd International Conference on Microelectronic Test Structures (ICMTS), pp.154-159, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02276656

C. Mukherjee, M. Couret, V. Nodjiadjim, M. Riet, J. Dupuy et al., Scalable Modeling of Thermal Impedance in InP DHBTs Targeting Terahertz Applications, IEEE Transactions on Electron Devices, vol.66, issue.5, pp.2125-2131, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02372518

F. Marc, Modeling of Reaction-Diffusion using a RC-network, Bordeaux, Tech. Rep, 2018.

F. Marc, B. Mongellaz, C. Bestory, H. Levi, and Y. Danto, Improvement of aging simulation of electronic circuits using behavioral modeling, IEEE Transactions on Device and Materials Reliability, vol.6, issue.2, pp.228-234, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00181801

M. A. Alam and S. Mahapatra, A comprehensive model of PMOS NBTI degradation, Microelectronics Reliability, vol.45, issue.1, pp.71-81, 2005.

J. Manouvrier, Comportement des diodes de protection lors d'événements transitoires rapides dus aux ESD : outils de caractérisation, physique du semi-conducteur et modélisation CMOS, 2008.

L. Vendrame, E. Zabotto, A. D. Fabbro, A. Zanini, G. Verzellesi et al., Influence of impact-ionization-induced base current reversal on bipolar transistor parameters, IEEE Transactions on Electron Devices, vol.42, issue.9, pp.1636-1646, 1995.

H. T. Tran and M. Schroter, Modeling of charge and collector field in Si-based bipolar transistors, Boston (MA), pp.102-107, 2004.

V. T. Vu, T. Rosenbaum, O. Saxod, D. Celi, T. Zimmer et al., Impact study of the process thermal budget of advanced CMOS nodes on SiGe HBT performance, 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting -BCTM, pp.76-79, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01399915

B. Barbalat, Technologie et physique de transistors bipolaires à hétérojonction Si/SiGeC auto-alignés à très hautes performances, vol.11, 2006.

P. Siegel, Terahertz technology, IEEE Transactions on Microwave Theory and Techniques, vol.50, issue.3, pp.910-928, 2002.

O. Inac, B. Cetinoneri, M. Uzunkol, Y. A. Atesal, and G. M. Rebeiz, Millimeter-Wave and THz Circuits in 45-nm SOI CMOS, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp.1550-8781, 2011.