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.............
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Abstract

In various radar systems, a great deal of interest has been paid to selecting a wave-

form and designing a whole processing chain from the transmitter to the receiver to

obtain the high range resolution profile (HRRP). For the last decades, radar designers

have focused their attentions on different waveforms such as the pulse compression

waveforms and the stepped frequency (SF) waveform:

On the one hand, three different types of wide-band pulse compression waveforms have

been proposed: the linear frequency modulation (LFM) waveform, the phase coded

(PC) waveform, and the non-linear frequency modulation (NLFM) waveform. They are

very popular but the sampling frequency at the receiver is usually large. This hence re-

quires an expensive analog-to-digital convertor (ADC). In addition, the PC and NLFM

waveforms may be preferable in some high range resolution applications since they lead

to peak sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR) better than the ones

obtained with the LFM waveform.

On the other hand, when dealing with SF waveforms, a small sampling frequency can

be considered, making it possible to use a cheap ADC.

Pulse compression and SF waveforms can be combined to take advantage of both. Al-

though the standard combination of PC or NLFM with SF leads to the exploitation of

a cheap ADC, the performance of the PC waveform or NLFM waveform in terms of

PSLR and ISLR cannot be attained. As the PSLR and the ISLR have a great influence

on the probability of detection and probability of false alarm, our purpose in the PhD

dissertation is to present two new processing chains, from the transmitter to the receiver:

1. In the first approach, the spectrum of a wide-band pulse compression pulse is split

into a predetermined number of portions. Then, the time-domain transformed

versions of these various portions are transmitted. At the receiver, the received

echoes can be either processed with a modified FD algorithm or a novel time-

waveform reconstruction (TWR) algorithm. A comparative study is carried out

between the different processing chains, from the transmitter to the receiver, that

can be designed. Our simulations show that the performance in terms of PSLR

and ISLR obtained with the TWR algorithm is better than that of the modified FD

algorithm for a certain number of portions. This comes at the expense of an ad-

ditional computational cost. Moreover, whatever the pulse compression used, the
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approach we present outperforms the standard SF waveforms in terms of PSLR

and ISLR.

2. In the second approach, we suggest approximating the wide-band NLFM by a

piecewise linear waveform and then using it in a SF framework. Thus, a variable

chirp rate SF-LFM waveform is proposed where SF is combined with a train of

LFM pulses having different chirp rates with different durations and bandwidths.

The parameters of the proposed waveform are derived from the wide-band NLFM

waveform. Then, their selection is done by considering a multi-objective opti-

mization issue taking into account the PSLR, the ISLR and the range resolution.

The latter is addressed by using a genetic algorithm. Depending on the weights

used in the multi-objective criterion and the number of LFM pulses that is con-

sidered, the performance of the resulting waveforms vary.

An appendix is finally provided in which additional works are presented dealing with

model comparison based on Jeffreys divergence.

Keywords: radar waveform, stepped frequency, HRRP, phase coded waveform, NLFM

waveform, waveform optimization.
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RESUME

Dans divers systèmes radar, un grand intêrét a été porté à la sélection d’une forme

d’onde et à la conception d’une chaı̂ne de traitement complète, de l’émetteur au

récepteur, afin d’obtenir un profil distance haute résolution (HRRP, acronyme de High

Range Resolution Profile en anglais). Au cours des dernières décennies, les concepteurs

d’algorithmes de traitement du signal radar ont concentré leur attention sur différentes

formes d’onde telles que les techniques de compression d’impulsion et les systèmes à

bande synthétique (SF acronyme de stepped frequency, en anglais).

D’une part, trois types de formes d’onde de compression d’impulsions large bande ont

été proposés dans la littérature : la forme d’onde modulée linéairement en fréquence

(Linear Frequency Modulation), celle à codes de phase (Phase Coded) et la forme

d’onde modulée non linéairement en fréquence (Non Linear Frequency Modulation).

Ces approches sont très populaires, mais elles requièrent une fréquence

d’échantillonnage généralement élevée au niveau du récepteur, et par voie de

conséquence un convertisseur analogique-numérique coûteux. De plus, les formes

d’onde PC et NLFM peuvent être préférables dans certaines applications à haute

résolution, car elles conduisent à de meilleures performances en termes de PSLR et

ISLR que celles obtenues avec la forme d’onde LFM.

D’autre part, lorsqu’il s’agit de schémas SF, une fréquence d’échantillonnage moins

élevée peut être envisagée, ce qui permet d’utiliser un convertisseur analogique numérique

(CAN) meilleur marché.

Ces deux approches peuvent être combinées pour tirer avantage des deux familles. Bien

que la combinaison standard mène à l’exploitation d’un CAN bon marché, les perfor-

mances en termes de PSLR et ISLR ne sont pas nécessairement adaptées. Comme le

PSLR et l’ISLR ont une grande influence sur la probabilité de détection et la probabilité

de fausse alarme, notre objectif est de trouver des solutions alternatives. Ainsi, notre

contribution dans ce mémoire de thèse consiste à proposer deux nouvelles chaı̂nes de

traitement, de l’émetteur au récepteur :

1. Dans la première approche, le spectre de la forme d’onde à large bande est

décomposé en un nombre prédéterminé de portions. Puis, les versions tem-

porelles de ces dernières sont successivement transmises. Le signal reçu est alors

traité soit en utilisant un algorithme FD (pour frequency domain en anglais) mod-
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ifié, soit un algorithme de reconstruction de forme d’onde réalisé directement

dans le domaine temporel (TWR pour time wave reconstruction). Dans cette

thèse, les formes d’ondes PC et NLFM ont été sélectionées. Une étude compar-

ative est alors menée entre les différentes chaı̂nes de traitement, de l’émetteur

au récepteur, que l’on peut constituer. Nos simulations montrent que les perfor-

mances obtenues à partir de l’algorithme TWR sont le plus souvent meilleures

que celles de l’agorithme FD modifié. La contre-partie est une augmentation du

coût calculatoire. De plus, que ce soit avec une forme d’onde PC ou NLFM,

l’approche présentée fournit de meilleurs résultats en termes de PSLR et ISLR

que les formes d’onde SF classiques.

2. La seconde démarche proposée consiste à approximer une forme d’onde NLFM

à large bande par une forme d’onde LFM par morceaux, puis de la combiner

avec une approche de type SF. Cela donne lieu à une forme d’onde combinant SF

et un train d’impulsions LFM ayant différentes durées et largeurs de bande. La

sélection des paramètres de cette forme d’onde est faite en minimisant un critère

multi-objectif, tenant compte du PSLR, de l’ISLR et de la résolution distance.

Cette estimation est opérée par algorithmes génétiques. Selon les poids utilisés

dans le critère multi-objectif et le nombre d’impulsions LFM pris en compte, les

performances les formes d’onde résultantes varient.

Une annexe est en outre fournie qui présente des travaux complémentaires sur la com-

paraison de modèles à partir de la divergence de Jeffreys.

Mots-cls: forme d’onde radar, système à bande synthétique, HRRP, forme d’onde PC,

forme d’onde NLFM, optimisation de formes d’onde.
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INTRODUCTION

Radar has been widely used in various civil and military applications that include

police traffic radar, weather radar, earth resource monitoring, tracking of aircrafts and

many others. Although hardware and software limitations play a role in the design of

a radar system, the goal of each radar application has a great influence on the selection

of the radar waveform parameters by the designer. For the last decades, a great deal of

interest has been paid to obtaining a high range resolution in various radar applications,

from synthetic aperture radar (SAR) and ground penetrating radar (GPR) to radar target

recognition. The key way to obtain a high range resolution is to select a wide-band

waveform. For this purpose, two families can be considered.

On the one hand, waveforms with large instantaneous bandwidths can be used. The

most popular one is the pulse compression waveform. It consists of a train of mod-

ulated pulses transmitted on the same carrier frequency. These pulses are internally

modulated in phase or in frequency. In the literature, three different pulse compression

waveforms exist: the linear frequency modulation (LFM) waveform, the phase coded

(PC) waveform, and the non-linear frequency modulation (NLFM) waveform. The re-

ceived echoes of this family of waveforms are processed by using the matched filter

(MF) to produce the high range resolution profile (HRRP). The latter is representative

of the reflectivity of the target to an HRR radar waveform projected onto the radar line-

of-sight. Its mainlobe width and its sidelobe levels are characterized by the correlation

function of the waveform. When dealing with LFM waveforms, the sidelobe levels are

high. Hence, an amplitude windowing is generally combined with a MF in the fre-

quency domain to reduce them. This comes at the cost of a smaller signal-to-noise

ratio (SNR) at the output of the MF and an increase in the width of the mainlobe of the

HRRP, and consequently a degradation in the range resolution [95]. For some PC and

NLFM waveforms, there is no need to apply the amplitude windowing to the MF output

since the sidelobes of the HRRP are sufficiently low.

Based on Nyquist criterion, the high instantaneous bandwidth of this family of wave-

forms leads to a high sampling rate at the receiver, and hence, an expensive analog-to-

digital converter (ADC) is required.

On the other hand, a waveform that consists of a train of externally modulated pulses

can be considered. This waveform is known as the stepped-frequency (SF) waveform
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[67] [116] [77]. In this case, a train of pulses that have a small instantaneous band-

width is transmitted on different equidistant carriers. This makes it possible to exploit

a cheaper ADC due to the small sampling rate. At the receiver, high range resolution

is obtained by synthesizing the wide bandwidth from the received echoes. The latter

can be processed with the MF to produce the HRRP. However, its computational cost is

high. In addition, grating lobes may appear in the HRRP [37]. One alternative can be

seen as a kind of stretch processing. It includes three different algorithms, namely the

IFFT, the time domain (TD), and the frequency domain (FD) algorithms [67]. The FD

and the IFFT algorithms have computational costs smaller than that of the MF-based

approach. However, they have some limitations. The IFFT algorithm produces ghost

targets in the HRRP of extended targets [67]. The TD algorithm [68] does not produce

ghost targets but suffers from the up-sampling requirement of the pulses. Finally, the

FD algorithm can cope with the drawbacks of the TD and the IFFT algorithms, but

a DFT must be computed on a relatively large number of samples. Nevertheless, the

recent advances in designing and fabricating powerful processors can facilitate its im-

plementation.

The pulse compression and SF waveforms can be combined to take advantage of the

features of both and produce a waveform for which the sampling rate and the number

of pulses within the coherent processing interval are reduced. The standard combination

consists in transmitting the train of pulses of a pulse compression waveform on different

equidistant carriers. In the literature, SF-LFM waveform has been well studied [123]

[120] [17] [66] [69] [70]. However, to the best of our knowledge, few papers deal with

SFPC and SF-NLFM waveforms [62] [37].

For the evaluation of radar waveforms, a detection test is usually designed and its per-

formance in terms of probability of false alarm (PFA) and probability of detection (PD)

must be evaluated [95]. Various authors have worked on waveform optimization based

on several criteria. The reader may refer to [99] [75] [97] for instance. In this thesis, we

focus our attention on three of the performance measures that have great influences on

the PD and the PFA. They characterize the HRRP and are known as the peak sidelobe-

ratio (PSLR), the integrated sidelobe ratio (ISLR), and the range resolution [32] [119].

In various high-resolution radar applications, PC waveform or NLFM waveforms can

be used to take advantage of their features in terms of PSLR and ISLR. Although the
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standard combination of these waveforms with SF waveform reduces significantly the

sampling rate at the receiver, their features in terms of PSLR and ISLR cannot be at-

tained. This is due to the fact that the instantaneous frequency of the concatenated

pulses of the transmitted waveform does not correspond to a wide-band PC or NLFM

pulse.

In the light of the aforementioned problems, the work done in this thesis is decomposed

into two parts: The first one aims at overcoming the shortcoming when combining a SF

scheme with a PC waveform or NLFM waveform. The second part proposes another

approach to overcome the drawback of the standard combination of SF with an NFLM

waveform. To address these two issues, this thesis is organized as follows:

In chapter 1, we briefly recall the principles of radar operation, radar modeling at the

transmitter and receiver sides, and the principles of threshold detection. Then, high-

resolution radar waveforms including pulse compression waveforms and SF waveforms

are presented. The way to process them at the receiver is also recalled. Finally, perfor-

mance measures related to the range profile are defined.

In chapter 2, our first contribution is presented: it consists in designing a processing

chain from the transmitter to the receiver dealing with a SF scheme combined with one

of the pulse compression waveforms. More particularly, the spectrum of a wide-band

pulse compression pulse is split into a predetermined number of portions. Then, the

time-domain transformed versions of these various portions are transmitted. At the re-

ceiver, a modified FD algorithm and a time waveform reconstruction (TWR) algorithm

are proposed to process the received signals. After presenting this chain from a the-

oretical point of view, various simulation results are given. They make it possible to

compare the performance of the different processing chains that can be defined.

The third chapter deals with the design of a variable chirp rate SF-LFM waveform.

More particularly, we suggest approximating a wide-band NLFM by a piecewise linear

waveform and then using it in a SF framework. Thus, a variable chirp rate SF-LFM

waveform is proposed where SF is combined with a train of LFM pulses having differ-

ent chirp rates with different durations and bandwidths. In this PhD dissertation, the

parameters of the proposed waveform are derived from the wide-band tangent-based

NLFM waveform. Then, they are adjusted by means of a multi-objective optimization

issue. The multi-objective criterion is defined from the PSLR, the ISLR, and the range
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resolution that could be obtained with respect to the ones that characterize the wide-

band NLFM waveform. It should be noted that the optimization issue is addressed by

using genetic algorithms.

This dissertation ends up by drawing some conclusions concerning the various ap-

proaches that have been tackled and highlighting some perspectives on how to develop

our work in the future.

It should be noted that the PhD dissertation also includes an appendix dealing with

Jeffreys divergence for model comparison. This additional work consists in analyzing

the Jeffreys divergence between different types of processes: sum of complex expo-

nentials disturbed by additive white noises, autoregressive moving average processes

(ARMA) and long-memory processes such as fractionally integrated (FI) white noises

and ARFIMA processes. Although this topic is not directly related to the core of the

PhD dissertation, it is representative of the work done before and at the beginning of

the PhD.
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CHAPTER 1

Radar waveforms and Signal Processing Overview

1.1 Introduction

The word ”Radar” was originally an acronym that stood for radio detection and rang-

ing. This acronym summarizes two main tasks of a radar system: detecting a target
and determining its position. Nowadays, modern radar systems are not confined to the
latter task, but also deal with tracking, identifying and classifying targets. Thus, radar
systems are used in civilian and military applications that include police traffic radar,
weather radar, air traffic control, collision avoidance, two- and three- dimensional map-
ping, earth resources monitoring, missile guidance, tracking of aircrafts and ballistic
missiles and many others.
In this chapter, the basics of a monostatic pulsed radar including operating principles,
signal modeling, and threshold detection are briefly reviewed. Then, high range resolu-
tion waveforms including pulse compression waveforms and stepped-frequency wave-
forms are presented. Finally, as we will focus our attention on the range profile, three
performance measures, namely the peak sidelobe ratio (PSLR), the integrated sidelobe
ratio (ISLR), and the range resolution are defined.

1.2 Radar concepts

A radar system radiates electromagnetic waves in a region of interest. If there are
some objects, these waves are then reflected back toward the system. Finally, the back-
scattered signals that are received by the radar antenna are processed.
The monostatic radar system consists of different subsystems, as shown in Fig. 1.1.
Thus, the transmitter is used to generate electrical radar signals. The antenna is the
interface between the radio waves propagating through the space and the transmit-
ter/receiver (T/R). The T/R device plays the role of connecting the transmitter and the
receiver to the same antenna by providing isolation between them to protect the sensi-
tive receiver components from the high-powered transmit signal.
The electromagnetic waves reflected in the direction of the radar are picked up by the
antenna and routed into the receiver in the form of an electrical signal. In the receiver,
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Fig. 1.1 Block diagram of a monostatic radar

this signal usually passes through different stages [95]: first, it is amplified by using a
low-noise amplifier (LNA). Then, it is converted to an intermediate frequency (IF) by
using a mixer and a local oscillator. Then, the IF signal is amplified by means of an
IF amplifier. Afterward, the IF signal is down-converted to baseband using the detec-
tor. Finally, the baseband signal is digitized using an analog-to-digital converter (ADC)
where the output of the receiver is applied to the signal processor.
The primary function of the signal processor is to detect the presence of a target in spite
of disturbances. The latter may include:

• The thermal noise, the electromagnetic waves reflected from the ocean or the
ground, known as clutter,

• An intentional jamming in the form of noise or false targets,

• The electromagnetic disturbance created by other human-made sources such as
television broadcast station and communication systems.

1.3 Generalities about the transmitted and received signals

In general, a pulsed radar waveform is generated in two steps: first, a train of Np base-
band rectangular pulses separated by a pulse repetition time Tr is produced. Then, these
pulses are modulated with the same sinusoidal carrier.
Thus, by assuming that the duration of each pulse is denoted by Tp, the transmitted
waveform whose total bandwidth is equal to B can be described, for the mth pulse
(m ∈ J1, NpK) and for the time instant satisfying (m− 1)Tr < t < (m− 1)Tr + Tp, as
follows:

stx(t) =

Np∑
m=1

stx,m(t) =

Np∑
m=1

vbb,m(t)exp(j2πfct) (1.1)
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where stx,m(t) is the mth transmitted pulse, fc is the carrier frequency and vbb,m(t) is
the mth baseband pulse.
When unmodulated pulses are considered, vbb,m(t) is shown in Fig.1.2 and defined by:

vbb,m(t) = Arect
(t− (m− 1)Tr − Tp/2

Tp

)
(1.2)

where A is the amplitude of each pulse and rect(t) stands for a rectangular pulse equal
to 1 for−1

2
≤ t ≤ 1

2
and zero elsewhere. It should be noted that during the transmission

time, the pulsed radar system does not receive any echoes. The receiving time starts at
the end of each transmitted pulse. Thus, the minimum range through which the target
can be detected by the radar is defined by:

Rmin =
cTp
2

(1.3)

The minimum range is an attractive feature for short-range radar applications such as
automotive radar and it should be as small as possible.

Fig. 1.2 Radar transmission waveform

Let us now briefly present what happens when the transmitted pulses hit an obstacle
located at a distance R from the radiating antenna. Let us assume that the power at the
transmitter is Pt and the antenna is isotropic. The power density Q at a distance R from
the radiating antenna is the transmitted power divided by the surface area of a sphere of
radius R:

Q =
Pt

4πR2
(1.4)

If a directional antenna is used instead of an isotropic one, the power density at the
center of the antenna beam pattern is higher than the one obtained with an isotropic an-
tenna, because the transmitted power is concentrated onto a smaller area on the surface
of the sphere. In this case, the power density is given by:

Q =
GPt
4πR2

(1.5)

3



where G is the gain of the antenna.
The transmitted signal that hits the target induces time-varying currents so that the target
becomes a source of radio waves that propagate in various directions and more particu-
larly in the direction of the radar. The power reflected back to the radar denoted Prefl is
the product of the Q and the radar cross section (RCS) of the target, denoted as σ. The
latter is determined by many parameters such as the physical size, the shape, and the
materials of the target. Therefore, the reflected power can be expressed as follows:

Prefl = σQ =
σGPt
4πR2

(1.6)

Then, the power density at the radar receiving antenna Qr is given by:

Qr =
Prefl
4πR2

=
σGPt

(4π)2R4
(1.7)

The power received by the antenna with an effective area Ae is expressed as the product
of the received power density and the effective area of the antenna:

Pr = QrAe =
σGAePt
(4π)2R4

(1.8)

The relation between the transmitted power and the received power in (1.8) is developed
in the ideal case where no losses exist. However, in real cases, losses in the propagation
path and losses between transmitter/receiver and the antenna exist. If L represents the
total system loss, (1.8) becomes:

Pr = QrAe =
σGAePt
(4π)2R4L

= K2Pt (1.9)

where K is the gain of the received signal.
Given the above phenomenon and the time it takes for the signal to propagate a distance
R and return, the received signal is a delayed version of the transmitted signal usually
affected by a disturbance. As mentioned above, the latter usually includes the thermal
noise and might include clutter echoes, electromagnetic disturbance from other trans-
mitting sources, and intentional jamming. Therefore, for a stationary point target1 at
range R, the received signal can be modeled as follows:

srx(t) =

Np∑
m=1

srx,m(t) =

Np∑
m=1

Kmstx,m(t− td) + η(t)

=

Np∑
m=1

Kmvbb,m(t− td)exp(j2πfc(t− td)) + η(t) (1.10)

1Stationary target is a target whose relative velocity is equal to zero.
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where srx,m(t) is the mth received pulse, and Km is the gain of the mth received pulse.
In addition, if c = 3 × 108m/s is the speed of light, td = 2R

c
is the time delay that

corresponds to the range of the target R. Since the target is stationary, td is the same
from the 1st pulse to the N th

p pulse. Finally, η(t) represents the disturbance.
Then, the received signal is down-converted to baseband by multiplying it by the refer-
ence signal sref,m(t) = exp(−j2πfct). This process is called a demodulation process.
After demodulation, the received baseband signal becomes:

srx,bb(t) = srx(t)sref,m(t) =

Np∑
m=1

srx,m(t)sref,m(t) =

Np∑
m=1

srx,bb,m(t)

=

Np∑
m=1

Kmvbb,m(t− td)exp
(
− j2πfc

2R

c

)
+ η(t)exp(−j2πfct) (1.11)

where srx,bb,m(t) denotes the mth received baseband pulse.
The received baseband signal in (1.11) is then sampled at a frequency that respects the
Nyquist criterion, by using an ADC. If Bb is the baseband bandwidth and Bp = 2Bb is
the passband bandwidth, the sampling frequency at the receiver can be set at:

F (Rx)
s = Bp = 2Bb (1.12)

Finally, the sampled data is processed.
Remark: When a train of similar pulses are transmitted on the same carrier frequency,
the bandwidth satisfies:

B = Bp (1.13)

In most radar systems, the traditional approach to process the sampled data at the re-
ceiver consists in applying a matched filter (MF). The latter is a linear filter used to
maximize the instantaneous signal-to-noise ratio (SNR). Its impulse response is pro-
portional to the time-reversed and complex conjugated copy of the transmitted signal.
In the absence of Doppler effect, the shape of the MF output corresponds to a shifted
version of the autocorrelation function of the transmitted signal. For more information
about the derivation of the matched filter impulse response, the reader may refer to [95].
At the MF output, a range profile is created. It is a representative of the reflectivity of
the target to a radar waveform projected onto the radar line-of-sight. This 1-D signature
makes it possible to estimate the target size and the positions of some scattering points
of the target structure. The range profile of a single point scatterer is characterized by
a mainlobe and sidelobes. The center of the mainlobe corresponds to the position of
the point scatterer whereas the sidelobes are undesirable lobes that should be as low as
possible.
Normally, in radar processing, a threshold detection test is applied to the output of the
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MF to declare the presence or absence of targets. In the next section, an overview of
threshold detection is presented.

1.4 Overview of threshold detection

1.4.1 Threshold detection concept

In radar systems, the detection is the decision whether a given signal return is the result
of an echo from a target or a disturbance. Detection is done automatically in the signal
processor where a threshold level is set based on the voltage of the disturbance. The
voltage of the returned signal is compared with the threshold. A target is declared
present if and only if the returned signal exceeds the threshold. In some cases when no
target is present, the return from the disturbance may exceed the threshold. This leads to
the creation of a false alarm. In practice, as the voltage of the disturbance varies, a fixed
threshold level cannot be considered. Therefore, the threshold should be set adaptively
to obtain a constant false alarm rate [95].

1.4.2 Probabilities of false alarm and detection

In the presence of a target, the input signal at the receiver consists of a delayed version
of the transmitted signal combined with the disturbance. The latter can be modeled by a
randomly varying voltage. Even if the delayed signal is modeled as a constant voltage,
the output voltage of the receiver varies randomly due to the inherited thermal noise.
Therefore, the process of detecting the presence of a target on the basis of the received
signal voltage is a statistical process. The resulting radar detection performance is usu-
ally characterized by the probability that a target is detected, called the probability of
detection (PD), and the probability that detection will be declared when no target is
present, called the probability of false alarm (PFA). When the detection threshold de-
creases, both the detection probability and the false alarm probability increase. In order
to enhance the PD while maintaining a constant PFA, the signal-to-interference ratio
(SIR) must be increased. The latter is defined as the ratio between the power of the
transmitted signal and the power of the disturbance signal.
Radar detection algorithms are usually designed according to the Neyman-Pearson cri-
terion. This rule fixes the PFA that is allowed by the detection processor and then
maximizes the PD, for a given SIR.

1.4.3 Optimum detector for nonfluctuating radar signals

Let us assume that sMF (t) denotes the output of the MF. When the latter is tested
at a certain time tte, one of two hypothesis can be assumed: either the measurement
sMF (tte) is the result of disturbance only and this hypothesis is denoted as H0 or
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sMF (tte) is the result of the disturbance and echoes from targets. This hypothesis is
denoted as H1. Radar designers are interested in statistically describing the data under
each hypothesis to design good detection algorithms and analyze the radar performance.
Hence, two probability density functions (PDFs) are required:

1. p
(
sMF (tte)|H1

)
denotes the PDF of sMF (tte) under the hypothesisH1, i.e. when

a target is present,

2. p
(
sMF (tte)|H0

)
denotes the PDF of sMF (tte) under the hypothesisH0, i.e. when

a target is not present.

Let us assume that the disturbance signal present at the receiver corresponds only to the
thermal noise. The latter is independent and identically distributed (IID), zero-mean
Gaussian with variance σ2

n. Under H0, one has [52]:

p
(
sMF (tte)|H0

)
=

1

πσ2
n

exp
(
− |sMF (tte)|2

σ2
n

)
(1.14)

Under H1, and in the presence of a non-fluctuating target, let us assume that the mea-
surement sMF (tte) is represented by a complex sample Cexp(jθ) added to the noise
sample where C is a constant that represents the amplitude of the MF at tte. It depends
on Km and the amplitude of η(t). The phase θ of the target echo can be modeled as
a random variable distributed over (0,2π) and independent of C. Using the Bayesian
approach for random parameters, it can be shown that p

(
sMF (tte)|H1

)
is Rician dis-

tributed 2 [52]:

p
(
sMF (tte)|H1

)
=

1

πσ2
n

exp
(
− 1

σ2
n

(|sMF (tte)|2 + C2)
)
J0

(2C|sMF (tte)|
σ2
n

)
(1.15)

where J0 is the Bessel function of the first kind of order zero defined by:

J0(x) =
+∞∑
i=0

(−1)ix2i

22i(i!)2
, x > 0 (1.16)

2If x =
√
x21 + x22 with x1 ∼ N(µ1, σ

2) and x2 ∼ N(µ2, σ
2), the rician PDF of x is:

p(x) =


x
σ2 exp

(
− 1

2σ2 (x
2 + α2)

)
J0

(
αx
σ2

)
x > 0

0 x < 0

where α2 = µ2
1 + µ2

2 and J0(x) =
∑+∞
m=0

(−1)mx2m

22m(m!)2 with x > 0
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Given (1.14) and (1.15), the logarithmic-likelihood ratio test can be written as:

ln(LR) = ln

(
p
(
sMF (tte)|H1

)
p
(
sMF (tte)|H0

)) = ln

(
J0

(2C|sMF (tte)|
σ2
n

))
− C2

σ2
n

≷H1
H0

lnT

(1.17)
where T is the detection threshold.
Rearranging the terms leads to:

ln

(
J0

(2C|sMF (tte)|
σ2
n

))
≷H1
H0

C2

σ2
n

+ lnT (1.18)

In (1.18), ln
(
J0

(
2C|sMF (tte)|

σ2
n

))
is a monotonic increasing function. Thus, the same

detection results can be obtained by comparing its argument 2C|sMF (tte)|
σ2
n

with a modified

threshold Tm = σ2
n

2C
J−10 (Te

C2

σ2n ). In this case, the detection test is:

|sMF (tte)| ≷H1
H0

Tm (1.19)

Let z = |sMF (tte)|, then the detection test becomes z ≷H1
H0

Tm. In this case, the dis-
tribution of z under the two hypothesis is required. Under H0, z is Rayleigh distributed
[52]:

pz(z|H0) =

 2z
σ2
n
exp(− z2

σ2
n
) z ≥ 0

0 z < 0

Therefore, the probability of false alarm is given by:

PFA =

∫ +∞

Tm

pz(z|H0)dz = exp(−T
2
m

σ2
n

) (1.20)

The threshold Tm can be calculated by inverting (1.20) as follows:

Tm = σn
√
− ln(PFA) (1.21)

On the other hand, when H1 is considered, it can be shown that the PDF of z is given
by:

pz(z|H1) =

 2z
σ2
n
exp
(
− z2+C2

σ2
n

)
J0

(
C2z
σ2
n

)
z ≥ 0

0 z < 0
(1.22)
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Given (1.22), the probability of detection is hence:

PD =

∫ +∞

Tm

pz(z|H1)dz =

∫ +∞

Tm

2z

σ2
n

exp
(
− z2 + C2

σ2
n

)
J0

(2C2z

σ2
n

)
dz (1.23)

At this stage, let us define the following variables a = 2C2

σ2
n

and x = z√
σ2n
2

. The

integral in (1.23) becomes:

PD =

∫ +∞√
2T2
m

σ2n

xexp
(
− x2 + a2

2

)
J0(ax)dx = QM

(√2AC2

σ2
n

,

√
2T 2

m

σ2
n

)
(1.24)

where QM is the Marcum’s function3 which can be evaluated iteratively since no closed
form is known for it. Finally, using (1.21) and knowing that C2

σ2
n

is the SNR, (1.24)
reduces to:

PD = QM

(√
2SNR,

√
−2 ln(PFA)

)
(1.26)

In Fig. 1.3, PD versus PFA for different values of the SNRs is illustrated. For a given
PFA, the PD increases as the SNR increases. Thus, in order to increase the PD, it is
required to increase the SNR. Besides the SNR, the range resolution and the level of the
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Fig. 1.3 Probability of detection vs. probability of false alarm, for different SNRs

sidelobes should also be taken into account since they have a great influence on the PD
and PFA. These metrics can be examined using the radar ambiguity function.

3The Marcum’s function is defined by:

QM (a, b) =

∫ +∞

b

xexp
(
− x2 + a2

2

)
J0(ax)dx (1.25)
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1.5 Radar ambiguity function

The radar ambiguity function is an analytical tool used by the designers to study dif-
ferent radar waveforms. More particularly, it is used to analyze the response of the
matched filter in the presence of moving targets. In addition, it is useful for examining
range and Doppler resolutions, sidelobe behaviour, and range and Doppler ambiguities
for any radar waveform processed with a matched filter. The ambiguity function of a
radar waveform is defined as [95]:

AF (τ, fd) =
∣∣∣ ∫ +∞

−∞
stx(t)stx(t− τ)exp(j2πfdt)dt

∣∣∣ (1.27)

where fd is the Doppler frequency that corresponds to the velocity of the target, and () is
the conjugate operator. For fd = 0, the ambiguity function returns the auto-correlation
function of the waveform. It should be noted that the shape of the ideal4 range profile of
a stationary point scatterer can be deduced from the radar ambiguity function depending
on the range and the velocity of the target. As the radar waveform has an influence on
the ambiguity function, let us focus on high range resolution radar waveforms in the
following section.

1.6 High range resolution radar waveforms

Range resolution is a measure of the ability of a radar to discern between two closely
spaced objects along the line of sight of the radar [116]. As the range resolution is
inversely proportional to the bandwidth of the transmitted waveform, the larger the
bandwidth the higher the range resolution.
High range resolution is required in various applications from ground penetrating radar
(GPR), and synthetic aperture radar (SAR) to target recognition. The key way to attain
high range resolution is to select a wide bandwidth waveform. In this case, a high-
resolution range profile (HRRP) is obtained. For this purpose, two families can be
considered:

1. On the one hand, a wide bandwidth waveform exploiting one of the pulse com-
pression techniques can be considered. In this case, it possesses a high baseband
bandwidth, and hence based on Nyquist criterion, a high sampling rate and con-
sequently an expensive ADC are required. This type of waveforms is usually
processed by using the MF.

2. On the other hand, a stepped-frequency (SF) waveform that exhibits small base-
band bandwidth can be considered, and hence a simple ADC can be exploited [67]

4in the absence of noise.
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[116] [77]. In addition, at the transmitter, the waveforms small baseband band-
width lessens the dispersion effects in some systems (e.g., a wideband, phased
array radar that does not employ time delay units) [77]. With SF waveforms, the
wide bandwidth is synthesized at the receiver. This waveform can be processed
by using various algorithms.

In the following subsection, let us recall the modeling and some properties of the pulse
compression waveforms.

1.6.1 Pulse compression waveforms

In various radar applications, it is desirable to have a high range resolution while main-
taining adequate average transmitted power. The latter feature contributes well to gen-
erating a low probability of intercept (LPI) radar waveform [85]. This can be achieved
by using a technique known as pulse compression. In this technique, the pulses are
internally modulated in frequency or phase and this modulation is called the intra-pulse
modulation. In the literature, three main pulse compression waveforms exist, namely,
the linear frequency modulation (LFM) waveform, the phase coded (PC) waveform,
and the non-linear frequency modulation (NLFM) waveform. When dealing with a
stationary target, the MF output has the shape of the autocorrelation function of the
pulse compression used. Let us introduce the three pulse compression waveforms in
the subsections to come.

1.6.1.1 Linear frequency modulation waveforms

A linear frequency modulation waveform consists of a sinusoid whose instantaneous
frequency changes linearly over time. It can be represented by (1.1) where the mth

baseband pulse is given by:

vbb,m(t) = Arect
(t− (m− 1)Tr − Tp

2

Tp

)
exp
(
jπγ(t− (m− 1)Tr −

Tp
2
)2
)

(1.28)

where the chirp rate γ is given by:

γ =
Bp

Tp
=

(1.13)

B

Tp
(1.29)

In addition, the instantaneous frequency of each pulse is equal to:

f(t) = γ(t− (m− 1)Tr −
Tp
2
) (1.30)

The instantaneous frequency of an LFM pulse with Bp = 100 MHz and Tp = 20 µs is
presented in Fig. 1.4.
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Fig. 1.4 Instantaneous frequency of the LFM waveform with Bp = 100 MHz and Tp =
20 µs

In what follows, we will focus our attention on the spectrum and the correlation prop-
erties of the mth pulse. In order to find the spectrum of the mth pulse, let us consider

the first pulse vbb,1(t)= rect(
t−Tp

2

Tp
)exp

(
jπγ(t − Tp

2
)2
)

. Its Fourier transform can be
expressed as follows:

Vbb,1(f) =

∫ Tp

0

exp
(
jπγ(t− Tp

2
)2
)
exp(−j2πft)dt (1.31)

After substituting the variable u = t− Tp
2

in (1.31), one has:

Vbb,1(f) = exp(−jπfTp)
∫ Tp

2

−Tp
2

exp
(
jπγu2

)
exp(−j2πfu)du (1.32)

= exp(−jπfTp)
∫ Tp

2

−Tp
2

exp(jπγ(u2 − 2
f

γ
u+

f 2

γ2
))exp(−jπγ f

2

γ2
)du

= exp(−jπfTp)
∫ Tp

2

−Tp
2

exp(jπγ(u− f

γ
)2)exp(−jπf

2

γ
)du

At this stage, let us set x at
√
πγ(u− f

γ
). (1.31) becomes:

Vbb,1(f) =
1
√
πγ
exp(−jπf

2

γ
)exp(−jπfTp)

∫ √πγ(Tp
2
− f
γ
)

√
πγ(−Tp

2
− f
γ
)

exp(jx2)dx (1.33)

Let us introduce the Fresnel integrals as follows:

C(u) =

∫ u

0

cos(x2)dx (1.34)

12



and
S(u) =

∫ u

0

sin(x2)dx (1.35)

Consequently, one has:

∫ b

a

exp(jx2)dx =

∫ 0

a

exp(jx2)dx+

∫ b

0

exp(jx2)dx (1.36)

=
t=−x

−
∫ 0

−a
exp(jt2)dt+

∫ b

0

exp(jx2)dx

=

∫ −a
0

exp(jx2)dx+

∫ b

0

exp(jx2)dx

= C(−a) + jS(−a) + C(b) + jS(b)

Combining the above equations, (1.33) becomes:

Vbb,1(f) =
1
√
πγ
exp(−jπf

2

γ
)exp(−jπfTp)×

(
C
(√

πγ(
Tp
2

+
f

γ
)
)

(1.37)

+ jS
(√

πγ(
Tp
2

+
f

γ
)
)
+ C

(√
πγ(

Tp
2
− f

γ
)
)
+ jS

(√
πγ(

Tp
2
− f

γ
)
))

As vbb,m(t) is a shifted version of vbb,1(t), the Fourier transform of the mth pulse can
expressed in terms of Vbb,1(f). It is given for m ∈ J1, NpK by:

Vbb,m(f) = exp
(
− j2πf(m− 1)Tr

)
Vbb,1(f) (1.38)

Therefore, the power spectrum of the mth pulse can be obtained by taking the square of
the modulus of (1.38). Thus, the Np LFM pulses have the same power spectrum given
by:

V (f) =
1

πγ

[(
C
(√

πγ(
Tp
2

+
f

γ
)
)
+ C

(√
πγ(

Tp
2
− f

γ
)
))2

(1.39)

+
(
S
(√

πγ(
Tp
2

+
f

γ
)
)
+ S

(√
πγ(

Tp
2
− f

γ
)
))2]

Let us now express the autocorrelation function of vbb,1(t). It is defined by:

Rv(τ) =

∫ +∞

−∞
vbb,1(t)vbb,1(t− τ)dt (1.40)

13



When −Tp ≤ τ ≤ 0, after some mathematical developments and simplifications, one
has:

Rv(τ) =

∫ τ+Tp

0

exp(−jπγτ 2)exp
(
j2πγτ(t− Tp/2)

)
dt

= exp(−jπγτ 2)exp(−jπγτTp)
∫ τ+Tp

0

exp
(
j2πγτt

)
dt

= (Tp + τ)sinc
(
γτ(Tp + τ)

)
(1.41)

where sinc(x) = sin(πx)/πx.
When 0 ≤ τ ≤ Tp, similar analysis can be carried out where the integration limits are
from τ to Tp. In this case, one has Rv(τ) = (Tp − τ)sinc

(
γτ(Tp − τ)

)
. Therefore, the

expression of Rv(τ) for |τ | ≤ Tp is given by:

Rv(τ) = (Tp − |τ |)sinc
(
γ|τ |(Tp − |τ |)

)
(1.42)

Given (1.42), one can deduce that the HRRP of a stationary target obtained with LFM
waveform has the shape of a sinc function multiplied by a triangular function. Thus, the
sidelobes of the HRRP are relatively high. To reduce them, an amplitude windowing is
generally applied in the frequency domain just before producing the HRRP. This comes
at the cost of a smaller SNR at the output of the MF and an increase in the width of the
mainlobe of the HRRP [95].
In the following subsection, phase coded waveforms are presented.

1.6.1.2 Phase coded (PC) waveforms

The phase coded (PC) waveform is represented by (1.1) where the mth baseband pulse
is given by:

vbb,m(t) =
M−1∑
i=0

Arect
(t− iTc −mTr − Tc/2

Tc

)
exp(jφi) (1.43)

where M is the length of the phase code, Tc = Tp
M

is the duration of each subpulse,
and φi (i ∈ J0,M − 1K) represents the phase sequence of the code. It should be noted
that φi intentionally varies from one subpulse to another in order to achieve the desired
mainlobe and sidelobe response for the autocorrelation function of the phase code. In
the literature, phase codes are grouped into two categories:

• Bi-phase coded waveforms which exhibit two possible phase states: 0 and π [65]
[18] [24] [53].

• Polyphase coded waveforms which exhibit more than two phase states. This is
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the case of the polyphase Barker codes [83] [31], Frank, P1, P2, P3, P4, [60] [61],
and ZadoffChu codes [30].

In this thesis, the polyphase Barker and P4 codes are considered.

1.6.1.2.1 Barker codes These codes are widely used in radar applications. For any
length M , the autocorrelation function of the Barker code has equal sidelobes and a
well-defined peak at its mainlobe. The peak sidelobe to mainlobe ratio is equal to 1

M
.

Moreover, the maximum even length is equal to 4 and the maximum odd length is equal
to 13 [23]. The autocorrelation function5 of the Barker code with M = 13 is presented
in Fig. 1.5.

−13 0 12

0

5

10

15

n

V
a
lu

e

Fig. 1.5 Autocorrelation function of the Barker code of length 13

1.6.1.2.2 Polyphase Barker codes Due to the limitation in the length of Barker
codes, polyphase Barker codes were proposed to obtain peak sidelobe to mainlobe ratio
similar to Barker codes with larger M . These codes can be derived by using various
search techniques [95]. Thus, the phases of the polyphase Barker codes are either un-
restricted or restricted to a P th root of unity such that the allowable phase increment is
∆φ = 2π

P
and P is an integer greater than 2. In [11], polyphase codes up to length 63

have been identified. Some of these codes used in this thesis are provided in Table. 1.1.
In addition, their autocorrelation functions and power spectra are presented in Fig. 1.6,
Fig. 1.7, Fig. 1.8, and Fig. 1.9.

5Here, the autocorrelation function of a sequence v(n) of length N is defined for n ∈ J1, 2N − 1K by
Rv(n) = X(n−N) where X(n) is defined by:

X(n) =

{∑N−n−1
i=0 v(i+ n)v(i) for n ≥ 0

X(−n) for n < 0
(1.44)
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Table 1.1 Polyphase Barker codes

Code length (M ) P φi, (i = 1, . . . ,M)
54 200 0, 0, 23, 43, 16, 9, 40, 51, 20, 7, 67, 126, 178,

180, 71, 120, 144, 151, 61, 25, 45, 100, 86, 9,
172, 161, 142, 22, 85, 8, 96, 128, 81, 1, 18,

137, 0, 95, 132, 59, 44, 155, 16, 129, 157, 98,
47, 174, 73, 18, 145, 65, 170, 100

60 210 0, 0, 16, 208, 180, 153, 126, 161, 135, 78, 83,
98, 143, 127, 162, 153, 183, 141, 72, 207, 149,

167, 15, 13, 146, 58, 23, 109, 169, 208, 75,
143, 173, 199, 51, 50, 31, 142, 152, 84, 74, 6,
147, 205, 151, 66, 51, 151, 27, 101, 170, 75,

172, 91, 20, 131, 1, 78, 166, 68
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Fig. 1.6 Autocorrelation function of the polyphase Barker code of length 54
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Fig. 1.7 Power spectrum of the polyphase Barker code of length 54 where B = 54
MHz
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Fig. 1.8 Autocorrelation function of the polyphase Barker code of length 60
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Fig. 1.9 Power spectrum of the polyphase Barker code of length 60 where B = 60
MHz

1.6.1.2.3 Polyphase P4 code The phase of the P4 code is conceptually derived by
sampling the quadratic phase of an LFM waveform i.e. πB

Tp
t2. Sampling the phase in

(1.28) at the chip interval τchip yields the phase sequence:

φi =
πB

Tp
(iτchip)

2 (1.45)

For a rectangular chip, the chip width is the reciprocal of the bandwidth, i.e. τchip = 1
B

.
After making the appropriate substitution and subtracting the result from πi, the phase
sequence of P4 for i ∈ J0,M − 1K reduces to:

φi =
πi2

M
− πi (1.46)

In the next section, let us focus our attention on an alternative type of waveform whose
instantaneous frequency varies over time in a non-linear way.
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1.6.1.3 Non linear frequency modulation (NLFM) waveforms

There are some waveforms which are ”naturally” NLFM such as the Hybrid NLFM
[122], tangent-based, and the sine-based waveforms [108] [19]. However, others can be
designed to meet certain requirements. Thus, the principle of stationary phase can be
used to synthesize an NLFM waveform that has a PSD similar to certain well-known
windows such as the Taylor and Blackman-Harris windows [77] [98] [49]. Recently, in
[100], a piecewise NLFM (PW-NLFM) waveform was proposed to enhance the imaging
quality in SAR applications. In this thesis, the tangent-based NLFM and the PW-NLFM
waveforms are considered. Let us give some details about them in the paragraphs below.

1.6.1.3.1 Tangent-based NLFM waveform The tangent-based NLFM waveform is
represented by (1.1) where:

vbb,m(t) = Arect
(t− (m− 1)Tr − Tp/2

Tp

)
exp
(
jφ(t− (m− 1)Tr − Tp/2)

)
(1.47)

where the phase φ(t) is given by:

φ(t) = −2π BpTp
4βtanβ

ln

(
cos(

2βt

Tp
)

)
=

(1.13)
−2π BTp

4βtanβ
ln

(
cos(

2βt

Tp
)

)
(1.48)

It should be noted that:
φ(t) = φ(−t) (1.49)

In (1.48), φ(t) is is related to the instantaneous frequency for −Tp
2
≤ t ≤ Tp

2
as follows:

f(t) =
1

2π

dφ(t)

dt
= B

tan(2βt/Tp)

2tanβ
= −f(−t) (1.50)

where β ∈ J0, π/2K is a parameter that can be adjusted by the practitioner.
In Fig. 1.10 and 1.11, f(t) and φ(t) are respectively presented for different values of
β. Note that the degree of non-linearity increases with β. Moreover, when β tends
to 0, this leads to the LFM case. As the instantaneous frequency varies with β, the
power spectrum also varies with β. In Fig. 1.12, the power spectrum is provided with
B = 100 MHz for β = 0.01, β = 0.95 and β = 1.42. As the instantaneous frequency
varies with β, the power spectrum also varies with β. When β tends to 0, the power
spectrum tends to be the one of an LFM waveform. The power is more or less ”uni-
formly” distributed in the interval [−B/2, B/2]. When β increases and tends to π/2,
Fig 1 provides the evolution of the instantaneous frequency of the waveform. One can
notice that exp(jφ(t)) can be approximated by exp(j2π × 0t) during a time interval
that becomes larger and larger as β becomes larger and larger. Therefore, the power
spectrum of the tangent-based NLFM pulse is more and more spiky around zero as β
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increases.
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Fig. 1.10 Instantaneous frequency of the tangent-based NLFM waveform for different
values of β with B = 100 MHz and Tp = 20 µs.
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Fig. 1.11 Phase of the tangent-based NLFM waveform for different values of β

1.6.1.3.2 Piecewise (PW) NLFM waveform In the literature, various NLFM wave-
forms have been studied [43] [13]. In this thesis, we focus on the one proposed in [100],
the authors called PW-NLFM waveform. It consists of two symmetric sets, where each
one is composed of L + 1 concatenated LFM subpulses with different bandwidths and
durations. Its instantaneous frequency is shown in Fig. 1.13. In order to derive the ana-
lytical expression of the PW-NLFM waveform, let us define the following parameters:

(τ1, ν1) = (0, 0)

(τL+2, νL+2) = (Tp
2
, B
2
)

γ(i) = νi+1−νi
τi+1−τi with 1 ≤ i ≤ L+ 1.

(1.51)

Then, the instantaneous frequency of the PW-NLFM waveform, denoted as fPW (t), is
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Fig. 1.12 Power spectrum of the tangent-based NLFM pulse, based on the DFT with
B = 200 MHz, when (a) β = 0.45 (b) β = 0.95 (c) β = 1.42.
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Fig. 1.13 Instantaneous frequency of the PW NLFM waveform

given by: 

fPW (t) = νi + γ(i)(t− τi)
for τi ≤ t ≤ τi+1 with i = 1, ..., L+ 1

fPW (t) = B − fPW (Tp − t)
= B − ν2L+3−i + γ(2L+3−i)(t− Tp + τ2L+3−i)

for τi ≤ t ≤ τi+1 with i = L+ 2, ..., 2L+ 2

(1.52)20



Remark: It should be noted the instantaneous frequency for i = L + 2, ..., 2L + 2 can
be written in different ways. In [100], the authors directly use:

fPW (t) = B − ν2L+4−i + γ(2L+3−i)(t− Tp + τ2L+4−i) (1.53)

The above expression is valid. This can be shown by subtracting (1.53) to (1.52) and
then by using definition of γ(i). However, in this thesis, (1.52) is used. Then, the
instantaneous phase φPW (t) can be derived by integrating (1.52) and multiplying by
2π. This leads to:

φPW (t) = 2π
(
γ(i) t

2

2
+ (νi − γ(i)τi)t+ li

)
for τi ≤ t ≤ τi+1 and i = 1, ..., L+ 1

φPW (t) = 2π
(
γ(2L+3−i) t2

2
+ (γ(2L+3−i)(τ2L+3−i − Tp) +B − ν2L+3−i)t+ li

)
for τi ≤ t ≤ τi+1 and i = L+ 2, ..., 2L+ 2

(1.54)
where l1,...,2L+2 are used to preserve the continuity between different stages of the phase
function.
Let us now express the set of phases {li}i=1,...,L+1. To this end, let us assume that l1 is
set at 0. In this case, using the above expressions, the continuity of the phase at τ1 leads
to:

l2 = (γ(1) + γ(2))
τ 22
2
− ν2τ2

= γ(1)
τ 22
2
− ν2τ2 + γ(2)

τ 22
2

= −ν2
τ2
2
+ γ(2)

τ 22
2

(1.55)

More generally one has for i = 1, ..., L:

li+1 = li + (νi − νi+1)τi+1 + (γ(i) + γ(i+1))
τ 2i+1

2
− γ(i)τiτi+1 (1.56)

At this stage, as νi+1 − νi = γ(i)(τi+1 − τi), this leads to:

li+1 = li + (γ(i+1) − γ(i))
τ 2i+1

2
(1.57)

Then, it can be easily shown that:

lL+2 = lL+1 +
Tp
2
(2νL+1 −B) + γ(L+1)(

Tp
2
(Tp − 2τL+1)) (1.58)
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and for i = L+ 2, ..., 2L

li+1 = li + (ν2L+2−i − ν2L+3−i)τi+1 + γ(2L+3−i)(
τ 2i+1

2
+ (τ2L+3−i − Tp)τi+1) (1.59)

− γ(2L+2−i)(
τ 2i+1

2
+ (τ2L+2−i − Tp)τi+1)

By replacing τi+1 by (Tp − τ2L+3−i), the above expression can be rewritten as follows:

li+1 = li + (ν2L+2−i − ν2L+3−i)(Tp − τ2L+3−i) (1.60)

− (γ(2L+3−i) + γ(2L+2−i))
(Tp − τ2L+3−i)

2

2

+ γ(2L+2−i)(Tp − τ2L+2−i)(Tp − τ2L+3−i)

In addition, by replacing ν2L+3−i − ν2L+2−i = γ(2L+2−i)(τ2L+3−i − τ2L+2−i), the above
expression becomes:

li+1 = li − (γ(2L+3−i) − γ(2L+2−i))
(Tp − τ2L+3−i)

2

2
(1.61)

As all the parameters of the instantaneous phase of the PW-NLFM waveform have been
defined, the expression of the transmitted waveform is represented by (1.1) where:

vbb,m(t) = Arect
(t− (m− 1)Tr − Tp/2

Tp/2

)
exp
(
jφPW (t− (m− 1)Tr)

)
(1.62)

Due to the expression (1.52) of the instantaneous phase, the spectrum of stx(t) is cen-
tered at B

2
.

The NLFM waveform employs frequency modulation to shape the spectrum and thus
reduces the range sidelobes. These waveforms do not require an amplitude weighting
to the MF output which is commonly used with an LFM waveform, and thereby avoid
the associated SNR loss.

1.6.1.4 Comments on the pulse compression waveforms

Even if the LFM remains the most popular waveform probably thanks to its simplicity
to be generated and its Doppler tolerance, some phase codes exhibit a Doppler tolerance
similar to that of an LFM [95]. In addition, the advent of high-speed and high dynamic
range digital-to-analog converter (DAC) and high-speed FPGA has facilitated the gen-
erations of sophisticated NLFM waveforms [117]. Pulse compression waveforms can
be used in high range resolution radar application. However, they require a high sam-
pling frequency and consequently an expensive ADC. To overcome the aferomentioned
drawback, SF waveforms were proposed. Let us present them in the following section.
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1.6.2 Stepped-frequency (SF) waveforms

Stepped-frequency waveform is a waveform that transmits a train of narrow-band pulses
with equally-spaced carrier frequencies. At the receiver, a large bandwidth is synthe-
sized by coherently combining the received echoes. This arrangement does not require
an expensive and complex ADC since the required sampling frequency at the receiver
depends on the baseband bandwidth rather than the total bandwidth covered by the re-
ceived pulses.
In the literature, SF waveforms have been well studied [67] [81] [45]. In addition, SF
can be combined at the transmitter with one of the pulse compression techniques. The
reader may refer to [37] [70] [120] [69] [62] [17] [66]. One main advantage of this
approach is that it reduces the number of pulses within the coherent processing inter-
val (CPI)6. For instance, in radar imaging, the size of the CPI is limited to avoid the
degradation caused by the motion through the resolution cells [4]. Moreover, with me-
chanically scanning search radars, the number of transmitted pulses within the dwell
beam is constrained by the speed of rotation of the antenna. A great deal of interest
has been paid to SF-LFM [120] [17] [66] [69] [70]. On the contrary, few researchers
have studied the stepped-frequency phase-coded (SFPC) waveform and the stepped fre-
quency non-linear frequency modulation (SF-NLFM) waveform. In [62], the SFPC
waveform was used with the through-the-wall radar to enhance the anti-radio frequency
disturbance performance. In [37], the author illustrated the advantage of the SF-NLFM
waveform over the SF-LFM waveform in terms of reductions of the grating-lobe lev-
els. In the next section, the general waveform modeling of a SF waveform is presented.
Then, the modeling of the particular cases SF-LFM and SFPC are presented.

1.6.2.1 General modeling of SF waveforms

The SF radar transmits a burst ofNp > 1 pulses, whose carrier frequency monotonically
increases from pulse to pulse by a fixed frequency step size denoted as ∆f . For the mth

pulse (m ∈ J1, NpK), the transmitted SF waveform is described as follows:

stx(t) =

Np∑
m=1

stx,m(t) =

Np∑
m=1

vbb,m(t)exp(j2πf
(m)
c t) (1.63)

with
f (m)
c = fc +∆f (m) (1.64)

where
∆f (m) =

(1−Np

2
+m

)
∆f (1.65)

6The time duration of theNp pulses processed coherently by using coherent integration or fast Fourier
transform processing is called the CPI.
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In the above equations, f (m)
c is the carrier frequency of the mth transmitted pulse, and

fc is the central carrier frequency of the complete train of pulses. In addition, usu-
ally, ∆f ≤ Bp is chosen to avoid creating gaps in the transmitted waveform. When
∆f = Bp, the total bandwidth covered by the waveform is B = NpBp. Finally in
(1.63), vbb,m(t) corresponds to either modulated pulses or unmodulated pulses.
In the sequel and for the sake of simplicity, the equations that are presented only deal
with the signal part. The disturbance is omitted. In addition, Km = 1 is considered
since the Np pulses are assumed to be subjected to the same channel effect. Thus, the
”ideal” received SF signal for a stationary point target at range R can be written as
follows:

srx(t) =

Np∑
m=1

srx,m(t) =

Np∑
m=1

vbb,m

(
t− td

)
exp
(
j2πf (m)

c (t− td)
)

(1.66)

The reference signal used for the demodulation process is defined by:

sref,m(t) = exp
(
− j2πf (m)

c t
)

(1.67)

Therefore, the received baseband signal is given by:

srx,bb(t) =

Np∑
m=1

srx,bb,m(t) =

Np∑
m=1

vbb,m

(
t− td

)
exp
(
− j2πf (m)

c td

)
(1.68)

1.6.2.2 SF-LFM waveform model

The SF-LFM waveform is derived from the combination of the SF waveform and the
LFM waveform. In other words, the carrier frequency of each SF pulse is linearly
modulated. In this case, the resulting waveform is represented by (1.63) where vbb,m(t)
is defined as in (1.28). Thus, the SF-LFM transmitted waveform whose instantaneous
frequency is presented in Fig. 1.14 can be expressed as:

stx(t) =

Np∑
m=1

stx,m(t)

=

Np∑
m=1

Arect
(t− (m− 1)Tr − Tp/2

Tp

)
exp
(
jπγ(t− (m− 1)Tr − Tp/2)2

)
× exp

(
j2πf (m)

c t
)

(1.69)
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Fig. 1.14 Stepped-frequency linear frequency modulated waveform

Given (1.68), the received baseband SF-LFM signal can be expressed as:

srx,bb(t) =

Np∑
m=1

rect
(t− (m− 1)Tr − Tp/2− td

Tp

)
(1.70)

× exp
(
jπγ(t− (m− 1)Tr − Tp/2− td)2

)
exp
(
− j2πf (m)

c td

)
1.6.2.3 SFPC waveform model

The SFPC waveform is derived from the combination of the SF waveform and PC wave-
form. In other words, the carrier frequency of each pulse in the PC waveform varies as
in the case of the SF waveform. Therefore, the resulting waveform is represented by
(1.63) where vbb,m(t) is defined as in (1.43). Thus, the SFPC waveform can be expressed
as:

stx(t) =

Np∑
m=1

stx,m(t)

=

Np∑
m=1

M−1∑
i=0

Arect
(t− iTc − (m− 1)Tr − Tc/2

Tc

)
exp(jφi)exp

(
j2πf (m)

c t
)

(1.71)

Given (1.68), the received SFPC baseband signal can be expressed as:

srx,bb(t) =

Np∑
m=1

M−1∑
i=0

rect
(t− iTc − (m− 1)Tr − Tc/2− td

Tc

)
× exp(jφi)exp

(
− j2πf (m)

c td

)
(1.72)
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1.6.2.4 SF-NLFM waveform

The SF-NLFM waveform is derived from the combination of the SF waveform and
the NLFM waveform. Thus, the SF-NLFM waveform is represented by (1.63) where
vbb,m(t) is defined by:

vbb,m(t) = Arect
(t− (m− 1)Tr − Tp/2

Tp

)
exp
(
jφ(t− (m− 1)Tr − Tp/2)

)
(1.73)

where φ(t) represents the instantaneous phase of the NLFM used. Thus, the SF-NLFM
waveform can be expressed as:

stx(t) =

Np∑
m=1

stx,m(t)

=

Np∑
m=1

Arect
(t− (m− 1)Tr − Tp/2

Tp

)
exp
(
jφ(t− (m− 1)Tr − Tp/2)

)
× exp

(
j2πf (m)

c t
)

(1.74)

Given (1.68), the received baseband SF-NLFM signal can be expressed as:

srx,bb(t) =

Np∑
m=1

rect
(t− (m− 1)Tr − Tp/2− td

Tp

)
× exp

(
jφ(t− (m− 1)Tr − Tp/2− td)

)
exp
(
− j2πf (m)

c td

)
(1.75)

1.6.2.5 Comments on SF waveforms

Since the instantaneous frequency of an LFM pulse is a linear function of time, the
instantaneous frequency of the concatenated pulses of the SF-LFM waveform corre-
sponds to a wide-band LFM pulse. In this case, it is possible to synthesize a wide-band
LFM pulse at the receiver and thus the HRRP has the shape of the autocorrelation func-
tion of a wide-band LFM pulse. However, with SFPC or SF-NLFM, the instantaneous
frequency of the concatenated pulses does not correspond to a wide-band PC or NLFM
pulse.
In order to process the SF received baseband signal, different algorithms can be used.
Let us present them in the next section.

1.6.2.6 Processing SF waveforms at the receiver

The SF waveforms can be processed at the receiver by using the MF. However, it suffers
from the upsampling process. In addition, grating lobes may appear in the HRRP [37].
One alternative can be seen as a kind of stretch processing. It includes three different
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algorithms:

• The frequency domain (FD) algorithm

• The inverse fast Fourier transform (IFFT) algorithm

• The time domain (TD) algorithm

The FD and the IFFT algorithms have computational costs smaller than that of the MF-
based approach. However, they have some limitations. The IFFT algorithm produces
ghost targets in the HRRP of the extended targets due to the spill-over effect of en-
ergy into consecutive coarse range bins [67]. As for the TD algorithm [68], it does
not produce ghost targets but suffers from the up-sampling requirement of the narrow-
bandwidth pulses prior to the frequency shift. Finally, the FD algorithm can cope with
the drawbacks of the TD and the IFFT algorithms, but a discrete Fourier transform
(DFT) must be computed on a relatively large number of samples. Nevertheless, the
recent advances in designing and fabricating powerful processors can facilitate its im-
plementations.
In order to process the received echoes of a SF waveform, the baseband signal srx,bb(t)
is sampled at F (Rx)

s . The number of samples associated with each pulse is equal to
N = bF (Rx)

s Tpc where b.c is the floor function. Then, the sampled data are processed
with one of the existing algorithms. Let us start with the FD algorithm.

1.6.2.6.1 Frequency domain (FD) algorithm It aims at reconstructing a large tar-
get reflectivity spectrum by coherently combining the individual spectra of the received
SF-LFM pulses in the frequency domain [118]. The resulting reconstructed spectrum
is equivalent to the spectrum of a wide-band LFM pulse and thus the HRRP obtained
has approximately the shape of a sinc function. In the following, the steps of the FD
algorithm, based on the SF-LFM waveform defined in (1.69), are presented:

1. Sample the received pulses in (1.70) at
F

(Rx)
s = 2Bb = B

Np
. Thus, each received baseband pulse is defined for n ∈

J0, N − 1K by:

srx,bb,m(n) = exp
(
jπγ(nT (Rx)

s − Tp/2− td)2
)
exp
(
− j2πf (m)

c td

)
(1.76)

where T (Rx)
s = 1

F
(Rx)
s

is the sampling time at the receiver.

2. A DFT is computed on the received samples associated with each pulse in (1.76)
padded with N − 1 zeros. Padding by zeros is necessary to make MF in the
frequency domain equivalent to a linear convolution in the time domain7, which

7Having two sequences of length L andN respectively, before applying MF in the frequency domain,
each sequence should be padded by zeros so that its length is at least L+N − 1.
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is usually utilized in radars [95]. The result of this transform can be written for
the kth frequency bin as:

Srx,bb,m(k) = V pad
m (k)exp

(
− j2πf (m)

c

2R

c

)
exp
(
− j2π kF

(Rx)
s

2N − 1

2R

c

)
(1.77)

where V pad
m (k) is the DFT of vbb,m(n) padded with N − 1 zeros, and

k ∈ J0, 2N − 2K. In this case vbb,m(n) is given for n ∈ J0, N − 1K by:

vbb,m(n) = exp
(
jπγ(nT (Tx)

s − Tp/2)2
)

(1.78)

3. A MF is applied to each pulse in the frequency domain. It consists in multiplying
(1.77) by V pad

m (k). Hence, (1.77) becomes:

Yr,m(k) =
∣∣∣V pad
m (k)

∣∣∣2exp(− j2πf (m)
c

2R

c

)
exp
(
− j2π kF

(Rx)
s

2N − 1

2R

c

)
(1.79)

It should be noted that taking into account (1.28), |V pad
m (k)|2 is the same for every

m ∈ J1, NpK:
|V pad
m (k)|2 = |V pad

1 (k)|2 (1.80)

4. A compression filter is considered to modify each sub-spectrum [67]. It consists
in multiplying each sub-spectrum Yr,m(k) by Hm(k) =

1

|V padm (k)|2
. This leads to:

Zr,m(k) = exp
(
− j2π(f (m)

c +
kF

(Rx)
s

2N − 1
)
2R

c

)
(1.81)

This filter leads to a synthesized magnitude spectrum of rectangular shape, i.e.

|Zr,m(k)| = 1.

5. The sub-spectra in (1.81) are contiguously arranged to synthesize the whole spec-
trum. Let us denote by Zr,m the vector that contains the 2N − 1 samples of the
m th subspectra in (1.81):

Zr,m = [Zr,m(1) Zr,m(1) . . . Zr,m(2N − 1)] (1.82)

Hence, the total concatenated spectrum is represented as a row vector of size
(2N − 1)Np as follows:

Zr,total =
[
Zr,1 Zr,2 . . . Zr,Np

]
(1.83)

6. This vector is of interest to deduce the HRRP. Applying an inverse discrete Fourier
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transform (IDFT) to (1.83) yields:

zr(n) =
1

(2N − 1)Np

×
(2N−1)Np−1∑

l1=0

Zr,total(l1 + 1)exp
( j2πl1n

(2N − 1)Np

)
(1.84)

where Zr,total(l) is the lth element of Zr,total. Using (1.64), the above equation
can be expressed as follows:

zr(n) =
exp
(
− j2π(fc +

(
1−Np

2

)
∆f)2Rc

)
(2N − 1)Np

Np∑
m=1

exp
(
− j2π(m− 1)(∆f

2R

c
− n

Np
)
)

(1.85)

×
2N−2∑
k=0

exp
(
− j 2πk

(2N − 1)

(2RF (Rx)
s

c
− n

Np

))
Therefore, its modulus represents the HRRP and is equal to:

hFD(n) = |zr(n)| =
1

(2N − 1)Np

|sin
[
Npπ(∆f

2R
c
− n

Np
)
]
|

|sin
[
π(∆f 2R

c
− n

Np
)
]
|

(1.86)

×
|sin

[
π
(

2RF
(Rx)
s

c
− n

Np

)]
|

|sin
[

π
2N−1

(
2RF

(Rx)
s

c
− n

Np

)]
|

Providing that F (Rx)
s = ∆f , (1.86) becomes:

hFD(n) =
1

(2N − 1)Np

∣∣∣∣∣ sin
(
Npπ(F

(Rx)
s

2R
c
− n

Np
)
)

sin
(

π
2N−1

(
F

(Rx)
s

2R
c
− n

Np

))∣∣∣∣∣ (1.87)

where n ∈ J0, (2N − 1)Np − 1K and hFD(n) has its maximum equal to 1 when

n = 2RF
(Rx)
s Np
c

= tdF
(Rx)
s Np. Moreover, if n was not reduced to the interval

J0, (2N − 1)Np − 1K, |zr(n)| would be (2N − 1)Np-periodic.

Remark about the compression filter: If the compression filter
Hm(k) = 1

|V padm (k)|2
was not used, the IDFT of Zr,total would amount to com-

puting the IDFT of the product between the sequence defined from the Np sets
{exp

(
− j2π(f

(m)
c + kF

(Rx)
s

2N−1 )
2R
c

)
}k=0,...,2N−2 for m ∈ J1, NpK on one side and

the sequence defined by {
∣∣∣V pad

1 (k)
∣∣∣2}k=0,...,2N−2 repeated Np times on the other.

This is equivalent to computing the circular convolution between the IDFTs. The
first one is given in (1.87) whereas the second can be given by:
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1

(2N − 1)Np

×
Np∑
m=1

2N−2∑
k=0

∣∣∣V pad
m (k)

∣∣∣2exp(j2π((m− 1)(2N − 1) + k)n

(2N − 1)Np

)
(1.88)

Given (1.80), this can be rewritten as follows:

1

Np

Np∑
m=1

exp
(j2π(m− 1)n

Np

)
× 1

(2N − 1)

2N−2∑
k=0

∣∣∣V pad
1 (k)

∣∣∣2exp( j2πkn

(2N − 1)Np

)
(1.89)

In (1.89), 1
Np

∑Np
m=1 exp

(
j2π(m−1)n

Np

)
is equal to 0 except when n is a multiple of

Np. In addition, 1
(2N−1)

∑2N−2
k=0

∣∣∣V pad
1 (k)

∣∣∣2exp( j2πkn
(2N−1)Np ) is the autocorrelation

function of the LFM waveform interpolated at a rate of Np. Once this sequence
is multiplied by the other one which is either equal to 1 or 0, this leads to the
autocorrelation function upsampled at a rate of Np. Therefore (1.89) corresponds
to a sequence comprising the autocorrelation function of the waveform separated
by Np − 1 zeros.
Given the above mathematical developments, if a compression filter was not used,
the IDFT of Zr,total would be the circular convolution between the quantity given
in (1.87) and the autocorrelation function upsampled by a factor Np. Therefore,

the maximum of |zr(n)| remains reached for n = 2RF
(Rx)
s Np
c

= tdF
(Rx)
s Np. As

the autocorrelation function of the LFM waveform is far from the Kronecker delta
function, the HRRP obtained in (1.87) is modified. In [67], the authors did not
provide these mathematical details. They motivated the use of the compression
filter by the fact that they noticed spectral ripples in the concatenated spectrum,
leading to some artifacts in the HRRP in their simulations. Instead of using a
compression filter, the authors in [77] suggest considering overlapped LFM spec-
tra so that the reconstructed spectrum tends to be flat.
Remark about a post weighting: Due to (1.87), amplitude weighting can be
applied to reduce the range sidelobes. It consists in multiplying (1.83) by another
row vector W of the same length containing the spectrum of a shaping window,
for instance Hanning.

Gr,total = Zr,total . ∗W (1.90)

where .* stands for a multiplication of vectors element by element. An IDFT is
finally applied to the synthesized spectrum in (1.90) to create the HRRP.
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Fig. 1.15 Block diagram of the IFFT algorithm

1.6.2.6.2 IFFT algorithm The IFFT method was described in detail by Wehner in
[116]. It consists in taking the inverse FFT of the sampled SF data. Although the steps
done in this algorithm are similar to those done for any traditional waveform that trans-
mit pulses on the same carrier frequency to create a Doppler profile, the IFFT algorithm
produces a range profile and not a Doppler profile since the pulses are transmitted on
different carrier frequencies. In the following, the steps of the IFFT algorithm, based
on the SF waveform defined in (1.1), are recalled. In (1.1), vbb,m(t) corresponds to
an unmodulated pulse as defined in (1.2). In this case, for n ∈ J0, N − 1K, one has
vbb,m(n) = 1. The steps of the IFFT algorithm presented in Fig. 1.15 can be summa-
rized as follows [77]:

1. Sample the received pulses, whose expression is given in (1.68), at F (Rx)
s =

2Bb = B
Np

. Thus, each received baseband pulse is defined for n ∈ J0, N − 1K
by:

srx,bb,m(n) = vbb,m(nT
(Rx)
s − td)exp(−j2πf (m)

c td) (1.91)

2. A MF is applied to the samples given in (1.91). It consists in convolving srx,bb,m(n)
with vbb,m(−n).

3. A sample is collected at each range gate and the process is repeated over the Np

pulses.

4. At each range gate, one range profile can be formed by applying an IDFT to the
collected samples. Finally, the obtained range profiles can be concatenated to
produce the HRRP.

1.6.2.6.3 Time domain (TD) algorithm The TD algorithm was proposed to process
a SF-LFM waveform in the time domain [67]. It aims at reconstructing a wide-band
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LFM waveform by combining the narrow-band LFM pulses in the time domain. In
the following, the steps of the TD algorithm, based on the waveform defined in (1.69)
where the frequency step size is assumed equal to the passband bandwidth of the pulse
(i.e., ∆f = Bp), are presented:

1. For each received pulse, sample the baseband pulses in (1.70) by using the sam-
pling frequency F (Rx)

s > 2Bb = ∆f = B
Np

.

2. Interpolate the samples of each pulse so that the new sampling frequency be-
comes:

F (int)
s =

1

T
(int)
s

= B = NpF
(Rx)
s (1.92)

The interpolation operation can be done in the frequency domain by applying a
DFT, zero-padding the result, and then applying an IDFT.

3. Frequency shift each pulse to its proper position. This is done by multiplying
each pulse by the proper exponential factor exp(j2π∆f (m)nT

(int)
s )

4. Add a phase correction term to each pulse to avoid any phase discontinuity in the
reconstructed LFM waveform. It is done by multiplying the result of the m(th)

pulse in the previous step by exp
(
jπγT 2

p (m + 1−Np
2

)2
)

. This step may be done
before the interpolation step, thus requiring fewer multiplications and leading to
a faster implementation of the procedure.

5. Time shift the result obtained by δtm =
(
m+ 1−Np

2

)
Tp.

6. Add the obtained pulses together.

7. Apply a MF in the frequency domain to the reconstructed waveform.

8. Produce the HRRP by applying an IDFT to the output of the MF.

1.7 Performance measures

In this section, the definitions of some performance measures that are used in the simu-
lation parts are given. As mentioned in section 1.3, the range profile of a point scatterer
is characterized by one mainlobe and several sidelobes. The latter arise from the use
of pulse compression techniques and are not desirable. Moreover, as indicated in sub-
section 1.4.2, the enhancement of the PD while maintaining a constant PFA can be
achieved by increasing the SIR. However, when multiple targets are present, besides
the SIR, the range resolution and the level of the sidelobes should also be taken into
account since they have a great influence on the PD and PFA.
As for the level of the sidelobes, they can be quantified using two ratios: the peak
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sidelobe ratio (PSLR) and the integrated sidelobe ratio (ISLR) [32] [119]. The PSLR
is defined as the ratio of the maximum peak magnitude of the sidelobes to the peak
magnitude of the mainlobe:

PSLR = 20log

[∣∣h(ns)∣∣∣∣h(np)∣∣
]

(1.93)

where h represents the HRRP, and ns and np respectively denote the position of the
highest sidelobe and the peak value of the mainlobe in h(n). The peak magnitude
of the first sidelobe is not necessarily the maximum peak magnitude among the other
sidelobes, although it could be the case in some situations. The better performance in
terms of PSLR mitigates the masking effect of nearby targets and increase the useful
dynamic range. The ISLR is defined as the ratio of the energy of the sidelobes to the
energy of the mainlobe:

ISLR = 10log


np−nz∑
n=1

∣∣h(n)∣∣2 + np+N+L∑
n=np+nz

∣∣h(n)∣∣2
n=np+N∑
n=np−nz

∣∣h(n)∣∣2
 (1.94)

where nz denotes the position of the null of the mainlobe in h(n).
The level of significance given for each performance measure, especially the PSLR
and the ISLR, depends on the surrounding environment. Whenever the received signal
is disturbed by a distributed clutter environment, the ISLR is of high importance and
should be maintained as low as possible to enable the detection of weak targets. How-
ever, if the received signal is disturbed by a strong discrete clutter, the PSLR is more
critical to be kept low. Otherwise, sidelobes may be interpreted falsely as real targets
[59].
Finally, let us define the range resolution. In the literature, various criteria are used to
define the range resolution. Two of the more common criteria used to define it are [95]:

• The 3-dB width of the mainlobe which defines the range resolution as the separa-
tion between the peak point and the point that corresponds to the half of the peak
power.

• The Rayleigh criterion which defines the range resolution as the separation be-
tween the peak and the null. In this case, the range resolution can be commonly
expressed as:

Rres =
c

2Beff

(1.95)

where Beff is the effective bandwidth of the waveform. Table. 1.2 summarizes
the relationship between Bb, B and Beff for various waveforms.
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Table 1.2 Relation between the bandwidths of different waveforms

Waveform Bb B Beff
PC M/Tp 2M/Tp B/2

SF 1/Tp (Np−1)∆f+2Bb B/2

SFPC M/Tp (Np−1)∆f+2Bb B/2

1.8 Conclusions

In this chapter, generalities about radar have been presented. In addition, we have
focused our attention on high range resolution waveforms. After presenting the pulse
compression waveforms such as the LFM, the PC, and the NLFM waveforms, SF wave-
forms have been introduced. The latter can be used to reduce the sampling frequency at
the receiver. Three types of algorithms, namely the IFFT algorithm, the TD algorithm
and the FD algorithm, which aim at processing the SF waveforms at the receiver have
been described. Finally, we have presented some performance measures that have a
great influence on the probability of detection and probability of false alarm.
In chapter 2, a processing chain from the transmitter to the receiver is proposed to over-
come the drawbacks of the standard combination of PC or NLFM with a SF waveform.
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CHAPTER 2

MODIFIED STEPPED-FREQUENCY WAVEFORMS

2.1 Introduction

In chapter 1, we have mentioned that pulse compression waveforms can be used in
high range resolution radar applications. For some of these applications, the PC and
the NLFM waveforms may be more attractive than the LFM waveform since they ex-
hibit smaller PSLR and ISLR. As the sampling rate of such waveforms is high1, one
of the approaches that can be considered to reduce it is the standard combination of
these waveforms with SF. However, when using this combination, the PSLR and the
ISLR of the pulse compression used cannot be attained. This is due to the fact that the
instantaneous frequency of the concatenated pulses of the resulting waveform does not
correspond to a known wide-band PC or NLFM pulse. As a consequence, the obtained
HRRP does not have the shape of the autocorrelation function of a known wide-band
NLFM or PC pulse.
In this chapter, in order to overcome the aforementioned drawback, i.e. in order to
reduce the sampling rate while taking the advantage of the features of the pulse com-
pression waveform used in terms of PSLR and ISLR, a new approach is suggested to
combine a SF scheme with pulse compression waveforms. More particularly, a gen-
eral processing chain from the transmitter to the receiver is proposed. It consists in
splitting the spectrum of a wide-band modulated pulse into a predetermined number
of portions. Then, the corresponding time-domain signals are successively transmitted.
These signals constitute what we call a modified SF waveform in this dissertation. At
the receiver, the HRRP can be reconstructed by processing the received echoes either in
the frequency domain or in the time domain. Accordingly, a modified version of the FD
algorithm and a novel time waveform reconstruction (TWR) algorithm are proposed to
reconstruct the HRRP.
This chapter is organized as follows: firstly, the processing chain from the transmitter
to the receiver is presented. Then, the results of the simulations of the modified SF
waveforms in different scenarios are shown.

1In these days, an order of magnitude could be 100MHz.
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2.2 Our contribution: a processing chain of the modified SF radar wave-
form combined with a pulse compression technique

In this section, the processing chain from the transmitter to the receiver is presented.
First, the steps that should be done at the transmitter to generate the modified SF wave-
form are illustrated. Then, the different algorithms that can be considered to process
the received echoes at the receiver are presented. Afterwards, the computational costs
of the modified FD algorithm and the TWR algorithm are compared. Suggestions to
remove some constraints in the modified SF waveform are provided. In addition, some
comments on the proposed waveform are presented. Finally, a comparative study is car-
ried out between the different variants that can be considered in the processing chain.
In addition, the modified SF waveforms are compared with the standard SF waveforms
in different scenarios.

2.2.1 Generation of the modified SF waveform at the transmitter

The whole processing chain of the modified SF waveform is presented in Fig. 2.1.

Let v•(t) be the continuous-time baseband pulse that exhibits a wide bandwidth, where
• stands for NLFM or PC. It is defined for 0 ≤ t ≤ Tp by:

{ vPC(t) =
∑M−1

i=0 Arect
(
t−iTc−Tc/2

Tc

)
exp(jφi)

vNLFM(t) = Arect
(
t−Tp/2
Tp

)
exp
(
jφ(t− Tp/2)

) (2.1)

For the generation of the waveform, the discrete version of v•(t) is needed. By intro-
ducing the sampling period T (Tx)

s at the transmitter which satisfies:

1

T
(Tx)
s

= F (Tx)
s = B (2.2)

where F (Tx)
s is the sampling frequency at the transmitter and B represents the band-

width of the pulse, (2.1) becomes for n ∈ J0, N − 1K with N = Tp

T
(Tx)
s

:

{ vPC(n) =
∑M−1

i=0 Arect
(
nT

(Tx)
s −iTc−Tc/2

Tc

)
exp(jφi)

vNLFM(n) = Aexp
(
jφ(nT

(Tx)
s − Tp/2)

) (2.3)

At this level, the following steps are carried out:

1. Apply a DFT to v•(n) to get V •(k), where k denotes the frequency bin.

2. Split V •(k) into Np non-overlapped equal portions. In the following, Np > 1

and N is necessarily an integer multiple of Np. This provides Np DFT denoted
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Fig. 2.1 Block diagram of the whole processing chain of the modified SF waveform at
both transmitter and receiver sides

P •m(k), where m ∈ J1, NpK and k ∈ J0, N − 1K. Thus, one has:

P •m(k) =

V •(k) (m− 1) NNp ≤ k ≤
mN
Np
− 1

0 elsewhere
(2.4)

An interpretation of (2.4) could be the following: (2.4) could correspond to por-
tions having equally-spaced carrier frequencies, similarly as in a SF waveform
defined in (1.63). Moreover, the frequency band occupied by P •m(k) is F

(Tx)
s

Np
.

3. Apply an IDFT to each separated portion P •m(k). This leads to Np sequences,
{p•1(n)}n=0,...,N−1, . . . , {p•Np(n)}n=0,...,N−1. It should be noted that these Np se-
quences and v•(n) satisfy:

v•(n) =

Np∑
m=1

p•m(n) (2.5)

Let us now find an expression for p•m(n) in the discrete-time domain. For any
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k ∈ J0, N − 1K, the sequences {P •m(k)}m=1,...Np can be expressed as:

P •m(k) = V •(k)Wm(k) m ∈ J1, NpK (2.6)

where the window Wm(k) is given by:

Wm(k) =

1 (m− 1) N
Np
≤ k ≤ m N

Np
− 1

0 elsewhere
(2.7)

Hence, the transmitted pulses can be expressed as the IDFT of V •(k)Wm(k):

p•m(n) = v•(n)~ wm(n) n ∈ J0, N − 1K (2.8)

where ~ denotes the circular convolution.
Let us now recall the analytical expression of the sequences {wm(n)}m=1,...Np ,
i.e. the inverse Fourier transform of Wm(k). For one thing, given (2.7), one can
deduce that:

w1(n) =
1

N

N−1∑
k=0

W1(k)exp
(j2πkn

N

)
=

1

N

sin( πn
Np

)

sin(πn
N
)
exp
(
jπn

N −Np

NNp

)
(2.9)

Moreover, as Wl(k) is a shifted version of W1(k), any sequence wm(n) can be
expressed in terms of w1(n). It is given for m ∈ J1, NpK by:

wm(n) = exp
(
j
2πn(m− 1)

Np

)
w1(n) (2.10)

Given (2.10), (2.8) becomes:

p•m(n) =
1

N
v•(n)~

(sin( πn
Np

)

sin(πn
N
)
exp
(
jπn

N(2m− 1)−Np

NNp

))
(2.11)

4. Scale the amplitudes of the Np sequences {p•m(n)}m=1,...,Np as follows:

p•s,m(n) =
1

αm
p•m(n) (2.12)

where αm =
√

1
N

∑N−1
n=0 |p•m(n)|

2.
The train of pulses {p•s,m(n)}m=1,...,Np represents the modified SF waveform. This
step is necessary to guarantee that the powers of the transmitted pulses are equal.
In addition, they are equal to 1.

5. Convert the discrete sequences {p•s,m(n)}m=1,...,Np to the continuous-time domain
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leading to the signals { 1
αm
p•m(t)}m=1,...,Np by using a DAC, as shown in Fig. 2.1.

6. Multiply the latter pulses by exp[j2πfct] to frequency translate each portion by
the central carrier frequency fc similar to that introduced in (1.64). The resulting
signal is hence given by:

stx,m(t) =
1

αm
p•m(t)exp

(
j2πfct

)
(2.13)

In some radar applications, it is of interest to design a processing chain that can prevent
the opponent from getting information about the transmitted waveform. Indeed, a radar
that is settled on a platform does not necessarily generate different types of waveforms.
Thus, identifying the radar waveforms makes it possible to get information about the
platform itself. In addition, if the opponent analyzer is able to infer the type of pulse
compression used, then some features of the radar itself, such as the range resolution,
the PSLR, and the ISLR can be predicted. When the ”standard” radar waveforms are
used, the time-domain pulses have the same shape, whereas this is not the case with
our waveform, as shown in [101]. They hence could be seen as noisy signals. In
addition, the signals in (2.13) are usually transmitted in an ordered way, from m = 1 to
m = Np. Therefore, a degree of freedom can be added by transmitting the pulses in a
pseudo-random way that would be also known at the receiver part. Hence, by constantly
varying the shuffling order of the transmitted portions from one scan to another, drawing
some conclusions about the capabilities of the radar becomes more challenging for the
enemy. This feature is attractive for various applications.

2.2.2 Processing the modified SF waveform at the receiver

After expressing the baseband received signal of the modified SF waveform, we propose
two ways to process it in order to deduce the HRRP. The first method is done in the
frequency domain whereas the second one operates in the time domain.

2.2.2.1 Received signal model

As mentioned in the first chapter, the received signal is a delayed version of the trans-
mitted waveform disturbed by the white measurement noise and the clutter. For m ∈
J1, NpK, it can be modeled by:

srx,m(t) = Kmstx,m(t− td) + η(t) (2.14)

In the following, the disturbances are not taken into account to focus the reader atten-
tion on the signal part. Nevertheless, each step of the algorithm is also applied to the

39



disturbances. Thus, assuming that the environment does not vary much from one trans-
mitted pulse to another, and that the target is stationary, the ”ideal” received signal for
m ∈ J1, NpK is given, using (2.13), by:

srx,m(t) =
Km

αl
p•m(t− td)exp

(
j2πfc(t− td)

)
(2.15)

Then, the received signal srx,m(t) is down-converted to the baseband by multiplying it
with exp

(
− j2π(fc + (2m−1)B

2Np
)t
)

. The resulting baseband signal is given by:

sbb,m(t) =
Km

αm
p•m(t− td)exp

(
− j2π((2m− 1)B

2Np

)t
)
exp
(
− j2πfctd

)
(2.16)

In order to process the received waveform, sbb,m(t) is sampled at the sampling frequency
F

(Rx)
s defined by:

F (Rx)
s = 2Bb =

F
(Tx)
s

Np

=
B

Np

(2.17)

For the sake of simplicity, let us assume that the delay td is strictly a multiple of the
sampling period at the receiver T (Rx)

s . Hence, td is given by:

td =
d

F
(Rx)
s

= dT (Rx)
s (2.18)

Given (2.17) and (2.18), the mth baseband received discrete-time signal can be repre-
sented for n ∈ J0, N

Np
− 1K by:

sbb,m(n) =
Km

αm
p•m

(
(n− d)Np

)
exp
(
− jπ(2m− 1)n

)
exp
(
− j2πfcdT (Rx)

s

)
(2.19)

To produce the HRRP, sbb,m(n) can be processed either in the frequency domain by
using the modified FD algorithm or in the time domain by using the TWR algorithm.
Let us first give some details about the first approach.

2.2.2.2 Modified FD algorithm

In chapter 1, we have mentioned that the FD algorithm was proposed to process the
received echoes of the SF-LFM waveform. In this algorithm, the compression filter is
used to remove the spectral ripples in the concatenated spectrum and thus a magnitude
spectrum of rectangular shape is obtained. However, with our proposed waveform, we
aim at reconstructing the power spectrum of the pulse compression used. Therefore,
the compression filter cannot be used. This leads to proposing a modified version of the
FD algorithm to process the proposed waveform. It is presented in the remainder of this
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section.
In the modified FD algorithm, the MF is applied at the level of each pulse. For this pur-
pose, Np reference pulses {pref,m(n)}m=1,...,Np have to be prepared. They respectively
correspond to the non-zero components of the spectra
{P •m(k)}m=1,...,Np . Thus, for m ∈ J1, NpK, the reference signals are given by:

pref,m(n) = IDFT
[
P •m

(
k − (2m− 1)B

2NpF
(Tx)
s

)]
= p•m(n)exp

(
− j2π (2m− 1)B

2Np

n

F
(Tx)
s

)
=

(2.17)
p•m(n)exp

(
− jπ2m− 1

Np

n
)

(2.20)

Then, the resulting sequence associated with each portion is down-sampled by a factor
Np so that it is composed of N

Np
samples. For n ∈ J0, N

Np
− 1K, it is given by:

pdownref,m(n) = pref,m(nNp) = p•m(nNp)exp
(
− jπ(2m− 1)n

)
(2.21)

Finally, the output of the down-sampler is padded by N
Np
− 1 zeros to get the sequence

pdopadref,m(n). Then, a DFT is applied to the latter sequence to obtain P dopad
ref,m (k) , as shown

in Fig. 2.1. The various steps of the modified FD algorithm are illustrated in the follow-
ing:

1. Apply an inverse scale to the result given in (2.19) by multiplying each received
pulse by αm

Km
where Km can be estimated by comparing the powers of the trans-

mitted and received signals. Hence, for n ∈ J0, N
Np
− 1K, one has:

pdownref,m(n− d)exp
(
− j2πfcdT (Rx)

s

)
exp
(
− jπ(2m− 1)d

)
(2.22)

2. Pad each sequence obtained in (2.22) by N
Np
− 1 zeros. This yields a vector of

length Q = 2N
Np
− 1 on which a Q-size DFT is applied. The result is given for

k ∈ J0, 2N
Np
− 2K by:

P dopad
ref,m (k)exp

(
− j2π k

Q
d
)
exp
(
− j2πfcdT (Rx)

s

)
exp
(
− jπ(2m− 1)d

)
(2.23)

3. Apply an MF by multiplying each component of (2.23) by the complex conjugate
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of P dopad
ref,m (k). The output is given by:

Zm(k) = |P dopad
ref,m (k)|2exp

(
− j2π k

Q
d
)
exp
(
− j2πfcdT (Rx)

s

)
× exp

(
− jπ(2m− 1)d

)
(2.24)

The values in (2.24) are then stored in a vector of length Q = 2N
Np
− 1:

Zm = [Zm(0) Zm(1) . . . Zm(Q− 1)] (2.25)

4. Construct the whole spectrum by arranging the Np sub-spectra contiguously. The
total concatenated spectrum is represented by H•FD(k) of size NpQ = 2N − Np

as follows:
H•FD(k) =

[
Z1 Z2 . . . ZNp

]
(2.26)

Alternatively, this frequency shift can be achieved by multiplying the time do-
main version of (2.24) with a linear phase ramp. However, using a cut and paste
method in the frequency domain, as it is done here, results in a much more effi-
cient algorithm [67].

5. To produce the HRRP, apply an IDFT to H•FD(k). This yields:

h•FD(n) =
1

NpQ

Np∑
m=1

Q−1∑
k=0

H•FD((m− 1)Q+ k)exp
(
j
2π((m− 1)Q+ k)n

NpQ

)
(2.27)

A zero padding may be done in the frequency domain to force power of 2-size
IFFT, or to interpolate further the HRRP to get a better view. It should be noted
that plotting the HRRP by directly using (2.27) constitutes a milestone to validate
the results of the simulation section.

As an alternative to the modified FD algorithm, we propose to directly process the
received signal in the time domain. This leads to the time waveform reconstruction
algorithm presented in the next section.

2.2.2.3 Time waveform reconstruction (TWR) algorithm

The idea of the TWR algorithm stems from the fact that each received pulse corresponds
to a base-band portion of the whole spectrum of v• in the time domain. When these
pulses are added together after being shifted to their proper position in the frequency
domain, the whole spectrum of v• can be retrieved.
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The steps carried out in this algorithm are as follows:

1. Apply an inverse scale to the received baseband signal sbb,m(n) by multiplying
each received pulse by αm

Km
. Thus, for n ∈ J0, N

Np
− 1K, one has:

sr,m(n) = p•m((n− d)Np)exp
(
− jπ(2m− 1)n

)
exp
(
− j2πfcdT (Rx)

s

)
(2.28)

2. Interpolate sr,m(n) so that the new sampling frequency becomes
F

(int)
s = NpF

(Rx)
s = B. This can be done either in the time domain or in the

frequency domain2. Sampling at F (Rx)
s and then interpolating the received signal

instead of directly sampling it at the sampling frequency B makes it possible to
use a cheap ADC. Taken into account (13), the resulting signal denoted as sintr,m(n)
can be approximated for n ∈ J0, N − 1K as follows:

sintr,m(n) ≈ p•m(n− d)exp
(
− jπ(2m− 1)

n

Np

)
exp
(
− j2πfcdT (Rx)

s

)
(2.29)

3. Frequency shift each pulse to its proper position. This is done by multiplying
each pulse by the proper exponential factor as follows:

sint,fshiftr,m (n) = sintr,m(n)exp
(
jπ(2m− 1)

n

Np

)
≈

(2.29)
p•m(n− d)exp

(
− j2πfcdT (Rx)

s

)
(2.30)

4. Add theNp signals obtained in (2.30). The reconstructed waveform can be written
as:

z(n) =

Np∑
m=1

sint,fshiftr,m (n) ≈ exp
(
− j2πfcdT (Rx)

s

) Np∑
m=1

p•m(n− d) (2.31)

Apply a MF to the reconstructed waveform. This can be done in two steps: apply
a DFT to z(n) after padding it with L zeros to get Zpad(k). Then, by defining
V •pad(k) as the DFT of v•(n) padded with L zeros, multiply the result Zpad(k) by
V •pad(k) which represents the complex conjugate of V •pad(k). It should be noted
that L should be at least equal to N − 1 to make the MF process in the frequency

2In the time domain, the signal is upsampled by a factor equal to Np and then is interpolated by
using a low-pass finite-impulse response (FIR) filter. Polyphase filters are often considered. As for the
frequency domain, the DFT of sr,m(n) is decomposed into two halves. Zeros are introduced in between
to obtain a sequence of length N . Then, the inverse DFT is computed [2]. In our case the latter method
is used.
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domain equivalent to a linear convolution in the time domain which is usually
utilized in radars [95]. For k ∈ J0, N + LK, one has:

H•TWR(k) ≈ Zpad(k)V •pad(k) (2.32)

≈ |V •pad(k)|2exp(−j2πfcdT (Rx)
s )exp(−j 2πd

N + L
k)

= G
|V •pad(k)|2

N + L
exp(−j 2πd

N + L
k)

where G = (N + L)exp(−j2πfcdT (Rx)
s ).

Remark:It should be noted that

|H•TWR(k)| ≈ |G|
|V •pad(k)|2

N + L
= (N + L)S•ref (k) (2.33)

where S•ref (k) =
|V •pad(k)|

2

N+L
is the power spectrum of the time-domain waveform

that should be retrieved.

5. Apply an IDFT to H•TWR(k) in order to produce the HRRP. For this purpose, let
us introduce the correlation function of the sequence v•(n):

Rv(n) = v•(n) ∗ v•(−n) (2.34)

where ∗ is the convolution. One has:

h•TWR(n) ≈ IDFT
(
H•TWR(k)

)
(2.35)

= GRv(n)~ δ2N−1(n− d)

where δ2N−1(n − d) denotes the Kronecker symbol equal to 1 when
n = d+ r(2N − 1) where r ∈ Z. In the practical case, the modulus of h•TWR(n)

is considered. The HRRP corresponds to the modulus of the correlation function
of the waveform v•, the maximum of which is no longer at 0 but shifted at d. It
should be noted that during this step, a standard IDFT is computed. However, a
zero padding could be done on H•TWR(k) for the two following reasons: forcing
a power of 2-size IFFT or interpolating the HRRP.

2.2.3 Computational cost of the modified FD algorithm vs. that of the TWR algorithm

Table. 2.1 summarizes the computational cost of each step of each algorithm where the
parameter L used during the MF step at the receiver is set at its minimum value, i.e.

N − 1. It also provides the total computational cost of each algorithm. They depend
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on the number N of samples of the initial waveform v• and the number Np of spectrum
portions or equivalently the number of pulses.

Table 2.1 Computational costs of the modified FD algorithm and the TWR algorithm.
The symbol / is used when it is not applicable

Steps Modified FD algorithm TWR algorithm
1 N N

2 (2N−Np)2
Np

NpN
2

3 2N −Np NpN
4 / N(Np − 1)
5 (2N −Np)2 2N(2N − 1)
6 / (2N − 1)2

Total F (N,Np) = N2
p +N(4N − 4Np − 1 + 4N

Np
) T (N,Np) = 1 +N(NNp + 8N + 2Np − 6)

After computing the difference between the total computational cost of the TWR algo-
rithm denoted as T (N,Np) and that of the modified FD algorithm denoted as F (N,Np),
one has:

D(N,Np) = T (N,Np)− F (N,Np)

= 1 +NpN
2 + 4N2 + 6NNp − 5N −N2

p −
4N2

Np

(2.36)

The derivate of D(N,Np) with respect to N is equal to (2Np + 8 − 8
Np

)N + 6Np − 5,
which is always positive for any value of Np. Therefore, for a fixed value of the por-
tions, D(N,Np) is necessarily an increasing function of N . In addition, the derivate
of D(N,Np) with respect to Np is equal to N2 + 6N − 2Np + 4N

2

N2
p

. It can be shown

that it is positive provided that Np <
N2+6N

3
. Therefore, in this interval and for a fixed

value of N , D(N,Np) is an increasing function of Np. The evolution of difference
D(N,Np) presented in Fig. 2.2. The computational cost required for the TWR algo-
rithm becomes significantly larger than that of the modified FD algorithm only for large
values ofN andNp. Although the TWR algorithm requires a computational cost higher
than the modified FD algorithm, the practitioner can use the TWR algorithm without
paying a high computational tax. This can be done by avoiding selecting the waveform
parameters that simultaneously lead to large values of N and Np.

2.2.4 Removing the constraints of the modified SF waveform

Splitting the original spectrum into Np equal portions cannot be done when F (Tx)
s /Np

is not an integer. When the modified FD algorithm is used at the receiver, there are two
possibilities:

1. Decomposing the spectrum into Np portions of unequal size: In this case,
each portion has a different bandwidth. However, at the receiver, the pulses would
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Fig. 2.2 Evolution of the difference of the computational costs D(N,Np) with N and
Np

have different bandwidths. The sampling frequency would be either confined to
the largest bandwidth of the portions or modified for each received echo.

2. Resorting to an overlapping methodology: The spectrum is still split into Np

equal portions, but the bandwidth of each portion is augmented and overlaps with
its neighbor. The percentage of the overlap is the same between every two suc-
cessive portions. By doing so, Np is maintained within the CPI whereas F (Rx)

s in-
creases. The larger the overlapping, the higher the F (Rx)

s . Following this method-
ology, as the second equality in (2.17) no longer holds, some simplifications done
for the equations at the receiver part are no longer valid. In this case, (2.22),
(2.23), and (2.24) become respectively:

±pdownref,m(n− d)exp
(
− j2πfcdT (Rx)

s

)
exp
(
− jπ (2m− 1)BdT

(Rx)
s

Np

)
(2.37)

±P dopad
ref,m (k)exp

(
− j2π k

Q
d
)
exp(−j2πfcdT (Rx)

s )exp
(
− jπ (2m− 1)BdT

(Rx)
s

Np

)
(2.38)

±|P dopad
ref,m (k)|2exp

(
− j2π k

Q
d
)
exp(−j2πfcdT (Rx)

s )

× exp
(
− jπ (2m− 1)BdT

(Rx)
s

Np

)
(2.39)

As a consequence, a trade-off has to be found in the selection of the methodology that
would be followed for splitting the original spectrum. Selection relies on the specified
application and the limitation one would have in terms of F (Rx)

s .
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2.2.5 Comments on the modified SF waveform

• About the relation between Pdopad
ref ,l (k) and V(k)

In (2.24), Zm(k) is expressed in terms of P dopad
ref,l (k). However, it could be of

interest to express Zm(k) in terms of V •(k). This is useful for the simulation
of the receiving steps. It also shows the influences of the downsampling and
the padding through the psinc function. For this purpose, let us find a relation
between P dopad

ref,m (k) and V (k).
By combining (2.2) and (2.20), Pref,m(k) can be written as follows:

Pref,m(k) = P •m

(
k +

2m− 1

2

N

Np

)
(2.40)

In order to find a relation between P dopad
ref,m (k) and P down

ref,m(k), let us recall the
discrete-time Fourier transform (DTFT) and the IDFT of pdownref,m(n):

P down
ref,m(θ) =

N
Np
−1∑

n=0

pdownref,m(n)exp(−jnθ) (2.41)

and

pdownref,m(n) =
1

N/Np

N
Np
−1∑

k1=0

P down
ref,m(k1)exp

(
j
2πk1n

N/Np

)
(2.42)

where θ the normalized angular frequency with respect to the sampling frequency.
By substituting (2.42) in (2.41), the latter becomes:

P down
ref,m(θ) =

N/Np−1∑
n=0

1

N/Np

N/Np−1∑
k1=0

P down
ref,m(k1)exp

(
j
2πk1n

N/Np

)
.exp(−jnθ)

=

N/Np−1∑
k1=0

P down
ref,m(k1).

1

N/Np

N/Np−1∑
n=0

exp
(
j(

2πk1
N/Np

− θ)n
)

=

N/Np−1∑
k=0

P down
ref,m(k1).exp

(
− j(θ

2
− πk1
N/Np

)(N/Np − 1)
)

(2.43)

psincN/Np(θ −
2πk1
N/Np

)

where

psinc N
Np
(θ) =

Np

N

sin( N
Np
θ 1
2
)

sin( θ
2
)

(2.44)
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The latter is equal to 1 if θ = 0 and to 0 if θ is a multiple of 2π
N/Np

. Otherwise,
intermediate values are obtained. The DFT of the padded signal pdopadref,m(n) is given
by evaluating P down

ref,m(θ) at the normalized angular frequency θ = k 2π
2N/Np−1 where

k ∈ J0, 2N
Np
− 2K. Hence, P dopad

ref,m (k) is given by:

P dopad
ref,m (k) =

N
Np
−1∑

k1=0

P down
ref,m(k1)exp

(
− jπ( k

2N −Np

− k1
N
)(N −Np)

)
×psinc N

Np

(
2πNp

( k

2N −Np

− k1
N

))
(2.45)

The relation between the DTFT of the sequence pref,m(n) and that of its down-
sampled version pdownref,m(n) is given by:

P down
ref,m(f) =

1

Np

Np−1∑
l=0

Pref,m

(
f − lF

(Tx)
s

Np

)
(2.46)

This amounts to reproducing Np times Pref (f), or equivalently a portion of the
Fourier transform V •(f), with a shift of frequency equal to kF

(Tx)
s

Np
with

k = 1, ..., Np − 1. Since the latter is band-limited on a frequency band equal
to F

(Tx)
s

Np
, the different terms of the sum in (2.46) do not overlap. Hence, by taking

advantage of the periodicity of the DTFT, (2.46) in the frequency band [0, F
(Tx)
s

Np
]

reduces to:

P down
ref,m(f) =


1
Np
Pref,m(f) if f ∈ [0, F

(Tx)
s

2Np
[

1
Np
Pref,m(f + (Np − 1)F

(Tx)
s

Np
)

if f ∈ [F
(Tx)
s

2Np
, F

(Tx)
s

Np
]

(2.47)

Given (2.47), a relation can be deduced between the DFT of {pref,m(n)}n=0,...,N−1

and that of {pdownref,m(n)}n=0,...,N/Np−1 computed at the sampling frequency F (Tx)
s

and F
(Tx)
s

Np
respectively. This can be written for the kth frequency bin as follows:

P down
ref,m(k) =


1
Np
Pref,m(k) if k ∈ J0, N

2Np
− 1K

1
Np
Pref,m(k + (Np − 1) N

Np
)

if k ∈ J N
2Np

, N
Np
− 1K

(2.48)
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Combining (2.4), (2.48), (2.40) and (2.45) leads to:

P dopad
ref,m (k) =

1

Np

N
2Np
−1∑

k1=0

V •
(
k1 +

2m− 1

2

N

Np

)
exp
(
− jπ( k

2N −Np

− k1
N
)(N −Np)

)

× psinc N
Np

(
2πNp
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(2.49)

where k ∈ J0, 2N
Np
− 2K and k1 ∈ J0, N

Np
− 1K.

Finally, to obtain |P dopad
ref,m (k)|2, one has to take the square modulus of (2.49).

• About the envelope of the modified SF waveform
In the traditional pulsed radar waveforms, the transmitted pulses have a constant
envelope even though they may have a phase or frequency modulation in the con-
text of an intra-pulse modulation. However, in our modified SF waveform where
the pulses are separated by a certain Tr, the resulting samples of each transmitted
pulse have not only arbitrary phases but also arbitrary amplitudes, as shown in
Fig. 2.3 and Fig. 2.4. Having a non-constant envelope is a common feature of
some proposed waveforms, e.g. the orthogonal frequency division multiplexing
(OFDM), and the hybrid NLFM. [34] [33] [3].
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Fig. 2.3 Real and imaginary parts of the modified SFPC pulses with B = 200 MHz,
Tp = 1 µs, and Np = 4
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Fig. 2.4 Real and imaginary parts of the modified SF-NLFM pulses with B = 200
MHz, Tp = 1 µs, and Np = 4

• About a trade-off between Rmin and Bp in the modified SFPC waveform
Radar engineers are always interested in using the minimal possible pulse width
in short-range radar applications. In order to obtain high PSLRs with phase coded
pulses, it is better to use polyphase codes of large length M . They lead to a trade-
off between Rmin and Bp. On the one hand, exploiting these long codes with
a fixed pulse width leads to a dramatic augmentation of Bp because the latter is
proportional toM . On the other hand, if we augment the pulse width to grasp this
long code, Rmin increases according to (1.3). As a consequence, a trade-off has
also to be found between the minimum range and the baseband bandwidth. This
is the case of the SFPC waveform.
With the modified SFPC waveform and thanks to the methodology followed at
the transmitting and receiving sides, the polyphase codes with large length M

can be exploited while each pulse of the modified SFPC waveform still has the
same width as the original pulse from which it is derived. Hence, for a certain
value ofBp, the minimum range of the SFPC waveform is smaller than that of the
SFPC waveform. It should be noted that this comment does not hold when the
modified SF-NLFM waveform is considered. In this case, the minimum range of
the SF-NLFM and the modified SF-NLFM is the same. This is due to the fact
that Bp depends only on the sweep bandwidth rather than the pulse width.

• About the computational cost of modifed SF vs. standard SF
For a fair comparison, Np and Bp are set at the same values for both modified
SFPC and SFPC. As a consequence, each pulse of the SFPC waveforms consists
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of N samples whereas each pulse of the modified SFPC waveform consists of N
Np

samples. Table. 2.2 summarizes the computational cost of each step for both the

Table 2.2 Computational costs of the modifed SF and the standard SF waveforms at the
transmitter and receiver sides. The symbol / is used when it is not applicable

Steps Transmitter Receiver
SFPC modified SFPC SFPC modified SFPC

1 / O(N2) O(Np.N
2) O(N)

2 / / O(Np(2N − 1)) O(
(2N−Np)2

Np
)

3 / O((N.Np)
2) O(Np(2N − 1)) O(2N −Np)

4 / O(NNp) / /
5 / / O(Np(2N − 1)) O((2N−Np)2)
6 / / O(N2

p (2N −1)2) /

modified SFPC and the SFPC waveforms at the transmitter and receiver sides. At
the receiver, the modified FD algorithm is considered for the former waveform.
As for the latter waveform, the FD algorithm is considered.

On the one hand, at the transmitter side, generating the transmitted signal for
the SFPC waveform is straightforward and avoids all the procedures done for
the modified SFPC waveform. However, all the steps at the transmitter should be
executed only once. When the waveform is generated for the first time, the result-
ing samples are saved in the memory of the radar to be utilized later on for other
transmissions. As a consequence, the computational burden at the transmitter is
almost negligible compared with that of the receiver. Normally, radar engineers
are interested in the latter rather than the former. This is due to the fact that all
the steps at the receiver should be repeated every time an echo arrives at its front
end.
On the other hand, at the receiver side, given Table. 2.2, the addition of the com-
putational power of the whole steps of each waveform reveals that the modified
SFPC waveform requires less computational power than the SFPC waveform. Fi-
nally, in our modified SFPC waveform, the generated pulses are multiplied by
the same carrier signal which eases the operation of the oscillator whereas in the
SFPC waveform the frequency of the carrier signal varies in a fixed step from
pulse to pulse.

• About the relation between Np and CPI It is important that all the Np pulses
that carry the different portions of the split spectrum are transmitted within the
CPI. This highly depends on the velocity of the target. If the target is fixed or
moving slowly, the number Np of split portions of the spectrum can be large, and
consequently, better performance is achieved. However, if the target is moving
fast, then Np should be relatively small in order to guarantee that all the trans-
mitted pulses lie within the CPI. Otherwise, the radar will not be able to receive
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all the echoes within the CPI. One of the possible solutions for this issue is to re-
sort to compressed sensing techniques that have been proposed to deal with such
scenarios where sparsity in the collected data exists [47] [46].

2.3 Results and discussions

In this section, the performance of the modified SF-NLFM waveform and the modi-
fied SFPC waveforms is investigated. For this purpose, for each waveform, the recon-
structed power spectrum and the performance in terms of the PSLR, ISLR, and Rres of
the waveform processed by the TWR algorithm are compared with those of the wave-
form processed by the modified FD algorithm. It should be noted that our approach is
compared with the standard SF waveform.

2.3.1 Simulation results when dealing with the modified SF-NLFM waveform

In this section, in order to validate the processing chain, three aspects are analyzed.
Firstly, the approximation made in (2.29) with the TWR algorithm is studied in order
to check if it is relevant for any value of Np. Then, we focus our attention on the recon-
structed power spectra obtained with the TWR and the modified FD algorithm. They
are compared with the power spectrum SNLFMref (k) defined in (2.33) since the recon-
struction step plays a key role to deduce the HRRP. Then, some examples of the HRRP
of the modified SF-NLFM waveform processed by both the TWR and the modified FD
algorithms are provided. Finally, the performance of the modified SF-NLFM waveform
in terms of PSLR and ISLR is analyzed.
In the following, the modified SF-NLFM waveform is generated from a tangent-based
NLFM pulse. The general parameters used areB = 200 MHz, Tr = 40 µs, fc = 3 GHz,
and Tp = 1 µs.

2.3.1.1 About the relevance of the approximation done in (2.29) in the TWR algorithm

In this section, we aim at investigating the relevance of the approximation done in
(2.29) for different values of Np. For this purpose, denoting the right-hand side of
(2.29) by sref,m(n), let us compute the normalized errorEl between {sintr,m(n)}n=0,...,N−1

and {sref,m(n)}n=0,...,N−1 for the different pulses, i.e. for the different values of m
(1, ..., Np) equal to:

Em =
||sintr,m − sref,m||2
||sref,m||2

(2.50)

where ||.||2 denotes the Euclidean norm, and sintr,m and sref,m respectively denotes the
vectors that store the set of samples of sintr,m(n) and sref,m(n) with
n = 0, ..., N − 1.
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We have launched simulations where β varies between 0 and π/2 with a step equal
to 0.03. The results for Np = 4 are presented in Fig. 2.5 and show that the order of
magnitude is the same for any value of β. Then, we have focused our attention on
β = 1.21.
In Fig. 2.6, the normalized error is presented for Np = 4, 20, and 50 and for m =

1, ..., Np.
For any value of Np, the normalized error is smaller than 10−13 and has the same order
of magnitude. Moreover, for each value of Np, the normalized errors among the Np

pulses slightly grow due to the accumulation of errors. Therefore, the approximation
done in (2.29) is relevant whatever Np.
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Fig. 2.6 Normalized error vs. the mth pulse with β = 1.21, when (a) Np = 4 (b)
Np = 20 (c) Np = 50
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2.3.1.2 About the reconstructed power spectrum of the modified SF-NLFM waveform

In this section, the reconstructed power spectra using either the TWR or the modified
FD are compared with the reference spectrum SNLFMref (k).

Based on (2.33), the first one is defined by |H
NLFM
TWR (k)|
L+N

for the kth frequency bin whereas

the second is equal to |H
NLFM
FD (k)|

(N/Np+Q)
due to (2.26).

We choose L = N andQ = N
Np

so that the number of bins of the different power spectra
are the same and correspond to the same frequencies.
Let us first have a look at the power spectra obtained by using both algorithms and
compare them with the reference power spectrum SNLFMref (k) when β = 1.21 and for

different values of Np. SNLFMref (k) is presented in Fig. 2.7 whereas |H
NLFM
TWR (k)|

2N
and

|HNLFM
FD (k)|
(2N/Np)

are respectively presented for Np = 4 and 20 in Fig. 2.8 and 2.9.
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Fig. 2.7 Power spectrum of vNLFM(n) padded with N zeros when β = 1.21

On the one hand, one can notice that when the modified FD algorithm is used and
when Np increases, the power spectrum differs more and more from SNLFMref (k). The
quality of reconstruction is no longer good when Np= 20. On the other hand, the power
spectra reconstructed with the TWR algorithm are almost the same and very close to
SNLFMref (k).
Let us now analyze the influence of β on the reconstructed power spectrum by using an
objective criterion. Toward this purpose, for β ∈ J0, 1.5K which varies with a step size
equal to 0.03, the spectral distances3 between
{SNLFMref (k)}k=0,...2N−1 and the reconstructed power spectra

{ |H
NLFM
TWR (k)|

2N
}k=0,...,2N−1 and { |H

NLFM
FD (k)|
(2N/Np)

}k=0,...,2N−1 are computed.
Different values of Np have been analyzed. In Fig. 2.10 and 2.11, the spectral distances
with the modified FD algorithm and the TWR algorithm are respectively provided for

3If X and Y are two vectors that respectively store the power spectra X(k) and Y (k) computed at
the kth frequency bin with k = 0, ..., 2N − 1, the spectral distance between X and Y of length 2N is
defined as follows:

Sd =
1

2N
||X − Y ||22
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Fig. 2.8 Reconstructed power spectrum of the modified SF-NLFM waveform when
β = 1.21 and Np = 4 using (a) the modified FD algorithm (b) the TWR algorithm
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Fig. 2.9 Reconstructed power spectrum of the modified SF-NLFM waveform when
β = 1.21 and Np = 20 using (a) the modified FD algorithm (b) the TWR algorithm

Np = 4 and Np = 50.
Different comments can be made:

• For each value of Np analyzed, the spectral distances have the same type of be-
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haviour.

• Whatever Np and the method considered, the order of magnitude of the spectral
distance is the same when β is approximately in the interval [0, 1]. This phe-
nomenon can be explained by the fact that when β is in this interval, the instan-
taneous frequency is close to be a linear function of time and the power spectrum
does not vary much as shown in Fig. 1.10.

• When the degree of non-linearity increases, the spectral distance increases.

• Finally, we can clearly observe that whatever the value of β and the number Np,
the spectral distance that is computed when the TWR algorithm is used is much
smaller than that when the modified FD algorithm is considered.
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Fig. 2.10 Spectral distance vs. β when the TWR algorithm is used for (a) Np = 4 (b)
Np = 50.
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Fig. 2.11 Spectral distance vs. β when the modified FD algorithm is used for (a)Np = 4
(b) Np = 50

2.3.1.3 About the HRRP and the range resolution of the modified SF-NLFM wave-
form

In Fig. 2.12 and 2.13, the HRRPs of a stationary point target located at range
R = 240 m are presented. They correspond to the modified SF-NLFM waveform
with β = 1.21 combined respectively with the TWR and the modified FD algorithms
in a noiseless environment when Np = 4 and Np = 20. The simulations done using
MATLAB confirm the theoretical analysis given in the above section. Moreover, the
range resolution Rres obtained by using both algorithms is equal to 2.6 m which is the
same as that of a tangent-based NLFM waveform processed by using the MF.
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Fig. 2.12 HRRP of the modified SF-NLFM waveform when Np = 4 using (a) the TWR
algorithm, (b) the modified FD algorithm
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Fig. 2.13 HRRP of the modified SF-NLFM waveform when Np = 20 using (a) the
TWR algorithm, (b) the modified FD algorithm

2.3.1.4 Performance of the modified SF-NLFM waveform

Let us now compare the performance in terms of PSLR and ISLR of the modified SF-
NLFM waveform combined with the modified FD algorithm and the TWR algorithm.
The simulation protocol is the following: At the receiver, an additive white Gaussian
noise (AWGN) is considered, leading to a specific SNR. At each SNR, 7000 indepen-
dent realizations of the AWGN are generated. The SNR varies from -5 dB to 30 dB
with a step equal to 1dB and it is defined at the very front end of the receiver, just
before processing the received echoes, as:

SNR = 10 log 10
(Pm
σ2
n

)
(2.51)

where Pm = 1 denotes the power of themth pulse of the modified SF-NLFM waveform
defined in (2.12).
In Fig. 2.14 and Fig. 2.15, the evolutions of the PSLR and the ISLR versus the SNR are
presented. It reveals that when the TWR algorithm is used, the PSLR converges to the
same value at high SNR, for instance at SNR= 30 dB for all Np. For large values of Np

(i.e. Np = 20 andNp = 50), the TWR approach outperforms the modified FD algorithm
whatever the SNR. For small values of Np (i.e. Np = 4 and Np = 10), the advantage
of the TWR algorithm is obvious at low and moderate SNR, whereas it lags behind the
modified FD algorithm by a couple of dBs at high SNR. In the same context, the ISLR
obtained by using the TWR algorithm is smaller than that obtained with the modified
FD algorithm whatever Np. For instance, at SNR=30 dB, The TWR outperforms the
modified FD by around 10 dB for Np = 50 and Np = 20. The better results obtained
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using the TWR algorithm compared to the modified FD algorithm comes at the cost of
an additional computational cost. It should be noted that Np = 50 is used to reflect the
behavior of our algorithm in a scenario where the proposed waveform can be used in
radars designed to detect slowly-moving targets that have small RCS.

Fig. 2.14 Mean value of the PSLR vs. SNR using Np portions, when the modified FD
and the TWR algorithms are used. SF-NLFM case

Fig. 2.15 Mean value of the ISLR vs. SNR using Np portions, when the modified FD
and the TWR algorithms are used. SF-NLFM case

2.3.2 Simulation results when dealing with the modified SFPC waveform

In this section, the reconstructed power spectra obtained with the TWR and the modified
FD algorithms are compared with the power spectrum SPCref (k). Then, some examples
of the modified SFPC waveform processed by both algorithms are provided. Moreover,
the performance of the modified SFPC waveform in terms of PSLR , ISLR, and Rres is
analyzed. Afterwards, the performance of the modified SFPC is compared with that of
the PC waveform. Then, its performance is compared with that of the standard SFPC
waveform.
In the following, the modified SFPC waveform is generated from a polyphase P4 pulse
with Tp = 1 µs and M = 100. In addition, Tr = 40 µs and fc = 3 GHz.
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2.3.2.1 About the reconstructed power spectrum of the modified SFPC waveform

In this section, the reconstructed power spectra of the modified SFPC obtained using the
TWR defined by |HPC

TWR(k)|
L+N

and the modified FD algorithms defined by
|HPC
FD(k)|

(N/Np+Q)
for Np = 4 and 20 are respectively presented in Fig. 2.17 and Fig. 2.18. They

are compared with the reference power spectrum SPCref (k) presented
in Fig. 2.16 using the spectral distance. Similarly, as done in section 2.3.1.2, L and
Q are respectively equal to N and N/Np. For any value of Np, the spectral distances
have the same order of magnitude 10−29 when the TWR algorithm is used. When the
modified FD algorithm is used, the spectral distances are much higher than that ob-
tained with the TWR algorithm. They also have the same order of magnitude for any
Np. Thus, when Np = 4, Sd = 0.0264 and when Np = 20, Sd = 0.0875. This reflects
the fact that the quality of reconstruction of the power spectrum is no longer good when
Np is large.
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Fig. 2.16 Power spectrum of vPC(n) padded with N zeros when M = 100
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Fig. 2.17 Reconstructed power spectrum of the modified SFPC waveform when M =
100 and Np = 4 using (a) the modified FD algorithm (b) the TWR algorithm
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Fig. 2.18 Reconstructed power spectrum of the modified SFPC waveform when M =
100 and Np = 20 using (a) the modified FD algorithm (b) the TWR algorithm

2.3.2.2 About the HRRP and the range resolution of the modified SFPC waveform

In Fig. 2.19 and 2.20, the HRRPs of a stationary target located at range R = 240 m
are presented. They respectively correspond to the modified SFPC waveform combined
with the TWR and the modified FD algorithm in a noiseless environment. ForNp = 20,
the range resolution is equal to 1.5 m when both algorithms are used, and is the same
as that of a polyphase P4 waveform processed by using the MF. For Np = 4, Rres is
equal to 1.7 m using the modified FD algorithm which is slightly larger than Rres = 1.5
m that obtained using the TWR algorithm.
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Fig. 2.19 HRRP of the modified SFPC waveform when Np = 4 using (a) the TWR
algorithm, (b) the modified FD algorithm
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Fig. 2.20 HRRP of the modified SFPC waveform when Np = 20 using (a) the TWR
algorithm, (b) the modified FD algorithm

2.3.2.3 Performance of the modified SFPC waveform:

In this section, let us compare the performance of the modified SFPC waveform ob-
tained with the modified FD algorithm with that obtained by using the TWR algorithm.
The SNR is defined as in (2.51) where Pm now denotes the power of the mth pulse of
the modified SFPC waveform.
In Fig. 2.21 and Fig. 2.22, the evolutions of the PSLR and the ISLR verus SNR are
presented respectively. Similarly, as it is the case with the modified SF-NLFM wave-
form, the PSLR obtained with the TWR algorithm is the same at SNR=30 dB for all
Np. As the SNR decreases, the PSLR increases. The larger the number of portions, the
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smaller the PSLR. The same comments can be drawn for the ISLR. When the modi-
fied FD algorithm is used, the PSLR and the ISLR depends on Np over the whole SNR
range. Contrasting the results of the two algorithms reveals that the PSLR when using
the TWR algorithm is smaller than that obtained with the modified FD algorithm for
Np 6= 4. The interpretation of the distinguished result for Np = 4 is provided in [101]
partially due to the fact that the cyclic-autocorrelation of the P4 code has zero sidelobes.
This feature has been exploited recently to separate overlapping echoes in weather radar
[84]. On the other hand, the ISLR obtained with the TWR algorithm is smaller than that
obtained when using the modified FD for all Np. Again, this difference is around 10 dB
at SNR=30 dB for Np = 20 and Np = 50.
To summarize the simulation, when the TWR approach is used, the PSLR and ISLR
obtained for both waveforms are better than those obtained by using the modified FD
algorithm for certain number of portions. This comes at the expense of additional com-
putational cost. In addition, the quality of reconstruction is no longer good for large
values of Np. As a consequence, a trade-off exists between the selection of the algo-
rithm, the number of portions and the computational cost.
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2.3.2.4 Modified SFPC waveform vs. PC waveform

Our purpose is to study the performance of the modified SFPC waveform with station-
ary targets. An AWGN is considered at the receiver, leading to a specific SNR. Some
of the common parameters used in the whole subsection are given in Table A.2, while
the others are introduced gradually. In all the simulations, two cases (non-overlap and
overlap) are addressed. At the receiver, the PC waveform is processed by MF since it

Table 2.3 General parameters used in the simulation section

Parameter Value
Pulse repetition frequency (PRF ) 250 Hz

Carrier frequency (fc) 3 GHz
Pulse width (Tp) 1 µs

consists of a single carrier whereas the steps given in section 2.2.2.2 are done for the
modified SFPC waveform. Therefore, as F (Rx)

s is proportional to the bandwidth of the
received signal, the sampling frequency at the receiver for the modified SFPC wave-
form is Np times smaller than that of the PC. Even if this comparison could be unfair
due to this difference, we propose to analyze how much the PSLR and the ISLR vary.
In the first illustration, the spectrum is split into non-overlapping portions, whereas in
the second one, it is split into overlapping portions.
Simulation protocol: The SNR varies from -5 dB to 30 dB with a step equal to 1 dB.
For each SNR, 7000 independent realizations of the noise are generated. The SNR
is defined as the ratio between the power of the PC pulse, denoted as PPC, and the
variance of the noise, σ2

n.

SNR = 10log10(
PPC

σ2
n

) (2.52)

For the non-overlapping case and for a fair comparison, the sum of the powers of theNp

pulses of the modified SFPC waveform is equal to PPC . Hence, even when Np changes,
the sum of the power of all pulses is kept fixed. As for the phase codes used in this
illustration, both P4 code with length M = 100 (B = 200 MHz) and polyphase Barker
code with length M = 54 (B = 108 MHz) are considered. It should be noted that in
this simulation, large values of Np are used to reflect the behavior of our algorithm in a
scenario where the proposed waveform can be used in radars designed to detect targets
that have small RCS. In addition, the larger Np is, the larger the time it will take to
produce the HRRP is.
For the overlapping case, the percentage of the overlap is set at 50%. In this case, the
total number of samples of the modified SFPC waveform is larger than that of the PC
pulse by a factor of 1.5. Thus, for a fair comparison between both waveforms, the sum
of the energy of Np pulses of the modified SFPC waveform is equal to the energy of the
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PC pulse. Furthermore, only the P4 code with length M = 100 (B = 200 MHz) and
Tp = 1 µs are considered for all the simulations in this illustration. Hence, both Rmin

and Rres are fixed.
Modified SFPC waveform with non-overlapping portions vs. PC waveform

Let us now study the evolutions of the PSLR and the ISLR with respect to the SNR. Ac-
cording to Fig. 2.23, the mean value of the PSLR for both waveforms gets worse as the
SNR decreases. At very low SNR, the mean of the PSLR of the modified SFPC wave-
form is 1.5 dB worse than that of the PC forNp 6= 2. However, at high SNR the mean of
the PSLR of the modified SFPC waveform is highly dependent on Np. This difference
appears since an MF is applied separately to each received pulse. Furthermore, the abil-
ity of the modified SFPC waveform withNp = 4 to outperform the PC waveform comes
at the expense of an increase of the range resolution, as shown in Fig. 2.19b. The good
performance is mainly due to the interaction between two phenomena: First, the MF is
applied to each pulse separately instead of jointly applying it to all the received echoes.
Second, the cyclic-autocorrelation of the P4 code has zero sidelobes. The last feature
has been exploited recently to separate overlapping echoes in weather radar [84]. In
Fig. 2.25, the evolution of the PSLR of the modified SFPC waveform using polyphase
Barker code is presented. The latter code does not exhibit the zero-sidelobes feature. It
reveals that the modified SFPC waveform is no longer capable of outperforming the PC
waveform. This result confirms our aforementioned interpretation.
In the same context, Fig. 2.24 provides the mean value of the ISLR at different SNR
for both waveforms using a P4 code. At very low SNR, the value of the ISLR of the
modified SFPC waveform is 2 dB worse than that of the PC waveform for Np 6= 2.
However, at high SNR, this amount varies with Np.
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Fig. 2.24 Mean value of ISLR vs. SNR, when using Np portions of the polyphase P4
code (M = 100)
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Fig. 2.25 Mean value of the PSLR vs. SNR using Np portions of the polyphase Barker
code (M = 54)

Modified SFPC waveform with overlapping portions vs. PC waveform
Let us now investigate the performance of our modified SFPC waveform when an over-
lap between different portions exists. For this purpose, a set of Monte-Carlo simulations
is carried out in which a P4 code is used as an intra-pulse modulation. In Fig. 2.26 and
Fig. 2.27, the mean values of the PSLR and the ISLR of the modified SFPC waveform
are respectively presented as functions of the SNR. The PSLR ranges between -29 dB
for Np = 39 and -21 dB for Np = 99. Using the overlapping between the transmitted
portions offers the possibility to enhance the performance compared to the non overlap-
ping scenario. For instance, at SNR = 30 dB, when Np = 50 for the non-overlapping
scenario and Np = 49 for the overlapping one, the gain in terms of PSLR is around
6.8 dB. Although the number of transmitted pulses is almost the same in both scenar-
ios, Bb for each transmitted portion in the non-overlapping scenario is equal to 4 MHz,
whereas it is set at 8 MHz in the overlapping one. Therefore, this improvement comes
at the expense of increasing the sampling frequency at the receiver. Moreover, as with
non-overlapping portions, the PSLR of the modified SFPC waveform is larger than that
of the PC waveform due to the same reasons. It is obvious that at low SNR, both the
PSLR and ISLR of the modified SFPC waveform for the different number of portions
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Np converge to the same value.
In order to shed light more on the powerfulness of the overlapping scenario in attain-
ing PSLR and ISLR values better than those obtained with the non-overlapping one,
we present a summary of different simulations we have conducted in Table. 2.4. In
every row of this table, the value of Np for the overlapping and the corresponding non-
overlapping cases are carefully chosen. For Np = 9 in the overlapping case which
requires F (Rx)

s = 40 MHz, we choose two corresponding values of Np for the non-
overlapping case: Np = 5 which is almost twice smaller but used with the same sam-
pling frequency at the receiver and Np = 10 which requires almost the same number
of portions but used with the sampling frequency which is twice smaller. Similar com-
ments can be drawn for the other three cases presented in the table. Given the results
presented in table 2.4, the overlapping scenario outperforms the non-overlapping one,
in terms of PSLR and ISLR. The tax to be paid is either a higher F (Rx)

s or a larger Np.
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Fig. 2.26 Mean value of the PSLR vs. SNR using Np overlapping portions of the
polyphase P4 code (M = 100)
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Table 2.4 PSLR and ISLR of the modified SFPC waveform for overlapping vs. corre-
sponding non-overlapping cases, using the polyphase P4 code (M = 100) in a noiseless
scenario

Np F
(Rx)
s (MHz) PSLR (dB) ISLR (dB) 50% Overlap

5
9
10

40
40
20

-26.46
-27.04
-24.15

-12.1
-15.5
-12.8

No
Yes
No

10
19
20

20
20
10

-24.15
-27.52
-23.7

-12.8
-15.76
-7.9

No
Yes
No

20
39
40

10
10
5

-23.7
-29.63
-22.62

-7.9
-13.54
-8.65

No
Yes
No

50
99
100

4
4
2

-20.5
-20.96

-12

-7.8
-11.86
-5.94

No
Yes
No

2.3.2.5 Modified SFPC waveform vs. standard SFPC waveform

In this section, the performance of the modified SFPC waveform is compared with
that of the SFPC waveform. Both the IFFT and the modified FD algorithms are used,
because the first one is usually considered whereas the second has not yet been applied
in the literature with the SFPC waveform.
Simulation protocol: The SNR in both illustrations is defined by:

SNR = 10log10(
PSFPCm

σ2
n

) = 10log10(
Pm
σ2
n

) (2.53)

where PSFPCm and Pm respectively denote the power of the mth pulse of SFPC and
modified SFPC waveforms. For a fair comparison in both illustrations, the following
equality holds true:

Np∑
m=1

PSFPCm =

Np∑
m=1

Pm ∀ Np (2.54)

Furthermore, the power of each transmitted pulse in both waveforms is kept fixed even
when Np changes.
Concerning the parameters and the phase codes used, there are some variations depend-
ing on the algorithm used at the receiver:

(a) The case of the FD algorithm: a Polyphase Barker code with length M = 60

is used instead of the P4 code as an intra-pulse modulation. The reason for this
selection is due to the fact that in the FD algorithm, the output of the MF is
multiplied by the inverse of the power spectrum (See section 1.6.2.6.1, step 3).
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This arrangement cannot work properly with polyphase codes, such as P4, be-
cause they exhibit small values in their power spectra, as illustrated previously in
Fig. 2.3.1.2. The polyphase Barker code is one of the codes that does not exhibit
small values in its power spectrum. The parameters of each waveform are given
in Table. 2.5. For a fair comparison, Bp for both waveforms should be the same.
Moreover, this table shows that Beff is also the same. This has been achieved by
making 50% overlapping between the spectra of the different pulses of the SFPC
waveform at the transmitter. At the receiver, the spectrum of each received echo
of the SFPC waveform is multiplied by a rectangular window of width B/(2Np).
Hence, at the receiver, only half of the transmitted spectrum of each received echo
of the SFPC waveform is exploited. This methodology is used for two reasons:
To guarantee a fair comparison between both waveforms by maintaining the same
Beff , and to reduce the ISLR of the SFPC waveform as much as possible.

(b) The case of the IFFT algorithm: The parameters used in this simulation are given
in Table. 2.6. Again, the parameters are selected so that Bp is the same for both
waveforms. Moreover, the polyphase P4 code with length M = 100 is used.

Modified SFPC vs. SFPC using FD algorithm
First, in Fig. 2.28, the HRRP of the SFPC waveform in the absence of noise when
Np = 10 is presented. Then, in Fig. 2.29a, the PSLR versus SNR for both waveforms
are depicted for different numbers of transmitted pulses. The PSLR of the SFPC wave-
form cannot exceed -13.5 dB, in the best case with the absence of noise. This is because
its spectrum is transformed into a rectangular form, after applying the compression fil-
ter. Therefore, its PSLR is significantly worse than that of the modified SFPC at the
whole SNR range, no matter what Np is. In Fig. 2.29b the ISLR of both waveforms
is shown. It is obvious that the modified SFPC substantially outperforms the SFPC at
low to moderate SNR, whereas the performance is equivalent at high SNR and large
Np. Furthermore, Table. 2.5 reveals that the pulse width in modified SFPC does not
vary with Np. It exhibits a smaller minimum range compared with the SFPC. This is
because the pulse width of the latter waveform grows with Np. The minimum range
must be as small as possible for radars that search for targets at a close range. It turns
out that the exploitation of the FD algorithm with the SFPC is not favorable due to the
non-rectangular shape of any phase coded pulse. As a consequence, the modified SFPC
waveform is considered as an alternative to the SFPC waveform when the FD algorithm
is used.
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Fig. 2.28 HRRP of the SFPC waveform when using the FD algorithm. The phase code
used is the polyphase Barker code with M = 60
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Fig. 2.29 Mean values of the PSLR and the ISLR vs. SNR for the SFPC, treated with
the FD algorithm, and for the modified SFPC waveforms using a polyphase Barker code
(M = 60)
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Table 2.5 Parameters for contrasting the modified SFPC and SFPC waveforms when
using the FD algorithm. The polyphase Barker code (M = 60) is used as an intra-pulse
modulation

Parameter Modified SFPC SFPC
∀ Np Np = 10 Np = 20 Np = 30

Tp (µs) 1 10 20 30
Bb (MHz) B

2Np
6 3 2

F
(Rx)
s (MHz) B

Np
12 6 4

∆f (MHz) B
Np

6 3 2

B (MHz) 120 120 120 120
Beff (MHz) 60 60 60 60
Rres (m) 2.5 2.5 2.5 2.5
Rmin (m) 150 1500 3000 4500

Modified SFPC vs. SFPC using IFFT algorithm
In Fig. 2.30a and Fig. 2.30b, the evolutions of the mean value of the PSLR and ISLR
of both waveforms for various Np are presented respectively. Fig. 2.30a shows clearly
the enhancement of the PSLR of the modified SFPC waveform compared to that of the
SFPC waveform. As for the ISLR, the results are highly dependent on Np. Hence,
the modified SFPC waveform outperforms the SFPC for certain values of Np, and the
converse occurs for other values. Looking at both waveforms from another viewpoint,
the range resolution for the SFPC waveform is twice better than that of the modified
SFPC. However, the minimum range of the modified SFPC waveform is kept constant
for any value of Np whereas that of the SFPC waveform varies with the selected Np.
The larger Np is, the longer Rmin is. See Table. 2.6.
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Fig. 2.30 Mean values of the PSLR and the ISLR vs. SNR for the SFPC, treated
with IFFT, and for the modified SFPC, treated with the FD algorithm, when using a
polyphase P4 code (M = 100)

Table 2.6 Parameters for contrasting the modified SFPC and SFPC waveforms when
using the IFFT algorithm. The polyphase P4 code is used as an intra-pulse modulation

Parameter Modified SFPC SFPC
∀ Np Np = 10 Np = 20 Np = 40

Tp (µs) 1 10 20 40
Bb (MHz) B

2Np
10 5 2.5

F
(Rx)
s (MHz) B

Np
20 10 5

∆f (MHz) B
Np

20 10 5

B (MHz) 200 200 200 200
Beff (MHz) 100 200 200 200
Rres (m) 1.5 0.75 0.75 0.75
Rmin (m) 150 1500 3000 6000

Summary about modified SFPC vs. both PC and SFPC The various waveforms
that have been examined in this section are listed in Table. 2.7. The values of the PSLR
and the ISLR are measured for a P4 code in a noiseless environment. This table illus-
trates how the modified SFPC waveform processed with the FD algorithm outperforms
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both the PC and the SFPC waveforms. From one side, both the PC and the modified
SFPC waveforms exhibit same range resolution and minimum range. Nevertheless,
F

(Rx)
s is much smaller in the modified SFPC waveform, which is a great advantage.

Furthermore, the latter approximately achieves the same PSLR, and even better than
that of the PC waveform in some situations depending on Np. From the other side,
the comparison between the modified SFPC and the SFPC waveforms processed with
the FD algorithm, reveals that both waveforms attain the same range resolution and re-
quire the same sampling frequency at the receiver for the same number of transmitted
pulses. However, the former leads to better PSLR and ISLR. Moreover, Rmin is much
shorter. If the SFPC is processed with the IFFT algorithm instead, Rres is enhanced by
a factor of two, and also the ISLR becomes much better. Nonetheless, compared with
the M.SFPC waveform, it still achieves higher PSLR and Rmin. In the same context,
one may wonder why we do not exploit the amplitude windowing with the SFPC as an
alternative approach to the modified SFPC, knowing that both are processed with the
FD algorithm. It is true that amplitude windowing reduces the range sidelobes of the
HRRP. However, this reduction comes at an increase in the range resolution. To cope
with this shortcoming, the modified SFPC waveform is designed to permit reconstruc-
tion of a spectrum at the receiver that is close as much as possible to that of the phase
code initially used at the transmitter. In this case, there is no need to apply windowing
to the reconstructed spectrum.

Table 2.7 Summary of the performance of various waveforms

Waveform PC SFPC SFPC Modified SFPC
Algorithm MF FD IFFT FD

F
(Rx)
s (MHz) B B/Np B/Np B/Np

Rres c/B c/B c/2B c/B
No. of pulses 1 Np Np Np

Rmin cTp/2 cTpNp/2 cTpNp/2 cTp/2
PSLR(dB) −26.32 −13.2 −12 [−21;−29.3]
ISLR(dB) −13.88 −6.67 −10.4 [−7.8;−13.7]

Artifacts No No Yes No
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2.3.3 General comments on the results

In this section, we aim at giving some comments on the processing algorithm and the
number of pulses that could be selected by the practitioner. According to the obtained
results, three conclusions can be drawn:

1. For a fixed number of pulses, the PSLR and the ISLR depends on the processing
algorithm used at the receiver. Moreover, the computational cost of the TWR
algorithm becomes significantly larger than that of the modified FD algorithm for
a large number of pulses.

2. For any processing method, the larger the number of pulses, the smaller the sam-
pling frequency required at the receiver.

3. With the TWR algorithm, the larger the number of pulses, the smaller the ISLR
and the PSLR, and the larger the computational cost.

4. With the FD algorithm, the quality of reconstruction of the power spectrum is no
longer good when Np is large.

The processing algorithm and the number of pulses that could be selected by the prac-
titioner highly depend on the application of the radar. On the one hand, in scenarios
where the speed of the target is fast, the dwell time4 is small and only a small number
of pulses can be used and thus the selection of the method depends on the required
performance measures. On the other hand, in scenarios where the speed of the target is
small, a larger number of pulses can be used. In this case, the selection of the method
depends on the required performance measures and the computational cost. Therefore,
a trade-off exists between the number of pulses, the processing algorithm, the sampling
frequency, and the performance measures.

4It is the time that an antenna beam spends on a target. It can correspond to the duration of one CPI
or more CPIs
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2.3.4 Conclusions

In this chapter, we have presented the processing chain of the modified SF waveform.
Different variants can be considered in this chain.
On the one hand, at the transmitter, the PC or the NLFM waveform can be used to gen-
erate the proposed waveform. On the other hand, at the receiver, the modified FD and
the TWR algorithms can be used to reconstruct the HRRP.
The conclusions that can be drawn from the comparative studies that have been pre-
sented in this chapter are the following:

1. The proposed processing chain can be used with any type of PC and NLFM wave-
forms.

2. The proposed scheme offers a degree of flexibility for the practitioner to adapt
the waveform to different scenarios. This can be done by varying the number of
portions. The larger the number of portions, the better the performance, but the
longer the time required for transmitting the pulses.

3. The performance of the proposed waveform processed by using the TWR in terms
of PSLR and ISLR is better than that obtained with the modified FD algorithm
for a certain number of portions. This comes at the expense of an additional
computational cost.

4. The performance of the proposed waveform in terms of PSLR and ISLR is better
than that of the traditional SF waveforms processed by either the IFFT, the FD, or
the MF. With the modified SFPC waveform, the minimum range is smaller than
that of the traditional SFPC waveform.

5. There is considerable room to enhance the performance of the modified FD al-
gorithm when it is applied to the modified SFPC waveform by exploiting the
overlapping methodology. This enhancement comes at the expense of a higher
computational cost.

6. The transmission of the pulses of the modified SF in a pseudo-random way pre-
vent the opponent signal analyzer from reconstructing the transmitted waveform
correctly.

7. In this chapter, we focus our attention on cases where there is no Doppler effect.
This serves as a first step in the whole analysis that we aim at conducting.
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CHAPTER 3

VARIABLE CHIRP RATE STEPPED-FREQUENCY LFM
WAVEFORM

3.1 Introduction

In this chapter, a second processing chain is proposed to overcome the drawback of the
standard combination of SF with NLFM. More particularly, we suggest approximating
the NLFM by a piecewise linear waveform and then using it in a SF framework. Thus, a
variable chirp rate SF-LFM waveform is proposed where SF is combined with a train of
LFM pulses having different chirp rates, durations, and bandwidths. In this chapter, the
latter parameters are derived from a tangent-based NLFM waveform. At the receiver, a
generalized version of the TD algorithm is proposed to process the received echoes in
order to deduce the HRRP. As our purpose is to obtain an HRRP whose properties such
as the peak sidelobe ratio, the integrated sidelobe ratio and the range resolution are of
the same magnitude orders as those obtained using a tangent-based NLFM waveform,
an optimization issue is addressed by using a genetic algorithm to deduce the parame-
ters of the proposed waveform.
This chapter is organized as follows: firstly, the processing chain of the proposed wave-
form is presented. This includes what is done at the transmitter and at the receiver.
Secondly, the optimization issue is addressed. Finally, simulations and results are pro-
vided.

3.2 Our contribution: a processing chain of the variable chirp rate SF-
LFM waveform

In this section, we present two of our contributions: firstly, the proposed waveform is
presented. It is a generalization of the standard SF-LFM waveform whose chirp rate
varies from pulse to pulse. The latter is called variable chirp rate (VCR) SF-LFM,
whose parameters correspond to a set of pulse bandwidths and of pulse durations. We
show how to derive them from an NLFM waveform. In this chapter and without loss
of generality, we suggest considering the tangent-based NLFM waveform presented
in chapter 1 (see section 1.6.1.3.1). Secondly, the whole processing chain from the
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transmitter to the receiver is detailed. More particularly, we present how the parameters
of the waveform are exploited to construct a train of baseband pulses at the transmitter
and how the received signals are processed to produce the HRRP.

3.2.1 Generalization of the SF-LFM waveform: the VCR SF-LFM waveform

The proposed waveform is a generalized form of the SF-LFM waveform defined in
(1.69) where the pulse duration and the bandwidth changes from one pulse to an-
other, and hence the chirp rate varies from one pulse to another. Its notation becomes
γ(m) =

B
(m)
p

T
(m)
p

where B(m)
p and T (m)

p respectively denote the bandwidth and the duration

of the mth pulse, with
∑Np

m=1B
(m)
p = B. In addition, the carrier frequency still follows

(1.64) but ∆f (m) now satisfies: ∆f (1) = −B
2
+

B
(1)
p

2

∆f (m) = −B
2
+
∑m−1

l=1 B
(l)
p +

B
(m)
p

2
for m = 2, . . . , Np

(3.1)

The resulting waveform will be called ”variable chirp-rate SF-LFM waveform” de-
fined by the set of the pulse bandwidths {B(m)

p }m=1,...,Np and of the pulse durations
{T (m)

p }m=1,...,Np .

Fig. 3.1 Stepped-frequency linear frequency modulated waveform with variable chirp
rate

In the next section, let us see how to generate it from an NLFM waveform.
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3.2.2 Generation of the VCR SF-LFM waveform at the transmitter

Let us first present some details of the different steps done at the transmitter.

1. From the tangent-based NLFM waveform to its linear piece-wise approxi-
mation, called PW-NLFM: Let us consider a tangent-based NLFM waveform
whose instantaneous frequency satisfies:

ftan(t) = f(t− Tp/2)) +B/2 (3.2)

where f(t) is defined in (1.50). This instantaneous frequency is illustrated in
Fig. 3.2a.
Remark: while f satisfies f(t) + f(−t) = 0 since its an odd function, ftan has
the following property:

ftan(t)−B/2 = f(t− Tp/2) =
fodd
−f(−t+ Tp/2) (3.3)

=
(3.2)
−(ftan(−t+ Tp)−B/2)

Consequently, one has:

ftan(t) + ftan(Tp − t) = B (3.4)

This relation will be useful in the following to express the instantaneous fre-
quency of this PW waveform.
In order to derive the parameters of our waveform, we first suggest approximat-
ing ftan(t) by a linear piece-wise function. We could select the time instants
between 0 and Tp, but as the tangent-based NLFM waveform is odd with respect
to Tp/2, we suggest selecting the time instants between 0 and Tp/2. Then, the
time instants between Tp/2 and Tp as well as the frequencies can be deduced so
that the anti-symmetry is maintained. Thus, at different time instants denoted as
{0 ≤ τm ≤ Tp/2}m=1,...,L+2, the instantaneous frequency takes the values {0 ≤
νm ≤ B/2}m=1,...,L+2 and coincides with ftan(t) as follows:

(τ1, ν1) = (0, 0)

(τL+2, νL+2) = (Tp/2, B/2)

νm = ftan(τm) = f(τm − Tp/2) +B/2

for m = 1, ..., L+ 2

(3.5)

For Tp/2 ≤ t ≤ Tp, the time instants and the corresponding frequencies can be
deduced by taking into account the symmetry of the instantaneous frequency of
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the tangent-based NLFM waveform. Thus, one has:
(τ2L+3, ν2L+3) = (Tp, B)

τm = Tp − τ2L+3−m for m = L+ 3, ..., 2L+ 3

νm = ftan(τm) = B − ν2L+3−m

(3.6)

Therefore, given (3.6), the number of couples of parameters required to define a
PW-NLFM waveform can be reduced to L+2, namely {(τm, νm)}m=1,...,L+2. It is
worthy to note that only L couples are free to be selected by the practitioner since
(τ1, ν1) and (τL+2, νL+2) are fixed as shown in (3.5). Using (3.5) and (3.6), the
tangent-based NLFM waveform can be approximated by a PW-NLFM waveform
as illustrated in Fig. 3.2.b.
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Fig. 3.2 Instantaneous frequency of (a) the tangent-based NLFM waveform with β =
1.21 (b) the PW-NLFM waveform

2. From the PW-NLFM to the expression of the transmitted waveform: To get
the expression of the proposed waveform, the parameters in (3.5) and (3.6) are
used to define a train of Np baseband LFM pulses with different chirp rates and
durations. As illustrated in Fig. 3.2b, the two pieces around Tp/2 have the same

79



duration and bandwidth. Two possibilities can hence be considered to define
the pulses of the proposed waveform from the SC-PW-NLFM waveform: On
the hand, the two pieces around Tp/2 can be used to generate two pulses of the
proposed waveform. In this case, Np = 2L+ 2.
On the other hand, the two pieces are combined to represent a single pulse with
a duration and a bandwidth equal to twice that of one piece. In this case, Np =

2L+ 1.
In the following, we will focus our attention on an approximation where the first
possibility is considered. There is no particular piece in this case and there are the
same number of pieces characterizing the intervals [0, Tp/2] and [Tp/2, Tp]. This
is also in accordance with the definition of a train of piecewise linear function
given in [100]. Thus, the Np LFM baseband pulses shown in Fig. 3.3a can be
modeled for m = 1, ..., 2L+ 2 as:

sbb,m(t) =rect
[ 1

τm+1 − τm
(t− (m− 1)Tr −

τm+1 − τm
2

)
]

(3.7)

× exp
(
jπγ(m)(t− (m− 1)Tr −

τm+1 − τm
2

)2
)

where the term − τm+1−τm
2

is required in the rect function to focus on the interval
[(m−1)Tr, (m−1)Tr+ τm+1− τm]. It is also required in the exponential to have
a spectrum centered around zero.

Fig. 3.3 Instantaneous frequency of (a) the train of baseband chirp pulses (b) the trans-
mitted variable chirp rate SF-LFM waveform with center frequency fc

In addition, according to (3.6), the duration of the mth and the (2L + 3 − m)th
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pulses is the same for m = 1, ..., L+ 1:{
T

(m)
p = τm+1 − τm for m = 1, ..., L+ 1

T
(m)
p = T

(2L−m+3)
p for m = L+ 2, ..., 2L+ 2

(3.8)

the bandwidth B(m)
p of the mth pulse is defined as follows:{
B

(m)
p = νm+1 − νm for m = 1, ..., L+ 1

B
(m)
p = B(2L−m+3) for m = L+ 2, ..., 2L+ 2

(3.9)

and the chirp rate of the mth pulse is given by:{
γ(m) =

B
(m)
p

τm+1−τm for m = 1, ..., L+ 1

γ(m) = γ(2L−m+3) for m = L+ 2, ..., 2L+ 2
(3.10)

Afterwards, the whole train is frequency translated to the carrier frequency fc as
shown in Fig. 3.3b. This is done by multiplying sbb,m(t) with the proper expo-
nential term. For the mth pulse (m ∈ J1, 2L + 2K), the proposed transmitted
waveform can be expressed as follows:

stx,m(t) = sbb,m(t)exp(j2πf
(m)
c t) (3.11)

where f (m)
c is defined in (1.64).

By combining (3.7), (3.8) and (3.11), the transmitted waveform can be expressed
in a detailed manner as follows:

stx,m(t) = rect
[ 1

T
(m)
p

(t− (m− 1)Tr −
T

(m)
p

2
)
]

(3.12)

exp
(
j2π
(γ(m)

2
(t− (m− 1)Tr −

T
(m)
p

2
)2 + (fc +∆f (m))t

))
In the next section, let us analyze how the receiver part is organized.

3.2.3 Processing the VCR SF-LFM waveform at the receiver

In order to process the back-scattered received echoes in the time domain, there exists
a well-defined algorithm in the literature called the TD algorithm. However, the latter
deals with a train of pulses having a constant chirp rate, with constant pulse-width and
bandwidth, which is not the case in this chapter. Thus, We suggest generalizing the
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existing TD algorithm to fit with the variable chirp rate scenario. It aims at reconstruct-
ing a wide-band NLFM waveform by coherently combining an ensemble of variable
narrow-bandwidth chirp waveforms in the time domain. The resulting time-frequency
relationship of the reconstructed waveform is equivalent to a baseband version of the
wide-band PW-NLFM waveform similar to the one shown in Fig. 3.2, but centered at
zero Hz.
At the receiver, the signal can be formulated as follows:

srx,m(t) = αmstx,m(t− td) + n(t) (3.13)

where αm and n(t) respectively denote the mth channel attenuation coefficient associ-
ated with the mth pulse, and the additive measurement white Gaussian noise. In the
sequel, αm = 1 is considered because the burst that consists of 2L + 2 pulses is as-
sumed to be transmitted during the CPI, hence it is subject to the same channel effect.
Furthermore, in order to ease the grasp of the steps of our algorithm, we will focus on
the signal part only. This amounts to addressing the ideal case.
Subsequently, the ”ideal” received mth pulse is down converted to baseband as shown
in Fig. 3.4a. This is done by multiplying the received mth pulse with the appropriate
sinusoidal signal as follows:

srx,bb,m(t) =
(3.13)

stx,m(t− td)exp(−j2πf (m)
c t)

=
(3.11)

sbb,m(t− td)exp(−j2πf (m)
c td) (3.14)

This amounts to saying that:

srx,bb,m(t) = rect
[ 1

T
(m)
p

(t− (m− 1)Tr −
T

(m)
p

2
− td)

]
(3.15)

× exp
(
j2π
(γ(m)

2
(t− (m− 1)Tr −

T
(m)
p

2
− td)2 − f (m)

c td)
))

Then, we suggest frequency shifting each pulse to its proper position as shown in
Fig. 3.4b. This is done by multiplying each pulse by the proper exponential factor
as follows:

sfshiftrx,bb,m(t) = srx,bb,m(t)exp
(
j2π∆f (m)t

)
(3.16)
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Fig. 3.4 Instantaneous frequency of (a) the train of received baseband chirp pulses (b)
the train of received chirp pulses shifted in frequency

Fig. 3.5 Instantaneous frequency of the reconstructed PW-NLFM waveform

Using (3.15) and (3.16), one has:

sfshiftrx,bb,m(t) = rect
[ 1

T
(m)
p

(t− (m− 1)Tr −
T

(m)
p

2
− td)

]
(3.17)

× exp
(
j2π
(γ(m)

2
(t− (m− 1)Tr −

T
(m)
p

2
− td)2

+∆f (m)(t− (m− 1)Tr −
T

(m)
p

2
− td)

))
× exp(−j2πfctd)exp

(
j2π∆f (m)((m− 1)Tr +

T
(m)
p

2
)
)

By introducing φshiftrx,bb,m(t) = 2π
(
γ(m)

2
t2+∆f (m)t

)
, the above signal can be rewritten as
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follows:

sfshiftrx,bb,m(t) = rect
[ 1

T
(m)
p

(t− (m− 1)Tr −
T

(m)
p

2
− td)

]
(3.18)

× exp
(
jφfshiftrx,bb,m(t− (m− 1)Tr −

T
(m)
p

2
− td)

)
× exp(−j2πfctd)exp

(
j2π∆f (m)((m− 1)Tr +

T
(m)
p

2
)
)

Given the set of received pulses that have been frequency-shifted, the purpose is now
to reconstruct the whole waveform. The reconstructed waveform can start at a time
Tstart. Moreover, the time shifts cannot depend on td for two reasons: td is unknown
and the delay lines that will be used to time shift the signals are pre-defined and cannot
be adjusted to td. Thus, we could consider that the reconstruction of the waveform starts
Tw seconds after receiving the last pulse. This means that:

Tstart = (2L+ 1)Tr + Tp − τ2L+2 + td + Tw (3.19)

In this case, as the first pulse has to start at time Tstart, it has to be time-shifted by:

δt1 = Tstart − td (3.20)

=
(3.19)

(2L+ 1)Tr + Tp − τ2L+2 + Tw

The second pulse has to start at time Tstart+ τ1. Therefore, it has to be time-shifted by:

δt2 = Tstart + τ2 − (Tr + td) (3.21)

=
(3.19)

2LTr + Tp + τ2 − τ2L+2 + Tw

More generally, the mth pulse has to start at time τm and hence must be time-shifted by:

δtm = Tstart + τm − ((m− 1)Tr + td) (3.22)

=
(3.19)

(2L+ 3−m)Tr + Tp + τm − τ2L+2 + Tw

Given (3.22), the time shifted pulses can be written as:

stshiftrx,bb,m(t) = rect
[ 1

T
(m)
p

(t− (m− 1)Tr − δtm −
T

(m)
p

2
− td)

]
(3.23)

× exp
(
jφfshiftrx,bb,m(t− (m− 1)Tr − δtm −

T
(m)
p

2
− td)

)
× exp(−j2πfctd)exp

(
j2π∆f (m)((m− 1)Tr +

T
(m)
p

2
)
)
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or, equivalently:

stshiftrx,bb,m(t) = rect
[ 1

T
(m)
p

(
t− (Tstart + τm +

T
(m)
p

2
)
)]

(3.24)

× exp
(
jφfshiftrx,bb,m(t− (Tstart + τm +

T
(m)
p

2
))
)

× exp(−j2πfctd)exp
(
j2π∆f (m)((m− 1)Tr +

T
(m)
p

2
)
)

In order to reconstruct the PW-NLFM waveform, a continuity in the phases of the pulses
should be guaranteed before adding them. For this purpose, one just has to express
stshiftrx,bb,m(Tstart + τm+1) and stshiftrx,bb,m+1(Tstart + τm+1). At these time instants, the rect
function is always equal to 1. Moreover, exp(−j2πfctd) does not play a role for the
continuity as it appears for each time interval. Therefore, the continuity must be guar-
anteed between:

exp
(
jφfshiftrx,bb,m(Tstart + τm+1 − (Tstart + τm +

T
(m)
p

2
))
)

(3.25)

× exp
(
j2π∆f (m)((m− 1)Tr +

T
(m)
p

2
)
)

and

exp
(
jφfshiftrx,bb,m+1(Tstart + τm+1 − (Tstart + τm+1 +

T
(m+1)
p

2
))
)

(3.26)

× exp
(
j2π∆f (m+1)(mTr +

T
(m+1)
p

2
)
)

Let us express the phases of both terms:

φfshiftrx,bb,m(
T

(m)
p

2
)

+ 2π∆f (m)((m− 1)Tr +
T

(m)
p

2
) = 2π

[γ(m)

2
(
T

(m)
p

2
)2 +∆f (m)((m− 1)Tr + T (m)

p )
]

(3.27)

and

φfshiftrx,bb,m+1(−
T

(m+1)
p

2
) + 2π∆f (m+1)(mTr +

T
(m+1)
p

2
) (3.28)

= 2π
[γ(m+1)

2
(
T

(m+1)
p

2
)2 +mTr∆f

(m+1)
]
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Let us start first the first case, i.e. m = 1, this leads to:

φfshiftrx,bb,1(
T

(1)
p

2
) + 2π∆f (1)T

(1)
p

2
= 2π

(γ(1)
2

(
T

(2)
p

2
)2 +∆f (1)T (1)

p

)
(3.29)

φfshiftrx,bb,2(−
T

(2)
p

2
) + 2π∆f (2)(Tr +

T
(2)
p

2
) = 2π

(
γ(2)(

T
(2)
p

2
)2 +∆f (2)Tr

)
(3.30)

Let us introduce a phase compensation u2 so that:

φfshiftrx,bb,1(
T

(1)
p

2
) + 2π∆f (1)T

(1)
p

2
= φfshiftrx,bb,2(−

T
(2)
p

2
) + 2π∆f (2)(Tr +

T
(2)
p

2
) + 2πu2

(3.31)

This means that stshiftrx,bb,2(t) is multiplied by exp(j2πu2). By combining the three equa-
tions written above, one can deduce u2.

u2 = −
γ(2)

2
(
T

(2)
p

2
)2 −∆f (2)Tr +

γ(1)

2
(
T

(1)
p

2
)2 +∆f (1)T (1)

p (3.32)

More generally, one has:
u1 = 0

um = um−1 − γ(m)

2
(
T

(m)
p

2
)2 − (m− 1)∆f (m)Tr

+γ(m−1)

2
(
T

(m−1)
p

2
)2 +∆f (m−1)((m− 2)Tr + T

(m−1)
p

)
for 2 ≤ m ≤ 2L+ 2

(3.33)

At this stage, the reconstructed waveform should be processed by a MF in order to
produce the HRRP.
So far, the signal processing steps have been illustrated in the continuous-time domain.
In the sequel, the way to process the signal in the discrete-time domain is presented.
Instead of directly sampling the received signal at a sampling frequency equal to B, we
propose to operate in two steps: sampling at a lower rate and then interpolating. The
advantage of the proposed processing chain over the one used for the SC-PW-NLFM
waveform is to avoid a high sampling frequency thanks to the SF methodology used.
More particularly, the following steps are carried out:

1. For each received pulse, sample the baseband signals in (3.14) by using the sam-
pling frequency that satisfies:

F (Rx)
s =

1

T
(Rx)
s

=
B

η
(3.34)
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where η is defined by:

η =

 B

2 max
1≤m≤L+2

(B
(m)
p )

 (3.35)

with b.c the floor integer part. This means for instance that:

η = 2 if
B

6
< max

1≤m≤L+2
B(m)
p ≤ B

4
(3.36)

and
η = 3 if

B

8
< max

1≤m≤L+2
B(m)
p ≤ B

6
(3.37)

In this case, the number of samples that represent each pulse is equal to bF (Rx)
s T

(m)
p c.

If F (Rx)
s T

(m)
p is not an integer, the duration of the pulse cannot be retrieved exactly

and hence must be approximated. Thus, the truncated duration and bandwidth of
the (m + 1)th sampled received pulse must be considered and are respectively
denoted as:

T
(m)
p,trn =

bF (Rx)
s T

(m)
p c

F
(Rx)
s

(3.38){
B

(m)
p,trn = νm+1,trn − νm for m = 1, ..., L+ 1

B
(m)
p,trn = B

(2L−m+1)
p,trn for m = L+ 2, ..., 2L+ 2

(3.39)

where νm+1,trn = ftan(τm+1,trn) and τm+1,trn is defined as:{
τ1,trn = 0

τm+1,trn = τm + T
(m)
p,trn for m = 1, ..., L+ 1

(3.40)

It should be noted that (3.38) and (3.40) will be used in the following steps when
F

(Rx)
s T

(m)
p is not integer to avoid any problems in the reconstruction of the HRRP.

Then, for the sake of simplicity, let us address the example where the delay is
strictly a multiple of the sampling period, at the receiver, i.e.:

td = dT (Rx)
s (3.41)

Hence, using (3.11), (3.14) becomes for n ∈ J0, Nm−1K withNm = bT (m)
p F

(Rx)
s c:

srx,bb,m(n) = sbb,m

(
(n− d)T (Rx)

s

)
exp
(
− j2πf (m)

c dT (Rx)
s

)
(3.42)

2. Interpolate srx,bb,m(n) so that the new sampling frequency becomes:

F (int)
s =

1

T
(int)
s

= B = ηF (Rx)
s (3.43)
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This can be done either in the time domain or in the frequency domain1. The
resulting signals is denoted sintrx,bb,m(n) for n ∈ J0, ηNm − 1K. Sampling at F (Rx)

s

and then interpolating the received signal instead of directly sampling it at the
sampling frequency B makes it possible to use a cheap ADC.
Remark: For a proper interpolation of srx,bb,n(n), Nm should be greater than 2.
Thus, the minimum duration between any two consecutive time instants should
be greater than a threshold ε. For any m ∈ J1, L+ 1K, this leads to:

T
(m)
p,trn ≥ T (m)

p ≥ ε =
2

F
(Rx)
s

(3.44)

3. Frequency shift each pulse to its proper position so that it occupies a frequency
band shifted by−B/2 Hz compared with its corresponding one in the PW-NLFM
waveform shown in Fig. 3.2. This is done by multiplying each pulse by the proper
exponential factor as follows:

sint,fshiftrx,bb,m (n) = sintrx,bb,m(n)exp
(
j2π∆f (m)nT ints

)
(3.45)

where ∆f (m) is defined in (3.1). When F (Rx)
s T

(m)
p is not integer, ∆f (m) satisfies:

∆f (1) = −B
2 +

B
(1)
p,trn

2

∆f (m) = −B
2 +

∑m−1
l=1 B

(l)
p,trn +

B
(m)
p,trn

2

for m = 2, . . . , Np

(3.46)

4. Time shift the result obtained for each pulse in (3.45) by δtm defined in (3.22).
When F (Rx)

s T
(m)
p is not integer, δtm now satisfies:

δtm = (2L+ 3−m)Tr + Tp + τm,trn − τ2L+2 + Tw (3.47)

5. Add a phase correction term to each pulse to avoid any phase discontinuity in
the reconstructed PW-NLFM waveform. It is done by multiplying (3.45) with an
appropriate exponential term, as follows:

sint,fshift,pcrx,bb,,m (n) = sint,fshiftrx,bb,m (n)exp(j2πum) (3.48)

1In the time domain, the signal is upsampled by a factor equal to η and then interpolated by using a
low-pass finite-impulse response (FIR) filter. Polyphase filters are often considered. As for the frequency
domain, the discrete Fourier transform (DFT) of srx,bb,m is decomposed into two parts. Zeros are then
introduced in between to obtain a sequence of length ητm. Then the real part of the inverse DFT is
computed.[2]
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where um is defined in (3.33). When F (Rx)
s T

(m)
p is not integer, um satisfies:

u1 = 0

um = um−1 − γ(m)

2

(
T
(m−1)
p,trn − T

(m)
p

2

)2 − (m− 1)∆f (m)Tr

+γ(m−1)

2

(T (m−1)
p

2

)2
+∆f (m−1)

(
(m− 2)Tr + T

(m−1)
p,trn

)
for 2 ≤ m ≤ 2L+ 2

(3.49)

6. Add the obtained pulses together. Therefore, the reconstructed waveform denoted
as sPW−NLFMrx (nT

(int)
s − dT

(int)
s ), is a delayed discrete baseband version of a

PW-NLFM waveform whose instantaneous frequency is similar to the one given
in Fig. 3.2 but its spectral components are centred around the zero-component
instead of B/2.

7. Apply a MF in the frequency domain to the reconstructed waveform. It consists in
applying an DFT to sPW−NLFMrx (nT

(int)
s −dT (int)

s ) after padding it with ηNm− 1

zeros.
Then, multiply the result by SPW−NLFMtx,bb (k) , where

(
.
)

denotes the conjugate,
SPW−NLFMtx,bb (k) is the DFT of sPW−NLFMtx,bb,pad (n). The sequence sPW−NLFMtx,bb,pad (n)is a
padded version of sPW−NLFMtx,bb (n)with ηNm − 1 zeros. Thus, the obtained result
can be written for k ∈ J0, 2ηNm − 2K as:

Z(k) = |SPW−NLFMtx,bb (k)|2exp
(
− j2π k

2ηNm − 1

2R

c

)
(3.50)

8. Produce the HRRP by applying an IDFT to (3.50).

In this section, the processing chain from the transmitter to the receiver has been pre-
sented. Nevertheless, the performance are not optimized in terms of PSLR, ISLR, and
range resolution. The latter are mainly related to the selection of the parameters of the
waveform, namely the time instants {τm}m=2,...,L+1. In the following, we present a way
to choose them by using a genetic algorithm.

3.3 Optimizing the parameters of the VCR SF-LFM waveform

The performance in terms of PSLR, ISLR, and range resolution of the proposed wave-
form depend on the set of parameters {(τm, νm)}m=2,...,L+1. Our purpose is to select
the parameters that lead to performance the closest to that of the tangent-based NLFM
waveform. As the set of frequencies {νm}m=2,...,L+2 can be deduced from the set of
time instants {τm}m=2,...,L+2 by using (3.5), only {τm}m=2,...,L+1 have to be optimized.
For this purpose a multi-objective optimization problem can be considered. It can take
into account the performance of the processing chain in terms of PSLR, ISLR, and
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range resolution. This can be done by minimizing a single fitness function that con-
sists of a weighted sum of the normalized errors on the PSLR, the ISLR, and the range
resolution. It is defined as follows:

F (x) = (1− λ1 − λ2)
∣∣∣PSLR(x)− PSLRref

PSLRref

∣∣∣ (3.51)

+ λ1

∣∣∣ISLR(x)− ISLRref

ISLRref

∣∣∣+ λ2

∣∣∣Rres(x)−Rres,ref

Rres,ref

∣∣∣
where 0 ≤ λ1 ≤ 1 and 0 ≤ λ2 ≤ 1 − λ1 are the weights. x denotes the vector storing
the time instants {τm}m=2,...,L+1. PSLR(x), ISLR(x), and Rres(x) are respectively
the PSLR, the ISLR, and the range resolution obtained when using the waveform pa-
rameters x. In addition, PSLRref , ISLRref , and Rres,ref are respectively the ISLR,
the PSLR, and the range resolution of the tangent-based NLFM waveform.
Various optimization algorithms have been proposed to solve optimization problems
when locating the global optimum is a difficult task. A grid search approach can be
used to explore the solution space in order to find the best candidate. Nevertheless, the
computational cost is high. To alleviate this problem, alternative solutions exist such
as evolutionary algorithms (EAs). The principle is still the same: given a random pop-
ulation of candidates selected in the space of solution, new populations are created in
order to explore the space of solutions and evolve towards the candidate that minimizes
a beforehand defined fitness function. Several families of approaches have been pro-
posed in the literature and used in a wide range of applications: simulated annealing,
antcolony algorithms, particle swarm optimization, differential evolution (DE) and ge-
netic algorithm (GA) [79] [110]. In this chapter, we focus our attention on this last
algorithm.

3.3.1 Generalities about genetic algorithm

GA is a stochastic global search-based optimization technique based on the principle
of genetics and natural selection [39]. It has been extensively used as search and op-
timization tool in many fields and problem domains including sciences, manufacturing
and engineering [103] [1].
In Fig. 3.6, the different steps of the GA are presented in a flowchart. GA is an iterative
process. It starts with an initial population consisting of a certain number of candidates.
The relevance of each candidate is evaluated according to a beforehand defined fitness
function. Then, new solutions are generated using selection, crossover, and mutation
operators.

1. Selection operator: a selection criterion is applied to select a certain number of
candidates, each correspond to a vector of parameters, from the population ac-
cording to their fitness values. Thus, candidates with the best fitness values have
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more chance to be selected for crossover and mutation.

2. Crossover operator: it consists in generating new candidates from two selected
candidates called parents. In the literature, different types of crossover exist such
as single-point, double-point, multi-point, matrix, uniform, etc [107]. In this
chapter, we focus on the single-point crossover. It consists in randomly choosing
a locus and exchanging the parameters between the parents to create two candi-
dates.

3. Mutation operator: the mutation operator is applied individually to each candi-
date. It alters each parameter randomly with a probability pM . In this chapter, we
use a specific mutation.

After mutation, a new population that consists of the best candidates is thus created.
This process is iterated until convergence.

Fig. 3.6 Evolutionary process of GA
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3.3.2 Selection of the VCR SF-LFM parameters using GA

In this section, we focus our attention on the way the steps of the GA are implemented
with the proposed waveform when taking into account the fact that there is a constraint
on the minimum duration between any two consecutive time instants. See (3.44) in
section 3.2.3. In this case, we operate as follows:

• Generation of the initial population: As τ1 = 0 and τL+2 = Tp/2, the initial
population is generated so that for m ∈ J1, LK, the time instants satisfy:

τm + ε < τm+1 < Tp/2− (L−m)ε

where ε was introduced in (3.44).
As a consequence, the initial population corresponds to a set of Qp vectors of size
L.

• Selection: It consists in randomly selecting two vectors, namely
Cf
i = [τ f2 , τ

f
3 , ..., τ

f
k−1, τ

f
k , ..., τ

f
L+1] andCm

i = [τm2 , τ
m
3 , ..., τ

m
k−1, τ

m
k , ..., τ

m
L+1] from

the population at the ith generation.

• Crossover: After using the single-point crossover, the resulting candidates, called
children, are:

C1 = [τ f2 , τ
f
3 , ..., τ

f
k−1, τ

m
k , ..., τ

m
L+1]

C2 = [τm2 , τ
m
3 , ..., τ

m
k−1, τ

f
k , ..., τ

f
L+1]

The time instants of one of the obtained candidates necessarily respect the con-
straint. Thus, if τmk − τ fk−1 > ε, C1 is chosen. Otherwise, C2 is kept. Before
belonging to the population of candidate vectors at the (i + 1)th iteration, a mu-
tation will be done on the choosen child vector.
Remark: When L is equal to 1, the above crossover cannot be applied. Therefore,
we suggest using a linear crossover. In this case, the child is defined as follows:

C1 =
1

2
Cf
i +

1

2
Cm
i (3.52)

• Mutation: Let us assume that C1 was chosen by the crossover operator. We sug-
gest mutating each element, or equivalently each time instant, of C1 separately in
a way that guarantees that the resulting candidate respect the constraint (3.44). It
is done as follows:
The mutations on the time instants are done in a successive manner. Let us start
with the first time instant C1(1). A random number r uniformly distributed be-
tween 0 and 1 is drawn. If r is smaller than the probability of mutation pM , the
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mutation leads to the time instant equal to C1(1) + x1, where x1 is a random
number that belongs to the interval ]−C1(1)+ ε, C1(2)−C1(1)− ε[. Thus, after
mutating the first time instant, C1 becomes [τ f2 + x1, τ

f
2 , ..., τ

f
k−1, τ

m
k , ..., τ

m
L+1].

More generally, for m ∈ J1, LK, the mutation leads to the mth time instant equal
to C1(m) + xm where xm ∈]C1(m− 1)− C1(m) + ε, C1(m+ 1)− C1(m)− ε[
with C1(0) = 0. If r > pM , the value of the time instant is not changed.

The selection, crossover, and mutation are repeated until L new candidates are created.
Then, the best L candidates among the new candidates and those of the ith population
are selected to create the population at the (i+ 1)th generation.

3.4 Results and discussions

In this section, the results obtained using GA are presented. This section is organized
as follows: firstly, the simulation protocol is given. Then, three illustrations are con-
sidered. The first one deal with L = 1, the second with L = 2, and the last one with
L = 10.

3.4.1 Simulation protocol

In the simulations, we focus on the tangent-based NLFM that has the following param-
eters: Tp = 20 µs, β = 1.22 and B = 100 MHz. In addition, the reference measures
that are considered in the optimization issue are given in Table 3.1. Concerning GA,
the size of the population Qp is equal to 200 for L = 1, 2 and 1000 for L = 10. The
probability of mutation pM is set at 0.1 and ε = 0.12 µs.

Table 3.1 Reference measures taken into account for the optimization issue based on
GA.

PSLR (dB) ISLR (dB) Rres (m)
-31.2 -25 1.37

3.4.2 Simulation results and comments, L = 1

3.4.2.1 Waveform parameters based on a priori selection and corresponding perfor-
mance measures

Without taking into account optimization criteria based on the properties of the HRRP,
various a priori approximations of the non-linear function describing the time evolution
of the instantaneous frequency could be considered.
Among them, the first method would amount to searching for the time instant τ1 that
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reduces the following criterion:

D1(τ2) =

∫ τ2

0

∣∣∣ftan(t)− ftan(τ2)

τ2
t
∣∣∣dt (3.53)

+

∫ Tp
2

τ2

∣∣∣ftan(t)− ftan(
Tp
2
)− ftan(τ2)

Tp
2
− τ2

(t− τ2)− ftan(τ2)
∣∣∣dt

As the function ftan(t) is concave in the interval [0, Tp
2
] (its second derivate is negative

on this interval), the differences in the integrals are positive. By denoting Ftan(t) the
primitive of ftan(t), this leads to:

D1(τ2) = Ftan(
Tp
2
)− Ftan(0)−

τ2
2
ftan(τ2) (3.54)

− (
Tp
2
− τ1)ftan(τ2)−

1

2

(
ftan(

Tp
2
)− ftan(τ2)

)
(
Tp
2

+ τ2)

+ τ2
(
ftan(

Tp
2
)− ftan(τ2)

)
By reorganizing the terms, one has:

D1(τ2) = Ftan(
Tp
2
)− Ftan(0)−

Tp
4
ftan(τ2) (3.55)

+
1

2
(τ2 −

Tp
2
)ftan(

Tp
2
)

Then, by deriving with respect to τ2, one must find τ2 so that:

−Tp
4

dftan(τ2)

dτ2
+

1

2
ftan(

Tp
2
) = 0 (3.56)

or equivalently:

β

tanβ

1

cos2
(
2β(τ2 − Tp/2)/Tp

) − 2 = 0 (3.57)

Based on the above reasoning, this means that τ1 would satisfy:

0 ≤ τ2 = −
Tp
2β
cos−1(

√
β

2tanβ
) +

Tp
2
≤ Tp

2
(3.58)

The second approach would be following. Let us denote by D2(t) the difference be-
tween ftan(t) and its linear trend which corresponds to the linear time evolution of the
instantaneous frequency defined by B

Tp
t. The determination of the time instant between
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0 and Tp
2

would amount to find when the derivative of D2(t) is equal to 0, i.e.:

d

dt
D2(t) =

B

Tp
(
β

tanβ

1

cos2
(
2β(t− Tp/2)/Tp

) − 1) (3.59)

0ne can deduce that D2(t) has its maxima at:

0 ≤ τ2 = −
Tp
2β
cos−1(

√
β

tanβ
) +

Tp
2
≤ Tp

2
(3.60)

The performance measures obtained with both methods are provided in Table. 3.2. In
addition, the sampling frequency at the receiver in both cases is equal to 100 MHz.

Table 3.2 Performance measures of the approximated PW-NLFM using one time instant
based on a priori selection.

Method Time instants (µs) PSLR
(dB)

ISLR
(dB)

Rres(m)

1st meth. based
on (3.58)

τ2=3.1186 -16.3432 -11.8106 1.2377

2nd meth. based
on (3.60)

τ2=1.1612 -16.6322 -12.8179 1.1360

3.4.2.2 Waveform parameters based on the multi-objective criterion deduced by GA
and corresponding performance measures: predefined values of the weights

Let us first address the case when the weights are selected as follows: λ1 = 0.4 and
λ2 = 0.2. This means that we consider that the PSLR and ISLR has the same level of
importance and greater than that of Rres.
The time instants as well as the PSLR, the ISLR, and the range resolution that have
been obtained using GA are given in Table.3.3. In addition, the sampling frequency
at the receiver is equal to 100 MHz. Moreover, the time evolution of instantaneous
frequency of the tangent-based waveform as well as the piecewise-linear approximation
optimized by taking into account the criterion (3.51) are provided in Fig.3.7. Finally, the
corresponding HRRP of a stationary target located at R = 8000 m is given in Fig.3.8.

Table 3.3 Performance measures and value of the time instant of the approximated
PW-NLFM when L = 1 and GA are used with λ1 = 0.4 and λ2 = 0.2.

Time instants (µs) PSLR (dB) ISLR (dB) Rres (m)
τ2=1.6099 -20.4486 -13.2833 1.1892
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Fig. 3.7 Instantaneous frequency of the tangent-based NLFM waveform and the ap-
proximated PW-NLFM waveform when L = 1, λ1 = 0.4 and λ2 = 0.2. τ2 = 1.6099µs
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Fig. 3.8 HRRP of a stationary target located at R = 8000 when L = 1, λ1 = 0.4 and
λ2 = 0.2. τ2 = 1.6099µs

Let us compare the performance measures presented in Table. 3.3 with those given in
Table. 3.2. We can notice that the PSLR, the ISLR, and the range resolution are much
smaller when considering the optimization issue.

3.4.2.3 Waveform parameters based on the multi-objective criterion deduced by GA
and corresponding performance measures: any set of weights

Let us now address the case when the weights vary. Thus, λ1 varies between 0.1 and 1,
and λ2 varies between 0 and 1− λ1, both with a step equal to 0.1. In Fig. 3.9- 3.12, the
time instant, the PSLR, the ISLR, and the range resolution are respectively presented as
functions of λ1 and λ2.
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Fig. 3.10 Value of the PSLR versus λ1 and λ2
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Fig. 3.11 Value of the ISLR versus λ1 and λ2

Let us look at λ1 = 0.1. In this case, based on (3.51), the performance in terms of
ISLR does not necessarily play a key role in the criterion. For values of λ2 smaller than
0.4, the time instant τ2 does not change. In addition, the range resolution is the same
and smaller than Rres,ref . When λ2 increases, the time instant and the range resolution
increase. The latter becomes closer and closer to Rres,ref .
Given Fig. 3.10, we can observe that for small values of λ1 and λ2, the PSLR is the
closest one to PSLRref . Indeed, in these cases, the criterion F (x) is mainly defined
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Fig. 3.12 Value of the range resolution versus λ1 and λ2

by the normalized difference on the PSLR. When the sum of λ1 and λ2 becomes closer
to 1, F (x) is mainly defined by the normalized differences on the ISLR and the range
resolution and one can notice that the PSLR increases. For instance, for λ1 = 0.1. and
λ2 < 0.6, the PSLR remains unchanged. When λ1 increases, the PSLR increases. The
performance measures presented in Fig. 3.9-3.12 make it possible to define the Pareto
front for the multi-objective optimization issue. Moreover, based on the time instants
presented in Fig.3.9, the sampling frequency at the receiver is equal to 100 MHz for any
set of weights.
When comparing the values of the PSLR, the ISLR and the range resolution we obtain
with the performance measures of reference, it is true that there is a loss. The latter is
probably due to the strong approximation that is made when only one time instant is
used. Thus, increasing L should reduce it. For this reason, in the next section, L = 2 is
considered.

3.4.3 Simulation results and comments, L = 2

The same methodology as above is considered.

3.4.3.1 Waveform parameters based on the multi-objective criterion deduced by GA
and corresponding performance measures: predefined weights

The weights are still selected as follows: λ1 = 0.4 and λ2 = 0.2. The results are
presented in Table. 3.4 and Fig.3.13.

Table 3.4 Performance measures and the values of the time instants of the approximated
PW-NLFM when L = 2.

Time instants (µs) PSLR (dB) ISLR (dB) Rres (m)
τ2=2.2970; τ3=5.0211 -24.7427 -16.0011 1.3107
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Fig. 3.13 Instantaneous frequency of the tangent-based NLFM waveform and the ap-
proximated PW-NLFM waveform when L = 2.

3.4.3.2 Waveform parameters based on the multi-objective criterion deduced by GA
and corresponding performance measures: any set of weights

In this simulation, λ1 still varies between 0.1 and 1, and λ2 still varies between 0 and
1 − λ1, both with a step equal to 0.1. In Fig. 3.14-3.17, the PSLR, ISLR, the range
resolution, and the sampling frequency at the receiver are respectively presented as
functions of λ1 and λ2 when L = 2.
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Fig. 3.14 Value of the PSLR versus λ1 and λ2 when L = 2.

For a fixed value of λ1, when λ1 + λ2 = 1, the PSLR takes the maximum value. This is
coherent with the fact that the criterion to be optimized no longer depends on the PSLR.
When λ1 = 0.1 and λ2 = 0, the PSLR is the closet one to PSLRref . In this case, a
great importance is given to the PSLR. Let us now look at λ1 = 0.3. For values of λ2
smaller than 0.7, the PSLR is almost the same.
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Fig. 3.16 Value of the range resolution versus λ1 and λ2 when L = 2
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Fig. 3.17 Value of the sampling frequency versus λ1 and λ2 when L = 2

Given Fig. 3.15, the ISLR takes the maximum value when λ1 = 0.1 and λ2 = 0.9 and
the minimum value when λ1 = 1 and λ2 = 0.
According to Fig. 3.17, the sampling frequency at the receiver depends on λ1 and λ2. It
takes two distinct values: 50 MHz and 100 MHz.
As a conclusion, when L increases to 2, the performance measures become more closer
to the reference ones. Moreover, the sampling frequency at the receiver could be re-
duced.
We may a priori imagine that increasing the number of instants more and more should
lead to better performance measures and a smaller sampling frequency at the receiver.
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For this reason, in the following section, we suggest optimizing the waveform parame-
ters when L = 10.

3.4.4 Simulation results and comments, L = 10

In this section, the waveform parameters when L = 10 are optimized by using GA for
λ1 = 0.4 and λ1 = 0.2. In this case, Qp is equal to 1000. The results are presented in
Table. 3.5 and Fig. 3.18. Based on the time instants provided in Table. 3.5, the sampling
frequency that should be used is equal to 33.3333 MHz.
Given Table. 3.5, we can observe that the normalized differences on the PSLR and the
range resolution are approximately equal to zero. As for the normalized difference on
the ISLR, it is equal to 0.1171.

Table 3.5 Performance measures and the values of the time instants of the approximated
PW-NLFM when L = 10.

Time instants (µs) PSLR(dB) ISLR(dB) Rres(m)
τ1=0.7658;τ2=2.2058
τ3=3.2628;τ4 = 4.2901
τ5 = 5.4037;τ6 = 6.2491
τ7 = 7.2719;τ8 = 8.7119
τ9 = 9.3766;τ10 = 9.5402

-31.2 -22.0713 1.3816
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Fig. 3.18 Instantaneous frequency of the tangent-based NLFM waveform and the ap-
proximated PW-NLFM waveform when L = 10, λ1 = 0.4 and λ2 = 0.2.

3.4.5 General comments on the results

In this section, we aim at giving some comments on the number of time instants, i.e.,
the number of pulses within the CPI, that could be selected by the practitioner.
According to the obtained results, two conclusions can be drawn:
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• For a fixed number of time instants, the sampling frequency, the time instants,
and the performance measures vary with the weights used in the multi-objective
criterion

• Increasing the number of time instants leads to performances closer to the refer-
ence ones and reduces the sampling frequency at the receiver.

In practice, the CPI is limited by several factors. They depend on the application of the
radar. For instance, in radar target classification, the CPI is limited by the speed of the
target. In scenarios where the speed of target is fast, the dwell time2 is small and thus
only a small number of time instants can be used. On the contrary, in scenarios where
the speed of target is small or moderate, a larger number of time instants can be used.
Therefore, a trade-off exists between the number of time instants on the one hand, and
the performance measures and the sampling frequency on the other hand.

3.5 Conclusions

In this chapter, a processing chain, from the transmitter to the receiver, of the VCR
SF-LFM waveform is proposed. It is based on a piecewise linear approximation of
the NLFM waveform and a generalized version of the TD algorithm. Our goal is to
produce an HRRP whose features are as close as possible as the ones of the HRRP of a
wideband NLFM waveform. To this end, the parameters defining the piecewise linear
approximation of the NLFM waveform are selected by considering a multi-objective
optimization problem taking into account the performance of the waveform in terms of
PSLR, ISLR and range resolution. More particularly, the criterion to be minimized is
a linear combination of three normalized differences. For a given set of weights, the
set of parameters is obtained by using a genetic algorithm. Although a tangent-based
NLFM is used, the proposed methodology can be applied to any NLFM waveform. The
simulation results reveal that the performance of the resulting waveforms varies with
the weights used in the multi-objective criterion and the number of LFM pulses that is
considered.

2It is the time that an antenna beam spends on a target. It can correspond to the duration of one CPI
or more CPIs.
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CHAPTER 4

Conclusions and perspectives

In this thesis, our purpose was to design different processing chains dedicated to high
range resolution radar waveforms:

1. A processing chain from the transmitter to the receiver has been proposed to
overcome the drawbacks of the standard combination of SF waveform with ei-
ther a PC or an NLFM waveform. It consists in splitting the spectrum of a PC
or NLFM pulse into a predetermined number of portions, then transmitting the
corresponding time-domain signals. At the receiver, the modified FD and the
TWR algorithms are proposed to process the received echoes. In this processing
chain, we have also added one degree of freedom related to the pseudo-random
transmission way to prevent the opponent signal analyzer from reconstructing the
transmitted waveform correctly.
A comparative study was done between the different variants that can be con-
sidered. For the proposed SFPC and SF-NLFM waveforms, the TWR algorithm
outperforms the modified FD algorithm in some cases using a certain number of
portions. This comes at the expense of an additional computational cost. In addi-
tion, the quality of reconstruction of the power spectrum is no longer good when
Np is large. Moreover, a comparative study has been done between the proposed
and the traditional SFPC and SF-NLFM waveforms. On the one hand, we have
shown that the performance of the proposed SFPC in terms of PSLR and ISLR
obtained with either the modified FD or the TWR algorithm is better than that
obtained with the traditional SFPC waveform. The latter is processed by the state
of the art algorithms namely, IFFT and FD algorithms.
On the other hand, we noticed that the proposed SF-NLFM waveform avoids
producing grating lobes that usually appears when the traditional SF-NLFM is
processed with the MF. As a consequence, they have the potential to detect small
targets in the presence of large targets. This has been illustrated by conducting
some simulations using scenarios representative of real cases. This distinguish-
able feature is attractive from a practical point of view.
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In the future, we aim at investigating it from different viewpoints:

• The first will deal with its effect on the robustness of the transmitted wave-
form if heavily distorted portions are received. In other words, we plan to
evaluate the relevance of our approach when the received echoes are dis-
turbed by an additive white noise and a clutter.

• The second will aim at investigating the Doppler tolerance of the proposed
waveform. More particularly, we will analyze the influence of the velocity
of the target on the HRRP.

• The third will be related to the challenges that the opponent may face to
analyze the waveform and to infer the capabilities of its radar, in addition to
the prediction of its platform.

• The last will deal with the performance of these approaches in terms of
probability of detection and probability of false alarms.

2. Another processing chain has been proposed to overcome the drawbacks of the
standard combination of SF with NLFM waveform. In this thesis, we have fo-
cused our attention on one type of the NLFM waveforms namely the tangent-
based NLFM waveform. The latter is approximated by a piecewise linear wave-
form and then used in a SF framework. This leads to proposing a variable chirp
rate SF-LFM waveform where SF is combined with a train of LFM pulses having
different chirp rates, durations, and bandwidths. The parameters of the proposed
waveform are deduced using a genetic algorithm and a multiobjective criterion.
Among the perspectives that could be considered, we suggest:

• launching additional simulations in order to evaluate the best compromise
between the number of the LFM pulses to be considered and the perfor-
mances in terms of PSLR, ISLR, and range resolution. This will lead to
computationally intensive simulations when the number of time instants in-
creases as the size of the population used in the genetic algorithm will need
to be large.

• studying alternative NLFM waveforms such as the sine-based NLFM wave-
form.

• Optimizing the waveform parameters without any a priori constraints of the
waveform.

• addressing the optimization issue by using alternative evolutionary algo-
rithms such as non-dominated genetic algorithm (NSGA-II) [26], the differ-
ential evolution algorithm [110], etc.
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Appendix A

JEFFREYS DIVERGENCE FOR PROCESS COMPARISON:
Properties, asymptotic analysis, physical interpretation

and way to use it in practical cases

At the very beginning of the collaboration between the University of Bordeaux and the
University of Lebanon, presentations of the research activities were organized. The se-
lection and comparison of models, as well as the design of parametric signal processing
approaches based on an a priori model drew the attention of both research teams. In ad-
dition, applications in mobile communication systems or radar processing were among
some common applications of interest. Therefore, different works shared by both teams
started to be addressed. Among them, properly reconstructing the high-resolution range
profile of stepped frequency waveform in the presence of missed data, optimizing the
selection of the waveform, modeling the clutter and comparing different types of clutter
by comparing their statistics.
As for the last issue, the idea was to use divergences. Divergences had been already
exploited by the French team to compare motion models and select two or three motion
models in order to design target tracking based on multiple model approaches [73]. The
French team also focused its attention on the asymptotic behavior of the divergences.
In information theory, this corresponds to analyze what is called the divergence rate
[64]. Various works were conducted on the analysis of Jeffreys divergence between
1st-order moving average (MA) processes and 1st-order autoregressive (AR) processes
[57]. Although these results were of interest, they were dedicated to very specific sig-
nals. Therefore, we decided to address more general cases, i.e. sum of complex expo-
nentials disturbed by an additive white noise, autoregressive moving average (ARMA)
processes and finally long-memory processes like autoregressive fractionally moving
average (ARFIMA) processes. These different studies were conducted at the very be-
ginning of the PhD. All these studies were finally useful since it enables us to provide a
physical interpretation of the JD.
The purpose of this appendix is to present the complementary results that were obtained
during this PhD.
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A.1 Introduction

In the field of signal and image processing or even in the field of control, models or
processes are often compared. This is, for instance, the case when dealing with identifi-
cation issues where the estimated model parameters are compared with the true ones in
order to analyze the estimation accuracy [27] [9]. Model comparison also occurs when
designing a Bayesian estimation approach based on Kalman filtering, H∞ filtering or
particle filtering [80]. In this case, a priori modeling the system under study is neces-
sary and leads to the state space representation (SSR) of the system. However, several
problems may arise.
On the one hand, the performance of the estimation algorithm depends on how good
the SSR fits the system. As it is not necessarily easy to set it properly, estimation
approaches combining different models, or equivalently different SSRs, can be consid-
ered. This leads to multiple-model approaches such as the interactive multiple models
[76] [63]. In this case, selecting dissimilar models is suggested by Bar-Shalom in [5].
Therefore, a way to a priori compare models has to be designed.
On the other hand, the practitioners may prefer to use models whose parameter es-
timation may be ”easier” and which lead to SSRs that can be written in a ”simple”
way. For instance, when dealing with short-memory processes, they can propose to
use an autoregressive (AR) model, a moving average (MA) model or more generally
an ARMA model. Therefore, comparing ARMA models can be useful. When dealing
with long-memory processes1, autoregressive fractionally integrated with moving aver-
age (ARFIMA) models can be compared. Process comparison can also be of interest,
especially in the field of image processing when textures are compared [10]. In biomed-
ical applications or flood forecast, change detection can be useful. In this latter case,
the problem is to detect whether the statistical properties of a process change over time.
In the above situations, one can see that statistical properties have to be analyzed.
To address this issue, one could consider the spectral distance measures which include
the log-spectral distance (LSD), the Itakura-Saito divergence (ISD), the Itakura diver-
gence (ID), the model distance measure proposed by Itakura and their symmetric ver-
sions as well as parametric spectral distances such as the cepstral distance [6]. In [74], a
comparative study was recently done between them. The l-norm (with l = 1, 2,∞) be-
tween the true model parameter vector and the estimated one could be also used, as well
as the COSH distance which is the symmetric version of the Itakura-Saito divergence.
[38].
As an alternative, general distance measures [6] can be considered. After the pioneering
works of Pearson [87] in 1900, Hellinger [48] in 1909, Bhattacharyya in 1943 [8] and

1A long-memory process in the covariance sense is characterized by a a normalized covariance func-
tion which decays slowly so that the sum of these terms goes to infinity.
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Shannon [105] in 1948 where the measure of entropy and the mutual information were
introduced, several researchers focused their attentions on quantifying how close two
distributions are from one another: Kullback-Leibler divergence (KL) divergence [55],
also known as the relative entropy, generalized the notion of mutual information. In
1952, Chernoff [15] introduced another measure of divergence called Chernoff distance
of order λ. In 1961, Rényi [94] suggested an extension of the entropy of order α for
discrete probabilities. Then, the Rényi divergence of order α, also called α-divergence
was introduced. In the 60ies, another degree of generalization was proposed through the
so-called f -divergences where the probability density function (pdf) ratio is weighted
by a function f . They are also known as Csiszar f -divergences, Csiszar-Morimoto di-
vergences or Ali-Silvey distances. Depending on the choice of the function f , one can
retrieve specific cases. Finally, f -dissimilarities have been introduced when more than
two pdfs are considered. The reader may refer to [7] [28] for more details and for in-
formation about recent works.

Among the above measures, the KL divergence remains one of the most popular. Sev-
eral authors analyzed it in various fields of applications, for classification, identification
or change detection [10], [78], [74], [35] and [104]. Meanwhile, the estimations of
the KL between two pdfs that are not necessarily Gaussian, by using sets of data, were
studied in [21] [22].
When dealing with Gaussian processes, the expression of the KL depends on the loga-
rithm of the ratio between the covariance matrix determinants. Secondly, the KL diver-
gence is not a distance: it is not symmetric and does not satisfy the triangular inequality.
For the above reasons, a great deal of interest has been paid to the symmetric KL di-
vergence, known as Jeffreys Divergence (JD) [51]. When dealing with the JD, the
symmetry conditions are satisfied. As the logarithms compensate each other, they no
longer appear in the expression of the JD for the Gaussian case. Given all these consid-
erations, we focus our attention on the JD in the following.
When dealing with k-dimensional Gaussian random vectors of size k, the JD amounts
to computing the sum of two traces of matrices, that can be expressed as the k × k

covariance matrix of the first process pre-multiplied by the inverse of the covariance
matrix of the second process. When k increases, the resulting computational cost of
the JD increases because the standard computational burden of a generic k × k matrix
inversion is usually O(k3) [29]. To address this problem with processes that are er-
godic wide sense stationary (w.s.s.) AR and/or MA, eigenvalue decomposition could
be considered. Analytical expressions of the eigenvalues and the eigenvectors exist for
1st-order MA processes [82]. Concerning 1st-order AR processes, estimates of eigen-
values have been proposed for a large correlation matrix [111]. However, to the best of
our knowledge, these estimates do not exist for higher-order AR processes. For this rea-
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son, for a pth-order AR process, a LDL factorization could be rather used and requires
the parameters of the AR process where the order varies between 1 and p. Its computa-
tional cost is of O(2k

3

3
) [29]. Alternative approaches have been proposed. Thus, taking

advantage of the Markovian properties of the AR process, the JD between the pdfs of
the k successive samples of two pth-order time-varying AR (TVAR) processes or AR
processes can be recursively computed [72]. In this case, the expression of the JD for
k−dimensional vectors only depends on matrices of size p, which significantly reduces
the computational cost. Then, this method has been used to classify more than two AR
processes in different subsets [71]. The analytical expression of the JD between ergodic
w.s.s. 1st-order MA processes, that can be real or complex, noise-free or disturbed by
additive white Gaussian noises, has also been studied in [58]. For this purpose, the au-
thors use the analytical expression of each element of the tridiagonal-correlation-matrix
inverse [121]. Unlike pth-order AR processes, no recursive expression of the JD can be
obtained for 1st-order MA processes. Finally, comparing ergodic w.s.s. 1st-order AR
and ergodic w.s.s. 1st-order MA processes by using the JD has been proposed in [57].
It is based on the expression of the inverses of the AR correlation matrices [14].

Concerning the above cases, we can summarize the results obtained as follows:

1. Links with Rao distance [91] have been proposed when it was possible. It was
confirmed that the square of the Rao distance was approximately twice the value
of the JD, except when a 1st-order MA process is considered whose zero is close
to the unit-circle in the z-plane.

2. The JD tends to have a stationary regime. The difference between two JDs com-
puted for k and (k − 1)-dimensional random vectors tends to a constant when k
increases. When comparing two 1st-order MA processes, there is one exception
if one of the MA processes has its zero on the unit-circle in the z-plane, different
from the zero of the second MA process. This difference is called asymptotic JD
increment when k becomes high. In previous papers [72] [58] [57], analytical
expressions of the asymptotic JD increment are provided for AR and/or 1st-order
MA processes. They depend on the parameters of the processes.

3. The asymptotic JD increment can be used to compare the random processes in-
stead of the JD between k successive samples of the processes.

4. As the asymptotic JD increment does not depend on k, the selection of the number
of variates k is no longer a problem for the practitioner.

In this appendix, we present complementary results. Thus, the JD betweeen two noisy
sum of complex exponentials (NSCE) is studied. More particularly, the influence of the
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process parameters on the JD is analyzed. Then, a NSCE process is compared with an
AR process. Moreover, an interpretation of the asymptotic JD increment for ergodic
w.s.s. ARMA processes is proposed. Finally, the asymptotic JD increment between
ARFIMA processes based on the proposed interpretation is analyzed.
In the following, the upperscripts T , ∗ and H denote the transpose, the conjugate and
the hermitian. xk1:k2 = (xk1 , ..., xk2) is the collection of samples from time k1 to k2.

A.2 Definition of the Jeffreys divergence (JD)

The Kullback-Leibler (KL) divergence between the joint distributions of k successive
values of two random processes, denoted as p1(x1:k) and p2(x1:k), can be evaluated to
study the dissimilarities between the processes [55].

KL
(1,2)
k =

∫
x1:k

p1(x1:k)ln

(
p1(x1:k)

p2(x1:k)

)
dx1:k (A.1)

When the processes are both Gaussian and real with means µ1,k and µ2,k and covariance
matricesQ1,k andQ2,k, it can be easily shown, by substituting p1(x1:k) and p2(x1:k) with
the expressions of real Gaussian multivariate distributions, that the KL satisfies2 [92]:

KL
(1,2)
k =

1

2

[
Tr(Q2,k

−1Q1,k)− k − ln
detQ1,k

detQ2,k

(A.2)

+ (µ2,k − µ1,k)
TQ−12,k(µ2,k − µ1,k)

]
.

where Tr denotes the trace of a matrix and det is the determinant of a matrix.
When dealing with zero-mean processes, (A.2) reduces to:

KL
(1,2)
k =

1

2

[
Tr(Q−12,kQ1,k)− k − ln

detQ1,k

detQ2,k

]
. (A.3)

However, the KL is not symmetric. To address this issue, different approaches can
be considered. The first one would consist in selecting the minimum value between
KL

(1,2)
k and KL(2,1)

k . The second one, which corresponds to the Jeffreys divergence,
consists in taking the mean of KL(1,2)

k and KL(2,1)
k . In some papers, the definition is

slightly different and corresponds to the sum of KL(1,2)
k and KL(2,1)

k . In the following,
for the sake of simplicity, the symmetric version of the KL is defined as :

JD
(1,2)
k = KL

(1,2)
k +KL

(2,1)
k (A.4)

2In the complex case, T is replaced by H and 1
2 disappears in (A.2). In the following, ∝ is used

instead of =.
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Using (A.3) and (A.4) leads to the following expression of the JD between zero-mean
Gaussian processes:

JD
(1,2)
k = −k + 1

2

[
Tr(Q−12,kQ1,k) + Tr(Q−11,kQ2,k)

]
. (A.5)

(A.5) no longer involves a logarithm but depends on the k × k covariance matrices of
the processes. Depending on the applications, the signals we can compare can have a
discrete or a continuous spectrum. They can be short or long-memory processes. For
this reason, the next section deals with the properties of NSCE processes as well as
ARMA and ARFIMA processes. More particularly, some properties on the covariance
matrices are presented as they will be useful for the computation of the JD and its
analysis.

A.3 Presentation of the processes under study

This section is organized as follows. The NSCE processes are first presented. Then,
the properties of the ARMA processes are detailed. Finally, we focus our attention on
ARFIMA processes.
As our purpose is to compare two zero-mean processes by means of the JD, a subscript

l is introduced in the notations to refer the lth process under study, with l = 1, 2.

A.3.1 About the sum of complex exponentials (SCE) disturbed by an additive noise

A.3.1.1 Definition and spectral properties of the NSCE processes

The sum of complex exponentials (SCE) disturbed by an additive noise is widely used
in high-resolution spectrum analysis such as Pisarenko’s method or its generalization
called MUSIC. In this case, the nth sample of lth process is defined as follows:

xn,l =

Ml∑
m=1

Am exp(jθl,mn) + ηn,l (A.6)

whereMl is the number of complex exponentials and {θl,m}m=1,...,Ml
are the normalized

angular frequencies. For each process, these latter are in the interval [−π, π[ and are
assumed to be different from each other. However, both processes can have common
normalized angular frequencies. The magnitudes {Am}m=0,...Ml

are Gaussian, zero-
mean with variances {γl,m}m=1,...,Ml

. Finally ηn,l is the nth sample of a zero-mean
Gaussian white noise with variance σ2

l , uncorrelated with the exponential magnitudes.
This process is characterized by a power spectrum which has a discrete part due to the
complex exponential functions and a continuous part equal to σ2

l due to the additive
white noise.
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A.3.1.2 Correlation properties of the NSCE processes

When storing k successive samples of a NSCE process in a vector, the corresponding
covariance matrix can be expressed as follows, with l = 1, 2:

QNSCE,l,k = Sl,kPlS
H
l,k + σ2

l Ik. (A.7)

where Ik is the identity matrix of size k, Pl is a diagonal matrix of size Ml ×Ml whose
main diagonal is defined as:

Pl =


γl,1 0 . . . 0

0 γl,2 . . . 0
...

... . . . ...
0 0 . . . γl,Ml

 (A.8)

In addition, Sl,k is a matrix of size k ×Ml defined as follows:

Sl,k =
[
S1
l,k . . . SMl

l,k

]
(A.9)

=


1 . . . 1

ejθl,1 . . . ejθl,Ml
...

...
ej(k−1)θl,1 . . . ej(k−1)θl,Ml


At this stage, let us recall the following properties that the vectors {Sml,k}m=1,...Ml

satisfy.
For any m = 1, ...Ml and n = 1, ...Ml with n 6= m, one has:

1
k

(
Sml,k
)H

Sml,k = 1
1
k

(
Sml,k
)H

Snl,k = 1
k

∑k−1
t=0 e

j(θl,m−θl,n)t

=
sin(

k(θl,m−θl,n)

2
)

ksin(
(θl,m−θl,n)

2
)
e
j

(
(k−1)(θl,m−θl,n)

2

) (A.10)

As lim
k→+∞

| sin(
k(θl,m−θl,n)

2

ksin(
(θl,m−θl,n)

2

)| = 0 for any set of normalized angular frequencies satisfying

θl,n 6= θl,m in the interval [−π, π[, (A.10) becomes:
1
k

(
Sml,k
)H

Sml,k = 1

lim
k→+∞

1
k

(
Sml,k
)H

Snl,k = 0
(A.11)
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The same properties hold when we are dealing with one normalized angular fre-
quency of the first process and another one with the second. The convergence speed to
tend to this limit when k increases depends on the difference between the normalized
angular frequencies. The smaller the difference, the slower the convergence. Given
(A.7) and using the matrix inversion lemma 3, one has for l = 1, 2:

Q−1NSCE,l,k =
1

σ2
l

(
Ik − Sl,k

(
σ2
l Pl
−1 + SHl,kSl,k

)−1
SHl,k

)
(A.12)

In (A.12), let us now apply again the inversion matrix lemma on the matrix(
SHl,kSl,k + σ2

l P
−1
l

)−1. This leads to:

(SHl,kSl,k + σ2
l P
−1
l )−1 =

(SHl,kSl,k)
−1 − (SHl,kSl,k)

−1(σ−2l Pl + (SHl,kSl,k)
−1)−1(SHl,kSl,k)

−1

(A.13)

Given (A.13), the matrix
(
Sl,k

(
σ2
l P
−1
l + SHl,kSl,k

)−1
SHl,k

)
appearing in (A.12) can be

rewritten as the sum of two matrices, namely Vk and Uk:

Tk = Vk + Uk (A.14)

with:

{
Vk = Sl,k

(
SHl,kSl,k

)−1
SHl,k

Uk = −Sl,k(SHl,kSl,k)−1(σ−2l Pl + (SHl,kSl,k)
−1)−1(SHl,kSl,k)

−1SHl,k
(A.15)

When k increases, due to (A.10), (A.15) becomes: lim
k→+∞

Vk = 1
k
Sl,kS

H
l,k

lim
k→+∞

Uk = −σ2

k2
Sl,kP

−1
l SHl,k

(A.16)

Therefore, given (A.16), the limit of Q−1NSCE,l,k when k increases and tends to infinity is
given by:

lim
k→+∞

Q−1NSCE,l,k =
1

σ2
l

(Ik −
1

k
Sl,kS

H
l,k +

σ2
l

k2
Sl,kP

−1
l SHl,k) (A.17)

This result will be useful when the behavior of the JD will be studied. In the next
subsection, let us give some information about ARMA processes.

3Given the matrices A, U , C and V where A and C are assumed to be invertible, one has:
(A+ UCV )

−1
= A−1 −A−1U

(
C−1 + V A−1U

)−1
V A−1.
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A.3.2 About ARMA processes

A.3.2.1 Definitions, poles and zeros and PSD expression of the ARMA processes

Let us consider the lth w.s.s. ARMA(p,q) process [12]. Its nth sample, denoted as xn,l,
is defined as follows:

xn,l = −
p∑
i=1

ai,lxn−i,l +

q∑
j=0

bj,lun−j,l (A.18)

where un,l is the nth sample of the driving process, assumed to be white, Gaussian,
zero-mean with variance σ2

u,l. In the remainder of this appendix, as ARMA and NSCE
processes can be compared, the driving process is assumed to be uncorrelated with the
additive noises of the NSCE processes.
By introducing a0,l = 1, {ai,l}i=0,...,p are the AR parameters of the lth ARMA process.
If b0,l = 1, {bj,l}j=0,...,q denote the MA parameters.
Given (A.18), the ARMA processes can be seen as the outputs of filters whose inputs
are zero-mean white sequences with unit-variance and whose transfer functions Hl(z)

are defined by their poles {pi,l}i=1,...,p and their zeros {zi,l}i=1,...,q:

Hl(z) = σu,l

∏q
i=1 (1− zi,lz−1)∏p
i=1 (1− pi,lz−1)

(A.19)

When {ai,l}i=1,...,p = 0, the ARMA process which reduces to a MA process is also
called an all-zero process. Similarly, if {bj,l}j=1,...,q = 0, the process, which is only AR,
is also called an all-pole process. They belong to the class of sourcefilter models.
The PSDs, evaluated at the normalized angular frequency θ, are denoted as SARMA,l(θ)

and satisfy:

SARMA,l(θ) = σ2
u,l

|
q∑

k=0

bk,le
−jkθ|2

|
p∑

k=0

ak,le−jkθ|2
= σ2

u,l

∏p
i=1 |(1− zi,lz−1)|2z=exp(jθ)∏p
i=1 |(1− pi,lz−1)|2z=exp(jθ)

(A.20)

Therefore, when the AR poles are close to the unit circle in the z-plane, the PSD exhibits
resonances which are located at the normalized angular frequencies around the pole
arguments whereas zeros located on the unit-circle in the z-plane lead to a PSD which
is null at the normalized angular frequencies corresponding to arguments of the zeros.

126



A.3.2.2 Correlation properties of the ARMA processes

Let us now focus our attention on the mean and the autocorrelation function of the
ARMA processes. As the driving process is zero-mean, the mean of the ARMA pro-
cess is null. Therefore, the autocorrelation function (resp. matrix) and the covariance
function (resp. matrix) are equal. As the ARMA parameters and the variance of the
driving process do not vary over time, the ARMA process is w.s.s. and can be charac-
terized by the autocorrelation function rARMA,l,τ , where τ is the lag.
When p = 0, i.e. when the ARMA process reduces to a qth-order MA process, the
number of non-zero autocorrelation-function coefficients is finite: to the maximum,
2q+1 coefficients are non zero. For instance, for a real 1st-order MA process with MA
parameter b1,l and driving process variance σ2

u,l, one has:
rMA,l,0 = (1 + (b1,l)

2)σ2
u,l

rMA,l,|1| = b1,lσ
2
u,l

rMA,l,|τ | = 0 otherwise

(A.21)

More generally, for any real qth-order MA process, one has: rMA,l,|τ | =
q∑

j=|τ |
bj,lbj−|τ |,lσ

2
u,l for 0 ≤ |τ | ≤ q

rMA,l,|τ | = 0 otherwise
(A.22)

Therefore, for any order q,
∑
rMA,l,τ is absolutely summable.

Concerning a 1st-order AR process with AR parameter a1,l and driving-process variance
σ2
u,l, the autocorrelation function satisfies:

rAR,l,τ =
(−a1,l)|τ |

1− a21,l
σ2
u,l (A.23)

By using D’alembert criterion for series convergence [89], one can easily show that∑
rAR,l,τ is absolutely summable.

For a pth-order AR process, the autocorrelation function satisfies the following pth-order
difference equation for τ 6= 0:

rAR,l,τ = −
p∑
i=1

ai,lrAR,l,τ−i (A.24)

Given (A.24), it can be shown that rAR,l,τ can be expressed as a linear combination
of the poles {pτi,l}i=1,...,p. Therefore, one can deduce that the autocorrelation function
exponentially decays as the lag τ increases. This property also holds for ARMA(p,q)
processes, with p 6= 0. Therefore,

∑
rAR,l,τ and

∑
rARMA,l,τ are absolutely summable.
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These processes are therefore known to be short-memory processes.
The Toeplitz covariance matrices of the vector storing k consecutive samples xn:n+k−1
are denoted as QARMA,l,k for l = 1, 2. They are defined by the covariance-function
coefficients rARMA,l,τ with τ = 1− k, ..., k− 1. More particularly, the k elements of its
main diagonal correspond to the autocorrelation function of the ARMA process for a lag
equal to 0, i.e. rARMA,l,0. The τ th subdiagonal is defined by the autocorrelation function
with lag τ , i.e. rARMA,l,τ . According to [42], when the normalized covariance matrices
belong to the Wiener class Toeplitz matrices, or equivalently have their elements which
are absolutely summable, i.e.

∑
τ

∣∣∣ rARMA,l,τ

rARMA,l,0

∣∣∣ is finite, the covariance matrices are non-
singular even if the PSDs of the processes are equal to zero at some frequencies. They
are hence invertible. Nevertheless, it should be noted that when studying an infinite-
size Toeplitz covariance matrix, the covariance matrix is no longer invertible when the
corresponding transfer function of the ARMA process has unit roots.
Let us now give some additional information about the covariance matrix QAR,l,k of an
AR process. There are various ways to compute the inverse of the covariance matrix
of the AR process. An eigenvalue decomposition could be considered but there is no
explicit form for the eigenvalues of an AR covariance matrix. It is true that there are
some approaches that provide approximations of the eigenvalues when the size of the
AR covariance matrix is large and when the order of the AR process is equal to 1 [111].
As an alternative, an analytical expression based on the AR parameters exists [14]:

Q−1AR,l,k =
1

σ2
u,l

(FFH −GGH) (A.25)

with:

F = Ik +

p∑
i=1

ai,lJk
i and G =

p∑
i=1

ai,lJk
k−i (A.26)

where Jk is the ”shift” matrix which has ones on the first sub-diagonal and zeros else-
where.
The LDL factorization of QAR,l,k can be also used. It involves the product between a
lower unit triangular matrix L and a diagonal matrixD defined from the AR parameters
and the variance of the driving process of AR processes whose order varies from 0 to
k−1. They are respectively denoted as {aνi,l}i=0,...,ν and {σ2

u,l,ν}i=0,...,ν with ν the order.
In the latter case, the inverse of QAR,l,k can be deduced and is given by:

Q−1AR,l,k =
(
LH
)−1

D−1L−1 (A.27)

where
D−1 = diag(

1

σ2
u,l,k−1

. . .
1

σ2
u,l,0

) (A.28)
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where diag(x) is the diagonal matrix whose main diagonal is defined by x.
Finally, one has:

(
LH
)−1

=



1 0 . . . . . . 0

ak−11,l 1 0 . . . 0

ak−12,l ak−21,l 1
...

... . . . . . . 0

ak−1k−1,l ak−2k−2,l . . . . . . 1


(A.29)

However, as the AR process is assumed to be a strict pth-order AR process, the matrices
D−1 and

(
LH
)−1 become:

D−1 = diag(
1

σ2
u,l,p

. . .
1

σ2
u,l,p︸ ︷︷ ︸

k−p

1

σ2
u,l,p−1

. . .
1

σ2
u,l,0

) (A.30)

and

(
LH
)−1

=



1 0 . . . . . . . . . . . . . . . 0

ap1,l 1 0 . . . . . . . . . . . . 0

ap2,l ap1,l 1 0
...

...
... . . . . . . . . . 0

app,l app−1,l
. . . 1

. . . ...

0 app,l ap−11,l

. . . . . . ...
0 0 . . . app,l ap−1p,l . . . a11,l 1


(A.31)

A.3.2.3 Minimum-phase filter and inverse filter associated to the ARMA processes

In this appendix, our purpose is to compare processes by using their pdfs. However, 2q

ARMA processes of order (p, q) have the same pdf. Indeed, the transfer function is al-
ways defined by the same denominator, because the poles have to be inside the unit disc
in the z-plane in order to guarantee the asymptotic stability. As for the numerators of the
transfer functions, 2q numerators can be defined depending on whether the zeros or their
inverses are chosen. Once the numerator and the denominator are defined, the variance
of the driving process can be deduced. Therefore, comparing two ARMA processes by
using their pdfs amounts to comparing the ARMA processes whose transfer functions
have their zeros inside the unit-disc in the z-plane, i.e. whose transfer functions are
minimum phase. As we will see in the rest of the analysis, this equivalency will have
the advantage of using stable inverse filters associated to the ARMA processes. Let us
define this last notion in the rest of this subsection.
The inverse filters are defined by the transfer functions H−1l (z). Thus, when dealing
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with a real 1st-order MA process defined by the MA parameter b1,1, the inverse filter is
stable if |b1,1| < 1:

H−11 (z) =
1

σu,1(1 + b1,1z−1)
if |b1,1| < 1 (A.32)

If |b1,1| > 1, the following relationship must be taken into account:

b1,1

(
1 +

1

b1,1
z−1
)

=
b1,1 + z−1

1 + b1,1z−1
(
1 + b1,1z

−1) (A.33)

where b1,1+z−1

1+b1,1z−1 can related to the Blaschke product4 [20], corresponding to the transfer
function of an all-pass filter. The inverse filter of the ”minimum-phase” MA process is
defined in this case by:

H−11 (z) =
1

σu,1b1,1(1 +
1
b1,1
z−1)

if |b1,1| > 1 (A.34)

It should be noted that when |b1,1| = 1, the zero of the MA process, equal to −b1,1,
has also its modulus equal to 1. Therefore, the inverse filter is unstable. This means
that the filter output is not bounded, except when the filter input is an ARMA process
having a zero equal to−b1,1. Indeed, the simplest illustration is when the filter input is a
1st-order MA process with MA parameter b1,1 = b1,2 and driving-process variance equal
to σ2

u,2. The equivalent transfer function of the whole processing chain of a zero-mean
unit-variance white noise is given by:

σu,2H2(z)H
−1
1 (z) =

σu,2
σu,1

(A.35)

The influence of the inverse-filter pole is compensated by the MA-process zero. The
output of the inverse filter H−11 (z) is hence a white noise with variance

σ2
u,2

σ2
u,1

.
After discussing the stability of the inverse filter associated to the MA process, the
inverse filter associated to the AR process is necessarily stable since it corresponds to a
finite-impulse response (FIR) filter.
More generally, when dealing with a minimum-phase ARMA(p,q) process, the inverse-
filter transfer function is defined as follows: its zeros correspond to the poles of the
ARMA transfer function. Concerning its poles, they follow the same rules as the ones
presented for MA processes. This means that unit-zeros can lead to unstable inverse
filtering.

4A Blaschke product is defined as: B(a, z) = |a|
a

a−z
1−a∗z = 1

|a|
1−az−1

1− 1
a∗ z
−1 , where a∗ denotes the conju-

gate of a. By taking a = a∗ = − 1
b1,1

, one retrieves the expression b1,1+z
−1

1+b1,1z−1 .

130



A.3.3 About ARFIMA(p, d, q) processes

A.3.3.1 Preamble

In time series analysis, an autoregressive integrated moving average process
ARIMA(p, d, q), where d is an integer, is a generalization of the ARMA process. In
this case, the ARIMA process has d poles with modulus equal to 1. AnARIMA(0, 0, 0)

process is a white noise whereas an ARIMA(0, 1, 0) process is a random walk. In ad-
dition, an ARIMA(0, 1, 1) process is an exponential smoothing process [12]. They
are all non-stationary. The class of ARFIMA(p, d, q) processes is then a new level of
generalization, which allows the degree of differencing d to take any real value.
Before presenting the properties of ARFIMA processes, let us introduce some mathe-
matical definitions that will be useful in the following.

1. The gamma function, denoted as Γ (.), is defined by:

Γ (x) =


∫ +∞
0

tx−1e−t dt for x > 0

x−1Γ (x+ 1) for x < 0

+∞ x = 0

(A.36)

When x is an integer larger or equal to 1, Γ (x) = (x− 1)!.

2. The Γ function satisfies Euler’s reflection formula, which is given by:

Γ (x)Γ (1− x) = π

sin(xπ)
(A.37)

3. The binomial expansion, that will be used in the following, can be expressed as
follows:

(1− z−1)g =
+∞∑
i=0

(−1)iΓ (g + 1)

Γ (g − i+ 1)Γ (i+ 1)
z−i =

(A.37)

+∞∑
i=0

Γ (i− g)
Γ (−g)Γ (i+ 1)

z−i

(A.38)

In the above equation, according to [56], for large value of i, one has:

Γ (i− g)
Γ (−g)Γ (i+ 1)

≈ i−g−1

Γ (−g)
(A.39)

At this stage, using the standard binomial expansion (A.38) of (1 − z−1)g for
g = −d where d is an integer value, let us study the properties of a process x̂n
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defined as follows:

x̂n = un +
+∞∑
i=1

id−1

Γ (d)
un−i (A.40)

where un is a zero-mean white noise.

It should be noted that the variance of x̂n is proportional to 1 +
+∞∑
i=1

i2(d−1). This

infinite sum converges if 2(d− 1) < −1 or equivalently if d < 1
2
.

In the next subsection, let us present a specific case of ARFIMA processes, namely the
fractionnally integrated white noise before addressing the general case.

A.3.3.2 Definitions and properties of fractionally integrated FI(d) white noise

The nth sample of the lth fractionally integrated white noise, denoted as xn,l, can be
defined by looking at the relationship betweenXl(z) the z-transform of the FI(d) white
noise and Ul(z) the z-transform of the driving process un:

Xl(z)(1− z−1)d = Ul(z) (A.41)

This amounts to saying that the process whose z-transform isXl(z)(1−z−1)d is a white
noise. Using (A.41) and the link between the z-transform and the Fourier transform, the
PSD of the lth FI white noise, denoted as SFI,l(θ), can be expressed as follows :

SFI,l(θ) = 2σ2
u,l|sin(

θ

2
)|−2d (A.42)

Therefore, the PSD tends to infinity when θ tends to 0 if d > 0 whereas it tends to 0

when θ tends to 0 if d < 0. It also means that the process has an infinite power when
|d| > 1

2
.

At this stage, using the inverse Fourier transform of (A.42) and taking advantage of
the results of some integrals5 recalled by Gradshteyn and Ryzhik in [40], it can be
shown that the autocorrelation function of the lth FI(d) white noise satisfies when
−1

2
< d < 1

2
:

rFI,l,τ =
(−1)τΓ (1− 2d)

Γ (τ + 1− d)Γ (1− τ − d)
σ2
u,l =

(A.37)

Γ (τ + d)Γ (1− 2d)

Γ (τ + 1− d)Γ (1− d)Γ (d)
σ2
u,l

(A.43)

Given (A.43), the ratio between two consecutive values of the autocorrelation function
is equal to:

rFI,l,τ+1

rFI,l,τ
=

τ + d

τ + 1− d
(A.44)

5
∫ π
0
sinν−1(x)cos(ax)dx =

πcos( aπ2 )

2ν−1νB( ν+a+1
2 , ν−a+1

2 )
, withRe(ν) > 0 andB(x, y) is the Beta function

which satisfies B(x, y) = Γ (x)Γ (y)
Γ (x+y) .
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The above relation will be useful in the simulation part to reduce the computational cost
and to avoid numerical issues.
Taking into account the results introduced at the end of section A.3.3, it should be noted
that xn,l is mean square summable and stationary when d < 1

2
. Using (A.37) and the

standard binomial expansion (A.38) of (1 − z−1)g with g = −d, xn,l can be expressed
as an infinite-order finite-power causal MA process, whose ith MA parameter is defined
by:

bi,l =
Γ (i+ d)

Γ (i+ 1)Γ (d)
(A.45)

Using D’Alembert criterion to analyze the convergence of
∑
i

|bi,l|, |bi+1,l|
|bi,l|

= i+d
i+1

< 1 as

long as d < 1. The corresponding infinite impulse response (IIR) filter whose transfer
function is HFI,l(z) =

∑
i

bi,lz
−i is hence stable in the bounded-input bounded-output

sense. Moreover, thanks to (A.43) and (A.45), it can be shown that the process power
is equal to:

Px,l =
(A.45)

σ2
u,l

+∞∑
i=0

b2i,l = σ2
u,l

+∞∑
i=0

Γ 2(i+ d)

Γ 2(i+ 1)Γ 2(d)
(A.46)

= rFI,l,0 = =
(A.43)

Γ (1− 2d)

Γ 2(1− d)
σ2
u,l

When d > −1
2
, xn,l is invertible and can be expressed as an infinite-order causal AR

process, the ith AR parameter of which is defined by:

ai,l =
Γ (i− d)

Γ (i+ 1)Γ (−d)
(A.47)

If −1
2
< d < 0, xn,l is a short-memory process.

If 0 < d < 1
2
,
∑ rFI,l,τ

rFI,0,τ
is not absolutely summable. In this case, xn,l is a long-

memory process. Taking into account (A.44), the normalized autocorrelation function,
i.e. rFI,l,τ

rFI,l,0
, is proportional to Γ (1−d)

Γ (d)
τ 2d−1 when τ becomes high. It decays at an hyper-

bolic rate.
Let us now look at the properties of the Toeplitz correlation matrix, denoted as QFI,l,k.
The determinant |QFI,k

rFI,l,0
| of the Toeplitz normalized correlation matrix can be expressed

in terms of the partial correlation coefficients6 [25] as follows:

∣∣∣QFI,l,k

rFI,l,0

∣∣∣ = k−1∏
τ=1

(1− ρ2τ,l)k−τ (A.48)

where the partial correlation coefficients are here equal to ρτ,l = d
τ−d according to [86].

6It should be noted that the squares of the the partial correlation coefficients correspond to the squares
of the reflection coefficients.
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Therefore, |ρτ,l| are necessarily strictly smaller than 1 and the finite-size correlation
matrix QFI,l,k is invertible.

A.3.3.3 Definitions and properties of ARFIMA processes

As done for the FI(d) processes, let us define the nth sample of an ARFIMA process
from its z-transform as follows:

Xl(z)(1− z−1)d =
∏q

i=1 (1− zi,lz−1)∏p
i=1 (1− pi,lz−1)

Ul(z) (A.49)

where {pi,l}i=1,...,p are the poles and {zi,l}i=1,...,q are the non-unit zeros. In addition, d
is chosen to describe the high-lag correlation structure, whereas the ARMA parameters
describe the low-lag correlation structure of the time series.
The corresponding transfer function between the ARFIMA process xn,l and the driving
process un,l is hence defined as follows:

HARFIMA,l(z) =

∏q
i=1 (1− zi,lz−1)∏p
i=1 (1− pi,lz−1)

(1− z−1)−d (A.50)

Under the assumption that the poles and the zeros are different and that all poles lie
inside the unit circle in the z-plane, theARFIMA(p, d, q) time series defined in (A.49)
can be expressed in a unique causal infinite-order MA form [54]:

xn,l =
+∞∑
i=0

ci,lun−i,l (A.51)

where the z-transform of {ci,l}i=0,...,+∞, i.e.
+∞∑
i=0

ci,lz
−i is equal to HARFIMA(z). It was

shown in [54] that the IIR filter coefficients ci,l are asymptotically proportional to id−1.
Hence, the corresponding IIR filter is BIBO stable.

1. When d > 1
2
, the process is non-stationary and it possesses infinite variance.

2. When 0 < d < 1
2
, the process exhibits long memory or persistence, whereas it

has intermediate memory, also called anti-persistence when −1
2
< d < 0.
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The PSD, SARFIMA,l(θ), can be expressed as follows :

SARFIMA,l(θ) = 2σ2
u,l

|
∏q

i=1 (1− zi,le−jθ)|2

|
∏p

i=1 (1− pi,le−jθ)|2
|sin(θ

2
)|−2d (A.52)

= 2σ2
u,l

|
q∑
i=0

bi,le
−jiθ|2

|
p∑
i=0

ai,le−jiθ|2
|sin(θ

2
)|−2d

Concerning the autocorrelation function, when 0 < d < 1
2
, rARFIMA,l,τ is proportional

to τ 2d−1 when τ tends to infinity. It hyperbolically decays to 0 and can be expressed as
follows [86]:

rARFIMA,l,τ = σ2
u,l

q∑
i=−q

p∑
j=1

φ(i)εjC(d, p+ i− τ, pj,l) (A.53)

where:

φ(i) =

min(q,q+i)∑
m=max(0,i)

bm,lbm−i,l (A.54)

Given (A.54), φ(i) corresponds to the values of the autocorrelation function of the MA
part defined from the zeros of the ARFIMA(p, d, q) process. Moreover, one has:

εj = [pj,l

p∏
i=1

(1− pi,lpj,l)
∏
l 6=j

(pj,l − pm,l)]−1 (A.55)

and
C(d, τ, pj,l) =

rFI,l,τ
σ2
u,l

[p2pj,lβ(τ, pj,l) + β(−τ, pj,l)− 1] (A.56)

with β(τ, pj,l) = F (d+τ, 1, 1−d+τ, pj,l) and F the Gaussian hypergeometric function7.
A recursive relation for the latter function exists [109] and is given by:

F (d+ τ, 1, 1− d+ τ, pj,l) =
τ − d

pj,l(d+ τ − 1)

[
F (d+ τ − 1, 1, τ − d, pj,l)− 1

]
(A.57)

7F (a, b, c, z) =
+∞∑
n=0

(a)n(b)n
(c)n

zn

n! where (a)n is the Pochhammer symbol that satisfies: (a)n = 1 if

n = 0 and (a)n = a(a+ 1)...(a+ n− 1) = Γ (a+n)
Γ (a) if n > 0.
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Thus, given (A.56) and (A.57), it can be shown that:

C(d, p+ i− (τ + 1), pj,l) = pj,lC(d, p+ i− τ, pj l)

+
rFI,l,p+i−τ

σ2
u,l

[ (−d+ p+ i− τ)
(d+ p+ i− τ − 1)

(p2pj,l − 1)+ (A.58)

(1− p2j,l)
pj,l

(
F (d− p− i+ τ, 1, 1− d− p− i+ τ, pj,l)− 1

)]
Note that this relation will be useful in the simulation part to reduce the computational
cost and to avoid numerical issues.

Let us now study whether the correlation matrix QARFIMA,l,k is singular or not, for
any finite size k. As recalled in (A.48), the correlation matrix is invertible if the moduli
of the partial correlation coefficients are not equal to 1. However, there is no analyt-
ical expression of these coefficients for ARFIMA processes. Therefore, let us look at
the reflection coefficients of the ARFIMA process, since they correspond up to a mul-
tiplicative value equal to −1 to the partial correlation coefficients when the process is
w.s.s.. They can be obtained with the Durbin-Levinson algorithm when the zeros are
inside the unit circle in the z-plane [80]. Using a reductio ad absurdum, let us show
that the correlation coefficient for an order ν is not equal to 1. Thus, if the modulus
of the reflection coefficient was equal to 1, the variance of the driving process of the
corresponding νth-order AR process defined by the AR parameters {aνi,l}i=0,...,ν would
be equal to 0, meaning that for any lag τ (even τ = 0):

rARFIMA,l,τ = −
ν∑
i=1

aνi,lrARFIMA,l,τ−i (A.59)

The correlation matrix of size ν × ν would be rank deficient. The spectrum of the
process under study would be defined by less than ν frequencies, which is not coherent
with the continuous feature of (A.52). When ν becomes very large and tends to infinity,
we could wonder whether this justification could be still considered. In this case, the
partial correlation coefficients of a w.s.s. ARFIMA process with 0 < d < 1

2
satisfies:

|ρν,l| ∼ d
ν

when ν tends to infinity [50]. Therefore, the finite-size correlation matrix
QARFIMA,,l,k is still invertible when 0 < d < 1

2
.

To end up this section, it should be noted there are various approaches for the estima-
tions of the ARFIMA parameters based on the maximum likelihood criterion. Among
them, d can be estimated from different variants of the log periodogram regression es-
timator. The reader can refer to [36] and [16] for other existing estimation methods.
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A.3.4 Inverse filter associated to ARFIMA processes

Given section A.3.3.3, the lth ARFIMA process can be seen as a BIBO-stable IIR fil-
tering of a white noise, whose transfer function Hl(z) is given in (A.50) and can be
re-expressed as follows:

HARFIMA,l(z) = (1− z−1)−dl
∏ql

i=1Hi,l(z)∏pl
i=1 (1− pi,lz−1)

(A.60)

with Hi,l(z) = (1− zi,lz−1).
Let us now define the corresponding ”stable” inverse filtering. It satisfies:

H−1ARFIMA,l(z) = (1− z−1)dl
pl∏
i=1

(1− pi,lz−1)
ql∏
i=1

H−1i,l (z) (A.61)

Depending on the position of the zero zi,l, the definition ofH−1i,l (z) differs to get a stable
filter:

1. If the zero zi,l is inside the unit-circle in the z-plane, H−1i,l (z) is defined by:

H−1i,l (z) =
1

1− zi,lz−1
(A.62)

2. When |zi,l| > 1 and as done for ARMA processes, the following relationship
must be taken into account:

−zi,l
(
1− 1

zi,l
z−1
)
=
−zi,l + z−1

1− zi,lz−1
(
1− zi,lz−1

)
(A.63)

where −zi,l+z
−1

1−zi,lz−1 is a Blaschke product [20] that corresponds to the transfer func-
tion of an all-pass filter. In this case, H−1i,l (z) is defined by:

H−1i,l (z) =
1

−zi,l
(
1− 1

zi,l
z−1
) (A.64)

Whatever the positions of the zeros, the resulting inverse-filtering transfer function
H−1l (z) corresponds to an IIR filter that is stable in the BIBO sense provided that
{dl}l=1,2 ∈ (−1

2
, 1
2
).

Given the statistical properties of the different processes we presented in this section,
let us now compare them by using the JD. In the next section, we focus our attention on
the JD between sums of complex exponentials disturbed by additive noise. Our purpose
is to analyze how the JD evolves when the number of variates k increases.
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A.4 Jeffreys divergence between sums of complex exponentials disturbed
by additive noises

In this section, using the definitions (A.7), and (A.12), as well as the properties of the
JD and of the processes under study, we propose to study how Tr(Q−1NSCE,2,kQNSCE,1,k)

evolves when k increases.

A.4.1 Expression of the trace Tr(Q−1NSCE,2,kQNSCE,1,k)

Given (A.7) and (A.12), after some mathematical developments, the trace
Tr(Q−1NSCE,2,kQNSCE,1,k) can be written as follows:

Tr(Q−1NSCE,2,kQNSCE,1,k) = A(2,1) +B(2,1) + C(2,1) +D(2,1) (A.65)

As mentioned in the above equation, the trace corresponds to the sum of four terms
denoted as A(2,1), B(2,1), C(2,1) and D(2,1). The order of the upperscripts in these no-
tations corresponds to the order of the matrices in the trace to be computed. Let us
start expressing the first one. Since Tr(FG) = Tr(GF ) where F and G are non square
matrices but FG and GF are square matrices, one has:

A(2,1) =
1

σ2
2

Tr
(
S1,kP1S

H
1,k

)
=

1

σ2
2

Tr
(
SH1,kS1,kP1

)
(A.66)

=
k

σ2
2

Tr(P1) =
(A.8)

k

σ2
2

M1∑
m=1

γ1,m

Then, one has:

B(2,1) =
1

σ2
2

Tr
(
σ2
1Ik
)
=
σ2
1

σ2
2

k (A.67)

and
C(2,1) = −σ

2
1

σ2
2

Tr
(
SH2,kS2,k

(
SH2,kS2,k + σ2

2P2
−1)−1) (A.68)

In (A.68), let us focus our attention on the matrix
(
SH2,kS2,k + σ2

2P
−1
2

)−1. By applying
the inversion matrix lemma, one has:

(SH2,kS2,k + σ2
2P
−1
2 )−1 = (SH2,kS2,k)

−1 (A.69)

− (SH2,kS2,k)
−1(σ−22 P2 + (SH2,kS2,k)

−1)−1(SH2,kS2,k)
−1

Using (A.68) and (A.69) leads to:

C(2,1) = −σ
2
1

σ2
2

Tr(IM2) +
σ2
1

σ2
2

Tr((σ−22 P2 + (SH2,kS2,k)
−1)−1(SH2,kS2,k)

−1) (A.70)

When k increases, due to the asymptotic properties (A.11) of ”orthogonality”, the sec-
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ond term of C(2,1) in (A.70) tends to zero. Therefore, C(2,1) tends to the following
expression:

lim
k→+∞

C(2,1) = −σ
2
1

σ2
2

Tr (IM2) = −
σ2
1

σ2
2

M2 (A.71)

Depending on the normalized angular frequencies of the second process, the conver-
gence speed is more or less fast when k increases. The closer the normalized angular
frequencies are, the slower the convergence speed is.
Finally, let us study the fourth term. It is defined as follows:

D(2,1) = − 1

σ2
2

Tr
(
SH1,kS2,k

(
σ2
2P2

−1 + SH2,kS2,k

)−1
SH2,kS1,kP1

)
(A.72)

In the above equation (A.72), let us denote:

T1/2,k = S2,k

(
σ2
2P2

−1 + SH2,kS2,k

)−1
SH2,kS1,k (A.73)

As we already did for C(2,1), (A.73) can be rewritten by using (A.69) as follows:

T1/2,k = S2,k(S
H
2,kS2,k)

−1SH2,kS1,k (A.74)

− S2,k(S
H
2,kS2,k)

−1(σ−22 P2 + (SH2,kS2,k)
−1)−1(SH2,kS2,k)

−1SH2,kS1,k

= S1/2,k + U1/2,k

where:{
S1/2,k = S2,k

(
SH2,kS2,k

)−1
SH2,kS1,k

U1/2,k = −S2,k(S
H
2,kS2,k)

−1(σ−22 P2 + (SH2,kS2,k)
−1)−1(SH2,kS2,k)

−1SH2,kS1,k

(A.75)
When substituting the expression (A.74) of T1/2,k into (A.72), D(2,1) can be expressed
as the sum of two traces. In the following, we propose to evaluate both:

1. The first one is induced by S1/2,k: The matrix S1/2,k stores the orthogonal
projections of the columns of S1,k onto the space spanned by the columns of
S2,k. Given the ”asymptotic”’ properties (A.11) of orthogonality when k becomes
large, the orthogonal projection of the mth column Sm1,k of S1,k onto S2,k is a null
column vector except when the two processes have common normalized angular
frequencies. Indeed, if there exists n ∈ [[1,M2]] such as θ1,m = θ2,n, this leads to:

lim
k→+∞

S2,k

(
SH2,kS2,k

)−1
SH2,kS

m
1,k = Sm1,k (A.76)

Therefore, lim
k→+∞

S1/2,k can be approximated by:

S1/2 = lim
k→+∞

S1/2,k ≈
[
S1
1,kδ

1
1,2 . . . SM1

1,k δ
M1
1,2

]
(A.77)
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where δm1,2 =
M2∑
n=1

δθ1,m,θ2,n with δθ1,m,θ2,n equal to 1 when θ1,m = θ2,n and zero

otherwise. In other words, δm1,2 = 1 if both processes share the normalized angular
frequency θ1,m. Otherwise it is equal to 0.

Combining (A.72) and (A.77), this leads to:

lim
k→+∞

− 1

σ22
Tr(SH1,kS2,k(S

H
2,kS2,k)

−1SH2,kS1,kP1) ≈ −
1

σ2
2

Tr
(
SH1,kS1/2P1

)
(A.78)

= − k

σ2
2

M1∑
m=1

M2∑
n=1

γ1,mδθ1,m,θ2,n

This term is null if the processes do not have at least one common normalized
angular frequency.

2. The second one is induced by U1/2,k: When k increases, due to the ”asymptotic
orthogonality properties” (A.11), some simplifications can be done. Indeed, one
has:

lim
k→+∞

U1/2,k = − lim
k→+∞

1

k2
S2,k(σ

−2
2 P2 +

1

k
IM2)

−1SH2,kS1,k (A.79)

= − lim
k→+∞

σ2
2

k2
S2,kP

−1
2 SH2,kS1,k

As we aim at calculating the trace of − 1
σ22

Tr
(
SH1,kU1/2,kP1

)
, one obtains:

lim
k→+∞

1

k2
Tr
(
SH1,kS2,kP2

−1SH2,kS1,kP1

)
=

M1∑
m=1

M2∑
n=1

γ1,m
γ2,n

δθ1,m,θ2,n (A.80)

Therefore, by combining (A.66), (A.67), (A.71), (A.78) and (A.80),
Tr(Q−1NSCE,2,kQNSCE,1,k) can be expressed as follows when k becomes high:

Tr(Q−1NSCE,2,kQNSCE,1,k) ≈
k

σ2
2

M1∑
m=1

M2∑
n=1

γ1,m(1− δθ1,m,θ2,n) + (k −M2)
σ2
1

σ2
2

(A.81)

+

M1∑
m=1

M2∑
n=1

γ1,m
γ2,n

δθ1,m,θ2,n

Remark: When the processes have the same covariance matrix, one has:

M1∑
m=1

M2∑
n=1

γ1,m
γ2,n

δθ1,m,θ2,n =M1 =M2 (A.82)
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and
M1∑
m=1

M2∑
n=1

γ1,m(1− δθ1,m,θ2,n) = 0 (A.83)

In this case, (A.81) becomes:

Tr(Q−1NSCE,2,kQNSCE,1,k) = (k −M2)
σ2
1

σ2
2

+M1 = k = Tr(Ik) (A.84)

Given the above analysis, it is now possible to analyze how the JD between two NSCE
processes evolves when k increases and tends to infinity. This is the goal of the next
subsection.

A.4.2 Analytic expression of the Jeffreys divergence

As the expression of Tr(Q−1NSCE,1,kQNSCE,2,k) when k becomes high is similarly de-
fined when the indices 1 and 2 are switched. Given (A.5) and (A.81), the JD can be
approximated when k becomes large as follows:

JDk
(NSCE1,NSCE2) ∝ −k + 1

2
[(k −M2)

σ2
1

σ2
2

+ (k −M1)
σ2
2

σ2
1

(A.85)

+ k

M1∑
m=1

M2∑
n=1

(
γ1,m
σ2
2

+
γ2,n
σ2
1

)(1− δθ1,m,θ2,n)

+

M1∑
m=1

M2∑
n=1

(
γ1,m
γ2,n

+
γ2,n
γ1,m

)
δθ1,m,θ2,n ]

The JD depends on the parameters of the processes, namely the normalized angular
frequencies of each process, the variances of the magnitudes of each component as well
as the variances of the additive noises. The first term of the expression includes the
JD between two zero-mean white noises with variances σ2

1 and σ2
2 . Indeed, when there

is no complex exponentials in both processes, the processes under study correspond to
white noises and (A.85) reduces to:

JD
(WN1,WN2)
k = −k + k

2

(
σ2
1

σ2
2

+
σ2
2

σ2
1

)
(A.86)

Note that the two other terms in (A.85) make it possible to point out the differences
between the sets of complex exponentials.
In the following section, let us analyze how the JD evolves when k is incremented.

141



A.4.3 Analysis of the increment of the Jeffreys divergence

Given the expression (A.85) of the JD we obtained, let us now deduce the asymptotic
increment, i.e. the increment of the JD when k becomes large8:

∆JD(NSCE1,NSCE2) = lim
k→+∞

JDk
(NSCE1,NSCE2) − JD(NSCE1,NSCE2)

k−1 (A.87)

Therefore, one can easily deduce that:

∆JD(NSCE1,NSCE2) = −1 + 1

2

[
σ2
1

σ2
2

+
σ2
2

σ2
1

+

M1∑
m=1

M2∑
n=1

(
γ1,m
σ2
2

+
γ2,n
σ2
1

)(1− δθ1,m,θ2,n)

]
(A.88)

The ratio of the additive-white-noise variances has an influence on the slope of the
JD. In addition, when there are common normalized angular frequencies between two
processes, ∆JD is smaller.
After this theoretical analysis, let us give some examples based on synthetic data and
let us comment the results we obtain.

A.4.4 Illustrations and comments

A.4.4.1 Evolution of the JD between NSCE processes when k increases

Let us present how the JD evolves when comparing two NSCE processes. Their param-
eters are given in Table A.1.

Table A.1 Parameters of the NSCE processes under study for the 1st simulation protocol

1st-process NSCE parameters 2nd-process NSCE parameters
M1 = 1 M2 = 1

θ1,1 varies in the interval [−π, π)
with a step equal to 0.02

θ2,1 varies in the interval [−π, π)
with a step equal to 0.02

γ1,1 = 100 γ2,1 = 40
σ2
1 = 1 σ2

2 = 1

When looking at the JD between NSCE processes based on k = 5 in Fig. A.1a, it
can be difficult to give an interpretation of the values the JD obtains. This is also the
same problem when considering k = 15, as depicted in Fig. A.1b. However, when
dealing with k = 50, Fig. A.1c shows that the JD tends to attain the same value when
the set of normalized angular frequencies are different. When they are equal, the JD is

8In the equation below, the notation we use is lim
k→+∞

. This means that we always consider correlation

matrices of finite size k, where k becomes larger and larger.
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equal to 0. For this purpose, instead of looking only at the JD, we propose to study the
asymptotic JD increment.

(a)

(b)

(c)

Fig. A.1 JD(NSCE1,NSCE2)
k defined in (A.5) for random vectors of dimension (a) k = 5,

(b) k = 15, (c) k = 50

In the following, let us show how the JD increment evolves when k increases for a
specific case, and let us analyze the influence of each parameter. We propose to start
the analysis by the additive-noise variances.
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Fig. A.2 Asymptotic JD increment and JD derivative between NSCE processes, whose
parameters are given in table A.1

A.4.4.2 Influence of the additive-noise variances

The parameters of the NSCE processes are given in Table A.2.

Table A.2 Parameters of the NSCE processes under study for the 2nd simulation proto-
col

1st-process NSCE parameters 2nd-process NSCE parameters
M1 = 1 M2 = 1

θ1,1 = −π/5 θ2,1 = −2π/5
γ1,1 = 100 γ2,1 = 40

1 value for σ2
1: 3 cases for σ2

2:
σ2
1 = 1 1) σ2

2 = 0.5
2) σ2

2 = 1
3) σ2

2 = 2

As illustrated by Fig. A.3, the asymptotic increment is modified according to (A.88). It
always depends on σ12

σ22
+ σ22

σ12
and may depend on the set of ratios {γ1,m

σ2
2

+ γ2,n
σ2
1
} with

m = 1, ...,M1 and n = 1, ...,M2 if the NSCE share the same normalized angular
frequencies.

A.4.4.3 Convergence speed towards the stationary regime

The parameters of the NSCE processes are given in Table (A.3).
Given Fig. A.4, one can notice that the JD computed from (A.5) and (A.7) tends to be
the same for the three simulations when k increases. The main differences are located
when k is small. For this reason, we suggest computing the derivatives of these JD.
They are given in Fig. A.5 where they are compared with the asymptotic increment
given in (A.88).
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First simulation: JD derivative and asymptotic increment

Fig. A.3 Asymptotic increment vs increment with three simulations where σ2
2 is mod-

ified

Table A.3 Parameters of the NSCE processes under study for the 3rd simulation proto-
col

1st-process NSCE parameters 2nd-process NSCE parameters
M1 = 1 M2 = 1
σ2
1 = 1 σ2

2 = 0.1
γ1,1 = 100 γ2,1 = 40

1 value for θ1,1: 3 cases for θ2,1:
θ1,1 = −π/5 1) θ2,1 = −2π/5

2) θ2,1 = −1.5π/5
3) θ2,1 = −1.1π/5
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Fig. A.4 JD and its approximation with three simulations where θ2,1 becomes closer
and closer to θ1,1 = −π/5
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Fig. A.5 Asymptotic increment vs increment with three simulations where θ2,1 be-
comes closer and closer to θ1,1 = −π/5

As presented in (A.88) in the theoretical analysis in section A.4.3, we can see that
the asymptotic increment is here the same for all the simulations. The only differ-
ence stands in the convergence speed towards the stationary regime. Indeed, given
Fig. A.5, the convergence of the JD derivative towards the asymptotic increment is
faster when the difference between the normalized angular frequencies is large. The
fluctuations of the derivatives around the asymptotic increment are mainly due to the
products such as SH1,kS2,k and SH2,kS1,k that must be computed. They correspond to val-

ues of sin(
k(θl,m−θl,n)

2
)

sin(
(θl,m−θl,n)

2

whose square is periodic with respect to k with period equal to
2π

|θ1,n−θ2,m| .

A.4.4.4 A more general case

The parameters of the NSCE processes are given in Table A.4.

Table A.4 Parameters of the NSCE processes under study for the 4th simulation proto-
col

1st-process NSCE parameters 2nd-process NSCE parameters
M1 = 3 M2 = 3
σ2
1 = 1 σ2

2 = 0.1
γ1,1 = 100,γ1,2 = 50,γ1,3 = 75 γ2,1 = 40,γ2,2 = 60,γ2,3 = 80

Fixed values for
θ1,1, θ1,2, θ1,3, θ2,1 and θ2,3:

3 cases for θ2,2:

θ1,1 = π/10, θ1,2 = π/4, 1) θ2,2 = π/2
θ1,3 = 4π/5, θ2,1 = −π/10, 2) θ2,1 = π/4

and θ2,3 = 4π/5 3) θ2,1 = 4π/5
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Fig. A.6 JD and its approximation with three simulations where the processes share 1,
2 and then 3 normalized angular frequencies
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Fig. A.7 Asymptotic increment vs increment with three simulations where the pro-
cesses share 1, then 2 and then 3 normalized angular frequencies

In Fig. A.6 and A.7, we present the evolution of the JD and the increment over time
obtained from (A.5) respectively. We compare the increment (i.e. the derivative of the
JD with respect to the number of variates k) with the asymptotic increment obtained in
(A.88). It confirms our theoretical analysis.
In practical cases, the covariance matrices can be estimated in the maximum likelihood
sense from the data. Then, the JD is deduced for various sizes k of the covariance matri-
ces. In order to make the interpretation easier, the derivative of the JD with respect to k
must be computed and plotted to analyze the convergence speed towards the stationary
regime.
In various signal processing applications such as speech processing and mobile com-
munication, the spectrum of the signal may exhibit some resonances. In this case, the
signals can be modeled by an AR process. When comparing two processes using the
JD, the less dissimilar the pdf are, the smaller the divergences are. As a consequence,
we could a priori guess that the JD between a NSCE process, defined by the normalized
angular frequencies of its complex exponentials, and an AR process which has sharper
and sharper resonances in its spectrum at the same normalized angular frequencies be-
comes smaller and smaller. Nevertheless, in practice, the results that can be obtained
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do not necessarily confirm this statement. For this purpose, we propose to analyze the
JD between an AR process and a NSCE process in the next section.

A.5 Jeffreys divergence between an autoregressive process and a sum of
complex exponential process

In this section, using the definitions and properties of the JD and the processes un-
der study, we first propose to express Tr(Q−1NSCE,l,kQAR,l′,k) and Tr(Q−1AR,l′,kQNSCE,l,k),
with l and l′ defining the labels of the processes to be compared. We will see if one can
deduce an analytic expression of these traces when the number of variates k increases
and tends to infinity. As done in the previous section, this step will be useful to deduce
the asymptotic properties of the JD between an AR process and a NSCE process.

A.5.1 Expression of the trace Tr(Q−1NSCE,l,kQAR,l′,k)

Given (A.7) and (A.17), after developing, one can show that Tr(Q−1NSCE,l,kQAR,l′,k) can
be expressed as the sum of three terms denoted as Ω, Ψ and Υ :

Ω =
1

σ2
l

Tr (QAR,l′,k) =
k

σ2
l

rAR,l′,0 (A.89)

Ψ = − 1

kσ2
l

Tr(Sl,kSHl,kQAR,l′,k) = −
1

kσ2
l

Tr(SHl,kQAR,l′,kSl,k) (A.90)

and
Υ =

1

k2
Tr(Sl,kP−1l SHl,kQAR,l′,k) =

1

k2
Tr(P−1l SHl,kQAR,l′,kSl,k) (A.91)

In (A.90) and (A.91), SHl,kQAR,l′,kSl,k has to be computed. Given the definition of the
matrix Sl,k in (A.9), let us study what the value of Sml,k

HQAR,l′,kS
m
k is when m =

1, ...,M :

Sml,k
HQAR,l′,kS

m
k (A.92)

=

[
k−1∑
τ=0

rAR,l′,τe
−jτθl,m . . .

0∑
τ=1−k

rAR,l′,τe
−j(τ+k−1)θl,m

] [
1 . . . ej(k−1)θl,m

]T
By rearranging the terms, (A.92) can be rewritten as follows:

Sml,k
HQAR,l′,kS

m
l,k =

k−1∑
i=0

i∑
τ=−i

rAR,l′,τe
−jτθl,m (A.93)

Then, let us introduce a truncated correlogram CAR,l′,i based on a window of size 2i+1
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and computed for the normalized angular frequency θl,m:

CAR,l′,i(θm) =
i∑

τ=−i

rAR,l′,τe
−jτθl,m (A.94)

By combining (A.90) with (A.93) and (A.94) on the one hand and (A.91) with (A.93)
and (A.94) on the other hand, one has:

Ψ = − 1
kσl2

M∑
m=1

k−1∑
i=0

CAR,l′,i(θl,m)

Υ = 1
k2

M∑
m=1

1
γl,m

k−1∑
i=0

CAR,l′,i(θl,m)

(A.95)

Given (A.89) and (A.95), Tr(Q−1NSCE,l,kQAR,l′,k) can be expressed as follows when k
becomes high:

Tr(Q−1NSCE,l,kQAR,l′,k) ≈
k

σl2
rAR,l′,0 +

M∑
m=1

1

k
(

1

kγl,m
− 1

σl2
)
k−1∑
i=0

CAR,l′,i(θl,m) (A.96)

A.5.2 Expression of the trace Tr(Q−1AR,l′,kQNSCE,l,k)

Given (A.7) and (A.27), Tr(Q−1AR,l′,kQNSCE,l,k) can be expressed as the sum of two
traces, denoted as ∆ and Θ:

∆ = Tr(σl2
(
LH
)−1

D−1L−1) = σl
2Tr(L−1

(
LH
)−1

D−1) (A.97)

where the inverses of L and D have been defined in (A.31) and (A.30).
Using (A.31), this leads to:

∆ = (k − p) σ2
l

σ2
u,l′,p

p∑
i=0

|api,l′ |
2 +

p−1∑
j=0

σ2
l

σ2
u,l′,j

j∑
i=0

|aji,l′|
2 (A.98)

= (k − p) σ2
l

σ2
u,l′,p

‖al′p‖2 +
p−1∑
j=0

σ2
l

σ2
u,l′,j

‖al′j‖2

with ‖al′j‖2 the 2-norm of the jth-order AR-parameter vector.
Remark: When considering a 1st-order AR process, given (A.27), Q−1AR,l′,k has the
following simple expression:

Q−1AR,l′,k =
1

σ2
u,l′,1

(a1,l′Jk + a1,l′
∗JTk + (1 + |a1,l′ |2)Ik − |a1,l′ |2(ek,1eTk,1 + ek,ke

T
k,k).

(A.99)
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where ek,l denotes the column vector of size k with zeros except at the lth row where
the element is equal to 1.
Therefore, Tr(σ2

lQ
−1
AR,l′,k) =

σ2
l

σ2
u,1

(k + (k− 2)|a1,l′|2). This is also confirmed by (A.98).

Then, let us give some details about the second trace. Taking into account the expres-
sion of the PSD of the AR process for any order i = 0, ..., p evaluated at normalized
angular frequencies θl,m with m = 1, ...,M , one has:

Θ = Tr(SHl,k(L
H)−1D−1L−1Sl,kPl) =

M∑
m=1

γl,m(
k − p

SAR,l′,p(θl,m)
+

p−1∑
i=0

1

SAR,l′,i(θl,m)
)

(A.100)

It should be noted that in the above equation (A.100), we can organize the terms as
follows:

Θ =
M∑
m=1

γl,m

(
k − p− 1

SAR,l′,p(θl,m)
+

1

Scapon(θl,m)

)
(A.101)

Indeed, the pseudo-spectrum Scapon that can be deduced using Capon’s method [115]
can be expressed by:

Scapon(θl,m) =

[
p∑
i=0

1

SAR,l′,i(θl,m)

]−1
(A.102)

=
1

[1 . . . e−jpθl,m ]Q−1AR,l′,p+1 [1 . . . e
−jpθl,m ]

H

Given the above analysis, let us deduce an expression of the JD when k increases in the
next subsection. This step will be useful to deduce the asymptotic increment of the JD.

A.5.3 Analytic expression of the Jeffreys divergence

Combining (A.96), (A.98) and (A.100), the JD can be approximated when k becomes
large as follows:

JD
(AR,NSCE)
k ≈ −k + 1

2

(
k

σ2
l

rAR,l′,0 +
M∑
m=1

k−1∑
i=0

1

k

( 1

kγl,m
− 1

σl2

)
CAR,l′,i(θl,m)

(A.103)

+
(
(k − p) σ2

l

σ2
u,l′,p

‖al′p‖2 +
p−1∑
j=0

σ2

σ2
u,l′,j

‖al′j‖2
)

+
M∑
m=1

γl,m

( k − p
SAR,l′,p(θl,m)

+

p−1∑
i=0

1

SAR,l′,i(θl,m)

))
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A.5.4 Analysis of the increment of the JD

Given (A.86), let us now deduce the asymptotic increment, i.e. the increment of the JD
when k becomes large:

∆JD(AR,NSCE) = lim
k→+∞

(JDk − JDk−1) (A.104)

For large values of k, one has:

∆JD(AR,NSCE) ≈ −1 + 1

2

rARl′,0σl2︸ ︷︷ ︸
1stterm

+
σ2
l

σ2
u,l′,p

‖al′p‖2︸ ︷︷ ︸
2ndterm

+
M∑
m=1

γl,m
SAR,l′,p(θl,m)︸ ︷︷ ︸
3rdterm

 (A.105)
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According to (A.105), we can notice that the asymptotic JD increment depends on
three main terms:

1. rAR,l′,0
σl2

is the power of the AR process filtered by an all-pass filter whose transfer
function is 1

σl
,

2. σl
2

σ2
u,l′,p
‖al′p‖2 is the power of the additive white noise with variance σ2

l that has
been filtered by the finite-impulse response (FIR) ”AR inverse filter” whose trans-
fer function is Ap(z)

σu,l′,p
,

3. the third term depends on the sum of the ratios between the NSCE process power
and the AR-process PSD at the normalized angular frequencies {θl,m}m=1,...,M .
Nevertheless, by using (A.20), each term γl,m

SAR,l′,p(θl,m)
can be also seen as the

power of the complex exponential at θl,m which has been filtered by the AR in-
verse filter. Therefore, this third term corresponds to the power of the determin-
istic part of the NSCE process filtered by the AR inverse filter.

The above results lead to some comments:

1. when M = p = 0, (A.105) reduces to:

∆JD(AR,NSCE) ≈ −1 + 1

2
(
σ2
u,l′,1

σl2
+

σl
2

σ2
u,l′,1

) (A.106)

It corresponds to the JD increment between white noises with variance σ2
u,l′,1

and σl2.

2. The smaller the three terms in (A.105) are, the smaller the asymptotic JD in-
crement is. However, they do not necessarily have the same behavior with re-
spect to the process parameters. Thus, if p = M and if the arguments of the
AR poles correspond to the normalized angular frequencies {θl,m}m=1,...,M , reso-
nances may appear in the transfer function Hl′(z). The closer to the unit circle in
the z-plane the poles {pi,l′}i=1,...,p are, the sharper the resonances of Hl′(z) are.
In this case, the 1st and the 2nd terms in (A.105) can grow9. Meanwhile, the 3rd

term in (A.105) tend to be smaller and smaller.

In the next section, we suggest illustrating the way the JD evolves when comparing two
processes. We propose to look at the influence of the process parameters on the JD.
This will help us define some clues to give an interpretation of the JD.

9Indeed, one has: rAR,l′,0 ∝
∫
SAR,l′,p(θ) dθ
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A.5.5 Illustrations and comments

In this section, for the sake of simplicity, we suggest comparing a 1st-order AR process
with a NSCE process. The influences of the different parameters can be also illustrated.
Note that rAR,1,0 =

σ2
u,1,1

1−|a1,1|2 .

A.5.5.1 Influence of the AR-parameter argument

The parameters of the processes under study are given in Table A.5.

Table A.5 Parameters of the AR and NSCE processes under study

NSCE process parameters AR process parameters
M2 = 1 |a1,1| = 0.95
σ2
2 = 1 σu,1,1 = 1

γ2,1 = 10 argument of a1,1 varies
θ2,1 = π/2 in the interval ]− π, 0[

Based on Fig. A.8, which shows the asymptotic JD increment as a function of the ar-
gument of a1,1, the asymptotic JD increment reaches its minimum when the argument
of a1,1 is equal to −π/2. In this case, the resonance in the AR process power spectrum
appears at the same angular frequency as the one of the NSCE process.
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Fig. A.8 Evolution of the asymptotic JD increment as a function of the argument of a1,1

A.5.5.2 Influence of the AR-parameter modulus

The parameters of the processes under study are given in Table A.6.
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Table A.6 Parameters of the AR and NSCE processes under study

NSCE process parameters AR process parameters
M2 = 1 a1,1 varies in ]− 1, 0[
σ2
2 = 1 with step equal to 0.05

γ2,1 = 10 σu,1,1 = 1
θ2,1 = 0

In Fig. A.9, the derivative of the JD obtained from the expressions of QAR,1,k and
QNSCE,2,k tends to the asymptotic increment whatever the case under study. Two
regimes appear: a transient one and then a stationary-like one. This confirms our theo-
retical study. Fig. A.10 shows the asymptotic increment as a function of a1,1 where the 6
cases addressed above are pointed out. The asymptotic increment reaches its minimum
when the modulus of a1,1 is not necessarily close to the unit-circle but around 0.7. It
illustrates our comments of section A.5.4.
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Fig. A.10 Evolution of the asymptotic JD increment as a function of a1,1 where the
dotted points corresponds to the cases addressed in Fig. A.9.
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A.5.5.3 Influence of the additive-noise variance

The parameters of the processes under study are given in A.7

Table A.7 Parameters of the AR and NSCE processes under study

NSCE process parameters AR process parameters
M2 = 1 a1,1 = −0.95
θ2,1 = π/2 σu,1,1 = 1
γ2,1 = 10

σ2
2 varies between 0.5 and 10

According to Fig. A.11, (A.105) tends to infinity if σ2
2 tends to zero. This illustrates

the main difference between the spectrum properties of both processes: one tends to be
discrete whereas the other is continuous.
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Fig. A.11 Evolution of the asymptotic JD increment as a function of σ2
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In the next section, let us give a physical interpretation of the asymptotic JD increment
for ergodic w.s.s. ARMA processes.

A.6 Interpreting the asymptotic increment of Jeffreys Divergence
between some random processes

A.6.1 Inverse-filtering interpretation

In this section, we suggest giving an interpretation of the asymptotic JD increment in
order to better understand the influence of each process parameter on the JD and to
generalize the results obtained to ARMA(p,q) processes. For this reason, our purpose is
to provide a new way to derive the asymptotic JD increment between zero-mean w.s.s.
ARMA processes.
Let us rewrite the definition of the asymptotic JD increment as follows:

∆JD(ARMA1,ARMA2) = −1+ 1

2

[
∆T (ARMA2,ARMA1) +∆T ((ARMA1,ARMA2)

]
(A.107)

155



where the asymptotic increments of the traces ∆T (ARMAl,ARMAl′ ) satisfy with (l, l′)

equal to (1, 2) or (2, 1) :

∆T (ARMAl,ARMAl′ ) (A.108)

= lim
k→+∞

[
Tr(Q−1ARMA,l,kQARMA,l′,k)− Tr(Q−1ARMA,l,k−1QARMA,l′,k−1)

]
In the above equation, the covariance matrices are of finite sizes k and k − 1. Then, we
study how the increment of the matrix traces evolves when k increases. If infinite-size
correlation matrices are considered, the expressions of the KL (A.2) and of the JD (A.5)
no longer hold when the corresponding transfer functions of the ARMA processes have
unit roots since the covariance matrices are no longer invertible. As we will see later,
it is not a hazard if these cases lead to specific behaviors of the JD increment in our
analysis.
To evaluate∆T (ARMAl,ARMAl′ ), we propose a particular way for interpreting the asymp-
totic JD increment. This basically avoids long mathematical developments.
The covariance matrix QARMA,l,k can be decomposed by means of an eigenvalue de-
composition:

QARMA,l,k = ElDlE
H
l (A.109)

where El denotes the unitary matrix storing the eigenvectors of QARMA,l,k and Dl is the
diagonal matrix storing the non-null real positive eigenvalues.
Then, one has:

Tr(Q−1ARMA,l,kQARMA,l′,k) = Tr(D−1/2l EH
l QARMA,l′,kElD

−1/2
l ) (A.110)

Our interpretation is the following: Let Xl,k be the zero-mean random vector storing
k consecutive samples of the lth zero-mean process ARMA process associated with
covariance matrix QARMA,l,k = E

[
Xl,kX

H
l,k

]
.

Pre-multiplying Xl,k by D−1/2l PH
l amounts to whitening the process Xl,k and making

its power equal to unity. When k tends to infinity, it amounts to filtering all the samples
stored in Xl,k by an inverse filter whose transfer function is H−1l (z).
Similarly, pre-multiplying Xl′,k by D

−1/2
l PH

l is equivalent, when k tends to infinity,
to filter the data stored in the vector Xl′,k by the inverse filter whose transfer function
is equal to H−1l (z). As a consequence, the asymptotic increment ∆T (ARMAl,ARMAl′ )

corresponds to the power of process whose samples are stored in Xl′,k and then filtered
by H−1l (z).
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Based on the inverse filtering interpretation, the asymptotic JD increment amounts
to computing the power P (ARMAl,ARMAl′ ) of the lth random process filtered by the in-
verse filter corresponding to the l′th process, with (l, l′) = (1, 2) or (2, 1):

∆JD(ARMA1,ARMA2) = lim
k→+∞

∆JD
(ARMA1,ARMA2)
k

= −1 + 1

2
(P (ARMA1,ARMA2) + P (ARMA2,ARMA1)) (A.111)

A.6.2 Applications

In this section, we recall the results obtained in previous works [72], [58] and [57] and
propose to retrieve the expressions of the asymptotic JD increments by using the inverse
filtering interpretation in the following cases:

1. the JD between two white noises,

2. the JD between a 1st-order AR process and a white noise,

3. the JD between two real 1st-order MA processes

4. the JD between 1st-order AR and MA processes.

Then, three new cases that were not addressed before can be now presented thanks to
the results of section A.6.1:

1. the JD between qth-order MA processes,

2. the JD between NSCE processes,

3. the JD between an NSCE process and a pth-order AR process.

In these latter cases, we propose to illustrate the influences of the parameters of the
processes on the asymptotic JD increment and consequently on the JD.

A.6.2.1 JD between two white noises

Even if this is a trivial case, by starting from the definition (A.5), our proposed interpre-
tation in section A.6.1 makes it possible to deduce the asymptotic increment of the JD
between zero-mean Gaussian white noises (WN) with variances σ2

u,1 and σ2
u,2. It can be

viewed as a toy example:

∆JD(WN1,WN2) = −1 + 1

2

(
∆T (WN2,WN1) +∆T (WN1,WN2)

)
(A.112)

− 1 +
1

2

(
σ2
u,1

σ2
u,2

+
σ2
u,2

σ2
u,1

)
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Indeed, the term ∆T (WN2,WN1) =
σ2
u,1

σ2
u,2

can be explained as follows: the first white noise
with variance σ2

u,1 is filtered by an all-pass filter with a transfer function equal to 1
σu,2

.

The power of the filter output is hence equal to
σ2
u,1

σ2
u,2

. The term ∆T (WN1,WN2) =
σ2
u,2

σ2
u,1

can
be explained similarly.
By introducing

Ru =
σ2
u,2

σ2
u,1

(A.113)

the above equation (A.112) becomes:

∆JD(WN1,WN2) = −1 + 1

2

(
1

Ru

+Ru

)
(A.114)

It should be noted that (A.114) can be rewritten by expressing σ2
u,2 as σ2

u,1 + δσ2
u and

by introducing the relative difference between the noise-variances ∆σ2
u = δσ2

u

σ2
u,1

. In this
case, one has:

Ru = 1 +∆σ2
u (A.115)

and
∆JD(WN1,WN2) = −1 + 1

2

(
1

1 +∆σ2
u

+ 1 +∆σ2
u

)
(A.116)
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Fig. A.12 JD between white noises vs relative difference between the white-noise vari-
ances ∆σ2

u

According to Fig. A.12 and (A.116), one can see that the asymptotic JD increment only
depends on the relative difference between the white-noise variances.

A.6.2.2 JD between a 1st-order AR process and a white noise

By taking advantage of the inverse of the correlation matrix of a 1st-order AR process
[14], the asymptotic JD increment can be expressed as follows:
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∆JDk
(AR,WN) − 1 +

1

2

(
∆T (WN,AR) +∆T (AR,WN)

)
(A.117)

= −1 + 1

2

[
1

Ru

1

(1− a21,1)
+Ru(1 + a21,1)

]
By using the inverse filtering interpretation presented in the section A.6.1, the term
∆T (WN,AR) which is equal to

σ2
u,1,1

σ2
u,2,1

1
(1−(a1,1)2) corresponds to the power of the 1st-order

AR process filtered by an all-pass filter with a transfer function equal to 1
σu,2,1

. Mean-

while, the second term ∆T (AR,WN), which is equal to
σ2
u,2,1

σ2
u,1,1

(1+ (a1,1)
2), corresponds to

the power of the zero-mean white noise filtered by the inverse AR filter whose transfer
function is equal to 1

σu,1,1
(1 + a1,1z

−1).
Once again, (A.117) can be rewritten as follows:

∆JDk
(AR,WN) = −1 + 1

2
[

1

1 +∆σ2
u

1

(1− a21,1)
+ (1 +∆σ2

u)(1 + a21,1)] (A.118)

In Fig. A.13, the JD between an AR process and a white noise is presented as a function
of the AR parameter a1,1 and the relative difference between the noise variances ∆σ2

u.
This latter varies in the interval (−1, 20] with a small step equal to 0.03. Only positive
values of the AR parameter a1,1 are considered because the JD is an even function with
respect to the AR parameter in this case. The AR parameter varies in the interval [0, 1)
with a step equal to 0.01. Thus, this illustration makes it possible to present a large set
of situations that could happen. It should be noted that when a1,1 = 0, we retrieve the
results given in (A.116).
When the white-noise variance and the driving process variance are equal (i.e. when the
relative difference between the noise variance is equal to zero) and if the AR parameter
is equal to zero, the JD is of course null. Then, for any value of the relative difference
between the noise variance, the JD between the AR process and the white noise is all
the higher as the PSD of the AR process is spiky, i.e. the modulus of the pole tends to 1.
This phenomenon is clearly noticeable when the variances of the white noise and of the
AR driving process are the same, i.e. the relative difference between the noise variance
is equal to zero. In this case, according to Fig. A.13, the JD can be higher than 120
when the AR parameters tend to 1. If the step equal to 0.01 in this simulation had been
chosen smaller, we could have seen that the JD tends to infinity when the AR parameter
tends to 1.
When the variance of the white noise increases, the phenomenon is the same but the
sensitivity of the JD with respect to the AR parameter is less pronounced. This is con-
firmed by calculating the derivative of∆JDk

(AR,WN) with respect to the AR parameter.
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One can also calculate the derivative of ∆JDk
(AR,WN) with respect to the relative dif-

ference between the noise variances∆σ2
u. In this case, one can notice that the minimum

value of the asymptotic JD increment is obtained when ∆σ2
u =

√
1

1−(a1,1)4
− 1. In this

case, it is equal to
√

1−(a1,1)4

1−(a1,1)2
− 1.
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Fig. A.13 Asymptotic JD increment between an AR process and a white noise as a
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A.6.2.3 JD between two 1st-order AR processes

In [72], a recursive way was suggested to deduce the JD between two 1st-order AR
processes:

∆JD(AR1,AR2) = A+B (A.119)

with {
A = −1 + 1

2
(Ru +

1
Ru

)

B = (a1,2−a1,1)2
2

[
1

1−(a1,1)2
1
Ru

+ 1
1−(a1,2)2Ru

] (A.120)

However, by reorganizing the terms in the above equation, one has:

∆JD(AR1,AR2) (A.121)

= −1 + 1

2
(Ru

1− 2a1,1a
1
1,2 + a21,1

1− a21,2
+

1

Ru

1− 2a1,1a1,2 + a21,2
1− a21,1

)

= −1 + 1

2
(∆T (AR1,AR2) +∆T (AR2,AR1)) (A.122)
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Following our interpretation, we could have obtained the same results by avoiding sev-
eral mathematical developments presented in [72]. Indeed, the term∆T (AR1,AR2) which
is equal to Ru

1−2a1,1a11,2+a21,1
1−a21,2

corresponds to the power of the 2nd AR process filtered by
the inverse filter that corresponds to the 1st AR process. This amounts to computing the
autocorrelation function of this filtered AR (fAR) process, for the lag equal to 0, de-
noted as rfAR,2,0. This latter can be deduced from the definition of the autocorrelation
function and the set of equations that define the second AR process and the filtering
step. More particularly, one has:

rfAR,2,0 =
1 + a21,1
σ2
u,1,1

rAR,2,0 +
a1,1
σ2
u,1,1

rAR,2,1 +
a1,1
σ2
u,1,1

rAR,2,−1 (A.123)

By replacing in (A.123), rAR,2,τ with τ = −1, 0, 1 by their expressions recalled in
(A.23), we retrieve Ru

1−2a1,1a1,2+a21,1
1−a21,2

.

Concerning the term ∆T (AR2,AR1) which is equal to 1
Ru

1−2a1,1a1,2+a21,2
1−a21,1

, it is equal to the
power of the 1st AR process filtered by the inverse filter that corresponds to the 2nd AR
process. The reasoning is similar. Since illustrations of the JD between AR processes
have already been proposed, interested readers can refer to [72] for further details.

A.6.2.4 JD between two real 1st-order MA processes

In [58], by deducing the expression of the inverse of the correlation matrix of the real
1st-order MA process 10, it was shown after long mathematical developments that the
asymptotic JD increment was constant when |b1,l| 6= 1. It was equal to:

∆JD
(MA1,MA2)
k = −1 + 1

2

(
rMA,1,1

rMA,2,1

+
rMA,2,1

rMA,1,1

)
(A.124)

+
1

2
[(
rMA,1,0

rMA,2,0

− rMA,1,1

rMA,2,1

)
1 + b21,2
|1− b21,2|

+ (
rMA,2,0

rMA,1,0

− rMA,2,1

rMA,1,1

)
1 + b21,1
|1− b21,1|

].

= −1 + 1

2

(
∆T (MA2,MA1) +∆T (MA1,MA2)

)
However if |b1,l| = 1, the increment was not finite, except when the MA processes share
the same zeros.
We are now able to explain the reason why this phenomenon appears. By developing
and reorganizing the terms, we can show that the term ∆T (MA2,MA1) which is equal to
rMA,1,1

rMA,2,1
+ (

rMA,1,0

rMA,2,0
− rMA,1,1

rMA,2,1
)
1+b21,2
|1−b21,2|

can be re-expressed as follows:
σ2
u,1,1

σ2
u,2,1

1+(b1,1)2−2b1,1b1,2
1−(b1,2)2 if |b1,2| < 1

σ2
u,1,1

σ2
u,2,1

(1+(b1,1)2−2
b1,1
b1,2

)

(b1,2)2−1 if |b1,2| > 1

(A.125)

10See [113] for more details.
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If |b1,2| < 1, it corresponds to the power of the 1st-order MA process filtered by the
inverse filter associated to the second 1st-order MA process. In this case, the transfer
function is defined by H−12 (z) = 1

σu,2,1(1+b1,2z−1)
. Then, one just has to compute the

autocorrelation function of the filtered process for the lag equal to 0. This leads to:

rfMA,1,0 = b21,2rfMA,1,0 +
1

σ2
u,2,1

rMA,1,0 −
b1,2
σ2
u,2,1

(rMA,1,1 + rMA,1,−1)

=
1

σ2
u,2,1(1− b21,2)

(rMA,1,0 − 2b1,2rMA,1,|1|) (A.126)

By replacing in (A.126) rMA,1,τ with τ = 0, |1| by their expressions recalled in (A.21),
we retrieve 1

Ru

1+(b1,1)2−2b1,1b1,2
1−(b1,2)2 . Similar reasoning can be done for |b1,2| > 1. When

the zero associated to the 1st-order MA process is on the unit circle in the z-plane, the
inverse filter has its pole on the unit circle also. Therefore, the output of the inverse filter
tends to infinity, except when the MA processes share the same zeros. This explains the
atypical results identified for |b(l)1 | = 1.
The same reasoning is applied for ∆T (MA1,MA2).

A.6.2.5 JD between AR and MA processes

In [57], the JD between a 1st-order MA process and a 1st-order AR process with the
variances of driving processes equal to σ2

u,1,1 and σ2
u,2,1 was analyzed. The increment

satisfied:
∆JDk

(AR,MA) = −1 + 1

2

[
∆T

(MA,AR)
k +∆T

(AR,MA)
k

]
(A.127)

In (A.127), it can be shown that for k > 2:

∆T
(AR,MA)
k =

σ2
u,2,1

σ2
u,1,1

[
2a1,1b1,2 + (1 + a21,1)(1 + b21,2)

]
(A.128)

whereas one has:
∆T (MA,AR) = lim

k→+∞
∆T

(MA,AR)
k (A.129)

=



σ2
u,1,1

σ2
u,2,1(1−a21,1)

[
1

(1−b21,2)
+ 2 a1,1b1,2

(1−a1,1b1,2)(1−b21,2)

]
if |b1,2| < 1

σ2
u,1,1

σ2
u,2,1(1−a21,1)

[
1

(b21,2−1)
+ 2 a1,1/b1,2

(1−a1,1/b1,2)(1−b21,2)

]
if |b1,2| > 1

(A.130)
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When |b1,2| = 1, one has:

∆T
(MA,AR)
k =

σ2
u,1,1

σ2
u,2,1(1− a21,1)

[
2k + 3

6
+

2(a1,1b1,2)
k

k + 1
(A.131)

+
1

3

k∑
j=1

(a1,1b1,2)
j(k + 1− j)(k + 2− j)(2k + 3 + j)

(k + 1)(k + 2)

]

Note that in (A.128),∆T (AR,MA)
k corresponds to the autocorrelation function of the MA

process filtered by the inverse AR filter, for a lag equal to 0. In this case, the transfer
function is defined by (1+a1,1z−1)

σu,1,1
. Then, one just has to compute the autocorrelation

function of the filtered process for the lag equal to 0. This leads to:

rfMA,1,0 =
1

σ2
u,1,1

((1 + (a1,1)
2)rMA,1,0 + a1,1(rMA,1,1 + rMA,1,−1) (A.132)

By replacing in (A.132), rMA,1,τ with τ = 0, |1| by their expressions recalled in (A.21)
in the subsection A.3.2, we retrieve

σ2
u,2,1

σ2
u,1,1

[2a1,1b1,2 + (1 + (a1,1)
2)(1 + (b1,2)

2)].

Similarly in (A.129), limk→+∞∆T
(MA,AR)
k corresponds to the autocorrelation function

of the AR process filtered by the inverse MA filter, for a lag equal to 0. Like the previous
case, the proof consists in computing the autocorrelation function of the filtered process
for the lag equal to 0.
Once again, our interpretation makes it possible to explain the different behaviors of
the JD regarding the value of the MA parameter. Finally, the asymptotic JD increment
clearly points out the fact that the 1st-order MA process which has a zero with a unit
modulus or equivalently whose PSD is null at a specific frequency and a 1st-order AR
process whose PSD can exhibit a resonance are totally dissimilar with respect to the JD
increment.

A.6.2.6 JD between qth-order MA processes

Let us now analyze the asymptotic increment of the JD between two qth-order MA
processes. It is not necessarily possible to generalize to qth-order MA processes the
approach we followed for 1st-order MA process in [58]. This would require the expres-
sions of the inverses of matrices with 2q + 1 main and sub-diagonals. It is exactly the
same problem for ARMA processes. For all these processes, obtaining an analytical
expression of the JD, its increment, and its asymptotic increment when it is finite is not
straightforward. Thanks to the interpretation we propose, it is now easier to deduce the
asymptotic JD increment. For this purpose we propose to analyze the two following
cases:
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Firstly, q = 5. The zeros of the MA processes are set at values recalled in Table A.8.

Table A.8 Parameters of the MA processes under study

1st-process MA parameters 2nd-process MA parameters
z1,1 = 0.8ej

π
3 z1,2 = 0.8ej

π
5

z2,1 = 0.8e−j
π
3 z2,2 = 0.8e−j

π
5

z3,1 = 0.9ej
π
4 z3,2 = 0.9ej

3π
4

z4,1 = 0.9e−j
π
4 z4,2 = 0.9e−j

3π
4

z5,1 = 0.7 z5,2 = −0.7
σ2
u,1,1 = 1 σ2

u,2,1 = 2

The PSDs of both processes are given in Fig. A.14 below.
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Fig. A.14 Frequency representation of the two 5th-order MA processes

In this example, as the zeros are preliminarily defined, the MA parameters can be easily
deduced, the autocorrelation function of both MA processes can be obtained by using
(A.22) and the Toeplitz covariance matrices can also be built. As a consequence, we can
compute the theoretical JD derivative for different values of k, as well as the asymptotic
JD increment. They are given in Fig. A.15.
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Fig. A.15 JD derivative vs number of variates. The parameters of the two 5th-order
MA processes are given in table A.8

164



Using the interpretation we have presented, it is now easy to deduce the asymptotic
JD increment. We have generated a set of data (10000 samples) for both MA processes.
Then each set of data is filtered by the inverse filter associated with the other process
using the true parameters defined at the beginning of this section. The powers of the
filter outputs are computed and the asymptotic JD increment is deduced. Finally, the
average value of the asymptotic JD increment is computed over 200 realizations. It is
compared with the theoretical one obtained in Fig. A.15. The percentage of the normal-
ized error11 E is 0.25%.
Secondly, to address more general cases, Monte Carlo simulations were carried out.
1000 situations were simulated where the zeros and the variance of the driving process
of each real 5th-order MA process were uniformly randomly drawn. Note that the zeros
were necessarily complex conjugates or real. At the end of the simulations, the normal-
ized error is averaged over the whole cases. The percentage of the average normalized
error obtained is 2.45%. It confirms the interpretation we have proposed.
All this work can be easily generalized to any AR/MA or ARMA process of any order.

ARMA processes are short-memory processes. However, in some applications, long-
memory processes such as ARFIMA processes are considered. In the following, the JD
between ARFIMA processes is analyzed.

A.7 JD between ARFIMA processes based on inverse filtering interpre-
tation

A.7.1 JD between two FI white noises

A.7.1.1 Theoretical analysis of the JD between FI white noises based on inverse fil-
tering interpretation

Let us compare two FI white noises, defined by their differencing orders
{dl}l=1,2 ∈ (−1

2
, 1
2
) and their driving process variances {σ2

u,l}l=1,2.
As seen in section A.3.3.1, the lth FI white noise can be seen as a BIBO-stable IIR
filtering of a white noise, with l = 1, 2. The corresponding inverse filters are defined by
the following transfer functions:

H−1FI,l(z) =
1

σu,l
(1− z−1)dl =

(2)

+∞∑
i=0

hi,l,invz
−l (A.133)

11E = 100
∣∣∣ ∆̂JD−∆JD∆JD

∣∣∣ where ∆̂JD represents the asymptotic JD increment that is computed by
using the interpretation while ∆JD represents the theoretical asymptotic JD increment.
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Using the binomial expansion (A.38), the transfer function characterizes an IIR filter
whose impulse response is hi,l,inv. Given the D’Alembert criterion, one has:

|hi+1,l,inv|
|hi,l,inv|

=
i− dl
l + 1

< 1 (A.134)

This means that the ith inverse filter is also BIBO stable.
Let the first process be filtered by the inverse filter of the second, which is defined by
1

σu,2
(1−z−1)d2 . This amounts to filtering a white noise with a variance

σ2
u,1

σ2
u,2

by the trans-
fer function (1 − z−1)d2−d1 . Depending on the values of d1 and d2, different situations
occur. See table A.9.

Table A.9 Different cases under study

d1 ∈ (−0.5, 0) d1 ∈ (0, 0.5)

d2 ∈ (−0.5, 0)
As |d1 − d2| < 0.5, the

filter output is a FI
white noise

|d1− d2| can be smaller
or larger than 0.5

d2 ∈ (0, 0.5)
|d1− d2| can be smaller

or larger than 0.5

As |d1 − d2| < 0.5, the
filter output is a FI

white noise

Given the analysis of the JD we presented in previous papers for ARMA processes,
the difference between two consecutive JDs should converge to a constant called the
asymptotic JD increment. Based on table I, let us draw three comments :

1. If (d1, d2) ∈ (−0.5, 0), the processes to be compared are short memory. The out-
puts of the inverse filters are stationary FI white noises: the one with differencing
order equal to −|d1 − d2| is a short-memory process, whereas the other with dif-
ferencing order equal to |d1 − d2| is a long-memory process. Given (A.43), the
powers of the inverse-filter outputs for (l, l′) = (1, 2) or (l, l′) = (2, 1) are given
by:

P (l,l′) =
Γ (1− 2(dl − dl′))
Γ 2(1− (dl − dl′))

σ2
u,l

σ2
u,l′

(A.135)

2. When (d1, d2) ∈ (0, 0.5), the processes to be compared are long memory. The
inverse-filter outputs are stationary FI white noises and the same conclusions as
in the previous case can be drawn.

3. When d1 and d2 have opposite signs, |d1 − d2| can be smaller or larger than 1
2
. If

the difference is smaller than 1
2
, the same comments as in the two previous cases

can be drawn. If it is larger, one of the filter outputs should correspond to a FI
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white noise with an differencing order larger than 1
2
. It is a non-stationary process

with an infinite variance [41].

In what follows, we propose to give some illustrations on the JD between FI white
noises, by looking at the evolution of the JD with respect to the number of variates
k. Then, we analyze the influences of the process parameters on the asymptotic JD
increment ∆JD(FI1,F I2). We also check if the above theoretical analysis matches the
simulation results.

A.7.1.2 Illustrations and comments

JD between two FI white noise processes
Let us study the evolutions of the JD and the JD increment with respect to the variate
number, through four different situations depicted in Table A.10.

Table A.10 Parameters of the FI white noises under study

1st-process
parameters

2nd-process
parameters

Figures

Two short-memory FI
processes

σ2
u,1 = 15

d1 = −0.4

σ2
u,2 = 5

d2 = −0.1,
−0.2,−0.3

Fig. A.16a and
Fig. A.16b

Two long-memory FI
processes

σ2
u,1 = 10
d1 = 0.4

σ2
u,2 = 5

d2 = 0.2,
0.25, 0.3

Fig. A.17a and
Fig. A.17b

Long-memory and
short-memory FI
processes, with
|∆d| < 1

2

σ2
u,1 = 5
d1 = 0.1

σ2
u,2 = 15

d2 = −0.16,
−0.12,−0.08

Fig. A.18a and
Fig. A.18b

Long-memory and
short-memory FI
processes, with

∆d > 1
2

σ2
u,1 = 5
d1 = 0.4

σ2
u,2 = 15

d2 = −0.4
Fig. A.20a and

Fig. A.20b

In Fig. A.16a, Fig. A.17a and Fig. A.18a, the JDs tend to have constant slopes. In
Fig. A.16b, Fig. A.17b and Fig. A.18b, the JD derivative (or increment) converges to
the asymptotic JD increment ∆JD(FI1,F I2) obtained with (A.111) and (A.135).
This illustrates the interpretation based on inverse filtering with stationary FI white
noises. Based on the various simulations we conducted, the same types of results are
obtained.

By combining (A.111) and (A.135), it can be shown that ∆JD(FI1,F I2) is a function of
two variables ∆d = d1 − d2 and ρ =

σ2
u,1

σ2
u,2

. Let us now study their influences on the
asymptotic JD increment.
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1. ∆JD(FI1,F I2)(ρ,∆d) = ∆JD(FI1,F I2)(1
ρ
,−∆d). See also Fig. A.19.

2. For a given ∆d, the minimum value of ∆JD(FI1,F I2) is obtained when
ρ = Γ (1−∆d)

Γ (1+∆d)

√
Γ (1+2∆d)
Γ (1−2∆d) .

3. For a given ρ, by deriving (A.111) with respect to ∆d and by taking advantage
of the properties of the digamma function, defined as the logarithmic derivative
of the gamma function, it can also be shown that ∆JD(FI1,F I2) decreases when
∆d ∈ (−1

2
, 0] and increases when ∆d ∈ [0, 1

2
). Its minimum is attained when

∆d = 0.

4. When ρ is equal to 1, ∆JD(FI1,F I2) is also a symmetric function with respect to
∆d.
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(a) Evolution of the JDs vs the variate number k

(b) Convergence of the JD derivative towards ∆JD(FI1,F I2)

Fig. A.16 Evolutions of JDs and JD derivatives between two short-memory FI white
noises vs number of variates k
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(a) Evolution of the JDs vs the variate number k

(b) Convergence of the JD derivative towards ∆JD(FI1,F I2)

Fig. A.17 Evolutions of JDs and JD derivatives between two long-memory FI white
noises vs number of variates k
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(a) Evolution of the JDs vs the variate number k

(b) Convergence of the JD derivative towards ∆JD(FI1,F I2)

Fig. A.18 Evolutions of JDs and JD derivatives between long-memory FI and short-
memory FI white noises vs number of variates k

Fig. A.19 Asymptotic increment of the JD between FI white noises as a function of
∆d = d1 − d2 and ρ = σ12

σ22
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To end up this part, let us illustrate the comparison between two stationary ergodic
FI white noise p rocesses when ∆d > 1

2
. In this case, the asymptotic JD increment

should go to infinity since the power of a FI(∆d) process is infinite when ∆d > 1
2
. In

Fig. A.20a and Fig. A.20b, we present the JD with respect to the number of the variates
k and the JD derivative respectively. This latter goes to infinity when k increases. This
illustrates the inverse filtering interpretation we gave for the various cases.

(a) Evolution of the JD vs the variate number k

(b) Evolution of the JD derivative vs the variate number k

Fig. A.20 Evolutions of JD and JD derivatives between long-memory FI and short-
memory FI white noises vs number of variates k, |∆d| > 0.5

In the following, let us analyze the JD between two unit-power FI prcesses.

JD between unit-power FI white noises
As suggested in [44], we now propose to compare two unit-power FI white noises, de-
noted as {yn,l} with l = (1, 2), in order to study the influences of d1 and d2 on the value
of the asymptotic JD increment ∆JD(FI1,F I2). As seen in Fig. A.21a which depicts the
normalization to be done, both unit-power FI white noises {yn,l}l=1,2 no longer depend
on {σ2

u,l}l=1,2. Then, following the processing presented in Fig. A.21b, the power Pm,n
of the inverse-filter output t(m,n)k , defined in Fig. A.21, satisfies:
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P (FIl,F Il′ ) =
Γ 2(1− dl)Γ (1− 2dl′)

Γ 2(1− dl)Γ (1− 2dl′)
.
Γ (1− 2(dl − dl′))
Γ 2(1− (dl − dl′))

(A.136)

Given (A.111) and (A.136), the asymptotic JD increment ∆JD(FI1,F I2) between two
unit-power FI white noises is a function of d1 and d2 only. In addition, one has:

∆JD(FI1,F I2)(d1, d2) = ∆JD(FI1,F I2)(d2, d1) (A.137)

∆JD(FI1,F I2)(−d1,−d2) 6= ∆JD(FI1,F I2)(d1, d2) (A.138)

When d1 and d2 both tend to 0, 0.5 or −0.5, P (FI1,F I2) and P (FI2,F I1) tend to 1 ac-
cording to (A.136). Therefore, ∆JD(FI1,F I2) tends to 0. When d1 is positive (resp.
negative) and tends to 0, P (FI1,F I2) goes to infinity if d2 tends to 0.5 (resp. −0.5) since
lim
x→0+

Γ (x) = +∞. Therefore, ∆JD(FI1,F I2) goes to infinity. For the other cases,

∆JD(FI1,F I2) takes strictly positive values. See Fig. A.22c. The influences of d1 and d2
on the asymptotic JD increment are presented in Fig. A.22a (resp. Fig. A.22b) which
points out these properties.

(a) Power normalization of the lth FI white noise, l = 1, 2

(b) Inverse filtering to deduce the JD asymptotic increment

Fig. A.21 Steps to follow to compare two unit-power FI white noises
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(a) ∆JD(FI1,F I2) when (d1, d2) ∈ (0, 0.5)× (0, 0.5)

(b) ∆JD(FI1,F I2) when (d1, d2) ∈ (−0.5, 0)× (−0.5, 0)

(c) Zoom on ∆JD(FI1,F I2) when (d1, d2) ∈ (0, 0.3)× (0, 0.3)

Fig. A.22 Asymptotic JD increment as a function of d1 and d2
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A.7.2 JD between two ARFIMA processes

A.7.2.1 Theoretical analysis of the JD between ARFIMA(p, d, q) processes based
on inverse filtering interpretation

As it was done with FI white noises in the previous section, let us now investigate the
validation of the inverse-filtering interpretation. For this purpose, let us consider two
ARFIMA processes defined by their orders (pl, dl, ql)l=1,2 with {dl}l=1,2 ∈ (−1

2
, 1
2
),

their driving-process variances {σ2
u,l}l=1,2, their poles {pj,l}j=1,...,pl , and their zeros

{zj,l}j=1,...,ql with l = 1, 2.
Filtering the first ARFIMA process by the inverse filter of the second amounts to filter-
ing a white noise with a variance

σ2
u,1

σ2
u,2

by the following transfer function:

Hequ(z) = (1− z−1)d2−d1× (A.139)∏q1
l=1 (1− zl,1z−1)∏p1
l=1 (1− pl,1z−1)

p2∏
l=1

(1− pl,2z−1)
q2∏
l=1

H−1l,2 (z)

where {H−1l,2 (z)}l=1,...,q2 are defined by following the rules we presented in (A.62)-
(A.64) applied to the zeros of the second process.
Depending on the values of d1 and d2, different situations occur and are summarized in
table A.11.

Table A.11 Different cases under study

d1 ∈ (−0.5, 0) d1 ∈ (0, 0.5)

d2 ∈ (−0.5, 0)
As |d1 − d2| < 0.5, the

filter output is a
ARFIMA process

|d1− d2| can be smaller
or larger than 0.5

d2 ∈ (0, 0.5)
|d1− d2| can be smaller

or larger than 0.5

As |d1 − d2| < 0.5, the
filter output is a

ARFIMA process

1. Let us look at the outputs of the two inverse filters when (d1, d2) ∈ (−0.5, 0)
when the input are the ARFIMA processes to be compared. They are also
ARFIMA processes: one is an ARFIMA(p1 + q2, d1 − d2, q1 + p2), whereas
the other is ARFIMA(p2 + q1, d2− d1, q2 + p1). In addition, they are stationary
since |d1 − d2| < 0.5. More particularly, the one with a differencing order equal
to−|d1−d2| is a short-memory process whereas the other with a differencing or-
der equal to |d1 − d2| is a long-memory process. In this case, given (A.139),
the inverse-filter output power P (ARFIMA1,ARFIMA2), with (l, l′) = (1, 2) or
(l, l′) = (2, 1), can be seen as the power of anARFIMA(pl+ql′ , dl−dl′ , ql+pl′)
process where the variance of the driving process is

σ2
u,l

σ2
u,l′

.
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It is given by:

P (ARFIMAl,ARFIMAl′ ) =
σ2
u,l

σ2
u,l′
× (A.140)

ql+pl′∑
i=−(ql+pl′ )

pl+ql′∑
s=1

φl,l
′
(i)εl,l

′

s C(dl − dl′ , pl + ql′ + i, ps)

where {ps}s=1,...pl+ql′
are the poles of the ARFIMA(pl + ql′ , dl − dl′ , ql + pl′)

process, φm,n(i) corresponds to the value of the autocorrelation function for lag l
of the MA part defined from the zeros of the ARFIMA(pl+ ql′ , dl−dl′ , ql+ pl′)
process, and {εl,l′s }s=1,...pl+ql′

is similarly defined as in (A.55) but adjusted to the
poles {ps}s=1,...pl+ql′

. Then the asymptotic JD increment can be deduced by using
(A.111).

2. When (d1, d2) ∈ (0, 0.5), the processes to be compared are long-memory
ARFIMA processes. The inverse-filter outputs are stationary ARFIMA processes
and the same conclusions as in the previous case can be drawn.

3. When d1 and d2 have opposite signs, |d1 − d2| can be smaller or larger than 1
2
. If

the difference is smaller than 1
2
, the same comments as in the two previous cases

can be drawn. If it is larger than 1
2
, one of the filter outputs should correspond

to an ARFIMA process with an differencing order larger than 1
2
. It is a non-

stationary process with an infinite variance.

A.7.2.2 Illustrations and comments

Let us now study the evolutions of the JD and the JD increment with respect to the
variate number between two real ARFIMA(1, dl, 1) processes. For this purpose, three
types of simulations were done.

1. In the first one, two short-memory ARFIMA(1, dl, 1) processes are compared.

2. In the second one, the case of two long-memory ARFIMA(1, dl, 1) processes is
addressed.

3. As for the last illustration, we compare a short-memory ARFIMA(1, d1, 1) with
a long-memory ARFIMA(1, d2, 1) process.

Let us study the influence of the type of the ARFIMA(1, dl, 1) processes on the con-
vergence of the JD derivative towards the asymptotic JD increment. The parameters of
the processes in the three cases are given in Table. A.12. In each illustration, d2 takes
three values.
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Table A.12 Parameters of the ARFIMA processes under study

1st-process
parameters

2nd-process
parameters

Figures

Two short-memory
ARFIMA processes

σ2
u,1 = 15

z1,1 = −0.6
p1,1 = 0.2
d1 = −0.3

σ2
u,2 = 5

z1,2 = 0.4
p1,2 = −0.7
d2 = −0.1,
−0.15,−0.2

Fig. A.23a and
Fig. A.23b

Two long-memory
ARFIMA processes

σ2
u,1 = 10
z1,1 = 0.5
p1,1 = 0.3
d1 = 0.4

σ2
u,2 = 20
z1,2 = 0.2
p1,2 = 0.6

d2 = 0.1, 0.2, 0.3

Fig. A.24a and
Fig. A.24b

Long-memory and
short-memory

ARFIMA processes,
|∆d| < 1

2

σ2
u,1 = 10
z1,1 = 0.4
p1,1 = 0.7
d1 = 0.1

σ2
u,2 = 25
z1,2 = 0.6
p1,2 = 0.2
d2 = −0.15,
−0.1,−0.05

Fig. A.25a and
Fig. A.25b

Long-memory and
short-memory

ARFIMA processes,
∆d > 1

2

σ2
u,1 = 5

z1,1 = 0.4
p1,1 = 0.7
d1 = 0.0.45

σ2
u,2 = 15
z1,2 = 0.6
p1,2 = 0.2
d2 = −0.4,
−0.1,−0.05

Fig. A.26a and
Fig. A.26b

In Fig. A.23a, Fig. A.24a and Fig. A.25a, the different JDs tend to have constant slopes.
In Fig. A.23b, Fig. A.24b, and Fig. A.25b, the JD derivative converges to the asymptotic
JD increment ∆JD(ARFIMA1,ARFIMA2) obtained with (A.111) and (A.140).
To end up this part, we will compare two stationary ergodic ARFIMA processes when
∆d > 1

2
as we did for the FI white noise processes. In Fig. A.26a and Fig. A.26b, the

JD derivative goes to infinity when k increases. This again validates the inverse filtering
interpretation.
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(a) Evolution of the JDs vs the variate number k

(b) Convergence of the JD derivative towards ∆JD(ARFIMA1,ARFIMA2)

Fig. A.23 Evolutions of JDs and JD derivatives between two short-memoryARFIMA
processes vs number of variates k

(a) Evolution of the JDs vs the variate number k

(b) Convergence of the JD derivative towards ∆JD(ARFIMA1,ARFIMA2)

Fig. A.24 Evolutions of JDs and JD derivatives between two long-memory ARFIMA
processes vs number of variates k
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(a) Evolution of the JDs vs the variate number k

(b) Convergence of the JD derivative towards ∆JD(ARFIMA1,ARFIMA2)

Fig. A.25 Evolutions of JDs and JD derivatives between long-memory ARFIMA and
short-memory ARFIMA processes vs number of variates k, |∆d| < 1

2

(a) Evolution of the JD vs the variate number k

(b) Evolution of the JD vs the variate number k

Fig. A.26 Evolutions of JD and JD derivatives between long-memory ARFIMA and
short-memory ARFIMA white noises vs number of variates k, ∆d > 1

2
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A.7.3 JD between ARFIMA and ARMA processes

In this last section, we propose to study the evolution of the JD and the JD increment
versus the number of variates between a real ARFIMA(1, dl, 1) process and a real
ARMA(1, 1) process. For this purpose, two types of simulations were done. In the first
one, a real ARMA(1, 1) process is compared with a short-memoryARFIMA(1, dl, 1)

process. As for the second one, a realARMA process is compared with a long-memory
ARFIMA(1, dl, 1) process. The parameters of processes under study are given in
Table. A.13.

Table A.13 Parameters of the ARMA and ARFIMA processes under study

ARMA-process
parameters

ARFIMA-
process

parameters
Figures

Short-memory
ARFIMA and

ARMA process

σ2
u,1 = 10
z1,1 = 0.4
p1,1 = 0.55

σ2
u,2 = 25
z1,2 = 0.6
p1,2 = 0.2
d2 = −0.2,
−0.15,−0.1

Fig. A.27a and
Fig. A.27b

Long-memory
ARFIMA and

ARMA process

σ2
u,1 = 15
z1,1 = 0.4
p1,1 = −0.3

σ2
u,2 = 6

z1,2 = 0.7
p1,2 = 0.35
d2 = 0.25,
0.2, 0.15

Fig. A.28a and
Fig. A.28b

In Fig. A.27a and Fig. A.28a, the different JDs tend to have constant slopes.
In Fig. A.27b and Fig. A.28b, the JD derivative converges to the asymptotic JD incre-
ment ∆JD(ARFIMA,ARMA) obtained with (A.111) and (A.140).
Finally, if our purpose was that we compare an ARMA(1, 1) process with an
ARFIMA(1, d1, 1) process when they share the poles and zeros. In this case, deriving
the asymptotic JD increment in (A.111) amounts to computing the power of a FI(d1)
process. The influences of d1 and

σ2
u,1

σ2
u,2

on the asymptotic JD increment are similar to
that obtained in Fig. A.19. The only difference is that ∆d is replaced by -d1.
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(a) Evolution of the JDs vs the variate number k

(b) Convergence of the JD derivative towards ∆JD(ARFIMA,ARMA)

Fig. A.27 Evolutions of JDs and JD derivatives between short-memory ARFIMA
process and ARMA process vs number of variates k

(a) Evolution of the JDs vs the variate number k

(b) Convergence of the JD derivative towards ∆JD(ARFIMA,ARMA)

Fig. A.28 Evolutions of JDs and JD derivatives between long-memory ARFIMA
process and ARMA process vs number of variates k
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A.7.4 Some comments for the practitioner to apply this theory in practical cases

Interested users would like to make use of this theory in practical cases. In this subsec-
tion, we propose some clues. In the field of change detection, to compare two segments,
assumed to be of size N , by using the type of analysis we presented above, the covari-
ance matrices for both segments have first to be estimated for two consecutive sizes
k − 1 and k by using a robust estimator. The JD are then computed for both sizes and
their difference is computed. Once smoothed over time, the difference between both JD
makes it possible to have an idea of the statistical change in the signal under study.
Remark 1: the selection of the size k corresponds to a compromise. On the one hand,
k must be sufficiently large so that the difference between the estimated JD can be con-
sidered as an approximation of the asymptotic JD increment. On the other hand, it must
be much smaller than the number of samples N since the estimates of the covariance
matrices must be as accurate as possible.
Remark 2: the estimations of the differencing orders {dl}l=1,2 can also be of interest
and can be useful to help the practitioner to give an interpretation of the results. They
are related to the Hurst exponents, denoted as {Hl}l=1,2 = {dl}l=1,2 +

1
2
. Different

families of methods have been proposed in the literature to estimate them:

1. The time-domain estimators gather the so-called rescaled range analysis, the ag-
gregated variance method, the absolute-value method and the variance of residu-
als method [114].

2. The frequency-domain estimators consist in analyzing the power spectral density
of the time series [112]. This is for instance the case of the local Whittle method,
the periodogram method and the wavelet-based method.

3. The detrended fluctuations analysis (DFA) [88] and some variants such as the
adaptive fractal analysis (AFA) [96], the detrended moving average (DMA)
method either centered or backward, the fluctuation analysis (FA) [106] have
also shown good performance, especially to estimate the Hurst exponent of a
pure mono-fractal time series. It has been used in various applications to analyze
electroencephalograms (EEG) [102] and electrocardiograms (ECG) [90] [93].

In other applications where the purpose is classification, the difference between the
estimated differencing orders and the difference between two consecutive JDs that have
been estimated as mentioned above can be considered as features for the classification.
K-nearest neighbors (KNN) or support vector machine support vector machine (SVM)
can then be used.
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A.8 Conclusions and perspectives

The following conclusions and perspectives can be drawn:

1. We compared noisy sums of complex exponentials (NSCE) by means of the
JD. The difference between two consecutive JD was analyzed. In this case, the
asymptotic JD increment and the convergence speed towards the asymptotic JD
increment must be taken into account by the practitioner to draw conclusions
about the similarity between the processes under study. Besides, we could a

priori guess that the JD between an NSCE process, defined by the normalized
angular frequencies of its complex exponentials, and an AR process which has
sharper and sharper resonances in its spectrum at the same normalized angular
frequencies becomes smaller and smaller. Nevertheless, in practice, the results
that can be obtained do not necessarily confirm this statement as the JD also takes
into account the powers of the processes to be compared.

2. Without developing tedious calculations, our interpretation of the asymptotic JD
increment based on inverse filtering makes it possible to explain the atypical cases
that were identified in previous works and for which the asymptotic JD increment
was not finite. The results we present in this appendix allow us to generalize our
analysis to the JD between AR processes, ARMA, MA, etc. Now, we are able
to prove that all ARMA processes of any order and whose PSD is null for one
or more frequencies can give rise to non-finite asymptotic JD increments. More-
over, there are now several ways to compute the JD: considering the definition or
taking advantage of the interpretation we propose in this paper, i.e. using inverse
filtering.

3. We studied the JD between ergodic w.s.s. ARFIMA processes. We have shown
that the derivative of JD with respect to the number of variates k tends to a con-
stant when the difference between the differencing order is absolutely smaller
than 0.5. Moreover, we have analyzed the influence of the process parameters on
the value of the asymptotic JD increment. Finally, it was shown that the interpre-
tation of the asymptotic JD increment based on inverse filtering is also valid for
these processes.

4. It could be of interest to use this type of approach in various applications, from
biomedical applications to radar applications when analyzing the statistical prop-
erties of the clutter. In the latter case, it could be of interest to see whether it is
homogeneous or not. This can be done by looking at secondary data. This type
of analysis could be a preamble to estimate the correlation matrix of the clutter
that would be used for space-time adaptive processing (STAP).
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