, Sélection des alcynes à synthétiser par modélisation moléculaire

, Synthèse des alcynes fonctionnalisés avec le mime du NADPH

, Evaluation biologique des alcynes sur la DXR purifiée d'E

, Synthèse de triazoles bisubstrats : de potentiels inhibiteurs de la DXR

K. Bloch and D. Rittenberg, The Biological Formation of Cholesterol from Acetic Acid, J. Biol. Chem, vol.143, pp.297-299, 1942.

K. E. Bloch, Nobel Lecture: The Biological Synthesis of Cholesterol, 1964.

B. W. Agranoff, H. Eggerer, U. Henning, and F. Lynen, Biosynthesis of Terpenes : Isopentenyl Pyrophosphates Isomerase, J. Biol. Chem, vol.235, issue.2, pp.326-333, 1960.

U. Henning and F. Lynen, Biosynthesis of Terpenes. V. Formation of 5-Pyrophosphomevalonic Acid by Phosphomevalonic Kinase, Arch. Biochem. Biophys, vol.83, pp.259-267, 1959.

H. M. Miziorko, Enzymes of the Mevalonate Pathway of Isoprenoid Biosynthesis, Arch. Biochem. Biophys, vol.505, pp.131-143, 2011.

G. Flesch and M. Rohmer, Prokaryotic Hopanoids: The Biosynthesis of the Bacteriohopane Skeleton. Formation of Isoprenic Units from Two Distinct Acetate Pools and a Novel Type of Carbon/carbon Linkage between a Triterpene and D-Ribose, Eur. J. Biochem, vol.175, pp.405-411, 1988.

M. Rohmer, A Mevalonate-Independent Route to Isopentenyl Diphosphate, Compr. Nat. Prod. Chem. Isoprenoids Incl. steroids carotenoids, vol.2, issue.2, pp.45-68, 1999.

M. Rohmer, M. Seemann, S. Horbach, S. Bringer-meyer, and H. Sahm, Glyceraldehyde 3-Phosphate and Pyruvate as Precursors of Isoprenic Units in an Alternative Non-Mevalonate Pathway for Terpenoid Biosynthesis, J. Am. Chem. Soc, vol.118, issue.11, pp.2564-2566, 1996.

M. Schwarz, D. G. Arigoni, and . Biosynthesis, Compr. Nat. Prod. Chem. Isoprenoids Incl. steroids carotenoids, pp.367-400, 1999.

S. Heuston, M. Begley, C. G. Gahan, and C. Hill, Isoprenoid Biosynthesis in Bacterial Pathogens. Microbiology, vol.158, pp.1389-1401, 2012.

R. Putra, S. Disch, A. Bravo, J. M. Rohmer, and M. , Distribution of Mevalonate and Glyceraldehyde 3-Phosphate/pyruvate Routes for Isoprenoid Biosynthesis in Some Gram-Negative Bacteria and Mycobacteria, FEMS Microbiol. Lett, vol.164, pp.169-175, 1998.

T. Kuzuyama and H. Seto, Diversity of the Biosynthesis of the Isoprene Units, Nat. Prod. Rep, vol.20, pp.171-183, 2003.

M. Rohmer, C. Grosdemange-billiard, M. Seemann, and D. Tritsch, Biosynthesis as a Novel Target for Antibacterial and Antiparasitic Drugs, Curr. Opin. Investig. Drugs, vol.5, issue.2, pp.154-162, 2004.

T. Masini and A. K. Hirsch, Development of Inhibitors of the 2C-Methyl-D-Erythritol 4-Phosphate (MEP) Pathway Enzymes as Potential Anti-Infective Agents, J. Med. Chem, vol.57, pp.9740-9763, 2014.

G. A. Sprenger, U. Schörken, T. Wiegert, S. Grolle, A. A. De-graaf et al.,

T. P. Begley, S. Bringer-meyer, and H. Sahm, Identification of a Thiamin-Dependent Synthase in Escherichia Coli Required for the Formation of the 1-Deoxy-D-Xylulose 5-Phosphate Precursor to Isoprenoids, Thiamin, and Pyridoxol, Proc. Natl. Acad. Sci, vol.94, pp.12857-12862, 1997.

L. M. Lois, N. Campos, S. R. Putra, K. Danielsen, M. Rohmer et al., Cloning and Characterization of a Gene from Escherichia coli Encoding a Transketolase-like Enzyme That Catalyzes the Synthesis of D-1-Deoxyxylulose 5-Phosphate, a Common Precursor for Isoprenoid, Thiamin, and Pyridoxol Biosynthesis, Proc. Natl. Acad. Sci. USA, vol.95, pp.2105-2110, 1998.

D. E. Cane, Y. Hsiung, J. A. Cornish, J. K. Robinson, and I. D. Spenser, Biosynthesis of Vitamin B6 : The Oxidation of 4-(Phosphohydroxy)-L-Threonine by PdxA, J. Am. Chem. Soc, vol.120, pp.1936-1937, 1998.

D. E. Cane, S. Du, J. K. Robinson, Y. Hsiung, and I. D. Spenser, Biosynthesis of Vitamin B6 : Enzymatic Conversion of 1-Deoxy-D-Xylulose-5-Phosphate to Pyridoxol Phosphate, J. Am. Chem. Soc, vol.121, pp.7722-7723, 1999.

J. Mao, H. Eoh, R. He, Y. Wang, B. Wan et al., Structure-Activity Relationships of Compounds Targeting Mycobacterium tuberculosis 1-Deoxy-D-Xylulose 5-Phosphate Synthase, Bioorg. Med. Chem. Lett, vol.18, pp.5320-5323, 2008.

C. Mueller, J. Schwender, J. Zeidler, and H. K. Lichtenthaler, Properties and Inhibition of the First Two Enzymes of the Non-Mevalonate Pathway of Isoprenoid Biosynthesis, Biochem. Soc. Trans, vol.28, issue.6, p.792, 2000.

Y. Matsue, H. Mizuno, T. Tomita, T. Asami, M. Nishiyama et al., The Herbicide Ketoclomazone Inhibits 1-Deoxy-D-Xylulose 5-Phosphate Synthase in the 2-C-Methyl-D-Erythritol 4-Phosphate Pathway and Shows Antibacterial Activity against Haemophilus influenzae, J. Antibiot, vol.63, pp.583-588, 2010.

D. Hayashi, N. Kato, T. Kuzuyama, Y. Sato, and J. Ohkanda, Antimicrobial N-(2-Chlorobenzyl)-Substituted Hydroxamate Is an Inhibitor of 1-Deoxy-D-Xylulose 5-Phosphate Synthase, Chem. Commun, issue.49, pp.5535-5537, 2013.

L. A. Brammer and C. F. Meyers, Revealing Substrate Promiscuity of 1-Deoxy-D-Xylulose 5-Phosphate Synthase, Org. Lett, issue.20, pp.4748-4751, 2009.

S. Rosa, L. Charon, K. Danielsen, C. Pale-grosdemange, L. Lois et al., 5-Hydroxypentane-2,3-Dione (Laurencione), a Bacterial Metabolite of 1-Deoxy-D-Threo-Pentulose, Tetrahedron Lett, vol.39, pp.6185-6188, 1998.

J. M. Chalovich and E. Eisenberg, ChemBioChem, vol.2013, issue.11, pp.1309-1315

J. M. Smith, R. J. Vierling, and C. F. Meyers, Selective Inhibition of E. coli 1-Deoxy-D-Xylulose-5-Phosphate Synthase by Acetylphosphonates, Med. Chem. Commun, vol.2012, issue.1, p.65

J. Smith,

R. J. Vierling, M. L. Kuhn, W. F. Anderson, A. T. Koppisch, and C. L. Meyers, Targeting DXP Synthase in Human Pathogens: Enzyme Inhibition and Antimicrobial Activity of Butylacetylphosphonate, J. Antibiot, vol.67, pp.77-83, 2014.

T. Masini, J. Pilger, B. S. Kroezen, B. Illarionov, P. Lottman et al., Chemical Science DXS Guided by Spin-Diffusion-Based NMR spectroscopy, Chem. Sci, vol.5, pp.3543-3551, 2014.

L. M. Eubanks and C. D. Poulter, Rhodobacter Capsulatus 1-Deoxy-D-Xylulose 5-Phosphate Synthase : Steady-State Kinetics and Substrate Binding, Biochemistry, vol.42, pp.1140-1149, 2003.

S. Takahashi, T. Kuzuyama, H. Watanabe, and H. Seto, A 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase Catalyzing the Formation of 2-C-Methyl-D-Erythritol 4-Phosphate in an Alternative Nonmevalonate Pathway for Terpenoid Biosynthesis, Proc. Natl. Acad. Sci, vol.95, pp.9879-9884, 1998.

S. Yajima, K. Hara, D. Iino, Y. Sasaki, T. Kuzuyama et al., Structure of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase in a Quaternary Complex with a Magnesium Ion, NADPH and the Antimalarial Drug Fosmidomycin, Acta Cryst, vol.63, pp.466-470, 2007.

F. Krebs, Etudes in Silico et Expérimentale de La DXR et Synthèse de D-et L-GAP Énantiomériquement Purs, 2016.

M. Sweeney, A. Lange, R. Fernandes, R. P. Schulz, H. Dale et al., The Crystal Structure of E.coli 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase in a Ternary Complex with the Antimalarial Compound Fosmidomycin and NADPH Reveals a Tight-Binding Closed Enzyme Conformation, J. Mol. Biol, vol.345, issue.1, pp.115-127, 2005.

K. Reuter, S. Sanderbrand, H. Jomaa, J. Wiesner, I. Steinbrecher et al., Crystal Structure of 1-Deoxy-D -Xylulose-5-Phosphate Reductoisomerase , a Crucial Enzyme in the Non-Mevalonate Pathway of Isoprenoid Biosynthesis, J. Biol, vol.277, issue.7, pp.5378-5384, 2002.

S. Ricagno, S. Grolle, S. Bringer-meyer, H. Sahm, Y. Lindqvist et al., Crystal Structure of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase from Zymomonas mobilis at 1.9-Å Resolution, Biochim. Biophys. Acta, vol.1698, pp.37-44, 2004.

L. M. Henriksson, C. Björkelid, S. L. Mowbray, and T. Unge, The 1.9 Å Resolution Structure of Mycobacterium tuberculosis 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, a Potential Drug Target, Acta Cryst, vol.62, pp.807-813, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00670601

L. M. Henriksson, T. Unge, J. Carlsson, J. Aqvist, S. L. Mowbray et al., Structures of Mycobacterium tuberculosis 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase Provide New Insights into Catalysis, J. Biol. Chem, issue.27, pp.19905-19916, 2007.

A. S. Murkin, K. A. Manning, and S. A. Kholodar, Mechanism and Inhibition of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase, Bioorg. Chem, vol.57, pp.171-185, 2014.

S. Yajima, Structure of 1-Deoxy-D-Xylulose Reductoisomerase Complexed with Cofactors : Implications Flexible Loop Movement upon Substrate, J. Biochem, vol.131, pp.313-317, 2002.

J. F. Hoeffler, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Isoprenoid Biosynthesis via the Methylerythritol Phosphate Pathway. Mechanistic Investigations of the 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, Eur. J. Biochem, vol.269, pp.4446-4457, 2002.

D. T. Fox and C. D. Poulter, Synthesis and Evaluation of 1-Deoxy-D-Xylulose 5-Phosphoric Acid Analogues as Alternate Substrates for Methylerythritol Phosphate Synthase, J. Org. Chem, vol.70, 1978.

D. T. Fox and C. D. Poulter, Mechanistic Studies with 2-C-Methyl-D-Erythritol 4-Phosphate Synthase from Escherichia coli, Biochemistry, vol.44, pp.8360-8368, 2005.

U. Wong and R. J. Cox, The Chemical Mechanism of D-1-Deoxyxylulose-5-Phosphate Reductoisomerase from Escherichia coli, Angew. Chem. Int. Ed, vol.46, issue.26, pp.4926-4929, 2007.

J. W. Munos, X. Pu, S. O. Mansoorabadi, H. J. Kim, and H. W. Liu, A Secondary Kinetic Isotope Effect Study of the 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase-Catalyzed Reaction: Evidence for a Retroaldol-Aldol Rearrangement, J. Am. Chem. Soc, vol.131, pp.2048-2049, 2009.

P. J. Proteau, Y. H. Woo, R. T. Williamson, and C. Phaosiri, Stereochemistry of the Reduction Step Mediated by Recombinant 1-Deoxy-D-Xylulose 5-Phosphate Isomeroreductase, Org. Lett, issue.6, pp.921-923, 1999.

D. Arigoni, J. L. Giner, S. Sagner, J. Wungsintaweekul, M. H. Zenk et al., Stereochemical Course of the Reduction Step in the Formation of 2-C-Methylerythritol from the Terpene Precursor 1-Deoxyxylulose in Higher Plants, Chem. Commun, pp.1127-1128, 1999.

T. Radykewicz, F. Rohdich, J. Wungsintaweekul, S. Herz, K. Kis et al., Biosynthesis of Terpenoids : 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase from Escherichia coli Is a Class B Dehydrogenase, FEBS Lett, vol.465, pp.157-160, 2000.

C. Phaosiri and P. J. Proteau, Substrate Analogs for the Investigation of Deoxyxylulose 5-Phosphate Reductoisomerase Inhibition: Synthesis and Evaluation, Bioorg. Med. Chem. Lett, vol.14, pp.5309-5312, 2004.

A. Wong, J. W. Munos, V. Devasthali, K. A. Johnson, and H. W. Liu, Study of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase: Synthesis and Evaluation of Fluorinated Substrate Analogues, Org. Lett, vol.6, issue.20, pp.3625-3628, 2004.

G. Hirsch, C. Grosdemange-billiard, D. Tritsch, and M. Rohmer, 3R,4S)-3,4,5-Trihydroxy-4-Methylpentylphosphonic Acid, an Isosteric Phosphonate Analogue of 2-C-Methyl-D-Erythritol 4-Phosphate, a Key Intermediate in the New Pathway for Isoprenoid Biosynthesis, Tetrahedron Lett, vol.45, issue.3, pp.519-521, 2004.

O. Meyer, C. Grosdemange-billiard, D. Tritsch, and M. Rohmer, Synthesis of ( 3 R , 4 S ) -3 , 4-Dihydroxy-5-Oxohexylphosphonic Acid , an Isosteric Analogue of 1-Deoxy-D -Xylulose 5-Phosphate , the Substrate of the 1-Deoxy-D -Xylulose 5-Phosphate Reducto-Isomerase, Org. Biomol. Chem, vol.1, pp.4367-4372, 2003.

J. R. Walker and C. D. Poulter, Synthesis and Evaluation of 1-Deoxy-D -Xylulose 5-Phosphate Analogues as Chelation-Based Inhibitors of Methylerythritol Phosphate Synthase, J. Org. Chem, vol.70, pp.9955-9959, 2005.

S. B. Richard, M. E. Bowman, W. Kwiatkowski, I. Kang, C. Chow et al., Structure of 4-Diphosphocytidyl-2-C-Methylerythritol Synthetase Involved in Mevalonate-Independent Isoprenoid Biosynthesis, Nat. Struct. Biol, vol.8, issue.7, pp.641-648, 2001.

L. E. Kemp, C. S. Bond, and W. Hunter, Structure of a Tetragonal Crystal Form of Escherichia coli 2-C-Methyl-D-Erythritol 4-Phosphate Cytidylyltransferase, Acta Crystal. -Sect. D Biol. Crystallogr, vol.59, pp.607-610, 2003.

B. Richard, A. M. Lillo, C. N. Tetzlaff, M. E. Bowman, J. P. Noel et al., Kinetic Analysis of Escherichia Coli 2-C-Methyl-D-Erythritol-4-Phosphate Cytidyltransferase, Wild Type and Mutants, Reveals Roles of Active Site Amino, Biochemistry, vol.43, pp.12189-12197, 2004.

C. Bjo, L. M. Henriksson, A. L. Stern, and T. Unge, Structural and Functional Studies of Mycobacterial IspD Enzymes. Acta Crystal, pp.403-414, 2011.

T. Masini, B. S. Kroezen, and A. K. Hirsch, Druggability of the Enzymes of the Non-Mevalonate-Pathway, Drug Discov. Today, vol.2013, pp.1-7

A. M. Lillo and C. N. Tetzlaff, Functional Expression and Characterization of EryA , the Erythritol Kinase of Brucella abortus, and Enzymatic Synthesis of L-Erythritol-4-Phosphate, Bioorg. Med. Chem. Lett, vol.13, pp.737-739, 2003.

M. C. Witschel, H. W. Höffken, M. Seet, L. Parra, T. Mietzner et al., Inhibitors of the Herbicidal Target IspD : Allosteric Site Binding, vol.50, pp.7931-7935, 2011.

J. M. Clough, R. P. Dale, B. Elsdon, T. R. Hawkes, and B. Hogg,

A. Howell, D. P. Kloer, K. Lecoq, M. M. Mclachlan, and P. J. Milnes, Synthesis and Evaluation of Hydroxyazolopyrimidines as Herbicides ; the Generation of Amitrole in Planta, Pest. Manag. Sci, vol.72, pp.2254-2272, 2016.

M. Witschel, M. Rottmann, K. Marcel, and B. Reto, Agrochemicals Against Malaria, Sleeping Sickness, Leishmaniasis and Chagas Disease, PLoS Negl. Trop. Dis, vol.2012, issue.10, p.1805

A. Kunfermann, M. Witschel, B. Illarionov, R. Martin, M. Rottmann et al., Pseudilins : Halogenated , Allosteric Inhibitors of the Non-Mevalonate Pathway Enzyme IspD, Angew. Chem, vol.53, pp.2235-2239, 2014.

B. Zhang, K. M. Watts, D. Hodge, L. M. Kemp, D. A. Hunstad et al., A Second Target of the Antimalarial and Antibacterial Agent Fosmidomycin Revealed by Cellular Metabolic Profiling, Biochemistry, vol.50, pp.3570-3577, 2011.

W. Wu, Z. Herrera, D. Ebert, K. Baska, S. H. Cho et al., A Chemical Rescue Screen Identifies a Plasmodium falciparum Apicoplast Inhibitor Targeting MEP Isoprenoid Precursor Biosynthesis, Antimicrob. Agents Chemother, vol.59, issue.1, pp.356-364, 2015.

L. S. Imlay, C. M. Armstrong, M. C. Masters, T. Li, K. E. Price et al., Plasmodium IspD (2-C-Methyl -D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target, ACS Infect. Dis, vol.1, pp.157-167, 2015.

K. E. Price, C. M. Armstrong, L. S. Imlay, D. M. Hodge, C. Pidathala et al., Molecular Mechanism of Action of Antimalarial Benzoisothiazolones : Species-Selective Inhibitors of the Plasmodium Spp. MEP Pathway Enzyme, pp.1-12, 2016.

P. Gao, Y. Yang, C. Xiao, Y. Liu, M. Gan et al., Identification and Validation of a Novel Lead Compound Targeting 4-Diphosphocytidyl-2-C-Methylerythritol Synthetase ( IspD ) of Mycobacteria, Eur. J. Pharmacol, vol.694, pp.45-52, 2012.

J. L. Andreassi and T. S. Leyh, Molecular Functions of Conserved Aspects of the GHMP Kinase Family, Biochemistry, vol.43, pp.14594-14601, 2004.

D. J. Timson, GHMP Kinases -Structures, Mechanisms and Potential for Therapeutically Relevant Inhibition, Curr. Enzym. Inhib, vol.3, pp.77-94, 2007.

L. Miallau, M. S. Alphey, L. E. Kemp, G. A. Leonard, S. M. Mcsweeney et al., Biosynthesis of Isoprenoids : Crystal Structure of 4-Diphosphocytidyl-2C-Methyl-D-Erythritol Kinase. Proc. Natl. Acad. Sci, vol.100, pp.1-6, 2003.

G. M. Goshu, D. Ghose, J. M. Bain, P. G. Pierce, D. W. Begley et al., Synthesis and Biological Evaluation of Pyrazolopyrimidines as Potential Antibacterial Agents, Bioorg. Med. Chem. Lett, vol.25, pp.5699-5704, 2015.

A. K. Hirsch, S. Lauw, P. Gersbach, and W. B. Schweiser,

F. Diederich, Non phosphonate Inhibitors of the IspE Protein, a Kinase in the Non-Mevalonate Pathway for Isoprenoid Biosynthesis and a Potential Target for Antimalarial Therapy, ChemMedChem, vol.2, pp.806-810, 2007.

A. K. Hirsch, M. S. Alphey, S. Lauw, M. Seet, L. Barandun et al., Inhibitors of the Kinase IspE : Structure -Activity Relationships and Co-Crystal Structure Analysis, vol.6, pp.2719-2730, 2008.

A. P. Schütz, S. Locher, B. Bernet, B. Illarionov, M. Fischer et al., 5-Substituted ( 1-Thiolan-2-Yl ) Cytosines as Inhibitors of A. aeolicus and E. coli IspE Kinases : Very Different Affinities to Similar Substrate-Binding Sites, Eur. J. Org. Chem, pp.880-887, 2013.

A. P. Schütz, S. Osawa, J. Mathis, A. K. Hirsch, B. Bernet et al., Exploring the Ribose Sub-Pocket of the Substrate-Binding Site in Escherichia coli IspE : Structure-Based Design, Synthesis, and Biological Evaluation of Cytosines and Cytosine Analogues, Eur. J. Org. Chem, pp.3278-3287, 2012.

A. K. Hirsch and G. B. Hans, Bioconjugates to Specifically Render Inhibitors Water-Soluble, Soft Matter, vol.6, pp.88-91, 2010.

P. Mombelli, L. Chapelain, N. Munzinger, E. Joliat, B. Illarionov et al., Imidazole-and Benzimidazole-Based Inhibitors of the Kinase IspE: Targeting the Substrate-Binding Site and the Triphosphate-Binding Loop of the ATP Site, Eur. J. Org. Chem, pp.1068-1079, 2013.

P. Mombelli, M. C. Witschel, A. W. Zijl, and . Van,

J. G. Geist, M. Rottmann, C. Freymond, F. Rçhl, and M. Kaiser, Identification of 1, 3-Diiminoisoindoline Carbohydrazides as Potential Antimalarial Candidates, ChemMedChem, vol.7, pp.151-158, 2012.

C. M. Crane, A. K. Hirsch, M. S. Alphey, T. Sgraja, S. Lauw et al., Synthesis and Characterization of Cytidine Derivatives That Inhibit the Kinase IspE of the Non-Mevalonate Pathway for Isoprenoid Biosynthesis, ChemMedChem, vol.3, pp.91-101, 2008.

M. Harder, E. Schäfer, T. Kümin, B. Illarionov, A. Bacher et al., Bernet, B. 8-Substituted , Syn -Configured Adenosine Derivatives as Potential Inhibitors of the Enzyme IspE from the Non-Mevalonate Pathway of Isoprenoid Biosynthesis, Eur. J. Org. Chem, pp.7276-7286, 2015.

M. Tang, S. I. Odejinmi, Y. M. Allette, H. Vankayalapati, and K. Lai, Bioorganic & Medicinal Chemistry Identification of Novel Small Molecule Inhibitors of 4-Diphosphocytidyl-2-C -Methyl-D -Erythritol ( CDP-ME ) Kinase of Gram-Negative Bacteria, Bioorg. Med. Chem, vol.19, pp.5886-5895, 2011.

N. Tidten-luksch, R. Grimaldi, L. S. Torrie, J. A. Frearson, W. N. Hunter et al., IspE Inhibitors Identified by a Combination of In Silico and In Vitro High-Throughput Screening, PLoS One, vol.7, issue.4, pp.1-16, 2012.

H. Eoh, P. Narayanasamy, A. C. Brown, T. Parish, P. J. Brennan et al., Expression and Characterization of Soluble Kinase from Bacterial Pathogens, Chem. Biol, vol.16, pp.1230-1239, 2009.

S. Shan, X. Chen, T. Liu, H. Zhao, Z. Rao et al., Crystal Structure of 4-Diphosphocytidyl-2-C-Methyl-D-Erythritol Kinase ( IspE ) from Mycobacterium tuberculosis, FASEB J, vol.2017, issue.5, pp.1577-1584

M. Takagi, T. Kuzuyama, K. Kaneda, H. Watanabe, T. Dairi et al., Studies on the Nonmevalonate Pathway : Formation of 2-C-Methyl-D-Erythritol 2, 4-Cyclodiphosphate from 2-Phospho-4-(Cytidine 5'-diphospho)-2-C-Methyl-D-Erythritol, Tetrahedron Lett, vol.41, pp.3395-3398, 2000.

S. Herz, J. Wungsintaweekul, C. A. Schuhr, S. Hecht, H. Luttgen et al., Biosynthesis of Terpenoids: YgbB Protein Converts 4-Diphosphocytidyl-2C-Methyl-D-Erythritol 2-Phosphate to 2C-Methyl-D-Erythritol 2,4-Cyclodiphosphate, Proc. Natl. Acad. Sci. USA, issue.6, pp.2486-2490, 2000.

S. Steinbacher, J. Kaiser, J. Wungsintaweekul, S. Hecht, W. Eisenreich et al., Structure of 2C-Methyl-D-Erythritol-2,4-Cyclodiphosphate Synthase Involved in Mevalonate-Independent Biosynthesis of Isoprenoids, J. Mol. Biol, vol.316, issue.1, pp.79-88, 2001.

S. B. Richard, J. L. Ferrer, M. E. Bowman, A. M. Lillo, C. N. Tetzlaff et al., Structure and Mechanism of 2-C-Methyl-D-Erythritol 2,4-Cyclodiphosphate Synthase: An Enzyme in the Mevalonate-Independent Isoprenoid Biosynthetic Pathway, J. Biol. Chem, issue.10, pp.8667-8672, 2002.

L. E. Kemp, C. S. Bond, and W. N. Hunter, Structure of 2C-Methyl-D-Erythritol 2,4-Cyclodiphosphate Synthase: An Essential Enzyme for Isoprenoid Biosynthesis and Target for Antimicrobial Drug Development, Proc. Natl. Acad. Sci. USA, pp.6591-6596, 2002.

H. Kishida, T. Wada, S. Unzai, T. Kuzuyama, M. Takagi et al., Structure and Catalytic Mechanism of 2-C-Methyl-D-Erythritol 2,4-Cyclodiphosphate (MECDP) Synthase, an Enzyme in the Non-Mevalonate Pathway of Isoprenoid Synthesis, vol.59, pp.23-31, 2003.

C. Lehmann, K. Lim, J. Toedt, W. Krajewski, A. Howard et al., Structure of 2C-Methyl-D-Erythrol-2,4-Cyclodiphosphate Synthase from Haemophilus influenzae: Activation by Conformational Transition, Proteins Struct. Funct. Genet, vol.49, pp.135-138, 2002.

S. Ni, H. Robinson, G. C. Marsing, D. E. Bussiere, and M. A. Kennedy, Structure of 2C-Methyl-D-Erythritol-2,4-Cyclodiphosphate Synthase from Shewanella oneidensis at 1.6 Å: Identification of Farnesyl Pyrophosphate Trapped in a Hydrophobic Cavity, Acta Crystal, vol.60, pp.1949-1957, 2004.

L. E. Kemp, M. S. Alphey, C. S. Bond, M. A. Ferguson, S. Hecht et al., The Identification of Isoprenoids That Bind in the Intersubunit Cavity of Escherichia coli 2C-Methyl-D-Erythritol-2,4-Cyclodiphosphate Synthase by, Complementary Biophysical Methods. Acta Crystal, vol.61, pp.45-52, 2005.

J. K. Bitok and C. F. Meyers, 2C-Methyl-D-Erythritol 4-Phosphate Enhances and Sustains Cyclodiphosphate Synthase IspF Activity, ACS Chem. Biol, vol.7, pp.1702-1710, 2012.

P. E. O'rourke, J. Kalinowska-t?u?cik, P. K. Fyfe, A. Dawson, and W. N. Hunter, Crystal Structures of IspF from Plasmodium falciparum and Burkholderia cenocepacia: Comparisons Inform Antimicrobial Drug Target Assessment, BMC Struct. Biol, vol.14, issue.1, pp.1-12, 2014.

C. M. Crane, J. Kaiser, N. L. Ramsden, S. Lauw, F. Rohdich et al., Fluorescent Inhibitors for IspF, an Enzyme in the Non-Mevalonate Pathway for Isoprenoid Biosynthesis and a Potential Target for Antimalarial Therapy, Angew. Chem, vol.45, pp.1069-1074, 2006.

C. Baumgartner, C. Eberle, F. Diederich, S. Lauw, F. Rohdich et al., Structure-Based Design and Synthesis of the First Weak Non-Phosphate Inhibitors for IspF, an Enzyme in the Non-Mevalonate Pathway of Isoprenoid Biosynthesis, Helv. Chim. Acta, vol.90, pp.1043-1068, 2007.

J. G. Geist, S. Lauw, V. Illarionova, B. Illarionov, M. Fischer et al., Thiazolopyrimidine Inhibitors of 2-Methylerythritol 2,4-Cyclodiphosphate Synthase (IspF) from Mycobacterium tuberculosis and Plasmodium falciparum, ChemMedChem, vol.5, pp.1092-1101, 2010.

J. K. Bitok and C. F. Meyers, Synthesis and Evaluation of Stable Substrate Analogs as Potential Modulators of Cyclodiphosphate Synthase IspF, Med. Chem. Commun, vol.4, pp.130-134, 2013.

S. G. Krasutsky, M. Urbansky, C. E. Davis, C. Lherbet, R. M. Coates et al., Synthesis of Methylerythritol Phosphate Analogues and Their Evaluation as Alternate Substrates for IspDF and IspE from Agrobacterium tumefaciens, J. Org. Chem, vol.79, pp.9170-9178, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02064012

J. Thelemann, B. Illarionov, K. Barylyuk, J. Geist, J. Kirchmair et al., Aryl Bis-Sulfonamide Inhibitors of IspF from Arabidopsis thaliana and Plasmodium falciparum, ChemMedChem, pp.2090-2098, 2015.

M. Seemann, M. Rohmer, N. Campos, M. ;. Rodr, and A. B. , Identification of gcpE as a Novel Gene of the 2-C-Methyl-D-Erythritol 4-Phosphate Pathway for Isoprenoid Biosynthesis in Escherichia coli, FEBS Lett, vol.488, pp.170-173, 2001.

M. Seemann, B. T. Bui, M. Wolff, D. Tritsch, N. Campos et al., Isoprenoid Biosynthesis through the Methylerythritol Phosphate Pathway: The (E)4-Hydroxy-3-Methylbut-2-Enyl Diphosphate Synthase (GcpE) Is a, Angew. Chem. -Int. Ed, issue.22, pp.4337-4339, 2002.

H. Beinert, R. H. Holm, and E. Münck, Iron-Sulfur Clusters : Nature's Modular, Multipurpose Structures, Science, vol.277, pp.653-659, 2007.

M. Seemann, . Tse-sum, B. Bui, M. Wolff, M. Miginiac-maslow et al., Isoprenoid Biosynthesis in Plant Chloroplasts via the MEP Pathway: Direct Thylakoid/ferredoxin-Dependent Photoreduction of GcpE/IspG, FEBS Lett, vol.580, pp.1547-1552, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00091768

I. Rekittke, T. Nonaka, J. Wiesner, U. Demmer, E. Warkentin et al., Structure of the E-1-Hydroxy-2-Methyl-but-2-Enyl-4-Diphosphate Synthase (GcpE) from Thermus thermophilus, FEBS Lett, vol.585, pp.447-451, 2011.

M. Lee, T. Gräwert, F. Quitterer, F. Rohdich, J. Eppinger et al., Biosynthesis of Isoprenoids: Crystal Structure of the, Cluster Protein IspG. J. Mol. Biol, vol.404, pp.600-610, 2010.

I. Rekittke, E. Warkentin, H. Jomaa, and U. Ermler, Structure of the GcpE (IspG)-MEcPP Complex from Thermus thermophilus, Biochem. Biophys. Res. Commun, vol.458, pp.246-250, 2015.

F. Quitterer, A. Frank, K. Wang, G. Rao, B. O'dowd et al., Atomic-Resolution Structures of Discrete Stages on the Reaction Coordinate of the [Fe4S4] Enzyme IspG (GcpE), J. Mol. Biol, vol.427, pp.2220-2228, 2015.

W. Wang, J. Li, K. Wang, C. Huang, Y. Zhang et al., Organometallic Mechanism of Action and Inhibition of the 4Fe-4S Isoprenoid Biosynthesis Protein GcpE (IspG), Proc. Natl. Acad. Sci, pp.11189-11193, 2010.

R. S. Mcmillan, J. Renaud, J. G. Reynolds, and R. H. Holm, Biologically Related Iron-Sulfur Clusters as Reaction Centers. Reduction of Acetylene to Ethylene in Systems Based on, J. Inorg. Biochem, vol.11, pp.213-227, 1979.

K. Tanaka, M. Nakamoto, M. Tsunomori, and T. Tanaka, Raman Spectra of the Adducts of Reduced Species of [Fe4S4(SPh)4] 2-and [Mo2Fe6S8(SPh)9] 3-with Acetylene, Chem. Lett, pp.613-616, 1987.

Y. Liu, F. Guerra, K. Wang, W. Wang, J. Li et al., Function and Inhibition of the Two-and Three-Domain 4Fe-4S IspG Proteins, Proc. Natl. Acad. Sci, vol.109, pp.8558-8563, 2012.

G. Singh, S. Garg, Z. Rajeshkumar, S. Kumar, S. Kumar et al., Characterization of 4-Hydroxy-3-Methylbut-2-En-1-Yl Diphosphate Synthase ( IspG ) from Plasmodium vivax and It 's Potential as an Antimalarial Drug Target, Int. J. Biol. Macromol, vol.96, pp.466-473, 2017.

M. Wolff, M. Seemann, . Tse-sum, B. Bui, Y. Frapart et al., Isoprenoid Biosynthesis via the Methylerythritol Phosphate Pathway: The (E)-4-Hydroxy-3-Methylbut-2-Enyl Diphosphate Reductase (LytB/IspH) from Escherichia coli Is a, Protein. FEBS Lett, vol.541, pp.115-120, 2003.

T. Gräwert, F. Rohdich, L. Span, A. Backer, W. Eisenreich et al., Structure of Active IspH Enzyme from Escherichia coli Provides Mechanistic Insights into Substrate Reduction, Angew. Chem. -Int. Ed, vol.48, pp.5756-5759, 2009.

I. Rekittke, J. Wiesner, R. Ro, U. Demmer, E. Warkentin et al., Structure of (E)-4-Hydroxy-3-Methyl-but-2-Enyl Diphosphate Reductase, the Terminal Enzyme of the Non-Mevalonate Pathway, J. Am. Chem. Soc, vol.130, pp.17206-17207, 2008.

T. Gräwert, J. Kaiser, F. Zepeck, R. Laupitz, S. Hecht et al., IspH Protein of Escherichia coli: Studies on Iron-Sulfur Cluster Implementation and Catalysis, J. Am. Chem. Soc, vol.126, pp.12847-12855, 2004.

W. Wang, K. Wang, Y. Liu, J. No, J. Li et al., Bioorganometallic Mechanism of Action, and Inhibition, of IspH, Proc. Natl. Acad. Sci, pp.4522-4527, 2010.

I. Span, T. Gräwert, A. Bacher, W. Eisenreich, and M. Groll, Crystal Structures of Mutant IspH Proteins Reveal a Rotation of the Substrate's Hydroxymethyl Group during Catalysis, J. Mol. Biol, vol.416, pp.1-9, 2012.

I. Span, K. Wang, W. Wang, Y. Zhang, A. Bacher et al., Discovery of Acetylene Hydratase Activity of the Iron-sulphur Protein IspH, Nat. Commun, vol.3, pp.1-8, 2012.

K. Wang, W. Wang, J. No, Y. Zhang, and Y. Zhang, Inhibition of the 4Fe-4S -Cluster-Containing Protein IspH ( LytB ): Electron Paramagnetic Resonance , Metallacycles , and Mechanisms, J. Am. Chem. Soc, vol.132, pp.6719-6727, 2010.

I. Span, K. Wang, W. Eisenreich, A. Bacher, Y. Zhang et al., Insights into the Binding of Pyridines to the Iron-Sulfur Enzyme IspH, J. Am. Chem. Soc, vol.136, pp.7926-7932, 2014.

S. Van-hoof, C. J. Lacey, R. C. Röhrich, J. Wiesner, H. Jomaa et al., Synthesis of Analogues of (E)-1-Hydroxy-2-Methylbut-2-Enyl 4-Diphosphate, an Isoprenoid Precursor and Human ?? T Cell Activator, J. Org. Chem, vol.73, pp.1365-1370, 2008.

A. Ahrens-botzong, K. Janthawornpong, J. A. Wolny, E. N. Tambou, M. Rohmer et al., Biosynthesis of Isoprene Units: Mössbauer Spectroscopy of Substrate and Inhibitor Binding to the, Angew. Chem, vol.50, pp.11976-11979, 2011.

K. Janthawornpong, S. Krasutsky, P. Chaignon, M. Rohmer, C. D. Poulter et al., Inhibition of IspH, a [4Fe-4S] 2+ Enzyme Enzyme Involved in the Biosynthesis of Isoprenoids via the Methylerythritol Phosphate Pathway, J. Am. Chem. Soc, vol.135, pp.1816-1822, 2013.

F. Guerra, K. Wang, J. Li, W. Wang, Y. Liu et al., Inhibition of the 4Fe-4S Proteins IspG and IspH: An EPR, ENDOR and HYSCORE Investigation, Chem. Sci, vol.5, pp.1642-1649, 2014.

I. Span, K. Wang, W. Wang, J. Jauch, W. Eisenreich et al., Structures of Fluoro, Amino, and Thiol Inhibitors Bound to the [Fe4S4] Protein IspH, Angew. Chem. -Int. Ed, vol.52, pp.2118-2121, 2013.

W. Wang, K. Wang, I. Span, J. Jauch, A. Bacher et al., Are Free Radicals Involved in IspH Catalysis? An EPR and Crystallographic Investigation, J. Am. Chem. Soc, vol.134, pp.11225-11234, 2012.

J. Li, K. Wang, T. I. Smirnova, R. L. Khade, Y. Zhang et al., Isoprenoid Biosynthesis : Ferraoxetane or Allyl Anion Mechanism for IspH Catalysis ?, Angew. Chem, vol.52, pp.6522-6525, 2013.

I. Faus, A. Reinhard, S. Rackwitz, J. A. Wolny, K. Schlage et al., Isoprenoid Biosynthesis in Pathogenic Bacteria: Nuclear Resonance Vibrational Spectroscopy Provides Insight into the Unusual, Angew. Chem, vol.54, pp.12584-12587, 2015.

M. Seemann and M. Rohmer, Isoprenoid Biosynthesis via the Methylerythritol Phosphate Pathway: GcpE and LytB, Two Novel Iron-Sulphur Proteins, Comptes Rendus Chim, vol.10, pp.748-755, 2007.

W. Wang and E. Oldfield, Bioorganometallic Chemistry with IspG and IspH: Structure, Function, and Inhibition of the [Fe4S4] Proteins Involved in Isoprenoid Biosynthesis, Angew. Chem. -Int

E. , , vol.53, pp.4294-4310, 2014.

M. Eberl, M. Hintz, A. Reichenberg, A. Kollas, J. Wiesner et al., Microbial Isoprenoid Biosynthesis and Human ?? T Cell Activation, FEBS Lett, vol.544, pp.4-10, 2003.

M. S. Davey, C. Lin, G. W. Roberts, S. Heuston, A. C. Brown et al., Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial ?? T Cell Responses in Early Infection, PLoS Pathog, vol.7, issue.5, pp.1-13, 2011.

, Stratégie de l'OMS pour mettre fin à la tuberculose, OMS, 2017.

. Oms and . Stratégie-technique-mondiale-de-lutte-contre-le-paludisme, , 2016.

Y. Mine, T. Kamimura, S. Nonoyama, M. Nishida, S. Goto et al., In Vitro and in Vivo Antibacterial Activities of FR-31564, a New Phosphonic Acid Antibiotic, J. Antibiot, vol.33, issue.1, pp.36-43, 1980.

H. Kojo, Y. Shigi, and M. Nishida, FR-31564, A New Phosphonic Acid Antibiotic:bacterial Resistance and Membrane Permeability, J. Antibiot, vol.33, issue.1, pp.44-48, 1980.

M. Okuhara, Y. Kuroda, T. Goto, M. Okamoto, H. Terano et al., Studies on New Phosphonic Acid Antibiotics. III. Isolation and Characterization of FR-31564

Y. Kuroda, M. Okuhara, T. Goto, M. Okamoto, H. Terano et al., Studies on New Phosphonic Acid Antibiotics. IV. Structure Determination of FR-33289, FR-31564 and FR-32863, J Antibiot, vol.33, issue.1, pp.29-35, 1980.

M. Okuhara, Y. Kuroda, T. Goto, M. Okamoto, H. Terano et al., Studies on New Phosphonic Acid Antibiotics. I. FR-900098, Isolation and Characterization, J. Antibiot, vol.33, issue.1, pp.13-17, 1980.

Y. Shigi, Inhibition of Bacterial Isoprenoid Synthesis by Fosmidomycin, a Phosphonic Acid-Containing Antibiotic, J. Antimicrob. Chemother, vol.24, pp.131-145, 1989.

T. Kuzuyama, S. Tomohiro, S. Takahashi, H. Seto, and . Fosmidomycine, Specific Inhibitor of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase in the Nonmevalonate Pathway for Terpenoid Biosynthesis, Tetrahedron Lett, vol.39, pp.7913-7916, 1998.

A. T. Koppisch, D. T. Fox, B. S. Blagg, C. D. Poulter, and . Synthase, Steady-State Kinetic Analysis and Substrate Binding, vol.41, pp.236-243, 2002.

V. I. Ian, H. Jomaa, J. Wiesner, and S. Sanderbrand, Inhibitors of the Nonmevalonate Pathway of Isoprenoid Biosynthesis as Antimalarial Drugs, Science, vol.285, pp.1573-1575, 1999.

M. A. Missinou, S. Borrmann, A. Schindler, S. Issifou, A. A. Adegnika et al., Fosmidomycin for Malaria. Lancet, vol.360, pp.1941-1942, 2002.

J. Wiesner, D. Henschker, D. B. Hutchinson, E. Beck, and H. Jomaa, In Vitro and In Vivo Synergy of Fosmidomycin , a Novel Antimalarial Drug , with Clindamycin. Antimicrob. Agents Chemother, vol.46, issue.9, pp.2889-2894, 2002.

S. Borrmann, S. Issifou, G. Esser, and . Adegnika,

M. Ramharter, P. Matsiegui, S. Oyakhirome, D. P. Mawili-mboumba, and . Missinou,

J. F. Kun, Fosmidomycin-Clindamycin for the Treatment of Plasmodium Falciparum Malaria, J. Infect. Dis, vol.190, issue.9, pp.1534-1540, 2004.

Y. Sakamoto, S. Furukawa, and H. Ogihara, Fosmidomycin Resistance in Adenylate Cyclase Deficient (Cya) Mutants of Escherichia coli, Biosci. Biotechnol. Biochem, vol.67, issue.9, pp.2030-2033, 2003.

A. C. Brown and T. Parish, Dxr Is Essential in Mycobacterium tuberculosis and Fosmidomycin Resistance Is due to a Lack of Uptake, BMC Microbiol, vol.8, issue.78, pp.1-9, 2008.

S. Fujisaki, S. Ohnuma, and . Ichi,

T. Horiuchi, I. Takahashi, S. Tsukui, Y. Nishimura, T. Nishino et al., Cloning of a Gene from Escherichia coli That Confers Resistance to Fosmidomycin as a Consequence of Amplification, Gene, vol.175, pp.83-87, 1996.

A. S. Messiaen, T. Verbrugghen, C. Declerck, R. Ortmann, M. Schlitzer et al., Resistance of the Burkholderia cepacia Complex to Fosmidomycin and Fosmidomycin Derivatives, Int. J. Antimicrob. Agents, vol.38, issue.3, pp.261-264, 2011.

L. Kuntz, D. Tritsch, C. Grosdemange-billiard, A. Hemmerlin, A. Willem et al., Isoprenoid Biosynthesis as a Target for Antibacterial and Antiparasitic Drugs: Phosphonohydroxamic Acids as Inhibitors of Deoxyxylulose Phosphate Reducto-Isomerase

, Biochem. J, vol.386, pp.127-135, 2005.

C. Zinglé, L. Kuntz, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Modifications around the Hydroxamic Acid Chelating Group of Fosmidomycin, an Inhibitor of the Metalloenzyme 1-Deoxyxylulose 5-Phosphate Reductoisomerase (DXR), Bioorg. Med. Chem. Lett, vol.22, pp.6563-6567, 2012.

L. Deng, S. Sundriyal, V. Rubio, Z. Z. Shi, and Y. Song, Coordination Chemistry Based Approach to Lipophilic Inhibitors of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase, J. Med. Chem, vol.52, pp.6539-6542, 2009.

M. Andaloussi, M. Lindh, C. Björkelid, S. Suresh, A. Wieckowska et al., Substitution of the Phosphonic Acid and Hydroxamic Acid Functionalities of the DXR Inhibitor FR900098: An Attempt to Improve the Activity against Mycobacterium tuberculosis, Bioorg. Med. Chem. Lett, vol.21, pp.5403-5407, 2011.

L. Mercklé, A. De-andrés-gómez, B. Dick, R. J. Cox, and C. R. Godfrey, A Fragment-Based Approach to Understanding Inhibition of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase, ChemBioChem, vol.6, pp.1866-1874, 2005.

Y. H. Woo, R. P. Fernandes, and P. J. Proteau, Evaluation of Fosmidomycin Analogs as Inhibitors of the Synechocystis Sp. PCC6803 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase, Bioorg. Med. Chem, vol.14, pp.2375-2385, 2006.

L. Deng, J. Diao, P. Chen, V. Pujari, Y. Yao et al., Inhibition of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase by Lipophilic Phosphonates: SAR, QSAR, and Crystallographic Studies, J. Med. Chem, vol.54, pp.4721-4734, 2011.

L. Deng, K. Endo, M. Kato, G. Cheng, S. Yajima et al., Structures of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase/lipophilic Phosphonate Complexes, ACS Med. Chem. Lett, vol.2, pp.165-170, 2011.

S. Konzuch, T. Umeda, J. Held, S. Hähn, K. Brücher et al., Binding Modes of Reverse Fosmidomycin Analogs toward the Antimalarial Target IspC, J. Med. Chem, vol.57, pp.8827-8838, 2014.

S. L. Williams, C. A. De-oliveira, H. Vazquez, and J. A. Mccammon, From Zn to Mn: The Study of Novel Manganese-Binding Groups in the Search for New Drugs against Tuberculosis, Chem. Biol. Drug Des, vol.77, pp.117-123, 2011.

S. Montel, C. Midrier, J. Volle, R. Braun, K. Haaf et al., Functionalized Phosphanyl-Phosphonic Acids as Unusual Complexing Units as Analogues of Fosmidomycin, Eur. J. Org. Chem, vol.2012, pp.3237-3248
URL : https://hal.archives-ouvertes.fr/hal-00993938

C. Midrier, S. Montel, R. Braun, K. Haaf, L. Willms et al., Fosmidomycin Analogues with N-Hydroxyimidazole and N-Hydroxyimidazolone as a Chelating Unit, p.23770
URL : https://hal.archives-ouvertes.fr/hal-01100662

K. Hemmi, H. Takeno, M. Hashimoto, and T. Kamiya, Propylphosphonic Acid (FR-900098), vol.3, pp.111-118, 1982.

T. Haemers, J. Wiesner, S. Van-poecke, J. Goeman, D. Henschker et al., Synthesis of Alpha-Substituted Fosmidomycin Analogues as Highly Potent Plasmodium Falciparum Growth Inhibitors, Bioorg. Med. Chem. Lett, vol.16, pp.1888-1891, 2006.

V. Devreux, J. Wiesner, J. L. Goeman, J. Van-der-eycken, H. Jomaa et al., Synthesis and Biological Evaluation of Cyclopropyl Analogues of Fosmidomycin as Potent Plasmodium Falciparum Growth Inhibitors, J. Med. Chem, vol.49, pp.2656-2660, 2006.

T. Haemers, J. Wiesner, R. Busson, H. Jomaa, and S. Van-calenbergh, Synthesis of ?-Aryl-Substituted and Conformationally Restricted Fosmidomycin Analogues as Promising

T. Verbrugghen, P. Cos, L. Maes, and S. Van-calenbergh, Synthesis and Evaluation of ?-Halogenated Analogues of 3-(Acetylhydroxyamino)propylphosphonic Acid (FR900098) as Antimalarials, J. Med. Chem, vol.53, pp.5342-5346, 2010.

J. Volle, C. Midrier, V. Blanchard, R. Braun, K. Haaf et al., D. Preparation of Gem-Difluorinated Retrohydroxamic-Fosmidomycin. Arkivoc, vol.4, pp.117-126, 2015.

T. Verbrugghen, P. Vandurm, J. Pouyez, L. Maes, J. Wouters et al., Alpha-Heteroatom Derivatised Analogues of FR900098 as Antimalarials, J. Med. Chem, vol.56, pp.376-380, 2013.

R. Chofor, S. Sooriyaarachchi, M. D. Risseeuw, T. Bergfors, J. Pouyez et al., Synthesis and Bioactivity of ?-Substituted Fosmidomycin Analogues Targeting 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase, J. Med. Chem, vol.58, pp.2988-3001, 2015.

S. Sooriyaarachchi, R. Chofor, M. D. Risseeuw, T. Bergfors, J. Pouyez et al., Targeting an Aromatic Hotspot in Plasmodium Falciparum 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase with ?-Arylpropyl Analogues of Fosmidomycin, ChemMedChem, vol.11, pp.1-14, 2016.

T. Kurz, K. Schlüter, U. Kaula, B. Bergmann, R. D. Walter et al., Synthesis and Antimalarial Activity of Chain Substituted Pivaloyloxymethyl Ester Analogues of Fosmidomycin and FR900098, Bioorg. Med. Chem, vol.14, pp.5121-5135, 2006.

K. Schlüter, R. D. Walter, B. Bergmann, and T. Kurz, Arylmethyl Substituted Derivatives of Fosmidomycin: Synthesis and Antimalarial Activity, Eur. J. Med. Chem, vol.41, pp.1385-1397, 2006.

T. Kurz, K. Schlüter, M. Pein, C. Behrendt, B. Bergmann et al., Conformationally Restrained Aromatic Analogues of Fosmidomycin and FR900098, Arch. Pharm, vol.340, pp.339-344, 2007.

C. T. Behrendt, A. Kunfermann, V. Illarionova, A. Matheeussen, T. Gräwert et al., Synthesis and Antiplasmodial Activity of Highly Active Reverse Analogues of the Antimalarial Drug Candidate Fosmidomycin, ChemMedChem, vol.5, pp.1673-1676, 2010.

C. T. Behrendt, A. Kunfermann, V. Illarionova, A. Matheeussen, M. K. Pein et al., Reverse Fosmidomycin Derivatives against the Antimalarial Drug, J. Med. Chem, vol.54, pp.6796-6802, 2011.

K. Brücher, B. Illarionov, J. Held, S. Tschan, A. Kunfermann et al., Substituted ?-Oxa Isosteres of Fosmidomycin: Synthesis and Biological Evaluation, J. Med. Chem, vol.55, pp.6566-6575, 2012.

A. Kunfermann, C. Lienau, B. Illarionov, J. Held, T. Gräwert et al., IspC as Target for Antiinfective Drug Discovery: Synthesis, Enantiomeric Separation, and Structural Biology of Fosmidomycin Thia Isosters, J. Med. Chem, vol.56, pp.8151-8162, 2013.

C. Zinglé, L. Kuntz, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Isoprenoid Biosynthesis via the Methylerythritol Phosphate Pathway: Structural Variations around Phosphonate Anchor and Spacer of Fosmidomycin, a Potent Inhibitor of Deoxyxylulose Phosphate Reductoisomerase, J. Org. Chem, vol.75, pp.3203-3207, 2010.

E. R. Jackson, G. San-jose, R. C. Brothers, E. K. Edelstein, Z. Sheldon et al., The Effect of Chain Length and Unsaturation on Mtb Dxr Inhibition and Antitubercular Killing Activity of FR900098 Analogs, Bioorg. Med. Chem. Lett, vol.24, pp.649-653, 2014.

J. Xue, J. Diao, G. Cai, L. Deng, B. Zheng et al., Antimalarial and Structural Studies of Pyridine-Containing Inhibitors of 1-Deoxyxylulose-5-Phosphate Reductoisomerase, ACS Med. Chem. Lett, vol.4, pp.278-282, 2013.

A. Nordqvist, C. Björkelid, M. Andaloussi, A. M. Jansson, S. L. Mowbray et al., Synthesis of Functionalized Cinnamaldehyde Derivatives by an Oxidative Heck Reaction and Their Use as Starting Materials for Preparation of Mycobacterium Tuberculosis 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase Inhibitors, J. Org. Chem, vol.76, pp.8986-8998, 2011.

T. Kurz, D. Geffken, and C. Wackendorff, Carboxylic Acid Analogues of Fosmidomycin, J. Chem. Sci, vol.58, pp.457-461, 2003.

J. Perruchon, R. Ortmann, M. Altenkämper, K. Silber, J. Wiesner et al., Studies Addressing the Importance of Charge in the Binding of Fosmidomycin-like Molecules to Deoxyxylulosephosphate Reductoisomerase, ChemMedChem, vol.3, pp.1232-1241, 2008.

B. Gadakh, J. Pouyez, J. Wouters, A. Venkatesham, P. Cos et al., Acylated Sulfonamide Congeners of Fosmidomycin Lack Any Inhibitory Activity against DXR, Bioorg. Med. Chem. Lett, vol.25, pp.1577-1579, 2015.

A. T. Nguyen-trung, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Synthesis of Tetrazole Analogues of Phosphonohydroxamic Acids: An Attempt to Improve the Inhibitory Activity against the DXR, Bioorg. Med. Chem. Lett, vol.23, pp.1643-1647, 2013.

A. Reichenberg, J. Wiesner, C. Weidemeyer, E. Dreiseidler, S. Sanderbrand et al., Diaryl Ester Prodrugs of FR900098 with Improved in vivo Antimalarial Activity, Bioorg. Med. Chem. Lett, vol.11, pp.833-835, 2001.

R. Ortmann, J. Wiesner, A. Reichenberg, D. Henschker, E. Beck et al., Acyloxyalkyl Ester Prodrugs of FR900098 with Improved in Vivo Antimalarial Activity, Arch. Pharm, vol.13, pp.2163-2166, 2003.

R. Ortmann, J. Wiesner, A. Reichenberg, D. Henschker, E. Beck et al., Alkoxycarbonyloxyethyl Ester Prodrugs of FR900098 with Improved in Vivo Antimalarial Activity, Arch. Pharm. Chem. Life Sci, vol.338, pp.305-314, 2005.

J. Wiesner, R. Ortmann, H. Jomaa, and M. Schlitzer, Double Ester Prodrugs of FR900098 Display Enhanced in-Vitro Antimalarial Activity, Arch. Pharm. Chem. Life Sci, vol.340, pp.667-669, 2007.

K. Brücher, T. Gräwert, S. Konzuch, J. Held, C. Lienau et al., Prodrugs of Reverse Fosmidomycin Analogues, J. Med. Chem, vol.58, pp.2025-2035, 2015.

E. Uh, E. R. Jackson, G. San-jose, M. Maddox, R. E. Lee et al., Antibacterial and Antitubercular Activity of Fosmidomycin, FR900098, and Their Lipophilic Analogs, Bioorg. Med. Chem. Lett, vol.21, pp.6973-6976, 2011.

E. S. Mckenney, M. Sargent, H. Khan, E. Uh, E. R. Jackson et al., Lipophilic Prodrugs of FR900098 Are Antimicrobial against Francisella Novicida In Vivo and In Vitro and Show GlpT Independent Efficacy, PLoS One, vol.7, issue.10, pp.1-12, 2012.

S. Ponaire, C. Zinglé, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Growth Inhibition of Mycobacterium Smegmatis by Prodrugs of Deoxyxylulose Phosphate Reducto-Isomerase Inhibitors, Promising Anti-Mycobacterial Agents, Eur. J. Med. Chem, vol.51, pp.277-285, 2012.

F. Phillips, A. M. Nogueira, F. Murtinheira, F. Barros, and M. T. , Synthesis and Antimalarial Evaluation of Prodrugs of Novel Fosmidomycin Analogues, Bioorg. Med. Chem. Lett, vol.25, pp.2112-2116, 2015.

R. Ortmann, J. Wiesner, K. Silber, G. Klebe, H. Jomaa et al., Novel Deoxyxylulosephosphate-Reductoisomerase Inhibitors: Fosmidomycin Derivatives with Spacious Acyl Residues, Arch. Pharm. Chem. Life Sci, vol.340, pp.483-490, 2007.

D. Gießmann, P. Heidler, T. Haemers, S. Van-calenbergh, A. Reichenberg et al., Towards New Antimalarial Drugs: Synthesis of Non-Hydrolyzable Phosphate Mimics as Feed for a Predictive QSAR Study on 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase Inhibitors, Chem. Biodivers, vol.5, pp.643-656, 2008.

T. Bodill, A. C. Conibear, G. L. Blatch, K. A. Lobb, and P. T. Kaye, Synthesis and Evaluation of Phosphonated N -Heteroarylcarboxamides as DOXP-Reductoisomerase

, Bioorg. Med. Chem, vol.19, pp.1321-1327, 2011.

T. Bodill, A. C. Conibear, M. K. Mutorwa, J. L. Goble, G. L. Blatch et al., Exploring DOXP-Reductoisomerase Binding Limits Using Phosphonated N-Aryl and N-Heteroarylcarboxamides as DXR Inhibitors, Bioorg. Med. Chem, vol.21, pp.4332-4341, 2013.

G. San-jose, E. R. Jackson, E. Uh, C. Johny, A. Haymond et al., Design of Potential Bisubstrate Inhibitors against Mycobacterium Tuberculosis (Mtb) 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase (Dxr)-Evidence of a Novel Binding Mode, Med. Chem. Commun, vol.4, pp.1099-1104, 2013.

E. Berkley, ?. Gryder, M. J. Akbashev, ?. , M. K. Rood et al., Seleczvely Targezng Prostate Cancer with Antiandrogen Equipped Histone Deacetylase Inhibitors, ACS Chem Biol, vol.8, pp.2550-2560, 2013.

T. Verbrugghen, P. Vandurm, J. Pouyez, L. Maes, J. Wouters et al., Alpha-Heteroatom Derivatised Analogues of FR900098 as Antimalarials, J. Med. Chem, vol.56, pp.376-380, 2013.

D. A. Brown, W. K. Glass, R. Mageswaran, and B. Girmay, Cis-Trans Isomerism in Monoalkylhydroxamic Acids by 1 H, 13 C and 15 N NMR Spectroscopy, Magn. Reson. Chem, vol.26, pp.970-973, 1988.

D. A. Brown, R. A. Coogan, N. J. Fitzpatrick, W. K. Glass, D. E. Abukshima et al., Conformational Behaviour of Hydroxamic Acids : Ab Initio and Structural Studies, J. Chem. Soc. Perkin Trans, vol.2, pp.2673-2679, 1996.

D. A. Brown, W. K. Glass, R. Mageswarant, and S. A. Mohammed, 1 H and 13 C NMR Studies of Isomerism in Hydroxamic Acids, Magn. Reson. Chem, vol.29, pp.40-45, 1991.

R. Kakkar, R. Grover, and P. Chadha, Conformational Behavior of Some Hydroxamic Acids, Org. Biomol. Chem, vol.1, issue.12, pp.2200-2206, 2003.

L. Tchertanov, Structural Metrics Relationships in Covalently Bonded Organic Azides. Acta Crystal, vol.55, pp.807-809, 1999.

L. Kuntz, D. Tritsch, C. Grosdemange-billiard, A. Hemmerlin, A. Willem et al., Isoprenoid Biosynthesis as a Target for Antibacterial and Antiparasitic Drugs: Phosphonohydroxamic Acids as Inhibitors of Deoxyxylulose Phosphate Reducto-Isomerase

, Biochem. J, vol.386, pp.127-135, 2005.

R. Sulsky and P. James, Alkylation of N-Benzyloxyureas and Carbamates, Tetrahedron Lett, vol.30, pp.31-34, 1989.

G. Wittig, K. Adolf, and I. Zur-existenz-niedergliedriger-cycloalkine, Chem. Ber, vol.94, pp.3260-3275, 1961.

A. T. Blomquist and L. H. Liu, Many-Membered Carbon Rings. VII. Cyclooctyne, J. Am. Chem. Soc, vol.75, pp.2153-2154, 1953.

J. A. Codelli, J. M. Baskin, N. J. Agard, and C. R. Bertozzi, Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry, J. Am. Chem. Soc, vol.130, pp.11486-11493, 2008.

J. M. Baskin and C. R. Bertozzi, Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems, QSAR Comb. Sci, vol.26, pp.1211-1219, 2007.

R. Sustmann, A Simple Model for Substituent Effects in Cycloaddition Reactions. I. 1,3-Dipolar Cycloadditions, Tetrahedron Lett, vol.12, pp.2717-2720, 1971.

R. Sustmann and H. Trill, Substituent Effects in 1, 3-Dipolar Cycloadditions of Phenyl Azide, Angew. Chem. Int. Ed, vol.I, pp.838-840, 1972.

K. N. Houk, The Frontier Molecular Orbital Theory of Cycloaddition Reactions, Acc. Chem. Res, vol.8, p.361, 1975.

D. H. Ess, G. O. Jones, and K. N. Houk, Transition States of Strain-Promoted Cycloadditions of Phenyl Azide and Cyclooctynes, Org. Biomol. Chem, vol.10, pp.1633-1636, 2008.

C. R. Bertozzi, N. J. Agard, J. A. Prescher, and J. Baskin, Sletten, E. M. Compositions and Methods for Modification of Biomolecules, 2016.

C. Deraeve, I. Miruna, F. Rebbah, F. Le, P. Constant et al., Chemical Synthesis , Biological Evaluation and Structure -Activity Relationship Analysis of Azaisoindolinones , a Novel Class of Direct Enoyl-ACP Reductase Inhibitors as Potential Antimycobacterial Agents, Bioorg. Med. Chem, vol.19, pp.6225-6232, 2011.

A. H. Lee, A. S. Chan, and T. Li, Synthesis of 5-(7-Hydroxyhept-3-Enyl)-1,2-Dithiolan-3-One 1-Oxide, a Core Functionality of Antibiotic Leinamycin, Tetrahedron, vol.59, pp.833-839, 2003.

G. Galvani, R. Lett, and C. Kouklovsky, Regio-and Stereochemical Studies on the Nitroso-Diels-Alder Reaction with 1,2-Disubstituted Dienes, Chem. Eur. J, vol.19, pp.15604-15614, 2013.

Y. Tamaru, S. Kawamura, T. Bando, K. Tanaka, and Z. Yoshida, Stereoselective Intramolecular Haloamidation of N-Protected 3-Hydroxy-4-Pentenylamines and 4-Hydroxy-5-Hexenylamines

, like Protein-Capture Agents, Angew. Chem. Int. Ed, vol.53, pp.4944-4948, 1988.

S. W. Millward, R. K. Henning, G. A. Kwong, S. Pitram, H. D. Agnew et al., Iterative in Situ Click Chemistry Assembles a Branched Capture Agent and Allosteric Inhibitor for akt1, J. Am. Chem. Soc, vol.133, issue.45, pp.18280-18288, 2011.

W. Tieu, T. P. Soares-da-costa, M. Y. Yap, K. L. Keeling, M. C. Wilce et al., Optimising in Situ Click Chemistry: The Screening and Identification of Biotin Protein Ligase Inhibitors, Chem. Sci, vol.2013, issue.9, p.3533

Y. Li, H. Wang, B. Tarus, M. R. Perez, L. Morellato et al., Rational Design of a Fluorescent NADPH Derivative Imaging Constitutive Nitric-Oxide Synthases upon Two-Photon Excitation, Proc. Natl. Acad. Sci, vol.109, pp.12526-12531, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00748999

J. Wang, M. Uttamchandani, J. Li, M. Hu, and S. Q. Yao, Rapid Assembly of Matrix Metalloprotease Inhibitors Using Click Chemistry, Org. Lett, vol.8, issue.17, pp.3821-3824, 2006.

O. I. Artyushin, E. V. Sharova, A. N. Yarkevich, G. K. Genkina, N. V. Vinogradova et al., Design of Phosphonate Analogs of Short Peptides by "click, Chemistry. Russ. Chem. Bull, vol.64, issue.9, pp.2172-2177, 2015.

C. Zinglé, D. Tritsch, C. Grosdemange-billiard, and M. Rohmer, Catechol -Rhodanine Derivatives : Specific and Promiscuous Inhibitors of Escherichia Coli Deoxyxylulose Phosphate Reductoisomerase ( DXR ), Bioorg. Med. Chem, vol.22, pp.3713-3719, 2014.

D. Tritsch, C. Zinglé, M. Rohmer, and C. Grosdemange-billiard, Flavonoids: True or Promiscuous Inhibitors of Enzyme? The Case of Deoxyxylulose Phosphate Reductoisomerase, Bioorg. Chem, vol.59, pp.140-144, 2015.

. Diethyl, , vol.2, p.3

S. Ponaire, C. Zinglé, D. Tritsch, C. ;-grosdemange-billiard, M. Rohmer et al., Growth Inhibition of Mycobacterium smegmatis by Prodrugs of Deoxyxylulose Phosphate Reducto-Isomerase Inhibitors, Promising Anti-Mycobacterial Agents, Eur. J. Med. Chem, vol.51, pp.277-285, 2012.

L. Kuntz, D. Tritsch, C. ;-grosdemange-billiard, A. ;-hemmerlin, . Willem et al., Biosynthesis as a Target for Antibacterial and Antiparasitic Drugs: Phosphonohydroxamic Acids as Inhibitors of Deoxyxylulose Phosphate Reducto-Isomerase, Biochem. J, vol.386, pp.127-135, 2005.

M. M. Bradford, A rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal, Biochem, vol.75, pp.248-254, 1976.