D. Figure, 2 Distributions des nombres de solvatation de (a) Li + , (b) Na + et (c) K + situés dans les deux premières couches à l'interface de l'électrode négative du graphite et dans la région

N. Ganfoud, A. Sene, M. Haefele, A. Marin-laèche, B. Daos et al., Effect of the carbon microporous structure on the capacitance of aqueous supercapacitors, Energy Storage Materials, accepted
URL : https://hal.archives-ouvertes.fr/hal-02285117

T. Méndez-morales, N. Ganfoud, Z. Li, M. Haefele, B. Rotenberg et al.,

. Salanne, Performance of microporous carbon electrodes for supercapacitors : Comparing graphene with disordered materials, Energy Storage Materials, vol.17, pp.88-92, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02290902

M. Simoncelli, N. Ganfoud, A. Sene, M. Haefele, B. Daos et al., Blue Energy and Desalination with Nanoporous Carbon Electrodes : Capacitance from Molecular Simulations to Continuous Models, Physical Review X, vol.8, p.21024, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01826410

R. Semiat, Energy Issues in Desalination Processes, Environmental Science & Technology, vol.42, pp.8193-8201, 2008.

R. E. Pattle, Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile, Nature, vol.174, pp.660-660, 1954.

B. E. Logan and M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, vol.488, pp.313-319, 2012.

R. S. Norman, Water salination : a source of energy, Science, vol.186, pp.350-352, 1974.

O. Schaetzle and C. J. Buisman, Salinity Gradient Energy : Current State and New Trends, vol.1, pp.164-166, 2015.

O. Levenspiel and N. D. Nevers, The Osmotic Pump : In principle, but probably not in practice, fresh water can be extracted from our oceans for no expenditure of energy, Science, vol.183, pp.157-160, 1974.

S. Loeb and R. S. Norman, Osmotic Power Plants, Science, vol.189, pp.654-655, 1975.

T. Chung, X. Li, R. C. Ong, Q. Ge, H. Wang et al., Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Current Opinion in Chemical Engineering, vol.1, pp.246-257, 2012.

S. Sarp, Z. Li, and J. Saththasivam, Pressure Retarded Osmosis (PRO) : Past experiences, current developments, and future prospects, Desalination, vol.389, pp.2-14, 2016.

J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, Reverse electrodialysis : evaluation of suitable electrode systems, Journal of Applied Electrochemistry, vol.40, pp.1461-1474, 2010.

D. A. Vermaas, S. Bajracharya, B. B. Sales, M. Saakes, B. Hamelers et al., Clean energy generation using capacitive electrodes in reverse electrodialysis, Energy Environ. Sci, vol.6, issue.2, pp.643-651, 2013.

D. A. Vermaas, E. Guler, M. Saakes, and K. Nijmeijer, Theoretical power density from salinity gradients using reverse electrodialysis, Energy Procedia, vol.20, pp.170-184, 2012.

K. Gerstandt, K. V. Peinemann, S. E. Skilhagen, T. Thorsen, and T. Holt, Membrane processes in energy supply for an osmotic power plant, Desalination, vol.224, pp.64-70, 2008.

J. N. Weinstein and F. B. Leitz, Electric Power from Differences in Salinity : The Dialytic Battery, Science, vol.191, pp.557-559, 1976.

J. W. Post, H. V. Hamelers, and C. J. Buisman, Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System, Environmental Science & Technology, vol.42, pp.5785-5790, 2008.

D. Brogioli, Extracting Renewable Energy from a Salinity Difference Using a Capacitor, Physical Review Letters, vol.103, p.58501, 2009.

B. B. Sales, M. Saakes, J. W. Post, C. J. Buisman, P. M. Biesheuvel et al., Direct Power Production from a Water Salinity Difference in a Membrane-Modified Supercapacitor Flow Cell, Environmental Science & Technology, vol.44, pp.5661-5665, 2010.

F. L. Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, Batteries for Efficient Energy Extraction from a Water Salinity Difference, Nano Letters, vol.11, pp.1810-1813, 2011.

D. Brogioli, R. Zhao, and P. M. Biesheuvel, A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes, Energy & Environmental Science, vol.4, issue.3, pp.772-777, 2011.

R. A. Rica, D. Brogioli, R. Ziano, D. Salerno, and F. Mantegazza, Ions Transport and Adsorption Mechanisms in Porous Electrodes During Capacitive-Mixing Double Layer Expansion (CDLE), The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, vol.116, pp.16934-16938, 2012.

. Bibliographie,

S. Porada, R. Zhao, A. Van-der-wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science, vol.58, pp.1388-1442, 2013.

M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon et al., Water desalination via capacitive deionization : what is it and what can we expect from it ?, Energy & Environmental Science, vol.8, pp.2296-2319, 2015.

U. M. Patil, R. R. Salunkhe, K. V. Gurav, and C. D. Lokhande, Chemically deposited nanocrystalline NiO thin films for supercapacitor application, Applied Surface Science, vol.255, pp.2603-2607, 2008.

Y. Tian, J. Yan, R. Xue, and B. Yi, Influence of Electrolyte Concentration and Temperature on the Capacitance of Activated Carbon, Acta Physico-Chimica Sinica, vol.27, issue.7, pp.479-485, 2011.

C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, Journal of the American Chemical Society, vol.130, pp.2730-2731, 2008.

H. Helmholtz, Studien über electrische Grenzschichten, Annalen der Physik, vol.243, issue.7, pp.337-382, 1879.

M. Gouy, Sur la constitution de la charge électrique à la surface d'un électrolyte, J. Phys. Theor. Appl, vol.9, issue.1, pp.457-468, 1910.

D. L. Chapman, LI. A contribution to the theory of electrocapillarity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.25, pp.475-481, 1913.

O. Stern, Zur Theorie Der Elektrolytischen Doppelschicht, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol.30, pp.508-516, 1924.

C. Merlet, Modélisation de l'adsorption des ions dans les carbones nanoporeux. thesis, 2013.

Y. Oren, Capacitive deionization (CDI) for desalination and water treatment -past, present and future (a review), Desalination, vol.228, pp.10-29, 2008.

P. M. Biesheuvel, M. Z. Bazant, R. D. Cusick, T. A. Hatton, K. B. Hatzell et al., Capacitive Deionization -defining a class of desalination technologies, 2017.

M. A. Anderson, A. L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices : Will it compete ?, Electrochimica Acta, vol.55, pp.3845-3856, 2010.

K. Christen, Desalination technology could clean up wastewater from coal-bed methane production, Environmental Science & Technology, vol.40, pp.639-639, 2006.

G. C. Costa, J. K. Mcdonough, Y. Gogotsi, and A. Navrotsky, Thermochemistry of onion-like carbons, Carbon, vol.69, pp.490-494, 2014.

S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova, and A. Oya, Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco?Buckytubes?) in propylene carbonate electrolytes, Electrochemistry Communications, vol.4, pp.593-598, 2002.

Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes et al., Carbon Materials for Chemical Capacitive Energy Storage, Advanced Materials, vol.23, issue.42, pp.4828-4850, 2011.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, pp.183-191, 2007.

L. L. Zhang, R. Zhou, and X. S. Zhao, Graphene -based materials as supercapacitor electrodes, Journal of Materials Chemistry, vol.20, issue.29, pp.5983-5992, 2010.

E. Frackowiak and F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, vol.39, pp.937-950, 2001.

Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer et al., Nanoporous carbide-derived carbon with tunable pore size, Nature Materials, vol.2, p.591, 2003.

R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio et al., Titanium carbide derived nanoporous carbon for energy-related applications, Carbon, vol.44, pp.2489-2497, 2006.

C. Portet, D. Kazachkin, S. Osswald, Y. Gogotsi, and E. Borguet, Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons, Thermochimica Acta, vol.497, pp.137-142, 2010.

S. Kondrat and A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes, Journal of Physics : Condensed Matter, vol.23, p.22201, 2010.

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.7, pp.845-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02417326

, IUPAC Compendium of Chemical Terminology, 2009.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, pp.309-319, 1938.

E. Hückel and P. Debye, The theory of electrolytes : I. lowering of freezing point and related phenomena, Phys. Z, vol.24, pp.185-206, 1923.

V. Freise, Zur theorie der diffusen doppelschicht, Z. Elektrochem, vol.56, p.822, 1952.

P. M. Biesheuvel and M. Z. Bazant, Nonlinear dynamics of capacitive charging and desalination by porous electrodes, Physical Review E, vol.81, 2010.

F. G. Donnan, Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol.17, pp.572-581, 1911.

R. Zhao, M. Van-soestbergen, H. H. Rijnaarts, A. Van-der-wal, M. Z. Bazant et al., Time-dependent ion selectivity in capacitive charging of porous electrodes, Journal of Colloid and Interface Science, vol.384, pp.38-44, 2012.

R. A. Rica, R. Ziano, D. Salerno, F. Mantegazza, M. Z. Bazant et al., Electrodiffusion of ions in porous electrodes for capacitive extraction of renewable energy from salinity differences, Electrochimica Acta, vol.92, pp.304-314, 2013.

P. M. Biesheuvel, R. Zhao, S. Porada, and A. Van, Theory of membrane capacitive deionization including the effect of the electrode pore space, Journal of Colloid and Interface Science, vol.360, pp.239-248, 2011.

K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes : superlubricity versus curvature dependent friction, Nano Letters, vol.10, pp.4067-4073, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02933706

W. Choi, Z. W. Ulissi, S. F. Shimizu, D. O. Bellisario, M. D. Ellison et al., Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes, Nature Communications, vol.4, 2013.

K. Sharma, Y. H. Kim, S. Yiacoumi, J. Gabitto, H. Z. Bilheux et al.,

S. Mayes, C. Dai, and . Tsouris, Analysis and simulation of a blue energy cycle, Renewable Energy, vol.91, pp.249-260, 2016.

C. Prehal, C. Koczwara, N. Jäckel, A. Schreiber, M. Burian et al., Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering, Nature Energy, vol.2, p.16215, 2017.

C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna, P. Simon et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nature Materials, vol.11, pp.306-310, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01153072

C. Péan, C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna et al., On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors, ACS Nano, vol.8, pp.1576-1583, 2014.

C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele et al., Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes, Journal of the American Chemical Society, vol.137, pp.12627-12632, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221450

C. Pean, B. Rotenberg, P. Simon, and M. Salanne, Multi-scale modelling of supercapacitors : From molecular simulations to a transmission line model, Journal of Power Sources, vol.326, pp.680-685, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304251

C. Merlet, C. Péan, B. Rotenberg, P. A. Madden, B. Daffos et al., Highly confined ions store charge more efficiently in supercapacitors, Nature Communications, vol.4, p.2701, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01157828

C. Merlet, M. Salanne, B. Rotenberg, and P. A. Madden, Influence of solvation on the structural and capacitive properties of electrical double layer capacitors, Electrochimica Acta, vol.101, pp.262-271, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853396

D. T. Limmer and A. P. Willard, Nanoscale heterogeneity at the aqueous electrolyte-electrode interface, Chemical Physics Letters, vol.620, pp.144-150, 2015.

B. Uralcan, I. A. Aksay, P. G. Debenedetti, and D. T. Limmer, Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions, The Journal of Physical Chemistry Letters, vol.7, pp.2333-2338, 2016.

D. Cohen-tanugi and J. C. Grossman, Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination, The Journal of Chemical Physics, vol.141, p.74704, 2014.

D. Cohen-tanugi and J. C. Grossman, Nanoporous graphene as a reverse osmosis membrane : Recent insights from theory and simulation, Desalination, vol.366, pp.59-70, 2015.

D. Cohen-tanugi, L. Lin, and J. C. Grossman, Multilayer Nanoporous Graphene Membranes for Water Desalination, Nano Letters, vol.16, pp.1027-1033, 2016.

C. B. Picallo, S. Gravelle, L. Joly, E. Charlaix, and L. Bocquet, Nanofluidic Osmotic Diodes : Theory and Molecular Dynamics Simulations, Physical Review Letters, vol.111, p.244501, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01087699

I. Kalcher, J. C. Schulz, and J. Dzubiella, Electrolytes in a nanometer slab-confinement : Ion-specific structure and solvation forces, The Journal of Chemical Physics, vol.133, p.164511, 2010.

. Bibliographie,

P. Cazade, R. Hartkamp, and B. Coasne, Structure and Dynamics of an Electrolyte Confined in Charged Nanopores, The Journal of Physical Chemistry C, vol.118, pp.5061-5072, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011066

R. K. Kalluri, T. A. Ho, J. Biener, M. M. Biener, and A. Striolo, Partition and Structure of Aqueous NaCl and CaCl 2 Electrolytes in Carbon-Slit Electrodes, The Journal of Physical Chemistry C, vol.117, pp.13609-13619, 2013.

T. A. Ho and A. Striolo, Promising Performance Indicators for Water Desalination and Aqueous Capacitors Obtained by Engineering the Electric Double Layer in Nano-Structured Carbon Electrodes, The Journal of Physical Chemistry C, vol.119, pp.3331-3337, 2015.

A. Striolo, A. Michaelides, and L. Joly, The Carbon-Water Interface : Modeling Challenges and Opportunities for the Water-Energy Nexus, Annual Review of Chemical and Biomolecular Engineering, vol.7, pp.533-556, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02289466

Y. S. Al-hamdani, D. Alfè, and A. Michaelides, How strongly do hydrogen and water molecules stick to carbon nanomaterials ?, The Journal of Chemical Physics, vol.146, p.94701, 2017.

M. Ma, G. Tocci, A. Michaelides, and G. Aeppli, Fast diffusion of water nanodroplets on graphene, Nature Materials, vol.15, pp.66-71, 2016.

J. Carrasco, A. Hodgson, and A. Michaelides, A molecular perspective of water at metal interfaces, Nature Materials, vol.11, pp.667-674, 2012.

C. Merlet, C. Péan, B. Rotenberg, P. A. Madden, P. Simon et al., Simulating Supercapacitors : Can We Model Electrodes As Constant Charge Surfaces ?, The Journal of Physical Chemistry Letters, vol.4, pp.264-268, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854038

A. P. Willard, S. K. Reed, P. A. Madden, and D. Chandler, Water at an electrochemical interface-a simulation study, Faraday Discussions, vol.141, issue.0, pp.423-441, 2009.

D. T. Limmer, A. P. Willard, P. Madden, and D. Chandler, Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic, Proceedings of the National Academy of Sciences, vol.110, pp.4200-4205, 2013.

. Bibliographie,

D. T. Limmer, A. P. Willard, P. A. Madden, and D. Chandler, Water Exchange at a Hydrated Platinum Electrode is Rare and Collective, The Journal of Physical Chemistry C, vol.119, pp.24016-24024, 2015.

J. A. Kattirtzi, D. T. Limmer, and A. P. Willard, Microscopic dynamics of charge separation at the aqueous electrochemical interface, Proceedings of the National Academy of Sciences, vol.114, pp.13374-13379, 2017.

M. P. Allen and D. J. Tildesley, Computer simulation of liquids, 1987.

D. Frenkel and B. Smit, Understanding molecular simulation : from algorithms to applications, 2002.

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, vol.159, pp.98-103, 1967.

A. Botan, Modélisation moléculaire d'argile en contact avec un réservoir de CO2. thesis, vol.6, 2011.

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, The Journal of Chemical Physics, vol.126, p.84704, 2007.

T. R. Gingrich and M. Wilson, On the Ewald summation of Gaussian charges for the simulation of metallic surfaces, Chemical Physics Letters, vol.500, pp.178-183, 2010.

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints : molecular dynamics of n-alkanes, Journal of Computational Physics, vol.23, pp.327-341, 1977.

H. C. Andersen, Rattle : A "velocity" version of the shake algorithm for molecular dynamics calculations, Journal of Computational Physics, vol.52, pp.24-34, 1983.

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.52, pp.255-268, 2006.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, pp.511-519, 1984.

W. G. Hoover, Canonical dynamics : Equilibrium phase-space distributions, Physical Review A, vol.31, pp.1695-1697, 1985.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, The Journal of Physical Chemistry, vol.91, pp.6269-6271, 1987.

S. Koneshan, J. C. Rasaiah, R. M. Lynden-bell, and S. H. Lee, Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25°C, The Journal of Physical Chemistry B, vol.102, pp.4193-4204, 1998.

T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, On the Water Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes, The Journal of Physical Chemistry B, vol.107, pp.1345-1352, 2003.

J. A. Thomas and A. J. Mcgaughey, Water Flow in Carbon Nanotubes : Transition to Subcontinuum Transport, Physical Review Letters, vol.102, p.184502, 2009.

G. Feng, R. Qiao, J. Huang, B. G. Sumpter, and V. Meunier, Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors, The Journal of Physical Chemistry C, vol.114, pp.18012-18016, 2010.

W. Xiong, J. Z. Liu, M. Ma, Z. Xu, J. Sheridan et al., Strain engineering water transport in graphene nanochannels, Physical Review E, vol.84, 2011.

M. C. Wander and K. L. Shuford, Electrolyte Effects in a Model System for Mesoporous Carbon Electrodes, The Journal of Physical Chemistry C, vol.115, pp.4904-4908, 2011.

G. Jiang, C. Cheng, D. Li, and J. Z. Liu, Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes, Nano Research, vol.9, pp.174-186, 2016.

J. Palmer, A. Llobet, S. Yeon, J. Fischer, Y. Shi et al., Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics, Carbon, vol.48, pp.1116-1123, 2010.

. Bibliographie,

M. M. Hantel, V. Presser, R. Kötz, and Y. Gogotsi, In situ electrochemical dilatometry of carbide-derived carbons, Electrochemistry Communications, vol.13, pp.1221-1224, 2011.

C. Pinilla, M. G. Del-pópolo, J. Kohanoff, and R. M. Lynden-bell, Polarization Relaxation in an Ionic Liquid Confined between Electrified Walls, The Journal of Physical Chemistry B, vol.111, pp.4877-4884, 2007.

O. J. Lanning and P. A. Madden, Screening at a Charged Surface by a Molten Salt, The Journal of Physical Chemistry B, vol.108, pp.11069-11072, 2004.

G. Feng, J. S. Zhang, and R. Qiao, Microstructure and Capacitance of the Electrical Double Layers at the Interface of Ionic Liquids and Planar Electrodes, The Journal of Physical Chemistry C, vol.113, pp.4549-4559, 2009.

L. Yang, B. H. Fishbine, A. Migliori, and L. R. Pratt, Molecular Simulation of Electric Double-Layer Capacitors Based on Carbon Nanotube Forests, Journal of the American Chemical Society, vol.131, pp.12373-12376, 2009.

M. V. Fedorov and A. A. Kornyshev, Ionic Liquid Near a Charged Wall : Structure and Capacitance of Electrical Double Layer, The Journal of Physical Chemistry B, vol.112, pp.11868-11872, 2008.

S. A. Kislenko, I. S. Samoylov, and R. H. Amirov, Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid, Physical Chemistry Chemical Physics, vol.11, issue.27, pp.5584-5590, 2009.

G. Lamoureux and B. Roux, Modeling induced polarization with classical Drude oscillators : Theory and molecular dynamics simulation algorithm, The Journal of Chemical Physics, vol.119, pp.3025-3039, 2003.

J. I. Siepmann and M. Sprik, Influence of surface topology and electrostatic potential on water/electrode systems, The Journal of Chemical Physics, vol.102, pp.511-524, 1995.

K. Jiri, Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules, Journal of Computational Chemistry, vol.25, issue.3, pp.335-342, 2003.

T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics, Physical Review Letters, vol.98, 2007.

D. T. Limmer, C. Merlet, M. Salanne, D. Chandler, P. A. Madden et al., Charge Fluctuations in Nanoscale Capacitors, Physical Review Letters, vol.111, p.106102, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839655

C. Pean, B. Daffos, C. Merlet, B. Rotenberg, P. Taberna et al., Single Electrode Capacitances of Porous Carbons in Neat Ionic Liquid Electrolyte at 100°C : A Combined Experimental and Modeling Approach, Journal of The Electrochemical Society, vol.162, pp.5091-5095, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01446690

A. Blyr, C. Sigala, G. Amatucci, D. Guyomard, Y. Chabre et al., Self-Discharge of LiMn2 O 4/C Li-Ion Cells in Their Discharged State Understanding by Means of Three-Electrode Measurements, J. Electrochem. Soc, vol.145, pp.194-209, 1998.

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, pp.1760-1763, 2006.

B. Dyatkin, O. Gogotsi, B. Malinovskiy, Y. Zozulya, P. Simon et al., High capacitance of coarse-grained carbide derived carbon electrodes, Journal of Power Sources, vol.306, pp.32-41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01457286

R. Burt, K. Breitsprecher, B. Daffos, P. Taberna, P. Simon et al., Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions, The Journal of Physical Chemistry Letters, vol.7, pp.4015-4021, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494252

B. E. Conway, J. O. Bockris, and I. A. Ammar, The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution

, Faraday Soc, vol.47, pp.756-766, 1951.

J. Dzubiella and J. Hansen, Electric-field-controlled water and ion permeation of a hydrophobic nanopore, J. Chem. Phys, vol.122, p.234706, 2005.

D. J. Bonthuis, S. Gekle, and R. R. Netz, Dielectric Profile of Interfacial Water and its Effect on Double-Layer Capacitance, Physical Review Letters, vol.107, p.166102, 2011.

A. Schlaich, E. W. Knapp, and R. R. Netz, Water Dielectric Effects in Planar Confinement, Physical Review Letters, vol.117, p.48001, 2016.

R. Renou, A. Szymczyk, G. Maurin, P. Malfreyt, and A. Ghoufi, Superpermittivity of nanoconfined water, J. Chem. Phys, vol.142, p.184706, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212247

M. S. Kilic, M. Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging, Phys. Rev. E, vol.75, p.21502, 2007.

M. Z. Bazant, M. S. Kilic, B. D. Storey, and A. Ajdari, Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions, Advances in Colloid and Interface Science, vol.152, pp.48-88, 2009.

A. A. Kornyshev, Double-layer in ionic liquids : Paradigm change ?, The Journal of Physical Chemistry B, vol.111, pp.5545-5557, 2007.

P. M. Biesheuvel, S. Porada, M. Levi, and M. Z. Bazant, Attractive forces in microporous carbon electrodes for capacitive deionization, Journal of Solid State Electrochemistry, vol.18, pp.1365-1376, 2014.

S. Porada, L. Weinstein, R. Dash, A. Van-der-wal, M. Bryjak et al., Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes, ACS Applied Materials & Interfaces, vol.4, pp.1194-1199, 2012.

R. Kant and M. B. Singh, Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically complex electrode : Deterministic and stochastic morphologies, Phys. Rev. E, vol.88, p.52303, 2013.

D. Brogioli, R. Ziano, R. A. Rica, D. Salerno, O. Kozynchenko et al., Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference

D. Vanzo, D. Bratko, and A. Luzar, Nanoconfined water under electric field at constant chemical potential undergoes electrostriction, J. Chem. Phys, vol.140, p.74710, 2014.

T. A. Ho and A. Striolo, Capacitance enhancement via electrode patterning, J. Chem. Phys, vol.139, p.204708, 2013.

I. Kalcher and J. Dzubiella, Structure-thermodynamics relation of electrolyte solutions, J. Chem. Phys, vol.130, p.134507, 2009.

S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J. S. Atchison et al., Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy & Environmental Science, vol.6, pp.3700-3712, 2013.

J. A. Van-meel, L. Filion, C. Valeriani, and D. Frenkel, A parameter-free, solid-angle based, nearest-neighbor algorithm, The Journal of Chemical Physics, vol.136, p.234107, 2012.

D. R. Cooper, B. D'anjou, N. Ghattamaneni, B. Harack, M. Hilke et al., Experimental Review

. Graphene, , 2012.

T. Sayer, C. Zhang, and M. Sprik, Charge compensation at the interface between the polar NaCl(111) surface and a NaCl aqueous solution, J. Chem. Phys, vol.147, p.104702, 2017.

R. Gomer and G. Tryson, An experimental determination of absolute half-cell emf's and single ion free energies of solvation, The Journal of Chemical Physics, vol.66, pp.4413-4424, 1977.

L. Eliad, G. Salitra, A. Soffer, and D. Aurbach, Ion Sieving Effects in the Electrical Double Layer of Porous Carbon Electrodes : Estimating Effective Ion Size in Electrolytic Solutions, The Journal of Physical Chemistry B, vol.105, pp.6880-6887, 2001.

T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous and Mesoporous Materials, vol.149, pp.134-141, 2012.

R. L. Martin, B. Smit, and M. Haranczyk, Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials, J. Chem. Inf. Model, vol.52, pp.308-318, 2012.

M. W. Thompson, B. Dyatkin, H. Wang, C. H. Turner, X. Sang et al., An Atomistic Carbide-Derived Carbon Model Generated Using ReaxFF-Based Quenched Molecular Dynamics

, C, vol.3, p.32, 2017.

T. Méndez-morales, N. Ganfoud, Z. Li, M. Haefele, B. Rotenberg et al., Performance of microporous carbon electrodes for supercapacitors : Comparing graphene with disordered materials, Energy Storage Materials, vol.17, pp.88-92, 2019.

M. D. Levi, G. Salitra, N. Levy, D. Aurbach, and J. Maier, Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage, Nature Materials, vol.8, pp.872-875, 2009.

H. Ohtaki and T. Radnai, Structure and dynamics of hydrated ions, Chemical Reviews, vol.93, pp.1157-1204, 1993.

L. X. Dang, G. K. Schenter, V. Glezakou, and J. L. Fulton, Molecular Simulation Analysis and X-ray Absorption Measurement of Ca 2+ , K + and Cl -Ions in Solution, The Journal of Physical Chemistry B, vol.110, pp.23644-23654, 2006.

P. R. Smirnov and V. N. Trostin, Structures of the nearest surroundings of the K + , Rb + , and Cs + ions in aqueous solutions of their salts, Russian Journal of General Chemistry, vol.77, pp.2101-2107, 2007.

Y. Marcus, Effect of Ions on the Structure of Water : Structure Making and Breaking, vol.109, pp.1346-1370, 2009.

K. Fic, G. Lota, M. Meller, and E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors, Energy Environ. Sci, vol.5, issue.2, pp.5842-5850, 2012.

Q. Qu, B. Wang, L. Yang, Y. Shi, S. Tian et al., Study on electrochemical performance of activated carbon in aqueous Li 2 SO 4 , Na 2 SO 4 and K 2 SO 4 electrolytes, Electrochemistry Communications, vol.10, pp.1652-1655, 2008.

. Bibliographie,

M. Levesque, V. Marry, B. Rotenberg, G. Jeanmairet, R. Vuilleumier et al., Solvation of complex surfaces via molecular density functional theory, The Journal of Chemical Physics, vol.137, p.224107, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01308817

G. Jeanmairet, M. Levesque, R. Vuilleumier, and D. Borgis, Molecular Density Functional Theory of Water, The Journal of Physical Chemistry Letters, vol.4, pp.619-624, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01308802

G. Jeanmairet, V. Marry, M. Levesque, B. Rotenberg, and D. Borgis, Hydration of clays at the molecular scale : the promising perspective of classical density functional theory, Molecular Physics, vol.112, pp.1320-1329, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01308788

C. Lian, X. Kong, H. Liu, and J. Wu, On the hydrophilicity of electrodes for capacitive energy extraction, Journal of Physics : Condensed Matter, vol.28, p.464008, 2016.

D. Horinek, S. I. Mamatkulov, and R. R. Netz, Rational design of ion force fields based on thermodynamic solvation properties, The Journal of Chemical Physics, vol.130, p.124507, 2009.

N. Boon and R. V. Roij, Blue energy' from ion adsorption and electrode charging in sea and river water, Simulation moléculaire d'électrolytes aqueux dans les carbones nanoporeux : Energie Bleue et désalinisation de l'eau, vol.109, pp.1229-1241, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00692122

, Plusieurs procédés sont actuellement à l'étude pour parvenir à exploiter cette énergie bleue (Blue Energy). Inversement, la désalinisation de l'eau de mer pour la production d'eau potable nécessite de très grandes quantités d'énergie. Depuis la proposition en 2009 d'une nouvelle approche pour parvenir à ces objectifs, grâce à des cycles thermodynamiques reposant sur la charge/décharge d'électrodes à forte/faible concentration en sel, expérimentateurs et ingénieurs ont essayé d'améliorer le procédé. Dans ce contexte, l'utilisation d'électrodes nanoporeuses de carbone semble une piste très prometteuse. Un défi de taille reste à relever pour déterminer les quantités pertinentes (capacité électrique et quantité de sel adsorbé en fonction de la composition de l'électrolyte et de sa concentration). En effet, les modèles traditionnels (Poisson-Boltzmann, etc) ne peuvent pas être utilisés dans ce cas où les interactions au niveau moléculaire jouent un rôle essentiel. Nous surmontons cette difficulté grâce aux simulations de dynamique moléculaire, qui permettent également de comprendre les mécanismes microscopiques à l'origine des propriétés observées. Nous étudions également l, Lors du mélange de l'eau douce des rivières avec l'eau salée de la mer, une quantité considérable d'énergie est dissipée

, Mots clefs : Energie bleue, supercondensateurs, électrolytes aqueux, simulation de dynamique moléculaire