T. Agrawal and G. Hasan, Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca 2+ signaling, Elife, vol.4, p.7046, 2015.

R. Andretic, Y. Kim, F. S. Jones, K. Han, and R. J. Greenspan, , 2008.

, Drosophila D1 dopamine receptor mediates caffeine-induced arousal, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.20392-20397

G. Artiushin and A. Sehgal, The Drosophila circuitry of sleep-wake regulation, Curr. Opin. Neurobiol, vol.44, pp.243-250, 2017.

Y. Aso, D. Hattori, Y. Yu, R. M. Johnston, N. A. Iyer et al., The neuronal architecture of the mushroom body provides a logic for associative learning, Elife, vol.3, p.4577, 2014.

Y. Aso, A. Herb, M. Ogueta, I. Siwanowicz, T. Templier et al., Three dopamine pathways induce aversive odor memories with different stability, PLoS Genet, vol.8, p.1002768, 2012.

Y. Aso and G. M. Rubin, Dopaminergic neurons write and update memories with cell-type-specific rules, Elife, vol.5, p.16135, 2016.

Y. Aso, D. Sitaraman, T. Ichinose, K. R. Kaun, K. Vogt et al., Mushroom body output neurons encode valence and guide memorybased action selection in Drosophila, Elife, vol.3, p.4580, 2014.

Y. Aso, I. Siwanowicz, L. Bräcker, K. Ito, T. Kitamoto et al., Specific dopaminergic neurons for the formation of labile aversive memory, Curr. Biol, vol.20, pp.1445-1451, 2010.

R. J. Bainton, L. T. Tsai, C. M. Singh, M. S. Moore, W. S. Neckameyer et al., Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila, Curr. Biol, vol.10, pp.187-194, 2000.

R. J. Beninger, The role of dopamine in locomotor activity and learning, Brain Res, vol.287, pp.173-196, 1983.

S. Benzer, Behavioral mutants of Drosophila isolated by countercurrent distribution, Proc. Natl. Acad. Sci. U.S.A, vol.58, pp.1112-1119, 1967.

J. A. Berry, I. Cervantes-sandoval, M. Chakraborty, and R. L. Davis, Sleep facilitates memory by blocking dopamine neuron-mediated forgetting, Cell, vol.161, pp.1656-1667, 2015.

J. A. Berry, I. Cervantes-sandoval, E. P. Nicholas, and R. L. Davis, , 2012.

, Dopamine is required for learning and forgetting in Drosophila, Neuron, vol.74, pp.530-542

S. Birman, Arousal mechanisms: speedy flies don't sleep at night, Curr. Biol, vol.15, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00117417

I. D. Blum, L. Zhu, L. Moquin, M. V. Kokoeva, A. Gratton et al., A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal, Elife, vol.3, p.5105, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01316664

P. Bou-dib, B. Gnägi, F. Daly, V. Sabado, D. Tas et al., A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress, PLoS Genet, vol.10, p.1004718, 2014.

E. Bouzaiane, S. Trannoy, L. Scheunemann, P. Plaçais, and T. Preat, Two independent mushroom body output circuits retrieve the six discrete components of Drosophila aversive memory, Cell Rep, vol.11, pp.1280-1292, 2015.

C. J. Burke, W. Huetteroth, D. Owald, E. Perisse, M. J. Krashes et al., Layered reward signalling through octopamine and dopamine in Drosophila, Nature, vol.492, pp.433-437, 2012.

D. Bushey and C. Cirelli, From genetics to structure to function: exploring sleep in Drosophila, Int. Rev. Neurobiol, vol.99, pp.213-244, 2011.

M. Cassar, A. Issa, T. Riemensperger, C. Petitgas, T. Rival et al., A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila, Hum. Mol. Genet, vol.24, pp.197-212, 2015.

A. Chaudhuri, K. Bowling, C. Funderburk, H. Lawal, A. Inamdar et al., Interaction of genetic and environmental factors in a Drosophila parkinsonism model, J. Neurosci, vol.27, pp.2457-2467, 2007.

C. Chen, J. Wu, H. Lin, T. Pai, T. Fu et al., Visualizing long-term memory formation in two neurons of the Drosophila brain, Science, vol.335, pp.678-685, 2012.

A. Claridge-chang, R. D. Roorda, E. Vrontou, L. Sjulson, H. Li et al., Writing memories with light-addressable reinforcement circuitry, Cell, vol.139, pp.405-415, 2009.

R. Cohn, I. Morantte, and V. Ruta, Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila, Cell, vol.163, pp.1742-1755, 2015.

K. Connolly, Locomotor activity in Drosophila III. A distinction between activity and reactivity, Anim. Behav, vol.15, pp.149-152, 1967.

J. T. Coull, Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology, Prog Neurobiol, vol.55, pp.343-361, 1998.

H. Coulom and S. Birman, Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster, J. Neurosci, vol.24, pp.10993-10998, 2004.

R. L. Davis, Traces of Drosophila memory, Neuron, vol.70, pp.8-19, 2011.

A. Dawydow, R. Gueta, D. Ljaschenko, S. Ullrich, M. Hermann et al., Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.13972-13977, 2014.

P. S. Dickinson, Neuromodulation of central pattern generators in invertebrates and vertebrates, Curr. Opin. Neurobiol, vol.16, pp.604-614, 2006.

M. B. Feany and W. W. Bender, A Drosophila model of Parkinson's disease, Nature, vol.404, pp.394-398, 2000.

E. H. Feinberg, M. K. Vanhoven, A. Bendesky, G. Wang, R. D. Fetter et al., GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems, Neuron, vol.57, pp.353-363, 2008.

A. Fiala, Olfaction and olfactory learning in Drosophila: recent progress, Curr. Opin. Neurobiol, vol.17, pp.720-726, 2007.

F. Friggi-grelin, H. Coulom, M. Meller, D. Gomez, J. Hirsh et al., Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase, J. Neurobiol, vol.54, pp.618-627, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00308667

B. Ganetzky and J. R. Flanagan, On the relationship between senescence and age-related changes in two wild-type strains of Drosophila melanogaster, Exp. Gerontol, vol.13, pp.189-196, 1978.

B. Giros, M. Jaber, S. R. Jones, R. M. Wightman, C. et al., Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter, Nature, vol.379, pp.606-612, 1996.

M. D. Gordon and K. Scott, Motor control in a Drosophila taste circuit, Neuron, vol.61, pp.373-384, 2009.

L. C. Griffith, Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect, Curr. Opin. Neurobiol, vol.22, pp.609-614, 2012.

M. S. Grotewiel, I. Martin, P. Bhandari, and E. Cook-wiens, Functional senescence in Drosophila melanogaster, Ageing Res. Rev, vol.4, pp.372-397, 2005.

M. E. Hale, H. R. Katz, M. Y. Peek, F. , and R. T. , Neural circuits that drive startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes, J. Neurogenet, vol.30, pp.89-100, 2016.

F. N. Hamada, M. Rosenzweig, K. Kang, S. R. Pulver, A. Ghezzi et al., An internal thermal sensor controlling temperature preference in Drosophila, Nature, vol.454, pp.217-220, 2008.

M. Heisenberg, Mushroom body memoir: from maps to models, Nat. Rev. Neurosci, vol.4, pp.266-275, 2003.

M. Heisenberg, A. Borst, S. Wagner, and D. Byers, Drosophila mushroom body mutants are deficient in olfactory learning, J. Neurogenet, vol.2, pp.1-30, 1985.

C. Helfrich-förster, J. Wulf, and J. S. De-belle, Mushroom body influence on locomotor activity and circadian rhythms in Drosophila melanogaster, J. Neurogenet, vol.16, pp.73-109, 2002.

T. Hige, Y. Aso, G. M. Rubin, and G. C. Turner, Plasticity-driven individualization of olfactory coding in mushroom body output neurons, Nature, vol.526, pp.258-262, 2015.

P. E. Howse, Brain structure and behavior in insects, Annu. Rev. Entomol, vol.20, pp.359-379, 1975.

F. Huber, Untersuchung tlber die funktion des zentralnervensystems und insbesondere des gehirns bei der fortbewegung und der lauterzeugung der grillen, Z. vergl. Physiol, vol.44, pp.60-132, 1960.

F. Huber, Central control of movements and behavior of invertebrates, Invertebrate Nervous Systems, pp.333-351, 1967.

M. A. Jones and M. Grotewiel, Drosophila as a model for age-related impairment in locomotor and other behaviors, Exp. Gerontol, vol.46, pp.320-325, 2011.

L. Kahsai and T. Zars, Learning and memory in Drosophila: behavior, genetics, and neural systems, Int. Rev. Neurobiol, vol.99, pp.139-167, 2011.

H. Kazama, Systems neuroscience in Drosophila: conceptual and technical advantages, Neuroscience, vol.296, pp.3-14, 2015.

Y. Kim, H. Lee, and K. Han, D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila, J. Neurosci, vol.27, pp.7640-7647, 2007.

T. Kitamoto, Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons, J. Neurobiol, vol.47, pp.81-92, 2001.

E. C. Kong, K. Woo, H. Li, T. Lebestky, N. Mayer et al., A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila, PLoS ONE, vol.5, p.9954, 2010.

M. J. Krashes, S. Dasgupta, A. Vreede, B. White, J. D. Armstrong et al., A neural circuit mechanism integrating motivational state with memory expression in Drosophila, Cell, vol.139, pp.416-427, 2009.

M. J. Krashes, A. C. Keene, B. Leung, J. D. Armstrong, and S. Waddell, Sequential use of mushroom body neuron subsets during Drosophila odor memory processing, Neuron, vol.53, pp.103-115, 2007.

S. Kumar, D. Chen, and A. Sehgal, Dopamine acts through Cryptochrome to promote acute arousal in Drosophila, Genes Dev, vol.26, pp.1224-1234, 2012.

K. Kume, S. Kume, S. K. Park, J. Hirsh, J. et al., Dopamine is a regulator of arousal in the fruit fly, J. Neurosci, vol.25, pp.7377-7384, 2005.

F. E. Lebeau, A. Manira, and S. Griller, Tuning the network: modulation of neuronal microcircuits in the spinal cord and hippocampus, Trends Neurosci, vol.28, pp.552-561, 2005.

T. Lebestky, J. C. Chang, H. Dankert, L. Zelnik, Y. Kim et al., Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits, Neuron, vol.64, pp.522-536, 2009.

L. Bourg, E. Lints, and F. A. , Hypergravity and aging in Drosophila melanogaster. 4. Climbing activity, Gerontology, vol.38, pp.59-64, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00704394

T. Lee, A. Lee, and L. Luo, Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast, Development, vol.126, pp.4065-4076, 1999.

L. P. Lewis, K. P. Siju, Y. Aso, A. B. Friedrich, A. J. Bulteel et al., A higher brain circuit for immediate integration of conflicting sensory information in Drosophila, Curr. Biol, vol.25, pp.2203-2214, 2015.

S. Q. Lima and G. Miesenböck, Remote control of behavior through genetically targeted photostimulation of neurons, Cell, vol.121, pp.141-152, 2005.

H. Lin, J. S. Lai, .. Chin, A. Chen, Y. Chiang et al., A map of olfactory representation in the Drosophila mushroom body, Cell, vol.128, pp.1205-1217, 2007.

C. Liu, P. Plaçais, N. Yamagata, B. D. Pfeiffer, Y. Aso et al., A subset of dopamine neurons signals reward for odour memory in Drosophila, Nature, vol.488, pp.512-516, 2012.

Q. Liu, S. Liu, L. Kodama, M. R. Driscoll, and M. N. Wu, Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila, Curr. Biol, vol.22, pp.2114-2123, 2012.

S. Liu, Q. Liu, M. Tabuchi, and M. N. Wu, Sleep drive is encoded by neural plastic changes in a dedicated circuit, Cell, vol.165, pp.1347-1360, 2016.

L. J. Macpherson, E. E. Zaharieva, P. J. Kearney, M. H. Alpert, T. Lin et al., Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation, Nat. Commun, vol.6, p.10024, 2015.

Z. Mao and R. L. Davis, Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity, Front. Neural Circuits, vol.3, p.5, 2009.

E. Marder, Neuromodulation of neuronal circuits: back to the future, Neuron, vol.76, pp.1-11, 2012.

F. Martín, A. , and E. , Novel genetic approaches to behavior in Drosophila, J. Neurogenet, vol.31, pp.288-299, 2017.

J. R. Martin, R. Ernst, and M. Heisenberg, Mushroom bodies suppress locomotor activity in Drosophila melanogaster, Learn. Mem, vol.5, pp.179-191, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00141131

J. R. Martin, R. Ernst, and M. Heisenberg, Temporal pattern of locomotor activity in Drosophila melanogaster, J. Comp. Physiol. A, vol.184, pp.73-84, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00141123

J. R. Martin, P. Faure, E. , and R. , The power law distribution for walking-time intervals correlates with the ellipsoid-body in Drosophila, J. Neurogenet, vol.15, pp.205-219, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00143059

J. R. Martin, T. Raabe, and M. Heisenberg, Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster, J. Comp. Physiol. A, vol.185, pp.277-288, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00140927

M. J. Meehan, W. , and R. , Locomotor activity in the Tyr-1 mutant of Drosophila melanogaster, Behav. Genet, vol.17, pp.503-512, 1987.

J. Miquel, P. R. Lundgren, and R. Binnard, Negative geotaxis and mating behavior in control and gamma-irradiated Drosophila, Drosoph. Inf. Serv, vol.48, pp.60-61, 1972.

P. Musso, P. Tchenio, and T. Preat, Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila, Cell Rep, vol.10, pp.1023-1031, 2015.

A. H. Nall, I. Shakhmantsir, K. Cichewicz, S. Birman, J. Hirsh et al., Caffeine promotes wakefulness via dopamine signaling in Drosophila, Sci. Rep, vol.6, p.20938, 2016.

K. Neuser, T. Triphan, M. Mronz, B. Poeck, and R. Strauss, Analysis of a spatial orientation memory in Drosophila, Nature, vol.453, pp.1244-1247, 2008.

K. O'dell and B. Burnet, The effects on locomotor activity and reactivity of the hypoactive and inactive mutations of Drosophila melanogaster, Heredity, vol.61, pp.199-207, 1988.

D. Owald, J. Felsenberg, C. B. Talbot, G. Das, E. Perisse et al., Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila, Neuron, vol.86, pp.417-427, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02506367

D. Owald, S. Lin, and S. Waddell, Light, heat, action: neural control of fruit fly behaviour, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.370, 2015.

Y. Pan, Y. Zhou, C. Guo, H. Gong, Z. Gong et al., Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory, Learn. Mem, vol.16, pp.289-295, 2009.

T. Pathak, T. Agrawal, S. Richhariya, S. Sadaf, and G. Hasan, Store-operated calcium entry through Orai is required for transcriptional maturation of the flight circuit in Drosophila, J. Neurosci, vol.35, pp.13784-13799, 2015.

U. Pech, S. Dipt, J. Barth, P. Singh, M. Jauch et al., Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells, Front. Neural Circuits, vol.7, p.147, 2013.

U. Pech, A. Pooryasin, S. Birman, and A. Fiala, Localization of the contacts between Kenyon cells and aminergic neurons in the Drosophila melanogaster brain using SplitGFP reconstitution, J. Comp. Neurol, vol.521, pp.3992-4026, 2013.

D. Pfaff and J. R. Banavar, A theoretical framework for CNS arousal, Bioessays, vol.29, pp.803-810, 2007.

D. Pimentel, J. M. Donlea, C. B. Talbot, S. M. Song, A. J. Thurston et al., Operation of a homeostatic sleep switch, Nature, vol.536, pp.333-337, 2016.

E. Pitmon, G. Stephens, S. J. Parkhurst, F. W. Wolf, G. Kehne et al., The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila, Genes Brain Behav, vol.15, pp.327-334, 2016.

P. Plaçais, É. De-tredern, L. Scheunemann, S. Trannoy, V. Goguel et al., Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory, Nat. Commun, vol.8, p.15510, 2017.

P. Plaçais, S. Trannoy, G. Isabel, Y. Aso, I. Siwanowicz et al., Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila, Nat. Neurosci, vol.15, pp.592-599, 2012.

T. Riemensperger, G. Isabel, H. Coulom, K. Neuser, L. Seugnet et al., Behavioral consequences of dopamine deficiency in the Drosophila central nervous system, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.834-839, 2011.

T. Riemensperger, A. Issa, U. Pech, H. Coulom, M. Nguy?n et al., A single dopamine pathway underlies progressive locomotor deficits in a Drosophila model of Parkinson disease, Cell Rep, vol.5, pp.952-960, 2013.

T. Riemensperger, R. J. Kittel, and A. Fiala, Optogenetics in Drosophila Neuroscience, Methods Mol. Biol, vol.1408, pp.167-175, 2016.

T. Riemensperger, T. Völler, P. Stock, E. Buchner, and A. Fiala, Punishment prediction by dopaminergic neurons in Drosophila, Curr. Biol, vol.15, 1953.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

C. Schroll, T. Riemensperger, D. Bucher, J. Ehmer, T. Völler et al., Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae, Curr. Biol, vol.16, pp.1741-1747, 2006.

M. Schwaerzel, M. Monastirioti, H. Scholz, F. Friggi-grelin, S. Birman et al., Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila, J. Neurosci, vol.23, pp.10495-10502, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00310974

J. Séjourné, P. Plaçais, Y. Aso, I. Siwanowicz, S. Trannoy et al., Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila, Nat. Neurosci, vol.14, pp.903-910, 2011.

M. Selcho, D. Pauls, K. Han, R. F. Stocker, and A. S. Thum, The role of dopamine in Drosophila larval classical olfactory conditioning, PLoS ONE, vol.4, p.5897, 2009.

C. N. Serway, R. R. Kaufman, R. Strauss, and J. S. De-belle, Mushroom bodies enhance initial motor activity in Drosophila, J. Neurogenet, vol.23, pp.173-184, 2009.

L. Seugnet, Y. Suzuki, L. Vine, L. Gottschalk, and P. J. Shaw, D1 receptor activation in the mushroom bodies rescues sleep-lossinduced learning impairments in Drosophila, Curr. Biol, vol.18, pp.1110-1117, 2008.

D. Sitaraman, Y. Aso, X. Jin, N. Chen, M. Felix et al., Propagation of homeostatic sleep signals by segregated synaptic microcircuits of the Drosophila mushroom body, Curr. Biol, vol.25, pp.2915-2927, 2015.

D. Sitaraman, Y. Aso, G. M. Rubin, and M. N. Nitabach, Control of sleep by dopaminergic inputs to the Drosophila mushroom body, Front. Neural Circuits, vol.9, p.73, 2015.

R. Strauss, The central complex and the genetic dissection of locomotor behaviour, Curr. Opin. Neurobiol, vol.12, pp.633-638, 2002.

R. Strauss and M. Heisenberg, A higher control center of locomotor behavior in the Drosophila brain, J. Neurosci, vol.13, pp.1852-1861, 1993.

C. Su and J. W. Wang, Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila, 2014.

, Curr. Opin. Neurobiol, vol.29, pp.9-16

S. Takemura, Y. Aso, T. Hige, A. Wong, Z. Lu et al., A connectome of a learning and memory center in the adult Drosophila brain, vol.6, p.26975, 2017.

N. K. Tanaka, H. Tanimoto, and K. Ito, Neuronal assemblies of the Drosophila mushroom body, J. Comp. Neurol, vol.508, pp.711-755, 2008.

J. Tomita, G. Ban, and K. Kume, Genes and neural circuits for sleep of the fruit fly, Neurosci. Res, vol.118, pp.82-91, 2017.

T. Ueno, J. Tomita, H. Tanimoto, K. Endo, K. Ito et al., Identification of a dopamine pathway that regulates sleep and arousal in Drosophila, Nat. Neurosci, vol.15, pp.1516-1523, 2012.

A. Vaccaro, A. Issa, L. Seugnet, S. Birman, and A. Klarsfeld, Drosophila Clock is required in brain pacemaker neurons to prevent premature locomotor aging independently of its circadian function, PLoS Genet, vol.13, p.1006507, 2017.

B. Van-swinderen, A. , and R. , Dopamine in Drosophila: setting arousal thresholds in a miniature brain, Proc. Biol. Sci, vol.278, pp.906-913, 2011.

S. Waddell, Dopamine reveals neural circuit mechanisms of fly memory, Trends Neurosci, vol.33, pp.457-464, 2010.

S. Waddell, Reinforcement signalling in Drosophila; dopamine does it all after all, Curr. Opin. Neurobiol, vol.23, pp.324-329, 2013.

B. H. White and N. C. Peabody, Neurotrapping: cellular screens to identify the neural substrates of behavior in Drosophila, Front. Mol. Neurosci, vol.2, p.20, 2009.

K. E. White, D. M. Humphrey, and F. Hirth, The dopaminergic system in the aging brain of Drosophila, Front. Neurosci, vol.4, p.205, 2010.

M. N. Wu, K. Koh, Z. Yue, W. J. Joiner, and A. Sehgal, A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila, Sleep, vol.31, pp.465-472, 2008.

N. Yamagata, M. Hiroi, S. Kondo, A. Abe, and H. Tanimoto, Suppression of dopamine neurons mediates reward, PLoS Biol, vol.14, p.1002586, 2016.

A. Yamamoto, L. Zwarts, P. Callaerts, K. Norga, T. F. Mackay et al., Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.12393-12398, 2008.

C. Yellman, H. Tao, B. He, and J. Hirsh, Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.4131-4136, 1997.

M. Yoshihara and K. Ito, Acute genetic manipulation of neuronal activity for the functional dissection of neural circuits-a dream come true for the pioneers of behavioral genetics, J. Neurogenet, vol.26, pp.43-52, 2012.

Q. Y. Zhou and R. D. Palmiter, Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic, Cell, vol.83, pp.1197-1209, 1995.

J. D. Armstrong, J. S. De-belle, Z. Wang, and K. Kaiser, Metamorphosis of the mushroom bodies; large-scale rearrangements of the neural substrates for associative learning and memory in Drosophila, Learn. Mem, vol.5, pp.102-114, 1998.

Y. Aso, K. Grübel, S. Busch, A. B. Friedrich, I. Siwanowicz et al., The mushroom body of adult Drosophila characterized by GAL4 drivers, J. Neurogenet, vol.23, pp.156-172, 2009.

D. A. Baker, K. M. Beckingham, A. , and J. D. , Functional dissection of the neural substrates for gravitaxic maze behavior in Drosophila melanogaster, J. Comp. Neurol, vol.501, pp.756-764, 2007.

F. Christiansen, C. Zube, T. F. Andlauer, C. Wichmann, W. Fouquet et al., Presynapses in Kenyon cell dendrites in the mushroom body calyx of Drosophila, J. Neurosci, vol.31, pp.9696-9707, 2011.

R. Cohn, I. Morantte, and V. Ruta, Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila, Cell, vol.163, pp.1742-1755, 2015.

N. Issman-zecharya and O. Schuldiner, The PI3K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation, Dev. Cell, vol.31, pp.461-473, 2014.

A. Jenett, G. M. Rubin, T. B. Ngo, D. Shepherd, C. Murphy et al., A GAL4-driver line resource for Drosophila neurobiology, Cell Rep, vol.2, pp.991-1001, 2012.

K. R. Kaun, R. Azanchi, Z. Maung, J. Hirsh, and U. Heberlein, A Drosophila model for alcohol reward, Nat Neurosci, vol.14, pp.612-619, 2011.

M. S. Kayser, Z. Yue, and A. Sehgal, A critical period of sleep for development of courtship circuitry and behavior in Drosophila, Science, vol.344, pp.269-274, 2014.

A. C. Lin, A. M. Bygrave, A. De-calignon, T. Lee, and G. Miesenböck, Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination, Nat. Neurosci, vol.17, pp.559-568, 2014.

G. Liu, H. Seiler, A. Wen, T. Zars, K. Ito et al., Distinct memory traces for two visual features in the Drosophila brain, Nature, vol.439, pp.551-556, 2006.

A. Martín-peña, A. Acebes, J. Rodríguez, V. Chevalier, S. Casas-tinto et al., Cell types and coincident synapses in the ellipsoid body of Drosophila, Eur J Neurosci, vol.39, pp.1586-1601, 2014.

S. E. Mcguire, P. T. Le, and R. L. Davis, The role of Drosophila mushroom body signaling in olfactory memory, Science, vol.293, pp.1330-1333, 2001.

T. Pathak, T. Agrawal, S. Richhariya, S. Sadaf, and G. Hasan, Store-operated calcium entry through orai is required for transcriptional maturation of the flight circuit in Drosophila, J. Neurosci, vol.35, pp.13784-13799, 2015.

S. C. Renn, J. D. Armstrong, M. Yang, Z. Wang, X. An et al., Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex, J. Neurobiol, vol.41, pp.189-207, 1999.

T. Sakai and T. Kitamoto, Differential roles of two major brain structures, mushroom bodies and central complex, for Drosophila male courtship behavior, J. Neurobiol, vol.66, pp.821-834, 2006.

J. Thran, B. Poeck, and R. Strauss, Serum response factor-mediated gene regulation in a Drosophila visual working memory, Curr. Biol, vol.23, pp.1756-1763, 2013.

J. M. Young, A. , and J. D. , Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets, J. Comp. Neurol, vol.518, pp.1500-1524, 2010.

T. Zars, M. Fischer, R. Schulz, and M. Heisenberg, Localization of a short-term memory in Drosophila, Science, vol.288, pp.672-675, 2000.

T. Agrawal and G. Hasan, Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca 2+ signaling, 2015.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi et al., Computational classification of mitochondrial shapes reflects stress and redox state, Cell Death Dis, vol.4, p.461, 2013.

S. C. Albrecht, A. G. Barata, J. Grosshans, A. A. Teleman, and T. P. Dick, In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis, Cell Metab, vol.14, pp.819-829, 2011.

S. C. Albrecht, M. C. Sobotta, D. Bausewein, I. Aller, R. Hell et al., Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes, J Biomol Screen, vol.19, pp.379-386, 2014.

Z. B. Andrews, S. Diano, and T. L. Horvath, Mitochondrial uncoupling proteins in the CNS: in support of function and survival, Nat Rev Neurosci, vol.6, pp.829-840, 2005.

Z. B. Andrews, B. Horvath, C. J. Barnstable, J. Elsworth, J. Elseworth et al., Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease, J Neurosci, vol.25, pp.184-191, 2005.

Y. Aso, D. Hattori, Y. Yu, R. M. Johnston, N. A. Iyer et al., The neuronal architecture of the mushroom body provides a logic for associative learning, vol.3, p.4577, 2014.

O. Barnstedt, D. Owald, J. Felsenberg, R. Brain, J. Moszynski et al., Memory-relevant mushroom body output synapses are cholinergic, Neuron, vol.89, pp.1237-1247, 2016.

M. C. Barone, G. P. Sykiotis, and D. Bohmann, Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson's disease, Dis Model Mech, vol.4, pp.701-707, 2011.

B. Matthew, J. Perez-ruth, G. , M. Fredric, and P. , The contribution of alpha synuclein to neuronal survival and function -Implications for Parkinson's disease, J Neurochem, vol.137, pp.331-359, 2016.

M. T. Besson, P. Dupont, Y. Fridell, and J. C. Liévens, Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease, Hum Mol Genet, vol.19, pp.3372-3382, 2010.

K. Beyer and A. Ariza, Protein aggregation mechanisms in synucleinopathies: commonalities and differences, J Neuropathol Exp Neurol, vol.66, pp.965-974, 2007.

A. Bose and M. F. Beal, Mitochondrial dysfunction in Parkinson's disease, J Neurochem, vol.139, pp.216-231, 2016.

P. Bou-dib, B. Gnägi, F. Daly, V. Sabado, D. Tas et al., A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress, PLoS Genet, vol.10, 2014.

H. Braak, D. Tredici, K. Rüb, U. De-vos, R. et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol Aging, vol.24, pp.197-211, 2003.

H. Braak, U. Rüb, W. P. Gai, and K. D. Tredici, Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen, J Neural Transm, vol.110, pp.517-536, 2003.

C. Breda, M. L. Nugent, J. G. Estranero, C. P. Kyriacou, T. F. Outeiro et al., Rab11 modulates ?-synuclein-mediated defects in synaptic transmission and behaviour, Hum Mol Genet, vol.24, pp.1077-1091, 2015.

J. C. Bridi and F. Hirth, Mechanisms of ?-synuclein induced synaptopathy in Parkinson's disease, Front Neurosci, vol.12, p.80, 2018.

P. Brundin and R. Melki, Prying into the prion hypothesis for Parkinson's disease, J Neurosci, vol.37, pp.9808-9818, 2017.

E. K. Butler, A. Voigt, A. K. Lutz, J. P. Toegel, G. E. Karsten et al., The mitochondrial chaperone protein TRAP1 mitigates ?-synuclein toxicity, PLoS Genet, vol.8, p.1002488, 2012.

B. Dehay, M. Vila, E. Bezard, P. Brundin, and J. H. Kordower, Alpha-synuclein propagation: New insights from animal models, Mov Disord, vol.31, pp.161-168, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01205919

S. Diano, R. T. Matthews, P. Patrylo, L. Yang, M. F. Beal et al., Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning, Endocrinology, vol.144, pp.5014-5021, 2003.

N. Exner, A. K. Lutz, C. Haass, and K. F. Winklhofer, Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences, EMBO J, vol.31, pp.3038-3062, 2012.

M. B. Feany and W. W. Bender, A Drosophila model of Parkinson's disease, Nature, vol.404, pp.394-398, 2000.

A. W. Ferree, K. Trudeau, E. Zik, I. Y. Benador, G. Twig et al., MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age, Autophagy, vol.9, pp.1887-1896, 2013.

Y. Fridell, A. Sánchez-blanco, B. A. Silvia, and S. L. Helfand, Functional characterization of a Drosophila mitochondrial uncoupling protein, J Bioenerg Biomembr, vol.36, pp.219-228, 2004.

Y. Fridell, A. Sánchez-blanco, B. A. Silvia, and S. L. Helfand, Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly, Cell Metab, vol.1, pp.145-152, 2005.

C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, and F. H. Gage, Mechanisms underlying inflammation in neurodegeneration, Cell, vol.140, pp.918-934, 2010.

R. A. Gottlieb and A. Stotland, MitoTimer: a novel protein for monitoring mitochondrial turnover in the heart, J Mol Med, vol.93, pp.271-278, 2015.

L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, The structure of the chromophore within DsRed, a red fluorescent protein from coral, Proc Natl Acad Sci U S A, vol.97, pp.11990-11995, 2000.

V. Grozdanov and K. M. Danzer, Release and uptake of pathologic alpha-synuclein, Cell Tissue Res, 2018.

M. Gutscher, A. Pauleau, M. L. Brach, T. Wabnitz, G. H. Samstag et al., Real-time imaging of the intracellular glutathione redox potential, Nat Methods, vol.5, p.553, 2008.

G. Hernandez, C. Thornton, A. Stotland, D. Lui, J. Sin et al., MitoTimer: a novel tool for monitoring mitochondrial turnover, Autophagy, vol.9, pp.1852-1861, 2013.

Y. Hirano, Y. Kuriyama, T. Miyashita, J. Horiuchi, and M. Saitoe, Reactive oxygen species are not involved in the onset of age-related memory impairment in Drosophila, Genes Brain Behav, vol.11, pp.79-86, 2012.

R. Hwang, L. Wiemerslage, C. J. Labreck, M. Khan, K. Kannan et al., The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinson's disease, Neurobiol Dis, vol.69, pp.180-191, 2014.

R. Islam, L. Yang, M. Sah, K. Kannan, D. Anamani et al., A neuroprotective role of the human uncoupling protein 2 (hUCP2) in a Drosophila Parkinson's Disease model, Neurobiol Dis, vol.46, pp.137-146, 2012.

E. Junn and M. M. Mouradian, Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine, Neurosci Lett, vol.320, pp.146-150, 2002.

L. V. Kalia and A. E. Lang, Parkinson's disease, Lancet, vol.386, pp.896-912, 2015.

F. Kamp, N. Exner, A. K. Lutz, N. Wender, J. Hegermann et al., Inhibition of mitochondrial fusion by ?-synuclein is rescued by PINK1, Parkin and DJ-1, EMBO J, vol.29, pp.3571-3589, 2010.

J. C. Koch, F. Bitow, J. Haack, Z. Hedouville, J. Zhang et al., Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons, Cell Death Dis, vol.6, p.1811, 2015.

S. Knapek, L. Kahsai, A. Winther, H. Tanimoto, and D. R. Nässel, Short neuropeptide F acts as a functional neuromodulator for olfactory memory in Kenyon cells of Drosophila mushroom bodies, J Neurosci, vol.33, pp.5340-5345, 2013.

S. Krauss, C. Zhang, and B. B. Lowell, The mitochondrial uncoupling-protein homologues, Nat Rev Mol Cell Biol, vol.6, pp.248-261, 2005.

R. C. Laker, P. Xu, K. A. Ryall, A. Sujkowski, B. M. Kenwood et al., A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo, J Biol Chem, vol.289, pp.12005-12015, 2014.

P. C. Liao, L. C. Tandarich, and P. J. Hollenbeck, ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila, PLoS One, vol.12, p.178105, 2017.

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.443, pp.787-795, 2006.

C. Liu, P. Y. Plaçais, N. Yamagata, B. D. Pfeiffer, Y. Aso et al., A subset of dopamine neurons signals reward for odour memory in Drosophila, Nature, vol.488, pp.512-516, 2012.

G. Liu, H. Seiler, A. Wen, T. Zars, K. Ito et al., Distinct memory traces for two visual features in the Drosophila brain, Nature, vol.439, pp.551-556, 2006.

J. Lotharius and P. Brundin, Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein, Nat Rev Neurosci, vol.3, pp.932-942, 2002.

T. Lu, Y. Pan, S. Kao, C. Li, I. Kohane et al., Gene regulation and DNA damage in the ageing human brain, Nature, vol.429, pp.883-891, 2004.

K. A. Lukyanov and V. V. Belousov, Genetically encoded fluorescent redox sensors, Biochim Biophys Acta, vol.1840, pp.745-756, 2014.

Z. Mao and R. L. Davis, Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity, Front Neural Circuits, vol.3, p.5, 2009.

W. Matsuda, T. Furuta, K. C. Nakamura, H. Hioki, F. Fujiyama et al., Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum, J Neurosci, vol.29, pp.444-453, 2009.

G. Mattiasson, M. Shamloo, G. Gido, K. Mathi, G. Tomasevic et al., Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma, Nat Med, vol.9, pp.1062-1068, 2003.

H. Mccann, H. Cartwright, and G. M. Halliday, Neuropathology of ?-synuclein propagation and braak hypothesis, Mov Disord, vol.31, pp.152-160, 2016.

A. J. Meyer and T. P. Dick, Fluorescent protein-based redox probes, Antioxid Redox Signal, vol.13, pp.621-650, 2010.

S. Mullin and A. Schapira, 2013. ?-Synuclein and mitochondrial dysfunction in Parkinson's disease, Mol Neurobiol, vol.47, pp.587-597

G. Murali and C. Panneerselvam, Age-associated oxidative macromolecular damages in rat brain regions: role of glutathione monoester, J Gerontol A Biol Sci Med Sci, vol.62, pp.824-830, 2007.

K. Nakamura, V. M. Nemani, F. Azarbal, G. Skibinski, J. M. Levy et al., Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein ?-synuclein, J Biol Chem, vol.286, pp.20710-20726, 2011.

S. Oka, J. Hirai, T. Yasukawa, Y. Nakahara, and Y. H. Inoue, A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults, Biogerontology, vol.16, pp.485-501, 2015.

W. Oertel and J. B. Schulz, Current and experimental treatments of Parkinson disease: A guide for neuroscientists, J Neurochem, vol.139, pp.325-337, 2016.

D. G. Ordonez, M. K. Lee, and M. B. Feany, ?-synuclein induces mitochondrial dysfunction through spectrin and the actin cCytoskeleton, Neuron, vol.97, pp.108-124, 2018.

E. Owusu-ansah, A. Yavari, and U. Banerjee, A protocol for in vivo detection of reactive oxygen species, 2008.

M. S. Parihar, A. Parihar, M. Fujita, M. Hashimoto, and P. Ghafourifar, Mitochondrial association of alpha-synuclein causes oxidative stress, Cell Mol Life Sci, vol.65, pp.1272-1284, 2008.

T. Pathak, T. Agrawal, S. Richhariya, S. Sadaf, and G. Hasan, Store-operated calcium entry through orai is required for transcriptional maturation of the flight circuit in Drosophila, J Neurosci, vol.35, pp.13784-13799, 2015.

U. Pech, A. Pooryasin, S. Birman, and A. Fiala, Localization of the contacts between kenyon cells and aminergic neurons in the Drosophila melanogaster brain using splitGFP reconstitution, J Comp Neurol, vol.521, pp.3992-4026, 2013.

A. D. Pilling, D. Horiuchi, C. M. Lively, and W. M. Saxton, Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons, Mol Biol Cell, vol.17, pp.2057-2068, 2006.

W. Poewe, K. Seppi, C. M. Tanner, G. M. Halliday, P. Brundin et al., Nat Rev Dis Primers, vol.3, p.17013, 2017.

R. B. Postuma and D. Berg, Advances in markers of prodromal Parkinson disease, Nature Reviews Neurology, vol.12, pp.622-634, 2016.

A. Reeve, E. Simcox, and D. Turnbull, Ageing and Parkinson's disease: why is advancing age the biggest risk factor?, Ageing Res Rev, vol.14, pp.19-30, 2014.

T. Riemensperger, A. R. Issa, U. Pech, H. Coulom, M. Nguy?n et al., A single dopamine pathway underlies progressive locomotor deficits in a Drosophila model of Parkinson disease, Cell Rep, vol.5, pp.952-960, 2013.

C. D. Rietdijk, P. Perez-pardo, J. Garssen, R. Van-wezel, and A. D. Kraneveld, Exploring Braak's Hypothesis of Parkinson's Disease, Front Neurol, vol.8, p.37, 2017.

M. Rodriguez, C. Rodriguez-sabate, I. Morales, A. Sanchez, and M. Sabate, Parkinson's disease as a result of aging, Aging Cell, vol.14, pp.293-308, 2015.

A. Sánchez-blanco, Y. Fridell, and S. L. Helfand, Involvement of Drosophila uncoupling protein 5 in metabolism and aging, Genetics, vol.172, pp.1699-1710, 2006.

A. Schapira, K. R. Chaudhuri, and P. Jenner, Non-motor features of Parkinson disease, Nat Rev Neurosci, vol.18, pp.435-450, 2017.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

J. Sun, A. Q. Xu, G. J. Poppinga, H. Riemensperger, T. Fiala et al., Neural control of startle-induced locomotion by the mushroom bodies and associated neurons in Drosophila, Front Syst Neurosci, vol.12, p.6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02396072

D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Parkinson's disease is not simply a prion disorder, J Neurosci, vol.37, pp.9799-9807, 2017.

D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Selective neuronal vulnerability in Parkinson disease, Nat Rev Neurosci, vol.18, pp.101-113, 2017.

D. J. Surmeier and P. T. Schumacker, Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease, J Biol Chem, vol.288, pp.10736-10741, 2013.

D. J. Surmeier, W. Shen, M. Day, T. Gertler, S. Chan et al., The role of dopamine in modulating the structure and function of striatal circuits, Prog Brain Res, vol.183, pp.149-167, 2010.

N. K. Tanaka, H. Tanimoto, and K. Ito, Neuronal assemblies of the Drosophila mushroom body, J Comp Neurol, vol.508, pp.711-755, 2008.

A. Terskikh, A. Fradkov, G. Ermakova, A. Zaraisky, P. Tan et al., Fluorescent timer": protein that changes color with time, Science, vol.290, pp.1585-1588, 2000.

A. V. Terskikh, A. F. Fradkov, A. G. Zaraisky, A. V. Kajava, and B. Angres, Analysis of DsRed Mutants. Space around the fluorophore accelerates fluorescence development, J Biol Chem, vol.277, pp.7633-7636, 2002.

A. Vaccaro, A. R. Issa, L. Seugnet, S. Birman, and A. Klarsfeld, Drosophila clock is required in brain pacemaker neurons to prevent premature locomotor aging independently of its circadian function, PLoS Genet, vol.13, p.1006507, 2017.

L. L. Venda, S. J. Cragg, V. L. Buchman, and R. Wade-martins, ?-Synuclein and dopamine at the crossroads of Parkinson's disease, Trends Neurosci, vol.33, pp.559-568, 2010.

N. P. Visanji, P. L. Brooks, L. N. Hazrati, and A. E. Lang, The prion hypothesis in Parkinson's disease: Braak to the future, Acta Neuropathol Commun, vol.1, issue.2, 2013.

Y. Wang, Y. Nartiss, B. Steipe, G. A. Mcquibban, and P. K. Kim, ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy, Autophagy, vol.8, pp.1462-1476, 2012.

B. Wang, Q. Liu, H. Shan, C. Xia, and Z. Liu, Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to ?-synuclein in Drosophila, Biochem Cell Biol, vol.93, pp.351-358, 2015.

C. A. Wolkow and W. B. Iser, Uncoupling protein homologs may provide a link between mitochondria, metabolism and lifespan, Ageing Res Rev, vol.5, pp.196-208, 2006.

Y. C. Wong and D. Krainc, 2017. ?-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies, Nat Med, vol.23, pp.1-13
URL : https://hal.archives-ouvertes.fr/hal-01580190

B. Xiao, J. Y. Goh, L. Xiao, H. Xian, K. L. Lim et al., Reactive oxygen species trigger Parkin/PINK1 pathway-dependent mitophagy by inducing mitochondrial recruitment of Parkin, J Biol Chem .M117, p.787739, 2017.

W. Zhang, T. Wang, P. Z. Miller, D. S. Wu, X. Block et al., Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease, FASEB J, vol.19, pp.533-542, 2005.

A. References-akkouche, B. Mugat, B. Barckmann, C. Varela-chavez, B. Li et al., Piwi is required during Drosophila embryogenesis to license dualstrand piRNA clusters for transposon repression in adult ovaries, Mol Cell, vol.66, pp.411-419, 2017.

A. A. Aravin, G. J. Hannon, and J. Brennecke, The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race, Science, vol.318, pp.761-764, 2007.

J. S. Becker, D. Nicetto, and K. S. Zaret, H3K9me3-dependent heterochromatin: barrier to cell fate changes, Trends Genet, vol.32, pp.29-41, 2016.

M. P. Bozzetti, V. Specchia, P. B. Cattenoz, P. Laneve, A. Geusa et al., The Drosophila fragile X mental retardation protein participates in the piRNA pathway, J Cell Sci, vol.128, pp.2070-2084, 2015.

J. Brennecke, A. A. Aravin, A. Stark, M. Dus, M. Kellis et al., Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, vol.128, pp.1089-1103, 2007.

B. Brower-toland, S. D. Findley, L. Jiang, L. Liu, H. Yin et al., Drosophila PIWI associates with chromatin and interacts directly with HP1a, Genes Dev, vol.21, pp.2300-2311, 2007.

J. S. Bus and J. E. Gibson, Paraquat: model for oxidant-initiated toxicity, Environ Health Perspect, vol.55, pp.37-46, 1984.

M. Cassar, A. Issa, T. Riemensperger, C. Petitgas, T. Rival et al., A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila, Hum Mol Genet, vol.24, pp.197-212, 2015.

A. Chaudhuri, K. Bowling, C. Funderburk, H. Lawal, A. Inamdar et al., Interaction of Genetic and Environmental Factors in a Drosophila Parkinsonism Model, J Neurosci, vol.27, pp.2457-2467, 2007.

H. Chen, X. Zheng, D. Xiao, and Y. Zheng, Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence, Aging Cell, vol.15, pp.542-552, 2016.

F. Coppedè, Genetics and epigenetics of Parkinson's disease, ScientificWorldJournal, p.489830, 2012.

D. N. Cox, A. Chao, and H. Lin, piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells, Development, vol.127, pp.503-514, 2000.

M. De-cecco, S. W. Criscione, A. L. Peterson, N. Neretti, J. M. Sedivy et al., Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues, Aging (Albany NY), vol.5, pp.867-883, 2013.

P. Desplats, B. Spencer, E. Coffee, P. Patel, S. Michael et al., 2011. ?-synuclein sequesters Dnmt1 from the nucleus, J Biol Chem, vol.286, pp.9031-9037
URL : https://hal.archives-ouvertes.fr/halshs-02241466

G. A. Doyle, R. C. Crist, E. T. Karatas, M. J. Hammond, A. D. Ewing et al., Analysis of LINE-1 Elements in DNA from postmortem brains of individuals with schizophrenia, Neuropsychopharmacology, vol.42, pp.2602-2611, 2017.

J. A. Erwin, M. C. Marchetto, and F. H. Gage, Mobile DNA elements in the generation of diversity and complexity in the brain, Nat Rev Neurosci, vol.15, pp.497-506, 2014.

Q. Fei, A. L. Mccormack, D. Monte, and D. W. Ethell, Paraquat neurotoxicity is mediated by a Bak-dependent mechanism, J Biol Chem, vol.283, pp.3357-3364, 2008.

F. Friggi-grelin, H. Coulom, M. Meller, D. Gomez, J. Hirsh et al., Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase, J Neurobiol, vol.54, pp.618-627, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00308667

B. Frost, M. Hemberg, J. Lewis, and M. B. Feany, Tau promotes neurodegeneration through global chromatin relaxation, Nat Neurosci, vol.17, pp.357-366, 2014.

G. Giorgi, P. Marcantonio, D. Re, and B. , LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress, Cell Tissue Res, vol.346, pp.383-391, 2011.

K. Herrup and Y. Yang, Cell cycle regulation in the postmitotic neuron: oxymoron or new biology, Nat Rev Neurosci, vol.8, pp.368-378, 2007.

Y. Hirano, Y. Kuriyama, T. Miyashita, J. Horiuchi, and M. Saitoe, Reactive oxygen species are not involved in the onset of age-related memory impairment in Drosophila, Genes Brain Behav, vol.11, pp.79-86, 2012.

Y. W. Iwasaki, M. C. Siomi, and H. Siomi, PIWI-interacting RNA: its biogenesis and functions, Annu Rev Biochem, vol.84, pp.405-433, 2015.

B. C. Jones, J. G. Wood, C. Chang, A. D. Tam, M. J. Franklin et al., A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan, Nat Commun, vol.7, p.13856, 2016.

C. Juliano, J. Wang, and H. Lin, Uniting Germline and Stem Cells: The function of Piwi proteins and the piRNA pathway in diverse organisms, Annu Rev Genet, vol.45, pp.447-469, 2011.

J. D. Klein, C. Qu, X. Yang, Y. Fan, C. Tang et al., 2016. c-Fos Repression by Piwi regulates Drosophila ovarian germline formation and tissue morphogenesis, PLoS Genet, vol.12, p.1006281
URL : https://hal.archives-ouvertes.fr/hal-01491798

M. Kong, M. Ba, H. Liang, L. Ma, Q. Yu et al., 2012. 5'-Aza-dC sensitizes paraquat toxic effects on PC12 cell, Neurosci Lett, vol.524, pp.35-39

E. J. Lee, S. Banerjee, H. Zhou, A. Jammalamadaka, M. Arcila et al., Identification of piRNAs in the central nervous system, RNA, vol.17, pp.1090-1099, 2011.

P. Lenart, J. Novak, and J. Bienertova-vasku, PIWI-piRNA pathway: Setting the pace of aging by reducing DNA damage, Mech Ageing Dev, 2018.

W. Li, L. Prazak, N. Chatterjee, S. Grüninger, L. Krug et al., Activation of transposable elements during aging and neuronal decline in Drosophila, Nat Neurosci, vol.16, pp.529-531, 2013.

D. M. Lin and C. S. Goodman, Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance, Neuron, vol.13, pp.507-523, 1994.

M. J. Luteijn and R. F. Ketting, PIWI-interacting RNAs: from generation to transgenerational epigenetics, Nat Rev Genet, vol.14, pp.523-534, 2013.

K. A. Malkus, E. Tsika, and H. Ischiropoulos, Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle, Mol Neurodegener, vol.4, p.24, 2009.

S. R. Mani, H. Megosh, and H. Lin, PIWI proteins are essential for early Drosophila embryogenesis, Dev Biol, vol.385, pp.340-349, 2014.

S. Mccarthy, M. Somayajulu, M. Sikorska, H. Borowy-borowski, and S. Pandey, Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10, Toxicol Appl Pharmacol, vol.201, pp.21-31, 2004.

A. L. Mccormack, M. Thiruchelvam, A. B. Manning-bog, C. Thiffault, J. W. Langston et al., Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat, Neurobio Dis, vol.10, pp.119-127, 2002.

A. R. Muotri, M. Marchetto, N. G. Coufal, R. Oefner, G. Yeo et al., L1 retrotransposition in neurons is modulated by MeCP2, Nature, vol.468, pp.443-446, 2010.

S. Oka, J. Hirai, T. Yasukawa, Y. Nakahara, and Y. H. Inoue, A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults, Biogerontology, vol.16, pp.485-501, 2015.

E. Owusu-ansah, A. Yavari, and U. Banerjee, A protocol for in vivo detection of reactive oxygen species, 2008.

M. Pardue, S. Rashkova, E. Casacuberta, P. G. Debaryshe, J. A. George et al., Two retrotransposons maintain telomeres in Drosophila, Chromosome Res, vol.13, pp.443-453, 2005.

P. N. Perrat, S. Dasgupta, J. Wang, W. Theurkauf, Z. Weng et al., Transposition-driven genomic heterogeneity in the Drosophila brain, Science, vol.340, pp.91-95, 2013.

M. Ponnusamy, K. Yan, C. Y. Liu, P. F. Li, and K. Wang, PIWI family emerging as a decisive factor of cell fate: An overview, Eur J Cell Bio, vol.96, pp.746-757, 2017.

P. Rajasethupathy, I. Antonov, R. Sheridan, S. Frey, C. Sander et al., A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity, Cell, vol.149, pp.693-707, 2012.

H. Rekaik, F. Blaudin-de-thé, J. Fuchs, O. Massiani-beaudoin, A. Prochiantz et al., Engrailed Homeoprotein protects mesencephalic dopaminergic neurons from oxidative stress, Cell Rep, vol.13, pp.242-250, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02156811

E. J. Rideout, A. J. Dornan, M. C. Neville, E. S. Goodwin, and S. F. , Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster, Nat Neurosci, vol.13, pp.458-466, 2010.

T. Riemensperger, G. Isabel, H. Coulom, K. Neuser, L. Seugnet et al., Behavioral consequences of dopamine deficiency in the Drosophila central nervous system, Proc Natl Acad Sci, vol.108, pp.834-839, 2011.

M. Rodriguez, C. Rodriguez-sabate, I. Morales, A. Sanchez, and M. Sabate, Parkinson's disease as a result of aging, Aging Cell, vol.14, pp.293-308, 2015.

R. J. Ross, M. M. Weiner, and H. Lin, PIWI proteins and PIWI-interacting RNAs in the soma, Nature, vol.505, pp.353-359, 2014.

K. A. Senti and J. Brennecke, The piRNA pathway: Guardian of the genome -A Fly's Perspective, Trends Genet, vol.26, pp.499-509, 2010.

A. K. Shukla, P. Pragya, H. S. Chaouhan, A. K. Tiwari, D. K. Patel et al., Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson's disease, PLoS One, vol.9, p.98886, 2014.

A. K. Shukla, C. Ratnasekhar, P. Pragya, H. S. Chaouhan, D. K. Patel et al., Metabolomic analysis provides insights on paraquat-induced parkinson-like symptoms in Drosophila melanogaster, Mol Neurobiol, vol.53, pp.254-269, 2016.

S. Shpyleva, S. Melnyk, O. Pavliv, I. Pogribny, J. James et al., Overexpression of LINE-1 retrotransposons in autism brain, Mol Neurobiol, vol.55, pp.1740-1749, 2018.

C. Song, A. Kanthasamy, H. Jin, V. Anantharam, and A. G. Kanthasamy, Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration, Neurotoxicology, vol.32, pp.586-595, 2011.

P. Sousa-victor, A. Ayyaz, R. Hayashi, Y. Qi, D. T. Madden et al., Piwi is required to limit exhaustion of aging somatic stem cells, Cell Rep, vol.20, pp.2527-2537, 2017.

T. Stoycheva, M. Pesheva, and P. Venkov, The role of reactive oxygen species in the induction of Ty1 retrotransposition in Saccharomyces cerevisiae, Yeast, vol.27, pp.259-267, 2010.

Á. Sturm, A. Perczel, Z. Ivics, and T. Vellai, The Piwi-piRNA pathway: road to immortality, Aging Cell, vol.16, pp.906-911, 2017.

L. Thomas, A. L. Rogers, A. K. Webster, A. Marinov, G. K. Liao et al., Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state, Genes Dev, vol.27, pp.390-399, 2013.

R. G. Urdinguio, J. V. Sanchez-mut, and M. Esteller, Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies, Lancet Neurol, vol.8, pp.1056-1072, 2009.

A. Vaccaro, A. R. Issa, L. Seugnet, S. Birman, and A. Klarsfeld, Drosophila clock is required in brain pacemaker neurons to prevent premature locomotor aging independently of its circadian function, PLoS Genet, vol.13, p.1006507, 2017.

J. W. Von-trotha, B. Egger, and A. H. Brand, Cell proliferation in the Drosophila adult brain revealed by clonal analysis and bromodeoxyuridine labelling, Neural Dev, vol.4, p.9, 2009.

S. Waddell, O. Barnstedt, and C. Treiber, Neural transposition in the Drosophila brain: is it all bad news?, Adv Genet, vol.86, pp.65-92, 2014.

J. G. Wood and S. L. Helfand, Chromatin structure and transposable elements in organismal aging, Front Genet, vol.4, p.274, 2013.

J. G. Wood, B. C. Jones, N. Jiang, C. Chang, S. Hosier et al., Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila, Proc Natl Acad Sci, vol.113, pp.11277-11282, 2016.

E. Y. Yakushev, E. A. Mikhaleva, Y. A. Abramov, O. A. Sokolova, I. M. Zyrianova et al., The role of Piwi nuclear localization in the differentiation and proliferation of germline stem cells, Mol Biol, vol.50, pp.630-637, 2016.

P. P. Zhao, M. J. Yao, S. Y. Chang, L. T. Gou, M. F. Liu et al., Novel function of PIWIL1 in neuronal polarization and migration via regulation of microtubule-associated proteins, 39. References References Abeliovich A, vol.8, pp.239-252, 2000.

S. Abounit, L. Bousset, F. Loria, S. Zhu, F. De-chaumont et al., Tunneling nanotubes spread fibrillar ?-synuclein by intercellular trafficking of lysosomes, EMBO J, vol.35, pp.2120-2138, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01400050

G. Abrusán, Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson's disease and schizophrenia, Biol Direct, vol.7, p.41, 2012.

N. C. Adams, T. Tomoda, M. Cooper, G. Dietz, and M. E. Hatten, Mice that lack astrotactin have slowed neuronal migration, Development, vol.129, pp.965-972, 2002.

T. Agrawal and G. Hasan, Maturation of a central brain flight circuit in Drosophila requires Fz2/Ca 2+ signaling, ELife, vol.4, p.7046, 2015.

J. E. Ahlskog, Parkin and PINK1 parkinsonism may represent nigral mitochondrial cytopathies distinct from Lewy body Parkinson's disease, Parkinsonism Relat Disord, vol.15, pp.721-727, 2009.

S. C. Albrecht, A. G. Barata, J. Grosshans, A. A. Teleman, and T. P. Dick, In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis, Cell Metab, vol.14, pp.819-829, 2011.

S. C. Albrecht, M. C. Sobotta, D. Bausewein, I. Aller, R. Hell et al., Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes, J Biomol Screen, vol.19, pp.379-386, 2014.

A. Alcaro, R. Huber, and J. Panksepp, Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective, Brain Res Rev, vol.56, pp.283-321, 2007.

O. V. Alekseyenko, Y. B. Chan, R. Li, and E. A. Kravitz, Single dopaminergic neurons that modulate aggression in Drosophila, Proc Natl Acad Sci U S A, vol.110, pp.6151-6156, 2013.

A. Alié, L. Leclère, M. Jager, C. Dayraud, P. Chang et al., Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness, Dev Biol, vol.350, pp.183-197, 2011.

A. Kaidery, N. Tarannum, S. Thomas, and B. , Epigenetic landscape of Parkinson's disease: Emerging Role in disease mechanisms and therapeutic modalities, Neurotherapeutics, vol.10, pp.698-708, 2013.

R. Andretic, Y. Kim, F. S. Jones, K. Han, and R. J. Greenspan, Drosophila D1 dopamine receptor mediates caffeine-induced arousal, Proc Natl Acad Sci, vol.105, pp.20392-20397, 2008.

R. Andretic, B. Van-swinderen, and R. J. Greenspan, Dopaminergic modulation of arousal in Drosophila, Curr Biol, vol.15, pp.1165-1175, 2005.

Z. B. Andrews, S. Diano, and T. L. Horvath, Mitochondrial uncoupling proteins in the CNS: in support of function and survival, Nat Rev Neurosci, vol.6, pp.829-840, 2005.

Z. B. Andrews, B. Horvath, C. J. Barnstable, J. Elsworth, J. Elseworth et al., Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease, J Neurosci, vol.25, pp.184-191, 2005.

G. P. Aranda, S. J. Hinojos, P. R. Sabandal, P. D. Evans, and K. Han, Behavioral sensitization to the disinhibition effect of ethanol requires the dopamine/ecdysone receptor in Drosophila, Front Syst Neurosci, vol.11, p.56, 2017.

S. M. Araujo, M. T. De-paula, M. R. Poetini, L. Meichtry, V. C. Bortolotto et al., Effectiveness of ?-oryzanol in reducing neuromotor deficits, dopamine depletion and oxidative stress in a Drosophila melanogaster model of Parkinson's disease induced by rotenone, Neurotoxicology, vol.51, pp.96-105, 2015.

A. A. Aravin, G. J. Hannon, and J. Brennecke, The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race, Science, vol.318, pp.761-764, 2007.

A. A. Aravin, R. Sachidanandam, D. Bourc'his, C. Schaefer, D. Pezic et al., A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice, Mol Cell, vol.31, pp.785-799, 2008.

G. Artiushin and A. Sehgal, The Drosophila circuitry of sleep-wake regulation, Curr Opin Neurobiol, vol.44, pp.243-250, 2017.

Y. Aso, D. Hattori, Y. Yu, R. M. Johnston, N. A. Iyer et al., The neuronal architecture of the mushroom body provides a logic for associative learning, vol.3, p.4577, 2014.

Y. Aso, A. Herb, M. Ogueta, I. Siwanowicz, T. Templier et al., Three dopamine pathways induce aversive odor memories with different stability, PLoS Genet, vol.8, p.1002768, 2012.

Y. Aso, D. Sitaraman, T. Ichinose, K. R. Kaun, K. Vogt et al., Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila, vol.3, p.4580, 2014.

Y. Aso, I. Siwanowicz, L. Bräcker, K. Ito, T. Kitamoto et al., Specific dopaminergic neurons for the formation of labile aversive memory, Curr Biol, vol.20, pp.1445-1451, 2010.

P. K. Auluck and N. M. Bonini, Pharmacological prevention of Parkinson disease in Drosophila, Nat Med, vol.8, pp.1185-1186, 2002.

P. K. Auluck, H. Chan, J. Q. Trojanowski, V. Lee, and N. M. Bonini, Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease, Science, vol.295, pp.865-868, 2002.

P. K. Auluck, M. C. Meulener, and N. M. Bonini, Mechanisms of suppression of ?-synuclein neurotoxicity by geldanamycin in Drosophila, J Biol Chem, vol.280, pp.2873-2878, 2005.

G. Ayano, Dopamine: Receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures, J Ment Disord Treat, vol.2, pp.1-4, 2016.

M. Baba, S. Nakajo, P. H. Tu, T. Tomita, K. Nakaya et al., Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies, Am J Pathol, vol.152, pp.879-884, 1998.

S. Bahadorani, J. Cho, T. Lo, H. Contreras, H. O. Lawal et al., Neuronal expression of a single-subunit yeast NADH-ubiquinone oxidoreductase (Ndi1) extends Drosophila lifespan, Aging Cell, vol.9, pp.191-202, 2010.

J. K. Baillie, M. W. Barnett, K. R. Upton, D. J. Gerhardt, T. A. Richmond et al., Somatic retrotransposition alters the genetic landscape of the human brain, Nature, vol.479, pp.534-537, 2011.

S. Bang, S. Hyun, S. T. Hong, J. Kang, K. Jeong et al., Dopamine signalling in mushroom bodies regulates temperature-preference behaviour in Drosophila, PLoS Genet, vol.7, p.1001346, 2011.

W. A. Banks, S. Dohgu, J. L. Lynch, M. A. Fleegal-demotta, M. A. Erickson et al., Nitric oxide isoenzymes regulate lipopolysaccharide-enhanced Insulin transport across the blood-brain barrier, Endocrinology, vol.149, pp.1514-1523, 2008.

W. A. Banks and M. A. Erickson, The blood-brain barrier and immune function and dysfunction, Neurobiol Dis, vol.37, pp.26-32, 2010.

M. C. Barone, G. P. Sykiotis, and D. Bohmann, Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson's disease, Dis Model Mech, vol.4, pp.701-707, 2011.

T. Bartels, J. G. Choi, and D. J. Selkoe, ?-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation, Nature, vol.477, pp.107-110, 2011.

F. Bayersdorfer, A. Voigt, S. Schneuwly, and J. A. Botella, Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson's disease, Neurobiol Dis, vol.40, pp.113-119, 2010.

J. M. Beaulieu and R. R. Gainetdinov, The physiology, signaling, and pharmacology of dopamine receptors, Pharmacol Rev, vol.63, pp.182-217, 2011.

T. F. Beckhauser, J. Francis-oliveira, D. Pasquale, and R. , Reactive oxygen species: Physiological and physiopathological effects on synaptic plasticity, J Exp Neurosci, vol.10, pp.23-48, 2016.

H. J. Bellen, C. Tong, and H. Tsuda, 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future, Nat Rev Neurosci, vol.11, p.514, 2010.

A. Bender, P. Desplats, B. Spencer, E. Rockenstein, A. Adame et al., TOM40 mediates mitochondrial dysfunction induced by ?-synuclein accumulation in Parkinson's disease, PLoS One, vol.8, p.62277, 2013.

A. Bender, K. J. Krishnan, C. M. Morris, G. A. Taylor, A. K. Reeve et al., High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease, Nat Genet, vol.38, pp.515-517, 2006.

F. Bender, M. Gorbati, M. C. Cadavieco, N. Denisova, X. Gao et al., Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway, Nat Commun, vol.6, p.8521, 2015.

B. Matthew, J. Perez-ruth, G. , M. Fredric, and P. , The contribution of alpha synuclein to neuronal survival and function -Implications for Parkinson's disease, J Neurochem, vol.137, pp.331-359, 2016.

J. D. Berke and S. E. Hyman, Addiction, dopamine, and the molecular mechanisms of memory, Neuron, vol.25, pp.515-532, 2000.

J. A. Berry, I. Cervantes-sandoval, E. P. Nicholas, and R. L. Davis, Dopamine is required for learning and forgetting in Drosophila, Neuron, vol.74, pp.530-542, 2012.

Å. Bertler and E. Rosengren, Occurrence and distribution of dopamine in brain and other tissues, Experientia, vol.15, pp.10-11, 1959.

M. Besson and J. Martin, Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila, J Neurobiol, vol.62, pp.386-396, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00140203

K. Beyer and A. Ariza, Protein aggregation mechanisms in synucleinopathies: commonalities and differences, J Neuropathol Exp Neurol, vol.66, pp.965-974, 2007.

C. L. Bigarella, R. Liang, and S. Ghaffari, Stem cells and the impact of ROS signaling, Development, vol.141, pp.4206-4218, 2014.

W. Birkmayer and O. Hornykiewicz, , 1961.

, Wien Klin Wochenschr, vol.73, pp.787-788

S. Birman, L'alpha-synucléine et la maladie de Parkinson : le grand méchant petit chaperon, Médecine/Sciences, vol.16, pp.956-957, 2000.

S. Birman, Arousal mechanisms: Speedy flies don't sleep at night, Curr Biol, pp.511-513, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00117417

S. Birman, B. Morgan, M. Anzivino, and J. Hirsh, A novel and major isoform of tyrosine hydroxylase in Drosophila is generated by alternative RNA processing, J Biol Chem, vol.269, pp.26559-26567, 1994.

A. Björklund and S. B. Dunnett, Dopamine neuron systems in the brain: an update, Trends Neurosci, vol.30, pp.194-202, 2007.

J. C. Black, C. Van-rechem, and J. R. Whetstine, Histone lysine methylation dynamics: establishment, regulation, and biological impact, Mol Cell, vol.48, pp.491-507, 2012.

J. Blackinton, R. Ahmad, D. W. Miller, M. P. Van-der-brug, R. M. Canet-avilés et al., Effects of DJ-1 mutations and polymorphisms on protein stability and subcellular localization, Brain Res Mol Brain Res, vol.134, pp.76-83, 2005.

H. Blaschko, The activity of L(-)-dopa decarboxylase, J Physiol (Lond), vol.101, pp.337-349, 1942.

W. Blenau and M. Thamm, Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: lessons from Drosophila melanogaster and Apis mellifera, Arthropod Struct Dev, vol.40, pp.381-394, 2011.

. Bliek-am-van-der and E. M. Meyerowrtz, Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic, Nature, vol.351, p.411, 1991.

K. Bohmert, I. Camus, C. Bellini, D. Bouchez, M. Caboche et al., AGO1 defines a novel locus of Arabidopsis controlling leaf development, EMBO J, vol.17, pp.170-180, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02687746

J. A. Botella, F. Bayersdorfer, and S. Schneuwly, Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson's disease, Neurobiol Dis, vol.30, pp.65-73, 2008.

P. Bou-dib, B. Gnägi, F. Daly, V. Sabado, D. Tas et al., A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress, PLoS Genet, vol.10, 2014.

E. Bouzaiane, S. Trannoy, L. Scheunemann, P. Y. Plaçais, and T. Preat, Two independent mushroom body output circuits retrieve the six discrete components of Drosophila aversive memory, Cell Rep, vol.11, pp.1280-1292, 2015.

A. Boveris and A. Navarro, Brain mitochondrial dysfunction in aging, IUBMB Life, vol.60, pp.308-314, 2008.

M. P. Bozzetti, V. Specchia, P. B. Cattenoz, P. Laneve, A. Geusa et al., The Drosophila fragile X mental retardation protein participates in the piRNA pathway, J Cell Sci, vol.128, pp.2070-2084, 2015.

H. Braak, R. De-vos, J. Bohl, D. Tredici, and K. , Gastric ?-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's diseaserelated brain pathology, Neurosci Lett, vol.396, pp.67-72, 2006.

H. Braak, D. Tredici, and K. , Neuropathological staging of brain pathology in sporadic Parkinson's disease: separating the wheat from the chaff, J Parkinsons Dis, vol.7, pp.71-85, 2017.

H. Braak, D. Tredici, K. Rüb, U. De-vos, R. et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol Aging, vol.24, pp.197-211, 2003.

H. Braak, U. Rüb, W. P. Gai, and K. D. Tredici, Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen, J Neural Transm, vol.110, pp.517-536, 2003.

A. H. Brand and N. Perrimon, Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, vol.118, pp.401-415, 1993.

S. J. Bray, W. A. Johnson, J. Hirsh, U. Heberlein, and R. Tjian, A cis-acting element and associated binding factor required for CNS expression of the Drosophila melanogaster dopa decarboxylase gene, EMBO J, vol.7, pp.177-188, 1988.

C. Breda, M. L. Nugent, J. G. Estranero, C. P. Kyriacou, T. F. Outeiro et al., Rab11 modulates ?-synuclein-mediated defects in synaptic transmission and behaviour, Hum Mol Genet, vol.24, pp.1077-1091, 2015.

J. Brennecke, A. A. Aravin, A. Stark, M. Dus, M. Kellis et al., Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, vol.128, pp.1089-1103, 2007.

J. C. Bridi and F. Hirth, Mechanisms of ?-synuclein induced synaptopathy in Parkinson's disease, Front Neurosci, vol.12, p.80, 2018.

A. I. Brooks, C. A. Chadwick, H. A. Gelbard, C. Da, and H. J. Federoff, Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss, Brain Res, vol.823, pp.1-10, 1999.

B. Brower-toland, S. D. Findley, L. Jiang, L. Liu, H. Yin et al., Drosophila PIWI associates with chromatin and interacts directly with HP1a, Genes Dev, vol.21, pp.2300-2311, 2007.

P. Brundin and R. Melki, Prying into the prion hypothesis for Parkinson's disease, J Neurosci, vol.37, pp.9808-9818, 2017.

V. Budnik and K. White, Genetic dissection of dopamine and serotonin synthesis in the nervous system of Drosophila melanogaster, J Neurogenet, vol.4, pp.309-314, 1987.

M. Bundo, M. Toyoshima, Y. Okada, W. Akamatsu, J. Ueda et al., Increased L1 retrotransposition in the neuronal genome in schizophrenia, Neuron, vol.81, pp.306-313, 2014.

L. F. Burbulla, P. Song, J. R. Mazzulli, E. Zampese, Y. C. Wong et al., Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease, Science, vol.357, pp.1255-1261, 2017.

C. J. Burke, W. Huetteroth, D. Owald, E. Perisse, M. J. Krashes et al., Layered reward signalling through octopamine and dopamine in Drosophila, Nature, vol.492, pp.433-437, 2012.

J. S. Bus and J. E. Gibson, Paraquat: model for oxidant-initiated toxicity, Environ Health Perspect, vol.55, pp.37-46, 1984.

E. K. Butler, A. Voigt, A. K. Lutz, J. P. Toegel, G. E. Karsten et al., The mitochondrial chaperone protein TRAP1 mitigates ?-synuclein toxicity, PLoS Genet, vol.8, p.1002488, 2012.

S. Büttner, F. Broeskamp, C. Sommer, M. Markaki, L. Habernig et al., Spermidine protects against ?-synuclein neurotoxicity, Cell Cycle, vol.13, pp.3903-3908, 2014.

S. Büttner, L. Habernig, F. Broeskamp, D. Ruli, F. N. Vögtle et al., Endonuclease G mediates ?-synuclein cytotoxicity during Parkinson's disease, EMBO J, vol.32, pp.3041-3054, 2013.

D. E. Cabin, K. Shimazu, D. Murphy, N. B. Cole, W. Gottschalk et al., Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein, J Neurosci, vol.22, pp.8797-8807, 2002.

S. Callier, M. Snapyan, L. Crom, S. Prou, D. Vincent et al., Evolution and cell biology of dopamine receptors in vertebrates, Biol Cell, vol.95, pp.489-502, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00122156

R. M. Canet-avilés, M. A. Wilson, D. W. Miller, R. Ahmad, C. Mclendon et al., The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization, Proc Natl Acad Sci, vol.101, pp.9103-9108, 2004.

A. Carlsson, The occurrence, distribution and physiological role of catecholamines in the nervous system, Pharmacol Rev, vol.11, pp.490-493, 1959.

A. Carlsson, Treatment of Parkinson's with L-DOPA. The early discovery phase, and a comment on current problems, J Neural Transm, vol.109, pp.777-787, 2002.

M. A. Carmell, A. Girard, H. Van-de-kant, D. Bourc'his, T. H. Bestor et al., MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline, Dev Cell, vol.12, pp.503-514, 2007.

G. Carrard, A. L. Bulteau, I. Petropoulos, and B. Friguet, Impairment of proteasome structure and function in aging, Int J Biochem Cell Biol, vol.34, pp.1461-1474, 2002.

M. Cassar, A. R. Issa, T. Riemensperger, C. Petitgas, T. Rival et al., A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila, Hum Mol Genet, vol.24, pp.197-212, 2015.

J. Castañeda, P. Genzor, and A. Bortvin, piRNAs, transposon silencing, and germline genome integrity, Mutat Res, vol.714, pp.95-104, 2011.

A. Castaño, A. J. Herrera, J. Cano, and A. Machado, Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system, J Neurochem, vol.70, pp.1584-1592, 1998.

S. E. Castel and R. A. Martienssen, RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond, Nat Rev Genet, vol.14, pp.100-112, 2013.

H. Cedar and Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms, Nat Rev Genet, vol.10, pp.295-304, 2009.

I. Cervantes-sandoval, A. Phan, M. Chakraborty, and R. L. Davis, Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning, vol.6, p.23789, 2017.

H. Y. Chang, A. Grygoruk, E. S. Brooks, L. C. Ackerson, N. T. Maidment et al., Overexpression of the Drosophila vesicular monoamine transporter increases motor activity and courtship but decreases the behavioral response to cocaine, Mol Psychiatry, vol.11, pp.99-113, 2006.

K. T. Chang and K. T. Min, Drosophila melanogaster homolog of Down syndrome critical region 1 is critical for mitochondrial function, Nat Neurosci, vol.8, pp.1577-1585, 2005.

M. C. Chartier-harlin, J. Kachergus, C. Roumier, V. Mouroux, X. Douay et al., Alpha-synuclein locus duplication as a cause of familial Parkinson's disease, Lancet, vol.364, pp.1167-1169, 2004.

A. Chaudhuri, K. Bowling, C. Funderburk, H. Lawal, A. Inamdar et al., Interaction of genetic and environmental factors in a Drosophila parkinsonism model, J Neurosci, vol.27, pp.2457-2467, 2007.

M. S. Chen, R. A. Obar, C. C. Schroeder, T. W. Austin, C. A. Poodry et al., Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis, Nature, vol.351, pp.583-586, 1991.

S. L. Chen, Y. H. Chen, C. C. Wang, Y. W. Yu, Y. C. Tsai et al., Active and passive sexual roles that arise in Drosophila male-male courtship are modulated by dopamine levels in PPL2ab neurons, Sci Rep, vol.7, p.44595, 2017.

S. W. Chen, S. Drakulic, E. Deas, M. Ouberai, F. A. Aprile et al., Structural characterization of toxic oligomers that are kinetically trapped during ?-synuclein fibril formation, Proc Natl Acad Sci, vol.112, pp.1994-2003, 2015.

X. Chen, H. A. De-silva, M. J. Pettenati, P. N. Rao, S. George-hyslop et al., The human NACP/alpha-synuclein gene: chromosome assignment to 4q21.3-q22 and TaqI RFLP analysis, Genomics, vol.26, pp.425-427, 1995.

A. Cheramy, V. Leviel, and J. Glowinski, Dendritic release of dopamine in the substantia nigra, Nature, vol.289, pp.537-542, 1981.

Y. P. Ching, A. Pang, W. H. Lam, R. Z. Qi, and J. H. Wang, Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor, J Biol Chem, vol.277, pp.15237-15240, 2002.

S. J. Chinta, J. K. Mallajosyula, A. Rane, and J. K. Andersen, Mitochondrial ?-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo, Neurosci Lett, vol.486, pp.235-239, 2010.

M. K. Cho, G. Nodet, H. Y. Kim, M. R. Jensen, P. Bernado et al., Structural characterization of alpha-synuclein in an aggregation prone state, Protein Sci, vol.18, pp.1840-1846, 2009.

F. Cicchetti, J. Drouin-ouellet, and R. E. Gross, Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models?, Trends Pharmacol Sci, vol.30, pp.475-483, 2009.

I. E. Clark, M. W. Dodson, C. Jiang, J. H. Cao, J. R. Huh et al., Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, vol.441, pp.1162-1166, 2006.

R. Cohn, I. Morantte, and V. Ruta, Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila, Cell, vol.163, pp.1742-1755, 2015.

N. B. Cole, D. Dieuliis, P. Leo, D. C. Mitchell, and R. L. Nussbaum, Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification, Exp Cell Res, vol.314, pp.2076-2089, 2008.

S. H. Cole, G. E. Carney, C. A. Mcclung, S. S. Willard, B. J. Taylor et al., Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility, J Biol Chem, vol.280, pp.14948-14955, 2005.

T. J. Collier, N. M. Kanaan, and J. H. Kordower, Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates, Nat Rev Neurosci, vol.12, pp.359-366, 2011.

K. Connolly, Locomotor activity in Drosophila III. A distinction between activity and reactivity, Animal Behaviour, vol.15, pp.149-152, 1967.

K. A. Conway, S. J. Lee, J. C. Rochet, T. T. Ding, R. E. Williamson et al., Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy, Proc Natl Acad Sci, vol.97, pp.571-576, 2000.

K. A. Conway, J. C. Rochet, R. M. Bieganski, and P. T. Lansbury, Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct, Science, vol.294, pp.1346-1349, 2001.

M. R. Cookson, DJ-1, PINK1, and their effects on mitochondrial pathways, Mov Disord, vol.25, pp.44-48, 2010.

F. Coppedè and L. Migliore, DNA damage in neurodegenerative diseases, Mutat Res, vol.776, pp.84-97, 2015.

R. Cordaux and M. A. Batzer, The impact of retrotransposons on human genome evolution, Nat Rev Genet, vol.10, pp.691-703, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419189

M. Costanzo and C. Zurzolo, The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration, Biochem J, vol.452, pp.1-17, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00874678

O. Corti, S. Lesage, and A. Brice, What genetics tells us about the causes and mechanisms of Parkinson's disease, Physiol Rev, vol.91, pp.1161-1218, 2011.

G. C. Cotzias, P. S. Papavasiliou, and R. Gellene, Modification of Parkinsonism--chronic treatment with L-dopa, N Engl J Med, vol.280, pp.337-345, 1969.

N. G. Coufal, J. L. Garcia-perez, G. E. Peng, G. W. Yeo, Y. Mu et al., L1 retrotransposition in human neural progenitor cells, Nature, vol.460, pp.1127-1131, 2009.

H. Coulom and S. Birman, Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster, J Neurosci, vol.24, pp.10993-10998, 2004.

D. Cox, J. A. Carver, and H. Ecroyd, Preventing ?-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins, Biochim Biophys Acta, vol.1842, pp.1830-1843, 2014.

K. D. Cronin, D. Ge, P. Manninger, C. Linnertz, A. Rossoshek et al., Expansion of the Parkinson disease-associated SNCA-Rep1 allele upregulates human alpha-synuclein in transgenic mouse brain, Hum Mol Genet, vol.18, pp.3274-3285, 2009.

A. M. Cuervo and J. F. Dice, Age-related decline in chaperone-mediated autophagy, J Biol Chem, vol.275, pp.31505-31513, 2000.

A. M. Cuervo, L. Stefanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy, Science, vol.305, pp.1292-1295, 2004.

A. Dahlström and K. Fuxe, Localization of monoamines in the lower brain stem, Experientia, vol.20, pp.398-399, 1964.

W. Dauer, N. Kholodilov, M. Vila, A. C. Trillat, R. Goodchild et al., Resistance of ?-synuclein null mice to the parkinsonian neurotoxin MPTP, Proc Natl Acad Sci, vol.99, pp.14524-14529, 2002.

W. Dauer and S. Przedborski, Parkinson's disease: mechanisms and models, Neuron, vol.39, pp.889-909, 2003.

W. S. Davidson, J. A. Clayton, D. F. George, and J. M. , Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes, J Biol Chem, vol.273, pp.9443-9449, 1998.

G. C. Davis, A. C. Williams, S. P. Markey, M. H. Ebert, E. D. Caine et al., Chronic Parkinsonism secondary to intravenous injection of meperidine analogues, Psychiatry Res, vol.1, pp.249-254, 1979.

M. M. Davis, S. L. O'keefe, D. A. Primrose, and R. B. Hodgetts, A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster, Development, vol.134, pp.4395-4404, 2007.

A. Dawydow, R. Gueta, D. Ljaschenko, S. Ullrich, M. Hermann et al., Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications, Proc Natl Acad Sci, vol.111, pp.13972-13977, 2014.

R. N. Day and M. W. Davidson, The fluorescent protein palette: tools for cellular imaging, Chem Soc Rev, vol.38, pp.2887-2921, 2009.

S. De-fazio, N. Bartonicek, D. Giacomo, M. Abreu-goodger, C. Sankar et al., The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements, Nature, vol.480, pp.259-263, 2011.

H. Deng, P. Wang, and J. Jankovic, The genetics of Parkinson disease, Ageing Res Rev, vol.42, pp.72-85, 2018.

P. Desplats, H. Lee, E. Bae, C. Patrick, E. Rockenstein et al., Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein, Proc Natl Acad Sci, vol.106, pp.13010-13015, 2009.

P. Desplats, B. Spencer, E. Coffee, P. Patel, S. Michael et al., Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases, J Biol Chem, vol.286, pp.9031-9037, 2011.

L. Devi, V. Raghavendran, B. M. Prabhu, N. G. Avadhani, and H. K. Anandatheerthavarada, Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain, J Biol Chem, vol.283, pp.9089-9100, 2008.

R. Dhavan and L. H. Tsai, A decade of CDK5, Nat Rev Mol Cell Biol, vol.2, pp.749-759, 2001.

V. Dias, E. Junn, and M. M. Mouradian, The role of oxidative stress in Parkinson's disease, J Parkinsons Dis, vol.3, pp.461-491, 2013.

D. Maio, R. Barrett, P. J. Hoffman, E. K. Barrett, C. W. Zharikov et al., ?-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease, Sci Transl Med, vol.8, pp.342-78, 2016.

G. S. Dichter, C. A. Damiano, and J. A. Allen, Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings, J Neurodev Disord, vol.4, p.19, 2012.

S. Dikalov, K. K. Griendling, and D. G. Harrison, Measurement of reactive oxygen species in cardiovascular studies, Hypertension, vol.49, pp.717-727, 2007.

C. Dinant and M. S. Luijsterburg, The emerging role of HP1 in the DNA damage response, Mol Cell Biol, vol.29, pp.6335-6340, 2009.

R. L. Doty, Olfactory dysfunction in Parkinson disease, Nat Rev Neurol, vol.8, pp.329-339, 2012.

E. Doxakis, Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153, J Biol Chem, vol.285, pp.12726-12734, 2010.

E. Dragicevic, J. Schiemann, and B. Liss, Dopamine midbrain neurons in health and Parkinson's disease: Emerging roles of voltage-gated calcium channels and ATPsensitive potassium channels, Neuroscience, vol.284, pp.798-814, 2015.

I. Draper, P. T. Kurshan, E. Mcbride, F. R. Jackson, and A. S. Kopin, Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis, Dev Neurobiol, vol.67, pp.378-393, 2007.

I. A. Drinnenberg, D. E. Weinberg, K. T. Xie, J. P. Mower, K. H. Wolfe et al., RNAi in budding yeast, Science, vol.326, pp.544-550, 2009.

G. Du, X. Liu, X. Chen, M. Song, Y. Yan et al., Drosophila histone deacetylase 6 protects dopaminergic neurons against ?-synuclein toxicity by promoting inclusion formation, Mol Biol Cell, vol.21, pp.2128-2137, 2010.

S. B. Dunnett and M. Bentivoglio, Handbook of chemical neuroanatomy, vol.21, pp.1-107, 2005.

D. Durstewitz and J. K. Seamans, The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia, Biol Psychiatry, vol.64, pp.739-749, 2008.

D. Ebrahimi-fakhari, I. Cantuti-castelvetri, F. Z. Rockenstein, E. Masliah, E. Hyman et al., Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of ?-synuclein, J Neurosci, vol.31, pp.14508-14520, 2011.

A. Elbaz, F. Grigoletto, M. Baldereschi, M. M. Breteler, J. M. Manubens-bertran et al., Familial aggregation of Parkinson's disease: a population-based case-control study in Europe, EUROPARKINSON Study Group. Neurology, vol.52, pp.1876-1882, 1999.

D. Eliezer, E. Kutluay, R. Bussell, and G. Browne, Conformational properties of alphasynuclein in its free and lipid-associated states, J Mol Biol, vol.307, pp.1061-1073, 2001.

J. A. Erwin, M. C. Marchetto, and F. H. Gage, Mobile DNA elements in the generation of diversity and complexity in the brain, Nat Rev Neurosci, vol.15, pp.497-506, 2014.

G. D. Evrony, X. Cai, E. Lee, L. B. Hills, P. C. Elhosary et al., Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain, Cell, vol.151, pp.483-496, 2012.

N. Exner, A. K. Lutz, C. Haass, and K. F. Winklhofer, Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences, EMBO J, vol.31, pp.3038-3062, 2012.

N. Exner, B. Treske, D. Paquet, K. Holmström, C. Schiesling et al., Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by Parkin, J Neurosci, vol.27, pp.12413-12418, 2007.

S. Fahn, The history of dopamine and levodopa in the treatment of Parkinson's disease, Mov Disord, vol.23, pp.497-508, 2008.

M. Farrer, J. Kachergus, L. Forno, S. Lincoln, D. S. Wang et al., Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications, Ann Neurol, vol.55, pp.174-179, 2004.

G. Faustini, F. Bono, A. Valerio, M. Pizzi, P. Spano et al., Mitochondria and ?synuclein: friends or foes in the pathogenesis of Parkinson's disease?, Genes (Basel), vol.8, p.377, 2017.

M. B. Feany and W. W. Bender, A Drosophila model of Parkinson's disease, Nature, vol.404, pp.394-398, 2000.

Q. Fei, A. L. Mccormack, D. Monte, and D. W. Ethell, Paraquat neurotoxicity is mediated by a Bak-dependent mechanism, J Biol Chem, vol.283, pp.3357-3364, 2008.

E. H. Feinberg, M. K. Vanhoven, A. Bendesky, G. Wang, R. D. Fetter et al., GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems, Neuron, vol.57, pp.353-363, 2008.

L. Fellner, R. Irschick, K. Schanda, M. Reindl, L. Klimaschewski et al., Toll-like receptor 4 is required for ?-synuclein dependent activation of microglia and astroglia, Glia, vol.61, pp.349-360, 2013.

G. Feng, F. Hannan, V. Reale, Y. Y. Hon, C. T. Kousky et al., Cloning and functional characterization of a novel dopamine receptor from Drosophila melanogaster, J Neurosci, vol.16, pp.3925-3933, 1996.

P. O. Fernagut, C. B. Hutson, S. M. Fleming, N. A. Tetreaut, J. Salcedo et al., Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression, Synapse, vol.61, pp.991-1001, 2007.

A. W. Ferree, K. Trudeau, E. Zik, I. Y. Benador, G. Twig et al., MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age, Autophagy, vol.9, pp.1887-1896, 2013.

R. Filograna, V. K. Godena, A. Sanchez-martinez, E. Ferrari, L. Casella et al., Superoxide dismutase (SOD)-mimetic M40403 is protective in cell and fly models of paraquat toxicity implication for Parkinson disease, J Biol Chem, vol.291, pp.9257-9267, 2016.

V. G. Fiore, R. J. Dolan, N. J. Strausfeld, and F. Hirth, Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity, Philos Trans R Soc, vol.370, 2015.

V. G. Fiore, B. Kottler, X. Gu, and F. Hirth, In silico interrogation of insect central complex suggests computational roles for the ellipsoid body in spatial navigation, Front Behav Neurosci, vol.11, p.142, 2017.

A. B. Fisher, Redox signaling across cell membranes, Antioxid Redox Signal, vol.11, pp.1349-1356, 2009.

C. B. Forsyth, K. M. Shannon, J. H. Kordower, R. M. Voigt, M. Shaikh et al., Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease, PLoS One, vol.6, p.28032, 2011.

D. L. Fortin, V. M. Nemani, S. M. Voglmaier, M. D. Anthony, T. A. Ryan et al., Neural activity controls the synaptic accumulation of ?-synuclein, J Neurosci, vol.25, pp.10913-10921, 2005.

E. C. Freundt, N. Maynard, E. K. Clancy, S. Roy, L. Bousset et al., Neuron-to-neuron transmission of ?-synuclein fibrils through axonal transport, Ann Neurol, vol.72, pp.517-524, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01183063

L. G. Friedman, M. L. Lachenmayer, J. Wang, L. He, S. M. Poulose et al., Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of ?-synuclein and LRRK2 in the brain, J Neurosci, vol.32, pp.7585-7593, 2012.

F. Friggi-grelin, H. Coulom, M. Meller, D. Gomez, J. Hirsh et al., Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase, J Neurobiol, vol.54, pp.618-627, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00308667

F. Friggi-grelin, M. Iché, and S. Birman, Tissue-specific developmental requirements of Drosophila tyrosine hydroxylase isoforms, Genesis, vol.35, pp.260-269, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00310973

B. Frost, M. Hemberg, J. Lewis, and M. B. Feany, Tau promotes neurodegeneration through global chromatin relaxation, Nat Neurosci, vol.17, pp.357-366, 2014.

H. Fujiwara, M. Hasegawa, N. Dohmae, A. Kawashima, E. Masliah et al., alpha-Synuclein is phosphorylated in synucleinopathy lesions, Nat Cell Biol, vol.4, pp.160-164, 2002.

N. Funayama, M. Nakatsukasa, K. Mohri, Y. Masuda, and A. K. , Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges, Evol Dev, vol.12, pp.275-287, 2010.

F. Gao, J. Yang, D. Wang, C. Li, Y. Fu et al., Mitophagy in Parkinson's disease: pathogenic and therapeutic implications, Front Neurol, vol.8, p.527, 2017.

A. Garcia-garcia, A. Anandhan, M. Burns, H. Chen, Y. Zhou et al., Impairment of Atg5-dependent autophagic flux promotes paraquat-and MPP+-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity, Toxicol Sci, vol.136, pp.166-182, 2013.

C. A. Gautier, T. Kitada, and J. Shen, Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress, Proc Natl Acad Sci, vol.105, pp.11364-11369, 2008.

M. E. Gegg and A. Schapira, The role of glucocerebrosidase in Parkinson disease pathogenesis, FEBS J, 2018.

T. Giang, Y. Ritze, S. Rauchfuss, M. Ogueta, and H. Scholz, The serotonin transporter expression in Drosophila melanogaster, J Neurogenet, vol.25, pp.17-26, 2011.

G. Giorgi, P. Marcantonio, D. Re, and B. , LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress, Cell Tissue Res, vol.346, pp.383-391, 2011.

C. Girish and . Muralidhara, Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in Drosophila melanogaster: Implications for Parkinson's disease, Neurotoxicology, vol.33, pp.444-456, 2012.

C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, and F. H. Gage, Mechanisms Underlying Inflammation in Neurodegeneration, Cell, vol.140, pp.918-934, 2010.

J. Goers, A. B. Manning-bog, A. L. Mccormack, I. S. Millett, S. Doniach et al., Nuclear localization of alpha-synuclein and its interaction with histones, Biochemistry, vol.42, pp.8465-8471, 2003.

A. L. Goldberg, Protein degradation and protection against misfolded or damaged proteins, Nature, vol.426, pp.895-899, 2003.

S. M. Goldman, Environmental toxins and Parkinson's disease, Annu Rev Pharmacol Toxicol, vol.54, pp.141-164, 2014.

J. L. Goodier and H. H. Kazazian, Retrotransposons revisited: the restraint and rehabilitation of parasites, Cell, vol.135, pp.23-35, 2008.

O. Göransson, M. Deak, S. Wullschleger, N. A. Morrice, A. R. Prescott et al., Regulation of the polarity kinases PAR-1/MARK by 14-3-3 interaction and phosphorylation, J Cell Sci, vol.119, pp.4059-4070, 2006.

M. D. Gordon and K. Scott, Motor control in a Drosophila taste circuit, Neuron, vol.61, pp.373-384, 2009.

R. A. Gottlieb and A. Stotland, MitoTimer: a novel protein for monitoring mitochondrial turnover in the heart, J Mol Med, vol.93, pp.271-278, 2015.

L. T. Gou, P. Dai, J. H. Yang, Y. Xue, Y. P. Hu et al., Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis, Cell Res, vol.24, pp.680-700, 2014.

A. A. Grace, Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression, Nat Rev Neurosci, vol.17, pp.524-532, 2016.

A. A. Grace and B. S. Bunney, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--1. Identification and characterization, Neuroscience, vol.10, pp.301-315, 1983.

J. C. Greene, A. J. Whitworth, I. Kuo, L. A. Andrews, M. B. Feany et al., Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants, Proc Natl Acad Sci, vol.100, pp.4078-4083, 2003.

L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, and R. Y. Tsien, The structure of the chromophore within DsRed, a red fluorescent protein from coral, Proc Natl Acad Sci U S A, vol.97, pp.11990-11995, 2000.

V. Grozdanov and K. M. Danzer, Release and uptake of pathologic alpha-synuclein, Cell Tissue Res, 2018.

N. ?. Gruntenko, O. V. Laukhina, and I. Y. Rauschenbach, Role of D1-and D2-like receptors in age-specific regulation of juvenile hormone and 20-hydroxyecdysone levels by dopamine in Drosophila, J Insect Physiol, vol.58, pp.1534-1540, 2012.

C. Guardia-laguarta, E. Area-gomez, C. Rüb, Y. Liu, J. Magrané et al., ?-synuclein is localized to mitochondria-associated ER membranes, J Neurosci, vol.34, pp.249-259, 2014.

S. N. Haber and N. R. Mcfarland, The concept of the ventral striatum in nonhuman primates, Ann N Y Acad Sci, vol.877, pp.33-48, 1999.

G. Halliday, H. Mccann, and C. Shepherd, Evaluation of the Braak hypothesis: how far can it explain the pathogenesis of Parkinson's disease?, Expert Rev Neurother, vol.12, pp.673-686, 2012.

F. N. Hamada, M. Rosenzweig, K. Kang, S. R. Pulver, A. Ghezzi et al., An internal thermal sensor controlling temperature preference in Drosophila, Nature, vol.454, p.217, 2008.

W. Hamel, U. Fietzek, A. Morsnowski, B. Schrader, J. Herzog et al., Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: evaluation of active electrode contacts, J Neurol Neurosurg Psychiatry, vol.74, pp.1036-1046, 2003.

K. A. Han, N. S. Millar, and R. L. Davis, A novel octopamine receptor with preferential expression in Drosophila mushroom bodies, J Neurosci, vol.18, pp.3650-3658, 1998.

K. A. Han, N. S. Millar, M. S. Grotewiel, and R. L. Davis, DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies, Neuron, vol.16, pp.1127-1135, 1996.

Y. N. Han, Y. Li, S. Q. Xia, Y. Y. Zhang, J. H. Zheng et al., PIWI Proteins and PIWI-Interacting RNA: Emerging Roles in Cancer, Cell Physiol Biochem, vol.44, pp.1-20, 2017.

C. Hansen, E. Angot, A. L. Bergström, J. A. Steiner, L. Pieri et al., ?-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells, J Clin Invest, vol.121, pp.715-725, 2011.

D. Harman, Aging: a theory based on free radical and radiation chemistry, J Gerontol, vol.11, pp.298-300, 1956.

P. R. Haynes, B. L. Christmann, and L. C. Griffith, A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster, 2015.

A. Haywood and B. E. Staveley, Mutant alpha-synuclein-induced degeneration is reduced by parkin in a fly model of Parkinson's disease, Genome, vol.49, pp.505-510, 2006.

A. Haywood and B. E. Staveley, Parkin counteracts symptoms in a Drosophila model of Parkinson's disease, BMC Neurosci, vol.5, p.14, 2004.

M. G. Hearn, Y. Ren, E. W. Mcbride, I. Reveillaud, M. Beinborn et al., A Drosophila dopamine 2-like receptor: Molecular characterization and identification of multiple alternatively spliced variants, Proc Natl Acad Sci, vol.99, pp.14554-14559, 2002.

M. Heisenberg, A. Borst, S. Wagner, and D. Byers, Drosophila mushroom body mutants are deficient in olfactory learning, J Neurogenet, vol.2, pp.1-30, 1985.

C. Helfrich-förster, J. Wulf, and J. S. De-belle, Mushroom body influence on locomotor activity and circadian rhythms in Drosophila melanogaster, J Neurogenet, vol.16, pp.73-109, 2002.

M. X. Henderson, C. Chung, D. M. Riddle, B. Zhang, R. J. Gathagan et al., Unbiased proteomics of early Lewy body formation model implicates active microtubule affinity-regulating kinases (MARKs) in synucleinopathies, J Neurosci, pp.2705-2721, 2017.

J. C. Hendricks, D. Kirk, K. Panckeri, M. S. Miller, and A. I. Pack, Modafinil maintains waking in the fruit fly Drosophila melanogaster, Sleep, vol.26, pp.139-146, 2003.

G. Hernandez, C. Thornton, A. Stotland, D. Lui, J. Sin et al., MitoTimer: a novel tool for monitoring mitochondrial turnover, Autophagy, vol.9, pp.1852-1861, 2013.

J. Herzog, J. Volkmann, P. Krack, F. Kopper, M. Pötter et al., Two-year follow-up of subthalamic deep brain stimulation in Parkinson's disease, Mov Disord, vol.18, pp.1332-1337, 2003.

V. L. Hewitt and A. J. Whitworth, Mechanisms of Parkinson's disease: lessons from Drosophila, Curr Top Dev Biol, vol.121, pp.173-200, 2017.

D. S. Higgins and J. T. Greenamyre, 3H]dihydrorotenone binding to NADH: ubiquinone reductase (complex I) of the electron transport chain: an autoradiographic study, J Neurosci, vol.16, pp.3807-3816, 1996.

E. Hintermann, N. C. Grieder, R. Amherd, D. Brodbeck, and U. A. Meyer, Cloning of an arylalkylamine N-acetyltransferase (aaNAT1) from Drosophila melanogaster expressed in the nervous system and the gut, Proc Natl Acad Sci, vol.93, pp.12315-12320, 1996.

E. C. Hirsch and S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection?, Lancet Neurol, vol.8, pp.382-397, 2009.

F. Hirth, Drosophila melanogaster in the study of human neurodegeneration, CNS Neurol Disord Drug Targets, vol.9, pp.504-523, 2010.

S. Hisahara and S. Shimohama, Dopamine receptors and Parkinson's disease, Int J Med Chem, p.403039, 2011.

J. Höck and G. Meister, The Argonaute protein family, Genome Biol, vol.9, p.210, 2008.

O. Hornykiewicz, Dopamine miracle: from brain homogenate to dopamine replacement, Mov Disord, vol.17, pp.501-508, 2002.

O. Hornykiewicz, The action of dopamine on the arterial blood pressure of the guineapig, Br J Pharmacol Chemother, vol.13, pp.91-94, 1958.

O. Hornykiewicz, A Quarter Century of Brain Dopamine Research. Dopaminergic Systems and their Regulation, Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology, pp.3-18, 1986.

S. Horvath and B. R. Ritz, Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients, Aging (Albany NY), vol.7, pp.1130-1142, 2015.

R. Hosamani and . Muralidhara, Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction, Arch Insect Biochem Physiol, vol.83, pp.25-40, 2013.

R. Hosamani, S. R. Ramesh, and M. Null, Attenuation of rotenone-induced mitochondrial oxidative damage and neurotoxicty in Drosophila melanogaster supplemented with creatine, Neurochem Res, vol.35, pp.1402-1412, 2010.

R. A. Hoskins, C. D. Smith, J. W. Carlson, A. B. Carvalho, A. Halpern et al., Heterochromatic sequences in a Drosophila whole-genome shotgun assembly, Genome Biol, vol.3, pp.85-86, 2002.

M. C. Houser and M. G. Tansey, The gut-brain axis: is intestinal inflammation a silent driver of Parkinson's disease pathogenesis?, NPJ Parkinsons Dis, vol.3, p.3, 2017.

S. Houwing, E. Berezikov, and R. F. Ketting, Zili is required for germ cell differentiation and meiosis in zebrafish, EMBO J, vol.27, pp.2702-2711, 2008.

L. J. Hsu, Y. Sagara, A. Arroyo, E. Rockenstein, A. Sisk et al., alpha-synuclein promotes mitochondrial deficit and oxidative stress, Am J Pathol, vol.157, pp.401-410, 2000.

C. T. Hsu and V. Bhandawat, Organization of descending neurons in Drosophila melanogaster, Sci Rep, vol.6, p.20259, 2016.

C. L. Huang, C. C. Chao, Y. C. Lee, M. K. Lu, J. J. Cheng et al., Paraquat induces cell death through impairing mitochondrial membrane permeability, Mol Neurobiol, vol.53, pp.2169-2188, 2016.

X. Huang, K. F. Tóth, and A. A. Aravin, piRNA Biogenesis in Drosophila melanogaster, Trends Genet, vol.33, pp.882-894, 2017.

X. A. Huang, H. Yin, S. Sweeney, D. Raha, M. Snyder et al., A major epigenetic programming mechanism guided by piRNAs, Dev Cell, vol.24, pp.502-516, 2013.

F. Huber, Central control of movements and behavior of invertebrates, Invertebrate nervous systems, pp.333-351, 1967.

G. Hutvagner and M. J. Simard, Argonaute proteins: key players in RNA silencing, Nat Rev Mol Cell Biol, vol.9, pp.22-32, 2008.

R. D. Hwang, L. Wiemerslage, C. J. Labreck, M. Khan, K. Kannan et al., The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinson's disease, Neurobiol Dis, vol.69, pp.180-191, 2014.

A. Icreverzi, A. De-la-cruz, D. W. Walker, and B. A. Edgar, Changes in neuronal CycD/Cdk4 activity affect aging, neurodegeneration, and oxidative stress, Aging Cell, vol.14, pp.896-906, 2015.

J. Y. Im, K. W. Lee, E. Junn, and M. M. Mouradian, DJ-1 protects against oxidative damage by regulating the thioredoxin/ASK1 complex, Neurosci Res, vol.67, pp.203-208, 2010.

H. K. Inagaki, S. Ben-tabou-de-leon, A. M. Wong, S. Jagadish, H. Ishimoto et al., Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing, Cell, vol.148, pp.583-595, 2012.

H. Ishimoto, Z. Wang, Y. Rao, C. F. Wu, and T. Kitamoto, A novel role for ecdysone in Drosophila conditioned behavior: linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain, PLoS Genet, vol.9, p.1003843, 2013.

R. Islam, L. Yang, M. Sah, K. Kannan, D. Anamani et al., A neuroprotective role of the human uncoupling protein 2 (hUCP2) in a Drosophila Parkinson's Disease model, Neurobiol Dis, vol.46, pp.137-146, 2012.

M. Ito, N. Masuda, K. Shinomiya, K. Endo, and K. Ito, Systematic analysis of neural projections reveals clonal composition of the Drosophila brain, Curr Biol, vol.23, pp.644-655, 2013.

S. D. Iversen and L. L. Iversen, Dopamine: 50 years in perspective, Trends Neurosci, vol.30, pp.188-193, 2007.

Y. W. Iwasaki, M. C. Siomi, and H. Siomi, PIWI-interacting RNA: its biogenesis and functions, Annu Rev Biochem, vol.84, pp.405-433, 2015.

A. Janic, L. Mendizabal, S. Llamazares, D. Rossell, and C. Gonzalez, Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila, Science, vol.330, pp.1824-1827, 2010.

J. Jankovic and L. G. Aguilar, Current approaches to the treatment of Parkinson's disease, Neuropsychiatr Dis Treat, vol.4, pp.743-757, 2008.

I. E. Jansen, H. Ye, S. Heetveld, M. C. Lechler, H. Michels et al., Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing, Genome Biol, vol.18, p.22, 2017.

K. A. Jellinger, A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders, Biochim Biophys Acta, vol.1792, pp.730-740, 2009.

K. A. Jellinger, A critical reappraisal of current staging of Lewy-related pathology in human brain, Acta Neuropathol, vol.116, pp.1-16, 2008.

H. Jia, X. Li, H. Gao, Z. Feng, X. Li et al., High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson's disease, J Neurosci Res, vol.86, pp.2083-2090, 2008.

Y. Jiang, E. Pitmon, J. Berry, F. W. Wolf, Z. Mckenzie et al., A genetic screen to assess dopamine receptor (DopR1) dependent sleep regulation in Drosophila, G3 (Bethesda), vol.6, pp.4217-4226, 2016.

S. M. Jin, M. Lazarou, C. Wang, L. A. Kane, D. P. Narendra et al., Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL, J Cell Biol, vol.191, pp.933-942, 2010.

M. Jinek and J. A. Doudna, A three-dimensional view of the molecular machinery of RNA interference, Nature, vol.457, pp.405-412, 2009.

W. A. Johnson, C. A. Mccormick, S. J. Bray, and J. Hirsh, A neuron-specific enhancer of the Drosophila dopa decarboxylase gene, Genes Dev, vol.3, pp.676-686, 1989.

A. Jowaed, I. Schmitt, O. Kaut, and U. Wüllner, Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains, J Neurosci, vol.30, pp.6355-6359, 2010.

E. Junn, W. H. Jang, X. Zhao, B. S. Jeong, and M. M. Mouradian, Mitochondrial localization of DJ-1 leads to enhanced neuroprotection, J Neurosci Res, vol.87, pp.123-129, 2009.

E. Junn, K. W. Lee, B. S. Jeong, T. W. Chan, J. Y. Im et al., Repression of alphasynuclein expression and toxicity by microRNA-7, Proc Natl Acad Sci, vol.106, pp.13052-13057, 2009.

E. Junn and M. M. Mouradian, Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine, Neurosci Lett, vol.320, pp.146-150, 2002.

L. Kahsai, J. R. Martin, and A. Winther, Neuropeptides in the Drosophila central complex in modulation of locomotor behavior, J Exp Biol, vol.213, pp.2256-2265, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00506999

L. Kahsai and A. Winther, Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters, J Comp Neurol, vol.519, pp.290-315, 2011.

L. Kahsai, M. A. Carlsson, A. Winther, and D. R. Nässel, Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila, Neuroscience, vol.208, pp.11-26, 2012.

L. V. Kalia and A. E. Lang, Parkinson's disease, Lancet, vol.386, pp.896-912, 2015.

F. Kamp, N. Exner, A. K. Lutz, N. Wender, J. Hegermann et al., Inhibition of mitochondrial fusion by ?-synuclein is rescued by PINK1, Parkin and DJ-1, EMBO J, vol.29, pp.3571-3589, 2010.

N. M. Kanaan, J. H. Kordower, and T. J. Collier, Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys, Neurobiol Aging, vol.31, pp.937-952, 2010.

N. M. Kanaan and F. P. Manfredsson, Loss of functional alpha-synuclein: a toxic event in Parkinson's disease?, J Parkinsons Dis, vol.2, pp.249-267, 2012.

D. P. Karpinar, M. Balija, S. Kügler, F. Opazo, N. Rezaei-ghaleh et al., Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson's disease models, EMBO J, vol.28, pp.3256-3268, 2009.

J. Kasuya, H. Ishimoto, and T. Kitamoto, Neuronal mechanisms of learning and memory revealed by spatial and temporal suppression of neurotransmission using shibire, a temperature-sensitive dynamin mutant gene in Drosophila melanogaster, Front Mol Neurosci, vol.2, p.11, 2009.

O. Kaut, I. Schmitt, and U. Wüllner, Genome-scale methylation analysis of Parkinson's disease patients' brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1, Neurogenetics, vol.13, pp.87-91, 2012.

A. G. Kazantsev and A. M. Kolchinsky, Central role of alpha-synuclein oligomers in neurodegeneration in Parkinson disease, Arch Neurol, vol.65, pp.1577-1581, 2008.

A. C. Keene, M. J. Krashes, B. Leung, J. A. Bernard, and S. Waddell, Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation, Curr Biol, vol.16, pp.1524-1530, 2006.

K. Keleman, E. Vrontou, S. Krüttner, J. Y. Yu, A. Kurtovic-kozaric et al., Dopamine neurons modulate pheromone responses in Drosophila courtship learning, Nature, vol.489, pp.145-149, 2012.

R. Kiffin, S. Kaushik, M. Zeng, U. Bandyopadhyay, C. Zhang et al., Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age, J Cell Sci, vol.120, pp.782-791, 2007.

Y. C. Kim, H. G. Lee, and K. A. Han, Dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila, J Neurosci, vol.27, pp.7640-7647, 2007.

Y. C. Kim, H. G. Lee, J. Lim, and K. A. Han, Appetitive learning requires the alpha1-like octopamine receptor OAMB in the Drosophila mushroom body neurons, J Neurosci, vol.33, pp.1672-1677, 2013.

Y. C. Kim, H. G. Lee, C. S. Seong, and K. A. Han, Expression of a D1 dopamine receptor dDA1/DmDOP1 in the central nervous system of Drosophila melanogaster, Gene Expr Patterns, vol.3, pp.237-245, 2003.

T. Kitada, S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature, vol.392, pp.605-608, 1998.

T. Kitamoto, Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons, J Neurobiol, vol.47, pp.81-92, 2001.

L. Klingelhoefer and H. Reichmann, Pathogenesis of Parkinson disease--the gut-brain axis and environmental factors, Nat Rev Neurol, vol.11, pp.625-636, 2015.

A. L. Knight, X. Yan, S. Hamamichi, R. R. Ajjuri, J. R. Mazzulli et al., The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson's models, Cell Metab, vol.20, pp.145-157, 2014.

J. C. Koch, F. Bitow, J. Haack, Z. Hedouville, J. Zhang et al., Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons, Cell Death Dis, vol.6, p.1811, 2015.

E. C. Kong, K. Woo, H. Li, T. Lebestky, N. Mayer et al., A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila, PLoS One, vol.5, p.9954, 2010.

M. Kong, M. Ba, H. Liang, L. Ma, Q. Yu et al., 2012. 5'-Aza-dC sensitizes paraquat toxic effects on PC12 cell, Neurosci Lett, vol.524, pp.35-39

E. Kontopoulos, J. D. Parvin, and M. B. Feany, Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity, Hum Mol Genet, vol.15, pp.3012-3023, 2006.

J. H. Kordower, Y. Chu, R. A. Hauser, T. B. Freeman, and C. W. Olanow, Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease, Nat Med, vol.14, pp.504-506, 2008.

J. H. Kordower, Y. Chu, R. A. Hauser, C. W. Olanow, and T. B. Freeman, Transplanted dopaminergic neurons develop PD pathologic changes: a second case report, Mov Disord, vol.23, pp.2303-2306, 2008.

B. Kottler, V. G. Fiore, Z. N. Ludlow, E. Buhl, G. Vinatier et al., A lineage-related reciprocal inhibition circuitry for sensory-motor action selection, vol.100420, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02413547

C. E. Krebs, S. Karkheiran, J. C. Powell, M. Cao, V. Makarov et al., The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive parkinsonism with generalized seizures, Hum Mutat, vol.34, pp.1200-1207, 2013.

R. Krüger, W. Kuhn, T. Müller, D. Woitalla, M. Graeber et al., Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease, Nat Genet, vol.18, pp.106-108, 1998.

P. Krumova, L. Reyniers, M. Meyer, E. Lobbestael, D. Stauffer et al., Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate, FASEB J, vol.29, pp.2980-2992, 2015.

S. Y. Kuo, C. L. Wu, M. Y. Hsieh, C. T. Lin, R. K. Wen et al., PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine, Nat Commun, vol.6, p.7490, 2015.

S. Kuramochi-miyagawa, T. Watanabe, K. Gotoh, Y. Totoki, A. Toyoda et al., DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes, Genes Dev, vol.22, pp.908-917, 2008.

Z. Kurowska, E. Englund, H. Widner, O. Lindvall, J. Y. Li et al., Signs of degeneration in 12-22-year old grafts of mesencephalic dopamine neurons in patients with Parkinson's disease, J Parkinsons Dis, vol.1, pp.83-92, 2011.

R. C. Laker, P. Xu, K. A. Ryall, A. Sujkowski, B. M. Kenwood et al., A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo, J Biol Chem, vol.289, pp.12005-12015, 2014.

J. L. Lanciego, N. Luquin, and J. A. Obeso, Functional neuroanatomy of the basal ganglia, Cold Spring Harb Perspect Med, vol.2, p.9621, 2012.

E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody et al., Initial sequencing and analysis of the human genome, Nature, vol.409, pp.860-921, 2001.

C. D. Landry, E. R. Kandel, and P. Rajasethupathy, New mechanisms in memory storage: piRNAs and epigenetics, Trends Neurosci, vol.36, pp.535-542, 2013.

J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin, Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis, Science, vol.219, pp.979-980, 1983.

A. Lark, T. Kitamoto, and J. R. Martin, Modulation of neuronal activity in the Drosophila mushroom body by DopEcR, a unique dual receptor for ecdysone and dopamine, Biochim Biophys Acta, vol.1864, pp.1578-1588, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01572241

H. A. Lashuel, C. R. Overk, A. Oueslati, and E. Masliah, The many faces of ?-synuclein: from structure and toxicity to therapeutic target, Nat Rev Neurosci, vol.14, pp.38-48, 2013.

C. Lavedan, The Synuclein Family, Genome Res, vol.8, pp.871-880, 1998.

M. J. Lavoie, G. P. Cortese, B. L. Ostaszewski, and M. G. Schlossmacher, The effects of oxidative stress on parkin and other E3 ligases, J Neurochem, vol.103, pp.2354-2368, 2007.

M. J. Lavoie, B. L. Ostaszewski, A. Weihofen, M. G. Schlossmacher, and D. J. Selkoe, Dopamine covalently modifies and functionally inactivates parkin, Nat Med, vol.11, pp.1214-1221, 2005.

H. O. Lawal, H. Y. Chang, A. N. Terrell, E. S. Brooks, D. Pulido et al., The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons, Neurobiol Dis, vol.40, pp.102-112, 2010.

C. Lemaître and E. Soutoglou, Double strand break (DSB) repair in heterochromatin and heterochromatin proteins in DSB repair, DNA Repair (Amst), vol.19, pp.163-168, 2014.

L. Thomas, A. Rogers, A. K. Webster, A. Marinov, G. K. Liao et al., Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state, Genes Dev, vol.27, pp.390-399, 2013.

T. Lebestky, J. Chang, H. Dankert, L. Zelnik, Y. C. Kim et al., Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits, Neuron, vol.64, pp.522-536, 2009.

J. E. Ledoux, Emotional memory systems in the brain, Behav Brain Res, vol.58, pp.69-79, 1993.

E. J. Lee, S. Banerjee, H. Zhou, A. Jammalamadaka, M. Arcila et al., Identification of piRNAs in the central nervous system, RNA, vol.17, pp.1090-1099, 2011.

H. J. Lee, S. M. Baek, D. H. Ho, J. E. Suk, E. D. Cho et al., Dopamine promotes formation and secretion of non-fibrillar alpha-synuclein oligomers, Exp Mol Med, vol.43, pp.216-222, 2011.

P. T. Lee, H. W. Lin, Y. H. Chang, T. F. Fu, J. Dubnau et al., Serotoninmushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila, Proc Natl Acad Sci, vol.108, pp.13794-13799, 2011.

H. J. Lee, S. Patel, and S. J. Lee, Intravesicular localization and exocytosis of alpha-synuclein and its aggregates, J Neurosci, vol.25, pp.6016-6024, 2005.

H. J. Lee, J. E. Suk, E. J. Bae, J. H. Lee, S. R. Paik et al., Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein, Int J Biochem Cell Biol, vol.40, pp.1835-1849, 2008.

T. Lee, A. Lee, and L. Luo, Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast, Development, vol.126, pp.4065-4076, 1999.

A. J. Lees, J. Hardy, and T. Revesz, Parkinson's disease, Lancet, vol.373, pp.2055-2066, 2009.

N. Lev, D. Ickowicz, E. Melamed, and D. Offen, Oxidative insults induce DJ-1 upregulation and redistribution: implications for neuroprotection, Neurotoxicology, vol.29, pp.397-405, 2008.

D. W. Li, G. R. Li, B. L. Zhang, J. J. Feng, and H. Zhao, Damage to dopaminergic neurons is mediated by proliferating cell nuclear antigen through the p53 pathway under conditions of oxidative stress in a cell model of Parkinson's disease, Int J Mol Med, vol.37, pp.429-435, 2016.

H. Li, S. Chaney, I. J. Roberts, M. Forte, and J. Hirsh, Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster, Curr Biol, vol.10, pp.211-214, 2000.

H. Li, S. Horke, and U. Förstermann, Oxidative stress in vascular disease and its pharmacological prevention, Trends Pharmacol Sci, vol.34, pp.313-319, 2013.

W. Li, L. Prazak, N. Chatterjee, S. Grüninger, L. Krug et al., Activation of transposable elements during aging and neuronal decline in Drosophila, Nat Neurosci, vol.16, pp.529-531, 2013.

W. W. Li, R. Yang, J. C. Guo, H. M. Ren, X. L. Zha et al., Localization of alphasynuclein to mitochondria within midbrain of mice, Neuroreport, vol.18, pp.1543-1546, 2007.

R. Lim and T. Kai, A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners, Semin Cell Dev Biol, vol.47, pp.17-31, 2015.

S. Q. Lima and G. Miesenböck, Remote control of behavior through genetically targeted photostimulation of neurons, Cell, vol.121, pp.141-152, 2005.

H. Lin and A. C. Spradling, A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary, Development, vol.124, pp.2463-2476, 1997.

S. Lin, D. Owald, V. Chandra, C. Talbot, W. Huetteroth et al., Neural correlates of water reward in thirsty Drosophila, Nat Neurosci, vol.17, pp.1536-1542, 2014.

C. Y. Lin, C. C. Chuang, T. E. Hua, C. C. Chen, B. J. Dickson et al., A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain, Cell Rep, vol.3, pp.1739-1753, 2013.

W. Lin and U. J. Kang, Characterization of PINK1 processing, stability, and subcellular localization, J Neurochem, vol.106, pp.464-474, 2008.

C. Linnertz, L. Saucier, D. Ge, K. D. Cronin, J. R. Burke et al., Genetic regulation of alpha-synuclein mRNA expression in various human brain tissues, PLoS One, vol.4, p.7480, 2009.

M. M. Lipinski, B. Zheng, T. Lu, Z. Yan, B. F. Py et al., Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease, Proc Natl Acad Sci, vol.107, pp.14164-14169, 2010.

G. Liu, H. Seiler, A. Wen, T. Zars, K. Ito et al., Distinct memory traces for two visual features in the Drosophila brain, Nature, vol.439, pp.551-556, 2006.

C. Liu, P. Plaçais, N. Yamagata, B. D. Pfeiffer, Y. Aso et al., A subset of dopamine neurons signals reward for odour memory in Drosophila, Nature, vol.488, pp.512-516, 2012.

Q. Liu, S. Liu, L. Kodama, M. R. Driscoll, and M. N. Wu, Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila, Curr Biol, vol.22, pp.2114-2123, 2012.

S. Liu and B. Lu, Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster, PLoS Genet, vol.6, p.1001237, 2010.

Z. Liu, X. Wang, Y. Yu, X. Li, T. Wang et al., A Drosophila model for LRRK2-linked parkinsonism, Proc Natl Acad Sci, vol.105, pp.2693-2698, 2008.

L. Ruiz, J. R. , O. Carrasco, L. P. , L. Valenzuela et al., The hippocampus participates in the control of locomotion speed, Neuroscience, vol.311, pp.207-215, 2015.

H. Luan, N. C. Peabody, C. R. Vinson, and B. H. White, Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression, Neuron, vol.52, pp.425-436, 2006.

M. J. Luteijn and R. F. Ketting, PIWI-interacting RNAs: from generation to transgenerational epigenetics, Nat Rev Genet, vol.14, pp.523-534, 2013.

E. S. Luth, I. G. Stavrovskaya, T. Bartels, B. S. Kristal, and D. J. Selkoe, Soluble, prefibrillar ?synuclein oligomers promote Complex I-dependent, Ca2+-induced mitochondrial dysfunction, J Biol Chem, vol.289, pp.21490-21507, 2014.

D. H. Ly, D. J. Lockhart, R. A. Lerner, and P. G. Schultz, Mitotic misregulation and human aging, Science, vol.287, pp.2486-2492, 2000.

L. J. Macpherson, E. E. Zaharieva, P. J. Kearney, M. H. Alpert, T. Y. Lin et al., Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation, Nat Commun, vol.6, p.10024, 2015.

A. Mahr and H. Aberle, The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain, Gene Expr Patterns, vol.6, pp.299-309, 2006.

S. K. Mak, A. L. Mccormack, A. B. Manning-bog, A. M. Cuervo, D. Monte et al., Lysosomal degradation of alpha-synuclein in vivo, J Biol Chem, vol.285, pp.13621-13629, 2010.

K. A. Malkus, E. Tsika, and H. Ischiropoulos, Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle, Mol Neurodegener, vol.4, p.24, 2009.

A. B. Manning-bog, A. L. Mccormack, J. Li, V. N. Uversky, A. L. Fink et al., The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein, J Biol Chem, vol.277, pp.1641-1644, 2002.

D. S. Manoach, Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings, Schizophr Res, vol.60, pp.285-298, 2003.

X. Mao, M. T. Ou, S. S. Karuppagounder, T. I. Kam, X. Yin et al., Pathological ?-synuclein transmission initiated by binding lymphocyte-activation gene 3, Science, vol.353, 2016.

Z. Mao and R. L. Davis, Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity, Front Neural Circuits, vol.3, p.5, 2009.

D. Marchese, T. Botta-orfila, D. Cirillo, J. A. Rodriguez, C. M. Livi et al., Discovering the 3? UTRmediated regulation of alpha-synuclein, Nucleic Acids Res, vol.45, pp.12888-12903, 2017.

L. Maroteaux, J. T. Campanelli, and R. H. Scheller, Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal, J Neurosci, vol.8, pp.2804-2815, 1988.

J. R. Martin, R. Ernst, and M. Heisenberg, Mushroom bodies suppress locomotor activity in Drosophila melanogaster, Learn Mem, vol.5, pp.179-191, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00141131

J. R. Martin, T. Raabe, and M. Heisenberg, Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster, J Comp Physiol A, vol.185, pp.277-288, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00140927

J. Martin, P. Faure, and R. Ernst, The power law distribution for walking-time intervals correlates with the ellipsoid-body in Drosophila, J Neurogenet, vol.15, pp.205-219, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00143059

L. J. Martin, Y. Pan, A. C. Price, W. Sterling, N. G. Copeland et al., Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death, J Neurosci, vol.26, pp.41-50, 2006.

Z. S. Martin, V. Neugebauer, K. T. Dineley, R. Kayed, W. Zhang et al., 2012. ?-Synuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases, J Neurochem, vol.120, pp.440-452
URL : https://hal.archives-ouvertes.fr/halshs-01110792

T. N. Martinez and J. T. Greenamyre, Toxin models of mitochondrial dysfunction in Parkinson's disease, Antioxid Redox Signal, vol.16, pp.920-934, 2012.

M. Martinez-vicente, Z. Talloczy, S. Kaushik, A. C. Massey, J. Mazzulli et al., Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy, J Clin Invest, vol.118, pp.777-788, 2008.

A. C. Massey, S. Kaushik, G. Sovak, R. Kiffin, and A. M. Cuervo, Consequences of the selective blockage of chaperone-mediated autophagy, Proc Natl Acad Sci, vol.103, pp.5805-5810, 2006.

D. Matenia, C. Hempp, T. Timm, A. Eikhof, and E. Mandelkow, Microtubule affinityregulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: effects on mitochondrial transport, J Biol Chem, vol.287, pp.8174-8186, 2012.

L. Matsumoto, H. Takuma, A. Tamaoka, H. Kurisaki, H. Date et al., CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease, PLoS One, vol.5, p.15522, 2010.

S. Mcbride, G. Giuliani, C. Choi, P. Krause, D. Correale et al., Mushroom body ablation impairs short-term memory and long-term memory of Courtship conditioning in Drosophila melanogaster, Neuron, vol.24, pp.967-977, 1999.

H. Mccann, H. Cartwright, and G. M. Halliday, Neuropathology of ?-synuclein propagation and braak hypothesis, Mov Disord, vol.31, pp.152-160, 2016.

B. Mcclintock, The origin and behavior of mutable loci in maize, Proc Natl Acad Sci U S A, vol.36, pp.344-355, 1950.

A. L. Mccormack, D. Monte, and D. A. , Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration, J Neurochem, vol.85, pp.82-86, 2003.

A. L. Mccormack, M. Thiruchelvam, A. B. Manning-bog, C. Thiffault, J. W. Langston et al., Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat, Neurobiol Dis, vol.10, pp.119-127, 2002.

P. L. Mcgeer, S. Itagaki, B. E. Boyes, and E. G. Mcgeer, Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains, Neurology, vol.38, pp.1285-1291, 1988.

S. E. Mcguire, P. T. Le, A. J. Osborn, K. Matsumoto, and R. L. Davis, Spatiotemporal rescue of memory dysfunction in Drosophila, Science, vol.302, pp.1765-1768, 2003.

S. Medina-leendertz, M. Paz, M. Mora, E. Bonilla, Y. Bravo et al., Longterm melatonin administration alleviates paraquat mediated oxidative stress in Drosophila melanogaster, Invest Clin, vol.55, pp.352-364, 2014.

M. J. Meehan and R. Wilson, Locomotor activity in the Tyr-1 mutant of Drosophila melanogaster, Behav Genet, vol.17, pp.503-512, 1987.

S. H. Mehdi and A. Qamar, Paraquat-induced ultrastructural changes and DNA damage in the nervous system is mediated via oxidative-stress-induced cytotoxicity in Drosophila melanogaster, Toxicol Sci, vol.134, pp.355-365, 2013.

J. Meiser, D. Weindl, and K. Hiller, Complexity of dopamine metabolism, Cell Commun Signal, vol.11, p.34, 2013.

G. Meister, Argonaute proteins: functional insights and emerging roles, Nat Rev Genet, vol.14, pp.447-459, 2013.

A. J. Meyer and T. P. Dick, Fluorescent protein-based redox probes, Antioxid Redox Signal, vol.13, pp.621-650, 2010.

E. Mezey, A. M. Dehejia, G. Harta, N. Tresser, S. F. Suchy et al., Alpha synuclein is present in Lewy bodies in sporadic Parkinson's disease, Mol Psychiatry, vol.3, pp.493-499, 1998.

P. P. Michel, E. C. Hirsch, and S. Hunot, Understanding dopaminergic cell death pathways in Parkinson disease, Neuron, vol.90, pp.675-691, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01348875

N. Minois, D. Carmona-gutierrez, M. A. Bauer, P. Rockenfeller, T. Eisenberg et al., Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways, Cell Death & Disease, vol.3, p.401, 2012.

C. Missale, S. R. Nash, S. W. Robinson, M. Jaber, and M. G. Caron, Dopamine receptors: from structure to function, Physiol Rev, vol.78, pp.189-225, 1998.

H. Mizuno, N. Fujikake, K. Wada, and Y. Nagai, ?-Synuclein transgenic Drosophila as a model of Parkinson's disease and related synucleinopathies, Parkinsons Dis, p.212706, 2010.

D. E. Mor, E. Tsika, J. R. Mazzulli, N. S. Gould, H. Kim et al., Dopamine induces soluble ?-synuclein oligomers and nigrostriatal degeneration, Nat Neurosci, vol.20, pp.1560-1568, 2017.

B. A. Morgan, W. A. Johnson, and J. Hirsh, Regulated splicing produces different forms of dopa decarboxylase in the central nervous system and hypoderm of Drosophila melanogaster, EMBO J, vol.5, pp.3335-3342, 1986.

L. L. Moroz and A. B. Kohn, Independent origins of neurons and synapses: insights from ctenophores, Philos Trans R Soc Lond, B, Biol Sci, vol.371, 2016.

E. V. Mosharov, K. E. Larsen, E. Kanter, K. A. Phillips, K. Wilson et al., Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons, Neuron, vol.62, pp.218-229, 2009.

B. Moussian, H. Schoof, A. Haecker, G. Jürgens, and T. Laux, Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis, EMBO J, vol.17, pp.1799-1809, 1998.

F. Mouton-liger, M. Jacoupy, J. C. Corvol, and O. Corti, PINK1/Parkin-dependent mitochondrial surveillance: from pleiotropy to Parkinson's disease, Front Mol Neurosci, vol.10, p.120, 2017.

A. Mulak and B. Bonaz, Brain-gut-microbiota axis in Parkinson's disease, World J Gastroenterol, vol.21, pp.10609-10620, 2015.

K. R. Müller, I. K. Martins, N. R. Rodrigues, L. C. Da-cruz, B. Filho et al., Anacardium microcarpum extract and fractions protect against paraquat-induced toxicity in Drosophila melanogaster, EXCLI J, vol.16, pp.302-312, 2017.

A. R. Muotri, V. T. Chu, M. Marchetto, W. Deng, J. V. Moran et al., Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition, Nature, vol.435, pp.903-910, 2005.

A. R. Muotri, M. Marchetto, N. G. Coufal, R. Oefner, G. Yeo et al., L1 retrotransposition in neurons is modulated by MeCP2, Nature, vol.468, pp.443-446, 2010.

M. Muqit and M. B. Feany, Modelling neurodegenerative diseases in Drosophila: a fruitful approach, Nat Rev Neurosci, vol.3, pp.237-243, 2002.

P. Y. Musso, P. Tchenio, and T. Preat, Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila, Cell Rep, vol.10, pp.1023-1031, 2015.

T. Nagatsu, M. Levitt, and S. Udenfriend, Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis, J Biol Chem, vol.239, pp.2910-2917, 1964.

K. Nakamura, V. M. Nemani, F. Azarbal, G. Skibinski, J. M. Levy et al., Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein ?-synuclein, J Biol Chem, vol.286, pp.20710-20726, 2011.

F. Nakanishi-matsui-mayumi and . Masamitsu, Stochastic proton pumping ATPases: From single molecules to diverse physiological roles, IUBMB Life, vol.58, pp.318-322, 2008.

A. H. Nall, I. Shakhmantsir, K. Cichewicz, S. Birman, J. Hirsh et al., Caffeine promotes wakefulness via dopamine signaling in Drosophila, Sci Rep, vol.6, 2016.

S. Namiki and R. Kanzaki, Comparative neuroanatomy of the lateral accessory lobe in the insect brain, Front Physiol, vol.7, p.244, 2016.

S. Namiki, M. H. Dickinson, A. M. Wong, W. Korff, and G. M. Card, The functional organization of descending sensory-motor pathways in Drosophila, 2017.

D. P. Narendra, S. M. Jin, A. Tanaka, D. F. Suen, C. A. Gautier et al., PINK1 is selectively stabilized on impaired mitochondria to activate Parkin, PLoS Biol, vol.8, p.1000298, 2010.

D. R. Nässel and K. Elekes, Aminergic neurons in the brain of blowflies and Drosophila: dopamine-and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons, Cell Tissue Res, vol.267, pp.147-167, 1992.

C. Nathan and A. Cunningham-bussel, Beyond oxidative stress: an immunologist's guide to reactive oxygen species, Nat Rev Immunol, vol.13, pp.349-361, 2013.

A. Navarro and A. Boveris, Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson's disease. Front Aging Neurosci 2, 2010.

A. Navarro, A. Boveris, M. J. Bández, M. J. Sánchez-pino, C. Gómez et al., Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies, Free Radic Biol Med, vol.46, pp.1574-1580, 2009.

J. Navarro-yepes, A. Anandhan, E. Bradley, I. Bohovych, B. Yarabe et al., Inhibition of protein ubiquitination by paraquat and 1-methyl-4-phenylpyridinium impairs ubiquitin-dependent protein degradation pathways, Mol Neurobiol, vol.53, pp.5229-5251, 2016.

W. S. Neckameyer, Multiple roles for dopamine in Drosophila development, Dev Biol, vol.176, pp.209-219, 1996.

M. Ng, R. D. Roorda, S. Q. Lima, B. V. Zemelman, P. Morcillo et al., Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly, Neuron, vol.36, pp.463-474, 2002.

D. J. Nicholl, J. R. Vaughan, N. L. Khan, S. L. Ho, D. Aldous et al., Two large British kindreds with familial Parkinson's disease: a clinico-pathological and genetic study, Brain, vol.125, pp.44-57, 2002.

W. J. Nicklas, I. Vyas, and R. E. Heikkila, Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, Life Sci, vol.36, pp.2503-2508, 1985.

J. Niens, F. Reh, B. Çoban, K. Cichewicz, J. Eckardt et al., Dopamine modulates serotonin innervation in the Drosophila brain, Front Syst Neurosci, vol.11, p.76, 2017.

M. Nieto, F. J. Gil-bea, E. Dalfó, M. Cuadrado, F. Cabodevilla et al., Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice, Neurobiol Aging, vol.27, pp.848-856, 2006.

A. Nighorn, Y. Qiu, and R. L. Davis, Progress in understanding the Drosophila dnc locus, Comp Biochem Physiol Biochem Mol Biol, vol.108, pp.1-9, 1994.

M. J. Nirenberg, J. Chan, A. Pohorille, R. A. Vaughan, G. R. Uhl et al., The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens, J Neurosci, vol.17, pp.6899-6907, 1997.

T. Nishibu, Y. Hayashida, S. Tani, S. Kurono, K. Kojima-kita et al., Identification of MIWIassociated Poly(A) RNAs by immunoprecipitation with an anti-MIWI monoclonal antibody, Biosci Trends, vol.6, pp.248-261, 2012.

O. Burnet and B. , The effects on locomotor activity and reactivity of the hypoactive and inactive mutations of Drosophila melanogaster, Heredity, vol.61, pp.199-207, 1988.

C. W. Olanow and S. B. Prusiner, Is Parkinson's disease a prion disorder, PNAS, vol.106, pp.12571-12572, 2009.

D. G. Ordonez, M. K. Lee, and M. B. Feany, ?-synuclein induces mitochondrial dysfunction through spectrin and the actin cCytoskeleton, Neuron, vol.97, pp.108-124, 2018.

S. J. Orenstein and A. M. Cuervo, Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance, Semin Cell Dev Biol, vol.21, pp.719-726, 2010.

T. F. Outeiro, E. Kontopoulos, S. M. Altmann, I. Kufareva, K. E. Strathearn et al., Sirtuin 2 inhibitors rescue alphasynuclein-mediated toxicity in models of Parkinson's disease, Science, vol.317, pp.516-519, 2007.

D. Owald, J. Felsenberg, C. B. Talbot, G. Das, E. Perisse et al., Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila, Neuron, vol.86, pp.417-427, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02506367

D. Owald, S. Lin, and S. Waddell, Light, heat, action: neural control of fruit fly behaviour, Philos Trans R Soc Lond, B, Biol Sci, vol.370, 2015.

E. Owusu-ansah, A. Yavari, U. Banerjee, C. Pacelli, N. Giguère et al., Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of Dopamine neurons, Curr Biol, vol.25, pp.2349-2360, 2008.

M. Pal-bhadra, B. A. Leibovitch, S. G. Gandhi, M. R. Chikka, M. Rao et al., Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery, Science, vol.303, pp.669-672, 2004.

S. Papapetropoulos, A. N. Ellul, J. Argyriou, A. A. Chroni, and E. , A prospective study of familial versus sporadic Parkinson's disease, Neurodegener Dis, vol.4, pp.424-427, 2007.

M. L. Pardue and P. G. Debaryshe, Retrotransposons that maintain chromosome ends, Proc Natl Acad Sci, vol.108, pp.20317-20324, 2011.

M. L. Pardue, S. Rashkova, E. Casacuberta, P. G. Debaryshe, J. A. George et al., Two retrotransposons maintain telomeres in Drosophila, Chromosome Res, vol.13, pp.443-453, 2005.

M. S. Parihar, A. Parihar, M. Fujita, M. Hashimoto, and P. Ghafourifar, Mitochondrial association of alpha-synuclein causes oxidative stress, Cell Mol Life Sci, vol.65, pp.1272-1284, 2008.

J. Park, S. B. Lee, S. Lee, Y. Kim, S. Song et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, vol.441, pp.1157-1161, 2006.

T. Pathak, T. Agrawal, S. Richhariya, S. Sadaf, and G. Hasan, Store-operated calcium entry through orai is required for transcriptional maturation of the flight circuit in Drosophila, J Neurosci, vol.35, pp.13784-13799, 2015.

U. Pech, A. Pooryasin, S. Birman, and A. Fiala, Localization of the contacts between kenyon cells and aminergic neurons in the Drosophila melanogaster brain using splitGFP reconstitution, J Comp Neurol, vol.521, pp.3992-4026, 2013.

U. Pech, S. Dipt, J. Barth, P. Singh, M. Jauch et al., Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells, Front Neural Circuits, vol.7, p.147, 2013.

J. Penney, K. Tsurudome, E. H. Liao, G. Kauwe, L. Gray et al., LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction, Nat Commun, vol.7, p.12188, 2016.

R. G. Perez, J. C. Waymire, E. Lin, J. J. Liu, F. Guo et al., A role for alpha-synuclein in the regulation of dopamine biosynthesis, J Neurosci, vol.22, pp.3090-3099, 2002.

P. Perez-pardo, T. Kliest, H. B. Dodiya, L. M. Broersen, J. Garssen et al., The gut-brain axis in Parkinson's disease: Possibilities for food-based therapies, Eur J Pharmacol, vol.817, pp.86-95, 2017.

P. N. Perrat, S. Dasgupta, J. Wang, W. Theurkauf, Z. Weng et al., Transposition-driven genomic heterogeneity in the Drosophila brain, Science, vol.340, pp.91-95, 2013.

Y. Pesah, T. Pham, H. Burgess, B. Middlebrooks, P. Verstreken et al., Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress, Development, vol.131, pp.2183-2194, 2004.

E. Petruccelli, Q. Li, Y. Rao, and T. Kitamoto, The unique dopamine/ecdysteroid receptor modulates ethanol-induced sedation in Drosophila, J Neurosci, vol.36, pp.4647-4657, 2016.

B. D. Pfeiffer, T. Ngo, K. L. Hibbard, C. Murphy, A. Jenett et al., Refinement of tools for targeted gene expression in Drosophila, Genetics, vol.186, pp.735-755, 2010.

P. Phillips and J. A. Stamford, Differential recruitment of N-, P-and Q-type voltageoperated calcium channels in striatal dopamine release evoked by 'regular' and 'burst' firing, Brain Res, vol.884, pp.139-146, 2000.

J. Phillips-portillo and N. J. Strausfeld, Representation of the brain's superior protocerebrum of the flesh fly, neobellieria bullata, in the central body, J Comp Neurol, vol.520, pp.3070-3087, 2012.

A. M. Pickrell and R. J. Youle, The roles of PINK1, Parkin and mitochondrial fidelity in Parkinson's disease, Neuron, vol.85, pp.257-273, 2015.

H. C. Pieper, B. O. Evert, O. Kaut, P. F. Riederer, A. Waha et al., Different methylation of the TNF-alpha promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability, Neurobiol Dis, vol.32, pp.521-527, 2008.

D. Pimentel, J. M. Donlea, C. B. Talbot, S. M. Song, A. Thurston et al., Operation of a homeostatic sleep switch, Nature, vol.536, p.333, 2016.

E. Pitmon, G. Stephens, S. J. Parkhurst, F. W. Wolf, G. Kehne et al., The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila, Brain and Behav, vol.15, pp.327-334, 2016.

P. Y. Plaçais, É. De-tredern, L. Scheunemann, S. Trannoy, V. Goguel et al., Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory, Nat Commun, vol.8, p.15510, 2017.

P. Y. Plaçais, S. Trannoy, G. Isabel, Y. Aso, I. Siwanowicz et al., Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila, Nat Neurosci, vol.15, pp.592-599, 2012.

A. Pletscher, P. A. Shore, and B. B. Brodie, Serotonin release as a possible mechanism of reserpine action, Science, vol.122, pp.374-375, 1955.

W. Poewe, K. Seppi, C. M. Tanner, G. M. Halliday, P. Brundin et al., Nat Rev Dis Primers, vol.3, pp.1-21, 2017.

M. H. Polymeropoulos, C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia et al., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease, Science, vol.276, pp.2045-2047, 1997.

P. Devoto, V. M. Falzone, and T. L. , Mitochondrial dynamics in Parkinson's disease: a role for ?-synuclein?, Dis Model Mech, vol.10, pp.1075-1087, 2017.

S. Przedborski, The two-century journey of Parkinson disease research, Nat Rev Neurosci, vol.18, pp.251-259, 2017.

C. Qi and D. Lee, Pre-and postsynaptic role of dopamine D2 receptor DD2R in Drosophila olfactory associative learning, Biology (Basel), vol.3, pp.831-845, 2014.

H. Qin, M. Cressy, W. Li, J. S. Coravos, S. A. Izzi et al., Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila, Curr Biol, vol.22, pp.608-614, 2012.

M. Quadri, M. Fang, M. Picillo, S. Olgiati, G. J. Breedveld et al., Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism, Hum Mutat, vol.34, pp.1208-1215, 2013.

D. Quintero-espinosa, M. Jimenez-del-rio, and C. Velez-pardo, Knockdown transgenic Lrrk Drosophila resists paraquat-induced locomotor impairment and neurodegeneration: A therapeutic strategy for Parkinson's disease, Brain Res, vol.1657, pp.253-261, 2017.

P. Rajasethupathy, I. Antonov, R. Sheridan, S. Frey, C. Sander et al., A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity, Cell, vol.149, pp.693-707, 2012.

P. M. Rappold, M. Cui, A. S. Chesser, J. Tibbett, J. C. Grima et al., Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3, Proc Natl Acad Sci, vol.108, pp.20766-20771, 2011.

A. N. Rcom-h'cheo-gauthier, S. L. Osborne, A. Meedeniya, and D. L. Pountney, Calcium: Alpha-synuclein interactions in alpha-synucleinopathies, Front Neurosci, vol.10, p.570, 2016.

A. Reeve, E. Simcox, and D. Turnbull, Ageing and Parkinson's disease: why is advancing age the biggest risk factor?, Ageing Res Rev, vol.14, pp.19-30, 2014.

L. T. Reiter, L. Potocki, S. Chien, M. Gribskov, and E. Bier, A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster, Genome Res, vol.11, pp.1114-1125, 2001.

H. Rekaik, F. X. Blaudin-de-thé, J. Fuchs, O. Massiani-beaudoin, A. Prochiantz et al., Engrailed homeoprotein protects mesencephalic dopaminergic neurons from oxidative stress, Cell Rep, vol.13, pp.242-250, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02156811

M. Rera, S. Bahadorani, J. Cho, C. L. Koehler, M. Ulgherait et al., Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog, Cell Metab, vol.14, pp.623-634, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02347344

A. S. Ries, T. Hermanns, B. Poeck, and R. Strauss, Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment, Nat Commun, vol.8, p.15738, 2017.

M. E. Rice, S. J. Cragg, and S. A. Greenfield, Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro, J Neurophysiol, vol.77, pp.853-862, 1997.

T. Riemensperger, G. Isabel, H. Coulom, K. Neuser, L. Seugnet et al., Behavioral consequences of dopamine deficiency in the Drosophila central nervous system, Proc Natl Acad Sci, vol.108, pp.834-839, 2011.

T. Riemensperger, A. R. Issa, U. Pech, H. Coulom, M. Nguy?n et al., A single dopamine pathway underlies progressive locomotor deficits in a Drosophila model of Parkinson disease, Cell Rep, vol.5, pp.952-960, 2013.

S. H. Robison and W. G. Bradley, DNA damage and chronic neuronal degenerations, J Neurol Sci, vol.64, pp.11-20, 1984.

E. M. Rocha, G. A. Smith, E. Park, H. Cao, E. Brown et al., Progressive decline of glucocerebrosidase in aging and Parkinson's disease, Ann Clin Transl Neurol, vol.2, pp.433-438, 2015.

M. Rodriguez, C. Rodriguez-sabate, I. Morales, A. Sanchez, and M. Sabate, Parkinson's disease as a result of aging, Aging Cell, vol.14, pp.293-308, 2015.

R. J. Ross, M. M. Weiner, and H. Lin, PIWI proteins and PIWI-interacting RNAs in the soma, Nature, vol.505, pp.353-359, 2014.

B. Roy and G. R. Jackson, Interactions between Tau and ?-synuclein augment neurotoxicity in a Drosophila model of Parkinson's disease, Hum Mol Genet, vol.23, pp.3008-3023, 2014.

N. V. Rozhkov, M. Hammell, and G. J. Hannon, Multiple roles for Piwi in silencing Drosophila transposons, Genes Dev, vol.27, pp.400-412, 2013.

L. L. Rubchinsky, N. Kopell, and K. A. Sigvardt, Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits, Proc Natl Acad Sci, vol.100, pp.14427-14432, 2003.

G. M. Rubin and E. B. Lewis, A brief history of Drosophila's contributions to genome research, Science, vol.287, pp.2216-2218, 2000.

G. M. Rubin, L. Hong, P. Brokstein, M. Evans-holm, E. Frise et al., A Drosophila complementary DNA resource, Science, vol.287, pp.2222-2224, 2000.

S. Sadaf, O. V. Reddy, S. P. Sane, and G. Hasan, Neural control of wing coordination in flies, Curr Biol, vol.25, pp.80-86, 2015.

L. H. Sanders and J. T. Greenamyre, Oxidative damage to macromolecules in human Parkinson disease and the rotenone model, Free Radic Biol Med, vol.62, pp.111-120, 2013.

T. R. Sampson, J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri et al., Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease, Cell, vol.167, pp.1469-1480, 2016.

M. Sansó, I. Vargas-pérez, P. García, J. Ayté, and E. Hidalgo, Nuclear roles and regulation of chromatin structure by the stress-dependent MAP kinase Sty1 of Schizosaccharomyces pombe, Mol Microbiol, vol.82, pp.542-554, 2011.

A. Schapira, Mitochondria in the aetiology and pathogenesis of Parkinson's disease, Lancet Neurol, vol.7, pp.97-109, 2008.

A. Schapira and M. Gegg, Mitochondrial contribution to Parkinson's disease pathogenesis, Parkinsons Dis, p.159160, 2011.

A. Schapira and E. Tolosa, Molecular and clinical prodrome of Parkinson disease: implications for treatment, Nat Rev Neurol, vol.6, pp.309-317, 2010.

M. Schieber and N. S. Chandel, ROS function in redox signaling and oxidative stress, Curr Biol, vol.24, pp.453-462, 2014.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biologicalimage analysis, Nat Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

J. S. Schlehe, A. K. Lutz, A. Pilsl, K. Lämmermann, K. Grgur et al., Aberrant folding of pathogenic Parkin mutants: aggregation versus degradation, J Biol Chem, vol.283, pp.13771-13779, 2008.

S. Scholz-kornehl and M. Schwärzel, Circuit analysis of a Drosophila dopamine type 2 receptor that supports anesthesia-resistant memory, J Neurosci, vol.36, pp.7936-7945, 2016.

J. K. Seamans and C. R. Yang, The principal features and mechanisms of dopamine modulation in the prefrontal cortex, Prog Neurobiol, vol.74, pp.1-58, 2004.

K. Seidel, L. Schöls, S. Nuber, E. Petrasch-parwez, K. Gierga et al., First appraisal of brain pathology owing to A30P mutant alpha-synuclein, Ann Neurol, vol.67, pp.684-689, 2010.

K. A. Senti and J. Brennecke, The piRNA pathway: a fly's perspective on the guardian of the genome, Trends Genet, vol.26, pp.499-509, 2010.

M. ?entürk and H. J. Bellen, Genetic strategies to tackle neurological diseases in fruit flies, Curr Opin Neurobiol, vol.50, pp.24-32, 2017.

L. Seugnet, Y. Suzuki, L. Vine, L. Gottschalk, and P. J. Shaw, D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila, Curr Biol, vol.18, pp.1110-1117, 2008.

R. Shaltiel-karyo, M. Frenkel-pinter, E. Rockenstein, C. Patrick, M. Levy-sakin et al., A blood-brain-barrier (BBB) disrupter is also a potent ?-synuclein (?-syn) aggregation inhibitor, J Biol Chem, vol.288, pp.17579-17588, 2013.

K. M. Shannon, A. Keshavarzian, E. Mutlu, H. B. Dodiya, D. Daian et al., Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease, Mov Disord, vol.27, pp.709-715, 2012.

P. J. Shaw, C. Cirelli, R. J. Greenspan, and G. Tononi, Correlates of Sleep and Waking in Drosophila melanogaster, Science, vol.287, pp.1834-1837, 2000.

K. Shimizu, K. Ohtaki, K. Matsubara, K. Aoyama, T. Uezono et al., Carrier-mediated processes in blood--brain barrier penetration and neural uptake of paraquat, Brain Res, vol.906, pp.135-142, 2001.

O. Shimomura, F. H. Johnson, and Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol, vol.59, pp.223-239, 1962.

H. Shimura, N. Hattori, Y. Kubo-s-i,-mizuno, S. Asakawa, S. Minoshima et al., Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase, Nat Genet, vol.25, pp.302-305, 2000.

A. K. Shukla, P. Pragya, H. S. Chaouhan, D. K. Patel, M. Z. Abdin et al., Mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes, Neurobiol Aging, vol.35, pp.2419-2420, 2014.

A. K. Shukla, P. Pragya, H. S. Chaouhan, A. K. Tiwari, D. K. Patel et al., Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson's disease, PLoS One, vol.9, p.98886, 2014.

A. K. Shukla, C. Ratnasekhar, P. Pragya, H. S. Chaouhan, D. K. Patel et al., Metabolomic analysis provides insights on paraquat-Induced Parkinson-like symptoms in Drosophila melanogaster, Mol Neurobiol, vol.53, pp.254-269, 2016.

J. M. Shulman, D. Jager, P. L. Feany, and M. B. , Parkinson's disease: genetics and pathogenesis, Annu Rev Pathol, vol.6, pp.193-222, 2011.

W. H. Shyu, T. H. Chiu, M. H. Chiang, Y. C. Cheng, Y. L. Tsai et al., Neural circuits for long-term water-reward memory processing in thirsty Drosophila, Nat Commun, vol.8, p.15230, 2017.

J. Sian-hülsmann, S. Mandel, M. Youdim, and P. Riederer, The relevance of iron in the pathogenesis of Parkinson's disease, J Neurochem, vol.118, pp.939-957, 2011.

Y. H. Siddique, F. Naz, and J. S. , Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson's disease, Biomed Res Int, p.606928, 2014.

A. Siddiqui, S. J. Chinta, J. K. Mallajosyula, S. Rajagopolan, I. Hanson et al., Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson's disease, Free Radic Biol Med, vol.53, pp.993-1003, 2012.

G. Sienski, D. Dönertas, and J. Brennecke, Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression, Cell, vol.151, pp.964-980, 2012.

I. Sinakevitch and N. J. Strausfeld, Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly, J Comp Neurol, vol.494, pp.460-475, 2006.

A. B. Singleton, M. Farrer, J. Johnson, A. Singleton, S. Hague et al., alpha-synuclein locus triplication causes Parkinson's disease, Science, vol.302, p.841, 2003.

D. Sitaraman, Y. Aso, J. X. Chen, N. Felix, M. Rubin et al., Propagation of homeostatic sleep signals by segregated synaptic microcircuits of the Drosophila mushroom body, Curr Biol, vol.25, pp.2915-2927, 2015.

D. Sitaraman, Y. Aso, G. M. Rubin, and M. N. Nitabach, Control of sleep by dopaminergic inputs to the Drosophila mushroom Body, Front Neural Circuits, vol.9, p.73, 2015.

C. Song, A. Kanthasamy, V. Anantharam, F. Sun, and A. G. Kanthasamy, Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration, Mol Pharmacol, vol.77, pp.621-632, 2010.

C. Song, A. Kanthasamy, H. Jin, V. Anantharam, and A. G. Kanthasamy, Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration, Neurotoxicology, vol.32, pp.586-595, 2011.

D. D. Song, C. W. Shults, A. Sisk, E. Rockenstein, and E. Masliah, Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP, Exp Neurol, vol.186, pp.158-172, 2004.

L. Song, Y. He, J. Ou, Y. Zhao, R. Li et al., Auxilin underlies progressive locomotor deficits and dopaminergic neuron loss in a Drosophila model of Parkinson's disease, Cell Rep, vol.18, pp.1132-1143, 2017.

F. N. Soria, O. Pampliega, M. Bourdenx, W. G. Meissner, E. Bezard et al., Exosomes, an unmasked culprit in neurodegenerative diseases, Front Neurosci, vol.11, p.26, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02439419

P. Sousa-victor, A. Ayyaz, R. Hayashi, Y. Qi, D. T. Madden et al., Piwi Is required to limit exhaustion of aging somatic stem cells, Cell Rep, vol.20, pp.2527-2537, 2017.

M. G. Spillantini and M. Goedert, The alpha-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, Ann N Y Acad Sci, vol.920, pp.16-27, 2000.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes et al., Alphasynuclein in Lewy bodies, Nature, vol.388, pp.839-840, 1997.

D. P. Srivastava, E. J. Yu, K. Kennedy, H. Chatwin, V. Reale et al., Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor, J Neurosci, vol.25, pp.6145-6155, 2005.

D. S. St-johnston, The art and design of genetic screens: Drosophila melanogaster, Nat Rev Genet, vol.3, pp.176-188, 2002.

. St, O. Laurent-r, L. M. 'brien, and A. St, Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson's disease, Neuroscience, vol.246, pp.382-390, 2013.

L. Stefanis, 2012. ?-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med 2: a009399

T. Stoycheva, M. Pesheva, and P. Venkov, The role of reactive oxygen species in the induction of Ty1 retrotransposition in Saccharomyces cerevisiae, Yeast, vol.27, pp.259-267, 2010.

N. J. Strausfeld, L. Hansen, Y. Li, R. S. Gomez, and K. Ito, Evolution, discovery, and interpretations of Arthropod mushroom bodies, Learn Mem, vol.5, pp.11-37, 1998.

N. J. Strausfeld and F. Hirth, Deep homology of arthropod central complex and vertebrate basal ganglia, Science, vol.340, pp.157-161, 2013.

R. Strauss, The central complex and the genetic dissection of locomotor behaviour, Curr Opin Neurobiol, vol.12, pp.633-638, 2002.

R. Strauss and M. Heisenberg, A higher control center of locomotor behavior in the Drosophila brain, J Neurosci, vol.13, pp.1852-1861, 1993.

Á. Sturm, Z. Ivics, and T. Vellai, The mechanism of ageing: primary role of transposable elements in genome disintegration, Cell Mol Life Sci, vol.72, pp.1839-1847, 2015.

Á. Sturm, A. Perczel, Z. Ivics, and T. Vellai, The Piwi-piRNA pathway: road to immortality, Aging Cell, vol.16, pp.906-911, 2017.

J. H. Sudati, F. A. Vieira, S. S. Pavin, G. Dias, R. L. Seeger et al., Valeriana officinalis attenuates the rotenone-induced toxicity in Drosophila melanogaster, NeuroToxicology, vol.37, pp.118-126, 2013.

N. Sugeno, S. Jäckel, A. Voigt, Z. Wassouf, J. Schulze-hentrich et al., 2016. ?-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses, Sci Rep, vol.6, p.36328

D. Sulzer, Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease, Trends Neurosci, vol.30, pp.244-250, 2007.

D. Sulzer, S. J. Cragg, and M. E. Rice, Striatal dopamine neurotransmission: Regulation of release and uptake, Basal Ganglia, vol.6, pp.123-148, 2016.

D. Sulzer and L. Zecca, Intraneuronal dopamine-quinone synthesis: a review, Neurotox Res, vol.1, pp.181-195, 2000.

J. Sun, A. Q. Xu, G. J. Poppinga, H. Riemensperger, T. Fiala et al., Neural control of startle-induced locomotion by the mushroom bodies and associated neurons in Drosophila, Front Syst Neurosci, vol.12, p.6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02396072

M. F. Sun and Y. Q. Shen, Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease, Ageing Res Rev, vol.45, pp.53-61, 2018.

A. Surguchov, Molecular and cellular biology of synucleins, Int Rev Cell Mol Biol, vol.270, pp.225-317, 2008.

D. J. Surmeier and P. T. Schumacker, Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease, J Biol Chem, vol.288, pp.10736-10741, 2013.

D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Parkinson's disease is not simply a Prion disorder, J Neurosci, vol.37, pp.9799-9807, 2017.

D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Selective neuronal vulnerability in Parkinson disease, Nat Rev Neurosci, vol.18, pp.101-113, 2017.

D. J. Surmeier, G. M. Halliday, and T. Simuni, Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease, Exp Neurol, vol.298, pp.202-209, 2017.

D. J. Surmeier, W. Shen, M. Day, T. Gertler, S. Chan et al., The role of dopamine in modulating the structure and function of striatal circuits, Prog Brain Res, vol.183, pp.149-167, 2010.

R. Suzuki, S. Honda, and Y. Kirino, PIWI Expression and Function in Cancer, Front Genet, vol.3, p.204, 2012.

M. Suzuki, N. Fujikake, T. Takeuchi, A. Kohyama-koganeya, K. Nakajima et al., Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant ?-synuclein and aggravates neurodegeneration in a Drosophila model of Parkinson's disease, Hum Mol Genet, vol.24, pp.6675-6686, 2015.

S. Takemura, Y. Aso, T. Hige, A. Wong, Z. Lu et al., A connectome of a learning and memory center in the adult Drosophila brain, vol.6, p.26975, 2017.

H. Tan, A. Qurashi, M. Poidevin, D. L. Nelson, H. Li et al., Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration, Hum Mol Genet, vol.21, pp.57-65, 2012.

Y. Tan, L. Liu, M. Liao, C. Zhang, S. Hu et al., Emerging roles for PIWI proteins in cancer, Acta Biochim Biophys Sin (Shanghai), vol.47, pp.315-324, 2015.

N. K. Tanaka, H. Tanimoto, and K. Ito, Neuronal assemblies of the Drosophila mushroom body, J Comp Neurol, vol.508, pp.711-755, 2008.

M. G. Tansey and M. S. Goldberg, Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention, Neurobiol Dis, vol.37, pp.510-518, 2010.

T. Tatsuta and T. Langer, Quality control of mitochondria: protection against neurodegeneration and ageing, EMBO J, vol.27, pp.306-314, 2008.

R. Tehranian, S. E. Montoya, A. D. Van-laar, T. G. Hastings, and R. G. Perez, Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells, J Neurochem, vol.99, pp.1188-1196, 2006.

A. Terskikh, A. Fradkov, G. Ermakova, A. Zaraisky, P. Tan et al., Fluorescent timer": protein that changes color with time, Science, vol.290, pp.1585-1588, 2000.

A. V. Terskikh, A. F. Fradkov, A. G. Zaraisky, A. V. Kajava, and B. Angres, Analysis of DsRed Mutants. Space around the fluorophore accelerates fluorescence development, J Biol Chem, vol.277, pp.7633-7636, 2002.

E. Tolosa, C. Gaig, J. Santamaría, and Y. Compta, Diagnosis and the premotor phase of Parkinson disease, Neurology, vol.72, pp.12-20, 2009.

K. F. Tóth, D. Pezic, E. Stuwe, and A. Webster, The piRNA pathway guards the germline genome against Transposable elements, Adv Exp Med Biol, vol.886, pp.51-77, 2016.

C. D. Treiber and S. Waddell, Resolving the prevalence of somatic transposition in Drosophila, vol.6, p.28297, 2017.

K. Trinh, K. Moore, P. D. Wes, P. J. Muchowski, J. Dey et al., Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson's disease, J Neurosci, vol.28, pp.465-472, 2008.

D. Truban, X. Hou, T. R. Caulfield, F. C. Fiesel, and W. Springer, PINK1, Parkin, and mitochondrial quality control: what can we learn about Parkinson's disease pathobiology?, J Parkinsons Dis, vol.7, pp.13-29, 2017.

D. B. Turner-evans and V. Jayaraman, The insect central complex, Curr Biol, vol.26, pp.453-457, 2016.

T. Ueno, J. Tomita, H. Tanimoto, K. Endo, K. Ito et al., Identification of a dopamine pathway that regulates sleep and arousal in Drosophila, Nat Neurosci, vol.15, pp.1516-1523, 2012.

G. R. Uhl, Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism, Mov Disord, vol.18, pp.71-80, 2003.

M. A. Ungless, E. Argilli, and A. Bonci, Effects of stress and aversion on dopamine neurons: implications for addiction, Neurosci Biobehav Rev, vol.35, pp.151-156, 2010.

A. Vaccaro, A. R. Issa, L. Seugnet, S. Birman, and A. Klarsfeld, Drosophila clock is required in brain pacemaker neurons to prevent premature locomotor aging independently of its circadian function, PLoS Genet, vol.13, p.1006507, 2017.

D. Valdinocci, R. Radford, S. M. Siow, R. S. Chung, and D. L. Pountney, Potential Modes of Intercellular ?-Synuclein Transmission, Int J Mol Sci, vol.18, 2017.

E. M. Valente, P. M. Abou-sleiman, V. Caputo, M. Muqit, K. Harvey et al., Hereditary early-onset Parkinson's disease caused by mutations in PINK1, Science, vol.304, pp.1158-1160, 2004.

M. Van-der-mark, M. Brouwer, H. Kromhout, P. Nijssen, A. Huss et al., Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results, Environ Health Perspect, vol.120, pp.340-347, 2012.

R. Vanhauwaert and P. Verstreken, Flies with Parkinson's disease, Exp Neurol, vol.274, pp.42-51, 2015.

K. J. Vargas, S. Makani, T. Davis, C. H. Westphal, P. E. Castillo et al., Synucleins regulate the kinetics of synaptic vesicle endocytosis, J Neurosci, vol.34, pp.9364-9376, 2014.

L. L. Venda, S. J. Cragg, V. L. Buchman, and R. Wade-martins, ?-Synuclein and dopamine at the crossroads of Parkinson's disease, Trends Neurosci, vol.33, pp.559-568, 2010.

V. A. Vernace, L. Arnaud, T. Schmidt-glenewinkel, and F. Me, Aging perturbs 26S proteasome assembly in Drosophila melanogaster, FASEB J, vol.21, pp.2672-2682, 2007.

V. A. Vernace, T. Schmidt-glenewinkel, and F. Me, Aging and regulated protein degradation: who has the UPPer hand?, Aging Cell, vol.6, pp.599-606, 2007.

P. Verstreken, T. W. Koh, K. L. Schulze, R. G. Zhai, P. R. Hiesinger et al., Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating, Neuron, vol.40, pp.733-748, 2003.

P. Verstreken, C. V. Ly, K. Venken, T. W. Koh, Y. Zhou et al., Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions, Neuron, vol.47, pp.365-378, 2005.

T. L. Vickrey and B. J. Venton, Drosophila Dopamine2-like receptors function as autoreceptors, ACS Chem Neurosci, vol.2, pp.723-729, 2011.

A. Vié, M. Cigna, R. Toci, and S. Birman, Differential regulation of Drosophila tyrosine hydroxylase isoforms by dopamine binding and cAMP-dependent phosphorylation, J Biol Chem, vol.274, pp.16788-16795, 1999.

N. P. Visanji, P. L. Brooks, L. N. Hazrati, and A. E. Lang, The prion hypothesis in Parkinson's disease: Braak to the future, Acta Neuropathol Commun, vol.1, issue.2, 2013.

T. Vogiatzi, M. Xilouri, K. Vekrellis, and L. Stefanis, Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells, J Biol Chem, vol.283, pp.23542-23556, 2008.

M. J. Volles and P. T. Lansbury, Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism, Biochemistry, vol.41, pp.4595-4602, 2002.

R. Von-coelln, B. Thomas, S. A. Andrabi, K. L. Lim, J. M. Savitt et al., Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy, J Neurosci, vol.26, pp.3685-3696, 2006.

J. W. Von-trotha, B. Egger, and A. H. Brand, Cell proliferation in the Drosophila adult brain revealed by clonal analysis and bromodeoxyuridine labelling, Neural Dev, vol.4, p.9, 2009.

S. Waddell, Reinforcement signalling in Drosophila; dopamine does it all after all, Curr Opin Neurobiol, vol.23, pp.324-329, 2013.

S. Waddell, J. D. Armstrong, T. Kitamoto, K. Kaiser, and W. G. Quinn, The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory, Cell, vol.103, pp.805-813, 2000.

S. Waddell, O. Barnstedt, and C. Treiber, Neural transposition in the Drosophila brain: is it all bad news?, Adv Genet, vol.86, pp.65-92, 2014.

K. Wakabayashi, K. Tanji, S. Odagiri, Y. Miki, F. Mori et al., The Lewy body in Parkinson's disease and related neurodegenerative disorders, Mol Neurobiol, vol.47, pp.495-508, 2013.

B. Wang, Q. Liu, H. Shan, C. Xia, and Z. Liu, Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to ?-synuclein in Drosophila, Biochem Cell Biol, vol.93, pp.351-358, 2015.

C. Wang, H. S. Ko, B. Thomas, F. Tsang, K. Chew et al., Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function, Hum Mol Genet, vol.14, pp.3885-3897, 2005.

S. H. Wang and S. Elgin, Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line, Proc Natl Acad Sci, vol.108, pp.21164-21169, 2011.

W. Wang, I. Perovic, J. Chittuluru, A. Kaganovich, L. Nguyen et al., A soluble ?-synuclein construct forms a dynamic tetramer, Proc Natl Acad Sci, vol.108, pp.17797-17802, 2011.

Y. C. Wang, C. M. Lee, L. C. Lee, L. C. Tung, H. M. Hsieh-li et al., Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia Type 12 (SCA12), J Biol Chem, vol.286, pp.21742-21754, 2011.

J. L. Webb, B. Ravikumar, J. Atkins, J. N. Skepper, and D. C. Rubinsztein, ?-synuclein is degraded by both autophagy and the proteasome, J Biol Chem, vol.278, pp.25009-25013, 2003.

P. T. Weir and M. H. Dickinson, Functional divisions for visual processing in the central brain of flying Drosophila, Proc Natl Acad Sci, vol.112, pp.5523-5532, 2015.

R. West, Y. Lu, M. B. Gao, F. Sweeney, and S. T. , Rab8, POSH, and TAK1 regulate synaptic growth in a Drosophila model of frontotemporal dementia, J Cell Biol, vol.208, pp.931-947, 2015.

K. E. White, D. M. Humphrey, and F. Hirth, The dopaminergic system in the aging brain of Drosophila, Front Neurosci, vol.4, p.205, 2010.

A. Wilkaniec, G. A. Czapski, and A. Adamczyk, Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses, J Neurochem, vol.136, pp.222-233, 2016.

J. Wills, J. Credle, A. W. Oaks, V. Duka, J. H. Lee et al., Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways, PLoS One, vol.7, p.30745, 2012.

K. F. Winklhofer and C. Haass, Mitochondrial dysfunction in Parkinson's disease, Biochim Biophys Acta, vol.1802, pp.29-44, 2010.

K. F. Winklhofer, I. H. Henn, P. C. Kay-jackson, U. Heller, and J. Tatzelt, Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones, J Biol Chem, vol.278, pp.47199-47208, 2003.

B. Winner, R. Jappelli, S. K. Maji, P. A. Desplats, L. Boyer et al., In vivo demonstration that alpha-synuclein oligomers are toxic, Proc Natl Acad Sci, vol.108, pp.4194-4199, 2011.

A. R. Winslow, C. W. Chen, S. Corrochano, A. Acevedo-arozena, D. E. Gordon et al., ?-Synuclein impairs macroautophagy: implications for Parkinson's disease, J Cell Biol, vol.190, pp.1023-1037, 2010.

T. Wolff, N. A. Iyer, and G. M. Rubin, Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits, J Comp Neurol, vol.523, pp.997-1037, 2015.

E. Wong, J. Tan, C. Wang, Z. Zhang, S. P. Tay et al., Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations, J Biol Chem, vol.282, pp.12310-12318, 2007.

J. G. Wood and S. L. Helfand, Chromatin structure and transposable elements in organismal aging, Front Genet, vol.4, p.274, 2013.

J. G. Wood, B. C. Jones, N. Jiang, C. Chang, S. Hosier et al., Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila, Proc Natl Acad Sci, vol.113, pp.11277-11282, 2016.

T. R. Wright, The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster, Adv Genet, vol.24, pp.127-222, 1987.

Q. Wu, Q. Ma, L. A. Shehadeh, A. Wilson, L. Xia et al., Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells, Biochem Biophys Res Commun, vol.396, pp.915-920, 2010.

C. L. Wu, M. Shih, J. Lai, H. T. Yang, G. C. Turner et al., Heterotypic gap junctions between two neurons in the Drosophila brain are critical for memory, Curr Biol, vol.21, pp.848-854, 2011.

C. L. Wu, M. Shih, P. T. Lee, and A. S. Chiang, An octopamine-mushroom body circuit modulates the formation of anesthesia-resistant memory in Drosophila, Curr Biol, vol.23, pp.2346-2354, 2013.

M. Xilouri, O. R. Brekk, N. Landeck, P. M. Pitychoutis, T. Papasilekas et al., Boosting chaperone-mediated autophagy in vivo mitigates ?synuclein-induced neurodegeneration, Brain, vol.136, pp.2130-2146, 2013.

M. Xilouri and O. R. Brekk, Stefanis L. 2013b. ?-Synuclein and protein degradation systems: a reciprocal relationship, Mol Neurobiol, vol.47, pp.537-551

J. Xu, S. Kao, F. Lee, W. Song, J. Yankner et al., Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease, Nat Med, vol.8, pp.600-606, 2002.

C. Y. Xu, W. Y. Kang, Y. M. Chen, T. F. Jiang, J. Zhang et al., DJ-1 inhibits ?-synuclein aggregation by regulating chaperone-mediated autophagy, Front Aging Neurosci, vol.9, p.308, 2017.

Z. Xun, R. A. Sowell, T. C. Kaufman, and D. E. Clemmer, Lifetime proteomic profiling of an A30P alpha-synuclein Drosophila model of Parkinson's disease, J Proteome Res, vol.6, pp.3729-3738, 2007.

T. Yamada, P. L. Mcgeer, K. G. Baimbridge, and E. G. Mcgeer, Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K, Brain Res, vol.526, pp.303-307, 1990.

Y. Yamaguchi, Y. A. Lee, and Y. Goto, Dopamine in socioecological and evolutionary perspectives: implications for psychiatric disorders, Front Neurosci, vol.9, p.219, 2015.

S. Yamamoto and E. S. Seto, Dopamine dynamics and signaling in Drosophila: an overview of genes, drugs and behavioral paradigms, Exp Anim, vol.63, pp.107-119, 2014.

Z. Yan, H. Y. Hu, X. Jiang, V. Maierhofer, E. Neb et al., Widespread expression of piRNA-like molecules in somatic tissues, Nucleic Acids Res, vol.39, pp.6596-6607, 2011.

Y. Yang, S. Gehrke, Y. Imai, Z. Huang, Y. Ouyang et al., Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin, Proc Natl Acad Sci, vol.103, pp.10793-10798, 2006.

Y. Yang, I. Nishimura, Y. Imai, R. Takahashi, and B. Lu, Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila, Neuron, vol.37, pp.911-924, 2003.

Y. Yang, Y. Ouyang, L. Yang, M. F. Beal, A. Mcquibban et al., Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery, Proc Natl Acad Sci, vol.105, pp.7070-7075, 2008.

D. Yao, Z. Gu, T. Nakamura, Z. Q. Shi, Y. Ma et al., Nitrosative stress linked to sporadic Parkinson's disease: Snitrosylation of parkin regulates its E3 ubiquitin ligase activity, Proc Natl Acad Sci, vol.101, pp.10810-10814, 2004.

C. Yellman, H. Tao, B. He, and J. Hirsh, Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila, Proc Natl Acad Sci, vol.94, pp.4131-4136, 1997.

H. Yin and H. Lin, An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster, Nature, vol.450, pp.304-308, 2007.

D. Yu, A. C. Keene, A. Srivatsan, S. Waddell, and R. L. Davis, Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning, Cell, vol.123, pp.945-957, 2005.

N. Zamudio, &. Bourc, and D. , Transposable elements in the mammalian germline: a comfortable niche or a deadly trap?, Heredity (Edinb), vol.105, pp.92-104, 2010.

J. J. Zarranz, J. Alegre, J. C. Gómez-esteban, E. Lezcano, R. R. Ampuero et al., The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia, Ann Neurol, vol.55, pp.164-173, 2004.

S. X. Zhang, D. Rogulja, and M. A. Crickmore, Dopaminergic circuitry underlying mating drive, Neuron, vol.91, pp.168-181, 2016.

W. Zhang, T. Wang, P. Z. Miller, D. S. Wu, X. Block et al., Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease, FASEB J, vol.19, pp.533-542, 2005.

H. Zhao, J. Joseph, H. M. Fales, E. A. Sokoloski, R. L. Levine et al., Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence, Proc Natl Acad Sci, vol.102, pp.5727-5732, 2005.

B. Zheng, Z. Liao, J. J. Locascio, K. A. Lesniak, S. S. Roderick et al., PGC-1?, a potential therapeutic target for early intervention in Parkinson's disease, Sci Transl Med, vol.2, pp.52-73, 2010.

J. Zielonka and B. Kalyanaraman, Hydroethidine-and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth, Free Radic Biol Med, vol.48, pp.983-1001, 2010.

L. Zondler, L. Miller-fleming, M. Repici, S. Gonçalves, S. Tenreiro et al., DJ-1 interactions with ?-synuclein attenuate aggregation and cellular toxicity in models of Parkinson's disease, Cell Death Dis, vol.5, p.1350, 2014.

L. Zuo, Z. Wang, Y. Tan, X. Chen, and X. Luo, piRNAs and their functions in the brain, Int J Hum Genet, vol.16, pp.53-60, 2016.