P. Parneix and D. Lucas, Les structures composites en construction navale militaire, vol.1, pp.1-18

A. Giocosa, Les composites dans l'industrie automobile, pp.1-9, 1999.

Y. Rémond and J. Caron, Les matériaux composites dans le sport, pp.195-209, 2011.

G. L. Dillingham, Aviation Safety -Status of FAA's Actions to Oversee the Safety of Composite Airplanes, 2011.

, Experts of the European Scientific Council of the European Cofederation of Flax and Hemp, Flax and Hemp Fiber Composites, a market reality, JEC Group, 2018.

A. L. Duigou, P. Davies, and C. Baley, Life cycle analysis of a Flax/PLLA biocomposite, Mater. Tech, vol.98, issue.2, pp.143-150, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00988073

T. Bayerl, M. Geith, A. A. Somashekar, and D. Bhattacharyya, Influence of fibre architecture on the biodegradability of FLAX/PLA composites, Int. Biodeterior. Biodegrad, vol.96, pp.18-25, 2014.

F. Duc, P. E. Bourban, C. J. Plummer, and J. A. Månson, Damping of thermoset and thermoplastic flax fibre composites, Compos. Part A Appl. Sci. Manuf, vol.64, pp.115-123, 2014.

M. Assarar, W. Zouari, R. Ayad, H. Kebir, and J. M. Berthelot, Improving the damping properties of carbon fibre reinforced composites by interleaving flax and viscoelastic layers, Compos. Part B Eng, vol.152, pp.248-255, 2018.

Z. Mahboob and H. Bougherara, Fatigue of flax-epoxy and other plant fibre composites: Critical review and analysis, Compos. Part A Appl. Sci. Manuf, vol.109, pp.440-462, 2018.

D. U. Shah, P. J. Schubel, M. J. Clifford, and P. Licence, Fatigue life evaluation of aligned plant fibre composites through S-N curves and constant-life diagrams, Compos. Sci. Technol, vol.74, pp.139-149, 2013.

G. Park and H. Park, Structural design and test of automobile bonnet with natural flax composite through impact damage analysis, Compos. Struct, vol.184, pp.800-806, 2016.

H. P. Lee, B. M. Ng, A. V. Rammohan, and L. Q. Tran, An Investigation of the Sound Absorption Properties of Flax/Epoxy Composites Compared with Glass/Epoxy Composites, J. Nat. Fibers, vol.14, issue.1, pp.71-77, 2017.

M. E. Boustani, F. Brouillette, G. Lebrun, and A. Belfkira, Solvent-free acetylation of lignocellulosic fibers at room temperature: Effect on fiber structure and surface properties, J. Appl. Polym. Sci, vol.132, issue.29, pp.1-8, 2015.

A. Stamboulis, C. A. Baillie, and T. Peijs, Effects of environmental conditions on mechanical and physical properties of flax fibers, Compos. Part A Appl. Sci. Manuf, vol.32, issue.8, pp.1105-1115, 2001.

. Arkema, marchés et solutions, matériaux biosourcés

J. Wertz, L'amidon et le PLA : deux biopolymères sur le marché, Europe, pp.1-17, 2011.

A. Couture, G. Lebrun, and L. Laperrière, Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers, Compos. Struct, vol.154, pp.286-295, 2016.

A. Oushabi, The pull-out behavior of chemically treated lignocellulosic fibers/polymeric matrix interface (LF/PM): A review, Compos. Part B Eng, vol.174, p.107059, 2018.

R. Sepe, F. Bollino, L. Boccarusso, and F. Caputo, Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites, Compos. Part B Eng, vol.133, pp.210-217, 2018.

C. Baley, A. L. Duigou, A. Bourmaud, and P. Davies, Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites, Compos. Part A Appl. Sci. Manuf, vol.43, issue.8, pp.1226-1233, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717191

D. Gay, Composite materials-Design and Applications, Third edit, 2015.

S. Blassiau, Modélisation des phénomènes microstructuraux au sein d'un composite unidirectionnel carbone / epoxy et prédiction de durée de vie : contrôle et qualification de réservoirs bobinés, 2007.

W. Hou and W. Zhang, Advanced composite materials defects/damages and health monitoring, Proc. IEEE 2012 Progn. Syst. Heal. Manag. Conf. PHM-2012, pp.1-5, 2012.

L. Liu, B. M. Zhang, D. F. Wang, and Z. J. Wu, Effects of cure cycles on void content and mechanical properties of composite laminates, Compos. Struct, vol.73, issue.3, pp.303-309, 2006.

Y. Gu, M. Li, Z. Zhang, and Z. Sun, Void Formation Model and Measuring Method of Void Formation Condition During Hot Pressing Process, Polym. Compos, vol.37, issue.1, pp.915-924, 2016.

H. M. Khanlou, P. Woodfield, J. Summerscales, and W. Hall, Consolidation process boundaries of the degradation of mechanical properties in compression moulding of natural-fibre bio-polymer composites, Polym. Degrad. Stab, vol.138, pp.115-125, 2017.

A. Bourmaud, A. L. Duigou, C. Gourier, and C. Baley, Influence of processing temperature on mechanical performance of unidirectional polyamide 11-flax fibre composites, Ind. Crops Prod, vol.84, pp.151-165, 2016.

Y. Li, Q. Li, and H. Ma, The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites, Compos. Part A Appl. Sci. Manuf, vol.72, pp.40-48, 2015.

J. Berthelot, Mécanique des Matériaux et Structures Composites, p.667, 2013.

J. K. Mackenzie, The elastic constants of a solid containing spherical holes, Proc. Phys. Soc. Sect. B, vol.63, issue.1, pp.2-11, 1950.

M. R. Wisnom, T. Reynolds, and N. Gwilliam, Reduction in interlaminar shear strength by discrete and distributed voids, Compos. Sci. Technol, vol.56, issue.1, pp.93-101, 1996.

A. R. Chambers, J. S. Earl, C. A. Squires, and M. A. Suhot, The effect of voids on the flexural fatigue performance of unidirectional carbon fibre composites developed for wind turbine applications, Int. J. Fatigue, vol.28, issue.10, pp.1389-1398, 2006.

V. Gager, A. L. Duigou, A. Bourmaud, F. Pierre, K. Behlouli et al., Understanding the effect of moisture variation on the hygromechanical properties of porosity-controlled nonwoven biocomposites, Polym. Test, vol.78, 2019.

B. Madsen and H. Lilholt, Physical and mechanical properties of unidirectional plant fibre composites-an evaluation of the influence of porosity, Compos. Sci. Technol, vol.63, issue.9, pp.1265-1272, 2003.

R. Maurin, P. Davies, N. Baral, and C. Baley, Transverse properties of carbon fibres by nano-indentation and micro-mechanics, Appl. Compos. Mater, vol.15, issue.2, pp.61-73, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00399275

F. R. Cichocki and J. L. Thomason, Thermoelastic anisotropy of a natural fiber, Compos. Sci. Technol, vol.62, issue.5, pp.11-19, 2002.

B. Madsen, A. Thygesen, and H. Lilholt, Plant fibre composites -porosity and stiffness, Compos. Sci. Technol, vol.69, issue.7-8, pp.1057-1069, 2009.

H. L. Cox, The elasticity and strength of paper and other fibrous materials, Br. J. Appl. Phys, vol.3, issue.3, pp.72-79, 1952.

C. Binétruy, Structures sandwiches, Techcniques de l'ingénieur, vol.1, 2012.

. Diab, , 2006.

H. G. Allen, Analysis and Design of Structural Sandwich Panels, Pergamon P, 1969.

G. Palomba, V. Crupi, and G. Epasto, Collapse modes of aluminium honeycomb sandwich structures under fatigue bending loading, Thin-Walled Structures, vol.145, 2019.

A. Petras and M. P. Sutcliffe, Failure mode maps for honeycomb sandwich panels, Compos. Struct, vol.44, issue.4, pp.123-131, 1999.

T. C. Triantafillou and L. J. Gibson, Failure mode maps for foam core sandwich beams, Mater. Sci. Eng, vol.95, issue.C, pp.90496-90500, 1987.

Y. Xiao, Y. Hu, J. Zhang, C. Song, Z. Liu et al., Dynamic bending responses of CFRP thin-walled square beams filled with aluminum honeycomb, Thin-Walled Struct, vol.132, pp.494-503, 2018.

D. Zhang, Q. Fei, and P. Zhang, Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor, Composite Structures, vol.168, pp.633-645, 2017.

X. Xue, C. Zhang, W. Chen, M. Wu, and J. Zhao, Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass, Compos. Struct, vol.226, 2019.

M. Elamin, B. Li, and K. T. Tan, Impact damage of composite sandwich structures in arctic condition, Compos. Struct, vol.192, pp.422-433, 2018.

A. Reyes and T. Børvik, Low velocity impact on crash components with steel skins and polymer foam cores, Int. J. Impact Eng, vol.132, issue.7491, p.103297, 2019.

L. J. Gibson and M. F. Ashby, Cellular Solids-Structure and properties, 1997.

A. E. Mahi, M. Khawar-farooq, S. Sahraoui, and A. Bezazi, Modelling the flexural behaviour of sandwich composite materials under cyclic fatigue, Mater. Des, vol.25, issue.3, pp.199-208, 2004.

R. Rajpal, L. K. , and K. V. Gangadharan, Parametric studies on bending stiffness and damping ratio of Sandwich structures, Addit. Manuf, vol.22, pp.583-591, 2018.

N. Sharma, R. F. Gibson, and E. O. Ayorinde, Fatigue of foam and honeycomb core composite sandwich structures: A tutorial, J. Sandw. Struct. Mater, vol.8, issue.4, pp.263-319, 2006.

C. Atas and C. Sevim, On the impact response of sandwich composites with cores of balsa wood and PVC foam, Compos. Struct, vol.93, issue.1, pp.40-48, 2010.

A. Monti, A. E. Mahi, Z. Jendli, and L. Guillaumat, Experimental and finite elements analysis of the vibration behaviour of a bio-based composite sandwich beam, Compos. Part B Eng, vol.110, pp.466-475, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02408560

F. Sarasini, Static and dynamic characterization of agglomerated cork and related sandwich structures, Compos. Struct, vol.212, pp.439-451, 2019.

J. Smardzewski, Wooden sandwich panels with prismatic core -Energy absorbing capabilities, Composite Structures, vol.230, 2019.

M. Haseli, M. Layeghi, and H. Z. Hosseinabadi, Characterization of blockboard and battenboard sandwich panels from date palm waste trunks, Meas. J. Int. Meas. Confed, vol.124, pp.329-337, 2018.

A. Stocchi, L. Colabella, A. Cisilino, and V. Álvarez, Manufacturing and testing of a sandwich panel honeycomb core reinforced with natural-fiber fabrics, Mater. Des, vol.55, pp.394-403, 2014.

G. Petrone, S. Rao, S. Rosa, B. R. Mace, F. Franco et al., Initial experimental investigations on natural fibre reinforced honeycomb core panels, Compos. Part B Eng, vol.55, pp.400-406, 2013.

A. Riccio, A. Raimondo, S. Saputo, A. Sellitto, M. Battaglia et al., A numerical study on the impact behaviour of natural fibres made honeycomb cores, Compos. Struct, vol.202, pp.909-916, 2018.

R. Stewart, At the core of lightweight composites, Reinf. Plast, vol.53, issue.3, pp.30-35, 2009.

M. F. Ashby, Materials Selection in Mechanical Design, 2005.
URL : https://hal.archives-ouvertes.fr/jpa-00251707

A. Chevalier-;-le-lin and . Le-chanvre, Histoire de deux plantes cultivées d'importance primordiale, Rev. Bot. appliquée d'agriculture Colon, vol.24, issue.269, pp.51-71, 1944.

A. G. and P. De-lin, , 2014.

C. Baley, F. Busnel, Y. Grohens, and O. Sire, Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin, Compos. Part A Appl. Sci. Manuf, vol.37, issue.10, pp.1626-1637, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00400151

A. L. Duigou, P. Davies, and C. Baley, Interfacial bonding of Flax fibre/Poly(llactide) bio-composites, Compos. Sci. Technol, vol.70, issue.2, pp.231-239, 2010.

A. Stamboulis, C. Baillie, and E. Schulz, Interfacial characterisation of flax fibrethermoplastic polymer composites by the pull-out test, Angew. Makromol. Chemie, vol.272, pp.117-120, 1999.

K. Charlet and A. Béakou, Mechanical properties of interfaces within a flax bundle Part I: Experimental analysis, Int. J. Adhes. Adhes, vol.31, issue.8, pp.875-881, 2011.

S. Wong, R. A. Shanks, and A. Hodzic, Effect of additives on the interfacial strength of poly(l-lactic acid) and poly(3-hydroxy butyric acid)-flax fibre composites, Compos. Sci. Technol, vol.67, issue.11-12, pp.2478-2484, 2007.

. Sicomin, SR GreenPoxy 56 Clear epoxy resin High bio-based content, 2015.

N. Martin, N. Mouret, P. Davies, and C. Baley, Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites, Ind. Crops Prod, vol.49, pp.755-767, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00985232

K. H. Kromer, Physical properties of flax fibre for non-textile-use, Res. Agric. Eng, vol.55, issue.2, pp.52-61, 2009.

K. Charlet, C. Baley, C. Morvan, J. P. Jernot, M. Gomina et al., Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites, Compos. Part A Appl. Sci. Manuf, vol.38, issue.8, 1912.

C. Baley, Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase, Compos. -Part A Appl. Sci. Manuf, vol.33, issue.7, pp.939-948, 2002.

K. Charlet, Contribution à l'étude de composites unidirectionnels renforcés par des fibres de lin : relation entre la microstructure de la fibre et ses propriétés mécaniques, 2008.

, Coupe trans lin

A. Bourmaud, C. Morvan, A. Bouali, V. Placet, P. Perré et al., Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers, Ind. Crops Prod, vol.44, pp.343-351, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00807825

A. Lefeuvre, A. L. Duigou, A. Bourmaud, A. Kervoelen, C. Morvan et al., Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour, Ind. Crops Prod, vol.76, pp.1039-1048, 2015.

K. Charlet, J. P. Jernot, S. Eve, M. Gomina, and J. Bréard, Multi-scale morphological characterisation of flax: From the stem to the fibrils, Carbohydr. Polym, vol.82, issue.1, pp.54-61, 2010.

B. Caroline, Green composites-Polymer composites and the environment, 2004.

L. J. Gibson, The hierarchical structure and mechanics of plant materials, J. R. Soc. Interface, vol.9, issue.76, pp.2749-2766, 2012.

S. Thomas, S. A. Paul, L. A. Pothan, and B. Deepa, Natural Fibres: Structure, Properties and Applications, 2011.

A. K. Bledzki and J. Gassan, Composities Reinforced with Cellulose Based Fibers, Prog. Polym. Sci, vol.24, issue.2, pp.18-23, 1999.

R. D. and M. John, Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites, pp.1-21, 2008.

D. B. Dittenber and H. V. Gangarao, Critical review of recent publications on use Sandwiches à fibres et anas de lin : optimisation structure-imprégnation-propriétés Safa ESSID of natural composites in infrastructure, Compos. Part A Appl. Sci. Manuf, vol.43, issue.8, pp.1419-1429, 2012.

K. L. Pickering, M. G. Efendy, and T. M. Le, A review of recent developments in natural fibre composites and their mechanical performance, Compos. Part A Appl. Sci. Manuf, vol.83, pp.98-112, 2016.

C. Re, Composites à fibres longues de lin : évaluation des procédés par infiltration, 2012.

I. Burgert, Exploring the micromechanical design of plant cell walls, Am. J. Bot, vol.93, issue.10, pp.1391-1401, 2006.

V. Placet, O. Cissé, and M. L. Boubakar, Nonlinear tensile behaviour of elementary hemp fibres. Part I: Investigation of the possible origins using repeated progressive loading with in situ microscopic observations, Compos. Part A Appl. Sci. Manuf, vol.56, pp.319-327, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02131359

K. Charlet, J. P. Jernot, M. Gomina, J. Bréard, C. Morvan et al., Influence of an Agatha flax fibre location in a stem on its mechanical, chemical and morphological properties, Spec. Issue 12th Eur. Conf. Compos. Mater. ECCM 2006, vol.69, pp.1399-1403, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00404015

A. Mahieu, S. Alix, and N. Leblanc, Properties of particleboards made of agricultural by-products with a classical binder or self-bound, Ind. Crops Prod, vol.130, pp.371-379, 2019.

F. Richter, A. Atreya, P. Kotsovinos, and G. Rein, The effect of chemical composition on the charring of wood across scales, Proc. Combust. Inst, vol.37, issue.3, pp.4053-4061, 2019.

F. Rozier, Cours complet d'agriculture théorique, pratique, économique, et de médecine rurale et vétérinaire, 1805.

M. Abida, Comportement hygroscopique et couplage hygromécanique dans les composites lin / époxy : approche expérimentale multi-échelle et modélisation, 2019.

A. M. Almusawi, Mise en oeuvre et optimisation des propriétés d'une structure sandwich en matériaux biosourcés (Fibre et bois de chanvre) avec une matrice en polystyrène expansé pour le batiment, 2017.

, Centre International de Recherche sur le Cancer, 2008.

, Association pour la Surveillance et l'étude de la Pollution Atmosphérique en Alsace, 2007.

J. Kim and Y. Mai, Engineered Interfaces in Fiber Reinforced Composites, 1998.

D. A. Dillard and A. V. Pocius, The mechanics of adhesion, 2002.

S. Zhandarov and E. Mäder, Characterization of fiber/matrix interface strength: Applicability of different tests, approaches and parameters, Compos. Sci. Technol, vol.65, issue.1, pp.149-160, 2005.

A. L. Duigou, A. Kervoelen, A. L. Grand, M. Nardin, and C. Baley, Interfacial properties of flax fibre-epoxy resin systems: Existence of a complex interphase, Compos. Sci. Technol, vol.100, pp.152-157, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115504

K. Zolfaghar and M. J. Folkes, The effect of surface coatings of optical fibers on the interfacial shear strength in epoxy resins, J. Mater. Sci. Lett, vol.18, issue.24, 1999.

C. Marotzke and L. Qiao, Interfacial crack propagation arising in single-fiber pull-out tests, Compos. Sci. Technol, vol.57, issue.8, pp.179-179, 1997.

M. R. Piggott, P. S. Chua, and D. Andison, The interface between glass and carbon fibers and thermosetting polymers, Polym. Compsites, vol.6, issue.4, pp.242-248, 1985.

P. G. De-gennes, F. Brochard-wyart, and D. G. Quéré, Bulles, Perles et Ondes, 2005.

T. Young, An essay on the cohesion of fluids, Phylosophical Trans. R. Soc. London, vol.95, issue.1, p.1805

M. F. Pucci, P. J. Liotier, and S. Drapier, Tensiometric method to reliably assess wetting properties of single fibers with resins: Validation on cellulosic reinforcements for composites, Colloids Surfaces A Physicochem. Eng. Asp, vol.512, pp.26-33, 2017.
URL : https://hal.archives-ouvertes.fr/emse-01493401

K. Grundke, P. Uhlmann, T. Gietzelt, B. Redlich, and H. J. Jacobasch, Studies on the wetting behaviour of polymer melts on solid surfaces using the Wilhelmy balance method, Colloids Surfaces A Physicochem. Eng. Asp, vol.116, issue.1-2, pp.93-104, 1996.

. Carre, Polar interactions at liquid/polymer interfaces, J. Adhes. Sci. Technol, vol.21, issue.10, pp.961-981, 2007.

S. Sugden, The determination of surface tension from the rise in capillary tubes, J. Chem. Soc, vol.119, pp.1483-1492, 1921.

S. Samuel, The determination of surface tension from the maximum pressure in bubbles, J. Chem. Soc, vol.121, pp.858-866, 1922.

O. L. Wheeler, H. V. Tartar, and E. C. Lingafelter, The Determination of Surface Tension by the Sessile Bubble Method, J. Am. Chem. Soc, vol.67, issue.12, pp.2115-2119, 1945.

S. Fordham, On the calculation of surface tension from measurements of capillary rise, Proc. R. Soc. London, vol.194, issue.1036, 1948.

M. S. Moghaddam, M. E. Wålinder, P. M. Claesson, and A. Swerin, Wettability and swelling of acetylated and furfurylated wood analyzed by multicycle Wilhelmy plate method, Holzforschung, vol.70, issue.1, pp.69-77, 2015.

D. K. Owens and R. C. Wendt, Estimation of the Surface Free Energy of Polymers, J. Appl. Polym. Sci, vol.13, pp.1741-1747, 1969.

G. I. Mantanis and R. A. Young, Wetting of wood, Wood Sci. Technol, vol.31, issue.5, pp.339-353, 1997.

J. Cai, E. Perfect, C. L. Cheng, and X. Hu, Generalized modeling of spontaneous imbibition based on hagen-poiseuille flow in tortuous capillaries with variably shaped apertures, Langmuir, vol.30, issue.18, pp.5142-5151, 2014.

E. P. Kalogianni, T. Savopoulos, T. D. Karapantsios, and S. N. Raphaelides, A dynamic wicking technique for determining the effective pore radius of pregelatinized starch sheets, Colloids Surfaces B Biointerfaces, vol.35, issue.3-4, pp.159-167, 2004.

N. Fries and M. Dreyer, The transition from inertial to viscous flow in capillary rise, J. Colloid Interface Sci, vol.327, issue.1, pp.125-128, 2008.

C. Baley, C. Morvan, and Y. Grohens, Influence of the absorbed water on the tensile strength of flax fibers, Macromol. Symp, vol.222, pp.195-201, 2005.

S. Essid, L. Bizet, and A. Saouab, Optimisation des propriétés mécaniques d'une structure sandwich à base de fibres de lin, Xèmes Journées d'études Tech. -JET, 2018.

C. Redon, L. Chermant, J. L. Chermant, and M. Coster, Automatic image analysis and morphology of fibre reinforced concrete, Cem. Concr. Compos, vol.21, issue.5-6, pp.25-31, 1999.

C. Thiery, Tomographie à rayons X, 2013.

F. Bensadoun, Impregnated fibre bundle test for natural fibres used in composites, J. Reinf. Plast. Compos, vol.36, issue.13, pp.942-957, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02175424

C. Poilâne, Z. E. Cherif, F. Richard, A. Vivet, B. B. Doudou et al., Polymer reinforced by flax fibres as a viscoelastoplastic material, Compos. Struct, vol.112, issue.1, pp.100-112, 2014.

J. and A. Fernández, Role of flax cell wall components on the microstructure and transverse mechanical behaviour of flax fabrics reinforced epoxy biocomposites, Ind. Crops Prod, vol.85, pp.93-108, 2016.

N. S. Çetin and N. Özmen, Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: II. Particleboard production and properties, Int. J. Adhes. Adhes, vol.22, issue.6, pp.481-486, 2002.

X. Lu, Z. Zhang, H. Du, H. Luo, Y. Mu et al., Compressive behavior of Mg alloy foams at elevated temperature, J. Alloys Compd, vol.797, pp.727-734, 2019.

S. Frybort, R. Mauritz, A. Teischinger, and U. Müller, Cement bonded composites -A Sandwiches à fibres et anas de lin : optimisation structure-imprégnation-propriétés Safa ESSID mechanical review, BioResources, vol.3, issue.2, pp.602-626, 2008.

S. O. Badejo, Effect of flake geometry on properties of cement-bonded particleboard from mixed tropical hardwoods, Wood Sci. Technol, vol.22, issue.4, pp.357-369, 1988.

K. E. Semple, R. B. Cunningham, and P. D. Evans, The suitability of five Western Australian mallee eucalypt species for wood-cement composites, Ind. Crops Prod, vol.16, issue.2, pp.89-100, 2002.

S. Wieland, Utilisation d'adhésifs respectueux de l'environnement pour la fabrication de panneaux dérivés du bois à faible émission de formaldéhyde -caractérisation des paramètres de pressage -évaluation des propriétés des panneaux, Thèse de la Faculté des Sciences et Techniques Nancy1, 2007.

R. A. Heebink and B. G. Hann, How wax particle shape affect stability and strength of oak particleboards, For. Prod. J, vol.9, pp.197-203, 1959.

K. Miyamoto, S. Nakahara, and S. Suzuki, Effect of particle shape on linear expansion of particleboard, J. Wood Sci, vol.48, issue.3, pp.185-190, 2002.

P. Evon, Production of fiberboards from shives collected after continuous fiber mechanical extraction from oleaginous flax, J. Nat. Fibers, vol.16, issue.3, pp.453-469, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01704039

N. ?tevulová, E. Terpáková, J. ?igá?ová, J. Junák, and L. Kidalová, Chemically treated hemp shives as a suitable organic filler for lightweight composites preparing, Procedia Engineering 42, pp.948-954, 2012.

M. Khazma, A. Goullieux, R. M. Dheilly, and M. Quéneudec, Coating of a lignocellulosic aggregate with pectin/polyethylenimin mixtures: Effects on flax shive and cement-shive composite properties, Cem. Concr. Compos, vol.34, issue.2, pp.223-230, 2012.

J. Page, F. Khadraoui, M. Gomina, and M. Boutouil, Influence of different surface treatments on the water absorption capacity of flax fibres: Rheology of fresh reinforced-mortars and mechanical properties in the hardened state, Constr. Build. Mater, vol.199, pp.424-434, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02278540

D. L. Gaquere-ludovic, L. Jevgenij, L. Nicolas, and D. Rolf, Amelioration des proprietes hydrophobes et ignifuges des isolants naturels a base de fibres de lin et de chanvre par traitement au plasma atmospherique, Ecobat Sci. Tech, pp.1-10, 2013.

A. R. Bezazi, A. E. Mahi, J. M. Berthelot, and B. Bezzazi, Flexural fatigue behavior of cross-ply laminates: An experimental approach, Strength Mater, vol.35, issue.2, pp.149-161, 2003.

A. Bezazi, A. Mahi, J. M. Berthelot, and B. Bezzazi, Experimental analysis of behavior and damage of sandwich composite materials in three-point bending. Part 1. Static tests and stiffness degradation at failure studies, Strength Mater, vol.39, issue.2, pp.170-177, 2007.

A. R. Hani, M. Mariatti, A. Roslan, R. M. Nazrul, and A. R. Othman, Influence of woven and cross-ply laminates on mechanical properties of coir epoxy composite, Appl. Mech. Mater, vol.315, pp.136-140, 2013.

. Gurit, SA 70 Epoxy adhesive film

S. H. Sabah, A. B. Kueh, and N. M. Bunnori, Failure mode maps of bioinspired sandwich beams under repeated low-velocity impact, Compos. Sci. Technol, vol.182, 2019.

J. L. Yu, E. Wang, J. Li, and Z. Zheng, Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending, Int. J. Impact Eng, vol.35, issue.8, pp.885-894, 2008.

T. S. Lim, C. S. Lee, and D. G. Lee, Failure modes of foam core sandwich beams under static and impact loads, J. Compos. Mater, vol.38, issue.18, pp.1639-1662, 2004.

O. Castro, J. M. Silva, T. Devezas, A. Silva, and L. Gil, Cork agglomerates as an ideal core material in lightweight structures, Mater. Des, vol.31, issue.1, pp.425-432, 2010.

R. E. Mark, Cell wall mechanics of tracheids, 1967.

N. E. Hajj, Contribution à la conception et à l'élaboration d'une âme multicouche multifonctionnelle agrosourcée pour panneau sandwich : étude expérimentale et modélisation, 2010.

M. L. Gall, P. Davies, N. Martin, and C. Baley, Recommended flax fibre density values for composite property predictions, Ind. Crops Prod, vol.114, pp.52-58, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02069273

D. Zenkert, The handbook of sandwich construction, 1997.

J. Susainathan, F. Eyma, E. De-luycker, A. Cantarel, C. Bouvet et al., Experimental investigation of compression and compression after impact of woodbased sandwich structures, Compos. Struct, vol.220, pp.236-249, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02104770

X. Wu, H. Yu, L. Guo, L. Zhang, X. Sun et al., Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure, Compos. Struct, vol.213, pp.165-172, 2019.

X. Deng and W. Liu, Experimental and numerical investigation of a novel sandwich sinusoidal lateral corrugated tubular structure under axial compression, Int. J. Mech. Sci, vol.151, pp.274-287, 2019.

K. Magnucki, J. Lewinski, M. Far, and P. Michalak, Three-point bending of an expanded-tapered sandwich beam -Analytical and numerical FEM study, Mech. Res. Commun, vol.103, 2020.

S. N. Huang and D. W. Alspaugh, Minimum weight sandwich beam design, AIAA J, vol.12, issue.12, pp.1617-1618, 1974.

E. W. Kuenzi, Minimum Weight Structural Sandwich, USDA For. Serv, pp.1-14, 1965.

L. J. Gibson, Optimization of stiffness in sandwich beams with rigid foam cores, Mater. Sci. Eng, vol.67, issue.2, pp.125-135, 1984.

T. C. Triantafillou and L. J. Gibson, Minimum weight design of foam core sandwich panels for a given strength, Mater. Sci. Eng, vol.95, pp.90497-90503, 1987.

N. Wicks and J. W. Hutchinson, Optimal truss plates, Int. J. Solids Struct, vol.38, pp.5165-5183, 2001.

S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, Crashworthiness optimization of corrugated sandwich panels, Mater. Des, vol.51, pp.1071-1084, 2013.

P. Chootinan and A. Chen, Constraint handling in genetic algorithms using a gradientbased repair method, Comput. Oper. Res, vol.33, issue.8, pp.2263-2281, 2006.

Y. Jian and Y. Li, Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm, Cogn. Syst. Res, vol.56, pp.203-212, 2019.

Y. Dong, J. Tang, B. Xu, and D. Wang, An application of swarm optimization to nonlinear programming, Comput. Math. with Appl, vol.49, issue.11-12, pp.1655-1668, 2005.

A. Rey and R. Zmeureanu, Micro-time variant multi-objective particle swarm optimization (micro-TVMOPSO) of a solar thermal combisystem, Swarm Evol. Comput, vol.36, pp.76-90, 2017.

F. Abdessamia, Y. Tai, W. Z. Zhang, and M. Shafiq, An improved particle swarm optimization for energy-efficiency virtual machine placement, Proceedings -5th International Conference on Cloud Computing Research and Innovation, pp.7-13, 2017.

X. Cai, L. Gao, and F. Li, Sequential approximation optimization assisted particle swarm optimization for expensive problems, Appl. Soft Comput. J, vol.83, p.105659, 2019.

J. Kennedy and R. Eberhart, Particle swarm optimization, Proc. IEEE Int. Conf. Neural Networks IV, pp.1942-1948, 1995.

C. A. Coello and M. Reyes-sierra, Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art, Int. J. Comput. Intell. Res, vol.2, issue.3, pp.287-308, 2006.

M. Lossec, B. Multon, and H. Ahmed, Sizing optimization of a thermoelectric generator set with heatsink for harvesting human body heat, Energy Convers. Manag, vol.68, pp.260-265, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881723

M. Khammassi, ;. J. Aubry, and ;. Barbedette,

M. Cormerais;-c.-larouci and ;. Benouezdou, Optimization of hydro-mechanical model of a multiway valve used in automotive thermal management, IEEE International Conference on Advanced Intelligent Mechatronics, pp.1582-1587, 2017.